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Preface

Robotics is an emerging field with applications in every walk of life. Robotics, and the associated 
technology, appear to be confined to the well-equipped laboratories of universities and high-tech 
companies. However, many of the aspects of robotics – building them and programming them – can 
be learned and practiced in your own home.

The main areas of robotics are as follows:

• Structure – the design and building of a mechanical platform

• Electronics – sensors, motors, and control circuits

• Software – the code for libraries, sensor interactions, and behaviors

This book aims to cover a little of each area, looking at basic CAD design, part fabrication, and assembly 
of hardware. It introduces some starting digital electronics, such as connections and data buses. It aims 
to dig a little deeper into the sensors and the code needed to make interesting behaviors using them.

There are robotics books that offer a theoretical robotics introduction; however, the aim of this book 
is to take you on a journey of practice, fun, and experimentation. This book provides step-by-step 
applied explanations and images to aid understanding.

Building your own robots in your home is a great way to learn technology skills. This is an experience 
of technology that replaces impenetrable magic with real-world experience and confidence to build 
more – anyone with practice can become a robotics wizard too.

Who this book is for
The book is intended for those who would like a practical and step-by-step hands-on introduction to 
designing, building, and programming robots, using the popular Python programming language. It is 
also for those who would like to gain an introduction to 3D CAD, robotics sensors, robotics hardware, 
and robotics behaviors that make use of the sensors and hardware.

This book will be valuable to makers, learners, and developers who want to build robots in their homes 
or workshops. The book does not require a specialist workshop, and any skills and tools needed will 
be explained throughout the book.

Those who have written a little code before will find this book useful. You do not need to have any 
experience with electronics or making things, but you can expect to gain initial experiences while 
practicing the techniques in this book.
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We expect you to have a keen interest in learning more and a little fearlessness in trying robotics 
experiments. Practical application of the examples within is essential. Getting the most out of this 
book means being willing to make a real robot and test it.

What this book covers
Chapter 1, Planning a Robot with Raspberry Pi Pico, introduces Raspberry Pi Pico in relation to other 
robotics main controllers. It shows the advantages of the CircuitPython programming environment 
and takes you through making an overview plan for a robot build built around Pico. The chapter 
provides a robot hardware shopping list for the first half of the book, discussing the parts and trade-
offs in choosing them.

Chapter 2, Preparing Raspberry Pi Pico, takes you through getting CircuitPython onto Pico, then 
taking your first steps in writing code with it. It will also cover soldering headers onto Raspberry Pi 
Pico so it can connect to robot parts.

Chapter 3, Designing a Robot Chassis in FreeCAD, introduces FreeCAD while turning the overview plan 
into 3D CAD designs. It shows you how to make drawings from the design for building the robot parts.

Chapter 4, Building a Robot around Pico, shows how you can use CAD drawings with hand tools to 
craft robot parts by cutting and drilling sheet plastic. It guides you in assembling the parts then wiring 
and connecting the electronics. This chapter is where the robot is first powered on!

Chapter 5, Driving Motors with Raspberry Pi Pico, introduces you to controlling motors with 
CircuitPython and Raspberry Pi Pico, showing how motors can be used to make line motions and 
turns and how speed can be controlled. The chapter then shows you how to pull these together into 
programmed motion sequences.

Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico, introduces the first robotic sensor 
in the book with wheel encoders, showing you how to detect wheel movement in code. The chapter 
covers the Raspberry Pi Pico PIO peripheral as a powerful way to manage these sensors.

Chapter 7, Planning and Shopping for More Devices, prepares you for the next section of the book 
with distance sensors, Bluetooth LE, and an inertial measurement unit (IMU), with further advice 
on choosing the devices and how they will be attached. The chapter provides a shopping list for the 
latter part of the book. You will revisit FreeCAD part design to make sensor mounts, and then use 
tools to cut them.

Chapter 8, Sensing Distances to Detect Objects with Pico, takes you through attaching and wiring two 
distance sensors into the robot. The chapter provides information on I2C communication and then 
shows you how to program the robot to communicate with the sensors. You will then build code for 
the robot to autonomously avoid walls.
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Chapter 9, Teleoperating Raspberry Pi Pico Robot with Bluetooth LE, makes a comparison of wireless 
connection options, showing why Bluetooth LE was a suitable design choice. You will connect a Bluetooth 
LE module to the robot, then extend existing code to output sensor data through this connection, 
and display the output on a smartphone. You will also see how to drive the robot from a smartphone.

Chapter 10, Using the PID Algorithm to Follow Walls, provides an introduction to the PID algorithm, a 
fundamental building block for sensor/output control behaviors in robotics. We build a wall-following 
demonstration using a distance sensor, then show you how to tune the PID with smartphone plots 
via Bluetooth LE.

Chapter 11, Controlling Motion with Encoders on Raspberry Pi Pico, revisits encoders, showing you 
how to convert their output into units understandable by humans. You will learn how to combine 
these sensors with the PID algorithm to control motor speeds and drive in a straight line. You will 
then program the robot to drive a specified distance in a straight line at a specified speed.

Chapter 12, Detecting Orientation with an IMU on Raspberry Pi Pico, introduces the IMU, a sensor 
that lets you determine the orientation of the robot. The chapter provides a guide on connecting the 
sensor and calibrating it. You will use the IMU with the PID algorithm for a behavior that makes a 
robot always face north. Finally, the chapter shows you how to program the robot to make a specified 
turn using the IMU.

Chapter 13, Determining Location with Monte Carlo, will show you how to program a robot to determine 
where it is likely to be in an arena. You’ll use plans in the chapter to build a foam board arena and 
model this arena in code. You are shown how to visualize this space on a computer using Bluetooth 
LE with Matplotlib. You will then learn about moving robot poses based on sensor input. The chapter 
shows how multiple robot behaviors can cooperate in the same application. You will be introduced to 
using probability algorithms in robot motion, making predictions, and refining them.

Chapter 14, Continuing Your Journey – Your Next Robot, provides a summary of the topics learned 
in the book, with information on digging deeper into each of them. The chapter provides ideas and 
research areas for you to extend all the aspects of the robot, and then further suggestions to build 
more ambitious robots and grow your skills. The chapter also recommends robotics communities 
you could participate in.

To get the most out of this book
You will need to have knowledge of a few Python basics, such as variables, looping, conditionals, and 
functions. A well-lit and ventilated desk space is recommended for the robot-building aspects of the 
book. Access to hand tools will help, although you will be shown which tools to shop for. The robot 
code examples have been tested on CircuitPython 7.2.0 on Raspberry Pi Pico but should work with 
later versions. The computer code examples were tested on Python 3.9.
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Software/hardware covered in the book Operating system requirements
Thonny > 3.3 or Mu Editor > 1.1 macOS, Linux, or Windows
Python 3.7 or later macOS, Linux, or Windows
Matplotlib 3.6.1 or later macOS, Linux, or Windows
NumPy 1.23.4 or later macOS, Linux, or Windows
Bleak (Python BLE library) 0.19.0 or above macOS, Linux, or Windows
Free USB port macOS, Linux, or Windows
Smartphone/tablet with Bluetooth LE (Bluetooth > 4.0) iOS or Android
Adafruit Bluefruit LE Connect > 3.3.2 iOS or Android
Bluetooth LE-enabled laptop (or BLE dongle) macOS, Linux, or Windows
FreeCAD macOS, Linux, or Windows
Raspberry Pi Pico
CircuitPython > 7.2.0 Raspberry Pi Pico

Thonny comes with a built-in Python 3.x installation. The Tools | Open System shell menu can be 
used to install packages in Thonny’s Python.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Help for this book can be found by:

• Raising a bug on the book’s GitHub repository at https://github.com/
PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico

• Asking via Discord at https://discord.gg/2VHYY3FkXV

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico. If there’s an update 
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at  
https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico
https://discord.gg/2VHYY3FkXV
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico
https://github.com/PacktPublishing/
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Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/7x3ku.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To run 
this code, be sure to send the pio_encoders.py library, the updated robot.py file, and then 
measure_fixed_time.py.”

A block of code is set as follows:

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    led.value = True

    time.sleep(0.5)

    led.value = False

    time.sleep(0.5)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

>>> print("Hello, world!")

Hello, World!

>>>

Any command-line input or output is written as follows:

code.py output:

4443 4522

https://packt.link/7x3ku
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Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Launch Mu Editor, and when it is 
running, click on the Mode button. From this, select CircuitPython.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Robotics at Home with Raspberry Pi Pico, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1803246073
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Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook 
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803246079

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803246079


Part 1: The Basics – Preparing 
for Robotics with Raspberry  

Pi Pico

In this part, you will take your first steps in learning about Raspberry Pi Pico, then plan and build  
a robot around it, and get the initial robot code to make the robot move.

This part contains the following chapters:

• Chapter 1, Planning a Robot with Raspberry Pi Pico

• Chapter 2, Preparing Raspberry Pi Pico

• Chapter 3, Designing a Robot Chassis in FreeCAD

• Chapter 4, Building a Robot around Pico

• Chapter 5, Driving Motors with Raspberry Pi Pico





1
Planning a Robot  

with Raspberry Pi Pico

When you plan, you create the best chance for a mission’s success. We want to build robots in an 
achievable way. Let’s start with a plan in mind! We’ll use this plan to explore why Raspberry Pi Pico 
is a great fit for this and make a shopping list!

In this chapter, you’ll learn about Raspberry Pi Pico’s capabilities. You’ll discover CircuitPython and 
understand why it is a great language for Raspberry Pi Pico. Additionally, we’ll plan a robot design and 
understand the trade-offs to make choices about the robot early in the project. We’ll check that our 
robot fits together, working out the parts and tools you’ll need with suggestions on how to get them.

At the end of the chapter, you’ll have both a plan and parts arriving so that you are ready to build a 
robot. Additionally, you’ll have a starting process for making other robots and setting yourself up for 
success with them.

In this chapter, we’ll cover the following main topics:

• What is Raspberry Pi Pico, and why is it suitable for robotics?

• What is CircuitPython?

• Planning a Raspberry Pi Pico robot

• Test fitting a Raspberry Pi Pico robot

• A recommended shopping list for robot basics

Technical requirements
We’ll go into the necessary hardware and shopping list as we progress further in this chapter. So, in 
this section, we’ll just focus on what you will need physically and on your computer to get started.



Planning a Robot with Raspberry Pi Pico4

You will require the following:

• Some thin cardboard

• A ruler, pencil, and scissors

• A good web browser with internet access

What is Raspberry Pi Pico, and why is it suitable for 
robotics?
At the heart of every robot is a controller. Usually, this is a computing device that is responsible for 
running the code for the robot to perform its tasks and behaviors. Choosing a controller is a key choice 
in robot design. You can either come from the I have this controller, what can I do with it? perspective 
or the which controllers have the capabilities I’ll want for a particular robot? perspective.

In this section, we’ll take a closer look at what Raspberry Pi Pico offers as a controller and the trade-offs  
it’s made. We’ll explore why it is good for robotics and why it could be part of a larger, more interesting 
system, too.

Additionally, we’ll delve into the details of its interfaces and how they’ll be useful to us.

A microcontroller that runs Python

Let’s start by taking a look at Raspberry Pi Pico, and discover what it has. The following photograph 
shows Raspberry Pi Pico: 

Figure 1.1 – Raspberry Pi Pico
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Raspberry Pi Pico, as shown in Figure 1.1, is an RP2040 microcontroller on a Raspberry Pi-designed 
board. This microcontroller is a small computing device that has been designed to interface closely with 
hardware. It has a USB connection on the right-hand side for power or programming on a computer. 
The LED is useful for debugging. Also, there are many input/output (IO) pins around the edges to 
connect things. It is with these IO pins that the magic happens when it comes to controlling robots!

Controllers use IO pins to write and read from attached hardware. They can group pins into buses 
(which we’ll cover in more detail later) to exchange data with other devices. Additionally, they can 
create waveforms on outputs for controlling motors and LEDs.

This sounds a lot like the other Raspberry Pi models. However, this is a different class of computer. 
Raspberry Pi Pico has more in common with an Arduino board. Let’s take a closer look at what that 
difference means with the following diagram:

Figure 1.2 – Microcontroller boards versus single-board computers
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Figure 1.2 shows that while microcontroller boards such as Raspberry Pi Pico and Arduino might look 
similar to single-board computers (SBCs) such as Raspberry Pi 4 or BeagleBone, they have different 
key areas. For instance, they differ in storage, CPU speed, cost size, the complexity of software, and 
how closely your software runs to the hardware.

While Raspberry Pi Pico is brilliantly suited to controlling hardware, such as robots, it isn’t as suited 
to high-memory or CPU tasks such as AI or visual recognition. There’s a kind of robot system known 
as horse-and-rider, which combines an SBC (for example, Raspberry Pi 4) for complex processing 
with a microcontroller (for example, Pico) for controlling hardware.

The low complexity means that code on a microcontroller has nearly no boot time, which means your 
code doesn’t have to coexist with other software in an operating system. Take a look at the following 
block diagram:

Figure 1.3 – Running your code on Raspberry Pi versus Pico

This preceding diagram represents the software architecture on Raspberry Pi versus Raspberry Pi 
Pico. It shows how a Linux computer, such as Raspberry Pi, has additional layers of software along 
with competing apps running alongside your code.

In addition to this, controllers have interrupts. They can notify the code that something has changed, 
such as the state of an IO pin. You’ll find this on the other Raspberry Pi models, but they are controlled 
by that pesky operating system again. In Pico and other microcontrollers, you get more control over what 
happens or when something changes on an IO pin, allowing responsive code with predictable timing.

So, how does Raspberry Pi Pico compare with the Arduino Uno? The following table shows details 
from their specifications and datasheets:
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Table 1.1 – Comparing the Pico with the Arduino Uno

The preceding table shows that Raspberry Pi Pico has a faster multicore processor, along with more 
storage and digital IO pins. Additionally, Raspberry Pi Pico has a unique Programmable IO (PIO) 
system for extreme flexibility in organizing data to and from these pins. Official Pico boards are also 
cheaper than official Arduino boards.

Another place that Raspberry Pi Pico compares favorably with Arduino is in its use of Python 
(CircuitPython or MicroPython). Many microcontrollers, such as Arduino, require C/C++ to program, 
which can be difficult for beginners. Python is easier to understand, allows for complex and interesting 
data structures, and has access to many libraries of code, too.

In short, the key features of Raspberry Pi Pico are as follows:

• A microcontroller—this offers low power and is small compared with SBCs.

• It has responsible and flexible IO options.

• It is low cost compared to many microcontroller boards and most SBCs.

• It is programmable in Python.

A number of the features I attribute to Raspberry Pi Pico are due to the RP2040—the chip that powers 
Pico and is available in forms other than Raspberry Pi Pico.

IO flexibility is Raspberry Pi Pico’s most interesting feature, so let’s take a look at that next.

Raspberry Pi Pico’s interfaces for sensors and devices

Raspberry Pi Pico has many interfaces for connecting to hardware, along with its unique PIO system. 
In this section, we’ll look at each type of interface.

A digital IO pin is the basic IO system for Raspberry Pi Pico. An output can be on or off, which is 
great for turning LEDs on or off, but you are unable to control their brightness. Similarly, an input 
can also detect on or off states. Raspberry Pi Pico has 26 of these pins.

Pulse-Width Modulation (PWM) is a waveform for controlling outputs such as LEDs and motors—
including DC motors, stepper motors, and servo motors. PWM pins output square wave pulses, with 
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a changing (modulating) on-off ratio (pulse widths). Changing pulse width results in changes to the 
brightness of an LED, the speed of a motor, or a servo motor’s position. Raspberry Pi Pico has 16 
PWM channels, making it capable of controlling many such devices at once. These PWM pins still 
require a power control device to drive the motors.

Analog input pins detect levels of voltage between ground (GND) and 3.3V. This is good for interfacing 
with simple sensors, such as light sensors, joysticks, slider/knob controls, temperature sensors, and 
measuring currents (using a bit of additional circuitry). Raspberry Pi Pico has three of these inputs.

A universal asynchronous receiver-transmitter (UART) controls a serial port. It can send streams 
of data to and from devices using two pins: a TX transmit pin and an RX receive pin. With this, it 
is capable of sending/receiving data that is more complicated than just a varying level. Raspberry Pi 
Pico has two independent UART interfaces.

Pico has two Serial Peripheral Interface (SPI) bus controllers. SPI uses four pins, as shown in the 
following diagram:

Figure 1.4 – Raspberry Pi Pico SPI bus usage

The preceding diagram shows Raspberry Pi Pico using an SPI bus to connect to two devices—for 
example, displays or sensors. The bus has transmit (TX), also known as Controller Out/ Peripheral 
In (COPI) or Microcontroller Out/Sensor In (MOSI) for transmitting data from the controller, 
receive (RX) also known as Controller In/ Peripheral Out (CIPO) or Microcontroller In/Sensor Out 
(MISO) for receiving data back to the controller, SCK (a clock for timing the signal), and Chip Select 
(CSEL/CS) a chip selection pin for each peripheral. SPI uses chip selections to enable communication 
with multiple devices, as shown by the dashed lines of Device 1 CS and Device 2 CS. See https://
makezine.com/article/maker-news/mosi-miso-and-140-years-of-wrong/ for 
details on the current SPI acronyms.

https://makezine.com/article/maker-news/mosi-miso-and-140-years-of-wrong/
https://makezine.com/article/maker-news/mosi-miso-and-140-years-of-wrong/
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The Inter-Integrated Circuit (I2C) is a data bus designed for communicating between integrated 
circuits such as sensors, memory devices, and output devices. An I2C bus has a data pin (which is 
often called SDA – Serial Data) and a clock pin (which is often called SCL – Serial Clock) keeping 
things synchronized. Multiple devices share an I2C bus by sending/receiving data with addresses, 
such as those in the following diagram:

Figure 1.5 – I2C buses on Raspberry Pi Pico

Figure 1.5 shows Pico and then some child peripherals connected via two independent I2C buses, 
assignable to different pin configurations, with some devices having the same address but different 
I2C connections. Additionally, I2C can address registers (such as memory locations) within devices. 
We’ll use I2C later to communicate with sensors.

Finally, Raspberry Pi Pico has PIO. PIO is a feature that is unique to Pico. PIO consists of two blocks 
with four state machines. Each can run simple code independently of the main CPU and control one 
or more pins to send data to or from them. A single-state machine can control all the pins if that was 
useful for the code. Additionally, each state machine comes with buffers to hold data until it can be 
transferred. The following is an example block diagram of the PIO system:

Figure 1.6 – The Raspberry Pi Pico PIO system
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The preceding diagram shows two PIO devices inside the Pico. Each has code storage memory, 
so you can have two independent functions. In each PIO device, there are state machines that can 
independently run the code from that local memory.

Since PIO state machines run independently, and their instructions are about shifting data to/from 
pins, they can create interfaces for many kinds of hardware. For example, is there a weird protocol 
device? Use PIO. Do you need rapid counting independent of the main CPU? Use PIO. People have 
made Video Graphics Array (VGA) outputs with PIO, so it’s capable of fast and complex data handling. 
Additionally, you can also get interrupts from PIOs to tell you when something has happened.

That was quite a lot of IO systems. Let’s summarize them in a table, as follows:

Table 1.2 – The Raspberry Pi Pico IO systems

These protocols share pins, so using an I2C bus consumes 2 pins from the 26-pin pool.

Now that we’ve had a tour of Raspberry Pi Pico’s features and interfaces, let’s take a look at how we’ll 
program it in this book, using CircuitPython.

What is CircuitPython?
Many microcontrollers require C/C++ or Assembler to program—for example, the popular Arduino 
ecosystem. However, in robotics, Python is rapidly becoming a de facto language. It is used for AI 
and data science and is great for rapidly trying out new ideas. Let’s examine why it is handy and, 
specifically, why I’ve chosen CircuitPython for this book.
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Python does not require a compile step. Getting you quick feedback on your code and Python’s 
read-eval-print loop (REPL) allow you to start typing and experimenting with code instantly. The 
REPL allows you to see what works before using ideas in code that you’ll keep. Here’s a REPL session 
with CircuitPython:

Adafruit CircuitPython 6.2.0 on 2021-04-05; Raspberry Pi Pico 
with rp2040

>>> print("Hello, world!")

Hello, world!

The preceding session shows a print running in a REPL on Raspberry Pi Pico. We’ll explore how to 
use the REPL for some Pico experiments. It even comes with built-in assistance; however, on Pico, 
not all of the help is left in, for size reasons.

Python has other things that help, such as being able to directly return multiple values from a function. 
Python has function calls and classes like C++, but functions can be used as data, and references to 
them can be stored in variables. Additionally, Python has functional programming elements that allow 
programmers to chain tools together for processing streams of data.

Python uses exceptions to handle errors, allowing you to choose how to respond to them or observe 
their output, leading you directly to a problem.

MicroPython is the original port of the Python language to run on small memory devices such as 
microcontrollers. It has a community working on it, and CircuitPython builds on it.

In CircuitPython, Raspberry Pi Pico mounts as a USB storage device, so you can copy your code and 
the libraries your code uses, directly onto the Pico. This makes composing code from multiple libraries 
or using third parties simple. Copying code over with the correct name is enough to run that code 
when Raspberry Pi Pico is powered up again.

CircuitPython has a huge library of device support for Neopixel LEDs, Bluetooth, many sensors, 
displays, and other devices. This library not only works with Pico but runs across many CircuitPython 
controllers, so familiarity with these library components will be useful when you are working with 
other controllers.

Now that we’ve chosen a language and the controller that we will build robots with in this book, it’s 
time to start planning a robot!

Planning a Raspberry Pi Pico robot
We’ve been fact-finding for our robot-building mission. Before we start our robot-building journey, 
we’ll make a rough plan of what we want to do, then refine it. We’ll make important decisions, which 
we can examine further as we start to build the robot.
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An overview of robot planning

When planning the robot, there are several things we need to consider:

• What do we want this robot to do? What is it for?

• What style of robot is suitable?

• What kinds of sensors or outputs will we need?

• What rough shape and size will it have?

Once we’ve answered these questions, we can make further decisions about what we build. These don’t 
require much detail. Robotics is full of interesting diversions, making it tempting to jump between 
ideas. By having a constrained plan and working to it, you can keep your pace on getting a robot built, 
saving distractions and cool ideas for the next robot or three!

What do we want this robot to do? What is it for?

Will the robot solve a problem, clean your kitchen, explore a space, deliver packages, impress guests 
at a conference, or compete in a robot competition?

The robot we’ll build in this book has several purposes:

• Exploring Raspberry Pi Pico and its capabilities

• Trying out sensors

• Writing algorithms guided a little by challenges in robot competitions

• Navigating a known space

• Building a custom chassis, adaptable for future ideas

• Keeping it simple enough to get started

With these goals in mind, we can look at the specific details.

What style of robot is suitable?

There are many robot styles. We should choose one, probably the simplest possible for our goal. Take 
a look at the following diagram for a selection of different robot styles:
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Figure 1.7 – Different robot styles

The first robot style is a robot arm used in industry. These are fascinating and fun to build. However, 
they do not satisfy our goals of building a robot chassis to try out sensors.

The next panel shows a quadcopter drone—an unmanned aerial vehicle (UAV). These are complicated 
to build and program, so they do not meet our goal of keeping it simple.

The third panel shows a walking robot—a hexapod. These require controlling many servo motors. 
Their power usage and complexity make them an unsuitable but exciting option for a follow-up robot!

The fourth panel shows a wheeled robot. Wheeled robots can be simple two-wheel-drive (2WD) 
robots with a roller, such as this one. 2WD rover platforms such as this satisfy our goals of building 
a chassis and getting to know sensors and algorithms. They can later be made more interesting, with 
tracks, mecanum wheels, rocker bogies, or individually steered wheels, allowing them to also meet 
the adaptable goal.

I recommend that we go ahead with a 2WD rover throughout this book but keep the other variations 
in mind for further robot builds!

What kinds of sensors or outputs will we need?

One of our goals is to try out different sensors. A robot made to navigate spaces will influence the 
sensors we’ll use. They all contribute to locating the robot.
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Good sensors for this include the following:

• Distance sensors: What is in front of the robot? How far are the nearest objects? We might 
want more than one of these devices.

• Encoders: How has the robot moved? How far did it go?

• Inertial Measurement Unit (IMU): Has the robot turned? What is its position relative to north?

Along with these sensors, we can have simple outputs—the motors that we drive wheels with. As a 
later extension, we could also add Bluetooth to give us some feedback on our robot’s status. We don’t 
need to plan all of this yet but leave space for it so that we can extend the robot later.

What rough shape and size will it have?

Now, we have a firm idea of a 2WD robot. We know it probably needs to support the following:

• Raspberry Pi Pico

• A pair of motors with wheels and a caster

• Many sensors and, later, Bluetooth

• Power for the system, including batteries plus voltage conversion

• A breadboard for wiring all of this together

Although we don’t want the robot to be too big, we are going to need some real estate to play with. 
Let’s start with a rough estimate of 150 mm x 200 mm.

So, we’ve answered some questions about what we want. We will use the next few sections to dive 
deeper into the planning of this robot, looking at the different aspects of the planning and the choices 
we’ll make. The first of those is to consider trade-offs.

A note on trade-offs

All designs make trade-offs. The truth is that no design fits all cases, and usually, no design is perfect 
but will be good enough in the right aspects where it works. We will need to make decisions and read 
datasheets for parts to also assist us.

One example is size and weight—we already mentioned that we don’t want a large robot. After all, 
we have a limited workbench size, and larger robots require more power, larger motors, and larger 
batteries. Additionally, we’d need to work with tougher and—likely—harder-to-cut materials. For a 
different context and goal, perhaps a large, heavier robot would be more suitable. So, the first trade-off 
is to keep the robot small but not too small—that is, to keep it simple.

We’ve suggested Raspberry Pi Pico, and the trade-offs from Raspberry Pi there, for example lighter 
weight, reduced cost, and power.
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But what of sensor trade-offs? Every sensor has multiple types, which we will dive into in their respective 
chapters. They differ in price, features, and complexity.

In many aspects, we can trade having more complexity for reduced weight or cost or more features 
for a higher cost.

Choosing a robot chassis

We have many options for our 2WD robot chassis. Again, this depends on what we want to learn or 
achieve. We have stated our goal of building a flexible chassis. Some good options for doing this are 
as follows:

• Buying a chassis kit

• Adapting a lunchbox or toy

• Doing a scratch build by hand

• 3D printing or laser cutting a chassis

Chassis kits are an easy option but have limited flexibility. Many come with motors, wheels, batteries, 
and even a motor driver designed for a specific main controller. In this way, they can save time and 
money, allowing you to focus entirely on the code and sensors, but they offer less opportunity to learn 
design aspects. It’s often tricky to find a chassis kit with the right shape and size, and as they get larger, 
they quickly become more expensive.

You could also adapt a lunchbox into a robot chassis—cutting mounting holes for motors, sensors, 
boards, and other parts can be a good place to learn design skills. However, you’d need to fit your 
robot electronics and hardware in a constrained space. Note that the curved sides of lunchboxes can 
complicate things.

Scratch-building a chassis gives you great flexibility. You can learn how to design in CAD and how to 
use hand tools. Additionally, you need to make choices about the type and thickness of the material, 
and in doing so, you’ll be able to understand more about making strong robots. You’ll learn how to 
fit sensors and expand your robot if things get a bit tight. This requires more time and patience than 
the kits, but the rewards are great.

3D printing and laser cutting require precise designs, along with expensive and specialist tools or 
services. As you dive further into robotics, and progress beyond a simple 2WD robot, creating more 
interesting shapes and sensor mounts, it is likely to be an important area of exploration. If you are 
not confident with hand tools, finding a laser-cutting service for the same parts will achieve good 
results, but it can be costly.

In this book, so that you can get exposure to the design and hand tools while still giving us lots of 
flexibility, we will take the scratch-building option. We will learn CAD skills that are transferable 
to 3D printing. We’ll learn how to cut and drill parts, looking at some premade parts to save time. 
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Additionally, we’ll size our design at approximately 150 mm x 200 mm and modify this if needed. 
But what about the motors?

Choosing motors

This 2WD motor requires two main drive motors. We could consider stepper motors, which move 
a little each time they are pulsed, although these bring a little extra complexity—perhaps an idea to 
keep for later. DC motors, which rotate continuously when powered, seem like the right choice. They 
will need to be geared so that they have enough power to move the robot, without being too quick 
and hard to control.

We should keep these motors small and at a low voltage. As we are unlikely to want to build an 
additional gearbox, geared motors are sensible. There are some options here in terms of the size we 
are working with. First is the yellow TT motor with plastic gears— however, these motors are not of 
great quality and take up a fair amount of space. Another option is to use servomotors that are adapted 
for continuous rotation—however, these can be a little expensive.

A small, common, high-quality but inexpensive option is N20 or micro-metal gear motors. To save 
space and effort, there are models of these that have encoders pre-fitted. We can use similarly common 
plastic brackets to attach them to our robot. That makes them convenient to use, too.

Robot wheels

For a 2WD robot, there are a few ways in which to lay the wheels out. One possibility is to have two 
driving wheels with two idler wheels (that is, unpowered). However, those wheels can drag, making 
it harder to turn the robot. A common way is to have a third wheel as a caster—either a ball that can 
roll in any direction or a swivel wheel such as a shopping trolley. Because of the size of the robot, a 
ball caster seems like a good idea.

The wheels themselves should have a hub that is compatible with the motors that we’ve chosen. A pair 
of N20 wheels with a diameter of 60-100 mm should be suitable.

So, we have a rough size for our robot, and we know the controllers, motors, and some of the sensors. 
The next item to choose is the power systems.

Choosing the power systems

A robot isn’t much fun without independent power—by which I mean its own source of power without 
needing to be plugged into a wall. Usually, this means batteries. It then needs ways to provide power 
to the control electronics, sensors, external boards, and motors. Take a look at the following diagram 
for an outline of power distribution in a 2WD robot:
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Figure 1.8 – Power distribution in a 2WD robot

In Figure 1.8, the thicker lines show raw battery power connections. A 2WD chassis will need to drive 
at least two motors, which are power-hungry devices that require a battery connection.

This robot needs to power Raspberry Pi Pico and other sensors. Since we intend to add Bluetooth, we 
should leave power aside for that. So, the other thick line goes to a regulator for these, making more 
palatable power for these systems—the raw battery voltage would likely destroy them. The thinner 
solid lines show regulated power.

The Pico will be sending/receiving electronic control signals, designated by the thin dashed lines 
in the preceding diagram. These also go to the motor controller. The motor controller will provide 
PWM-controlled power from the batteries to the motor, modulated by the signals the Pico sends to 
them. The motor power is shown by the thick dashed lines to the motors on the left-hand side.

Here, we have a few considerations to bear in mind. We require an input voltage that is suitable for the 
motors and to drive a regulator. We need a regulator that can handle the power capacity requirements 
for the Pico, sensors, and Bluetooth, and we need batteries that can supply enough current to drive them.

Calculating power requirements

Let’s start with what we know—5V is a good output voltage for a regulator, and where needed, the 
Pico can further regulate down to 3.3V. A regulator for 5V likely requires 7V or more.



Planning a Robot with Raspberry Pi Pico18

Important note
Voltage measures electrical pressure. A current measures how fast electrical energy flows. 
Combining both of them shows system power usage. A current in amps or milliamps can be 
used as a stand-in for power in watts when the voltage is known.

Let’s look up the specifications for the N20 gear motors. Perform an online search for the N20 motor 
datasheet. You’ll be looking for a PDF document. Usually, these have a picture or diagram of the 
product, followed by the specification and feature tables. If you look for Rated Voltage, they say 6V; 
however, further down the sheet, there is usually a table relating to the voltage of the motor speed. 
Based on the motors and regulator basics, an input voltage of 7V-12V would make sense.

Our electronics don’t operate on voltage alone and require a current to operate. So, a regulator will 
need to handle the minimum current requirements. We’ll need to look at some datasheets and 
specifications for the other parts. We will include sensors. For Bluetooth, we will include a low-power 
Bluetooth Low Energy (BLE) board using the highest current measurements from https://
learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/
current-measurements.

We’ll base it on worst-case values so that we can handle them. Let’s start by looking at datasheets and 
gathering numbers into a table, as follows:

Table 1.3 – Device power requirements

Chapter 3 of the datasheet for Raspberry Pi Pico (which can be found at https://datasheets.
raspberrypi.com/pico/pico-datasheet.pdf) shows the electrical specification, with 
peak currents at a little under 92 mA (milliamps—a measure of current). We’ll round this up to 100 
mA as a margin.

The Adafruit Bluetooth board uses only 15.2 mA when fully active, but we can round it up to 20 mA 
to be generous. The sensors need maybe 50 mA of extra room to accommodate them.

We can add these estimates together to suggest a minimum current specification. Based on these 
datasheets and estimates, any regulator capable of over 400 mA will be plenty.

https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/current-measurements
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/current-measurements
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/current-measurements
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
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Choosing a regulator

Motor control and power supplies can be totally separate concerns, giving great flexibility, but this can 
take up more space. There are boards designed for Raspberry Pi Pico that allow you to control motors 
while supplying power to Raspberry Pi Pico. However, will they supply 400 mA?

Kitronik has some neat Raspberry Pi Pico motor boards—a small motor only, along with a larger 
robotics board with servo motor outputs and a prototyping area. However, the supply for the Pico on 
the robotics board datasheet has 100 mA for peripherals, which won’t work.

Now, we understand that we need a regulator that is capable of outputting 5V, at a minimum of 400 
mA. We want something small and simple. A suitable device for this is a Universal Battery Eliminator 
Circuit (UBEC). These can handle 3 A. We’d put this through a VSYS pin on the Pico.

Choosing a motor controller

The suggested motors are small. Motors have a stall current—that is, the power they draw if they are 
trying to move and block a logical maximum. For the N20s, their datasheet suggests 350 mA at 6V. It 
might be a little over that, perhaps 550 mA. A motor controller needs to handle a little over this peak 
per channel—motor controllers that are unable to handle motor load tend to go up in smoke! Take a 
look at the following two common simple motor controllers:

Figure 1.9 – An L298N motor controller next to a TB6612fng
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In Figure 1.9, on the left-hand side, you can see the very common L298N—internet searches suggest 
this handles 2 A per channel. They are small, inexpensive, and easy to find. However, this is a 5V logic 
device. Raspberry Pi Pico outputs 3.3V logic, which might not work properly with this controller 
without logic-level conversion.

On the right-hand side is another good choice, the Toshiba TB6612fng. These handle 1.2 A per 
channel, which is a bit less than shown previously but still good enough. It will handle up to 15V for 
controlling motors and logic voltages from 3V to 5V, so it won’t require level shifters for Raspberry 
Pi Pico. There is a module from SparkFun for these, which will work well with the Pico and is small 
enough to fit on a breadboard next to it.

Additionally, we should plan to have a power switch on the breadboard from the batteries to the motor 
controller and regulator. Talking of batteries, we still need to select them.

Choosing batteries

We also need something to go through the power regulator—batteries.

While we can (and should, at a more advanced stage) consider Lithium-ion batteries, the type used in 
remote control cars, the simplest possible option is AA batteries. For our motor and regulator choice, 
8 x AA gives 12V. These are easy to buy and replace but take up a lot of space for their power output. 
Our motors don’t require a lot of current, so they will be good enough.

Now that we’ve examined our power requirements and some solutions, we’ll take a look at which 
pins are being used on our Raspberry Pi Pico and ensure that our plans for hardware won’t conflict.

Pin usage

Our Raspberry Pi Pico has many IO pins, but we need to consider whether all the items we intend to 
connect to it will be able to simultaneously connect to it.

Let’s re-examine the specifications for the Pico at https://www.raspberrypi.com/
documentation/microcontrollers/raspberry-pi-pico.html:

• 26 General Purpose Input/Output (GPIO) pins

• 2 x UART, 2 x SPI, and 2 x SPI

The motor controller will consume two pins per motor, and we know these motors come with encoders, 
with a further two pins each. That means, so far, we’ve used 8 of the 26 IO pins. This should leave us 
plenty of room for expansion.

Now that we’ve checked our basic concept, we’ll move on to test fitting—an approximation of how 
we’ll build the robot.

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html


Test fitting a Raspberry Pi Pico robot 21

Test fitting a Raspberry Pi Pico robot
Now that we’ve checked that we can power our system, we need to make sure it is all going to fit on 
the robot. In this step, you get a rough idea of where things will be, whether your chassis will be big 
enough, and whether the robot design is likely to work.

The key thing for a test fit is that it is not detailed. Use the simplest method to check whether things 
will fit, be it sliding around cut-out paper rectangles or using simple software.

Let’s make some simple paper or card parts. For this section, you’ll require card, a pencil, a ruler, and 
scissors. Card from a cereal box is great for this, but paper will also do.

For a test fit, rectangles are often good enough. The intention is to determine what will fit inside a 
space and position things. Detail isn’t necessary. For large robots, you might need to make a scale 
model. As this robot is small, you can make parts at a 1:1 scale. This has an added advantage—if you 
already have parts in your possession, you get to use them.

Creating your first test-fit part

You’ll need the datasheets for your devices again—this time to start looking at the mechanical sizes 
of things. For a test fit, you just need to create bounding boxes for items, ensuring there is enough 
space for them.

Let’s start with a breadboard and the Pico. Since the Pico is on the breadboard, you can just model 
the breadboard size. I recommend a 400-pin breadboard, which is also known as a half-plus. Use 
a search engine to look for half plus breadboard dimensions and click on the images 
panel. What you are looking for is a flat diagram showing the outside dimensions of the board, such 
as the following diagram:

Figure 1.10 – Breadboard dimensions
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The preceding diagram shows what to expect with a drawing/picture in terms of dimensions, which, 
in this case, is a breadboard. It measures 84 mm along the top and 56 mm along the right-hand side. 
It’s important to note here that I’m using millimeters throughout the book, and I will convert from 
other units if necessary. Stick to one measurement system in a robot design!

We can take the paper or card and draw an 84 mm by 56 mm rectangle in pencil. This does not need 
to be too accurate—the nearest 5 mm is good enough. The following photograph shows this:

Figure 1.11 – Making a breadboard test-fit part

As the preceding photograph shows, you simply draw it out. Additionally, so that we can identify it 
later, write breadboard on the part, along with its dimensions of 84 x 56. Keep these handy so that 
they can be used for reference later.

Then, you can cut this out with scissors. I tend to make a wide rough cut, and then a finer close cut 
as a second pass for this.

This simple rectangle, with the right measurements, is our first test-fit part. Next, we will need the 
motor parts.

Motors

The motors we are using are N20 motors. If we place them on the underside of the robot, as is common 
with these designs, we still need to consider how their wires come up through the chassis. It is easier 
to put them on top so that the motor wires can face upward.
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We can search the web for N20 motor brackets. Look in the images tab for drawings so that we can get 
the correct dimensions and add extra space for wiring behind the motor. The following photograph 
shows me making these test parts:

Figure 1.12 – Making cardboard motor test-fit parts

For this part, as the preceding photograph shows, we want two rectangles of 30 mm by 35 mm. Label 
them. On one of the longer edges of each part, add an arrow to show that this is where the wheels will go.

We have motors and a breadboard. Next, we need to make stand-in parts for powering them.

Power systems

The UBEC doesn’t take up a lot of space, so we can ignore it. The controller we’ve chosen will fit on 
a breadboard with the Pico, so it is already accounted for. We do need to account for the batteries.

We have a couple of variants on an 8 x AA battery holder—the flat kind, which takes up more space 
but comes with mounting screws, or the 4 x 2 kind. These use vertical space instead. Another way to 
save space is to put batteries on the underside of the chassis.

At this stage, we will use the flat holder as it is easier. You can look up the size for them and create a 
labeled rectangle for them. My battery box came out as 93 mm x 57 mm:
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Figure 1.13 – A battery box in cardboard

The preceding photograph shows a battery box created from cardboard. Now, we have a bunch of 
parts to go on the chassis. Next, we need to represent the chassis itself.

Creating a rough chassis

We previously suggested that the chassis should be about 150 mm x 200 mm. Create this rectangle 
in cardboard, as follows:

Figure 1.14 – The cardboard chassis
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As you can see from the preceding photograph, this is not—at all—intended to be a perfectly neat 
cut. It is simply meant to be good enough to see where things likely need to go. Give the chassis labels 
just as we have done so far with the other parts. Additionally, we can label one of the shorter edges 
of the chassis part as the front.

This is the last item to test fit. Let’s start to arrange these parts.

Arranging the test-fit parts

Now, you should have a set of rectangles representing the different parts. The following photograph 
shows the parts and how we can arrange them:

Figure 1.15 – Our test-fit parts in cardboard

The boxes on the left-hand side of Figure 1.15 are correctly proportioned parts and have been placed in 
a rough position. However, they aren’t properly laid out yet. The right-hand side shows a possible layout.
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It’ll be easier to fit motors around the breadboard if we rotate it so that it’s tall instead of wide. We have 
the batteries at the back of the robot, in the middle, then we have the breadboard in front of them, 
along the middle. Notice that there is a gap between the batteries and the breadboard—we don’t want 
any parts to be too close together.

We’ve put the motors on either side of the breadboard, leaving space at the front to expand our 
robot design.

We have accounted for the major parts of the robot, including computing, power, and motors. There’s 
also adequate space for expansion. We’ll tune this later as we get deeper into the design, but this shows 
our combination is viable.

Now that we have our robot design, it’s time to shop for tools and materials!

A recommended shopping list for robot basics
We’ve got a plan—a test fit, a method to make the chassis, decisions about the processing on board, and 
how we will power the thing. Now, we need to buy the necessary parts and tools to make this happen.

Let’s start with the parts.

Robot parts and where to find them

There are many places to find robot parts, and some of these parts go by different names from different 
manufacturers. I’ll attempt to provide enough information about the parts so that they can be easily 
found in many countries.

Part shopping list

We’ll start with a part list for the initial robot chassis. For each part, where necessary, we’ll show search 
terms, synonyms, and manufacturer numbers. You can try combinations of these to find parts—I 
wouldn’t suggest using all the terms at once but instead refining them until you get something else. 
Then, we can discuss places to buy them:

• Raspberry Pi Pico: This is the most important part to get you started. Other RP2040-based 
boards might be suitable; however, with different form factors and pins, you’ll need to get 
creative when it comes to wiring them. Beware of parts with fewer exposed pins, and ensure 
that they are RP2040 boards. Alternative parts: Headered Pico, Pimoroni Pico LiPo, Adafruit 
Feather RP2040, SparkFun Pro Micro RP2040, RP2040 Plus.

• A USB micro cable: You might already have one for your phone, but phones have been coming 
with USB-C cables for some time. To be specific, I mean a USB-A to USB-Micro cable. However, 
some laptops have a USB-C port—for those cases, consider a USB-C to USB-Micro cable instead.
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• Headers: You’ll need to solder headers onto Raspberry Pi Pico and the motor controller. Later 
sensors will require them, too. Search terms for these include male breakaway strip and single-row 
PCB through-hole pin headers. Make sure that you choose 2.54 mm or 0.1-inch pitch headers.

• A solderless breadboard: I suggest a mini/half plus 400 tie-point breadboard, self-adhesive. 
Standard 0.1-inch (or 2.54 mm) pitch spacing, with a separating channel between the columns.

• Wiring: You’ll need wiring between the components on the breadboard. For this, I suggest 
precut breadboard jump wire kits. These should be of the U-shape solderless kind—insulated 
cables with bare ends. They will be in different color-coded lengths and can be bent into shape 
to fit across breadboard connections.

• A Drv8833 or TB6612fng motor controller or motor driver: I recommend the SparkFun or 
Adafruit models; however, other models will work. Stick to this chip, and ensure it’s a module/
breakout board, not just the bare chip. It should have a square device with a capacitor on the 
board, too. I recommend getting a model that has pin functions printed on it. Alternatives are 
the L9110S, the less efficient L298n boards, or the L293 chip, which may need additional space.

• A 5V 3A UBEC or a 5V UBEC (DC/DC step-down buck converter): Search for ones that 
can handle a minimum of 3 A. Larger ones are also fine. Look for those with a 5V output. If 
they allow 6V too, just make sure that you set the jumper to 5V. Look for those with bare input 
cables and a pin header end. Other buck converter modules may be suitable, but check for 3 
A current capacity, and ensure that the output is 5V.

• 8 x AA battery holder or battery compartment: Look for the flat-style ones with an integrated 
switch. Some come with round barrel jacks instead of bare ends—in which case, a 2.1-mm jack 
to screw the terminal block can be used to finish this.

• A 1N5817 Schottky diode: These are common in many electronic outlets.

• Motors: The N20 micro-metal gear motors with encoders. The 298:1 ratio motors have the 
right combination of speed and torque. Adafruit has these as ADA4640. Small DC gear motors 
with encoders can be substituted, but please be aware that the larger motors may require the 
robot to scale up along with power requirements.

• Ball caster: A 16-30-mm caster should be fine. Most models will be suitable. Just remember 
to use the drawings for their mount holes later.

• 40-90-mm wheels with N20 d-hole or universal hubs: Make sure they are designed for 
N20 motors.

• 3 mm or 0.118-inch thick styrene card sheets/plates: Go for an A4, 200 x 150 mm, or greater 
size. They should be solid, flat sheets—not foam or hollow, and, ideally, not textured. Possible 
search terms include Plasticard, styrene sheet, Evergreen, and Plastruct. ABS sheets are suitable, 
but not acrylic as this can be brittle.
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• Kit for mounting parts: Possible search terms include standoff and mounting kit. Preferably, 
they should be in metal, but nylon will do fine. They should be M2, M2.5, or M3 if possible. 
M2.5 will cover most cases. They should have standoffs, bolts (including machine screws and 
truss screws), and nuts.

This list of parts and search terms will help you find all the suggested parts to build this robot. Here is 
a helpful list of places to buy parts from. It isn’t exhaustive, and there might be sellers in your country 
that can help.

For electronics parts, wheels, motors, and modules, the following stores ship worldwide:

• ThePiHut.com, pimoroni.com, adafruit.com, Robu.in, and mouser.com. For 
some items, Pololu.com and Sparkfun.com might carry them.

• Both Adafruit and Pimoroni have web pages that list their various distributors: https://
www.adafruit.com/distributors and https://shop.pimoroni.com/pages/
worldwide-distributors. They are a reliable source of reference.

• Online marketplaces such as eBay, AliExpress, and Alibaba can be used—but buyers beware. 
Sellers on them might not have good support or return policies in place. Parts might also be 
cheap substitutes, and they could take a long time to deliver.

For the styrene sheet, model supply shops are a good bet. Brands such as Evergreen are widely 
distributed. Hobbycraft, AliExpress, Alibaba, and Amazon carry these. While there, I suggest getting 
styrene angle strips and square tubes for later robot enhancements.

The robot workshop and makerspaces

There is a list of workshop and hand tools associated with this book. You can buy them yourself or 
use a makerspace. Let’s start with the tools that you will need access to.

List of tools

The tools required for this book are common in many workshops. In addition to this, school and 
college DT rooms, makerspaces, and many workshop stores will carry them:

• Plastic cutter: The kind with changeable blades. We will be cutting through styrene, which 
can quickly dull a knife. Linoleum flooring cutting blades will also be a useful alternative here.

• A cutting mat to protect your work surfaces.

• You’ll need a try square, preferably metal.

• A ruler: This should be at least 200 mm long. Since the book is working in metric, I suggest 
metric markings, too.

https://ThePiHut.com
https://pimoroni.com
https://adafruit.com
https://Robu.in
https://mouser.com
https://Pololu.com
https://Sparkfun.com
https://www.adafruit.com/distributors
https://www.adafruit.com/distributors
https://shop.pimoroni.com/pages/worldwide-distributors
https://shop.pimoroni.com/pages/worldwide-distributors
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• Sandpaper: You will need a selection of, at the very least, 400, 600, and 1,000 grit or similar.

• Soldering iron and stand: You’ll be soldering some parts, so an iron is essential. Do not use a 
soldering iron without a stand! Many come with them. I recommend a temperature-controlled 
iron. In addition to this, a brass wool tip cleaner and some solder are required. We’ll use lead-
free flux core solder wire.

• 10-20-mm hook and loop self-adhesive disks.

• A drill with 2-mm and 3-mm bits. This should be a small drill, preferably cordless. These are 
small parts, so precision is required more than power.

• You’ll need a pencil to make draft lines with. Personally, I like mechanical pencils.

• I recommend safety goggles when you drill or cut. Get a good comfortable pair—cheap 
uncomfortable ones might end up on your head instead of covering your eyes and won’t be 
protecting you.

• For drilling and cutting, a hobby vise or clamp keeps the part still and your hands safe. A small 
bench vise is suitable.

• You need a flat work area with good lighting.

• Screwdrivers: You will want a screwdriver set. It should have Phillips (PH0 and PH1) and 
flat-bladed (2 mm and 3 mm) screwdrivers.

• Spanner or wrenches in metric. Precision sets will be useful.

You can purchase these items and tools from electronics, hobby, DIY, and tool stores. AliExpress, 
Alibaba, eBay, and Amazon will also have them. However, if you do not have all of these tools, it feels 
like a lot of stuff.

An alternative to buying all these tools is to find a makerspace or hackerspace near you. They will have 
most, if not all, of these tools. Makerspaces are community-run spaces, have collections of tools, and 
might even have scrap material of just the right kind of styrene. Additionally, they have other makers, 
who can lend you a hand and assist you if you run into difficulty with a robot project.

There are makerspaces in most cities globally. They can be easily found on search engines and social 
media. If there is no makerspace in your area, reaching out via social media to other makers might 
help you to find a similar community project. There is a global makerspace directory at https://
makerspaces.make.co/.

https://makerspaces.make.co/
https://makerspaces.make.co/
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Summary
In this chapter, you learned about Raspberry Pi Pico, why it’s a good controller to build a robot around, 
and why we will be using CircuitPython to program it. You discovered the planning process of a robot, 
choosing parts for it, and then test-fitting them to ensure our plan is likely to work. You had a view 
of datasheets and discovered a little about the size and electrical characteristics of parts. You also had 
a tour of the parts you’ll need to buy and the tools you’ll need to work with them. Finally, you were 
introduced to makerspaces as places to find tools and other makers.

We have a rough robot plan. However, to start building something, we need to take some practical 
steps to prepare Raspberry Pi Pico for use in one. We’ll discover how to do this in the next chapter.

Exercises
To get you familiar with the content of this chapter, these additional exercises will attempt to test you 
on what you’ve learned, and prepare you for later sections:

• Find a datasheet for the Bluefruit LE UART Friend. Find the electrical current used by the 
device, along with its width and height for fitting it.

• We are going to add such a Bluetooth board to our robot. Use the dimensions from the datasheet 
to make a part in your test-fit diagram.

• Find a space on the robot for this part that does not overlap with other parts.

• Look on the websites of the previously mentioned stores. See if you can find out where you’d 
be able to buy this part.

Further reading
Please refer to the following resources for more information:

• To learn more about CircuitPython, the https://circuitpython.readthedocs.
io/ website is a great resource.

• For a detailed look at Python on microcontrollers, please refer to MicroPython Cookbook, by 
Marwan Alsabbagh, Packt Publishing. This book has sections on CircuitPython and MicroPython 
in general.

• Embedded Systems Architecture, by Daniele Lacamera, Packt Publishing, offers an extensive dive 
into the I2C and SPI bus interfaces.

• Another perspective on makerspaces comes from Progression of a Maker, which can be found 
at https://hub.packtpub.com/progression-maker/.

https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/
https://hub.packtpub.com/progression-maker/


2
Preparing Raspberry Pi Pico

The bare Raspberry Pi Pico can run code, but we need some preparatory steps before we can use 
it. In this chapter, you will see how to get CircuitPython up and running and take your first steps 
in programming Pico. You’ll then learn soldering so that you can add headers to your Pico—letting 
you plug it into things.

At the end of the chapter, you’ll have Pico ready to run code, with headers ready to add other hardware, 
and have your laptop or computer ready to send code to Pico. Plus, you’ll have some soldering 
experience if that is new to you.

In this chapter, we will cover the following main topics:

• Getting CircuitPython onto Raspberry Pi Pico

• Preparing the CircuitPython library for Pico

• Coding on Pico—first steps

• Soldering headers to Raspberry Pi Pico

Technical requirements
To get going on this section, you will need the following:

• 1 Raspberry Pi Pico

• A USB Micro cable (either A to Micro or C to Micro depending on your computer)

• A computer/laptop running Windows/Linux or macOS

• The Mu editor—we’ll show you how to get this

• A soldering iron and heatproof stand

• A well-lit, well-ventilated space

• Goggles
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• Solder

• Solder-wick

• A breadboard

• Some male breakaway pin headers

All the code examples for this example can be found on GitHub at https://github.com/
PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/
ch-02.

Getting CircuitPython onto Raspberry Pi Pico
For us to get going and write code on Raspberry Pi Pico, we need to put the CircuitPython interpreter 
on it or “flash it” with CircuitPython.

First, you can find CircuitPython downloads at https://circuitpython.org/downloads. 
This page shows just how many different boards support CircuitPython—although they won’t support 
some of the unique hardware capabilities of Pico (such as PIO), it means that many of the skills learned 
in this book along with the code you write can be directly translated to a huge number of other boards!

Click on Pico (By Raspberry Pi), and on the right is the current stable download of CircuitPython. 
There are many languages selectable here, and you can select CircuitPython with error messages in 
your language. Hit the Download .uf2 now button. Take note of the version number you downloaded.

Plug one end of the USB cable into your laptop. Looking at Pico, there’s a tiny button on it:

Figure 2.1 – Raspberry Pi Pico BOOTSEL button

This button, shown in Figure 2.1, is labeled BOOTSEL. Hold this down as you plug the USB cable 
into the computer. This puts Pico into a mode for flashing firmware onto it.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-02
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-02
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-02
https://circuitpython.org/downloads
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You should see a new RPI-RP2 drive appear on your computer. This is Raspberry Pi Pico. Copy 
the Adafruit CircuitPython uf2 file from your downloads to that folder. A simple drag and drop file 
copy will work here.

Raspberry Pi Pico will reboot, and the drive will disappear momentarily. It will then come back 
as CIRCUITPY.

You have downloaded and flashed CircuitPython on Pico. This Raspberry Pi Pico is running 
CircuitPython and is ready to program. Next, we’ll download the libraries for it.

Preparing the CircuitPython library for Pico
CircuitPython is a good starting point—it gives you the basics that we will be using—but we will also 
be interfacing with other hardware. The CircuitPython library, united across many devices with the 
same version of Pico, creates an interface you can take with you to other microcontrollers should you 
want to try others out.

Let’s use the following steps to prepare a module from the library:

1. Open the CIRCUITPY drive on your computer and find a folder called lib. This is the target 
for libraries.

2. Download the CircuitPython Library Bundle from https://circuitpython.org/
libraries. The version you download should match the version of CircuitPython you 
downloaded before.

3. This gets you a ZIP file. Expand the ZIP contents, and you should get a folder with a README, 
examples, and a lib folder. We will keep this handy. When we need libraries from here, we 
copy them over to Pico.

4. The whole library is too large to fit at once on a single Pico, but since you couldn’t use all those 
hardware peripherals at once, you would only copy what is needed.

5. Open the lib folder in the Adafruit Library folder, and you should see adafruit_
vl53l0x.mpy. Copy (drag and drop) this file into the CIRCUITPY/lib folder. This is all it 
takes to install libraries for this device—some devices require a group of files to be copied over.

You’ve now got a copy of the CircuitPython library handy and seen how to install a module from it 
on Pico. We will be using this library later. We have CircuitPython and a library. Next, it’s time to try 
some code on Pico.

Coding on Pico – first steps
Writing and testing code on Pico is made easier with a handy tool, Mu. We will get you up and running 
and get stuff going in Pico REPL. We’ll then write some code in a file and upload that program so that 
it runs when Raspberry Pi Pico boots. How do we get Mu? Let’s find out in the next section.

https://circuitpython.org/libraries
https://circuitpython.org/libraries
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Downloading the Mu editor

The Mu editor gives easy access to the CircuitPython REPL. It also has a Python editor, allowing you 
to see the code and results together. It’s small and supports other hardware-oriented Python platforms.

To download it, do the following:

1. Go to https://codewith.mu/. Use the Download button to get the right version for 
your computer and install it.

2. Launch Mu editor, and when it is running, click on the Mode button. From this, select 
CircuitPython. Look at the following screenshot:

Figure 2.2 – Mu editor buttons

https://codewith.mu/
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The preceding screenshot shows the toolbar in the middle, with the result of clicking the Mode 
button above it, and the result of clicking the Serial button below it.

3. You’ll need Serial enabled to see and interact with Python on Pico, so click the Serial button 
as indicated. Serial lets you send and receive text from Raspberry Pi Pico via the USB cable.

4. To start interacting with Pico directly, click in the Serial window, shown below the Serial 
button in Figure 2.2. When you type or press keys here, they are sent directly to Pico. Pico is 
waiting for you to interact with it.

5. On your keyboard, press any key to start the REPL. You will see a Adafruit CircuitPython 
message, as shown at the bottom of Figure 2.2. We can start typing code here.

You have loaded the Mu editor and connected it to CircuitPython on Raspberry Pi Pico. By loading 
the Serial monitor and pressing any key here, you’ve entered the REPL where you can type code and 
see it evaluated immediately. Next, we explore some things we can do in this REPL.

Lighting the Pico LED with CircuitPython

The console here is running CircuitPython, and it is on Raspberry Pi Pico. You can type code here. 
The simplest thing we can do is a "Hello, world!". Type the bold text, and it should respond 
as follows:

>>> print("Hello, world!")

Hello, World!

>>>

Well done—this is the first bit of working CircuitPython code. However, this is about hardware, so 
we will light an LED instead. Type the following code into the REPL:

>>> import board

>>> import digitalio

>>> led = digitalio.DigitalInOut(board.LED)

>>> led.direction = digitalio.Direction.OUTPUT

>>> led.value = True

To talk to hardware, we start by importing some libraries.

The board library stores board interface details—naming and mapping pins on the device to names. 
What is cool about this library is that if you pick up a different board and put CircuitPython on it, 
then to some degree, named pins such as board.LED will work on that too.

The digitalio library has the basics for reading and writing to IO pins, defining them as a digital 
pin (versus other ways you can use a Pico pin), and then setting their direction.
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We then initialize a digital pin using board.LED. This uses the built-in LED. That LED is on GPIO 
pin 25. You could also have used board.GP25 for the same result. We set this pin’s direction to 
OUTPUT; otherwise, you are not allowed to set its value.

Finally, in this code, we set led.value to True, which turns the LED on:

Figure 2.3 – The LED lit on Raspberry Pi Pico

You should see the LED light at this point. We should turn it off when we are done:

>>> led.value = False

You’ve got an LED to light—some hardware interaction. You can flip that value from False to True 
and back again to turn the LED on and off.

You could set any pin to True or False this way to control simple hardware, and you’ve used the REPL 
to try stuff out. However, we don’t really want to do it manually— so, can we make it more automatic?

Blinking the LED with code

The first automatic behavior would be to make the LED blink. In hardware circles, this is code is 
known as blinky and is equivalent to "Hello, World" for microcontrollers. This time, instead of 
typing this code in the REPL, we are going to write it in the editor and upload it to Pico. That way, we 
can tweak it and send the code again.
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Start by clicking in the code area:

Figure 2.4 – Click here to start coding

As the box says, we can write out code there. To blink an LED, the basic idea is to turn it on, wait a 
bit, turn it off, wait a bit, and repeat. Let us see that in code:

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.LED)

led.direction = digitalio.Direction.OUTPUT

while True:

    led.value = True

    time.sleep(0.5)

    led.value = False

    time.sleep(0.5)

This code starts with the import of time, which lets us control time! Well, OK—it lets us wait for a 
bit with sleep.

We import board and digitalio and set up the pin and its direction as before.

To make the LED keep on blinking, we put it in a while True loop, which will repeat the code 
indented under it until we (hard or soft) reset Pico.

Inside the while loop, first we turn the LED on, then we sleep for half a second. The time here is 
written as a decimal number—it is always in seconds, and we want less than a second.

We turn the LED off again, sleep again, and the code will loop around.

Save this code to Raspberry Pi Pico (the USB drive named CIRCUITPY) as code.py. It will 
automatically run the file named code.py—the LED should now start blinking.
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While this seems simple, changing digital IO pins and sleeping is the basics of controlling motors 
too. In this section, you’ve written code to automatically blink a light, and seen how to use time and 
how to upload a file to Raspberry Pi Pico instead of typing everything at the REPL. Next, we’ll need 
to prepare Raspberry Pi Pico for plugging in other hardware by soldering on headers.

Soldering headers to Raspberry Pi Pico
Raspberry Pi Pico can run some neat code, it can blink that LED, and you could get it to input things, 
and print on that serial console. But it’s going to be lots more fun if we start plugging stuff into it! To 
do that, it will need headers soldered into it. Soldering may seem daunting the first time around, but 
with practice, it will be a skill you’ll use repeatedly in robot building.

We are going to be soldering header pins into Raspberry Pi Pico. These are breakaway pin headers:

Figure 2.5 – Breakaway pin headers

Pin headers will let us plug Pico into a breadboard so that we can connect it to other electronics or 
use Pico with female cables to link to sensors. There are other kinds—female kinds, not so useful for 
the breadboard—and you can get 2-row pin headers, which you’ll see in other Raspberry Pi models.

To get the right number of pins, we need to measure and snap them off:

Figure 2.6 – Snapping off the headers
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Breakaway headers such as these come in strips designed to break away. One straightforward way to 
get the right length, instead of counting each one out, is to place the short end of the header loose 
into Pico, as shown in Figure 2.6, and then break at the join just past there. You can either cut with a 
knife or just pull them off at an angle. They come apart easily. We’ll want two sets like this.

Raspberry Pi Pico comes with two rows of headers, and we can use this to our advantage. Push the 
Pico and header assembly into a breadboard:

Figure 2.7 – Raspberry Pi Pico propped onto the headers

When you solder, you do not want the headers to wobble in their sockets—you want them to stay 
still. The breadboard and headers as pictured in Figure 2.7 will hold Pico up and stop it from moving.

For this work, I recommend a chisel tip for the soldering iron. Chisel tips have a good surface area 
to heat joints with and are common.

You should have an iron, a stand, a tip cleaner (I prefer brass wire), and some solder. I recommend 
safety goggles too. You should also be working in a clear, well-lit, and well-ventilated space—use a 
solder fume extractor if you can; you should not inhale these fumes.

It’s now time to heat up a soldering iron. Allow the iron to heat up—this may take a few minutes.

Important note
When the soldering iron is hot, only hold it by the plastic grips. You must never touch the 
metal parts or the tip as these can cause serious burns. Always place the iron back into its stand 
when you put it down.
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You can test if an iron is hot by touching some solder to it—when hot enough, it should melt and wet 
the iron tip. This is known as tinning and ensures good heat transfer between the iron and the items 
to be soldered. If there is a bit of a blob of solder, use the brass-wire tip cleaner to wipe it off. What 
you should be left with is a thin layer of solder around the iron tip. A tinned and clean tip will make 
far better solder joints than a dry or dirty tip!

See the next diagram for how to make a solder joint:

Figure 2.8 – Making a solder joint

The diagram in Figure 2.8 shows the steps for making a good solder joint. Follow the points along 
with the diagram:

1. Shown here is a pin going through a board and the solder pad (the metal bit on the board). 
Use the soldering iron tip to heat both the pad and the board. We want them both hot enough 
to accept solder.
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2. When the pad and pin are hot, push the solder into the pad and pin, not into the soldering iron. 
It is important for nice joints that you heat the pad and pin, then bring the solder to it—this 
means the solder will melt against the pad and pin, not the iron, which will lead to a good 
bond, electrically and mechanically. You do not need to use any pressure from the iron, and at 
the right temperature, the solder will flow—it does not need any pressure either.

3. The solder starts to flow and should flow onto the pad and around the pin. You do not want a 
lot of solder here! Use enough to make the cone shape shown here. Remove the solder as soon 
as enough has flown. Pull the iron away from the joint.

4. A good shape should be a shiny cone like this, contacting both the pad and pin. If you get a ball 
here, heat the solder, pad, and pin again—molten solder will only stick to hot stuff. If there is 
a big blob, you can use solder wick to remove excess.

We can take a closer look at how this appears in the real world on Raspberry Pi Pico:

Figure 2.9 – Solder joints on Raspberry Pi Pico
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The order in which you make the joint is important. The panels in Figure 2.9 show where to start soldering:

1. Start in one corner. In this photograph, I am heating up the pad and pin first. Ensure the pin 
headers and Raspberry Pi Pico do not move relative to each other when the solder cools. It will 
cool very quickly, but any movement here will make for a poor-quality joint. The breadboard 
holding strategy here should be enough to prevent most movement.

2. Then, move across to the opposite corner. These two joints secure Pico to the breadboard, making 
the board less likely to move in the rig. In the photograph, I am adding solder to the joint.

3. Once you have done two opposite corners, solder the remaining corners, and then you can start 
filling in the rest of the pins. Good shiny joints should look like these. There are 40 in total, but 
you get into a rhythm once you’ve done the first few.

4. Between pins, it’s a good idea to occasionally clean the tip. Use the brass tip cleaner (stab the 
iron into it) to clear excess solder from the soldering iron tip.

While soldering, it is possible that you will accidentally bridge two pins—that is, connect between 
them. This must be remedied, or you could damage your Pico when you plug it in. See the following 
diagram on how to clear this up:

Figure 2.10 – Clearing a solder bridge
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To clear a solder bridge, first, clean the soldering iron tip, then follow the steps in Figure 2.10:

1. This is the solder bridge. The solder has created an accidental connection between two pins 
that should not be connected.

2. Put the iron between the pins, and when the solder melts, draw the iron through between them. 
The solder should flow around the two pins.

3. The pins should look a little like this when the bridge has been cleared.

Now you have made the joints, inspect them to ensure that they are all conical tents, none is a bridge, 
and none has been missed. If so, you have completed this soldering job. Do not forget to turn off the 
soldering iron!

With the pin headers soldered in, this Raspberry Pi Pico is ready to connect to a robot.

Summary
In this chapter, we’ve been on a close tour of Raspberry Pi Pico. We’ve put CircuitPython on the board 
and prepared some libraries to copy when we need them. We’ve downloaded an editor that can talk 
to Raspberry Pi Pico on its serial REPL, and have then written code to upload to Pico. In doing so, 
we’ve got the hardware to do some basic digital output.

We’ve also soldered headers onto Pico so that we can start building robots around it.

In the next chapter, we’ll design the robot to build around it, using CAD and taking our test fit into 
a more serious gear so that we can start cutting material.

Exercises
Try these exercises to get to know Pico more:

• Adjust the timings in the blink code. You should be able to get the light to blink quicker or 
slower by changing the number of seconds in the sleep statements.

• Could you make the light blink in an irregular pattern? You could use a series of timings. 
Digging a bit at CircuitPython, you could use a list of values and loop through them.

• Explore using the REPL for other Python code.

• We are going to need header pins on the motor board as well. Using the same techniques as 
covered in the section Soldering headers to Raspberry Pi Pico, solder pins into the motor 
driver board.
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Further reading
Please refer to the following resources for more information:

• At this stage, it is worth having the datasheet for Raspberry Pi Pico to hand, available at 
https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf. It has 
a helpful pin reference on page 5.

• CircuitPython also has a reference guide at https://docs.circuitpython.org/
en/7.3.x/docs/index.html. The Core Modules section will be helpful for further 
experimenting with this environment.

https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf
https://docs.circuitpython.org/en/7.3.x/docs/index.html
https://docs.circuitpython.org/en/7.3.x/docs/index.html


3
Designing a Robot Chassis  

in FreeCAD

We’ve been talking about building a robot, but how do you make a chassis? How would you design 
one simple enough for a first build? Making a custom chassis takes more work than buying ready-
made ones, but is a skill worth learning.

In this chapter, you will see how to use FreeCAD to make 3D designs for a chassis, its parts, and its 
frame. We’ll consider the material we’ll use and what adjustments we’ll need to make to it.

You will then take this CAD design into the real world, making printable drawings that we’ll use to cut 
our robot parts in later chapters. You’ll be learning and using design skills for making robot designs.

In this chapter, we’re going to cover the following topics:

• Introducing FreeCAD

• Making robot chassis sketches in FreeCAD

• Designing the caster placement

• Modeling chassis parts from sketches

• Making FreeCAD technical drawings

Technical requirements
FreeCAD is free software. This chapter does not require any paid software, making it useful to a 
wide audience.

You will require the following:

• FreeCAD software download version 0.20 or later from freecadweb.org.

• Your cardboard test fit.

http://freecadweb.org
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The FreeCAD design examples for this chapter can be found on GitHub at https://github.
com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/
main/ch-03.

Introducing FreeCAD
FreeCAD is a free and open source 3D CAD design tool available on most home computer platforms. 
In this section, we’ll introduce you to the software and configure it for our needs.

If you don’t yet have it, please download FreeCAD and install it before continuing. I recommend using 
FreeCAD in fullscreen mode if you can to accommodate all the toolbars and panels.

The FreeCAD screen

We will start with concepts you’ll need to use FreeCAD.

Let’s start with an overview of the screen you’ll see when you launch FreeCAD:

Figure 3.1 – FreeCAD start window

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-03
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-03
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-03
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The preceding screenshot shows the FreeCAD start screen. The important areas are as follows:

1. The toolbar is a ribbon of buttons that changes with the workbench.

2. The Combo view has two modes: Model, which shows a model tree, and Tasks, which shows 
tasks relative to a selection.

3. The Properties view lets you view and edit properties. It’s only visible in the Model view.

4. The Main view shows the sketch, part, or assembly you are working on.

5. The Report view shows output messages from the system.

6. The Python console shows Python code equivalent to your actions.

You’ll use these views in making parts. In the next section, we will look at workbenches, which you’ll 
need in order to use FreeCAD effectively.

Selecting workbenches

FreeCAD has many object types—for example, parts, sketches, and drawings. A workbench has 
operations for manipulating and creating different object types. When you change the workbench, 
the toolbar and views change.

Let’s take a closer look at Workbench Selector in the toolbar:

Figure 3.2 – Workbench Selector

Figure 3.2 shows the Workbench Selector parts. On the left is how this selector looks in the toolbar. 
Clicking this will show an expanded menu of options, shown in part on the right. Highlighted here 
are Part Design, Sketcher, and TechDraw, which are workbenches we will use in this chapter. Here 
is a quick overview of their functions:

• Sketcher is where you input geometry in 2D to create parts from.

• Part Design is used to design 3D parts based on sketches.

• TechDraw makes output drawings for cutting/drilling.
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Important note
Directly below the Part Design workbench is a Part workbench. They look similar. Avoid 
accidentally choosing Part instead of Part Design.

When using FreeCAD, be aware of the workbench you are using. The toolbar and actions you can 
perform in a view change based on your workbench selection.

You’ll see more workbenches as you use them. We’ll configure FreeCAD first. 

FreeCAD settings

We should make FreeCAD settings consistent before starting.

Loading workbenches

FreeCAD does not start with all workbenches loaded. Therefore, we should ensure that the workbenches 
we will use are loaded before we continue.

You can access the Preferences panel via Edit, then Preferences—or FreeCAD—and then Preferences 
on macOS. You should see something like this:

Figure 3.3 – Preferences panels: loading workbenches
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Figure 3.3 shows the Preferences panel, with the Workbenches panel selected. You can load workbenches 
with these steps:

1. In the Preferences panel, click Workbenches.

2. Click the Load now button alongside Part Design, Sketcher, and TechDraw.

3. Now, check the Autoload checkbox for each of these three sketches.

4. Press the Apply button. Three additional workbenches should appear.

The other preferences will make things more consistent.

Display preferences

Display preferences ensure that your view and navigation work the same way as in this chapter. Please 
look at the following Preferences panels:

Figure 3.4 – Preferences panels

The left of Figure 3.4 shows the Display preferences. Perform the following steps:

1. In the Preferences panel, click Display and then the Navigation tab.

2. Ensure that the navigation cube is enabled and that its Corner is Top right.

3. Set the 3D Navigation system to Gesture. Gesture navigation is great for mice, trackballs, 
and touchpads.
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4. We also need to prepare Sketcher preferences. These alter how the 2D drawing mode operates. 
Select the Sketcher pane under Preferences to show the panel on the right of Figure 3.4.

5. Ensure Auto remove redundants is enabled. This will remove redundant constraints and 
prevent conflicts later. We will explain constraints later in the chapter.

6. Click OK to accept these settings.

With the settings in place, we can start creating our sketches. In the next section, we’ll create a document 
and start sketching in it.

Making robot chassis sketches in FreeCAD 
We will model our robot, revisit the test fit as sketches, and then model it in 3D to guide us in cutting 
the chassis and attaching parts. We’ll model parts as boxes with outside dimensions and screw holes 
where needed. That way, we can see where things will go without adding detail. We are aiming for this:

 

Figure 3.5 – A 3D CAD bounding box fit for our robot

Figure 3.5 shows a model of a robot in boxes. Parts are modeled by drawing rectangles, and then pulling 
them into 3D. We can then use this as a guide to cut the chassis plate and then assemble our chassis.

We’ll start by sketching our robot, and in later sections, we will develop it into 3D parts.
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Preparing the document

Everything you make in FreeCAD starts with making documents. The following screenshot shows how:

Figure 3.6 – Creating a document

Figure 3.6 shows annotated screenshots of FreeCAD. Follow these steps to get started:

1. Select Part Design from the Workbench menu to enter this workbench. The toolbar will look 
like the top of Figure 3.6.

2. Create a new document by clicking the toolbar icon. You’ll see an empty 3D view, shown in 
the lower screenshot in Figure 3.6.

3. A Part Design 3D solid object is a body. Click Create body in the toolbar. 

4. Save this document as Robot—the name changes in the model view.
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We will have a few bodies, so it’s good to name them. First, ensure you have the Model tab selected. 
The default name for a body is just Body; we should rename it something more meaningful. Follow 
these steps to rename it:

1. Select Body by clicking it.

2. Press Enter to make its name editable.

3. Type a new name, SketchMain. Press Enter to accept it, and the body name should update.

4. Use the Save button or press Ctrl/Cmd + S to save this document. 

We have an empty body, but we need to create some shapes in it. We’ll do this by making main sketches 
for them and pulling them into 3D. Let’s see how to sketch.

Sketching the chassis outline

Sketching is a critical part of a FreeCAD workflow. We’ll start with the main sketches of chassis parts 
and use them to model in 3D. Click the Create Sketch toolbar icon, as shown in Figure 3.6. 

The document view now has a navigation cube in the top right—it shows which side of the 3D system 
we are looking at. The following diagram shows how to navigate here:

Figure 3.7 – 3D gesture navigation

Figure 3.7 shows 3D gesture navigation. Hold the left mouse button and drag to orbit/rotate the camera 
around in 3D. Scroll the wheel to zoom in and out of the model. Use the right mouse button to pan, 
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moving the camera up/down and left/right. You can click the navigation cube faces to see different 
views of your model.

FreeCAD is waiting for you to choose a sketch plane, as shown in the following screenshot:

Figure 3.8 – Choosing a sketch plane

Figure 3.8 shows a dialog for choosing a plane, a flat surface to sketch on. FreeCAD requires you to 
choose a surface for sketching. You have two ways to select it:

• The Tasks view on the left shows a list of base plane choices.

• You can choose flat surfaces or planes in the 3D view.

For this sketch, choose XY_Plane. This is the horizontal plane.

Important note
If you find it hard to select things, note that as you hover the mouse near FreeCAD objects, 
they become highlighted, and then you click to select them. This hover/click operation is vital 
to making selections.
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Click OK to enter the Sketcher workbench, as shown in the following screenshot:

Figure 3.9 – The Sketcher workbench

Figure 3.9 shows Sketcher screen elements. At the top are toolbars. We’ll mostly use two toolbars—
Sketcher Geometry to create shapes and lines, and Sketcher Constraints to place geometry. The 
default arrangement of toolbars puts items offscreen, shown in the top right. However, we can drag 
toolbars to rearrange them to see all the toolbars, as per the second toolbar shot.

The second toolbar shot has Rectangle, Symmetry, and Dimension tools highlighted. We’ll be using 
these in the following sections.

Below this, on the left, the Tasks panel lists constraints and sketch components. On the right is the 
main sketching view. The navigation cube shows we are looking at a view of Top. The x and y axes 
divide the screen with a cross.

Let’s use these tools to draw our chassis. Follow these steps:

1. Click on the Rectangle tool in the geometry toolbar, highlighted in Figure 3.9. 

2. Create a rectangle crossing the center lines—click once for a corner and again to place the 
opposite corner. It should look like the following screenshot:
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Figure 3.10 – Sketched rectangle

The right of Figure 3.10 shows the rectangle. The sketch taskbar on the left has the Constraints and 
Elements sections. Elements are drawable items such as lines.

Sketcher uses constraints to position geometry. Here, there are eight constraints:

• Four have crosses with a dot in the middle; these constraints make the rectangle line ends 
coincident, so they join.

• The other four constrain two lines horizontally and two vertically.

Let’s add more constraints to position and size this geometry.

In Chapter 1, Planning a Robot with Raspberry Pi Pico, we suggested 150 mm x 200 mm in our test 
fit. Look at the next screenshots to see how to size the rectangle:
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Figure 3.11 – Adding dimensions

Figure 3.11 shows the addition of dimension constraints to the rectangle. Follow these steps to 
add constraints:

1. Right-click to drop the Rectangle tool. Right-clicking drops your current tool.

2. Hover the mouse over the top line so that it is yellow, and then click to turn it green.

3. Use the Dimension tool in the toolbar, type 150 mm, and press Enter.

4. If things don’t fit on the screen, use the Fit content to screen button.

5. Dimension the right line to 200 mm.

The small line icons indicate vertical or horizontal constraints. FreeCAD creates them automatically 
when you add rectangles.

The rectangle has dimensions but is not fully constrained, and it can move around, so we need to 
anchor it.
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The next sequence shows how to fix it to the origin:

Figure 3.12 – Adding symmetry

The sequence in Figure 3.12 shows how to add symmetry to your rectangle. The previous screenshot 
shows the Symmetry button—the left side shows selecting three points, while the right side shows a 
fully constrained sketch with symmetry. Follow these steps:

1. Select the top-left point, bottom-right point, and middle point where the axes cross. 

2. Click Symmetry to add a symmetry constraint. 

3. When you do this, the sketch changes color to show the sketch is fully constrained. The points 
are locked relative to the origin.
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The Tasks panel has also changed to show the sketch state. Look at this screenshot:

Figure 3.13 – Tasks panel for a fully constrained sketch

The Tasks panel in Figure 3.13 has a Fully constrained sketch message in the Solver messages section. 
We have 11 constraints, including 2 dimensions and symmetry. Click Close to finish sketching. Name 
this sketch ChassisOutline. 

This sketch is dimensioned and constrained. However, we will create a further sketch as the main 
sketch for the upper deck parts.

Creating the upper parts main sketch

We will use a further sketch named UpperParts to make parts on the top of our chassis. It will follow 
the test fit but with screw holes added. It will need to reference geometry in the ChassisOutline 
sketch as they are related. 

Create a new sketch on the same XY plane. We will base this sketch on the previous one by using 
external geometry. Look at the following screenshot:
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Figure 3.14 – Importing external geometry

Figure 3.14 shows the External geometry tool, which you need to click, and then select all the rectangle 
sides to see red lines created over them. This will link to geometry from another sketch or object.

Next, we will create sketch elements for the battery box and breadboard:

Figure 3.15 – Battery box and breadboard sketch elements
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The middle screenshot shows the chassis with battery box and breadboard sketch elements on it, with 
a close-up screenshot on the left showing the Onto object constraint icon. The top-right space shows 
dimension tools. Proceed as follows:

1. Draw the battery box outline. By starting a rectangle top left touching the chassis rear line, 
FreeCAD adds an automatic Onto object constraint between that top-left point and the line. 
This makes the point stay in contact with the line. Use the test fit to set the dimensions.

2. Make the rectangle’s bottom points symmetrical around the vertical axis line. The sketch should 
go bright green to show that it’s fully constrained.

3. Next, create the breadboard. This is another rectangle, with the top two points symmetrical on 
the vertical axis. Use the dimensions from the test fit.

4. We want a gap between the breadboard and the batteries. Select the battery box at its bottom-
left point and the breadboard at its top-left point. Make a 10 mm vertical dimension between 
them. The sketch should again be fully constrained.

Important note
When adding symmetry, FreeCAD should remove horizontal constraints for lines. This removes 
redundant constraints, which can conflict if constraints contradict others. Ensure Auto remove 
redundants is enabled to prevent this!

Troubleshooting sketching

If you have trouble with the previous sketches, try these steps to solve some common issues:

• I see conflicting constraint errors: Ensure you have followed the preceding preference steps. 
Auto remove redundants must be enabled.

• I can’t make symmetry work: You must select two points (dots), and then a final center dot 
or mid-line. Selection order is important for symmetry.

• My dimensions are cluttered: You can click on any dimension and drag it to move it out of 
the way.

• Everything is too close to see: Use your mouse wheel to zoom in, and then zoom out when done.

• I am still drawing a line/circle: If you have a tool selected, right-click anywhere to drop the tool.

• I have items selected I don’t want for constraints: You can click on an item a second time to 
deselect it or click in an empty space to clear the selection.

With these parts sketched, we move on to more complicated motor parts.
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Sketching the motors

The other elements on top of the chassis plate are the motors. The motors are in our test fit as boxes, 
but in truth, they are a complex assembly. We are using N20 motors with built-in encoders. They 
need brackets to attach them.

N20 motor brackets come in two kinds—with mount holes closer to the motor or with them further 
apart. Since the former type is more common, we’ll use these. The next diagram shows a dimensioned 
drawing of these brackets with motors:

Figure 3.16 – FreeCAD drawing of N20 motor with encoder and bracket

Figure 3.16 is a dimensioned N20 motor sketch with an encoder and bracket. We’ll align the bracket 
front with the gearbox middle divider so that the motor won’t slide. 

Using this drawing, we can create rectangle outlines for the two motors, as shown in the 
following screenshot:
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Figure 3.17 – Motor outlines

Figure 3.17 shows the symbol for Equal constraint, which sets line lengths or circle diameters equal. 
The screenshot shows the motor outline rectangles in place.

Follow these steps:

1. Draw a rectangle on the left, ensuring that we constrain the top-left point onto the left side of 
the chassis. Make a similar rectangle on the right.

2. Make the top inner points of the motors symmetrical about the vertical axis line.

3. Select inner vertical lines on both motors, and then use the equal constraint. A little = sign 
shows next to the items, along with reference numbers. Items with the same number are equal.

4. Dimension the left-hand motor using Figure 3.16 for reference.

5. Select the bottom-right point of the motor and the bottom left of the breadboard. Create a 
horizontal constraint between them to line them up.

All our rectangles are green, which shows this is a fully constrained sketch. We have sketched out the 
robot’s top, following our test fit.

We are using more of the sketching toolbox. Now is a good time to get familiar with the tools on offer 
and their shortcuts. These shortcuts change, so the best way to get to know them is to hover over the 
buttons to get a tooltip. Sketcher becomes much faster when you start using its keyboard shortcuts.
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A constraint reference will help; see the next table:

 

Table 3.2 – Sketcher constraints in FreeCAD

The table shows references between symbols, names, and descriptions for each constraint type. You 
will see these symbols in the toolbar, main view, and constraints list on the left of the screen.

These will help create motor holes—our next section.

Sketching the motor holes

We represent holes in sketches with circles; however, the real trick is using constraints to place them.

We can start with the motor attachment holes. The breadboard is self-adhesive and does not use bolts, 
and we will use hook-and-loop dots to make batteries easy to change.

Each motor has two holes. We’ll make them symmetrical between the sides. Refer to the 
following screenshot:
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Figure 3.18 – Motor holes sketched

Figure 3.18 is an annotated sketch of motor holes, along with the tools used. The next steps show how:

1. First, add two circles on each side in the motor rectangles.

2. Next, add a construction line on the left going across the motor block. Select the line and use 
Toggle construction so that it turns blue—constructions hold the geometry in place but remain 
internal to a sketch. Make this vertically symmetrical with respect to the motor.

3. Make left-circle middles symmetrical across this line, and dimension them to 18 mm apart.

4. Use a horizontal dimension to put them 12 mm in from the outside edge.

5. Use the Constrain diameter tool to add a 2 mm diameter and an equal constraint for all 4 holes.

6. Finally, make the middle of each circle on the right symmetrical to its left-hand counterpart 
using the vertical axis.
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The full sketch should look like this:

Figure 3.19 – The full chassis top sketch

Figure 3.19 shows the whole sketch, with all components drawn on top of the chassis and their holes 
drawn and placed. Close this sketch.
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The upper parts sketch should be 3 mm above the ChassisOutline sketch to account for its 
thickness. The following screenshot shows how:

 

Figure 3.20 – Positioning upper parts sketch

Figure 3.20 shows how the sketch should be positioned—first, the Data properties view, and then a 
3D view with the sketch hovering above the chassis. 

To make this, select the UpperParts sketch and do the following:

1. In the Data tab properties tree, expand Placement and then Position.

2. Set z here to 3 to place the sketch.

We now have modeled all the parts and their holes for the chassis top. There is also a caster for the 
chassis bottom. In the next section, we model this.
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Designing the caster placement
The motors and wheels are near the robot’s front. The caster balances the back, making it a three-point 
design with two wheels to drive. Batteries are heavy, so putting the caster under and behind them will 
help balance the robot. We can use the battery box to guide the placement of the caster.

We need to create a LowerParts sketch to place the caster and bolt holes. I’m using a Pololu ¾ 
inch caster and will use its datasheet/specs as a guide. If you have a different caster, please check its 
specifications. Pimoroni has a dimensional drawing of this part.

The following screenshot shows the sketch we will make:

Figure 3.21 – The caster sketch

The annotated sketch shows three new circles for the caster’s holes and outline. To sketch this, follow 
these steps:

1. Add the rear line of the chassis as external geometry.

2. Draw a circle for the caster outline, with its middle on the vertical axis.

3. Using my caster datasheet, I set the caster outline diameter to 23 mm.

4. Add a 20 mm vertical dimension between the circle’s middle and rear lines.

5. For the holes, draw a circle along this line and another circle opposite.

6. Make the holes equal and add symmetry across the caster center point.

7. Add a horizontal constraint between the holes.

8. The caster information says its holes are 15.5 mm apart, and being a #2 thread, we can use 2.5 
mm for the diameter. Use these to create a dimension between the hole middles and to create 
a diameter dimension.

We now have the upper and lower deck parts sketched. With that done and sketching skills exercised, 
it’s time to turn these into 3D objects.
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Modeling chassis parts from sketches
We are going to start making 3D parts. The first part is the chassis plate itself, which requires two 
steps, and then we build other parts around it.

Modeling the chassis plate

The following screenshot shows how we will make a 3D chassis plate:

Figure 3.22 – Making the 3D chassis plate

The top part shows the Pad tool, the bottom left shows the Pad Tasks panel, and the right part shows 
the 3D view with the plate in it. We’ve put our sketches in a main sketch, so we’ll need to import these. 
For importing geometry from sketches, FreeCAD has shape binder objects. Ensure you’re in the Part 
Design workbench, and then follow these steps to make it:

1. Create a ChassisPlate body and double-click to make it active.

2. Click Shape binder, and then the task view shows the names of selected geometry.



Modeling chassis parts from sketches 69

3. Select the four outer lines of the ChassisOutline sketch. Unlike sketching, you need to 
hold Ctrl or Cmd to do this.

4. Then, click Shape binder, and then the task view shows the names of selected geometry. Click 
OK to accept this.

5. Select the ShapeBinder object it created, and click on the Pad tool. You’ll see a Tasks panel 
with parameters on the left, and a preview on the right.

6. In the Tasks panel, set the length to 3 mm to match the styrene sheet. This will update the preview.

7. Now, press OK to finish making the part.

This job is only partial, as we need holes too. Follow these instructions to create the upper part holes:

1. It can help to select to hide the Pad we just made, using space to toggle.

2. Select the four motor holes—hover over and highlight the circles, then click to select them.

Important note
In workbenches other than Sketch, to select multiple items, click the first item, then hold Ctrl 
(Cmd on Macs) and click to add additional items. If you select an item you don’t want, while 
keeping Cmd/Ctrl held, click that item again to deselect it.

The following screenshot shows how this shape selection should look:

Figure 3.23 – Making a shape binder

The left of Figure 3.23 shows holes from our sketch, all selected. The right shows the toolbar Shape 
binder icon, the Tasks panel for a shape binder, and the Model tree with a shape binder created.
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You can now use this shape binder to make holes in the chassis. See the following screenshot:

Figure 3.24 – Holes cut into the chassis

Figure 3.24 shows how we cut holes using the Pocket tool in the top left. Below is the Tasks panel, 
with the cutting options. The right-hand screenshot shows the 3D output. Follow these steps:

1. Ensure you have the shape binder selected and click the Pocket tool.

2. In the dialog, select Through all and then click OK.

We’ve made holes to attach upper deck parts. Repeat this process for the lower part holes, creating a 
shape binder around the two caster holes and pocketing them through all. Next, we model the parts 
in 3D.

Modeling the other parts

We make the other parts as we made the holes, using shape binders and padding them into a 3D 
body in the document.

The following screenshot shows how to make the battery box:
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Figure 3.25 – Making the battery box in 3D

Figure 3.25 shows how we make the battery box, with edges selected in the top left, while the top right 
shows the tools used, the bottom left shows the battery box in 3D, and the bottom right shows the 
Tasks panel for the Pad operation. Follow these steps:

1. Create a body named BatteryBox.

2. Select the outside lines of this box, as shown in the top-left panel. You may need to hide the 
ChassisPlate body to select all the edges.

3. Click Shape Binder to create a shape binder in the new body.

4. Select that shape binder, click the Pad tool, and set it to 20 mm, reversed. 

You should now see the preceding 3D shape. We can make other parts—motors and a breadboard—in 
the same way. Please see the following screenshot for the whole upper deck outline:
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Figure 3.26 – The upper deck modeled in 3D

Figure 3.26 shows the Model tree to the left, with bodies for our components. The right shows a 3D 
view with all parts modeled. Now is a good time to save!

The chassis plate part is now ready, including holes to attach other parts to it. In the next section, let’s 
troubleshoot any issues you may have had.

Troubleshooting the model

This list should help get you past common FreeCAD pitfalls with the exercises so far:

• I can’t find the right buttons in the toolbar: Remember workbenches—when you have Sketch 
enabled, you will have different toolbars than in Part Design. So, ensure you have Part Design 
selected! Also, watch for offscreen buttons.

• I clicked and missed the automatic constraint: You can add constraints by selecting relevant 
items and the correct constraint tool.

• I can’t select geometry: Use the space key or Hide Item menu to hide/unhide geometry until 
the item you want to select is clear.

• Some holes won’t cut: Ensure holes aren’t construction geometry. Construction geometry, 
colored blue in the sketch, isn’t used in Cut/Pad operations.

• Things aren’t quite lining up: If items are white, they aren’t constrained. Use dimensions and 
other constraints to tell FreeCAD how they should align.
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Important note
Sketches are best when constrained. Dragging things to look like they line up can lead to problems. 
Try to use constraints. If they are parallel, use the parallel constraint. If they are equal, use the 
equal constraint. If they are 10 mm apart, use a dimension.

Hopefully, this covers the issues you’ve had, and you have a 3D chassis with parts and holes to bolt 
parts to. However, we are missing the caster. In the next section, we will make it 3D using its sketch.

Modeling the caster in 3D 

The top left of the following screenshot shows pocket operation parameters for creating the caster:

Figure 3.27 – Making the caster holes

The preceding screenshot shows elements for making the caster holes. The top left shows the Tasks 
panel – where the Reversed and Through all fields are checked for the hole. The top right shows the 
Model tree with other sketches hidden, a shape binder, and a pocket at the end. The bottom panel 
shows caster holes cut into the chassis.
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These tips will assist in making this object:

• Look at the bottom of the model.

• Hide the last Pocket item in ChassisPlate  so that you can see the sketch circles.

• Select the two circles, make a shape binder, and then unhide the chassis again.

• Select this shape binder for the holes and make a pocket. 

• Set the pocket to Through all. You may need to check Reversed to make the cut. Through all only 
applies to geometry in the same body, and other bodies will require further pocket operations.

We can use our sketches to make a 3D caster body, using the same process as before. Look at the 
following screenshot to see how we achieve this: 

Figure 3.28 – Making a 3D caster

The preceding screenshot shows the steps in making the caster. The first panel shows the selection 
for the ShapeBinder object; the top right shows the caster padded. To add the caster, perform the 
following steps:

1. Hide the other solid parts. Make a Caster body and bring in detail from the LowerParts 
sketch into a shape binder.

2. Pad this to 23 mm, reversed. Unhide the other bodies.

We have now placed the caster and holes for its bolts. With the caster attached, we have made a rough 
3D model of our robot. It’s missing wheels and detail, but enough to show that this will work. We will 
use this design to make parts, which need a drawing—our next section will introduce these.
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Making FreeCAD technical drawings
Our design shows things will work, but we need a way to cut and drill styrene plates and rods. FreeCAD 
can make a technical drawing to help us. You’ve seen the motor assembly and chassis base drawings. 
Now, you will see how to make your own.

Setting up the page

We’ll start our drawing by setting up the page in the TechDraw workbench. The following screenshot 
shows how:

Figure 3.29 – Preparing a drawing page

Figure 3.28 shows how we create a page for our drawing in TechDraw.

Choose the TechDraw workbench in the workbench selector, as the top of Figure 3.28 shows. Then, 
proceed as follows:

1. In the toolbar, click the Create a drawing from template icon.

2. This shows drawing templates in a file selector. Choose A4_Portrait_blank and open this.

3. This will add a new drawing to the Model tree. Rename this CuttingDimensions, as 
shown in Figure 3.28, left.

We now have a blank page ready for you to put your parts on. We will project parts onto this  
sheet—choosing parts and letting TechDraw draw them.
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Adding parts to the drawing

We can start by adding the chassis plate part to our drawing. Let’s see how this works in the 
following screenshot:

Figure 3.30 – Adding the chassis plate to the drawing

The preceding screenshot shows how we’ll add the chassis plate part. The following steps describe 
this process:

1. First, from the Model tree, select ChassisPlate as shown in the top left in Figure 3.29. This 
will take you to the 3D view.
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2. In the 3D view, use the Bottom view toolbar button or navigation cube to look at the bottom 
view of the model.

3. Use the tabs below the view (middle right) to go back to CuttingDimensions. ChassisPlate 
should remain selected in the Model view.

4. Click on Insert projection group in the toolbar (shown middle right). You should now see 
ChassisPlate appear in the drawing.

5. Projection frames let you drag them around in the drawing. Click and drag this frame to the 
right so that we can put other parts on the left.

6. Click OK in the Tasks panel to finish inserting the projection group.

You now have the chassis plate part; however, the frames are untidy, and it would be good to add hole 
centers and dimensions.

Preparing the drawing for print

Some finishing touches are needed to make this drawing ready to use as a part-cutting guide. The 
following diagram shows how:

 

 Figure 3.31 – Preparing our drawing for print
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Figure 3.30 has icons we’ll use for this process along the top. These should be in the toolbar, but you 
may need to move toolbars to see them all. The lower left shows our part without centerlines, and the 
right shows the centerline added, followed by the diameter added. Perform these steps:

1. First, we can turn off frames by clicking Toggle View Frames in the toolbar.

2. So, we can drill holes, but we need centerlines. Start by selecting a circle. Then, use the Draw 
circle centerlines tool to add centerlines.

3. We also want to add dimensions so that we know how much to drill out. Click on a circle, and 
then click Insert diameter dimension.

4. Repeat the centerlines for all holes. Dimension the holes, but where they are symmetrical, you 
don’t need to dimension their counterpart.

You should now have the finished drawing. You can print this off onto A4. Be sure not to scale it when 
printing. The printed drawing should look like this:

 Figure 3.32 – The printable drawing

This printable drawing looks good. You will be able to take that printout and use it to fabricate parts, 
and you have learned how to project parts with TechDraw. We’ll make those parts in the next chapter!



Summary 79

Summary
You’ve had a brief FreeCAD tour and designed objects in it, from sketches to 3D objects with pads 
and pockets. You’ve seen shape binders to reuse geometry and used constraints in sketches to specify 
geometric relationships. You’ve used these tools to build a 3D robot design from multiple parts.

Finally, you saw how to make output drawings based on the 3D design, which you can take into a 
workshop with you. 

In the next chapter, we will take these designs into the workshop, make parts from them, and then 
assemble them into a custom robot.

Exercises
You can follow these exercises to improve and practice your FreeCAD skills and improve the robot model.

The next screenshot shows a suggestion to add a little embellishment to this robot. This exercise is 
highly recommended.

Figure 3.33 – Detail on the front of the chassis

The previous screenshot shows a drawing to the left with dimensions to cut some angled detail into 
the front chassis. Note that measurements have been used instead of angles, which should keep it 
simple to manufacture later. The right shows a 3D view of this.
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The robot looks quite plain with a rectangular chassis. Adding some cuts on the chassis would add detail, 
and we can build upon it later for sensor positioning. Use the preceding screenshot for dimensions. 
Aim to cut the ChassisPlate body with a new sketch, as modifying the ChassisOutline 
sketch is not recommended.

Some other optional reader exercises are the following:

• Consider adding wheels to the motors—they may need an axis. Hint: sketch on the YZ plane.

• Could you use your drawing skills to reproduce an assembly drawing like the one seen in 
Figure 3.16?

Further reading
This has only scratched the surface of what FreeCAD is capable of and how you could use it. I 
recommend reading further about its use at the following sources:

• FreeCAD [How-To], by Daniel Falck and Brad Collette, published by Packt Publishing—Solid 
modeling with the power of Python. This tours the workbenches, multiple modeling techniques, 
and using Python to work in FreeCAD.

• The FreeCAD forums at https://forum.freecadweb.org/ have a Help on using 
FreeCAD topic, which is a great place to ask questions when having FreeCAD issues.

• FreeCAD also has a wiki, with an excellent page on the Sketcher workbench at https://wiki.
freecadweb.org/Sketcher_Workbench, and a Getting started topic at https://
wiki.freecadweb.org/Getting_started.

https://forum.freecadweb.org/
https://wiki.freecadweb.org/Sketcher_Workbench
https://wiki.freecadweb.org/Sketcher_Workbench
https://wiki.freecadweb.org/Getting_started
https://wiki.freecadweb.org/Getting_started
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Building a Robot around Pico

Building a robot involves utilizing some practical skills in a workshop – cutting, drilling, and, most 
importantly, measuring. It also requires assembling parts and keeping them in place. The robot 
platform will be the base for our Raspberry Pi Pico robotics experiments, since we want to try out 
our FreeCAD designs in the real world.

Cutting and scratch building from styrene is a workshop technique that’s used by model makers and 
robot builders in many situations – it’s cheap and convenient in terms of materials but requires some 
patience and practice. Could you 3D-print, CNC-mill, or laser-cut these parts? Almost certainly 
– however, not everyone has access to these tools, and learning about scratch build techniques to 
complement them will give you flexibility as a workbench wizard.

Later in this chapter, we will look at wiring our robot and connecting the electronics so that the robot 
is ready for us to code on.

By the end of this chapter, you will have built the robot base platform with a Raspberry Pi Pico at its 
core, and it will be assembled and wired.

In this chapter, we’re going to cover the following main topics:

• Cutting styrene chassis

• Drilling out holes

• Assembling a robot chassis

• Wiring a Raspberry Pi Pico robot

Technical requirements
This chapter uses various tools and materials. You will need to have the right tools and be able to work 
safely. You’ll find this equipment in the shopping lists from Chapter 1.
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You will require the following materials:

• 3 mm styrene sheet – A4 or larger

• A soldered Raspberry Pi Pico

• The solderless breadboard

• Precut jumper wire kit

• The motor controller with headers soldered in

• A 5V 3A UBEC

• 8 x AA battery compartment, with switch

• N20 micro-metal gear motors with encoders

• Ball caster ¾ inch with 4 x M2 nuts – 2 x M2 x 6 mm

• Hook and loop/Velcro dots

• Wheels with N20 d-hole hubs

• 1n5817 or equivalent Schottky Diode

• A standoff or a mounting kit with M2 standoffs, bolts, and nuts

You will need the following tools:

• A plastic cutter

• A pair of scissors

• A metal ruler that’s at least 250 mm long

• Sandpaper – 400, 600, and 1,200 grit

• A pin vise drill with 0.5 mm, 1 mm, 2 mm, and 2.5 mm high-speed steel (HSS)/twist bits

• Safety goggles

• A flat work area with good lighting, free of interruptions or being nudged

• A cutting mat

• Screwdrivers with appropriate ends for the bolts

• M2 and M3 spanners to tighten the bolts and standoffs

• A multimeter
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Cutting styrene parts
Styrene is a great material for building robots. It is easy to find, can be cut and glued, and comes in 
many forms. We will be using sheets and rods. In this section, we will look at cutting this material, 
starting with transferring our CAD measurements. First, we look at making a good cut and refining 
the parts so that they are smooth.

Transferring CAD measurements to a plastic sheet

Before we cut, we will need to make markings so that we know where to cut. In the previous chapter, 
we made a paper template and ensured that we printed it out 1:1 on a sheet of A4 paper. You’ll need 
that, along with some tools, as shown in the following figure:

 

Figure 4.1 – Parts needed to transfer the drawing
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The preceding figure shows the tools we will need, laid out and ready to use, followed by the drawing 
adhered onto a sheet of plastic. Prepare the following:

• Scissors

• Pin vise and bits

• Metal ruler

• Plastic cutter

• Cutting mat

• Sheet plastic

• Paper template

• Tape

The first thing you will need to do is cut around the drawing on the paper template. Then, you will 
need to tape this firmly onto the plastic sheet. Try not to let any of the edges curl – the better this is 
taped down, the better your result will be.

We will use this template to draw some dots on our plastic. The following figure shows this:

Figure 4.2 – Marking the plastic with dots

Here, you can see me using the pin vise with a bit to draw dots for each corner and hole. The right 
side shows the holes drilled. Follow these steps:

1. Use the pin vise with a small bit, maybe around 0.5 mm.

2. Align the pin vise over a corner on your drawing and mark through the paper and onto the plastic.

3. Repeat this for all the corners. There are six for the chassis.
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4. Now, do the same with the hole centers. There are six holes in the chassis plate.

5. We can then use larger bits to drill out the holes – a 2 mm bit and 2.5 mm bit. Let the template 
guide you on the sizes.

While making the marking holes, and the bolt holes, it is important to go slowly and use little force. 
Accuracy is important. Do this over some waste wood or a cutting mat.

Now that we have traced this out, we are ready to start cutting the parts out of the sheet.

Cutting the plastic sheet

Cutting takes patience. Go slowly and start with accuracy as the goal; there’s no eraser for cuts!

Important Note
Your fingers or limbs must never be in the path of the blade! Do not cut yourself. When you 
are holding the ruler, keep your fingertips in the middle of it.

Ensure that the plastic cutter is sharp and has a fresh blade. Blunt blades do not cut effectively, 
and using more pressure is dangerous and risks damaging the parts.

Let us start cutting. Look at the following figure:

 

Figure 4.3 – Cutting the parts
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The preceding photo shows me making cuts in the plastic sheet. The top left has me aligning a metal 
edge for the rear cut, and the top right has me setting up a cut for the front bevel. The bottom drawing 
shows the cut being made. I have a process for cutting these:

1. Line up the ruler with a pair of holes and the template so that the cutting edge faces out from 
the material you will keep. This means that any runout from the knife will not damage the part. 
Keep the ruler firmly held so that it doesn’t move.

2. With the cutter, you will use the point of the hook.

3. Place the hook just in from the hole (so it doesn’t snag on it). With light pressure, score the 
sheet following the ruler to the next dot. Do not aim to cut deeply – score the sheet. Do not 
force this – don’t damage the ruler, and focus on keeping the cut straight.

4. We aim to cut about halfway through. To make a clean cut, ensure that you take things slowly. 
When you reach the end, keep the ruler in place, return, and follow the existing score. As you 
make a few passes, you will see the hook picks up more material. This is tedious but leads to 
a good finish.

5. Clean the blade if it gets gummed up and change it if it’s dull.

6. Be patient; if you go too fast or use too much pressure, then you may wander off and damage 
the part or, worse, ride up and take a chunk out of you.

7. Repeat this process for all the lines you have drawn.

8. Rotate the part and ruler to get a good cutting edge for yourself. Do not lean over in awkward poses.

At this point, you should have scored all the lines for the parts, but they will still be mostly inside the 
plastic sheet. So, let us see how we get them out:

  

Figure 4.4 – Pushing out the parts
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The preceding figure combines two diagrams and two photos. The process for pushing out the parts 
depends on having made enough passes that you have a deep knife score, as item 1 shows. The more 
knife passes you made previously, the easier this will be.

Item 2 shows what is going on; we flex the plastic at the scored line until it snaps. The bottom-left 
picture shows all the lines deeply scored in the sheet, and the bottom right shows the sheet being 
flexed to release this part. This process is very satisfying!

Once you have snapped out the parts, you should have the main chassis plate:

 

Figure 4.5 – The plate cut out

The preceding figure shows the chassis plate on a cutting mat. It looks a bit rough, though, with burrs 
on the holes and the edges. We will fix this in the next section.

Finishing and sanding the chassis plate

The first things we will clean up are the holes. Burrs are the spiky ridged bits that remain from drilling. 
They can be sharp and catch your fingers and may also prevent parts from being assembled well. Let 
us learn how to remove them:
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Figure 4.6 – Cleaning up the holes

The first panel shows two holes – one with the burrs visible and the other with the burrs removed. To 
do this, use a craft knife to make a circle with the blade lightly inside the hole; this will just take off 
the burr without widening it. Again, use no pressure here; let the blade do the work.

Repeat this for all the holes. If you need to clean the blade, use tissue, but never put your fingers in 
the path of the blade!

Sanding the parts

The following figure shows how to sand this part so that it is ready to use:
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Figure 4.7 – Sanding the plate

The preceding figure shows how to sand the chassis. These tips will help:

1. Place the sandpaper on the table and stroke the part against it.

2. Start with the roughest (400 or 600 grit) sandpaper.

3. Smooth the edge and take off any ridges left by the cutting. It helps to come in at an angle of 
30 to 45 degrees.

4. For long edges, hold the plates in one hand and stroke the sandpaper against them. Keep this 
light and support the paper where it contacts the part. 

5. Now, go from the low-grit sandpaper to the medium-grit sandpaper (800–1,000) and then to 
the high-grit sandpaper (1,200) with the lightest touch.

The part’s edges should now be smooth and not sharp to the touch. 

With that, you have designed, cut, and sanded your chassis base. Sure, it could be more exciting in 
terms of its shape, more robust, and extend up into three dimensions or more, but you now have 
the skill to enhance it in these ways. A chassis base is not enough for a robot, though, so we’ll start 
attaching robot parts to this base in the next section!
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Assembling a robot chassis
The chassis is the base of our robot. We have cut the required part, preparing it for use. In this section, 
we’ll attach the caster battery box, and motors.

Attaching the caster and battery box

The battery box is assembled above the caster. Therefore, we must start with the caster; the following 
figure shows how:

Figure 4.8 – Attaching the caster ball to the chassis

The preceding figure shows me attaching the ball caster to the chassis. Let us take a look at this in 
more detail:

1. The large inset at the bottom left shows a cross-section of how this will turn out. Note that the 
nylon screw must go through the bottom of the ball caster housing, through the chassis plate, 
and then an upper securing nut.

2. The top-left figure shows the parts for this assembly. We have the ball caster housing (with the 
ball separated), 2 x M2 long nylon screws, and 2 x M2 nuts. Also, prepare a suitable screwdriver, 
spanner, and wire/side cutters.

3. After screwing both lower-spacing nuts into place, push the protruding threads through the 
corresponding holes in the underside of the chassis plate.
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4. Tighten the securing nuts with a spanner.

5. To finish, trim the threads so that they are 1 mm or less above the securing nuts to ensure they 
will not foul the bottom of the battery box. A flush cutter/side cutter is a good way to do this 
without destroying the thread.

6. Pop in the ball caster. Check that the ball will move freely and isn’t catching on the screws.

At this point, the ball caster is secured. We can now attach the battery box, as shown here:

Figure 4.9 – Attaching the battery box

Figure 4.9 shows how to attach the battery box. The top left shows hook and loop disks being adhered 
to the battery box in the four corners. Next, we add their opposite disks onto them. We then align 
the battery box over the chassis and push it down firmly so that the bottom disks stick to the chassis. 
Leave this for a few minutes for a good bond.

The bottom left shows a cross section with the relationship between the battery box assembly and caster 
underneath. The final panel, at the bottom right, shows that once the hook and loop disks are adhered, 
you should be able to pop the battery box off the hook and loop to make changing batteries easier.

Now, let us move on to the robot’s front, which is where the motors will be added.
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Attaching the motors and wheels

Now, let’s bolt the motors on and fit their wheels in place. The following figure shows the necessary steps:

Figure 4.10 – Attaching the motors and wheels

The preceding figure shows how to attach the motors and wheels:

1. The top-left panel shows the parts that are needed – two wheels, two motors, two N20 motor 
brackets, four nylon bolts, and four nuts (which should have come with the N20 motor brackets).

2. Fit the motor bracket so that it covers the middle gearbox plate and part of the motor.

3. Pop the nuts in the side lugs – a small jeweler’s screwdriver will help here.

4. The motor will line up over the holes. It may help to put the screws into one of the sides first 
and slot the motor over them. 

5. Tighten the screws into the nuts on the motor bracket. Repeat steps 4 and 5 for the other motor.

6. Attach the tires to the wheels – these are usually separate. Carefully push the wheels onto the 
motor spindles. Ensure that pressure is being placed on the motor but try not to flex the chassis.

7. We have now assembled the robot chassis, other than the electronics.
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We’ve assembled the chassis enough for it to stand on its wheels. It has a battery box and motors, but 
nothing to instruct the motors when to move. In the next section, we will wire the robot’s electronics 
so that we’ll be ready to run the necessary code.

Wiring a Raspberry Pi Pico robot
In this section, we will look at connecting Raspberry Pi Pico to the motors via the motor controller 
we chose in Chapter 1, Planning a Robot with Raspberry Pi Pico. We will add the power circuitry and 
recommend a few techniques for robot wiring. Although the breadboard can adhere to the chassis, I 
tend to leave off using adhesive until it’s necessary – it is easier to wire and make changes sometimes 
with the breadboard out of the robot.

Wiring Pico and the motor controller into the breadboard

The motor controller that we suggested in the planning phase was the TB6612-FNG. I have used a 
SparkFun board. The following table shows the pins for this module: 

Pin name Type Function
GND Power Ground – power connection back to batteries.
VM Power Voltage for motors – higher than the rest of the system.
VCC Power The logic voltage should be at 3.3v, the same as Pico.
AIN1/2 and BIN1/2 Input These are the motor control input pins. Raspberry Pi Pico will 

control the motors through these. A and B designate sets of 
motor outputs.

PWMA/B Input These can be pulsed on and off to control the motors. We will 
tie these to the VCC voltage so that only the AIN/BIN pins 
are needed. 

STBY Input Connect this pin high (VCC) to enable the motors.
AO1/2 and BO1/2 Output These are the motor output pins and can be connected directly 

to each motor.

Table 4.1 – TB6612-FNG pin functions

The preceding table describes each pin, its overall type, and its functionality.

We should also use the datasheet for Pico pinout at https://datasheets.raspberrypi.
org/pico/Pico-R3-A4-Pinout.pdf while considering the pins we’ll use. The following 
diagram shows how we will wire this controller:

https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
https://datasheets.raspberrypi.org/pico/Pico-R3-A4-Pinout.pdf
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Figure 4.11 – Wiring diagram for the robot

This wiring diagram (made in KiCad) shows the wiring we’ll be using in this chapter. The box at the 
bottom shows the symbol key.

Focusing on the connections between Raspberry Pi Pico and the motor module, you’ll see the General 
Purpose Input/Output (GPIO) pins wired to control the AIN and BIN pins. The preceding diagram 
shows the Raspberry Pi Pico 3v3 pin connected to a +3v3 power line, which we’ve also connected to 
the motor controller’s VCC, PWMA/B, and STBY pins.

We will build our circuits on a breadboard. With pre-cut jumper wires, you can push the exposed 
metal ends of the wire into the breadboard holes to make a connection. The top and bottom have 
power rails for connecting the power and the ground. The middle section has 30 rows, each with 2 
connected rows consisting of 5 pins.
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How do we fit this on a single breadboard? Let us look at the following diagram:

Figure 4.12 – Wiring the motor connections on a breadboard

The preceding diagram shows a suggested breadboard layout. First, we must plug in Raspberry Pi Pico 
and the motor module, with Pico’s USB connector facing away from the motor board. Next, we must 
prepare the power rails, connecting the black rail to GND and the red rail to 3.3V – do this with longer 
wires so that they don’t block the USB port. We must also connect the motor board’s PWM and STBY 
pins to the red rail. Finally, we must make four connections between the GPIO pins of Pico and the 
input pins of the motor controller. Note the gap at the end of Pico – there is a spare ground pin here.

Make the connections with pre-cut jumper wires. Favor making it easy to inspect and change compared 
to tight and compact wiring.

We’ve wired the motor controller, but this board needs power – we’ll look at this next.
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Adding the batteries

We are wiring three main power components to this robot – a battery box, a UBEC to convert the 
battery output into the 5V input that Raspberry Pi Pico needs, and a diode to stop USB and UBEC 
power interacting with each other. 

The top of Figure 4.11  in the previous section shows the UBEC and diode. How do we add those? Let 
us look at a suggested breadboard layout:

Figure 4.13 – Suggested board layout for batteries, UBEC, and the diode

This breadboard layout builds upon the previous one, with the new wiring picked out. The connection 
marked as 12v is for the 8 x AA battery box. The UBEC (bottom) has the in side coming from the 
battery and the motor board ground, with the 5V out side going through the diode into the Pico VSys 
pin. Also, note the wire from the battery output to VM – this is for the motor voltage on the motor 
board. Where the battery comes in, I suggest using a marker or label to show this since reconnecting 
this elsewhere can damage Pico or the UBEC.

These parts may be tricky to wire because one end of a UBEC typically has very thick wires, and the 
battery box wires tend to be multi-stranded and not suitable for breadboards. However, you have 
two options here:
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• Push sets of two male header pins into a breadboard and solder wires onto them. 

• For a tidier but more difficult option, you can crimp DuPont/Mini-PV male connectors onto 
the ends of the battery box and the input side of the UBEC. I recommend crimping these while 
following the guide at https://mschoeffler.com/2017/11/02/tutorial-how-to-
crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/.

The output side of the UBEC is typically female. Therefore, I used pre-cut jumper wires in the breadboard 
to connect the 5V and ground separately.

Important Note
The red rails of the breadboard are running the 3.3V power output from Pico. Therefore, do 
not connect the 5V output of the UBEC or 12V input power to this red rail!

Our robot has power circuits, which means it can power itself. In the next section, we will wire in 
the motors.

Wiring in the motors and encoders

The motors we chose use six wires for each motor. We need to be clear on what the connections from 
these mean. Based on the datasheet Adafruit provides for the TB6612FNG device, the following table 
will help you make these connections:

Motor pin Wire color Purpose
1 – M1 White Motor 1 – Motor power/control
2 – GND Blue Encoder ground
3 – C1 Green Encoder signal 1
4 – C2 Yellow Encoder signal 2
5 – VCC Black Encoder power – 3v3
6 – M2 Red Motor 2 – motor power/control

Table 4.2 – N20 motor with encoder connections

If you have purchased a different device, please use its datasheet instead.

The wire colors match the wired connectors that come with these motors. Plug those into the motors 
carefully, as shown here:

https://mschoeffler.com/2017/11/02/tutorial-how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/
https://mschoeffler.com/2017/11/02/tutorial-how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/
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Figure 4.14 – Plugging the motor cables in

The preceding figure shows me plugging the wires into their motor sockets. These wires come with a 
specific set of colors. Beware that the wire colors do not correspond to conventional black/red coloring 
here and that I have specified the colors in Table 4.2.

We can now proceed to wire this. Refer to Figure 4.11 for the overall circuit diagram. We’ve connected 
the motor power/control lines to the motor controller. We need to wire the motor controller to the 
motors, and the encoder signals to Raspberry Pi Pico. Note that the white and red cables – M1/M2 
on the motors – are plugged into the AO/BO points on the motor controller. Next, we must connect 
the yellow and green encoder cables to Raspberry Pi Pico.

The motor wires are just about stiff enough to go into a breadboard as-is; however, you will have far 
more robust connections if you also crimp these cables. I grouped them into three pairs for each motor:

• M1/M2 motor control pins

• The green/yellow encoder pins

• The blue/black encoder power pins

Pairing them makes it much easier to plug them into their intended location on the robot.

With that, we have made all the wiring connections for the first phase of this robot. In the next section, 
we will look at powering it up.
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Powering the robot up

The robot has the necessary connections for this stage. The following figure shows what they look like:

Figure 4.15 – The fully wired robot

The preceding figure shows the breadboard fully wired.

Now, check the wiring carefully, paying extra care to the power connections to look for potential short 
circuits in terms of any voltage to the ground or other voltage rail.

Place eight fresh AA batteries into the battery box and turn it on. You should see the light activate 
on Raspberry Pi Pico. If not, quickly switch it off and check the connections. If anything is warm, 
then this is usually a sign of a short circuit or incorrect connection. If nothing is warm, verify that 
the connections are not loose. 

If there are no loose connections, this is where I would recommend using a multimeter to check the 
wires – in continuity mode. I suggest the Adafruit guide at https://learn.adafruit.com/
multimeters, which explains how to use a multimeter. I would check any crimped wires, along 
with the voltages in and out of the UBEC.

If you find that a crimped wire is not conducting, I suggest replacing the crimp. A cheeky bit of solder 
in the crimp may do, but this can lead to a more fragile crimp later. You should be able to try and 
power the system up again.

At this point, you should be able to turn on the robot and see the LED light on Raspberry Pi Pico 
(and possibly the UBEC).

https://learn.adafruit.com/multimeters
https://learn.adafruit.com/multimeters
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Summary
With that, you have built your robot from the designs provided. You learned how to measure patterns 
from a CAD design onto plastic and then cut and drill them. In addition, you now have experience 
attaching motors, wheels, casters, and battery boxes to a robot.

You wired the robot while following the circuit diagram and suggested breadboard layouts to build. 
Then, you powered up the robot and performed some troubleshooting (if it did not light up).

However, the robot will not move yet, as we have not implemented any code. In the next chapter, we 
will add code so that we can move the robot and control its wheels. Then, we will learn how to use 
them to make turns and drive at different speeds.

Exercises
The following exercises will help improve your robot and help you practice your skills:

• This robot is quite flat. Consider how you might add other layers or add depth to it.

• The breadboard is currently not adhered to the robot; perhaps hook and loop disks could help?

• It is a good idea to get familiar with the robot’s wiring. Sketch a diagram for yourself showing 
the path between Raspberry Pi Pico and the motors.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• The Spruce Crafts has an in-depth guide to modeling with styrene at https://www.
thesprucecrafts.com/modeling-with-styrene-plastic-2382537.

• The Basics of Working with Styrene at https://www.youtube.com/
watch?v=p3gabIJ3Ono, by the Hawkins Screamer, also has great tips on building with styrene.

• KiCad Like a Pro, a Packt video course at https://www.packtpub.com/product/
kicad-like-a-pro-video/9781788629997, shows you how to design circuits like 
the one we created in this chapter.

• A good guide for crimping is https://mschoeffler.com/2017/11/02/tutorial-
how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-
pliers/.

• The following Adafruit Collin’s Lab crimping video may also be beneficial to you: https://
youtu.be/_zl28E2urEU.

https://www.thesprucecrafts.com/modeling-with-styrene-plastic-2382537
https://www.thesprucecrafts.com/modeling-with-styrene-plastic-2382537
https://www.youtube.com/watch?v=p3gabIJ3Ono
https://www.youtube.com/watch?v=p3gabIJ3Ono
https://www.packtpub.com/product/kicad-like-a-pro-video/9781788629997
https://www.packtpub.com/product/kicad-like-a-pro-video/9781788629997
https://mschoeffler.com/2017/11/02/tutorial-how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/
https://mschoeffler.com/2017/11/02/tutorial-how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/
https://mschoeffler.com/2017/11/02/tutorial-how-to-crimp-dupontmini-pv-connectors-engineer-pa-09-connector-pliers/
https://youtu.be/_zl28E2urEU
https://youtu.be/_zl28E2urEU


5
Driving Motors with  

Raspberry Pi Pico

Our robot is looking ready to run. The first real test of a robot chassis is getting its motors to drive. 
This chapter will bring the robot to life, testing the wiring and motors, using CircuitPython on 
Raspberry Pi Pico. We will start with simple tests for each motor and then use them together to make 
movements. Finally, we will learn more sophisticated code to control their speed and end the chapter 
by making a path.

In this chapter, we’re going to cover the following main topics:

• Driving forward and back

• Steering with two motors

• An introduction to PWM speed control

• Driving along a planned path

Technical requirements
For this chapter, you will need the following:

• First is the built robot, as made in the previous chapters

• 6 x fresh AA batteries

• A PC or laptop with a USB micro cable

• Mu software to write our code and upload it

• Clear floor space with a meter or so in each direction to test the robot

All code examples are on GitHub at https://github.com/PacktPublishing/Robotics-
at-Home-with-Raspberry-Pi-Pico/tree/main/ch-05.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-05
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-05
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Driving forward and back
Our motors are attached, and the robot is looking ready to power up. First, we’ll use CircuitPython 
to make test code to try each motor in turn. Then, when we have demonstrated the motors running, 
we’ll make simple code to drive the motors straight forward and then back.

Testing each motor with CircuitPython

We will start driving our robot by looking at how we connected our Raspberry Pi Pico to our motors 
in the following figure:

Figure 5.1 – Motor connections from Raspberry Pi Pico

Figure 5.1 shows a closer look at the robot motor connections. On the left is Raspberry Pi Pico with 
four connections to the motor controller. They are on GPIO 16, 17, 18, and 19. These connections 
result in the motor controller powering the motor via one of the motor wires. Testing each of the Pico 
pins should cause a motor to do something.

Let’s try this with some code, setting up one motor, and making it drive in a single direction. This 
example is called motors_test_1_pin.py:

import time

import board

import digitalio

motor_A1 = digitalio.DigitalInOut(board.GP17)

motor_A1.direction = digitalio.Direction.OUTPUT

motor_A1.value = True
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time.sleep(0.3)

motor_A1.value = False

This code looks very similar to the LED code from Chapter 2, Preparing Raspberry Pi Pico. We set 
board.GP17, connected to the AIN1 pin on the motor controller, to a digital output.

The code sets GP17 to True, turning it on, then waits for 0.3 seconds, and sets the motor pin to 
False to turn it off.

Type this code into Mu and save it to CIRCUITPY. For this test, prop the robot up so that the wheels 
do not contact anything. To start this file, create a code.py module too:

import motors_test_1_pin

If you recall from Chapter 2, Preparing Raspberry Pi Pico, Raspberry Pi Pico will run the content of 
code.py when the robot starts or when you change a file on CIRCUITPY. 

When you start this code, a motor moves for a short time and stops. The motor should run forward. 
If not, swap the motor output pins on this side. Repeat this exercise with GP18 and check whether 
the other motor runs forward too.

How do you test this?

For all the remaining examples in the chapter, use the following procedure:

1. On the Pico (the CIRCUITPY drive), ensure the code.py file is empty; otherwise, it will 
rerun the old program until you update it.

2. Write your program and save it on your computer. You don’t want to lose it!

3. Copy the program (and supporting files that have changed; we will be adding robot.py 
soon) onto the Pico.

4. Ensure the power switch is on and batteries are installed.

5. Have the robot propped up on something so that the wheels don’t contact anything.

6. Update code.py to import the name of your program without the .py extension.

7. The first test of the code is seeing it run this way.

8. To run it for real, disconnect the Pico and turn off the power.

9. Then, put the robot in a clear space (the carpet or floor) and power it on.

10. Be prepared to pick it up and turn it off if it does something unexpected – the robot can damage 
itself if it drives into an obstacle without stopping.

11. You can also press Ctrl + C from the REPL at any time to stop a program running.
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Troubleshooting

There are some ways this could go wrong. Let’s check a few here:

• If the import in code.py and your motors_test_1_pin filename do not match, you’ll 
likely get an error in the REPL and nothing will happen.

• If the robot’s UBEC is connected but the batteries are powered down, the robot may try to 
take too much power from the USB port. If you intend to test the motors, ensure the robot is 
powered on. If not, it may be good to disconnect the UBEC. 

• If nothing still happens, disconnect the robot, turn it off, and check the wiring thoroughly – 
there should be no hot parts in the robot.

Now that you know how to test your code and make a simple example work, you are ready for more 
complicated examples.

Testing multiple pins

Let’s extend this code to test all the motor pins in motors_test_all_pins.py:

import time

import board

import digitalio

motor_A1 = digitalio.DigitalInOut(board.GP17)

motor_A2 = digitalio.DigitalInOut(board.GP16)

motor_B1 = digitalio.DigitalInOut(board.GP18)

motor_B2 = digitalio.DigitalInOut(board.GP19)

motor_A1.direction = digitalio.Direction.OUTPUT

motor_A2.direction = digitalio.Direction.OUTPUT

motor_B1.direction = digitalio.Direction.OUTPUT

motor_B2.direction = digitalio.Direction.OUTPUT

motor_A1.value = True

time.sleep(0.3)

motor_A1.value = False

time.sleep(0.3)

motor_A2.value = True

time.sleep(0.3)
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motor_A2.value = False

time.sleep(0.3)

motor_B1.value = True

time.sleep(0.3)

motor_B1.value = False

time.sleep(0.3)

motor_B2.value = True

time.sleep(0.3)

motor_B2.value = False

This code extends the first code example to test all the motor pins. Update code.py to import this 
instead, and you should see each wheel turn one way and then the other. If you do not see movement 
like this, please turn off the power/disconnect the robot and go back to Chapter 4, Building a Robot 
around Pico, to carefully check the wiring.

We will use these motors a lot. To save us from copying all the setup code each time, we can put it in 
a new file called robot.py:

import board

import digitalio

motor_A1 = digitalio.DigitalInOut(board.GP17)

motor_A2 = digitalio.DigitalInOut(board.GP16)

motor_B1 = digitalio.DigitalInOut(board.GP18)

motor_B2 = digitalio.DigitalInOut(board.GP19)

motor_A1.direction = digitalio.Direction.OUTPUT

motor_A2.direction = digitalio.Direction.OUTPUT

motor_B1.direction = digitalio.Direction.OUTPUT

motor_B2.direction = digitalio.Direction.OUTPUT

Now, you won’t have to type that again. We can rewrite motors_test_1_pin.py:

import time

import robot

robot.motor_A1.value = True

time.sleep(0.3)

robot.motor_A1.value = False
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You can run this (remember to change code.py) and apply the same change to motors_test_
all_pins.py.

This code demonstrates that we can move the motors, but how do we use them together?

Driving wheels in a straight line

In terms of motor direction, each motor pin controls this. Look at the following diagram:

Figure 5.2 – Controlling motor direction

The preceding diagram shows a box representing the connection to the motor and its pins. Beside 
each is True or False, signifying the state of the controlling pin on a Raspberry Pi Pico. The arrows 
show the conventional current direction of power to the motor. With one pin high, current flows from 
this pin; if it is low, current flows back. When we set motor pins to opposite values, current will flow 
between the motor controller outputs and a motor turns. If the motor pins are both low, there is no 
current, and the motor is turned off and can coast. If they are both high, the motor will stop, like brakes. 

Important note
In electronics, we describe current in two ways. Conventional current describes electricity 
flowing from the positive terminal of a power source to the negative terminal. However, the 
actual physics shows that negatively charged electrons flow the other way. We will stick to using 
conventional current to avoid confusion.

We can put this to use driving in a straight line. When we drive both motors together, a robot drives 
in a line forward or back. For example, look at the following figure:
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Figure 5.3 – Driving in a straight line

Figure 5.3 shows a forward arrow from each wheel showing the motors are going forward. The combined 
wheel movement results in the robot driving forward – shown by the wide arrow in front of the robot.

The lines aren’t quite straight as motors are slightly different, and it goes off slightly; we call this veer. 
We’ll see how to correct this later in the book.

Let’s make code to drive forward – motors_forward.py:

import time

import robot

robot.motor_A1.value = True

robot.motor_B1.value = True

time.sleep(0.3)

robot.motor_A1.value = False

robot.motor_B1.value = False

This code sets both motors forward by enabling (setting to True) the A1 and B1 pins. It waits for 0.3 
seconds (300 ms) and then stops both motors. To drive for longer, you can increase the time. Using 
time to approximately control distance is not very accurate though.

Going backward means using the A2 and B2 pins instead (motors_backward.py):

import time

import robot

robot.motor_A2.value = True
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robot.motor_B2.value = True

time.sleep(0.3)

robot.motor_A2.value = False

robot.motor_B2.value = False

Other than changing the pins, this code is identical.

We can now drive forward and backward, but how do we make turns?

Steering with two motors
If we move one motor and not the other, the robot turns toward the wheel that isn’t moving. For 
example, look at the following diagram:

Figure 5.4 – Steering a robot with motors

Figure 5.4 shows two turning robots. There is a forward arrow above the left wheel in the first panel, 
showing the wheel is driving forward. The right wheel is stopped. A transparent arrow superimposed 
on this shows the turn direction and that this turn pivots on the right wheel. The right robot shows 
an opposite turn. A robot can turn backward in the same way by reversing a single motor instead.

As we will do more with motors, we’ll extend robot.py so that we can stop them all. Add this code 
at the end of robot.py: 

def stop():

    motor_A1.value = False

    motor_A2.value = False

    motor_B1.value = False

    motor_B2.value = False

Ensure you copy this new version onto the Pico.
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We can now use our turn principle in some code – motors_1_motor_turn.py:

import time

import robot

robot.motor_A1.value = True

time.sleep(0.3)

robot.stop()

This code example is very similar to the one-pin motor test. Only the stop() command is new. We 
roughly control the angle of turn by timing. It is tricky but possible to get 90-degree turns, but they 
won’t be exact. Using different pins, we can turn using the motor on the other side, or reverse the 
current motor using the same principle.

What about using two motors? If we drive one motor forward and the other back, we can make a 
faster tighter turn and spin on the spot. Look at the following figure:

Figure 5.5 – Spinning with two motors

Figure 5.5 shows the robot with an arrow going forward from one motor and back from the other. 
I’ve included a rotation arrow between the two wheels, showing the pivot for this turn. Let’s see this 
in code; I suggest calling it motors_2_motor_turn.py:

import time

import robot

robot.motor_A1.value = True

robot.motor_B2.value = True

time.sleep(0.3)

robot.stop()
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This code sets two pins high, A1 and B2 – you could say, diagonally opposite pairs. Driving A2 and 
B1 would spin the other way. Again, the timing controls the angle, and then we stop all the motors.

We can now move our motors, but they are on or off. However, we aren’t controlling the speed, and we 
seem to be able to do one motor turn or full spin – what about gentler sweeping turns? The following 
section will get into pulse width modulation and how this controls motor speeds.

An introduction to pulse width modulation speed control
Pulse Width Modulation (PWM) is how we control motor speeds from a digital control system. 
Instead of varying the voltage supplied to a motor, we use pulses to control it. The pulses are usually 
at a fixed rate, but the ratio of time-on to time-off changes. We call this the duty cycle. Controlling 
how much time per cycle the signal is on versus off will control the power getting to a motor. If the 
pulse is on for longer, the motor will go faster. The motor will go slower if the pulse is on for less time. 
So, at 50% time-on, the motor will be about 50% of its maximum speed. 

The following diagram shows visual examples of this:

Figure 5.6 – PWM signals
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The preceding diagram shows graphs of PWM signals. The top is a signal for driving a motor at half 
speed. The pulses on and off time are the same. The X axis is the level, and the Y axis is for time, with 
a solid line for the PWM signal and a dashed line for the power going to the motor. This panel shows 
a signal at half speed, with the duty cycle on for half the cycle.

The second graph shows control signals, ranging from 0 to completely on. When there are no pulses, 
this is equivalent to 0. When it is entirely on with no break, this is equivalent to 100%.

PWM can be fine-grained, with the bottom graph showing a sine wave along with the equivalent 
PWM signal for this. However, it’s not smooth, as it can only change when there is a new pulse, and 
the levels also have a resolution.

Driving fast and slow

We can take advantage of this PWM system to drive the robot at different speeds. Let’s see how this 
works on a single wheel in motors_pwm_drive_slower.py:

import time

import board

import pwmio

A1_PWM = pwmio.PWMOut(board.GP17)

A1_PWM.duty_cycle = 2**16-1

time.sleep(0.3)

A1_PWM.duty_cycle = 2**15

time.sleep(0.3)

A1_PWM.duty_cycle = 0

In this example, we’ve gone back to setting up a pin from the board, but this time using pwmio.
PWMOut instead of DigitalIO. We are using the motor A1 pin.

We then set duty_cycle, the amount of on-time to its highest value. It is a 16-bit value, so we use 
2 to the power of 16 and subtract 1 – we don’t need to do this calculation ourselves and can let the 
computer do it. This value will cause the motor to drive, as before, at full speed.

The code sleeps and then sets the duty cycle to 2 to the power of 15, half of our previous value. The 
motor will go at 50% speed here.

We let it run for 0.3 seconds and then set the duty_cycle to 0, which will turn off the motor. You 
can experiment with different values, but you may find the motor stalls (doesn’t move) and beeps at 
values lower than half speed.
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Adjusting the robot library

We will need to apply changes to our robot library, where we set up motor pins as DigitalIO pins. 
We now need to use PWMOut to set the pins up. Here is a new robot.py:

import board

import pwmio

motor_A1 = pwmio.PWMOut(board.GP17)

motor_A2 = pwmio.PWMOut(board.GP16)

motor_B1 = pwmio.PWMOut(board.GP18)

motor_B2 = pwmio.PWMOut(board.GP19)

def stop():

    motor_A1.duty_cycle = 0

    motor_A2.duty_cycle = 0

    motor_B1.duty_cycle = 0

    motor_B2.duty_cycle = 0

This code swaps the Digital IO setup we used before and uses PWMOut instead. The stop 
function now sets the pins duty_cycle to zero to stop all motor pins.

We can now use this to demonstrate the robot moving in motors_convert_speed.py:

import time

import robot

max_speed = 2**16-1

robot.motor_A1.duty_cycle = int(0.8 * max_speed)

time.sleep(0.3)

robot.stop()

We use our refreshed robot class to set things up in this demonstration. First, we set a max_speed 
variable to hold the maximum value.

Having max_speed makes things more convenient, as we can then multiply it by a fraction between 
0 and 1 to get a duty cycle value – here, we set the motor to 80% speed for 0.3 seconds and stop. We 
must use the int() function to convert the result to an integer (whole number).
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We can move this multiplication up into the robot library. Add this code after the motor pins 
in robot.py:

max_speed = 2**16-1

right_motor = motor_A1, motor_A2

left_motor = motor_B1, motor_B2

First, there is max speed, as seen before, and then two variables to group our pins as respective motors. 
It means we can use pairs of pins, as shown next:

def set_speed(motor, speed):

    if speed < 0:

        direction = motor[1], motor[0]

        speed = -speed

    else:

        direction = motor

    speed = min(speed, 1) # limit to 1.0

    direction[0].duty_cycle = int(max_speed * speed)

    direction[1].duty_cycle = 0

This function will accept a motor (or pair of pins) as defined previously and then a speed between -1 
(going in reverse) and 1 (going forward). 

It checks whether the speed is negative and, if so, sets a direction variable with the motor pins 
swapped and makes the speed positive; otherwise, it just stores the current motor pins as a pair 
in direction.

The next line uses the min() function, which returns the minimum of two values. Putting in speed 
and 1 will limit the speed to no more than 1.0.

We then use the pins stored in the direction variable, setting the first pin’s duty_cycle to the 
converted speed and the other pin to 0.

We can add two more functions on robot.py to make this more convenient:

def set_left(speed):

    set_speed(left_motor, speed)

def set_right(speed):

    set_speed(right_motor, speed)

These wrap the set_speed function, and they can now be used in your code with calls such as 
robot.set_left(1.0) and robot.set_right(0.8).
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Let’s use these and try a few different speeds in motors_pwm_multispeed.py:

import time

import robot

try:

    for speed in range(5, 10):

        robot.set_left(speed/10)

        robot.set_right(speed/10)

        time.sleep(0.3)

finally:

    robot.stop()

The previous example uses a for loop, looping over the numbers 5 to 10. This means we get a speed 
variable in each loop. We divide this by 10, so we now get 0.5 to 1.0 and use the robot.set_... 
methods to set both motors to this speed. The program then sleeps for 0.3 seconds and loops to 
the next item.

It is wrapped in try…finally so that the program will always call robot.stop(), even if 
something fails in our loop; this ensures that the motors don’t keep driving.

The robot will start slowly and then speed up and stop when you run this example.

We can use the variable motor speeds to make gentle sweeping turns too. Let’s see how in the next section.

Turning while moving

We can make gentle, sweeping turns by sending different speeds to each motor using PWM. For 
example, look at the following figure:

Figure 5.7 – Robots making sweeping turns
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Figure 5.7 shows robots making gentle sweeping turns to the right and the left. The speed difference 
between the motor’s controls where the turn’s pivot is. The closer the speeds are, the wider the turn 
radius is. This is demonstrated in motors_pwm_gentle_turn.py:

import time

import robot

try:

    robot.set_left(1.0)

    robot.set_right(0.5)

    time.sleep(1)

finally:

    robot.stop()

This example uses the same try…finally construct as before. It sets the left motor to full speed 
and the right to half speed, making a wide arc to the right for half a second. The robot then stops.

We’ve now seen how to control a robot’s motor speeds with PWM and make different turns. Finally, we 
are ready to put some of this together to make the robot drive in a pre-determined path on the floor.

Driving along a planned path
We can use our straight-line driving motions and curved turns to make an almost square path on the 
floor. We can use the helper functions we’ve made to keep this short.

Putting line and turn moves together

We are going to put some of our learning together to make a simple square pattern, as the following 
diagram shows:

Figure 5.8 – Driving a square path
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The figure shows a square made up of four straight lines and four turns. These eight instructions are 
four repeating sets of a straight line and then a turn. We will have to adjust the timing of the turn to 
make it close to 90 degrees.

We start this code with some helpers for our motions – in pwm_drive_square.py:

import time

import robot

def straight(speed, duration):

    robot.set_left(speed)

    robot.set_right(speed)

    time.sleep(duration)

def left(speed, duration):

    robot.set_left(0)

    robot.set_right(speed)

    time.sleep(duration)

The straight() function just puts both motors going forward (or back) for the duration. The 
left() function stops one motor and drives the other at speed.

We can then use these in a main for loop to get the four turns:

try:

    for n in range(0, 4):

        straight(0.6, 1.0)

        left(0.6, 1.0)

finally:

    robot.stop()

Our loop counts four times using the range() function. We then use the straight and left 
functions with speed and duration.

Note that the performance of this will vary greatly, depending on how fresh the batteries are and which 
surface you drive on – friction will slow motors down. You will likely need to adjust the relative times 
of the straight and left function uses to try and get a square.
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The flaw with driving this way

You’ll notice that the path we planned is not quite the plan we got. Even after some time adjusting it, 
you probably got a path like the following:

Figure 5.9 – What your path might look like

Figure 5.9 shows an exaggerated version of what you may have got. Even after much tweaking, the 
robot may have made turns slightly above or below 90 degrees. The robot may also have veered slightly 
while making the straight lines. In the next chapter, we will pick up our first sensor, the encoders, 
which can be used for more accurate turning and to correct for veer.

The moment you change surfaces or the batteries degrade, the robot will go off course further. Drawing 
a path like this is a start, but later in the book, we’ll see how to use sensors to improve the accuracy 
of such motion.
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Summary
In this chapter, we learned how a controller such as Raspberry Pi Pico uses a motor controller to drive 
motors. We saw how to control motor directions to drive in a straight(ish) line or make a robot turn.

We then learned about PWM control and how to vary motor speeds, creating a handy robot Python 
library for our robot in the process. Next, we used this to make sweeping curves and build a multi-step 
path example with our robot. This path code did, however, show up some accuracy shortcomings.

We have used time to estimate how much we move our motors. However, motors don’t start immediately, 
and they can sometimes stick. In addition, some motors are slower than others. Therefore, we are 
working only with approximates. In the next chapter, we will look at how to measure how much the 
motors have turned to get a more accurate estimation of the robot’s movement.

Exercises
Now you’ve had a taste of driving the robot motors, perhaps you can practice your skills with the 
following challenges:

• Can you make other shapes with this method, such as a triangle, or, by using gentle turns, 
drive in a circle?

• What is the lowest PWM value before the robot stalls on two motors?

• Does the preceding value change on one motor?

• How does the robot’s driving behave on a different surface, such as carpet or wood?

Further reading
These additional resources will help you learn more about the concepts covered in this chapter:

• A great YouTube video by Afrotechmods shows more about PWM: https://www.youtube.
com/watch?v=YmPziPfaByw.

• Sparkfun has an explanation of PWM at https://learn.sparkfun.com/tutorials/
pulse-width-modulation/all where, in addition to its use of motors and servo motors, 
it shows how you can use the technique to control LED brightness.

• Adafruit, the team that created CircuitPython, has a PWM programming tutorial at https://
learn.adafruit.com/circuitpython-essentials/circuitpython-pwm.

• My book Learn Robotics Programming, Second Edition, also published by Packt, has a chapter 
covering motor steering mechanisms, including the one seen here, with Python code for 
Raspberry Pi.

https://www.youtube.com/watch?v=YmPziPfaByw
https://www.youtube.com/watch?v=YmPziPfaByw
https://learn.sparkfun.com/tutorials/pulse-width-modulation/all
https://learn.sparkfun.com/tutorials/pulse-width-modulation/all
https://learn.adafruit.com/circuitpython-essentials/circuitpython-pwm
https://learn.adafruit.com/circuitpython-essentials/circuitpython-pwm


Part 2: Interfacing  
Raspberry Pi Pico with  

Simple Sensors and Outputs

In this part, we will build upon the basic Raspberry Pi Pico knowledge, adding more complicated 
devices and code to interface them. We will see how sensors can interface our robot more with the 
real world. We will add Bluetooth LE to link with a computer.

This part contains the following chapters:

• Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico

• Chapter 7, Planning and Shopping for More Devices

• Chapter 8, Sensing Distances to Detect Objects with Pico

• Chapter 9, Teleoperating a Raspberry Pi Pico Robot with Bluetooth LE





6
Measuring Movement with 

Encoders on Raspberry Pi Pico

Robots don’t just run code blindly; they need sensors. What sensors do we add first? Our robot already 
has some sensors on board, and in this chapter, we’ll see how to use them.

We finished the previous chapter noticing that timing isn’t the most accurate way to determine robot 
movement. So, let’s see how our first sensor, encoders, can improve this. Encoders are the first step in 
getting accurate movement and location estimation in robots. We will also learn one of Raspberry Pi 
Pico’s excellent features – Programmable IO (PIO).

We’ll dig into movement fundamentals, odometry and encoding, look at Raspberry Pi Pico PIO in 
CircuitPython, and use this to get data from the encoders on our robot.

In this chapter, we’re going to cover the following main topics:

• About encoders and odometry

• Wiring in encoders on a Raspberry Pi Pico robot

• Programming Raspberry Pi Pico PIO

• Measuring encoder count for movement

Technical requirements
For this chapter, you will need the following:

• First is the built robot, as made in the previous chapters

• 6 x fresh AA batteries

• A PC or laptop with a USB micro cable
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• Mu software to write our code and upload it

• Clear floor space with a meter or so in each direction to test the robot

All code examples are on GitHub at https://github.com/PacktPublishing/Robotics-
at-Home-with-Raspberry-Pi-Pico/tree/main/ch-06.

About encoders and odometry
Odometry is measuring how a position has changed over time. We can combine measuring and 
estimation to determine where you are on a route. An encoder is a sensor designed to measure 
distance traveled via wheel turns. They are like tachometers, but encoders measure position whereas 
tachometers measure only speed. Combined with time, they can make a speed measurement too.

Absolute and relative sensing

Sensors for a robot’s location come in two primary forms. They are as follows:

• Absolute sensors encode a position to a repeatable position. They have a limited range or 
resolution, such as encoding a position along a known line. For example, GPS sensors have 
exact positioning with low resolution, suitable for meters but not millimeters.

• Relative sensors tend to be cheaper. However, they produce a relative change in position, 
which needs to be combined with the previous state to get an absolute estimate – this means 
that errors can accumulate. Relative encoders are one example of relative sensors, also known 
as incremental encoders.

If a sensor tells you where something is at, it is absolute. It is relative if it tells you how much something 
has moved by.

Types of encoders

Most encoder designs work by passing markers or code over a sensor that counts or decodes the pulses.

Encoders come in a few forms. Some example types are as follows:

• A potentiometer or variable resistor can sense an absolute encoder position by measuring 
resistance. Servo motors use them. However, potentiometers are not suitable for continuous 
rotations such as wheels, as their track lengths limit them. In addition, regular movement wears 
them down, as they move contacts across each other.

• Mechanical encoders pass electrical contacts over each other, producing on and off pulses. 
They are subject to heavy wear, so I do not recommend them.
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• Optical encoders shine a light through a disk or strip with slots and detect the passing of slots 
in front of light sensors. They can come in absolute and relative flavors. They can be susceptible 
to interference from light sources or just dirt.

• Magnetic encoders detect the movements of magnets in a disc using hall-effect sensors. Dirt, 
light interference, and physical wear do not affect them so much. Hall-effect sensors produce a 
voltage depending on a magnetic field – encoder modules produce pulses from this.

The motors we chose came with rotary magnetic encoders in a convenient and small format as part 
of the package. They are incremental encoders.

Encoder pulse data

We can better understand encoders by looking at the pulses they output. Relative encoders usually 
output digital pulse chains, 1s and 0s. The simplest form is just to count pulse edges by detecting marks 
passing a sensor, as the following diagram shows:

Figure 6.1 – Simple pulse encoding

On the left of Figure 6.1 is a disk with a rotation arrow. On the disk are four white marks – representing 
the markers passing a sensor. The black rectangular object is the sensor that detects the markers. The 
sensor produces a value of 0 when it isn’t detecting a marker and 1 when it is – making a bunch of 
pulses or a stream of binary bits with values of 1 or 0.

We can count the pulses to get an idea of far the wheel has turned. We count a high pulse as 1 and 
a low pulse as 0. We can also count edges, the changes from 0 to 1 and 1 to 0. Counting edges gives 
us eight steps per wheel turn. The graph to the right of the following diagram shows these pulses.

We are likely to want to increase that sensitivity and detect which direction a wheel is going. To do 
that, we add a second sensor to the same wheel, as the following diagram shows:
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Figure 6.2 – Quadrature pulse encoding

Figure 6.2 adds a second sensor to catch the markers at a slightly different time from the first, generating 
pulses out of phase; this means we have two streams of pulses.

At the top right is the pulse graph for the first sensor, with the digits we had read from times between 
the pulses added, showing a pulse train of 16 bits for the same period.

The middle graph shows the additional sensor, with the out-of-phase 16-digit pulse train. Below the 
graphs are the two states combined at each point in time as Gray code, with 2 bits of information 
on where we are relative to the last position. We have twice as many edges, increasing the sensor 
resolution and also encoding the wheel’s direction. If we reverse the wheel, this sequence will reverse. 
This system is known as quadrature encoding.

Let’s look at the encoders on our robot in the next section.

Wiring in encoders on a Raspberry Pi Pico robot
Our robot has already got encoders on board, and we have already wired them in. We can take a 
closer look at the motors and how they are wired into Raspberry Pi Pico GPIO pins to understand 
the robot better.

Examining the motors

We use N20 geared motors with encoders. The following diagram labels the motor parts:
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Figure 6.3 – The N20 motor parts

Figure 6.3 shows a drawing of the motors we have used. Marked on it are essential features that affect 
how we use the encoders. On the left is a magnetic disk with markers in it. This disk is attached to 
the motor’s driveshaft and sensed by the encoder sensor board. On the right are the gearbox and the 
motor output shaft.

The driveshaft goes through the gearbox, so the output shaft will not make the same number of 
rotations as the disk – the gear ratio will determine this relationship. So one revolution of the output 
wheel could count many pulses; this gives us high resolution. 

Consult the datasheet for the motors. Some Chinese characters are likely, but important numbers are 
usually in English. You may need translation services built into web search engines here. The datasheet 
and product page have two important numbers, the number of encoder counts per disk revolution 
and the gear ratio. The datasheet may note counts per disk revolution as pole count.

In my case, the gear ratio is 298:1, and the pole count is 14. Interpreting these facts means I get 298 
turns of my encoder wheel per output wheel revolution. Each encoder turn produces 14 poles on 
each sensor (two sensors), so we get 28 edges. Multiplying the number of sensor pulses by the gear 
ratio gives 8344 edges per turn.

Examining the wiring

We saw the wiring for our robot in Figure 4.20 of Chapter 4, Building a Robot around Pico. However, 
to better illustrate the encoder connections, here is a diagram focusing only on the wiring of encoders 
to Pico:



Measuring Movement with Encoders on Raspberry Pi Pico126

Figure 6.4 – Encoders wired to Raspberry Pi Pico

The preceding figure takes a closer look at data connections for a robot encoder connection schematic. 
On the left is Raspberry Pi Pico; this has four connections from the encoders. These are on GPIO 20, 
21, 26, and 27. Each of these can be set as input pins to read the state of the encoder pins. 

If we were just reading encoders alone, we could write code to check each pin in sequence. However, 
doing this may tie things up. What if we could get components of the Pico to monitor these pins and 
pulse chains for us so that we could just read a counter for them when we need it?

Programming Raspberry Pi Pico PIO
We saw the PIO system back in Chapter 1. We could read encoders in Python on the Pico central 
cores; however, we can make monitoring the encoders the responsibility of PIO, letting those central 
cores do other things. The PIO system can read and decode the Gray code emitted by the encoders. 
This section will show how to program PIO in assembler and load the programs with CircuitPython.

Introduction to PIO programming

As we saw in Chapter 1, Pico has two PIO devices, each with four state machines. We program PIO in 
assembly language. Instructions command PIO to perform operations such as manipulating IO pins, 
registers, and first in first out (FIFO) queues. The following diagram is a simplified representation 
of a state machine:
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Figure 6.5 – The Raspberry Pi Pico PIO state machines

The preceding diagram shows Raspberry Pi Pico PIO state machines, highlighting registers and other 
features. It shows the two PIO devices and the state machines in them.

A register is like a variable; they have fixed names, and there are only a few per core. PIO registers 
are 32-bit and specific to each state machine. We use an essential subset: input shift register (ISR), 
output shift register (OSR), and X and Y (scratch registers). They can store a number or a binary 
pattern. It is common to refer to 32 bits as words.

Each state machine runs the program independently, so the same code runs four times, with independent 
registers. In addition, mappings (shown as dashed lines) connect state machines to IO pins – the tiny 
rectangles. Code can configure which state machines use which pins and a single state machine can 
read/write from many pins.

State machines also have FIFO queues. Data put into a FIFO queue comes out in the same order. 
Each can hold 4 x 32-bit words. These let PIO transmit (TX) data from or receive (RX) data to other 
devices within the rest of Pico. We can configure FIFO queues in many ways. For this chapter, we will 
use the RX FIFO queue to receive data from PIO to our code.

Each PIO block can run an independent program with 32 instructions – each roughly, but not quite, 
a line of code. But how do we write and use these programs?
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Introducing PIOASM

In CircuitPython, we assemble the PIO code using the Adafruit CircuitPython PIOASM library. This 
runs on Pico, taking the assembly code in a string and outputting a sequence of bytes with the code in it.

We need to put this PIOASM library onto Raspberry Pi Pico:

1. First, find the CIRCUITPY volume on your computer.

2. From the Adafruit CircuitPython library (as discussed in Chapter 2), copy lib/adafruit_
pioasm.mpy into the lib folder on CIRCUITPY.

With that in place, we can write our first PIO-based program. Here’s pio_led_test.py:

import time

import board

import rp2pio

import adafruit_pioasm

The first four lines are imports. You’ve seen time and board before. The rp2pio library lets us 
communicate with the PIO blocks and start code and interact with state machines. The adafruit_
pioasm library turns assembly code into bytes that PIO state machines can run. Now, let’s get into 
the assembly code:

led_flash = """

    pull

    out pins, 1

"""

The preceding code puts some PIO assembly into the led_flash string. Triple quotes in Python 
declare a long multi-line string. 

The assembly code starts with the pull instruction; this gets a word from the TX FIFO queue 
(removing it) and stores it in the OSR. The out pins, 1 instruction puts 1 bit of data from the 
OSR onto the configured pins – setting the state of a single pin. The code wraps around to run at the 
first instruction in a loop. We need to assemble this code:

assembled = adafruit_pioasm.assemble(led_flash)

The adafruit_pioasm.assemble function generates bytecode, which we store in the assembled 
variable. We can run this:

sm = rp2pio.StateMachine(

    assembled,
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    frequency=2000,

    first_out_pin=board.LED,

)

rp2pio.StateMachine requests a state machine to run this code, telling it how fast to run and 
which output pin to map to – in this case, board.LED. Our code will be running on the PIO, but 
we have no data in the FIFO queue, so it will be waiting for us to write something to it.

We can write data with a loop in this program:

while True:

    sm.write(bytes([1]))

    time.sleep(0.5)

    sm.write(bytes([0]))

    time.sleep(0.5)

This loop writes 1s and 0s to the state machine (in the sm variable). It must wrap the data as a list 
since a FIFO queue can store more than one data element as a bytes type.

Send this to Raspberry Pi Pico, and the LED will flash. Let's ensure this works.

Troubleshooting PIO code

Writing assembler code is somewhat tricky the first time – these tips can help you get moving:

• This code uses the Python triple quote, """, for a multi-line string. Ensure you have three 
quotes at both ends of the assembly section, or you will see errors.

• If Pico cannot load adafruit_pioasm, ensure you have followed the setup steps to copy 
the mpy file into the lib folder on Pico.

• Note that there must be two close brackets after the sm.write statements.

• If Pico is not running your code, remember to import your code in the code.py file.

These tips should get you up and running.

Now we have our first PIO code, we can try reading data back from an I/O pin.

Detecting input with PIO
Fetching input from PIO is as simple as getting a pin state into a register and pushing that onto the 
RX FIFO queue for the Python code to pick up. Create a file called pio_read_1_pin.py. We will 
add one more import to read PIO data:

import board

import time 
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import rp2pio

import adafruit_pioasm

import array

The assembly section looks like this:

pio_input = """

.program pio_input

    in pins, 1      ; read in pin (into ISR)

    push noblock    ; put this into input FIFO

"""

assembled = adafruit_pioasm.assemble(pio_input)

sm = rp2pio.StateMachine(

    assembled,

    frequency=2000,

    first_in_pin=board.GP20

)

The in pins, 1 instruction will read 1 bit of data from 1 input pin and store this in the ISR. 
Following this is a comment starting with a ; character that is for humans to read. The spaces are 
optional and are there to aid readability by aligning the comments. You can also add a .program 
line – effectively another comment.

The next instruction is push noblock, which will take the ISR register and push it as a word onto 
the RX FIFO queue. noblock ensures it will not wait for the FIFO queue to be empty – note that 
data is not written to the FIFO queue if it is full.

We then assemble this code and load it into a state machine, passing first_in_pin to map one 
of our encoder pins as input. Next, we need a buffer to read our FIFO queue data where the Python 
code can use it:

buffer = array.array('I', [0])

The array type makes fixed-size data structures in memory. It specifies an unsigned 32-bit integer 
with 'I'. We size it as 1 element and initialize it as 0.

The main loop reads data into the buffer and prints it:

while True:

    sm.readinto(buffer)
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    print(f"{buffer[0]:032b}")

    time.sleep(0.1)

The sm.readinto Python function pulls data from a FIFO queue into a waiting buffer. It will wait 
if there is no new data to fetch. 

We then use a fancy print to output our data. Python f-strings (prefixed with an f) let you use a variable 
in the string – in this case, extracting the only element of buffer. The :032b format specifier tells 
Python to format the data as 32-digit binary, with the empty digits in front filled with 0s.

When you run this, you will see a repeating output with one of two states:

• 10000000000000000000000000000000, showing the encoder pin is high

• 00000000000000000000000000000000, showing the encoder pin is low

Turn the wheels on the robot slowly. One of them will make the pin change states. It may be surprising 
that the 1 bit is at the start of the data (and would be there in the ISR before we sent it).

We can extend this code to work with two pins easily. Copy this to pio_read_2_pins.py and 
make the following modification:

pio_input = """

.program pio_input

    in pins, 2      ; read in two pins (into ISR)

    push noblock    ; put ISR into input FIFO

"""

The other code remains the same, except that when we run it to turn the wheel slowly, the output will 
now show 2 bits from the encoder, in the following four states:

11000000000000000000000000000000

01000000000000000000000000000000 

10000000000000000000000000000000 

00000000000000000000000000000000 

These are the bits of the quadrature encoding discussed previously! 

Troubleshooting

This section is the first time we have tried to get information from the encoders, and issues may occur. 
Try these steps:

1. If the data values are not changing, check the wiring carefully.

2. If only 1 bit is changing, 1 encoder wire may be incorrect.
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We have data, but the PIO can work harder to decode this and count it for us. Next, let's look at these 
PIO instructions and how they interact with registers.

PIO instructions and registers

Understanding how registers are changed and manipulated by PIO instructions is crucial to writing 
and understanding PIO code. The PIO has nine instruction types; however, they have several modes, 
making their use nuanced and complex. Chapter 3 of the RP2040 datasheet from Raspberry Pi serves 
as a comprehensive reference. We can get familiar with a few more here.

Debugging a register

This next example shows how to store a value in a register and surface it to code for printing. We keep 
the imports as before. Call this file pio_debugging_registers.py:

program = """

    set y, 21 

    mov isr, y 

    push noblock 

"""

assembled = adafruit_pioasm.assemble(program)

This code uses the set instruction, which can put any value less than 32 (5 bits) into a register. In 
the example, we store it in the y register.

The following line is mov isr, y, which copies the right (y) register data into the ISR. We must 
store a value in the ISR to use it in a push statement, putting it into a FIFO queue.

We assemble this and send it to the state machine:

sm = rp2pio.StateMachine(assembled, frequency=2000)

We can then pull this data from the FIFO queue and examine the content as decimal and binary:

buffer = array.array('I', [0])

sm.readinto(buffer)

print("{0} 0b{0:032b}".format(buffer[0]))
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This code will run and simply pass the number 21 through the system. Because I know the value is 
low, I have formatted it with 32 leading 0s. Therefore, the output should look like this:

code.py output:

21 0b00000000000000000000000000010101

Code done running.

This feature is handy, and we can use this code with different assemblers as a template to test out PIO 
assembly techniques. We can start by looking at manipulating bits in registers.

Bit manipulations

When dealing with registers, we may want to manipulate their content. For example, we may want 
to move bits around, shift them, reverse their order, or flip them wholesale. The following diagram 
shows these operations:

Figure 6.6 – PIO bit operations

Figure 6.6 shows these frequent operations pictorially. The tables show the state of registers as bits, 
with the register name on the left. The diagram shows assembler instructions with their effect on the 
bits highlighted.
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We have already talked a lot about bit shifting into the ISR. When we use the in instruction, it makes 
space for the number of bits to shift in, discarding bits at the end. It then copies the new bits into 
the space. Code can alter this shift direction with StateMachine parameters, but the operation is 
essentially the same. The example for shifting uses in to read the C1 and C2 pins from our encoder. 
However, as well as pins, the source can be other registers or null to copy in zeros. This operation 
does not alter the source.

We can reverse the content of a register using the :: operation in mov; this can be useful to get to 
bits at the other end. The following assembler demonstrates this:

    set y, 21

    mov isr, :: y

    push noblock

You can use this example in the same Python code shown in the preceding debug registers example. 
Note that we reverse the y register right into the ISR. As the code gets more complicated, combining 
operations like this will be critical, as with only 32 instructions, every instruction counts! The output 
of that code looks like this:

2818572288 0b10101000000000000000000000000000

Inverting a register is a bitwise not operation. It replaces every bit with its logical opposite – 1s 
become 0s and 0s become 1s. If we represent signed numbers with our 32-bit words, this will make 
them negative. Try this assembler code: 

    set y, 21 

    mov isr, ~ y 

    push noblock

This code is exactly like the preceding example, producing the inverted result:

4294967274 0b11111111111111111111111111101010

We can modify our buffer to see how a value becomes negative too. Change the array format to a 
lowercase i:

buffer = array.array('i', [0])

When running this, we can see what the output is like:

-22 0b-0000000000000000000000000010110

The binary makes less sense, but we can see that the decimal number is the negative plus one. Inverting 
again gets back to the original number.
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Extracting the value of a single bit

One more thing to do is to combine operations so that we can extract a specific bit using a couple of 
bit shifts. The following diagram shows the operation:

Figure 6.7 – Extracting a bit

Let us imagine our value starts in x; I’ve shaded the bit we want darker than the rest. The assembly 
snippet for this is the following:

  in x, 30

  in null, 31

The first instruction shifts the bits up to the one we want into the ISR. The diagram shows that the bit 
we want is now leftmost in the ISR. However, as we do not want anything to the right of this bit, we 
use the in instruction to shift in 31 zeros from null. This shift pushes all the other bits away – so 
we have only 0s and the bit we want. 

We’ll put this to real use with the OSR instead. Put the following code in extract_a_bit.py. We 
start with imports and a variable to tweak the behavior:

import rp2pio

import adafruit_pioasm

import array

bit_to_extract = 30

Remember that we store the assembler code in a Python string, so we can perform Python string 
formatting on it with an f-string:

program = f"""

    pull block

    in osr, {bit_to_extract}

    in null, 31
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    push noblock

"""

Since we cannot use the set instruction with values higher than 5 bits, we start by pulling data to 
read, which goes into the OSR. 

We then use in to shift the bits up to the bit we want to extract, using the f-string to substitute the 
variable here. The bit to extract must be 32 or less. The result is in the ISR. We perform a further in 
operation from null, using 0s to drop all but the bit we wanted. Since this result is already on the 
ISR, we can use push to send it to the FIFO queue.

The remaining code handles assembling this, sending the data, and printing the result:

assembled = adafruit_pioasm.assemble(program)

sm = rp2pio.StateMachine(assembled, frequency=2000)

sm.write(array.array('I',

  [0b01101000_00000000_00000000_00000000]))

buffer = array.array('I', [0])

sm.readinto(buffer)

print("{0} 0b{0:032b}".format(buffer[0]))

The result from running this should be the following:

1 0b00000000000000000000000000000001

If we want to use this data for conditional logic, we could use the jmp instruction, requiring us to use 
the mov instruction to move the data into x or y scratch registers.

Making a counter with PIO

Counting requires us to be able to add or subtract from a register. We’ll start with counting down, 
as that is easier. 

At first glance, the datasheet shows no arithmetic instructions in the PIO instruction set. So how do 
we add or subtract? Although we have not used it yet, the jmp instruction in PIO assembler usually 
jumps to a label somewhere else in our assembler instructions. However, it has a trick – it can subtract 
from a scratch register. We can exploit this side effect to perform simple arithmetic for us. Using pio_
debugging_registers.py as a template, try switching out the assembler for the following code:

    set y, 21

    jmp y--, fake
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fake:

    mov isr, y

    push noblock

I put this with the template in pio_counting_down.py. 

Sending it to Pico and running it gives the following output:

20 0b00010100

Hurrah – we can subtract! We have used a fake: label for the subtraction because we don’t want to 
jump anywhere, just perform the arithmetic.

What about adding? This is trickier, but if you recall the bit invert, the number flipped from positive 
to negative. We can exploit this by subtracting 1 and flipping it again.

Use this assembler (in pio_counting_up.py):

    set y, 21

    mov y, ~ y

    jmp y--, fake

fake:

    mov isr, ~ y

    push noblock

We still have our fake label, but we flip the y value into itself first and then flip it again when putting 
it into the ISR. The output of running this is as follows:

22 0b00010110

You have seen techniques for working with the PIO, how to read data from pins, extract information 
from it, and perform arithmetic. We have building blocks. The following section will see us use them 
to decode information from the encoder pins into a counter.

Measuring encoder count for movement
We know what sequences to expect for our encoder, and we have a working knowledge of PIO 
assembler. So, we can bring these together to create the counter. We’ll start simple though; let’s see 
how to detect when a system has changed.
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Making a simple PIO change detection loop

As we saw in the read two pins example, when we output the system’s state in a tight loop, it floods 
off anything interesting. We are interested in state changes, a step toward the full decoder. In the 
pio_one_encoder_when_changed.py file, we go straight from imports into the assembler:

import board

import rp2pio

import adafruit_pioasm

import array

We start by clearing y –; we are going to use y to store a pin value for comparison:

program = """

    set y, 0

The following code creates a read label; we can loop to this point to get new pin readings. It stores 
the old y in x so that we can get a new value. Shifting in null, 32 will fill the ISR with zeros, 
clearing it. We can then get two pins in the ISR:

read:

    mov x, y 

    in null, 32 

    in pins, 2

We want to compare our new value in the ISR with our old value, now in x. However, jmp cannot 
use the ISR for comparisons, so we first copy the ISR into y.

    mov y, isr

    jmp x!=y different

    jmp read

As the code shows, we can now use jmp x!=y to jump somewhere else when the register values are 
different – to a label named different. If we do not find them different, we loop back to read to 
try a fresh sample from the pins with the unconditional jmp.

Let's see the code in the different label:

different:

    push noblock

    jmp read

"""



Measuring encoder count for movement 139

Although we copied the ISR to y, it is still in the ISR so that we can push this value, the new changed 
value, out to the Python code and then jump back around to read it again. So, the total effect is that 
it will spin reading values and, if they are different, push them to the Python code and then go back 
to spinning in the read loop.

Let us continue the Python code:

assembled = adafruit_pioasm.assemble(program)

sm = rp2pio.StateMachine(

    assembled,

    frequency=20000,

    first_in_pin=board.GP20,

    in_pin_count=2

)

buffer = array.array('I', [0])

while True:

    sm.readinto(buffer)

    print("{:032b}".format(buffer[0]))

The last half assembles our code and creates a state machine with it, using a higher frequency. It sets 
the state machine to use GP20 as the first input pin. Then, it uses in_pin_count to set a range of 
two input pins, matching one of the encoders. It then reads data into a buffer and prints it in a loop. 
The sm.readinto method waits until there is data, so the Python code only prints when there is 
a change. Try rotating the wheels slowly, and you should see the output change:

00000000000000000000000000000000

01000000000000000000000000000000

11000000000000000000000000000000

10000000000000000000000000000000

00000000000000000000000000000000

01000000000000000000000000000000

11000000000000000000000000000000

10000000000000000000000000000000

00000000000000000000000000000000

We can see the encoder output, and only when it changes. We could just count the changes, but our 
system should count in different directions depending on the wheel movement. Let's write code to 
check this.
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Making a bidirectional counter with PIO

We can detect when our sensor is in a new state and store that in y, with an old state in x for comparison. 
We also need to store a counter, and since we aren’t using it, the OSR will suffice. We’ll jump right into 
the assembler, since the imports don’t change:

program = """

    set y, 0            ; clear y

    mov osr, y          ; and clear osr

read:

    mov x, y

    in null, 32

    in pins, 2

    mov y, isr

    jmp x!=y, different

    jmp read

As you can see, beyond setting up the OSR, this starts the same as the previous example. However, 
where things are different, we need to be more innovative. Comparing the 2 bits with the previous 2 
bits is tricky in assembler, and we have a 32-instruction limit. What we are trying to evaluate is the 
sequences in the following diagram:

Figure 6.8 – Quadrature encoding sequence

Figure 6.8 shows the sequence for encoder signals. Each pair of numbers shows the sensor states. A 
jump from 00 to 10 suggests the encoder is going clockwise, and from 00 to 01 is anticlockwise; we 
can follow the sequence around in either direction.

We can evaluate an old reading and a new reading with the following conditions:

• If the first bit of the old reading is 0

 � And the current second bit is 1

 � Then it is going anticlockwise
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 � Else, the current second bit is 0

 � It is going clockwise

• If the first bit of the old reading is 1

 � And the current second bit is 1

 � It is going clockwise

 � Else, the current second bit is 0

 � It is going anticlockwise

This logic can boil down to a few instructions in the assembler. First, we can isolate the bit we want 
in the x register (the old reading) and compare that to zero, jumping on the result:

different:

    in x, 31

    in null, 31

    mov x, isr

    jmp !x, c1_old_zero

Note that this uses the preceding bit extraction method; bit 31 would be the first pin (C1) read in. 
We now have the old C1 value in x, padded with 0s. If the x register is zero, the jmp !x instruction 
will jump to the c1_old_zero label. Otherwise, it will fall through.

For clarity, we will start the fall-through section with the c1_old_non_zero label; this is just a 
comment, though:

c1_old_not_zero:

 jmp pin, count_up

 jmp count_down

At this point, we test a pin. We’ll see later that we can set jmp_pin when creating the state machine, 
and we’ll set it to the C2 pin for an encoder, so this will have the current second pin in it. The jmp 
pin, count_up instruction will jump to the count_up label if the current state of the pin is 1. 
Otherwise, we unconditionally jump to count_down.

The code for when C1 is zero is the opposite:

c1_old_zero:

 jmp pin, count_down

 ; fall through
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However, I am being sneaky – instead of the unconditional jump, the next code section will be 
count_up, so we can skip it and save an instruction. count_up is adding 1, as we’ve seen before, 
with the twist that the original value is on the OSR:

count_up:

    mov x, ~ osr 

    jmp x--, fake

fake:

    mov x, ~ x

    jmp send

We invert the OSR into x, use jmp to jump to a fake label, subtract 1 from x, and then invert x back. 
Finally, this code jumps to send the data, with the new count now in x. 

count_down is a little simpler:

count_down:

    mov x, osr 

    jmp x--, send

This code puts the OSR in x and subtracts 1 from it, jumping directly to send. Regardless of the value 
of x, the send part labels the next instruction anyway.

The send part is just pushing this all back and storing the new value back in the OSR:

send:

    mov isr, x 

    push noblock 

    mov osr, x 

    jmp read

"""

The final instruction loops back to read to recheck the sensor. There is a wrap directive in other PIO 
dialects that would save an instruction here; however, CircuitPython PIOASM does not implement 
this at the time of writing.

That was a lot of assembler language. This example is in the chapter repo as pio_encoder_
counting.py.
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We need a little more Python code to assemble the instructions, run it, and get the data:

assembled = adafruit_pioasm.assemble(program)

left_enc = rp2pio.StateMachine(

    assembled,

    frequency=0,

    first_in_pin=board.GP20,

    jmp_pin=board.GP21,

    in_pin_count=2

)

right_enc = rp2pio.StateMachine(

    assembled,

    frequency=0,

    first_in_pin=board.GP26,

    jmp_pin=board.GP27,

    in_pin_count=2

)

Here, we create two state machines from the same code! We pass C1 to the state machine as the first 
input pin, and C2 to the state machine as jmp_pin, for each encoder based on Figure 6.4. We have 
also set frequency=0, which tells the state machine to go at full speed.

We can still use one buffer to read the two state machines alternately. However, this buffer needs to 
be type i (lowercase) to use signed numbers and count negatively. We also will make two variables 
to hold the left and right wheel states:

buffer = array.array('i', [0])

left_data = 0

right_data = 0

In our main loop, we can start with the left sensor, check whether there is data waiting in the RX FIFO 
queue with .in_waiting, and print both sides if there is:

while True:

    if left_enc.in_waiting:

        left_enc.readinto(buffer)

        left_data = buffer[0]

        print(left_data, right_data)
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Note that there is no special format now; we are just printing the raw number of counts. The right 
side is the same:

    if right_enc.in_waiting:

        right_enc.readinto(buffer)

        right_data = buffer[0]

        print(left_data, right_data)

If you run this, you should be able to turn either wheel and see output like this:

36   77

36   78

36   79

36   80

36   81

36   82

We can now count pulses for both wheels. So, if you make a complete wheel revolution, you should 
land close to plus or minus 8344 – proving our previous calculation.

You will see that one wheel makes the count go backward. Each motor effectively turns in an opposite 
direction from the encoder’s perspective. We will account for this later. 

Troubleshooting

This example is a lot of code and could go wrong in various ways:

• If the code counts up/down randomly and not consistently, you may need to change jmp_pin 
to the other input pin.

• It could also mean you have missed putting x in isr before sending.

• Check against the source code from git.

You should now be up and running and getting counts.

Making reusable encoder code

Because we will reuse this, we will put it into a module and pick it up in our robot.py. We will then 
use this to make a demonstration program.

.
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Let's take what we made previously and put it into a module named pio_encoder.py. The following 
code should all be familiar:

import rp2pio

import adafruit_pioasm

import array

program = """

    set y, 0

    mov osr, y

read:

    mov x, y

    in null, 32

    in pins, 2

    mov y, isr

    jmp x!=y, different

    jmp read

different:

    in x, 31

    in null, 31

    mov x, isr

    jmp !x, c1_old_zero

c1_old_not_zero:

    jmp pin, count_up

    jmp count_down

c1_old_zero:

    jmp pin, count_down

    ; fall through

count_up:

    mov x, ~ osr

    jmp x--, fake

fake:

    mov x, ~ x

    jmp send

count_down:

    mov x, osr

    jmp x--, send
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send:

    mov isr, x

    push noblock

    mov osr, x

    jmp read

"""

assembled = adafruit_pioasm.assemble(program)

We need a way to create the state machines with their parameters and a wrapper for getting the data. 
A Python class is an excellent way to do this:

class QuadratureEncoder:

  def __init__(self, first_pin, second_pin, reversed=False):

    """Encoder with 2 pins. Must use sequential pins on the 
board"""

    self.sm = rp2pio.StateMachine(

        assembled,

        frequency=0,

        first_in_pin=first_pin,

        jmp_pin=second_pin,

        in_pin_count=2

    )

    self.reversed = reversed

    self._buffer = array.array('i', [0])

We will call it QuadratureEncoder, as it should work with those types regardless of the mechanism. 
Inside the class is an __init__ function, which tells Python how to make an encoder object – it 
takes two pins as its parameters and uses them to create the state machine. The object also makes a 
buffer to store the most recent return value. Note that the two pins must be in sequence. 

There’s also a reversed parameter; this is so we can account for one motor turning the opposite way. 
We cannot just swap pins in the code here, as the in instruction requires pins in sequence.

Next, we need a method to read from the encoder or the old value if there’s no change:

  def read(self):

    while self.sm.in_waiting:

      self.sm.readinto(self._buffer)

    if self.reversed:
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      return -self._buffer[0]

    else:

      return self._buffer[0]

By checking the in_waiting state, this reading will not block and only update the buffer if there’s 
a new reading; this is a while loop because we only want the most recent FIFO data. It returns the 
element in the buffer, returning the negative version if the motor is reversed. 

We can now add these encoders to the robot.py library from the end of Chapter 5, Driving Motors 
with Raspberry Pi Pico. Let's add encoders to the imports:

import board

import pwmio

import pio_encoder

The new code is highlighted. We can also set up the two encoders. Add the bold code after the motors:

right_motor = motor_A1, motor_A2

left_motor = motor_B1, motor_B2

right_encoder = pio_encoder.QuadratureEncoder(board.GP20, 
board.GP21, reversed=True)

left_encoder = pio_encoder.QuadratureEncoder(board.GP26, board.
GP27)

When we use our robot, we can now use robot.left_encoder.read() and an equivalent 
command for the right encoder to get an encoder reading, which we will now use in a demonstration.

Measure counts for a known time

We will turn this into a demonstration to see what the count is when driving for a second. Because 
we have put work into preparing our robot.py, this code is simple. Put the following code 
in measure_fixed_time.py:

import time 

import robot

robot.set_left(0.8)

robot.set_right(0.8)

time.sleep(1)

robot.stop()

print(robot.left_encoder.read(), robot.right_encoder.read())
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This code loads the time library and the robot helper. It drives forward at 0.8 speed for 1 second. 
It then stops and prints readings from each encoder. While this code sleeps, the encoder code is 
still running.

Making the encoders this simple to use means we can integrate them with more complex behaviors 
later; this is a good strategy for most sensors.

To run this code, be sure to send the pio_encoders.py library, the updated robot.py, and 
then measure_fixed_time.py. Remember to update code.py to load it, and you should see 
the following:

code.py output:

4443 4522

You have begun to take sensor readings from your robot, learning PIO on the way!

Summary
In this chapter, you have learned about measuring distance traveled using encoders, including the 
different types of encoders. 

You saw the output that quadrature encoders create and how to interpret this as a turning direction.

You were introduced to the powerful PIO state machines present within Pico and saw how you can 
give tasks such as handling encoders to them.

You brought this together to create a reusable handler for the encoders, and we had a demonstration 
to see them working.

In the next chapter, we will plan and buy more devices for our robot, leading to more sensing, and 
remotely drive it.

Exercises
These exercises can improve your robot and let you practice your skills:

• You have been able to get readings and a count for each wheel when driving for a fixed time. 
How could you make code that stops the motors after a fixed number of counts? You may need 
to check the encoder readings in a loop regularly.

• You may have noticed imbalances in the counts – this is normal and due to motor and wheel 
differences. One way you could improve this would be to design and make a holder for the 
breadboard with the styrene rod so that it doesn’t slide around on the platform.

• Could you write code to slow a motor if it’s overtaken another one in its count?
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Further reading
These further reading items will help you continue your studies:

• Raspberry Pi has the definitive reference in Chapter 3 of their datasheet on using PIO and 
its architecture: https://datasheets.raspberrypi.com/rp2040/rp2040-
datasheet.pdf. They also have PIO code examples in Chapter 3 of their C SDK document 
(including MicroPython but not CircuitPython samples): https://datasheets.
raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf.

• Adafruit documentation for rp2pio is at https://circuitpython.readthedocs.
io/en/latest/shared-bindings/rp2pio/ and is worth consulting for its use, along 
with their Introduction to CircuitPython RP2040 PIO at https://learn.adafruit.
com/intro-to-rp2040-pio-with-circuitpython.

• A video by YouTuber StackSmasher has a great deep dive into PIO, its architecture, and 
programming at https://youtu.be/yYnQYF_Xa8g.

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://circuitpython.readthedocs.io/en/latest/shared-bindings/rp2pio/
https://circuitpython.readthedocs.io/en/latest/shared-bindings/rp2pio/
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython
https://youtu.be/yYnQYF_Xa8g




7
Planning and Shopping  

for More Devices

We now have a beginner robot platform up and running. The robot can drive around, and we have 
a pair of sensors already wired in. However, it becomes more interesting and useful if we add other 
sensors and devices – perhaps also a way to control the robot remotely!

In this chapter, we will look at some of the devices we will use and what types they are, learning more 
about robot sensors in general. Then, we will look at actual device part numbers and plan where to 
put our devices on the robot, where there is space for them, and test-fitting them. Next, we will look 
at a purchase list to build this. Finally, we will build a sensor bracket for our robot.

In this chapter, we’re going to cover the following main topics:

• Introducing sensors

• Choosing device types

• Planning what to add and where

• Shopping list – parts and where to find them

• Preparing the robot

Technical requirements
This chapter requires the following software and computer setup:

• A computer with the internet

• A printer

• FreeCAD
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The following robot-related hardware is required:

• The robot build from previous chapters and a Micro USB cable

• A sharp or fresh-blade plastic cutter

• A metal ruler

• Pin vise drill with 0.5 mm, 2 mm, and 3 mm High-Speed Steel (HSS)/twist bits

• Safety goggles

• A flat work area with good lighting, free of interruptions or being nudged

• Standoff or mounting kit with M2 and M3 standoffs, bolts, and nuts

• Screwdrivers with appropriate ends for the bolts

• M2 and M3 spanners to tighten bolts and standoffs

You can find all the FreeCAD designs, along with printable templates for this chapter, on GitHub 
at https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-
Pi-Pico/tree/main/ch-07.

Introducing sensors
Sensors are how our robot collects information. You’ve already seen and used one – the encoders. 
You were also introduced to absolute versus relative sensors in Chapter 6, Measuring Movement with 
Encoders on Raspberry Pi Pico, so what additional sensors can we consider? And how do we interface 
with them?

Sensors collect information from devices on the robot, making closed-control feedback loops. Sensors 
can also collect information about the world around the robot, what is present there, or how it has 
changed in response to the robot’s motions.

Analog sensor types

We briefly talked about analog and digital in Chapter 1. Analog sensors create a varying voltage, 
whereas digital sensors output only 1s and 0s – binary – using two fixed voltages.

Raspberry Pi Pico has a 12-bit Analog-to-Digital Converter (ADC) supporting analog sensors 
connected to 4 pins. Analog inputs are suitable for simple light sensors and variable resistors as inputs. 
However, analog sensors are less repeatable than digital sensors, and usually, one pin equals one sensor.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-07
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-07
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Timed pulses

Another way that sensors can vary continuously is by using timing. For example, the HC-SR04 
ultrasonic distance sensor outputs a pulse based on the detected distance. Timing this pulse provides 
the reading. These tend to need dedicated pins. These pulses can be measured using the PIO system 
we saw in the last chapter. These are digital in the sense that they only use binary inputs.

Data bus sensors

Groups of digital pins can form buses, addressing and reading from many devices, including sensors. 
They have a complexity cost but allow for more interesting data. These have controllers of their own, 
often containing calibration data to account for variations in sensor manufacturing. In addition, the 
controllers do some sensor decoding and processing, reducing the code you’ll need. Example buses 
are USB, I2C, Serial, and SPI.

The robot block diagram

We can use a block diagram for our robot to get a simplified view of our robot and what we will 
connect to it. 

It may look like the wiring schematic, but it shows the logical relationships between things instead 
of physical connections or placements. The following diagram shows where the robot is now before 
we add more sensors to it:

Figure 7.1 – Block diagram of the robot
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The preceding figure shows our robot in block diagram form. In the middle, in a darker shade, is 
Raspberry Pi Pico, the central controller for this robot. Pico connects to the motor controller, which 
drives the motors. The motors have dashed lines to the encoders since they indirectly influence them, 
and the encoders, in turn, send data back to Pico, forming a feedback loop. Finally, with a dashed 
outline at the top of the diagram is your computer, connected via USB. It is dashed here because this 
is a temporary connection – notice there is a bidirectional arrow here.

We will add more blocks to this diagram as we enhance our robot. Let us see the devices we will 
be adding.

Choosing device types
We will add other sensors and Bluetooth to communicate with our robot. We will look in depth at 
each in later chapters, but we should know enough to consider which we will buy. This section will 
involve taking a brief overview, making some trade-offs, and choosing the parts to use.

Distance sensors

Distance sensors, briefly mentioned in Chapter 1, let the robot sense its situation and surroundings to 
avoid or follow obstacles. Some kinds only return if a distance has crossed a threshold, but the more 
suitable types return a sensed distance value. We will focus on this latter type. 

Most distance sensors bounce a beam from objects and measure their return time or angle to determine 
the distance. For example, clap opposite a wall in a large open space, and you will hear how long your 
echo takes to return. If you move further from the wall, the return time will be longer. 

These fall into two major categories: sound-based and light-based. Each has pros and cons. Let’s see 
some common types:

Figure 7.2 – Distance sensor types
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The first sensor in the preceding figure is the VL53L1X, a light sensor. These sensors are lighter and 
significantly faster than the sound ones and use invisible infrared light. However, some can be confused 
by other sources of IR light, including bright sunlight.

The right-hand sensor is a sound-based distance sensor, the HC-SR04, identifiable by the two cans. It 
uses ultrasonic sounds outside the normal range of human hearing. Sound sensors can be confused 
by secondary sounds, vibrations, and some surfaces – for example, fabrics.

The following table compares their attributes:

Sensor Type HC-SR04+ Ultrasonic VL53L1X IR Light
Module size 45 mm x 20 mm x 12 mm 19 mm x 19 mm x 3.2 mm
Weight 8-10 grams 3-5 grams
Pin usage 2 per device, not 

sharable, specific
2 I2C pins, sharable with 
other I2C devices

Speed Slow Fast
Max range 4 m 1.2 m

Table 7.1 – Distance sensor comparison

Based on the attributes in the table, the light-based sensors are more suitable for our Raspberry Pi 
Pico robot due to being smaller and lighter and having the ability to share an I2C bus. We will use two 
of these sensors facing forward on either side to determine where the closest object is and to avoid it.

Distance sensors give the robot an awareness of its surroundings, but what about the robot’s orientation? 
We’ll see a sensor for this in the next section.

Inertial measurement unit

An Inertial Measurement Unit (IMU) lets us detect the robot’s orientation. It can give us an absolute 
orientation and usually combine three sensors:

• A gyroscope – measuring relative rotations

• An accelerometer – measuring accelerations, and using gravity, figuring out which way is down

• A magnetometer – measuring magnetic fields, looking for magnetic poles

Code can combine the data from these sensors to create an orientation relative to gravity and the 
magnetic north. Some also include a temperature sensor. We describe the IMU sensor count with 
Degrees of Freedom (DOF). Each combination of direction and type of measurement is a DOF – 
for example, acceleration on the x-axis is one, and rotation on the x-axis is another. Having all three 
sensors is described as 9-DOF, so we should stick with these types.
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IMU devices usually use the I2C bus and can share it with other devices, including the distance sensor 
shown previously. 

Effective use of an IMU requires sensor fusion, combining calibrated readings from multiple sensors 
into a helpful form – in this case, an absolute orientation of the robot. Some sensor modules have 
this ability on board. You want this to offload the handling from Raspberry Pi Pico, and you will not 
need to write the code for this fusion.

The BNO055 is a great choice; it is common, and has libraries for CircuitPython and some convenient 
interfaces, with an onboard processor doing the sensor fusion for you.

We now have considered a few sensors, but what about control? The next device we will look at 
is Bluetooth.

Bluetooth devices

We have been driving our robot tethered to a computer for starting programs and getting feedback; 
this is not ideal. However, we can add Bluetooth capability to our Raspberry Pi Pico and communicate 
to it from our computer or even a smartphone wirelessly.

In Chapter 9, Teleoperating the Raspberry Pi Pico Robot with Bluetooth LE, we will consider other 
options and trade-offs we can make, discussing alternative solutions to Bluetooth Low Energy (LE). 
While it is not the only option, the AdaFruit Bluefruit LE UART Friend ADA 2479 module achieves 
a balance between complexity and cost that works for this project.

This module uses two pins to communicate, with optional pins for extended functionality. We will use 
two pins for a serial port, also known as a Universal Asynchronous Receiver-Transmitter (UART). 
This allows us to send and receive data easily.

It will be used in Chapter 9, Teleoperating the Raspberry Pi Pico Robot with Bluetooth, for remote 
driving and sensor monitoring with Bluetooth.

Device pin usage summary

We require 2 I2C buses for all these devices – at 4 pins each, for the IMU and distance sensors, and 
1 UART with 2 pins for Bluetooth, this consumes a total of 10 pins. Our existing motors used 4 pins 
each, totaling 8 pins. We have used 18 pins from Raspberry Pi Pico’s potential 30, which means you 
have plenty of pins for expanding this robot.

Since we have ideas for remote operation and sensors, we can consider adding them to our robot.
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Planning what to add and where
The product pages for these devices usually include their dimensions. Depending on which exact 
breakout you buy, you may need to adapt these designs. Let us use some known models and make a 
rough test fit to turn into a design.

Bluetooth and IMU mounting plan

The Bluetooth and IMU should be above the rest of the robot. The IMU’s magnetic sensors should 
not be near the motors and encoders. Putting the Bluetooth higher improves the signal. This rough 
drawing shows the plan:

Figure 7.3 – Rough sketch of the shelf

The Bluetooth and IMU, shown in the figure as darker boxes, could be placed on a shelf to distance 
them from interference with the motors. This shelf, shown in transparent white in the preceding figure, 
is mounted on standoffs, shown as darker bolt holes. This rough part is superimposed on a FreeCAD 
sketch to show where it goes.

We are likely, at least while we are developing this robot, to change the wiring more frequently than 
the batteries, so we can mount the shelf above the batteries using the standoff kit we’ve already bought. 

Next, we need to plan the distance sensors.

Distance sensor mounting plan

The distance sensors should be at the front of the robot. The following rough sketch shows how they 
could be mounted:
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Figure 7.4 – Rough sketch of the distance sensors mounted on the chassis

We can use brackets to mount two sensors facing forward, as shown in Figure 7.4. We can make these 
by sawing sections from right-angled cover trim for walls. We will use bolts to hold the sensor on the 
bracket and the bracket on the robot. We can add slots for the pin headers.

The headers for the distance sensors are male, and we have a breadboard with female holes. To connect 
these, we will need more than the precut wires. Male-to-female jumper wires should do for this.

The shelf and brackets are a little more complicated than the styrene rod construction before. We will 
look at how we put them together below – but first, let us shop.

Shopping list – parts and where to find them
We’ve collected enough information to buy the parts we’ll need. Let us see what exact parts I recommend. 

You bought parts in Chapter 1, and used some of these items in previous chapters. However, you 
should still have stock of the following:

• Styrene 3 mm sheet – these usually come in packs of a few, so you’ll have a few around

• Standoff kits with 2 mm, 2.5mm, and 3 mm standoffs, bolts, and screws

• 2.54 mm pitch straight breakaway single-row headers
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I then recommend the following additional parts:

• The Adafruit 2742 BNO055 IMU

• The Adafruit Bluefruit LE UART Friend ADA 2479 module

• 2 x Pimoroni PIM373 VL53L1X Time-of-Flight (ToF) sensor breakouts

• Male-to-female extension jumper wires

• 30 mm PVC right-angle cover trim

We are also going to need some additional tools as we make more interesting parts:

• A medium hacksaw or tenon saw to cut the cover trim.

• A clamp to hold the plastic when sawing.

• A set of needle files for making wiring slots.

• Optionally, some side cutters may make it easier to make the slots.

• Digital calipers for making finer measurements in small spaces.

• About 200 mm strip of wood, roughly 30 mm wide by 20 mm tall to assist in cutting the trim. 
An offcut will do, but it must be straight.

You can use the same suppliers from Chapter 1, Planning a Robot with Raspberry Pi Pico, for the parts 
and tools. Now that we know what to buy, we need to plan how to mount it in more detail.

Preparing the robot
We have parts and rough ideas for how to mount our sensors.

Using the techniques learned in Chapter 3, Designing a Robot Chassis in FreeCAD, we can model 
these brackets and shelves in FreeCAD. You can also get these designs from GitHub at https://
github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/
tree/main/ch-07.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-07
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-07
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-07
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The following image shows what this looks like in FreeCAD 3D View:

Figure 7.5 – The chassis with the sensor mounts

In the preceding figure, there is a 3D view of the robot in FreeCAD. At the rear, above the batteries, 
is a shelf for the Bluetooth and IMU. There are bolt holes under this in the chassis.

At the front of the figure are the two brackets for the distance sensors, with mounting holes for the 
sensors and slots cut out for the connection header to poke through.

Let us take a closer look at each sensor mounting design.

Designing the shelf

We will make the shelf with styrene. The following diagram shows the suggested dimensions for the 
shelf layer:
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Figure 7.6 – Rear shelf drawing

This diagram shows the shelf. The width of the lower chassis drives the top 150 mm dimension. The 
side dimension should be enough for the parts to rest on, but you could base it on the scrap styrene 
material you have left from Chapter 4, Building a Robot around Pico, if that is slightly smaller. Just 
ensure that the bolt holes match the shelf and the chassis. We can model them as a single part.

You can sketch this part in Sketch Main on the XY plane. Use Chassis Outline as a guide with external 
geometry. Make sure the supports will not interfere with the battery box. The pockets are defined by 
the dimensions of the IMU and Bluetooth modules, as found on their product pages, with a few extra 
millimeters for wiggle room.

This shelf needs to be 30 mm above the chassis. The following figure shows how:

Figure 7.7 – The shelf sketch
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Select the sketch for the shelf outline (DaughterCardOutline). Figure 7.7 shows the sketch selected 
in the Model Data tab. The top right shows what we are aiming for with sketch positioning. In the 
Property tab, expand Attachment, then Position. Set z to 30.00 mm. This value will place the shelf 
above the chassis and batteries.

This sketch can be padded into 3D using the same ShapeBinder and pad techniques discussed before. 
The following figure shows how this looks:

Figure 7.8 – 3D padded shelf

This image shows the shelf padded to 3 mm in 3D. 

Don’t forget to use ShapeBinders and a pocket to cut the holes in the ChassisPlate part.

Let’s see how to build the shelf part from these designs.

Cutting the shelf

We can use the techniques from Chapter 4, Building a Robot around Pico, to cut this. Let’s start by 
creating a FreeCAD drawing to use as a template. The following figure shows the drawing and how 
to use it to make the part:
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Figure 7.9 – Drilling the shelf 

The left part of the preceding image shows the drawings taped carefully onto the part. If the tape is 
slipping, try using a glue stick instead. Ensure that you’ve secured the paper template to the plastic 
and that you can remove it again later.

As we did in Chapter 4, Building a Robot around Pico, use a tiny drill bit to dot the corners of these 
rectangles. We drill the outline dots through the paper and then follow up with the drill holes (3 mm) 
using a hand drill, leaving the paper in place. Placing some old wood underneath saves you from 
leaving holes in the cutting mat.
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The holes give us a guide. The following figure shows us how we should cut it:

Figure 7.10 – Cutting the shelf

The top of Figure 7.10 shows the dot for cutting alongside a larger 3 mm hole. We have removed the 
paper, as some of the lines will be very close to the edge when using scrap. These cuts will be easier 
without the paper.

Next, as the bottom-left panel shows, line up the metal ruler with two of the dots for an edge – for 
example, the top line of the left inside pocket – and using a fresh, sharp blade, let the point of the blade 
find the hole in the top-left corner. You should then be able to follow the ruler and line nearly – but 
not all the way – to the other hole. Again, this cut is a light score, and we’ll make many cuts coming 
from both sides to keep it between the corners.

Cut until the scores go nearly all the way through. The following figure shows how to extract it from 
the sheet and finish this part:
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Figure 7.11 – Finishing the shelf

Figure 7.11 shows the stages of finishing the part. In the top-left panel, flexing the panel has snapped 
off a section – when scored deeply, this will snap quite nicely. The closer edges may require you to 
cut through with the knife. 

The top-right panel shows this part snapped out of its sheet fully. It is a bit sharp and has some burrs, 
so we sand it as shown in the bottom-right panel. Low grit (600) should be enough to take off most 
of the burrs and round the corners for a nicer finish. 

You should end up with something like the bottom-right panel. This shelf there looks ready to use.

Now that you have the rear shelf ready to assemble, we can look at designing the front sensor brackets.

Designing the front sensor brackets

Using our rough designs and the dimensions of the right-angle trim, we can turn these plans into 
more formal designs and drawings. The following figure shows a close-up of the sensor brackets 
with dimensions:
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Figure 7.12 – Drawings of the sensor brackets

The figure shows the side, front, and top views of the bracket. There are M2 bolt holes on both sides 
and a rectangular slot on the front to let through the header connections. The height and length of 
the brackets depend on the right-angle trim size. The bracket is 24 mm long to accommodate the 
Pimoroni distance sensor. I used calipers to measure the holes in the Pimoroni sensor for this drawing.

I suggest sketching the top view on the chassis plate, with one rectangle plus a construction mirror line 
between the holes – that way, you can make shape binders for the base of the bracket. I’ve aligned the 
front of these with the front line of the chassis and padded the bracket bases. Next, you make pockets 
for the holes in ChassisPlate and the bracket.
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Sketch these brackets symmetrically, as you did for the motors, and make them 42 mm apart. Then 
create a sketch on the XZ plane for the front of the brackets (100 mm forward). Next, pad the tall 
part up 30 mm from the bases and use the XZ sketch to cut pockets. The following picture shows the 
brackets in 2D on the chassis plate and how this looks in 3D:

Figure 7.13 – The brackets design on the chassis

The top part of the figure shows a drawing of the brackets dimensioned and lined up on ChassisPlate. 
The lower panel shows a 3D view of these parts on the model.

This design is enough to create the drawing shown in Figure 7.13, and in the next section, we will use 
it to make this part.

Cutting the sensor brackets

We can now take this design to the workshop and cut these parts.

The following figure shows how to mark the first two cuts:
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Figure 7.14 – Marking out bracket cuts

The figure starts with using a ruler to mark 24 mm for the width of the bracket. I am using the clamp 
to keep the angle trim in place. Then, follow up with the square to get a straight line. The middle 
picture shows this line going around the part.

The last image shows the waste side shaded, so you know where to cut. A cut is not 0 mm, so err on 
the side of it being too big. Look at the following figure for information on cutting:
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Figure 7.15 – Cutting the sensor brackets

The top panel of the preceding figure shows clamping the right-angled trim with the strip of wood 
supporting it. This wood should stop short of the line you cut at and supports the angled trim while 
you cut it.

The bottom panel shows me cutting in on the right-angled bend, which is easier than cutting by the sides. 

The material will flex as you get to the end and have cut through one side. You need to support the 
other end and slow down the saw strokes when this happens. 

Cut 2 of these 24-mm lengths. These parts will be rough and require finishing with sandpaper, as 
shown in the following figure:
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Figure 7.16 – The parts ready for smoothing

As the preceding figure shows, the parts have very rough edges. You will need to use multiple passes 
of the grades of sandpaper to smooth both the brackets as the figure shows. For a nice finish, you 
could round the corners.

We will need to drill out holes as shown in the following figure:

Figure 7.17 – Drilling holes into the sensor brackets



Preparing the robot 171

Figure 7.17 shows the parts in a clamp and marked with a pattern to assist drilling – this has a middle 
line, then holes on either side. I use calipers for this; however, my drawings are not perfect, and yours 
do not need to be either.

Start each hole with a smaller drill bit, then open it to 2 mm. This material, uPVC, is tougher than 
styrene and takes more effort to get through. There are drill holes on the front and through the base 
of this bracket. Make these before continuing to the slots.

The toughest part will be drilling out the slots. The following figure shows how to cut this slot out:

Figure 7.18 – Cutting and filing out the slots

The top-left panel in the preceding figure shows me making a hole with a 3-mm bit. Make holes along 
the length of the slot, as shown in the top-right panel. They do not need to be perfectly constrained 
in the slot but closely inside.

As the bottom-left panel shows, choose a needle file with a corner (angular) profile, and push it into 
the holes to break them out. You could optionally use side cutters to join the holes. Then, when you 
have joined the holes, file the slot out into a rectangle. Finally, when you have made a wider shape, 
use a wide flat needle file to make a letterbox profile.

The bottom right shows that the hole only needs to be big enough to accommodate the plastic pin 
header body. At that point, you can stop filing. 
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We’ve now manufactured the shelf plates and the brackets. However, we still need to modify the 
chassis plate and fit them.

Preparing the chassis plate

The chassis plate needs eight additional holes to accommodate the new fittings. You should be able 
to use your FreeCAD designs to get the following drawing:

Figure 7.19 – Drawing of the chassis plate with sensor mounting holes

At the top of this drawing, representing the robot’s rear, is the shelf, with 4 additional 3 mm holes to 
drill, 2 on either side, for putting in the shelf standoffs.

At the bottom of the figure (the front of the robot) are four additional holes at the front of the chassis, 
2 mm wide for bolting on the brackets. 
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For this part, we have marked out the dimensions on the drawing, and we will use calipers to mark 
these holes before drilling them, as shown in the following figure:

Figure 7.20 – Measuring and marking out the chassis plate holes

In the top panel of Figure 7.20, I use the straight edge at the top of the calipers to mark one of the 
rear shelf holes at 4 mm from the edge. The panel in the bottom left shows the holes for the rear shelf 
marked out this way, and the bottom right shows the holes for the brackets.

While not essential, marking and drilling the chassis plate with the upper deck parts and wheels 
removed is easier. When you have completed these steps, just be sure to put them back as specified 
in earlier chapters.

You can drill out the holes in the usual way, starting with the smaller diameter drill bit, then making 
the bracket holes 2 mm, and the shelf holes 3 mm. After drilling the uPVC, you will notice how much 
easier they are to drill!

We are now ready to assemble the robot again.



Planning and Shopping for More Devices174

Assembling the robot

We can now get into the exciting business of adding new sections, starting with the shelf, as shown 
in the following figure:

Figure 7.21 – Assembling the Bluetooth and IMU shelf

The top-left panel in the preceding figure shows the robot alongside the shelf panel and a set of 
standoffs. As shown in the top-right panel, you may need to join two standoffs to clear the battery box.

As the bottom panels show, you then bolt the standoffs into the robot base, with nuts to support them 
underneath. Bolt the shelf layer on top of the standoffs; this should look like the bottom-right panel. I’ve 
also added a hook-and-loop dot for the Bluetooth module. We will leave the IMU side to add standoffs.

Now, we just need to add in the sensor front-facing brackets, as the following figure shows:
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Figure 7.22 – Assembling the front-facing brackets

As the top of Figure 7.22 shows, we need an M2 bolt and nut for each bracket. Bolt these into the 
holes at the front of the chassis. 

The chassis now looks like the bottom panel. This robot is now ready for us to start experimenting 
with sensors. We will not bolt the sensors in just yet, as we have wiring to do for them, which we will 
get to in the following chapters.

Summary
In this chapter, we learned about more sensor and device types. We then revisited our robot, planning 
where to add these sensors.

The chapter showed a shopping list for these parts and then used dimensions from the product pages 
of these parts to make CAD drawings. The CAD drawings let us visualize what we wanted in 3D. 
Next, we fabricated parts from these drawings.

We revisited manufacturing parts and used a variation on the template technique to make the brackets. 

Finally, we assembled all these parts and now have a robot base ready to add sensors. We will wire in 
and program these sensors in the following chapters, starting with the distance sensors.
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Exercises
These exercises will help further develop the skills learned in this chapter. As we have not attached 
the switch to the chassis, we can use it to practice these skills:

• The sensor brackets are facing directly forward. The robot would have better sensor coverage 
and look better if you aligned the sensors with an angled front. This will likely require using 
other FreeCAD constraints or skills. 

• The shelf is flat and uses a hook-and-loop to hold devices. Using FreeCAD, could you design 
another layer with recesses for the peripheral boards? Could you then use the skills learned 
here to build it? You may require a coping saw for this.

Further reading
We referenced these datasheets and product pages in the text:

• Adafruit Bluefruit UART LE Friend product page with dimensions – https://www.adafruit.
com/product/2479 and https://learn.adafruit.com/introducing-the-
adafruit-bluefruit-le-uart-friend/downloads

• Adafruit BNO055 breakout page with dimensions – https://www.adafruit.com/
product/2472

• Pimoroni VL53L1 breakout page with dimensions – https://shop.pimoroni.com/
products/vl53l1x-breakout

For further information on Bluetooth LE, consider Building Bluetooth Low Energy Systems by Muhammad 
Usama bin Aftab. This dives into the details of wireless network communication systems suitable for 
use in the Internet of Things (IoT). IoT concepts translate well into robotics.

To find out more about sawing, check out the following guide:

• A Little Saw – A Workshopshed Guide to Cutting Tools by Andy Clarke has excellent information 
on cutting different materials well. This little book shows the suitable saws and the right ways 
to use them.

https://www.adafruit.com/product/2479
https://www.adafruit.com/product/2479
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/downloads
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/downloads
https://www.adafruit.com/product/2472
https://www.adafruit.com/product/2472
https://shop.pimoroni.com/products/vl53l1x-breakout
https://shop.pimoroni.com/products/vl53l1x-breakout


8
Sensing Distances to Detect 

Objects with Pico

Our robot is starting to move around independently. We spent the last chapter preparing mount points 
to add sensors, including distance sensors. We can use these sensors to detect how far objects are 
from the robot, and by adding more than one, we can see which direction is closest. This sense will 
allow the robot to respond to the real world and drive around a room without much manual control.

In this chapter, we will learn more about these sensors and their limitations. Then, we will attach the 
sensors to the robot and learn more about the communication protocol used to talk to them. Next, we 
will wire the sensors into Raspberry Pi Pico and get data. Finally, we will tie multiple sensors together 
with motor control to make the robot avoid obstacles while driving.

In this chapter, we’re going to cover the following main topics:

• How distance sensing works

• Soldering headers and attaching them to the robot

• An introduction to I2C communication

• Communicating with a single distance sensor

• Connecting two distance sensors

• Building a wall avoider with Raspberry Pi Pico
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Technical requirements
This chapter requires the following:

• The robot build from previous chapters

• 2 x Pimoroni VL53L1X distance sensor modules

• 2 x five-way single row 2.54-mm (included with the modules)

• 8 x male-to-female jump wires with a 2.54-mm DuPont connector

• 2 x M2 nuts and M2 x 6-mm bolts

• A suitable screwdriver for driving the bolts, and a spanner for holding the nuts

• A soldering station with a soldering iron, solder, tip-cleaning brass, and soldering stand

• A flat work area with good lighting, free of interruptions or being nudged

• The code from previous chapters

• A Raspberry Pi Pico code editor such as Mu or Thonny

• A USB micro cable

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-08.

How distance sensing works
Before diving into connecting and programming distance sensors, we should examine how they operate. 
Chapter 7, Planning and Shopping for More Devices, evaluated options and chose optical (light-based) 
distance sensors. We will be focusing on this type for the remainder of this chapter.

Many distance sensors operate using a principle known as time of flight. The following diagram 
demonstrates this:

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-08
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-08
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Figure 8.1 – Optical distance sensor operation

The preceding diagram shows pictures of robots with sensors and the returned light. On the top left, 
a single beam is emitted (shown as a cone), hits an object, and its reflection (shown as a dashed line) 
hits the sensor (the blue box), which detects it. The time between emitting the beam and receiving 
the response is the time of flight used to calculate the distance. At the top right of the diagram, both 
sensors are active. However, the left sensor detects a closer object in its beam, returning a lower value 
than the right sensor, which only detects the wall behind the object.

For most materials, the light beams make a diffuse reflection in all directions, as the bottom-left part 
of the diagram shows, and these time-of-flight sensors will detect their return. However, like the 
mirror shown in the bottom right of the diagram, some materials do not diffuse their reflected light 
and reflect away at the incident angle. Therefore, these objects may not be detected or will confuse 
the system. It may even detect objects reflected in a mirror as behind the mirror.

Note that these sensors have a slight instability in their readings, so they will take several readings and 
combine them to produce a more accurate reading. The sensors use a timing budget to take several 
readings. The VL53L1X device does this sampling and averaging.
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Ambient light conditions can affect these sensors, with very bright light potentially washing out the 
beam. However, these work in most conditions, losing accuracy and a little distance but not becoming 
unusable. In our context, a robot mainly needs to detect an oncoming obstacle, so a loss of accuracy 
is acceptable.

We now understand how the sensors operate. In the next section, let’s attach them to the robot.

Soldering headers and attaching them to the robot
Before we can start to use or wire the sensors, we will need to solder headers onto them and then bolt 
them so they face forward on the robot.

Soldering headers

I recommend using a spare breadboard for soldering these, as you did with Raspberry Pi Pico and 
the motor controller earlier in Chapter 4, Building a Robot around Pico. The following photo shows 
me soldering them:

Figure 8.2 – Soldering the distance sensor headers

The photo on the left of the preceding figure shows the sensors, the headers, and a breadboard to 
aid soldering. Place the headers long pins in the breadboard holes and the sensors on top. Pimoroni 
designed these sensor modules to hold the board on the header for easy soldering.

In the right photo, one sensor has had the header soldered in, and I am soldering the other. The headers 
should be facing back from the sensor so that the wiring will not be in the sensor beam.

With the headers soldered, you are ready to fit the sensors onto the robot.
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Mounting the sensors

We put a lot of groundwork into mounting the sensors in previous chapters and created brackets to 
mount them onto. The following photo shows these sensors bolted on:

Figure 8.3 – Optical distance sensors mounted

On the left of the preceding photo are the robot’s front, the sensors, and the M2 nuts and bolts. We 
push the sensor’s headers through the slot and bolt them in place. Note that there might be a slight 
tightness around the slot. If so, file the header space up and out a little to accommodate this. Wipe or 
blow away any dust after filing. The right shows the sensors bolted onto the front of the robot.

We will wire these sensors in via I2C. But, first, let’s take a closer look at how I2C is used to talk to 
sensors like this.

Introduction to I2C communication
You encountered I2C communication in earlier chapters. Chapter 1, discussed how I2C is a data bus 
that carries address information, allowing a primary device such as Raspberry Pi Pico to reach multiple 
devices on a single bus. We learned then that Raspberry Pi Pico has two hardware I2C buses. I2C (or 
I2C) is an acronym for Inter-Integrated Circuit.

In Chapter 7, Planning and Shopping for More Devices, we saw how we would be using I2C devices 
both for VL53L1X distance sensors along with an IMU.
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How exactly does this bus work? Chapter 1, also mentioned that I2C has two wires – a Serial Clock 
line (SCL) and a Serial Data line (SDA). The following picture shows how devices send signals 
through them:

Figure 8.4 – I2C signals on the wire

The preceding diagram shows two graphs representing I2C signals. The horizontal axis is time, and 
the vertical axis when high is logic one, with low being logic zero. As shown in the top diagram, the 
clock produces a stream of pulses, a square wave. The accompanying data line sends data synchronized 
with the clock pulses. This clock means that devices on the bus are synchronized.

The lines are usually held high (logic high) and pulled down when a device wishes to communicate. 
Devices leave the line high when they have stopped communicating so another can control the bus. 
In most cases, the central controller will send a request to a device, and the device will respond.

As mentioned in Chapter 1, devices on an I2C bus have an address. However, these VL53L1X devices 
both have the same addresses. Luckily, there are two I2C buses we can use on Raspberry Pi Pico.

The good thing is that we don’t need to control much of this manually. CircuitPython has a busio (bus 
input-output) library for handling I/O operations on a data bus, which we’ll use to control these devices.

We need to wire both SDA and SCL for each sensor and then write code connecting them. In the next 
section, we will discuss how to wire and talk to a single sensor.

Communicating with a single distance sensor
Each distance sensor requires only four wires; however, we will also improve the power system. We 
will then get into the code needed to read data from a system.
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Wiring the distance sensors

We start our wiring by looking at a block diagram of our robot, as we saw previously in Chapter 7. 
Look at the following diagram:

Figure 8.5 – The robot block diagram with distance sensors

The preceding diagram shows the robot block diagram with the additional VL53L1x distance sensors 
connected via I2C to Raspberry Pi Pico. The new parts have a thick double outline.

We need the schematic to get into the details of the connections, as shown in the following figure:

Figure 8.6 – The schematic with distance sensors
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In the preceding figure, I’ve shown a close-up schematic of the distance sensors connected to Raspberry 
Pi Pico. We connect a sensor to each I2C bus, along with 3v3 power and ground connections.

The right sensor has its SDA connected to GPIO0 and its SCL connected to GPIO1. The left sensor 
connects SDA to GPIO2 and SCL to GPIO3.

The following photo shows the sensor wiring:

Figure 8.7 – Distance sensors wired into the robot

The preceding photo shows the robot with the sensors wired in using male-to-female jumper wires. 
Remember that you are not connecting the INT pin from the sensor to anything, so expect a gap here. 
Also, double-check power and ground connections, as reversing these may damage the device. It is 
also a common troubleshooting problem with I2C to have accidentally swapped SDA and SCL lines.

Once the wiring is complete, please carefully remove the protective cover from the sensor, as shown next:

Figure 8.8 – Removing the protective tape

As the preceding photo shows, if your sensors still have protective cover tape, carefully use a fingernail 
or tweezers to remove this cover before use. After removing this, take care not to touch the optical 
parts of the sensor.

With this wired in, let’s look at how the sensor operates in the next section.
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VL53LX theory of operation

These sensors have a particular operation cycle. We can use this as a guide for writing our code. The 
following diagram shows the states of the VL53L1X:

Figure 8.9 – VL53L1X operating states

The preceding state diagram is a simplified view of the states of this device. The nodes are the states, 
and the lines between them are events/signals that cause the state to change. First, the sensor starts 
on the left in an idle mode. This mode saves power until we want to measure distances. Then, the 
host (Pico) sends a start-ranging signal, and the device enters ranging mode, where it takes active 
measurements. Next, the device enters a data-ready state when it has taken enough measurements, 
as set by the timing budget. In this state, the host can read the distance measured.

However, the device will not make fresh measurements until the host sends a clear interrupt signal, 
putting it back in the ranging state.

Finally, when we no longer need ranging, the host should send the stop-ranging signal, which puts 
the device back into an idle state and uses less power.

We will need to account for these state changes in our code, which we will cover in the next section.

Reading a single distance sensor in CircuitPython

When reading a sensor, we will use the Adafruit VL53L1X library. Copy adafruit_vl53l1x.
mpy from the Adafruit CircuitPython library into the lib folder on the CIRCUITPY volume. We 
can also write code inspired by their documentation examples. When communicating with any new 
device, using the example code for the related library is always a good start. We will adapt it a little 
for Raspberry Pi Pico.
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We start the code in the read_1_sensor.py file with imports:

import time

import board

import busio

import adafruit_vl53l1x

We’ve two new imports here. Alongside the vl53l1x library, the busio library uses Pico pins to form 
data buses such as I2C.

Next, we need to set up the I2C bus and device:

i2c = busio.I2C(sda=board.GP2, scl=board.GP3)

vl53 = adafruit_vl53l1x.VL53L1X(i2c)

This first line forms the I2C bus using GP0 and GP1 pins, corresponding with the left sensor. Pico is a 
little fussy about which pins you can use for the SDA and SCL lines of an I2C bus. We then create the 
VL53L1X device with this I2C bus. In the next section of code, we send some settings to the device:

vl53.distance_mode = 1

vl53.timing_budget = 100

The device has multiple distance modes; distance mode 1 is short-range – for close objects. We set a 
timing budget of 100 milliseconds, controlling how long the sensor is allowed to take for measuring. 
It limits the maximum distance and the number of measurements used to smooth data.

Let’s start the device:

vl53.start_ranging()

We have now moved the device from the idle state into the ranging state. We can now wait for the 
measurements to be ready. We can now write the code for the main loop:

while True:

    if vl53.data_ready:

        print("Distance: {} cm".format(vl53.distance))

        vl53.clear_interrupt()

    time.sleep(0.05)

This loop starts by checking whether the device has data ready to read. When it has data_ready, 
we can read data with vl53.distance and print it. This distance is in centimeters.

After reading the data, we need to send a clear_interrupt signal, so the sensor goes back into 
its ranging mode for a new reading.
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Regardless of whether there is data, the system will wait 50 milliseconds before looping around and 
checking again.

Upload this file to Pico and update code.py to import read_1_sensor.py. Then, when you 
run it and connect the REPL, you should see output like this:

code.py output:

Distance: 35.1 cm

Distance: 34.4 cm

Distance: 33.8 cm

Distance: 35.2 cm

Let’s check a few things to ensure everything’s all working before we carry on.

Troubleshooting

If this example code doesn’t work, the following troubleshooting steps will help:

• If you receive the No pull up found on SDA or SCL; check your wiring 
warning, this indicates the wiring may be incorrect or that wires may be loose. Power down 
and check the wiring.

• The No I2C device at address: 29 warning likely means you have reversed SDA 
and SCL. Swap them and try again.

• There must be no heat in any part of the circuit including the wires, the batteries, the sensor, or 
Pico – this will cause damage, and should be powered down then the wiring checked carefully.

• Sometimes, sensors can get stuck between test runs, resulting in slow or erratic results or sensors 
showing no errors but never having data ready. I advise powering the whole robot down.

• Try adding lines such print("i2c set up") between stages to see where the problem is.

• If you see unsupported operation or unknown distance mode, check the power 
wiring to ensure each sensor is well connected.

Note that powering down means turning off battery power (if you’ve turned that on) and unplugging 
the computer. Never leave the computer plugged in during rewiring.

We should have data being read reliably from a single sensor. Our robot has two sensors, though, so 
let’s read data from both in the next section.
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Connecting two distance sensors
We have wired in two sensors, each on a separate set of pins. Create the read_2_sensors.py 
file. The imports look identical:

import time

import board

import busio

import adafruit_vl53l1x

When we come to set up the sensors, we first need to set up two I2C buses on the different pins and 
then use them:

i2c0 = busio.I2C(sda=board.GP0, scl=board.GP1)

i2c1 = busio.I2C(sda=board.GP2, scl=board.GP3)

vl53_l = adafruit_vl53l1x.VL53L1X(i2c0)

vl53_r = adafruit_vl53l1x.VL53L1X(i2c1)

We can also apply the same configuration settings for both sensors:

vl53_l.distance_mode = 1

vl53_l.timing_budget = 100

vl53_r.distance_mode = 1

vl53_r.timing_budget = 100

The main loop starts in the same way, with both sensors going into ranging mode:

vl53_l.start_ranging()

vl53_r.start_ranging()

while True:

And in this case, we will check for ready data from both sensors before printing:

    if vl53_l.data_ready and vl53_r.data_ready:

        print("Left: {} cm, Right: {} cm".format(vl53_l.
distance, vl53_r.distance))

        vl53_l.clear_interrupt()

        vl53_r.clear_interrupt()

    time.sleep(0.05)
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When uploaded and run on Pico, this code will now output both sensors’ data, as shown next:

Left: 39.2 cm, Right: 37.4 cm

Left: 38.8 cm, Right: 37.4 cm

Left: 39.0 cm, Right: 37.4 cm

Left: 38.8 cm, Right: 37.6 cm

Left: 39.1 cm, Right: 37.6 cm

We’ll troubleshoot any problems here before we use two sensors for smarter behavior.

Troubleshooting

Adding a second sensor can still cause odd behavior:

• First, the wiring considerations in the single sensor apply.

• If you have used the same I2C bus twice in code, you will get some odd behavior or the same 
reading from both sensors. Check the code for this.

We now have data from two sensors, and in the next section, we’ll use this data to make the robot 
avoid objects.

Building a wall avoider with Raspberry Pi Pico
Two distance sensors and independent motor control with some code are the ingredients needed to 
avoid obstacles. Let’s start by putting the distance sensors in the shared robot library.

Preparing the robot library

Like we have with other aspects of the robot, we’ll start by building the distance sensors set up 
in the robot.py file. At the top of this file, the imports now include busio and adafruit_
vl53l1x libraries:

import board

import pwmio

import pio_encoder

import busio

import adafruit_vl53l1x
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We can then set up our left and right distance sensors. Insert the following below the encoder setup 
and above the stop function:

i2c0 = busio.I2C(sda=board.GP0, scl=board.GP1)

i2c1 = busio.I2C(sda=board.GP2, scl=board.GP3)

left_distance = adafruit_vl53l1x.VL53L1X(i2c0)

right_distance = adafruit_vl53l1x.VL53L1X(i2c1)

Save this file and be sure to upload it to the CIRCUITPY volume.

We will use robot.py in the avoider code. We must next consider how avoiding behaviors operate.

Wall-avoiding theory of operation

We need to consider data from both sensors to avoid walls. The following diagram shows how we 
will do this:

Figure 8.10 – Avoiding walls with two sensors

In the preceding diagram, a sketched robot is facing a wall. It has sensed the wall, but the object is 
closer to the left sensor than the right; dashed arrows show reflections coming from the object. That 
means the robot should turn right to avoid this object, shown by the curved arrow to the robot’s left. 
We will make the turn by reversing the right motor until it is clear of the obstacle.
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There is a special edge case where the two sensors detect the wall as equally close. To ensure the robot 
decides to avoid the flat obstacle, we will slightly bias (weight one side) by checking one sensor first 
and making a turn based on that.

We have all the parts we need. So, let’s start writing this code.

Distance sensor wall avoider code

The code for this uses the distance sensors from the robot library. Put this in avoid_walls.py. 
Let’s start with familiar imports and by setting the sensor config:

import robot

import time

robot.left_distance.distance_mode = 1

robot.right_distance.distance_mode = 1

We’ll leave sensors on the default timing budget. We then have some configurations for our avoider:

too_close_cm = 30

speed = 0.9

The too_close_cm variable has a threshold for when the robot should turn to avoid a wall. We can 
set the overall robot speed for this behavior in the speed variable. We can tune these two variables 
to ensure the robot avoids a wall in time. Let’s start the sensors ranging:

robot.left_distance.start_ranging()

robot.right_distance.start_ranging()

We are going to start the robot moving; however, we want to ensure that the robot stops moving and 
stops the sensors ranging if there are any problems, so we wrap the main loop in try:

try:

  robot.set_left(speed)

  robot.set_right(speed)

  while True:
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A finally statement to accompany that try will come below the main loop. Next, we check 
whether there is sensor data ready:

    if robot.left_distance.data_ready and robot.right_distance.
data_ready:

      left_dist = robot.left_distance.distance

      right_dist = robot.right_distance.distance

We store the read distances so that we can use them throughout the handling. Note that while robot.
left_distance.distance looks like a variable, it is a property that actively reads the sensor 
when we use it.

Since we have two values, we should check if one side is too close. Note that a timeout will result in a 
0 value, so we should check values are above this too. By favoring a side, we slightly bias the robot to 
that side, and this should stop the robot from being indecisive if both sensors detect a close obstacle:

      if 0 < right_dist < too_close_cm:

        print("Obstacle detected - Left: {} cm, Right: {} cm".
format(left_dist, right_dist))

        robot.set_left(-speed)

We check whether the distance on the right sensor is closer than the threshold. If so, we print a line 
of debug, showing that we’ve detected an obstacle and the two sensor readings. We then set the left 
motor to go backward, which will cause the robot to swerve left, away from the obstacle.

We can now handle what happens otherwise:

      else:

        robot.set_left(speed)

        if 0 < left_dist < too_close_cm:

          print("Obstacle detected - Left: {} cm, Right: {} 
cm".format(left_dist, right_dist))

          robot.set_right(-speed)

        else:

          robot.set_right(speed)

If we’ve not turned left, we ensure the left motor is going forward. We then check the left distance 
sensor, and if this is too close, we turn right. Finally, we set the right motor forward, so both motors 
will be going forward if it detects nothing too close.
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Putting the left distance check in the else means that the robot will not set both motors backward 
and will favor turning left in front of an obstacle directly in front.

We then need to finish the loop by clearing the interrupts (so that the sensors are ranging again), and 
we leave a little time for them to sense again:

      robot.left_distance.clear_interrupt()

      robot.right_distance.clear_interrupt()

      time.sleep(0.1)

Now, we need to handle any errors that happened. If you recall, we wrapped this code in a try block. 
The finally block stops and cleans everything up:

finally:

  robot.stop()

  robot.left_distance.clear_interrupt()

  robot.right_distance.clear_interrupt()

  robot.left_distance.stop_ranging()

  robot.right_distance.stop_ranging()

The first thing we do here is to stop the motors. If anything goes wrong, such as errors from sensors 
or the code, we don’t want the robot to drive into a wall. We then clear the sensor interrupts and stop 
the sensors, putting them back into idle mode.

This example is complete, and you can send it to the robot along with the updated robot.py. Keep 
the battery power turned off initially and test that it detects obstacles. You should see output like 
the following:

Obstacle detected - Left: 29.6 cm, Right: 42.2 cm

Obstacle detected - Left: 17.2 cm, Right: 39.6 cm

Obstacle detected - Left: 10.4 cm, Right: 39.1 cm

Obstacle detected - Left: 5.2 cm, Right: 42.6 cm

Obstacle detected - Left: 6.7 cm, Right: 42.3 cm

Obstacle detected - Left: 18.4 cm, Right: 27.6 cm

Once you’ve seen it working and detecting, you can turn the battery power on, which will enable the 
motors and let drive along – either using a long USB cable or independently if it’s working well. Let’s 
check whether we have any problems with some troubleshooting.
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Troubleshooting
These steps should get you up and running if you have any problems:

• If the robot complains about importing modules, ensure you have uploaded the code and 
libraries for this chapter and previous ones.

• If the robot is getting too close before turning, try increasing the too_close variable.

• With any behavior using motors, ensure the batteries are fresh. Low power can cause stalling 
motors and malfunctioning sensors.

• The sensors will not detect obstacles that are above or below them. This limitation means the 
robot will drive into and get stuck on low obstacles or under high ones.

Your robot now avoids walls and objects.

Summary
In this chapter, we learned about distance sensors. We looked at how the sensors operate and how 
to attach them.

We learned more about the I2C bus and then saw how to electrically connect these VL53L1X 
distance sensors.

We then looked at the operating modes of the VL53L1X sensor and wrote code to get readings from 
one. Finally, we finished with a behavior to avoid walls using this sensor.

In the next chapter, we will gain remote control of our robot by adding Bluetooth.

Exercises
You can use these exercises to practice more of the concepts learned in this chapter:

• Could you write code to follow an object at a fixed distance? If it’s further away, could you drive 
it forward, and if it’s too close, back it up a little?

• Try different materials in front of the robot, such as glass, black fabric, thin paper, and thick 
paper. Observe which are detected and how they affect the distance detected. For example, 
what happens if you aim the robot at a mirror?

• Try observing the distance measurements in different light conditions, such as room light, 
darkness, and full sunlight.
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Additional reading
The following sources of additional reading can deepen your understanding of these sensors:

• https://github.com/adafruit/Adafruit_CircuitPython_VL53L1X has 
the library and sample code for driving a device.

• https://www.ti.com/lit/an/sbau305b/sbau305b.pdf is a datasheet for a 
different brand of optical sensors. However, it has excellent information on reflectance and 
how materials affect distance sensing.

• https://www.st.com/en/imaging-and-photonics-solutions/vl53l1x.
html#documentation contains the complete product documentation. Of particular interest 
are the product specifications and API user manual.

For an alternative technique using ultrasonic distance sensors, refer to Learn Robotics Programming 
– Second Edition by Danny Staple.

https://github.com/adafruit/Adafruit_CircuitPython_VL53L1X
https://www.ti.com/lit/an/sbau305b/sbau305b.pdf
https://www.st.com/en/imaging-and-photonics-solutions/vl53l1x.html#documentation
https://www.st.com/en/imaging-and-photonics-solutions/vl53l1x.html#documentation




9
Teleoperating a Raspberry Pi 
Pico Robot with Bluetooth LE

We intend for the robot we are building to be mobile. We already have the robot driving on the floor 
and able to sense and respond to its surroundings. However, we either rely on it blindly or are tethered 
to it with a laptop. Neither is quite what we want. What if we could get feedback while it’s untethered 
and roaming the floor?

In this chapter, we’ll see how Bluetooth Low Energy (LE) is well suited to this task, allowing us to get data 
from the robot, use an app to graph data, and even remotely control our robot from our smartphone!

In this chapter, we will cover the following main topics:

• Wireless robot connection options

• Connecting Bluetooth LE to Raspberry Pi Pico

• Making a Bluetooth LE sensor feed on Raspberry Pi Pico

• Teleoperating the robot with Bluetooth LE

Technical requirements
This chapter requires the following:

• The robot from Chapter 8, Sensing Distances to Detect Objects with Pico

• An Adafruit Bluefruit LE UART Friend ADA2479

• 1 x eight-way single-row 2.54-mm header (included with the module)

• 5 x male-to-female jump wires with a 2.54-mm DuPont connector

• Access to an Android or iOS smartphone

• Velcro hook and loop dots
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• The code from previous chapters

• A Raspberry Pi Pico code editor such as Mu or Thonny

• A USB micro cable

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-09.

Wireless robot connection options
So far, we’ve been working with the robot tethered to our computer. We send code to it and use the 
REPL tools to see what it is doing or printing out. While the REPL tools can be convenient, having a 
wire between the computer and the robot is not so convenient and limits how far the robot can drive 
or has you running behind it with the laptop. The following diagram shows how we could do things:

Figure 9.1 – Robot connections

The top part of the diagram shows things tethered with a wire. But the bottom part shows that the 
computer and the robot are not physically wired together. Instead, they are using wireless to send 
data to each other.

Once we are wireless, we can also consider a smartphone coming in as an alternative item. We can use 
a wireless medium to send data from the robot’s sensors or code to see what is going on and monitor 
it. We can also send control signals to take control and drive our robot.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-09
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-09
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There are several different wireless protocols we can use. All require our robot to have a transceiver 
– transmitter and receiver – board.

While some robot controllers, such as Raspberry Pi 4, have onboard transceivers, Raspberry Pi Pico 
does not. Therefore, we will need to add a breakout. In addition, they come with different protocols 
and different implementations of those protocols.

Which transceiver boards might we choose and why? The following table shows the comparison:

Table 9.1 – Transceiver modules for Pico

In the preceding table, I’ve picked boards that come with onboard software stacks, reducing the 
amount of code we need. We are less concerned with speed as we don’t intend to send camera data; 
however, latency is important as we want our robot to respond quickly to commands and send up-to-
date sensor data.
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Support is important – we want to choose modules with good support from their vendors and the 
community. For example, Adafruit has excellent support and documentation for their modules, with 
online communities on Discord and other forums and all their code available on GitHub, which gives 
their modules a lot of credibility over cheaper and less well-supported options.

An honorable mention must go to Raspberry Pi Pico W – a Pico with an onboard Wi-Fi chip. This has 
excellent support from the Raspberry Pi community. It has the added complexity of requiring you to 
serve up a graphing web frontend, however it may make a very good alternative.

The HM-10 modules are widely available and may even be super cheap, but their unusual protocols 
mean connecting with them needs more code.

The choice with the most going for it here is the Adafruit Bluefruit LE board. It has low current usage 
and is small. There is a Serial Peripheral Interface (SPI) and a Universal Asynchronous Receiver/
Transmitter (UART; defined in more detail as follows) version of this board. Bluetooth LE is a 
low-energy variant of Bluetooth, ideal for short-range communications between devices such as a 
robot and a controller. It has a range of up to 100 m. Bluetooth LE has two-thirds of the data rate 
compared to regular Bluetooth but consumes half the current when active. Smart software profiles 
allow it to frequently use low-power modes, and rapidly wake up when needed.

UART doesn’t need much configuration and only uses two wires (as opposed to the three or more 
wires SPI or I2C uses). There is no clock line (just an agreement on speeds) and no address, just 
one-to-one device communication. We have already been using a USB-based UART to communicate 
with Raspberry Pi Pico.

We will use the Adafruit Bluefruit LE UART Friend board for simplicity in our project.

It is widely available through Adafruit directly or through distributors such as Pimoroni and 
Mouser Electronics.

Adafruit Bluefruit is an ecosystem of Bluetooth LE-based development boards, so there’s lots of 
compatible code. In addition, it works with computers and phones that have built-in Bluetooth LE 
transceivers, and Adafruit makes apps for both computers and phones to communicate with them. 
These apps will save us time, as other solutions require you to build your apps.

We now know which module we will use. So we can make use of it, let’s take the Bluefruit LE UART 
board and connect it to our robot!

Connecting Bluetooth LE to Raspberry Pi Pico
The Bluefruit LE UART Friend is relatively simple to wire in. First, the module will need headers 
soldered onto it, and then we can look at how to attach it to the robot physically and how to wire it. 
We will then connect to it from our robot and a smartphone.
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Adding Bluetooth LE will result in our robot having a block diagram as follows:

Figure 9.2 – Robot block diagram with Bluetooth

The preceding diagram shows the robot blocks with the additional Adafruit Bluefruit LE UART Friend 
(marked as a Bluefruit module) connected via UART to Raspberry Pi Pico.

Solder a set of male headers onto the board using the same techniques used for the modules in 
Chapter 8, Sensing Distances to Detect Objects with Pico.

Attaching the Bluetooth module to the robot

We want to place the module above devices that are most likely to restrict and interfere with the 
Bluetooth. We created a breakout shelf in Chapter 7, Planning and Shopping for More Devices, for 
this purpose.

The following photo shows how the headers should be attached:
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Figure 9.3 – Adafruit Bluetooth LE UART Friend with headers

The previous figure shows the device with the headers. They should be soldered so they are standing 
above the pin names, facing the same way as the switch. The switch should be in UART mode.

We want the attachment to be good enough not to slide around or stick out awkwardly due to cable 
tension. You could make a more permanent connection by drilling the appropriate holes in the shelf, 
but a convenient way for quick prototype platforms is to use Velcro (hook and loop) dots. Look at 
the following photo:

Figure 9.4 – Bluefruit module Velcro connection
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The previous photo shows the Bluetooth breakout module with a Velcro dot ready to attach to the 
Velcro dot already attached to the robot’s shelf.

The Velcro gives us a convenient way to attach/detach the module without it sliding off.

Next, we need to wire the Bluetooth breakout into Raspberry Pi Pico.

Wiring the Bluetooth breakout to Raspberry Pi Pico

Wiring the Adafruit Bluefruit LE UART Friend module requires only five wires. The following photo 
shows the connections you will need:

Figure 9.5 – Connecting the Bluefruit LE module to Pico

The preceding diagram shows, as a schematic, the connection between the Bluefruit module and 
Raspberry Pi Pico.
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First, connect the module to power and ground, with the VIN going to 3.3V power. Next, the CTS 
pin needs to be connected to ground to send and receive data via UART. The next figure shows how 
the TX and RX pins interact:

Figure 9.6 – Transmit and receive pins

Pay close attention to the transmit and receive pins (shown in Figure 9.5) on the UART. TX (transmit) 
on one device always goes to RX (receive) on the other. The most common wiring failure is to confuse 
these pins.

Connect the RXI (receive input) pin on the Bluefruit to PIN12, the TX (transmit) pin 12 on Pico, and 
TXD (transmit data) from Bluefruit to the RX pin 13 on Pico.

You should have now made five connections. The Bluetooth LE device is ready to turn on. Let’s try 
some code to connect to it over UART.

Connecting to the Bluefruit LE device with UART

Now we have the board connected and a smartphone ready to talk to it, how can we get our Raspberry 
Pi Pico to communicate? Let’s start by making a Hello Bluetooth app.

Create a folder named bluetooth-hello-world. In a slight departure from our previous 
examples, we can name the main file code.py, and we only need to drag and drop the content of 
our example folders onto the CircuitPy volume.

We start bluetooth-hello-world/code.py with imports for the board, and busio, which 
has code for the UART bus:

import board

import busio
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We then use the IO pins from board to create a UART object:

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)

Note that we could have multiple UARTs on different pin combinations for other sensors and devices. 
We have specified the baud rate, the rate at which the signal changes per second. 9600 is the default 
for this device, as specified in its datasheet.

We can use this in a loop to check for any input – this is how we know something is connected:

while True:

    if uart.read(32) is not None:

        uart.write("Hello, Bluetooth World!\n".encode())

In every loop, we try reading up to 32 bytes. If we get anything (it’s not showing None), then we 
respond with a hello message. The uart.write method sends bytes, not strings, so we must 
encode the string to send it. Also, note the \n character at the end – this is a new line in the output.

Copy this over to Pico, and it will now be running, waiting for something to connect. So, let’s connect 
something to our Pico via Bluetooth LE!

Connecting a smartphone

A smartphone makes a great client to connect to the robot and see what is going on. You can use an 
Android/iOS smartphone to connect to the Bluefruit by finding the Bluefruit LE Connect app on the 
app store appropriate to that phone.

This app is free. Alternatives are available at https://learn.adafruit.com/introducing-
the-adafruit-bluefruit-le-uart-friend/software-resources, including desktop 
apps with similar functionality.

Load the Bluefruit LE Connect app. The following screenshots show what you’ll see:

https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/software-resources
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/software-resources
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 Figure 9.7 – Connecting to Bluetooth LE UART devices

In the preceding screenshots, the panel on the left shows the app. With your robot powered on and 
the Adafruit Bluefruit LE connected, you should see the device in the list on the app. There may be 
many Bluetooth devices; you can turn on the Must have UART Service toggle to filter these. You can 
then click the Connect button to connect to the device.

When doing so, you should see a solid blue light on the Bluefruit board on the robot. You will also 
see the screen on the right. Bluefruit LE Connect may ask you to perform an update on the Bluetooth 
device; if so, please follow the onscreen instructions and accept this before proceeding. This may take 
a short while.

Click the UART button in the menu to send and receive data. You should see screens like those shown 
in the following screenshot:
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Figure 9.8 – Interacting over Bluetooth UART

The UART screen, shown in the preceding screenshot, lets you interact with and see output from the 
module. The left panel shows me typing hello. Try this yourself and hit the Send button to send 
data to the module – our code will respond when you send something to it.

The right panel shows the robot responding with the message. It may take around a second to respond 
here. It may send the message twice if you send more than 32 characters.

You should now be in contact with the module. If not, try the following troubleshooting steps.
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Troubleshooting the Bluefruit module

The following should get you up and running:

• When it is powered up, there should be a red light on the Bluefruit module. If not, disconnect 
the power immediately and verify the power (3.3V) and ground wiring.

• You should see a solid blue light when you connect to the Bluefruit device from the smartphone. 
If not, verify that you have connected to the correct device.

• If you cannot see the Hello, Bluetooth World! message, please verify that the TX and 
RX wiring is correct; reversing them is a common issue with the wiring.

You should now have this module connected and able to send data from the robot to a listening device. 
Let’s make use of this to send sensor data.

Getting sensor data over Bluetooth LE on Raspberry Pi 
Pico
So far, you’ve tested the sensor-based examples, seeing their output in the console by connecting your 
laptop to it. However, building on our hello world example and the distance sensing in Chapter 8, 
Sensing Distances to Detect Objects with Pico, we can not only see the sensor output over UART as text 
but also plot in in a graph. So, let’s get into it.

We’ll put this code in a folder named bluetooth-distance-sensors. Copy in the robot.py  
and pio_encoder.py files. We will add code.py. Let’s start with the imports, combining the 
sensors and bus setup:

import board

import time

import busio

import robot

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)
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With the UART now prepared, we can prepare the sensors:

robot.left_distance.distance_mode = 1

robot.left_distance.start_ranging()

robot.right_distance.distance_mode = 1

robot.right_distance.start_ranging()

We’ve set both sensors ranging and in the correct mode. We can now start a loop and fetch the sensor data:

while True:

    if robot.left_distance.data_ready and robot.right_distance.
data_ready:

        sensor1 = robot.left_distance.distance

        sensor2 = robot.right_distance.distance

We wait until the data is ready before fetching the distance, and we store the distance from both 
sensors. We can now send the data to the UART:

        uart.write(f"{sensor1},{sensor2}\n".encode())

We use an f-string to format the data from both sensors into one line, separated by a comma. We must 
also include the end-of-line, \n, character again and encode it into bytes.

We must then ensure the sensors on the robot are ready to take another reading:

        robot.left_distance.clear_interrupt()

        robot.right_distance.clear_interrupt()

We can wait for a little time before trying again. Add the following code outside the if block but 
inside the while loop:

    time.sleep(0.05)

This sleep completes the code for this example. As an overview, this loop will read the sensors, send data 
when it has a reading, and then send this over the UART, and it will sleep for a little time and go again.

If you copy this code to the robot and connect the phone with the UART menu option, you will be 
able to see the two numbers vary as you move things in front of the sensors. The following screenshot 
shows an example:
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Figure 9.9 – The sensor output as text

The previous screenshot shows how the data is output as plain text numbers. You can disconnect the 
computer and put the robot on independent battery power, and you should still be able to connect 
to it and see the sensor readings.

This data feed is great as we have a remote view of the robot. However, we can now go one better and 
graph this data.

Graphing the data

The phone app has the built-in ability to graph data in comma-separated format. We can use this for 
the output of numeric data to quickly visualize what is going on.
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From the UART screen, click on the back button to go back to the options menu for this connection. 
Then, click the Plotter button to access the plot mode.

The following screenshots show how to do that:

 Figure 9.10 – Enabling graphing

The preceding screenshots show how to access the graph functionality and an example sensor data graph.

The app will use any comma-separated numeric data, and I’ve tested it with six columns of data so 
far. If the output seems patchy, please ensure you allow the app to make an over-the-air update of the 
Bluetooth device, as this significantly improves the throughput.

We’ve seen how to get robot sensor data and use it to plot what is going on with the sensors. However, 
we might also want to use our Bluetooth services to take control of the robot. Let’s see how in the 
next section.
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Controlling the robot with Bluetooth LE
Bluetooth LE is a two-way medium. In this section, we’ll see how to receive data from the UART and, 
better yet, how to decode that data into control signals. By the end of this section, you’ll be able to 
drive your robot with a smartphone!

Printing what we got

Before we try to decode control packets, let’s just make a simple app to echo whatever shows on the 
Bluefruit UART out onto the Raspberry Pi Pico console.

Put the following code in bluetooth-print-incoming/code.py. We start by importing 
and setting up the UART port:

import board

import busio

uart = busio.UART(board.GP12,board.GP13,baudrate=9600, 
timeout=0.01)

print("Waiting for bytes on UART...")

The one difference here is that I’ve added a short timeout. Without the short timeout, the port will 
wait a full second for the number of bytes read. You might have noticed with the Hello world example 
that it took a second before you got the output, and this will be why. We want to get control data as 
soon as possible. There’s also a print statement, so we know it’s ready.

Now we have the main loop:

while True:

    if uart.in_waiting:

        print(uart.read(32))

This loop reads data from the port. First, it checks whether there is data waiting, then tries to read up 
to 32 bytes and immediately prints what we got, then tries again.

If you go back to the UART menu option in the phone app, you will be able to type messages on the 
phone and see them appear in the Pico console:
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Figure 9.11 – Echoing incoming Bluetooth UART messages on the Pico console

Figure 9.11 shows a screenshot of the phone on the left, ready to send a message. The screenshot on the 
right shows the message appearing in the Raspberry Pi Pico console. Notice the b prefix. This prefix 
means it’s a raw byte message. We will be able to extract our button data from this.

In the next section, let’s see how the smartphone app can use this for control.

Button control mode

On the phone app, there were several different menu modes for interacting with the robot. One of 
these is Controller mode. The following screenshots show how this looks:
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Figure 9.12 – Bluefruit app Controller mode

The screenshots show the controller mode. The leftmost screenshot shows the initial Controller app 
screen; from this, we pick Control Pad.

The screenshot in the middle shows the control pad. In this screenshot, on the left is a directional pad, 
and on the right is a set of numeric buttons. We can send both signals to the robot.

The third, rightmost screenshot shows how the control signals look when printed. This output looks 
like some strange text, but that is because it is data encoded into a data packet. A packet is a chunk 
of data on a bus.

These control signal packets encode the button that changed and whether it was pressed or released. 
Try pressing a button now with the print-incoming app, and you will see a set of control codes. 
They aren’t particularly human-readable, so we’ll need to decode them.

Let’s make some code to detect and decode button control packets.

Decoding button control packets to drive the robot

Adafruit has a library for specifically handling and decoding these packets. Copy the adafruit_
bluefruit_connect folder from the CircuitPython bundle into your Pico at CIRCUITY/lib.
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We can import this into our code and use it to drive the robot. Create a folder called bluetooth-
teleoperation on your computer. Copy the most recent robot.py and pio_encoder.py 
files into this. We’ll start a code.py file with the imports:

import board

import time

import busiofrom adafruit_bluefruit_connect.button_packet

import ButtonPacket

import robot

uart = busio.UART(board.GP12,board.GP13,baudrate=9600, 
timeout=0.01)

The imports are mostly familiar, but we’ve added the button packet type so we can decode control 
pad buttons. We also set up the UART to receive data.

The keys send a keypress and key release. What we don’t want is for the robot to receive nothing from the 
phone and keep driving, so we will have a stop time. We are also going to set an overall driving speed:

stop_at = 0

speed = 0.8

We can now get into the app’s main loop. The first thing we’ll do is check for waiting data, and if there 
is some, decode it as button presses:

while True:

  if uart.in_waiting:

    packet = ButtonPacket.from_stream(uart)

The from_stream function will decode a button packet directly from the UART. It frees us from 
considering the byte size of that packet by trying to read the right number of bytes.

If we have a packet, we can check whether the button was pressed or released and ensure we stop the 
robot if it is released:

    if packet:

      if not packet.pressed:

          robot.stop()

      elif packet.button == ButtonPacket.UP:

        robot.set_left(speed)

        robot.set_right(speed)

      elif packet.button == ButtonPacket.DOWN:

        robot.set_left(-speed)
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        robot.set_right(-speed)

      elif packet.button == ButtonPacket.LEFT:

        robot.set_left(-speed)

        robot.set_right(speed)

      elif packet.button == ButtonPacket.RIGHT:

        robot.set_left(speed)

        robot.set_right(-speed)

The preceding code first checks whether you’ve pressed the button. We then started matching the 
button code with different buttons and changing motor speeds to drive or turn depending on which 
you pressed.

Next, we need to consider timeouts. If we have pressed a button, we should reset the timeout, and in 
the outer loop, we should check the timeout:

      stop_at = time.time() + 3

  if time.time() > stop_at:

    robot.stop()

At the end of the if packet block, we add 3 seconds to the current time; this will be when we time 
out. Then, at the bottom of the while loop, if we’ve passed the stop_at time, we stop the robot.

Copy this over to CircuitPython on Pico, and you will now be able to use the buttons to drive the 
robot. You can disconnect it from the computer, turn on battery power, and drive it.

You can now use control pad buttons to drive the robot. Press and hold a button and it will drive for 
up to 3 seconds without a further keypress; you’ll need to press multiple times to drive further. This 
3-second timeout is a compromise between ensuring it doesn’t run away and making it fun to drive.

Troubleshooting

If the robot is not responding and you have been through the previous examples, try this 
troubleshooting method.

In code like this, adding print statements will help. When you have the robot connected to the 
computer, you can just use print. Otherwise, use uart.write(message.encode()). Try 
adding these before the while loop starts and in places where the code handles buttons.
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By printing before the while loop, we know our code started (if not, we can connect it to the computer 
to look for error messages). Likewise, we can tell that button signals are being decoded by printing 
when it handles buttons.

Printing like this lets us narrow down where the problem is. By checking the lines around any output 
we fail to see, we can see what might be incorrect or whether there is wiring to verify.

You should now have a remote-controllable robot!

Summary
In this chapter, we have seen how to hook a Bluefruit LE transceiver to our robot and then use it to 
send and receive data. We’ve seen the robot data go to a smartphone and data go from a smartphone 
back to Pico on the robot.

We then took this up a level and sent formatted data to plot sensor information on the phone, allowing 
us to remotely visualize the robot’s state.

Finally, we used the smartphone app to control and drive the robot. In the next chapter, we will look 
at the PID algorithm, a neat way to tie sensor data and outputs together in a feedback loop, and we’ll 
use our new remote data plotting ability to tune it!

Exercises
These exercises let you extend the functionality of your robot code and deepen your understanding 
of the topics:

• In the Bluetooth control app, there are four numeric buttons. Could you extend the control 
program to use these to control the robot’s speed?

• The Bluetooth control pad app also has a little window to show messages. Try sending messages 
back from the robot code to the app to show in this window.

• Could you use the plotting code with the encoder counts and plot these? Perhaps divide their 
total counts by elapsed time in the code, or reset the encoder counts and reread them to plot 
a rate per second.
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Further reading
• Adafruit’s great support for the Bluefruit UART LE Friend includes a product page with dimensions 

– https://www.adafruit.com/product/2479. In addition, they have content on 
the Adafruit learn website at https://learn.adafruit.com/introducing-the-
adafruit-bluefruit-le-uart-friend/, including material on more ways to connect 
and use the device, complete datasheets and specifications, along with additional software.

Adafruit also has a #help-with-radio channel on their Discord with a community that 
specifically helps with problems, questions, and ideas about their transceiver modules.

• For further information on Bluetooth LE, check out Building Bluetooth Low Energy Systems by 
Muhammad Usama bin Aftab. This book has a detailed dive into wireless network communication 
systems suitable for use in Internet of Things (IoT). IoT concepts translate well into robotics.

https://www.adafruit.com/product/2479
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/
https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/


Part 3: Adding More  
Robotic Behaviors  

to Raspberry Pi Pico

Now that we’ve seen some sensors, we can add more interesting robot behaviors. We will learn robot 
algorithms to make more use of the distance sensors and encoders. Then we introduce the Inertial 
Measurement unit. Finally, we will look at how to use the sensors to locate a robot in a known space.

This part contains the following chapters:

• Chapter 10, Using the PID Algorithm to Follow Walls

• Chapter 11, Controlling Motion with Encoders on Raspberry Pi Pico

• Chapter 12, Detecting Orientation with an IMU on Raspberry Pi Pico

• Chapter 13, Determining Position using Monte Carlo Localization

• Chapter 14, Continuing Your Journey – Your Next Robot





10
Using the PID Algorithm  

to Follow Walls

We built a robot with multiple sensors and used distance sensors in Chapter 8, Sensing Distances to 
Detect Objects with Pico. We can use smarter algorithms with these sensors to make smoother behaviors.

In this chapter, we will investigate the PID algorithm, building its stages into something that will 
follow objects, then turning that into something that will follow a wall. We will use our new ability to 
graph over Bluetooth to tune the settings and get a smooth result. 

In this chapter, we will cover the following main topics:

• Introducing the PID algorithm

• Using a PID to follow a wall

• PID tuning – using graphs to tune the PID

Technical requirements
You will need the following items for this chapter:

• The robot and code from Chapter 9, Teleoperating Raspberry Pi Pico Robot with Bluetooth LE

• An open space with room to move, and objects suitable for following

• An Android/iOS device with the Bluefruit app

• A hand screwdriver with a 2 mm bit

• Digital calipers

• A pencil

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-10.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-10
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-10
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Introducing the PID algorithm
In this section, we will introduce the different parts of the PID algorithm while building on what you 
have already seen.

Control and feedback

Controlling robot systems generally depends on feedback loops like the following one:

Figure 10.1 – Control and feedback loop

The preceding figure shows data from the sensors going into a control algorithm. The algorithm 
controls the motor as its output. The motor will cause the robot to move. This movement leads to a 
feedback loop as the sensor reading changes and goes through the cycle again. This concept is known 
as closed-loop control.

This closed-loop lets the robot interact with the real world, adjusting its behavior to produce the 
desired result.

We built a simple system like this for our distance sensors. We’ll look more closely at that system next.

Bang-bang control

In the examples provided in Chapter 8, Sensing Distances to Detect Objects with Pico, the system compared 
the distance sensors on our robot against a threshold. For example, look at the following diagram:
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Figure 10.2 – Bang-bang motor control

Figure 10.2 summarizes bang-bang control. This control system has two modes. If the actual measurement 
is above the expected value and too far away, it will drive forward; otherwise, it assumes that it is below 
the value and too close and will drive backward. It will always drive in one of the directions and at a 
fixed motor power. Controlling with only a fixed power is known as constant correction.

This method is simple and suitable in some situations, but occasionally, something smoother is needed. 
What if we wanted the robot’s motor power to change depending on how far away it is from the object? 
We’ll need to calculate an error value, as shown in the following diagram:

Figure 10.3 – Calculating an error value

Figure 10.3 shows how we calculate the error value. By subtracting the actual value from the expected, 
we will get the error. This error will change in magnitude, depending on how different things are, and 
change in direction, depending on which side of the expected measurement the actual measurement falls.

If we multiply this error by some value, this could be turned into a motor speed, such that a higher 
magnitude error will lead to a larger motor movement. This process will form the feedback control 
loop shown here:
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Figure 10.4 – A proportional feedback loop

Figure 10.4 builds upon Figure 10.1, feeding an error value through a multiplier (or gain) to calculate 
the motor speed, which moves the robot. Robot movement feedback changes the sensor reading. With 
the right gain value, this robot will slow down as it approaches the object.

Multiplying the error value to control the output like this is known as proportional control, which 
is one part of the system we are building. The amount by which we multiply the error is known as 
the proportional gain.

At this point, I think we are ready to write the code for this.

Distance sensing with proportional control

In this section, we’ll write code to approach an object and maintain the expected distance from 
the object. Create a folder on the host named proportional-distance-control. We’ll 
copy the content of this folder into the top directory on the Pico. We can also copy the robot and 
pio_encoder files there.

Add a code.py file, starting with imports and enabling the UART:

import time

import board

import busio

import robot

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)

Now, we can add our proportional controller as a class:

class PController:

    def __init__(self, kp):
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        self.kp = kp

   def calculate(self, error):

        return self.kp * error

This code lets us make proportional controller (PController) objects with a proportional gain, 
kp. We can call the calculate method with an error value to get the control value.

Let’s set up a sensor:

robot.right_distance.distance_mode = 1

robot.right_distance.start_ranging()

distance_set_point = 10

distance_controller = PController(-0.1)

We make a set point of 10 cm for our expected distance. Then, we have our distance_controller, 
which is using the PController object. 

When our robot is further away, we need to drive forward, so we need to use a negative proportional 
gain. The motor speeds are between -1 and 1, so -0.1 will reduce the distance by a tenth and negate it.

The main loop will only check the PController when there’s a new distance reading:

while True:

  if robot.right_distance.data_ready:

    distance = robot.right_distance.distance

We can use this with the set point to calculate the error and feed it into the proportional controller:

    error = distance_set_point – distance

    speed = distance_controller.calculate(error)

    uart.write(f"{error},{speed}\n".encode())

While we’re here, we can send the numbers to the UART (so that we can plot them). We have a speed 
from the error. Now, we can send this speed to both motors:

    robot.set_left(speed)

    robot.set_right(speed)

Finally, we must reset the sensor for another reading and delay it a little:

    robot.right_distance.clear_interrupt()

    time.sleep(0.05)
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Send this code to the robot. If you place an object in front of the robot, it will find and hold a position 
about 10 cm from the object. You should also be able to plot the output. 

The motors here may be beeping a lot; this is not good for them and will make them hot. We can use 
code to establish a dead zone, where we expect the control output to be too small for the motors to 
respond and turn them off instead.

Add the following code after the speed calculation to stop the beeping:

    if abs(speed) < 0.3:

      speed = 0

This code uses abs to get the magnitude of the speed only. If the magnitude is below 0.3, it sends a 
0 instead. I found 0.3 experimentally, but this may be different on your robot.

Before continuing, you should test this on the robot and check the next section if this behavior did 
not try to find the distance to the object.

Troubleshooting

The following are some solutions to try if you aren’t getting the follow behavior to work:

• First, check the distance sensor functionality using the Chapter 8 code. Then, verify the sensor 
and motor connections.

• If the robot is driving the wrong way, reverse the proportional constant.

There is a problem where this robot may get close to the right place but leave a gap for small distances. As 
a result, it might not generate a speed large enough to move the motors. In the next section, we’ll see why.

Using the integral to handle small distances

The following graph shows a small error remaining after activity:

Figure 10.5 – Small remaining error
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The preceding figure shows a graph of the error and motor output versus time. The error line varies by 
up to 10 units. The motor graph is more flat. This line is between 0 and 1 and in the opposite direction, 
as expected from the proportional experiment. The graph is divided into two portions. Portion A 
shows the robot moving as we move an object closer and further away, with the motor responding. 
In portion B, we gradually move the object, creating a small error of -1. This small error results in a 
speed of 0.1, which is insufficient to move. 

What we have is a steady-state error. The system has not converged on the set point and will not act 
further to reduce the error.

This situation is where the integral element is useful. The integral is equivalent to an area under a 
graph. Look at the following graph for an example:

Figure 10.6 – Plotting the integral

This graph has two elements. The bars represent the error value from the previous graph, approximated 
as discrete time steps. Then, there’s the thick line over this, which represents the integral. While the 
graph varies, the integral varies perhaps a little later. However, when it reaches a steady state, the graph 
starts to pull downwards continuously.

If we take this and multiply it by another small constant, we can cause the motors to move a little to 
iron out a steady-state error. We call this the integral gain, or ki. The following diagram shows the 
control system with the integral term:
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Figure 10.7 – The feedback loop with the integral

The preceding diagram shows the feedback loop control system with the integral added – this box 
shows I * ki, the integral multiplied by an integral gain. It feeds into the motor speed, which is added 
to the proportional output. The integral is given the same error term as the proportional element.

The integral will store the area of the error graph seen until this point. This would be the area under a 
graph. How do we calculate the area? We can take each error and multiply it by the time interval during 
which it was produced. Adding this to a running total represents a good approximation of the area.

The following code extends the previous example.

Let’s update the PController code so that it’s a PIController class:

class PIController:

    def __init__(self, kp, ki):

        self.kp = kp

        self.ki = ki

        self.integral = 0

In the preceding code, we added ki as an integral gain to scale our integral. We also store an integral 
total, starting at 0.

Important Note
Prefixing gain constants like these with k is due to them being treated as constants by the PID 
algorithm, but the outer code can tune these. So, mathematically, this is a constant, but not a 
constant in the code.
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Then, we must change the calculate method:

    def calculate(self, error, dt):

        self.integral += error * dt

        return self.kp * error + self.ki * self.integral

calculate now adds the error to the integral, which means the integral will continue moving in 
the error direction. However, we will multiply this by the elapsed time (or delta time, dt), so that a 
longer interval between measurements will result in a larger area. The last line multiplies the current 
integral by the integral gain.

We’ll need to set the integral constant when we create the controller:

distance_controller = PIController(-0.19, -0.005) 

The values of –0.19 and –0.005 work for my robot. We will learn how to tune these later in the 
chapter. The integral constant should be negative in this case and small. Larger values will cause 
overshoots, and the system will go back and forth (oscillate).

We can now alter the main loop:

prev_time = time.monotonic()

while True:

  if robot.right_distance.data_ready:

    distance = robot.right_distance.distance

    error = distance_set_point – distance

    current_time = time.monotonic()

    speed = distance_controller.calculate(error, current_time - 
prev_time)

    prev_time = current_time

    if abs(speed) < 0.3:

      speed = 0

    uart.write(f"{error},{speed},"

      f"{distance_controller.integral}\n".encode())

    robot.set_left(speed)

    robot.set_right(speed)

    robot.right_distance.clear_interrupt()

    time.sleep(0.05)

The highlighted changes start with the time delta calculations. We keep a previous time (prev_time) 
so that we can subtract this from current_time later and feed this time difference into the controller 
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with the error. Next, we store current_time in prev_time so that we are ready for the next 
loop. The time.monotonic function provides a time in seconds with fractions, guaranteeing that 
subsequent calls cannot return a lower value.

We also send the current integral value to the UART to plot it. Send this code to the robot:

Figure 10.8 – Oscillation versus smaller integral

In Figure 10.8 (a) the screenshot shows an error with a large integral gain. This rise makes the motors 
move and carry on while the system overshoots, until the integral flips the other way - this causes 
oscillation. In Figure 10.8 (b) the integral gain is much lower, so the integral must reach a higher 
value before it creates a change. The motors respond to the proportional change first, but the integral 
makes a slight adjustment later. This setting may still oscillate a tiny amount, but the oscillations will 
be slow and subtle.

Note that when the robot corrects the steady state and the error reaches zero, this doesn’t reduce 
the integral.

Important Note
Stop the code (or robot) if the wheels/motors are not moving the robot forward, and restart the 
code when the wheels are in contact with the floor or motors are turned on (they are on battery 
power only). Otherwise, the system can build up a large integral and will ram the next object 
placed in front of it. This problem is known as integral wind-up and can be a big problem if 
you do not account for it.

Some overshoot here is inevitable, but the system is reacting to steady-state errors. This PI controller 
will work, but if you move the target object quickly, you may still be able to induce oscillation. How 
can we dampen that? We’ll see how in the next section.
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Dealing with oscillations using the derivative

Oscillations are made due to sudden state changes, creating a large reacting output, which can cause 
a large change of state in the opposite direction. This may repeat on either side of the set point. The 
state change is equivalent to a slope on a graph at any point.

The following graph shows a varying value, with the slopes marked at a few points:

Figure 10.9 – Slopes on a graph

The preceding graph shows an error PID response settling. Along the graph are dots, with dashed 
lines showing the slope. The derivative represents this slope at any point.

The essential factor is that when there is a steep change in the error, there is a steeper slope. This slope 
value is the derivative. It represents the rate of change in our system. Using this value with a gain can 
reduce overshoot, dampening the system. So, we could add this along with the PI components and 
dampen the movement a little.

However, before we do that, there is another issue: the output from the distance sensors is a little noisy. 
The following zoomed-in view shows noise on the sensor when the robot is not moving: 

Figure 10.10 – Noise from the sensor
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The preceding screenshot is enlarged to show the sensor data noise. One of the lines is frequently going 
above or below the line. This noise is slight but makes many fast changes in the slope.

Using the derivative directly with this noise may cause our robot to produce large movements. To 
reduce this, we will use a low pass filter in front of the integral. This only allows sustained error 
movements in, filtering out the constant jiggle of noise.

Let’s see this as a feedback control diagram:

Figure 10.11 – Feedback flow for the PID controller

Figure 10.11 extends Figure 10.7 by adding two additional blocks. First, the error splits through a 
block labeled LPF – this is a low pass filter, with a stylized frequency graph showing how this tails off 
for higher frequencies. The LPF block feeds into the next block – the derivative multiplied by a kd 
derivative gain. This block has a stylized graph showing the slope lines. The derivative output is then 
added to the other PI outputs to make the motor speed signal.

Now that we have seen how this operates, let’s modify the code, starting with the PID class:

class PIDController:

    def __init__(self, kp, ki, kd, d_filter_gain=0.1):

        self.kp = kp

        self.ki = ki

        self.kd = kd

        self.d_filter_gain = d_filter_gain

        self.integral = 0

        self.error_prev = 0
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Here, we add two additional construction parameters to the PIDController class – a derivative 
gain, kd, and a derivative filter gain. We also store a previous error to calculate the difference from 
the current error. The calculate function also changes:

    def calculate(self, error, dt):

        self.integral += error * dt

        difference = (error - self.error_prev) * self.d_filter_
gain

        self.error_prev += difference

        self.derivative = difference / dt

        return self.kp * error + self.ki * self.integral + 
self.kd * self.derivative

We need the difference between the current error and the previous error. We multiply this difference by 
the filter gain, and add this onto the previous error. This means that the error changes by a smoothed 
out amount and sets us up for the next calculation. 

The next line divides this difference by the change in time, to get the rate of change. We store this in 
self.derivative so that we can graph this term later. Finally, we multiply self.derivative 
by the d gain (kd) and add this to the calculations.

The PID controller is now complete. We can make this reusable by moving the PIDController 
class into a pid_controller.py file.

The code.py file can use pid_controller like this:

import time

import board

import busio

import robot

from pid_controller import PIDController

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)

robot.right_distance.distance_mode = 1

robot.right_distance.start_ranging()

distance_set_point = 10

distance_controller = PIDController(-0.19, -0.008, -0.2)

prev_time = time.monotonic()

while True:

  if robot.right_distance.data_ready:

    distance = robot.right_distance.distance

    error = distance_set_point – distance
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    current_time = time.monotonic()

    speed = distance_controller.calculate(error, current_time - 
prev_time)

    prev_time = current_time

    if abs(speed) < 0.35:

      speed = 0

    uart.write(f"{error},{speed}, {distance_controller.
integral}, {distance_controller.derivative}\n".encode())

    robot.set_left(speed)

    robot.set_right(speed)

    robot.right_distance.clear_interrupt()

    time.sleep(0.05)

The highlighted parts of the code show how this changed from the previous code.py example. 
First, we imported the PIDController class. Then, we swapped our use of PIController for 
PIDController. PID tuning parameters are tuned as we expand on this code. Adding additional 
terms, such as the derivative, will make tuning the others necessary.

We send the error and time difference into the controller calculation to get the speed, then send the 
derivative to the UART to see what our robot is doing and tune the parameters.

With that, we’ve built a PID controller and used it to keep a certain amount of distance from an object. 
We’ll make this into a more dynamic example in the next section.

Using PID to follow a wall
Driving along a wall using the PID algorithm requires a little more coordination. Let’s visualize the 
problem with a diagram:

Figure 10.12 – The robot following a wall
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Figure 10.12 shows how our robot will follow a wall. First, the robot drives forward in the direction 
shown by the solid line with an arrow. We have turned the sensor out so that it can detect the wall 
in its cone (these distance sensors cover around 20 degrees). Based on the return of a close object 
(shown as a dashed line), the robot will adjust its heading to try and keep a constant distance. When 
the robot faces the wall, it will curve outward, and it may overshoot, but also, there is a step change 
in the wall, so the robot will adjust its path and straighten up.

We have a few issues. First, we have put the motors a little forward, and turning the sensor with the 
current placement would have the wheel in the path of the sensor, so we’ll need to move them back. 
Then, we’ll need to make that 90-degree sensor turn. After, we’ll need to use the PID to determine 
how much to change the robot’s heading, a deflection, as the robot drives forward.

Let’s start by making some changes to move the sensor.

Changing the sensor’s placement

We will need to make some changes to our CAD sketches, then use a drawing to drill some holes. 
Note that with the front of the robot facing down in the CAD sketches, the left-hand side of the CAD 
sketch is for the robot’s right-hand side.

The following FreeCAD screenshots show how to make the CAD changes:

Figure 10.13 – FreeCAD sketches for turning the sensor sideways

The left-hand screenshot of Figure 10.13 shows how we move the motor back in the UpperParts 
sketch. First, delete the horizontal constraint between the bottom corner of the motor (shown on 
the left) and the breadboard. Then, add an 18 mm vertical dimension between the same two points. 
Moving the motor back 18 mm gives ample space for the sensor, but it will also mean we can reuse 



Using the PID Algorithm to Follow Walls236

one of the existing holes since the distance between them is 18 mm. In addition, the two motors have 
symmetry constraints so that they will move together. Now, you can close this sketch.

The right-hand side of Figure 10.13 is a screenshot of the sketch for an additional front sensor hole 
at 90 degrees. Import the existing distance sensor holes as external geometry. Then, use construction 
lines to constrain the distance between this hole and the top outer hole so that it is equal to the distance 
between the initial distance sensor holes. Add an equals constraint on the circles and a perpendicular 
constraint between the lines. You can make a similar circle on the other side, although we will only 
use one sensor for this demonstration.

The following figure shows the CAD drawing and parts fitted in new positions on the robot:

Figure 10.14 – The drawing and result of this robot change

The left-hand side of the preceding figure shows the drawing. I’ve marked the new holes, using the 
existing ones as a reference. You will need to detach the motors and sensors to do this – unbolt them 
but leave the wiring connected and put them carefully to one side while doing this. After removing 
the motors, attach one side of the motor bracket and use the hole on the other side of the bracket to 
mark the new hole.

With the distance sensor, remove the inner bolt, then turn it to face out 90 degrees. You can then use 
the inner bolt hole to mark where to drill.

The right-hand side of the preceding figure shows the motor and sensor moved into position. Ensure 
that the connections are still correct. 

This robot is ready for us to write wall-following code on it. Let’s see how.
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Wall-following code

Wall following is an extension of the code we’ve already been working on, with a few key differences. 
First, our robot will drive at a constant speed, but depending on the sensor feedback, it will steer 
closer to/farther from the wall. It can do this by adding a PID output to the speed of one side and 
subtracting it from another.

Start by taking a copy of the previous code example. We’ll make changes to code.py. The imports 
and setup stay the same:

import time

import board

import busio

import robot

from pid_controller import PIDController

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)

robot.right_distance.distance_mode = 1

robot.right_distance.start_ranging()

However, along with the other settings, we must add a base speed for the robot to drive. The distance 
set point should also be further out:

speed = 0.7

distance_set_point = 15

distance_controller = PIDController(0.05, 0.0, 0.0)

We have set up the PID here so that you can tweak its settings.

The main loop gets the sensor data and error in the same way:

prev_time = time.monotonic()

while True:

  if robot.right_distance.data_ready:

    distance = robot.right_distance.distance

    error = distance_set_point - distance

When we calculate the PID, we now store it in deflection, describing how fast we will turn:

    current_time = time.monotonic()

    deflection = distance_controller.calculate(error, current_
time - prev_time)

    prev_time = current_time
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We write this to the UART so that we can plot and debug it:

    uart.write(f"{error},{deflection}\n".encode())

The code uses this deflection by adding it to the right motor speed and subtracting it from the left. 
This deflection should pull us toward the set point, a distance from the wall, while driving forward:

    robot.set_left(speed - deflection)

    robot.set_right(speed + deflection)

Finish by resetting the sensor and sleeping a bit before looping:

    robot.right_distance.clear_interrupt()

    time.sleep(0.05)

You can send this to the robot and start it near a wall, and it may try to follow it. I’ve found a few 
boxes in the middle of the room good as it can drive around them; however, it will likely struggle 
with anything concave. 

The result of this may be unstable, so we’ll need to tune this PID. However, even if unstable, it should 
try to follow the wall, even if it collides.

Troubleshooting

Try these steps if the robot isn’t following or starting:

• First, check the distance sensor wiring; now that you’ve moved it, the wires may have been 
dislodged. Chapter 8, Sensing Distances to Detect Objects with Pico, contains guides on sensor 
wiring if you need to check this.

• Ensure you have a fresh set of batteries – this won’t work well on low batteries.

• If the robot is spinning, put it closer to the wall, and if it is reacting too hard, bring down the 
P value. We’ll tune this more shortly.

You should now have a robot that is kind of following the wall but may be quite unstable or crashing 
somewhat. To make this work well, we’ll need to tune the PID.

PID tuning – using graphs to tune the PID
The PID algorithm is great for responding to sensor input, adjusting for constant errors, and dampening 
out overcompensation with the derivative. The only problem is that getting these three values right is 
tricky. How you tune a PID depends on the system. In our case, for wall following, much of this will 
be on how the robot feels in the situation. This method works for small robots, but there are formal 
methods that require a mathematical model of the system.
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Depending on the situation, we may only use one constant, but for this, we’ll try to use all three. It’s 
also a good practice to change only one gain constant at a time.

We already have graphing for our system on the phone. While we are starting, we’ll only show the error 
and response; we can add other components as needed. The derivative and integral components can 
dwarf the proportional component, and the Bluefruit app does not allow plots with different scales 
on the same graph.

We are also going to add some controls other than graphing. Otherwise, you’ll be plugging the robot 
in to reprogram a lot! So, let’s start with some basic controls.

Controlling motor speed

First, we’ll need the ability to start and stop our motors. Currently, our system starts with motors live 
and running. Turning the motors off or slowing things down will make tuning far less frustrating.

The motor speeds are down to the PWM system. The current PWM settings on our robot have a 
frequency of 500 Hz. This is a little high for DC motors, which means they can stall (stop) at low 
speeds. So, we’ll reduce the motor PWM frequency. In robot.py, make the highlighted changes 
on the matching lines:

motor_A1 = pwmio.PWMOut(board.GP17, frequency=100)

motor_A2 = pwmio.PWMOut(board.GP16, frequency=100)

motor_B1 = pwmio.PWMOut(board.GP18, frequency=100)

motor_B2 = pwmio.PWMOut(board.GP19, frequency=100)

In code.py, we will modify our system to allow motors to be turned off:

prev_time = time.monotonic()

motors_active = False

while True:

  if robot.right_distance.data_ready:

    distance = robot.right_distance.distance

    error = distance_set_point - distance

    current_time = time.monotonic()

    deflection = distance_controller.calculate(error, current_
time - prev_time)

    prev_time = current_time

    uart.write(f"{error},{deflection}\n".encode())

    if motors_active:

      robot.set_left(speed - deflection)

      robot.set_right(speed + deflection)
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    robot.right_distance.clear_interrupt()

    time.sleep(0.05)

Then, we’ll want to add UART control:

  if uart.in_waiting:

    command = uart.readline().decode().strip() 

if checks for waiting commands; if we have one, we read in a line of input and decode it. strip 
removes the line end character.

Now, we can start checking for commands:

    if command.startswith("M"):

      speed = float(command[1:])

This code means we can send the robot an instruction such as M0.7 via the Bluefruit UART app, and 
the straight motor speed will be 0.7.

We also want to be able to activate/deactivate the motors:

    elif command == "G":

      motors_active = not motors_active

      robot.set_left(0)

      robot.set_right(0)

      distance_controller.integral = 0

We can stop or start the motors by sending the G instruction to the robot. This handler toggles the 
motors_active variable. It will always stop the motors. The next loop cycle will turn them on 
only if it’s active, ensuring they stop. 

Finally this resets the integral to avoid integral wind up while the motors are not running. Having 
the integral running while the robot cannot act to counter it is known as integral wind-up and can 
cause big problems.

We can test this with the existing proportional and send it to the robot. You should be able to test the 
instructions from the UART panel in the Bluefruit app:

• G -> Enable/disable robot motors: think Go/Stop.

• M<speed> -> Set the motor speed: this should be between 0.3 and 1.0. It will likely not move 
under 0.3. This will behave incorrectly at negative speeds, and the motor code truncates values 
above 1.0.

Now that you have control of the robot, let’s figure out how to tweak the proportional component.
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The proportional component

The proportional gain constant, pk, is the starting point and is usually dominant in a system. Multiplying 
the error by pk will create the most immediate reaction to a sensor.

We can start by adding code to change the proportional constant:

    elif command.startswith("P"):

      distance_controller.kp = float(command[1:])

This code checks for the input, P<proportional gain>, and uses it in the same way as the motor 
speed. When you type a value, the proportional constant is updated. So, let’s review the state of the 
robot by adding an instruction to inspect these:

    elif command.startswith("?"):

      uart.write(f"P{distance_controller.kp:.3f}\n".encode())

      uart.write(f"I{distance_controller.ki:.3f}\n".encode())

      uart.write(f"D{distance_controller.kd:.3f}\n".encode())

      uart.write(f"M{speed:.1f}\n".encode())

      time.sleep(3)

This handler for ? will print the PID constants and speed settings. The .3f annotation encodes the 
value as a number with 3 decimal places. Because the robot usually outputs the graph values via UART, 
we pause for 3 seconds here. Do not use this command with the motors active.

When we send this to the robot, we have two additional control abilities:

• P0.045 -> Set the proportional gain value to 0.045.

• ? -> Print the current state:

P0.045

I0.000

D0.000

M0.7

Send this to the robot. Before we engage the motors (G), let’s consider a good proportional value. For 
this example, we expect an error between 5 and -5, giving us a range of 10 cm. Corners will go beyond 
this and set the turning at full (saturation, maximum value). With a speed of 0.7, to turn back, we 
would need an output of -1.4. We can divide 1.4 by 10, giving us a starting guess of 0.14. Send P0.14 
to set this and G to start the robot moving.
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This setting is responding but has some oscillation. Use G to stop it. We will use trial and error here 
by halving the P value and trying again. We can test this and use two rules:

• If the robot is oscillating too much, divide the value by 2.

• If the robot responds too slowly, multiply by 1.5 (the value between here and the previous one 
is high).

This method lets us home in on a value. When you find values that you like, you can put them back 
into code.py to keep for later. Use ? to see the last P setting you had.

The following screenshot shows how this looks on the graph output:

Figure 10.15 – Proportional response
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The preceding phone screenshot shows a graph with only a proportional response. The X axis specifies 
the time in seconds. The Y axis is the distance in cm for the error, but more arbitrary for the output 
value. The error has a higher range in tens of cms. The robot is driving around some obstacles. The 
huge swings are when it reaches a corner and drives around it. The blue line shows the PID output 
and the deflection. The deflection scale is usually below 1, but the large swings will take it above 
that. Motor speeds are clamped between -1.0 and 1.0, so those large corners will saturate the motors, 
making the robot turn on the spot.

In summary, a high proportional gain will make a system respond quickly, but it will overshoot and 
may even start to oscillate. Too low, and it will not respond fast enough.

A proportional-only system can oversteer when there are larger changes. We want to damp this out. 
We’ll adjust the D component to deal with this.

Adjusting the derivative gain

The derivative component allows the robot to deal with large changes in the error and react by either 
damping or pulling harder if there’s a sudden change, such as oversteering, running out of wall (a 
corner), or finding a step change in the wall. 

Let’s modify our code to make it easier to work with the derivative. In code.py, add ,{distance_
controller.derivative} to the uart.write line after we calculate the deflection:

    deflection = distance_controller.calculate(error, current_
time - prev_time)

    prev_time = current_time

    uart.write(f"{error},{deflection},"

      f"{distance_controller.derivative}\n".encode())

We also need to control the derivative. Add the following after the P command handler:

    elif command.startswith("D"):

      distance_controller.kd = float(command[1:])

As you can see, this sets a simple pattern, the same as P.

Now, we can start this with half the P value, D0.035, which results in fewer collisions with occasional 
bouncing. The following screenshot shows the robot going around boxes:
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Figure 10.16 – Initial derivative graph

The preceding graph shows the derivative in orange, overlaid on the error in red, and the output in 
blue. Note that the derivative spikes are very large but can sometimes be the opposite sign of the 
error allowing it to dampen changes. The largest spikes are still walls. Between 10 and 15 seconds, 
the derivative dampens the proportional output.
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A sudden distance increase, such as the end of a wall, can cause strong oscillation, as shown in the 
following graph:

Figure 10.17 – Strong derivative oscillations

In the preceding screenshot, at around 42 seconds, the robot encounters a concave step. That step 
caused the derivative to overshoot, pushing the robot right out. However, this put the sensor past the 
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obstacle and detected a long-range distance, going rapidly from too close to too far. The derivative 
swings strongly back the other way – time to stop with G.

We can roughly half the value again to 0.017 for another attempt, but it will still have the same issue. 
We need to be more aggressive with reducing D than we were with P. We can divide the proportional 
constant by 10 (0.0035) for a more stable robot. The resulting plot looks as follows:

Figure 10.18 – The tuned derivative graph
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The preceding screenshot shows a graph with the same properties as Figure 10.17 but using a 0.0035 
setting. While the corners still show up as large spikes, the blue output graph is now calmer, with the 
derivative dampening the output. The robot will now be driving quite smoothly. 

We may need a slightly different scenario to tune the integral.

Tuning the integral

In an environment with many step changes, such as driving around boxes in a room, the integral will 
not play as much of a part. Not every problem requires all three parts of the PID, and in this case, the 
integral may not be particularly suitable. Let’s set this nice and slow and find a long straight wall. I 
had to use a garden path for this (and change some values to suit).

Let’s add the integral control and output to the code.py file first. The output is swapping {distance_
controller.derivative} for {distance_controller.integral} in the output line.

We can also add this to the control handling:

    elif command.startswith("I"):

      distance_controller.ki = float(command[1:])

This will accept a command such as I0.001 to set the integral. This is also a good starting value. We 
now have a comprehensive control system. 

Send M0.35 to reduce the speed. We can send half the P and D values to match, using ? to see what 
they were. Send I0.001 and then G to start the robot against a long straight wall.

You should see some large adjustments as the P and D terms settle; then, the I term will settle more 
slowly. Observe the graph while driving. 

For this term, the strategy I use is settling on a small value and slowly incrementing it if the reaction 
to a constant error is too slow. Like the other terms, making this too high will lead to instability. If the 
starting point of 0.001 pushes the system into instability, divide it by 10 and slowly increment that.

You now have a strategy to tune PID values on a robot, along with a control system to do so.

Closing notes on tuning

Tuning a PID will take time. Algorithms such as Ziegler-Nichols can be used to solve this with 
mathematical modeling and will work in some situations.

Another thing to note is that changes in the system response, such as its turning circle, will alter 
things. For example, driving a robot on a carpet causes drag on the wheels, making turning slower. 
If a PID was tuned to work well on carpet, putting the same robot on wooden flooring may cause it 
to oversteer as its steering effort results in larger changes. Tune a PID for a particular behavior to the 
environment where you expect it to be operating.
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Summary
The PID controller is a great way to build robot behavior that adjusts to sensor input. In this chapter, 
you learned what a PID controller and its components are, including where a low-pass filter makes 
it behave better.

The PID controller allows for dynamic responses but requires a lot of tuning to get it right. You’ve 
seen how to add a wireless control method, which is essential for tuning a PID. You’ve also observed 
the graphs of PID systems, understanding how they relate to their operations and tuning.

In the next chapter, we will be taking our PID controller and using it with encoders to drive in 
straight lines.

Exercises
These exercises will deepen your understanding of the topics discussed in this chapter and make the 
robot code better:

• Enhance the settings code so that the set point can be adjusted in the same way. S<set 
point> is probably a good idea.

• Modify the command handlers for setting PID values to stop the motors and reset the integral 
when these values change.

• Try adapting the control code back to the distance control app used earlier in this chapter.

• Try the robot wall-follow when driving on a completely different surface and adjust the PID 
values to get a smooth wall following.

Further reading
These study aids will let you read on and dive deeper into the PID algorithm and its quirks:

• Christopher Lam on YouTube has an excellent control theory video course: https://www.
youtube.com/playlist?list=PLxdnSsBqCrrF9KOQRB9ByfB0EUMwnLO9o. This 
uses MATLAB and goes into detail about control systems such as PID, tuning them, problems 
with them, modeling them, and analyzing them. There are at least 30 hours of content that 
takes a very mathematical approach.

• For a deeper dive into PID control systems, consider PID-based Practical Digital Control with 
Raspberry Pi and Arduino Uno from Elektor Electronics. This book discusses control theory, 
transform functions, and PID tuning, while providing code and practical examples.

• PID Control Fundamentals, by Jens Graf, published via CreateSpace, is a comprehensive look 
at PID control systems. This provides more detail on each of the components and building PI, 
PD, and full PID algorithm control systems.

https://www.youtube.com/playlist?list=PLxdnSsBqCrrF9KOQRB9ByfB0EUMwnLO9o
https://www.youtube.com/playlist?list=PLxdnSsBqCrrF9KOQRB9ByfB0EUMwnLO9o
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Controlling Motion with 

Encoders on Raspberry Pi Pico

So far in this book, we’ve added sensors to our robot that can track counts as its wheels turn. We’ve 
also looked at a PID algorithm to close the robot control loop. We can combine these concepts to 
control our motors and wheels more precisely. 

This combination will let us maintain a known speed on each motor and correct their relative speeds 
for a straight line. Encoders with some geometry will let us drive the robot a predetermined distance. 

In this chapter, we will cover the following main topics:

• Converting an encoder count into a speed

• Using PID to maintain speed and a straight line

• Driving a known distance

Technical requirements
For this chapter, you will require the following:

• The robot from Chapter 10, Using the PID Algorithm to Follow Walls

• The robot, encoder, and PID code from Chapter 10

• Around 2 square meters of floor to test the robot on

• Digital calipers

• A PC or laptop with Python 3

• An Android/iOS smartphone with Bluetooth LE

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-11.

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-11
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-11
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Converting an encoder count into a speed
In Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico, we used PIO to retrieve a count 
from the motor encoding sensors. We ended that chapter by measuring for movement and counting 
encoder transitions over some time. 

In this section, we will relate wheel geometry to the encoder. Then, we will use that to convert encoder 
counts into a speed or a distance.

Loose bolts and nuts

Vibration can sometimes cause nuts to drop out – a tiny dab of nail varnish across the nut and thread 
can reduce this.

Robot wheel geometry

Calculating the distance traveled by a wheel requires its circumference. Let’s start by measuring the 
diameter of the wheel, as shown:

Figure 11.1 – Measuring wheels with calipers

The preceding diagram shows how you can measure wheel diameter with digital calipers. The diameter 
can be used in our code directly. In robot.py, add your measurement rounded to the nearest 0.1 mm:

import math

wheel_diameter_mm = 70

wheel_circumference_mm = math.pi * wheel_diameter_mm
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The preceding code calculates the circumference from the diameter. Each time a wheel makes a complete 
turn, it will move the wheel circumference in that direction, so we can already convert between wheel 
revolutions and distance. Next, we need the encoder details.

Encoder geometry

In Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico, we found the number of poles 
on the encoder and the number of encoder revolutions per revolution. The N20 built-in magnetic 
encoders produce 28 edges or state changes for each encoder disk revolution. We then multiply this 
by the gear ratio 298:1.

We can add these calculations (use your motor gear ratio) to robot.py: 

gear_ratio = 298

encoder_poles = 28

ticks_per_revolution = encoder_poles * gear_ratio

ticks_to_m = (wheel_circumference_mm / ticks_per_revolution) / 
1000

We use m and m/s since this puts distances and speeds in the same order as the motor speeds.

Now, we can use these geometry measurements to get a speed.

Measuring the speed of each wheel

We will calculate the speed of each wheel using the speed triangle from physics:

Figure 11.2 – The speed triangle

The triangle in the preceding diagram shows distance over speed and time. We want speed, so we 
get distance over time by covering speed. We can also see m/s. In our code, we’ll need to convert the 
difference in encoder ticks into a distance in m, then divide that by the time the difference covers: 

speed = robot.ticks_to_m * (new_position – last_position) / 
time
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We can use this calculation in an app to demonstrate the principle.

Planning a speed-measurement app

We can build an app to demonstrate this and try different speeds. Using a UART command system 
will make it interactive.

We’ll build the app using asyncio – asynchronous input/output. asyncio lets us run a few tasks 
simultaneously on the robot. Most tasks sleep between events, and CircuitPython can run another 
task during that time. The app must perform the following tasks:

• Measure the encoders, convert them into a speed value, and send this value to the UART.

• Accept the control commands to change settings or drive for a while.

• Stop the robot after a specific time.

The command handlers we’ll want for this robot are as follows:

• M0.7: Set the motors speed to 0.7

• T0.3: Change the measuring time interval to 0.3

• G3.0: Go (start moving) for 3 seconds, then stop

• G: Stop the robot from moving immediately

With the design created, let’s build the app.

Speed measurement app

We will use the Adafruit circup tool to install libraries on Pico. circup can install and update libraries 
on CircuitPython devices, handling dependencies. See https://learn.adafruit.com/
keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup 
for details. Install the asyncio library with the following command:

circup install asyncio

First, we’ll move the UART into the robot.py file. At the imports, add the following:

import busio

uart = busio.UART(board.GP12, board.GP13, baudrate=9600)

With that, the UART has been set up for any further examples. We will also add a convenience function 
at the end of robot.py:

def send_line(message):

    uart.write(f"{message}\n".encode())

https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
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This wraps the usual interaction of adding a new line and encoding a message into bytes on the UART.

In a new folder, measuring_wheel_speeds, make a new code.py file starting with the 
following imports:

import asyncio

import robot

These imports are familiar; however, instead of time, we are importing asyncio. 

We can create a Settings class to store the current settings, as follows:

class Settings:

  speed = 0.7

  time_interval = 0.2

This groups the settings; different tasks can access them. speed is the motor speed, and time_
interval is how frequently the code will read the encoders.

Let’s learn how to handle the encoders:

async def motor_speed_loop():

  left_last, right_last = robot.left_encoder.read(), robot.
right_encoder.read() 

We use async def to turn the function into an async task. We are computing encoder differences, 
so we keep a last value. We start this with the current encoder reading.

Next, we go into the sensor reading loop, which uses sleep to keep that time interval:

  while True:

    await asyncio.sleep(Settings.time_interval)

This code performs an asynchronous sleep, allowing other tasks to run. We must read both sensors 
again, getting new values:

    left_new, right_new = robot.left_encoder.read(), robot.
right_encoder.read()

    left_speed = robot.ticks_to_m * (left_new - left_last) / 
Settings.time_interval

    left_last = left_new

We get the speed by subtracting the last value from the new one. Then, we convert that into meters 
and divide it by the time interval to get a speed in meters per second.
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We must also remember to update the last value. We can repeat this for the right sensor:

    right_speed = robot.ticks_to_m * (right_new - right_last) / 
Settings.time_interval

    right_last = right_new

We can finish the motor speed loop by printing the speeds to the UART:

    robot.send_line(f"{left_speed:.2f},{right_speed:.2f},0")

Notice ,0 at the end of the UART output. We must add this to anchor the graph at 0 so that the plot 
shows the speed relative to zero.

The next component we’ll need is the motor stop task:

async def stop_motors_after(seconds):

  await asyncio.sleep(seconds)

  robot.stop()

This task will simply wait the given seconds and stop the robot’s motors.

We will also need a UART command handler in an async task:

async def command_handler():

  while True:

    if robot.uart.in_waiting:

      command = robot.uart.readline().decode().strip()

      if command.startswith("M"):

        Settings.speed = float(command[1:])

      elif command.startswith("T"):

        Settings.time_interval = float(command[1:])

      elif command == "G":

        robot.stop()

      elif command.startswith("G"):

        await asyncio.sleep(5)

        robot.set_left(Settings.speed)

        robot.set_right(Settings.speed)

        asyncio.create_task(

          stop_motors_after(float(command[1:]))

        )
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Sending G3.0 instructs the robot to wait 5 seconds, drive, and stop after 3 seconds. This 5-second 
wait allows the user to start the plot tab before the robot starts moving.

The sleep commands now use asyncio.sleep. We also use asyncio.sleep(0) to let other 
tasks run while waiting for UART input.

Finally, we start the motor speed loop and the command handler, as follows:

asyncio.create_task(motor_speed_loop())

asyncio.run(command_handler())

Is this multithreaded?
Async code is not multithreaded. Instead, when an asyncio.sleep is used, control is 
passed to another async block waiting to run. As a result, async code tasks do not access 
variables simultaneously.

Send this all to the robot. Now, let’s see how this works and test it.

Testing the speed measurement app

I recommend propping the robot on a box for the first test so that its wheels aren’t in contact with anything.

Connect to the robot with the Bluefruit LE Connect app and use the UART menu item. You should 
see zeros. Send G20, which should start the motors moving, and then press the back button and select 
the plot mode. You will see a graph like the following:

Figure 11.3 – Encoder speed with glitches
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The preceding plot shows speed versus time from our robot. The y axis is the speed, while the x axis 
is the time in seconds. There is a clear 0 line. The graph then shows the two motor speeds. There are 
glitches – the speed drops to zero and then doubles.

Fixing the encoder glitches

These glitches are due to an interaction between our read loop and the encoders. Plotting on a UART 
makes 0.2 s (5 times per second) a good time base. However, our PIO outputs encoder counts as 
often as they change. The PIO outputs these counts to an RX FIFO queue – see Chapter 6, Measuring 
Movement with Encoders on Raspberry Pi Pico.

The PIO push nowait instruction will write no more data when the FIFO queue is full, but the 
encoder code continues counting pulses. We can use another asyncio task to read data more 
frequently from the FIFO queue. In the imports at the top of pio_encoder.py, add the following:

import asyncio

Add the following method somewhere under QuadratureEncoder:

    async def poll_loop(self):

        while True:

            await asyncio.sleep(0)

            while self.sm.in_waiting:

                self.sm.readinto(self._buffer)

Once started, this will continuously read the data into the buffer as frequently as possible.

Now, we must modify the QuadratureEncoder.__init__ method to create a task for this. 
Add the highlighted line shown here:

        self._buffer = array.array("i", [0])

        asyncio.create_task(self.poll_loop())

The read method can then return the most recent item from the buffer:

    def read(self):

        if self.reversed:

            return -self._buffer[0]

        else:

            return self._buffer[0]

We can now use this encoder code in our async code.
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Reupload the pio_encoder.py file so that we can try again. Start the motors with G5 and switch 
to the plot screen; you should see a plot like this:

Figure 11.4 – Speed measurement without the glitches

The graph now shows the speed of both motors without the glitches. It is a bit noisy, and one line is 
slightly higher than the other. One of the motors is also quicker. The robot is moving at around 0.2 
m/s. Battery freshness will affect the speed.

If you are not seeing this, please check that the encoders are reporting correctly with the examples 
provided in Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico.

We can use this measurement to drive a known distance, but it’s now clear that the robot won’t drive 
in a straight line like this. So, in the next section, we’ll correct the differences between the motors.

Using PID to maintain speed and a straight line
In this section, we’ll learn how to combine the motor distance measurement with a PID controller 
driving each motor, moving at a particular speed, and keeping the robot straight. Let’s start by 
understanding this system.

The speed control system

We can set a target speed in meters per second for the robot and compare the converted wheel speeds 
with it. 
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The following diagram shows how we’ll use this to regulate the robot’s driving speed:

Figure 11.5 – Controlling the speed of two motors

The preceding diagram shows the control system. It starts at the left from a set speed and compares 
that with the actual speed. The actual speed comes from the encoders, with their ticks converted into 
m/s. The error is the difference between the speeds.

The error goes into the PID controller, which then produces an acceleration for the motor PWM. The 
motor power will increase for a positive control signal or decrease for a negative one. This control 
system repeats for each wheel.

We are building on the motor start/stop with the timer control we used previously. However, with a PID 
controller, this can cause the integral to wind up and accumulate errors. Let’s extend the PIDController 
class in pid_controller.py so that we can reset this. Make the highlighted change:

class PIDController:

    def __init__(self, kp, ki, kd, d_filter_gain=0.1):

        self.kp = kp

        self.ki = ki

        self.kd = kd

        self.d_filter_gain = d_filter_gain
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        self.reset()

    def reset(self):

        self.integral = 0

        self.error_prev = 0

        self.derivative = 0

We’ve moved the initial value settings out to a reset method, which we now use in the  
__init__ method.

Now that we understand this concept, we can build the code.

Speed control code

Let’s build our speed controller code. In a new folder, speed_control, add a new code.py file. 
We will start with the regular imports:

import asyncio

import time

import robot

import pid_controller

We’ll add settings that we can adjust to control the system when the program is running:

class Settings:

  speed = 0.17

  time_interval = 0.2

  motors_enabled = False

We have a speed in m/s. This should be close to the speed you measured previously. We also added 
a time_interval for the loop and specified if the motors should currently be driving.

Next, we must add a SpeedController class, which we can use for each wheel system:

class SpeedController:

  def __init__(self, encoder, motor_fn):

    self.encoder = encoder

    self.motor_fn = motor_fn

    self.pid = pid_controller.PIDController(3, 0, 1)

    self.reset()
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We provide each SpeedController system with an encoder to read and a motor function 
(motor_fn) to apply control signals. The SpeedController creates a PIDController. Each 
wheel will get an independent PIDController. This then calls a reset function:

  def reset(self):

    self.last_ticks = self.encoder.read()

    self.pwm = 0

    self.actual_speed = 0

    self.pid.reset()

This code puts the first read of the encoder into last_ticks, which we’ll update when we get a 
reading. pwm is how much power we will give the motors. We track actual_speed so that we can 
print this value to the UART later. We also reset the PIDs so that any stored integral is gone.

Now, we need a method to update this control system:

  def update(self, dt):

    current_ticks = self.encoder.read()

    speed_in_ticks = (current_ticks - self.last_ticks) / dt

    self.last_ticks = current_ticks

    self.actual_speed = robot.ticks_to_m * speed_in_ticks

This update method takes a delta time in seconds. While this might be close to time_interval, 
we need to be accurate when calculating the speed or updating the PID. 

The method reads the current encoder value and subtracts the previous encoder reading to get a 
distance in encoder ticks. To turn this into a speed, we must divide this by time. We must update 
self.last_ticks here for the next cycle. The speed is more useful to us in m/s, so we convert 
it using ticks_to_m. 

We can now use this to update the PID and control the motors:

    error = Settings.speed - self.actual_speed

    control_signal = self.pid.calculate(error, dt)

    self.pwm += control_signal

    self.motor_fn(self.pwm * Settings.motors_enabled)

We multiply the pwm output setting with the enabled flag so that the motors will stop if the motors 
are disabled. We subtract the actual speed from this to get the error value.

The code gets control_signal from the PID calculation with error and delta time. We then 
use this to accelerate/decelerate pwm, which goes into the motor function.
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We use this system to control both motors:

left = SpeedController(robot.left_encoder, robot.set_left)

right = SpeedController(robot.right_encoder, robot.set_right)

Now, we need an async loop to drive the system:

async def motor_speed_loop():

  last_time = time.monotonic()

  while True:

    await asyncio.sleep(Settings.time_interval)

    current_time = time.monotonic()

    dt = current_time - last_time

    last_time = current_time

So far, this loop will sleep every interval and update the time, so we have an accurate delta time (dt) 
value. We can use this to update both sides:

    left.update(dt)

    right.update(dt)

    robot.send_line(f" {left.actual_speed:.2f},{Settings.speed 
* Settings.motors_enabled:.2f},0")

After updating both sides, we can send the expected speed versus the actual speed to be plotted via UART.

Next, we’ll add a modified stop_motors_after async function that updates the motors_enabled 
flag; it will not call the stop function:

async def stop_motors_after(seconds):

  await asyncio.sleep(seconds)

  Settings.motors_enabled = False

We want to be able to interact with this. We’ll need the command_handler function from the speed 
measuring app with the highlighted differences:

async def command_handler():

  while True:

    if robot.uart.in_waiting:

      command = robot.uart.readline().decode().strip()

      if command.startswith("M"):

        Settings.speed = float(command[1:])
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      elif command.startswith("T"):

        Settings.time_interval = float(command[1:])

      elif command == "G":

        Settings.motors_enabled = False

      elif command.startswith("G"):

        await asyncio.sleep(5)

asyncio.create_task(stop_motors_after(float(command[1:])))

        Settings.motors_enabled = True

        left.reset()

        right.reset()

      elif command.startswith("?"):

        robot.send_line(f"M{Settings.speed:.1f}")

        robot.send_line(f"T{Settings.time_interval:.1f}")

        await asyncio.sleep(3)

    await asyncio.sleep(0)

When we send a G<n> command to start the robot moving, we reset left and right, resetting both the 
previous encoder value and PID integrals. Otherwise, we may have an old encoder setting, and the 
integral may still hold a value from a previous movement.

All that is left is to start this all up:

try:

  motors_task = asyncio.create_task(motor_speed_loop())

  asyncio.run(command_handler())

finally:

  motors_task.cancel()

  robot.stop()

This has been wrapped in an additional try/finally block that ensures the movement task is 
stopped and the robot is stopped if an error occurs.

This code is complete. Send it to the robot along with robot.py, pid_controller.py, 
and pio_encoder.py.

Ensure the motors are powered on and use the Bluefruit Connect app to send the G10 sequence so 
that the robot starts moving. I propped the robot up so that its wheels could turn without moving 
it to initially test this code. This test also lets me keep it connected via USB to see any code errors.
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Speed controller PID tuning

The PID values are likely to need tuning here. The values that worked in my experiments were P: 3, 
I: 0, and D:1. The P factor will continue accelerating so long as there’s a difference, with the D value 
damping any sudden changes.

I was able to start with a low P value and, using the plot, adjust upward if the overshoot wasn’t too 
great. The following plots show how this system responds:

Figure 11.6 – Speed controller response plots

The preceding graphs show the speed controller system. There are two plots – one with the robot 
propped up so that its wheels have no load and another with the robot on the floor. The orange line 
shows the set point, which is raised to 0.15 m/s by the code. The blue line is the actual speed measured 
at one of the motors. The system is better tuned for running on a floor.

Increase the D term to damp the overshoot. Since we are controlling the acceleration of this system, 
a sustained value is not required for it to keep moving, so the I term can remain at 0.

There may be other troubleshooting issues around motor and encoder connections that you can resolve 
by going back to the previous examples.

Now, you can control the speeds of two motors simultaneously and get a straight line while practicing PID 
tuning. We can now build on this to drive in a straight line for a known distance and an expected speed.

Driving a known distance
We’ll need to bring together some of the previous techniques for this. Then, we’ll build a variation 
of the speed controller – a distance controller – so that we can update the distance and let the motor 
PIDs reach it. This app will use a similar structure, including control and asynchronous tasks, as in 
the previous example.
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Theory of operation

The following diagram shows the theory of operation for this behavior:

Figure 11.7 – Controlling distance and speed

The preceding diagram shows an overview of this system. The distance tracker tracks distance over time 
at a given speed, and the distance controller directly controls the motors to try and match a distance. 
Note the feedback from the motor into the distance controller. We will have one of these per motor.

Let’s take a closer look at the distance tracker:

Figure 11.8 – The distance tracker

The left-hand side of the preceding diagram repeats the speed, time, and distance triangle. We have 
the distance and the speed; to get the time, we need to divide the distance by speed. The right-hand 
side shows this distance tracker system. 

The tracker system must first convert the distance into total_time using distance over speed. We 
must also convert the distance in meters into total_distance_in_ticks. These two values 
will remain constant until we set a new speed or distance. This lighter portion only needs to run when 
we update the speed or reset the distance.
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If we wish to run the system many times, we need to keep track of the current position so that we 
aren’t counting from a position of 0 each time.

When the system runs, the gray portion will run in a loop, and it will be updating the elapsed_time 
since the system was last reset. Dividing elapsed_time by total_time gives us a proportion 
of time_proportion, which will sweep between 0.0 and 1.0. We multiply this by total_
distance_in_ticks to get expected_distance_in_ticks, tracking the distance the 
robot should have moved in ticks at any time. Since this component is tracking time, it will also pass 
along a delta time (dt) to the next component.

The next component is the distance controller. Let’s take a closer look at this:

Figure 11.9 – The distance controller

The preceding diagram shows the update method of a DistanceController class. control_
signal directly drives the motor. The update method has two inputs –dt and the expected 
distance in ticks. We subtract the actual distance in encoder ticks from the expected distance to 
get the error value, which is used with dt to update the PID. The output should result in a wheel/
motor turning faster if it is behind the expected number of ticks or slower if it’s ahead.

We will also use the same graphing and control routines as before, but we will alter the G control 
handler to specify a distance in meters instead of time in seconds – so, G0.5 would signal the robot 
to drive half a meter at the current speed, then stop. 

Now, we have enough information to update the code.

Code to control distance and speed

Let’s start with a copy of the previous example code. We will update the specific changed routines.
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First, we need to add another number to robot.py:

m_to_ticks = 1 / ticks_to_m

This lets us convert differently so that we can get m from ticks. Let’s create the new code.py file 
with the familiar imports:

import asyncio

import time

import robot

import pid_controller

Now, let’s add the DistanceController class:

class DistanceController:

  def __init__(self, encoder, motor_fn):

    self.encoder = encoder

    self.motor_fn = motor_fn

    self.pid = pid_controller.PIDController(3.25, 0.5, 0.5, d_
filter_gain=1)

    self.start_ticks = self.encoder.read()

    self.pwm = 0

    self.error = 0

Here, we initialized the PID controller and renamed last_ticks to start_ticks – the ticks 
the encoder is at when we start this behavior. We kept error so that we can plot it. The code sets 
filter_gain for the derivative to 1 so that the derivative is not too slow in catching up.

Next, we need an update method:

  def update(self, dt, expected):

    self.actual = self.encoder.read() - self.start_ticks

    self.error = (expected - self.actual) / robot.ticks_per_
revolution

    control_signal = self.pid.calculate(self.error, dt)

    self.motor_fn(control_signal)

First, we have an additional expected parameter (in ticks). We get an actual (in moved ticks) 
by subtracting start_ticks from the current encoder reading. We store it as self.actual so 
that we can graph this.
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error is far simpler; subtracting expected from actual gives us the number of encoder ticks 
we are short or ahead of. However, to scale it down, we must divide by ticks per revolution. This goes 
into the PID calculation, along with dt. 

We use the output of the PID to control the motor.

We’ve completed the DistanceController code. Next, we need to create the DistanceTracker 
class. We start by storing the controller’s settings:

class DistanceTracker:

  def __init__(self):

    self.speed = 0.17

    self.time_interval = 0.2

    self.start_time = time.monotonic()

    self.current_position = 0

    self.total_distance_in_ticks = 0

    self.total_time = 0.1

After setting the speed and time_interval fields, we store a start_time to count the time 
elapsed. We also set up initial values for current_position, total_distance_in_ticks, 
and total_time. Note that total_time must not be zero as we use it in the division.

We will need to set these values when we update the distance:

  def set_distance(self, new_distance):

    self.current_position += self.total_distance_in_ticks

    self.total_distance_in_ticks = robot.m_to_ticks * new_
distance

    self.total_time = max(0.1, abs(new_distance / self.speed))

    self.start_time = time.monotonic()

The first thing we must do is add any previous movement to current_position. This means we 
keep track of the expected position so that the system doesn’t accumulate too many errors.

Then, we must calculate a total distance, converting from meters into ticks into total_distance_
in_ticks. The code calculates the total time by dividing new_distance by speed. However, 
since going backward would be a negative speed, we use the abs function to get only a positive time. 
Also, to avoid that division by zero, we clamp this value to be above 0.1 seconds.

Finally, this resets to a new start_time, from which total_time will be relative.



Controlling Motion with Encoders on Raspberry Pi Pico268

Now, we can build the DistanceTracker loop:

  async def loop(self):

    left = DistanceController(robot.left_encoder, robot.set_
left)

    right = DistanceController(robot.right_encoder, robot.set_
right)

    last_time = time.monotonic()

This code creates two DistanceController instances and stores a last_time value for dt 
calculations. The next part of the code is all about time:

    while True:

      await asyncio.sleep(self.time_interval)

      current_time = time.monotonic()

      dt = current_time - last_time

      last_time = current_time

      elapsed_time = current_time - self.start_time

      time_proportion = min(1, elapsed_time / self.total_time)

First, we sleep for time_interval, then get current_time. From this, we can calculate dt and 
elapsed_time. We calculate a time_proportion between 0 and 1 by dividing current_time 
by total_time. This time_proportion lets us track where we are in the current motion. Note 
that we clamp this to a limit of 1 so that the time ratio doesn’t multiply to a value larger than the 
intended distance.

Then, we can multiply time_proportion by total_distance_in_ticks to get the relative 
tick position for the robot. As this is a relatively expected position, we add current_position 
again. The expected value is an absolute position from when we start the code:

      expected = time_proportion * self.total_distance_in_ticks 
+ self.current_position

      left.update(dt, expected)

      right.update(dt, expected)

      robot.send_line(f"{expected:.2f},{left.actual:.2f},0")

Now, we must update the two DistanceController instances and write data to the UART to 
be plotted.

We can start this part of the system by creating an instance of DistanceTracker:

distance_tracker = DistanceTracker()
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We can complete this behavior by creating a UART command handler:

async def command_handler():

  while True:

    if robot.uart.in_waiting:

      command = robot.uart.readline().decode().strip()

      if command.startswith("M"):

        distance_tracker.speed = float(command[1:])

      elif command.startswith("T"):

        distance_tracker.time_interval = float(command[1:])

      elif command == "G":

        distance_tracker.set_distance(0)

      elif command.startswith("G"):

        await asyncio.sleep(5)

        distance_tracker.set_distance(float(command[1:]))

    await asyncio.sleep(0)

The G<number> command now updates a distance instead of time; stopping the robot sets a new 
distance of zero.

All that remains is to start the async tasks and handle errors:

try:

  motors_task = asyncio.create_task(distance_tracker.loop())

  asyncio.run(command_handler())

finally:

  motors_task.cancel()

  robot.stop()

We now have code that tracks a distance at a given speed; however, you will likely need to tune the 
PID. DistanceController needs to provide enough control_signal to keep up with a 
changing expected position. There will be a non-zero error value in the update method if it’s 
not completed the motion. This PID system will be dominantly proportional so that the motors keep 
up with the expected position. The tips at https://pidexplained.com/how-to-tune-a-
pid-controller/ help with this tuning.

Note that if you change the motors, the floor type, or the time base, you may need to tune this 
system again.

You should now have a tuned system to drive a specific distance at a specific speed.

https://pidexplained.com/how-to-tune-a-pid-controller/
https://pidexplained.com/how-to-tune-a-pid-controller/
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Summary
In this chapter, you learned how to use the encoder more usefully. You looked at how to use wheel 
geometry to convert encoder pulses into metric measurements and then used these measurements 
to measure speed.

Once we can measure speed, we can use a PID to control the speed of each wheel and see significantly 
less veering.

We could then take this to the next level and drive a specific distance at a specific speed, providing 
fully controlled motion.

In the next chapter, we will connect an IMU to our robot so that we can measure a compass heading 
and control the robot’s direction.

Exercises
These exercises will deepen your understanding of the topics covered in this chapter and make the 
robot’s code better:

• All the preceding examples could benefit from the PID modification and printing menu in the 
UART command handler – consider adding it to them.

• In the distance control, we set the derivative filter gain to 1, disabling it. How does this system 
behave with other filter gain values?

• Instead of starting motions with the phone app, could you chain some of these movements together? 
Or even alter the phone G instruction to make a few motions with a single command sequence?

Further reading
These further study aids will help you learn more and dive deeper into using encoders to control 
robot motion:

• In Learn Robotics Programming Second Edition, Chapter 11, Programming Encoders with Python, 
I used simpler encoders but dove into the calculations needed to make specific turns with 
encoders that could be adapted to the Pico.

• The Arduino-based tutorial at https://circuitdigest.com/microcontroller-
projects/arduino-based-encoder-motor-using-pid-controller shows 
how to use a PID controller.

• This Python file at https://github.com/pimoroni/pimoroni-pico/blob/main/
micropython/examples/inventor2040w/motors/position_control.py 
from Pimoroni shows a similar Python approach in MicroPython for the Pico.

https://circuitdigest.com/microcontroller-projects/arduino-based-encoder-motor-using-pid-controller
https://circuitdigest.com/microcontroller-projects/arduino-based-encoder-motor-using-pid-controller
https://github.com/pimoroni/pimoroni-pico/blob/main/micropython/examples/inventor2040w/motors/position_control.py
https://github.com/pimoroni/pimoroni-pico/blob/main/micropython/examples/inventor2040w/motors/position_control.py
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Detecting Orientation with  

an IMU on Raspberry Pi Pico

Our robot can track how far it’s moved, but what about tracking which direction the robot is facing? 
Or how far it has turned? In this chapter, we will learn about the Inertial Measurement Unit (IMU), 
a device that can track the motion of the robot measured against gravity and the Earth’s magnetic field.

We’ll look at how to select one of these devices, get it connected and then write code for it on our 
robot using the PID controller to steer the robot based on the IMU data.

In this chapter, we will cover the following main topics:

• What is an IMU and how to choose one

• Connecting the IMU to the robot

• Calibrating and getting readings

• Always face North behavior

• Making a known turn behavior

Technical requirements
For this chapter, you will require the following:

• The robot from Chapter 11, Controlling Motion with Encoders on Raspberry Pi Pico

• The robot, encoder, and PID code from Chapter 11, Controlling Motion with Encoders on 
Raspberry Pi Pico

• A screwdriver, bolts, and stand-offs

• Dupont jumper cables

• A space where strong magnets can be avoided
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• A PC or laptop

• An Android/iOS smartphone with Bluetooth LE and the Bluefruit LE Connect app

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-12.

What is an IMU and how to choose one
In this section, we’ll look at the components of an IMU and what criteria we used to choose the one 
used in this robot.

Components of an IMU

An IMU is a module that can measure movement. It uses multiple sensors to achieve this. In this 
section, we’ll briefly look at each sensor and how they contribute to the whole measurement.

These sensors are made using the Micro-Electro-Mechanical-Systems (MEMS) process. They have 
tiny moving parts embedded into the chips. We can model them mechanically to understand them. 
These parts sense the movement of parts through their magnetic fields and amplify tiny signals. Let’s 
look at the components.

The thermometer

The mechanical components of an IMU will change size, depending on their temperature. These 
tiny changes may be enough to change the signals so that the IMU controller can use a temperature 
measurement to compensate for this.

The accelerometer

An accelerometer measures acceleration forces. It measures this as a vector – a direction and a size. The 
way this is measured is somewhat like a box with a suspended mass, as shown in the following figure:

Figure 12.1 – Accelerometer modeled as a mass with springs

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-12
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-12
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The preceding figure shows a mass suspended in a box by springs. When a force acts on the box, the 
mass retains its inertia and compresses the spring opposing the force’s direction. A MEMS accelerometer 
uses tiny silicon springs and masses and measures the electrical field changes when the mass moves.

While on Earth, gravity pulls the mass down. This system behaves like a force holding the box up, 
so an accelerometer registers an upward force. We can use this measurement to determine what the 
downward direction is and sense the tilt of a robot. 

The accelerometer vector is an absolute orientation (see the Absolute and relative sensing section in 
Chapter 6, Measuring Movement With Encoders on Raspberry Pi Pico) for up. Still, other movements 
cause noise, so it is usually put through a low pass filter, only changing a setting by a percentage of 
the actual variation. This filter makes the output slow but stable. 

A controller can combine this data with other sensors for a faster and more stable measurement, such 
as a gyroscope.

The gyroscope

A gyroscope measures the rotation speed of a system, typically in degrees or radians per second in an 
angle around each axis. A physical gyroscope model, shown as follows, can be used to help illustrate 
what it does:

Figure 12.2 – A model of a gyroscope
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The preceding figure shows a traditional gyroscope. This gyroscope has a spinning mass wheel in the 
middle, linked to concentric rings –  each ring pivots in one direction – x, y, or z. The net effect is that 
when you move the handle, the spinning disk preserves its orientation. Sensors placed at the pivots 
would detect how much the system has rotated in each direction.

The MEMS version uses a tiny mass that’s moved back and forth in one direction. If the orientation 
is changed, the mass will continue vibrating in the original direction, which will change the electrical 
fields detected by the sensor. This movement in the original orientation appears to be a force known 
as the Coriolis force. The gyroscope can measure the magnitude of this force.

It’s essential to understand the directions of the gyroscope and how the measurements relate to time. 
See the following diagram:

Figure 12.3 – Gyroscope directions and problems with integrating it

The left-hand side of the preceding diagram shows the three gyroscope rotations and the coordinate 
systems that the IMU uses. This coordinate system takes the robot into account. Traditionally, the front 
of the robot is in the positive X direction. Straight up is positive Z, and to the robot’s left is positive 
Y. Rotation around the z axis is known as heading (also known as yaw), rotation around the y axis is 
pitch, and rotation around the x axis is roll. This combination of three angles to determine orientation 
is known as Euler (pronounced oil-er angles).

The right-hand side of the diagram shows how a controller can use gyroscope data – it represents a 
relative change in angle or a speed in angle change over time. We can convert this into a new angle, 
but that is estimated. Multiplying this by time and adding them can give us a whole rotation relative 
to the starting position, but this will magnify any estimation or reading errors.

A controller should combine this with other sensors, where the gyroscope can provide a fast relative 
measurement, and the other sensor can provide a slower absolute measurement. However, the 
accelerometer cannot measure the heading. For that, we need a magnetometer.
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The magnetometer

A magnetometer is sensitive to magnetic fields. It passes electricity through a material that creates 
current when exposed to a magnetic field, as shown here:

Figure 12.4 – Diagram of a hall-effect sensor

The preceding figure shows an example of detecting magnetic fields in action:

1. The circuit passes an electric current from a source through a conducting plate (the gray 
rectangle). The arrows show the flow of electrons (negative charge carriers) moving around 
the circuit from the top of the plate downwards. The small circle with a V measures electrical 
flow across the sides of the plate. Currently, this reads 0 as the flow is straight down.

2. When we place a magnet above the plate, it deflects electrons to one side. This deflection creates a 
small electric flow through the measuring circuit and will show a reading above 0 on the sensor.

3. When we place a magnet below the plate, this deflects the electrons to the other side, creating 
a small sensor flow in the other direction, and show a reading below 0.

This sensor method is known as the Hall effect. By measuring three plates, you can sense magnetic 
fields in three dimensions. 

The great thing is that we can use this to sense the Earth’s magnetic field and magnetic North, although 
it can be deflected by magnets in objects around the magnetometer. Being able to sense magnetic 
North makes it a great way to sense heading. 

Because it is subject to other magnets, it can be noisy and may need a low pass filter, but you can pair 
it with the gyroscope the same way the accelerometer is paired.

Now that you’ve seen the four sensor types that go into an IMU, we can look at how we choose one.
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Choosing an IMU module

There are several IMU devices on the market. The first thing to note is that you want a module or 
breakout, not a bare chip (at least not yet).

The number of directions/movements an IMU system can sense is known as degrees of freedom, or 
DOF. A system with all three types of sensors is known as a 9-DOF because each can produce three 
axes worth of information. The temperature sensor isn’t counted in this DOF count usually.

These modules come in a few flavors. The following diagram illustrates these flavors:

Figure 12.5 – IMU module integration levels

The preceding diagram shows three different IMU module integration levels. They are as follows:

1. The simplest has only one of the sensors, and you need to buy three to get the complete 
orientation. In addition, they do not have much helper circuitry.

2. Some modules integrate three or four separate sensor chips to give the full 9-DOF and could 
be suitable. These have some support circuitry but might not have a controller.

3. The devices we will focus on are those based around a single chip that combines the sensors. 
These come as modules that integrate power and any additional required components (such 
as small resistors and capacitors). These have onboard controllers.

They can also use a few different data buses to communicate. UART and SPI tie up a whole set of pins; 
however, I2C allows the device to share a bus with other sensors, so we’ll favor I2C devices.

The next factor in integration is how much calculation the device’s controller can do (if any). The 
algorithms to combine all three sensors and account for calibration, along with temperature, are 
complicated. Some devices can perform this on board, and some require it on another controller or 
require specialist code to be uploaded to activate the calculation (such as MPU and ICM TDK series). 
We will also favor modules that can do the calculation on board.
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The BNO055 module is a good fit for these requirements. The BNO055 combines all 9-DOF, a 
temperature sensor, works over I2C, and has calculations and calibration on board, saving us writing 
that code on our Raspberry Pi Pico. They are also widely available, with Adafruit selling them in two 
variations, and there’s direct CircuitPython support for them.

Let’s look at how we can use a BNO055 module with our robot.

Connecting the IMU to the robot
Installing the BNO055 requires performing a few steps. In this section, we’ll prepare the module, 
attach it to the robot rigidly, wire the part into the circuit, and then use some simple code to test that 
it is responding.

Preparing the BNO055

The BNO055 from Adafruit comes without the headers attached. You’ll need to solder the headers in, 
as we have done previously. Adafruit has a guide for this at https://learn.adafruit.com/
adafruit-bno055-absolute-orientation-sensor/assembly.

For this robot, you should solder this part with the headers facing up from the component side.

Attaching the BNO055

To attach the part to the robot, see the following diagram:

Figure 12.6 – Drawing of the shelf with additional holes for the BNO055 module

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/assembly
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/assembly
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You will need to attach the IMU rigidly to the robot, so the velcro pad will not be sufficient. Stand-
offs will make a suitable attachment here. The preceding figure shows where to make some 2.5 mm 
holes in the shelf in the highlighted area. You can insert M2 (or M2.5 if you have them) stand-offs to 
attach it. You can use stand-offs to gain some separation between the IMU and the metal or magnetic 
parts of the robot.

You may need to adapt this to the BNO breakout you have. The following figure shows the part I am 
using and the orientation it should be in:

Figure 12.7 – The BNO055 part’s orientation

I’ve made the holes so that they suit the part shown in the preceding figure. This figure shows the part 
with the robot chassis as a reference, with the x, y, and z axes indicated with arrows. The z in a circle 
means it runs through this diagram, with the upward direction being positive. 

We mount the BNO055 so that its x axis faces the front of the robot. This is due to the BNO055 
defaulting to the Android phone orientation – a minor quirk of the configuration of this module.

While the orientation of this part matters, it can be compensated for in code. 

Let’s see how to wire in this part.
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Wiring the BNO055 to Raspberry Pi Pico

We will wire the BNO055 using I2C. See the following circuit diagram for details:

Figure 12.8 – BNO055 I2C wiring
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The top part of the preceding diagram shows the whole circuit diagram. Since a lot is happening here, 
the highlighted region has been zoomed in below, showing the specific wiring. The BNO055 only 
needs four pins connected. It has power connections for GND and Vin from the 3V3 lines. The SCL 
and SDA are connected to I2C0, sharing an I2C bus with one of the distance sensors.

Now that the BNO055 is wired in, let’s try talking to it.

Setting up the software and connecting

The CircuitPython library includes an adafruit_BNO055 module for use with this device. Copy 
over or use circup to install this. You will also need the adafruit_bus_device and adafruit_
register  modules to be installed.

You can now write some code to check if we can get data from the device. I suggest putting the following 
code in bno_connect/code.py:

import adafruit_bno055

import board

import busio

i2c = busio.I2C(sda=board.GP0, scl=board.GP1)

sensor = adafruit_bno055.BNO055_I2C(i2c)

print("Temperature: {} degrees C".format(sensor.temperature))

The code starts with imports. It then creates an I2C bus with the correct pins and constructs the sensor 
control object on this bus. 

The last line fetches the temperature from the sensor and prints it to serial. 

Send this to Raspberry Pi Pico as code.py; it should show the temperature on the serial, as follows:

code.py output:

Temperature: 21 degrees C

Great! You have now obtained data from the IMU. Before exploring more of the available features, 
let’s troubleshoot any problems.

Troubleshooting

If you don’t see the temperature output (or see errors instead), verify the connections carefully. Start by 
powering down the robot, and carefully check the power goes to 3V3, then that GND goes to ground.

If these look correct, verify the SCL and SDA lines – swapping these lines is a common issue. You can 
then power the robot again, and you should be able to read the temperature.
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With that, you have connected to the IMU. Now, let’s learn how to get robot orientation information 
from this sensor.

Calibrating and getting readings
When you start up code using an IMU module with a controller, the sensors will not get correct 
readings. So, the IMU module will need to determine the sensitivity and correct states of the sensor, 
a process known as calibration. First, we need some code; then, we’ll need to take the robot through 
some motions to perform this.

Calibration code

Let’s start with the code. In a file called imu_calibration/code.py, add the following:

import adafruit_bno055

import board

import busio

import time

i2c = busio.I2C(sda=board.GP0, scl=board.GP1)

sensor = adafruit_bno055.BNO055_I2C(i2c)

This code handles importing the module and setting it up. We also import time so that we can use 
it in loops later. 

Next, we must check the calibration state of the module:

def check_status():

  sys_status, gyro, accel, mag = imu.calibration_status

  print(f"Sys: {sys_status}, Gyro: {gyro}, Accel: {accel}, Mag: 
{mag}")

  return sys_status == 3

This code will print the calibration status for each part of the BNO055. The BNO055 can self-calibrate 
when turned on; however, the user needs to make motions with it to help. The calibration_
status register holds what parts of the system you have calibrated. The system status is important 
for our purposes, but each device has its own status. Each can go from state 0 (uncalibrated) to state 
3 (fully calibrated). When you have calibrated them, the system is ready to use. This code will print 
them out. We’ll use this to perform the calibration process motions.
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We can check this in a loop:

while not check_status():

  time.sleep(0.1)

Once we’ve calibrated it, we can check the data from all the sensors and the controller itself:

while True:

  data = {"temperature": sensor.temperature, 

          "acceleration": sensor.acceleration, 

          "magnetic": sensor.magnetic, 

          "gyro": sensor.gyro,

          "euler": sensor.euler}

  print(data)

  time.sleep(0.1)

This code will pull all the sensor data and ask the controller to convert the accelerometer, magnetometer, 
and gyroscope data into Euler absolute orientation. The code puts this into a dictionary so that when 
we print it, it will appear labeled.

We can upload this code and start the calibration process, watching the numbers in the calibration 
status. Let’s use it to calibrate.

The calibration process

The following movements might look bizarre, but the IMU module is trying to determine the relative 
motions for each sensor. Then, with the hold postures, it is looking at absolute states. With the 
magnetometer, there will be offsets and distortions due to the metal on board the robot. The sensor 
looks for magnetic field changes and the extent in each direction, which it can use to account for 
the distortions.

Beware of calibrating near strong magnetic fields such as a laptop – they can make the magnetometer 
calibration incorrect.
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Use the following figure to help the IMU complete its calibration:

Figure 12.9 – IMU calibration steps

The preceding figure shows the calibration steps. Use a hold time of at least 2 seconds and slow motions 
for the following steps:

1. Start with the robot on a flat surface and hold. This position will set up the gyroscope.

2. Make a small, slow figure of 8 motion a few times to calibrate the magnetometer.

3. Hold the robot on its back, then on its front.

4. Then, hold the robot on its left, then on its right.

5. Hold the robot upside down; you should see the accelerometer status reach 3.

6. Now, rest it back the right way up. You should be able to see the system status reach 3.

This calibration may take a few attempts and can get stuck on the accelerometer sometimes; however, 
the experiments can continue if the system status reaches 3 without the accelerometer.

When you have the system status at 3, the demonstration will start printing data from all four sensors 
and combine sensor data into Euler angles. With the robot standing, roll and pitch should be 0. Turning 
the robot to face North should set the heading to 0 too.

We can now use this with a PID controller to make the robot always face North.
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Always face North behavior
We’ll build a behavior with a heading as a set point for a PID and the IMU Euler heading as feedback. 
The error value between these will be how far, in degrees, the robot is facing away from the North 
heading. For example, a heading of 0 should be North – note that you could pick another heading as 
needed. We will use the PID output to control the motor movements, with the output adding to the 
speed of one motor and subtracting from the other, producing a turn.

Let’s see how this looks as a block diagram:

Figure 12.10 – Face North behavior block diagram

The preceding diagram shows the flow of data. The expected heading (or target) with the actual 
heading from the IMU are used to calculate the error. This error and dt (delta time) are the inputs 
to the PID. The output from the PID, the control signal, is added for one motor and subtracted for the 
other. The motors then result in robot movement, which causes the IMU heading to change, feeding 
back into the error value.

We can now use this block diagram to build the code for this behavior.

CircuitPython code for the face North behavior

We can now build the code for this behavior. We’ll start by putting the IMU initialization in robot.
py. Add the following to the imports at the top of robot.py:

import adafruit_bno055
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Since the distance sensors already use the I2C bus, we can use the same initialized I2C bus for 
the BNO055:

left_distance = adafruit_vl53l1x.VL53L1X(i2c0)

right_distance = adafruit_vl53l1x.VL53L1X(i2c1)

imu = adafruit_bno055.BNO055_I2C(i2c0)

The IMU will be available from robot.py once this has loaded. We can also add the check_status 
calibration function to robot.py so that we can use that in other behaviors:

def check_imu_status():

  sys_status, gyro, accel, mag = imu.calibration_status

  uart.write(f"Sys: {sys_status}, Gyro: {gyro}, Accel: {accel}, 
Mag: {mag}\n".encode())

  return sys_status == 3

The changes to robot.py for this section are complete.

We will need a new file for the behavior, which I suggest placing in face_north/code.py. We’ll 
start with the imports:

import robot

import pid_controller

import asyncio

import time

We will then make a controller class for always facing North. It starts by defining the target as 0 for 
North and setting up a PID controller:

class FaceNorthController:

    def __init__(self):

        self.pid = pid_controller.PIDController(0.01, 0.010, 0)

        self.target = 0

    def update(self, dt, angle):

        error = self.target - angle

        if error > 180:

            error -= 360

        elif error < -180:

            error += 360
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        control_signal = self.pid.calculate(error, dt)

        robot.set_left(control_signal)

        robot.set_right(-control_signal)

The code here calls the update method with an angle and a delta time (dt). First, it will calculate 
the error in degrees. The method then checks the error in the range of -180 to 180 degrees. Otherwise, 
a robot at 359 degrees (-1 degrees from North) will turn a full circle to adjust itself, and any overshoot 
would result in unusable behavior.

Then, we pass error and dt into the PID calculate method and send the resulting control 
signals to the motors.

We can now have an async task to manage this controller and read the sensor data in a loop:

async def control_loop():

  controller = FaceNorthController()

  last_time = time.monotonic()

  while True:

    await asyncio.sleep(0.1)

    next_time = time.monotonic()

    dt = next_time - last_time

    last_time = next_time

    angle = robot.imu.euler[0]

    controller.update(dt, angle)

    robot.uart.write(f"{angle}, 0\n".encode())

control_loop creates an instance of our FaceNorthController shown previously. It sleeps 
and manages the delta time, dt. Next, it reads the angle from the sensor’s euler data and passes this 
to the update method. Finally, this method logs the angle through Bluetooth so that we can plot it.

Now, we can make our main async function:

async def main():

  while not robot.check_imu_status():

    await asyncio.sleep(0.1)

  robot.uart.write("Ready to go!\n".encode())
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This part will start a calibration/status loop and print it via Bluetooth when the robot is ready. Because 
we don’t want the robot to start trying to drive out of your hands, we will make it wait for a start 
signal from Bluetooth:

  while True:

    if robot.uart.in_waiting:

      command = robot.uart.readline().decode().strip()

      if command == "start":

        break

    await asyncio.sleep(0.1)

  await control_loop()

The user will see Ready to go and then need to send start to make the robot move. The code then 
starts the control_loop part.

Finally, we can start everything up by starting the main task:

asyncio.run(main())

You should be able to send this to the robot and calibrate it. Then, when you instruct it to start, the 
robot will turn to face North.

Troubleshooting

The robot may be turning to an angle that is not North. The common reason for this is that there is a 
strong magnetic field where you are testing or calibrating the robot. In some situations, I have found 
that I’ve had to turn a sensor 90 degrees for it to work.

If the robot is overshooting, try reducing the P value. If it is taking a while to hunt out the actual value, 
increase the I value a little. I have found that the D value doesn’t help in this situation.

Now that we know how to face one way, can we use this to make a fixed turn in any direction? Let’s see.

Making a known turn behavior
The known turn behavior is a variation of the always face North behavior. The idea is to measure the 
angle at the start of the turn and then make the set point the new intended angle.

We’ll make it so that the whole app will accept a difference in the intended angle, offsetting the last 
intended angle, with the whole app starting based on the robot’s current heading. The user can send 
+30 to turn 30 degrees and -90 to rotate 90 degrees back.
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The block diagram is exactly as before, as we only need to manipulate the expected heading. Make a copy 
of face_north in a folder called known_turn. Let’s rename the controller IMUTurnController:

class IMUTurnController:

    def __init__(self):

        self.pid = pid_controller.PIDController(0.01, 0.008, 0)

        self.target = 0

The update method doesn’t change, as shown here:

    def update(self, dt, angle):

        error = self.target – angle

        if error > 180:

            error -= 360

        elif error < -180:

            error += 360

        control_signal = self.pid.calculate(error, dt)

        robot.set_left(control_signal)

        robot.set_right(-control_signal)

We will need an additional Bluetooth command_handler for accepting user input for the intended 
angle. Add the following code:

async def command_handler(turn_controller):

  while True:

    if robot.uart.in_waiting:

      command = robot.uart.readline().decode().strip()

      if command.startswith("-"):

        turn_controller.target -= int(command.lstrip('-'))

      elif command.startswith("+"):

        turn_controller.target += int(command.lstrip('+'))

    await asyncio.sleep(0)

This handler sets the target (set point) of turn_controller for dealing with positive and negative 
number settings. 

We can now integrate these into a modified control_loop:

async def control_loop():

  controller = IMUTurnController()
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  controller.target = robot.imu.euler[0]

  asyncio.create_task(command_handler(controller))

  last_time = time.monotonic()

  while True:

    await asyncio.sleep(0.1)

    next_time = time.monotonic()

    dt = next_time - last_time

    last_time = next_time

    angle = robot.imu.euler[0]

    controller.update(dt, angle)

    robot.uart.write(f"{angle}, 0\n".encode())

This control loop sets the controller target as the current robot’s heading instead of 0. It will also create 
the command handler async task with the controller as a parameter.

The loop is the same as what we saw previously.

The main method for this gets to be much simpler as the robot will not move until we ask it to:

async def main():

  while not robot.check_imu_status():

    await asyncio.sleep(0.1)

  robot.uart.write("Ready to go!\n".encode())

  await control_loop()

asyncio.run(main())

Send this to the robot and calibrate it. Then, when you see Ready to go on Bluetooth, you can send 
back an angle to turn.

The same troubleshooting steps apply as before.

Try 30, 45, 60, and 90, or small values such as 5 and 10 degrees. Do not go above 179 or -179, 
as this can cause the robot to spin until turned off. You could add code to limit this.

It can be helpful to store the error in IMUTurnController (as self.error) and plot this data 
instead of the angle for tuning the PID.

You can now make a known turn.
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Summary
In this chapter, we investigated the IMU and how we can use it to control the heading of our robot. 
We learned how to connect the device and calibrate it.

Then, we used data from it to face North by combining the sensor data with a PID controller. Finally, 
we built on this example so that it can turn a specified number from the current heading.

In the next chapter, we will build a small arena for the robot and look at how we can combine the 
encoders and distance sensors to estimate the robot’s position within this arena, improving its 
estimation as it moves.

Exercises
These exercises will deepen your understanding of the topics that were covered in this chapter and 
make the robot code better:

• Combining the preceding behaviors with the menu system for the UART we’ve seen in previous 
chapters would allow you to tune the PID with the robot running.

• Could you use the known turn behavior and straight-line behavior to write a better version of 
the planned path program from Chapter 5, Driving Motors with Raspberry Pi Pico?

• Experiment with the Euler heading reading – after calibrating, see how the readings change 
when you bring the robot near objects such as a laptop or kitchen appliances. This experiment 
will demonstrate a weakness with this kind of sensor.

• An advanced experiment would be to extract the quaternion (instead of Euler data) and write 
this to the UART.

Further reading
These further study aids will help you learn more and dive deeper into the PID algorithm and its quirks:

• The Adafruit CircuitPythong API guide for the BNO055 shows what else you can do with this 
sensor: https://docs.circuitpython.org/projects/bno055/en/latest/
api.html - BNO055.

• Learn Robotics Programming provides a guide for interfacing a Raspberry Pi device with a 
different IMU chip, the ICM90248, and writing code to calculate Euler angles, along with 
interesting ways to visualize this. It also shows how you can use encoders to make a known 
turn instead, perhaps when objects distort the magnetometer readings.

• Paul McWhorter performs Arduino experiments with the same BNO055 sensor in an intensive 
video series: https://toptechboy.com/arduino-based-9-axis-inertial-
measurement-unit-imu-based-on-bno055-sensor/.

https://docs.circuitpython.org/projects/bno055/en/latest/api.html
https://docs.circuitpython.org/projects/bno055/en/latest/api.html
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/
https://toptechboy.com/arduino-based-9-axis-inertial-measurement-unit-imu-based-on-bno055-sensor/


13
Determining Position Using 

Monte Carlo Localization

We now have several interesting sensors on our robot. However, we have yet to combine them to 
understand the position of our robot. The Monte Carlo simulation is a method that uses multiple 
sensors and a model of a robot’s world to estimate its location and heading in that world.

You will learn how to make a test arena for a robot, followed by how to model this arena in code, and 
how to send this data over Bluetooth to view on a computer. You will practice statistical methods for 
the robot to start guessing its location. You will see how to enrich encoder data and move the guesses, 
and then integrate this with distance sensor data to refine the guesses, using a method that is effective 
in the face of noisy sensor data and can cope with minor inaccuracies. This will come together in a 
Monte Carlo guess and check loop.

In this chapter, we will cover the following main topics:

• Creating a training area for our robot

• Modeling a space

• Using sensors to track a relative pose

• Monte Carlo localization

Technical requirements
For this chapter, you will require the following:

• The robot and code from Chapter 12, Detecting Orientation with an IMU on Raspberry Pi Pico

• A PC or laptop with Bluetooth LE 

• Python 3.7 with the Python matplotlib, bleak, and NumPy libraries installed 

• 10 x 10-mm A1 sheet foam boards
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• Duct or gaffer tape

• A tape measure

• A metal ruler, set square, and pencil

• A sharp craft knife

• A floor space of 1.5 sq meters

You can find the code for this chapter at https://github.com/PacktPublishing/
Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-13.

Creating a training area for our robot
We will be estimating a robot’s location in a space. The robot needs a known space to work in, so we 
will build a simple world for it to operate in. This training area, or arena, is loosely based on those 
used in Pi Wars (see https://piwars.org/2022-competition/general-rules/ 
under Arena construction rules), a British robotics competition, where this algorithm could be used 
for a robot to compete autonomously.

Let’s take a closer look at the arena.

What we will make

The following diagram shows the arena we will make:

Figure 13.1 – A robot test arena

https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-13
https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico/tree/main/ch-13
https://piwars.org/2022-competition/general-rules/
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Figure 13.1 shows a top-view drawing of an arena, complete with dimensions. The arena is mostly 
square to keep it simple to make and model. To help the Monte Carlo simulation work, there must 
be a cutout on one side to prevent rotational symmetry – that is, you can’t rotate the arena and have 
it appear identical from multiple angles.

The arena should be large enough for the robot to move freely inside of it, without being excessively 
large, making 1,500 mm a good compromise. The arena walls should be tall enough that the robot’s 
distance sensors cannot miss them. A reasonable wall height would be 200 mm. We will work with 
mm throughout this chapter to keep things consistent. 

Arena size versus robot speed
Beware that you may want a larger arena for a faster robot, and that a smaller arena will give 
the robot less time to detect its features.

The arena floor surface is important; if the robot’s wheels are slipping, then the calculations 
will suffer in accuracy.

Next, we can see how we’ll build this.

How we will make the arena

We’ll use foam board to build the arena, as it is lightweight and easy to cut; A1 boards are readily 
available, and panels can be cut from these.

The following figure shows how we can make the arena:

Figure 13.2 – Making an arena
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Figure 13.2 shows a 3D view of the arena. The letters indicate different parts. The Dumont Cybernetics 
team inspired this style. We can make the arena in sections, slotting together corner joints, as shown 
between panels D and B, or use tape (such as duct tape) to make hinging sections, such as those between 
panels A and B. This arena is 1,500 mm, so it can be disassembled and folded small when not in use. 

The following diagram shows the parts we will need to make this:

Figure 13.3 – A drawing of the parts to make the arena

Figure 13.3 shows the parts to cut to make the arena. Each part has a letter, the number of pieces 
you’ll need to make, and the measurements to cut the part. The slot profiles are all the same as panel 
A, along with the wall heights.

Four A panels can be cut from a board with some material left over. Let’s see how to cut them.

Tips for cutting

You can cut the foam board in a similar way to the plastics you cut in Chapter 4, Building a Robot 
around Pico. Use the tape measure, large ruler, and set square to mark where you will cut in pencil. 
Ensure the surface you are using to cut is at a comfortable height so that the long, repeated cutting 
does not make your back sore.
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Then, following a straight metal edge, draw a sharp knife along the cut multiple times. For the first 
cut, aim only to score the top plastic layer, and then keep making cuts until you are through. Take 
care to cut the same area – this is a matter of letting later cuts follow the earlier cuts by holding the 
blade lightly over them.

I suggest cutting wall height strips first, before marking slots and wall lengths on them.

These sheets often come sandwiched with throw-away foam padding; this will help as a cutting surface 
so that you do not damage a table or floor underneath.

If there is tearing, either you are applying too much pressure or need to change your blade for a sharp, 
fresh one. 

Take care cutting the slots. The wall heights do not need to be super precise; within a few mm is good 
enough. The real world is often not as precise and clear as a simulation, and this algorithm will be 
able to cope with this.

Once you have cut the parts, assemble the corners of the arena, and then make tape hinges on the 
inside joins (not the slots). When you disassemble the first time, fold the parts along these hinges, and 
then put tape on the outside of this joint. With gaffer tape or duct tape, this should be sturdy enough.

Now that we have a real space, we’ll need to model this so that the robot can use it.

Modeling the space
The aim of a Monte Carlo system is to model or simulate a space and a robot’s location. In this section, 
we will learn how code for the robot will represent this space. We will also look at how a computer 
can be used to visualize our robot’s guesses. Monte Carlo-based behavior code checks sensor readings 
frequently against the model of the space, so we should represent the space on the robot to optimize this.

The role of the computer and the robot in this are shown in the following diagram:

Figure 13.4 – Visualizing with the computer
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Figure 13.4 shows an overview of this system’s display and control architecture. The behavior code runs 
on the robot. The computer displays the state of the robot code, along with start and stop controls. 
The arena and state of the system all belong to the robot.

Let’s look at how to represent the arena on the robot.

Representing the arena and robot position as numbers

For a model like this, the boundaries of the arena are important. We can start by taking 2D X and Y 
coordinates of the corners. 

Look at the following representation of the arena:

Figure 13.5 – The arena and poses as coordinates

Figure 13.5 shows a simplified version of the arena. Coordinates describe each corner as numbers. We 
can directly use those in the code. These corners can be joined as line segments. A line segment is a set 
of coordinates for the start and end of the line segment. All the coordinates in the code will be in mm.

Our robot will have a pose somewhere within the arena. A pose describes the robot’s location in space 
– in this case, anywhere in the 2D space of the arena and facing any of 360 degrees. Imagine this like 
a map pin, with an arrow point showing the heading.

Figure 13.5 also shows two robot poses, A and B. Each has an X and Y coordinate in mm within the 
arena, and each has a heading theta (θ) in degrees. These three numbers will represent every robot 
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pose in this 2D space. At the start of a simulation, the robot could be at any position and facing any 
heading within the arena in degrees.

Our arena representation has 0, 0 for the bottom left. Heading 0 faces right, with positive theta angles 
going anticlockwise. For example, pose A has a heading of around 30 degrees anticlockwise from the 
right, and pose B has a heading of 300 degrees from the right. 

In this system, we will have many pose estimates, which behave like particles. The Monte Carlo 
simulation here is also known as a particle filter, due to how poses are manipulated and then filtered 
away based on sensor data.

Now, let’s develop code for the arena boundary line segments.

Converting the representation into code

We’ll represent the arena as code and render it on the computer. Then, we’ll move the arena representation 
over to the robot, with the computer fetching data from it.

After creating the arena.py file, we can add the arena points to it:

width = 1500

height = 1500

cutout_width = 500

cutout_height = 500

boundary_lines = [

    [(0,0), (0, height)],

    [(0, height), (width, height)],

    [(width, height), (width, cutout_height)],

    [(width, cutout_height), (width - cutout_width, cutout_
height)],

    [(width - cutout_width, cutout_height), (width - cutout_
width, 0)],

    [(width - cutout_width, 0), (0, 0)],

]

The boundary_lines variable represents a list of line segments, each of which is an array of start 
and end coordinates, read as [(start_x, start_y), (end_x, end_y)]. We also store the 
arena width and height values here. If your arena is a different size, please update these values.

We can display this using matplotlib, a mathematical plotting library for Python. To do this, 
first install Python 3.7 (or later) on your computer, and in a terminal, use the python3 -mpip 
install matplotlib numpy command to get the libraries. For Linux, you may need additional 
python3-tk packages in your package manager.
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Create the display_arena.py file to draw the arena. This file starts by importing matplotlib. 
The convention is to import pyplot, a data-plotting module, as plt:

from matplotlib import pyplot as plt

import arena

for line in arena.boundary_lines:

    plt.plot([line[0][0], line[1][0]], [line[0][1], line[1]
[1]], color="black")

plt.show()

We will loop over the lines in the arena. The plot method takes X coordinates for a line, followed by Y 
coordinates for it, and allows us to specify a line color. Run this with python3 display_arena.
py, which will draw the arena for us:

Figure 13.6 – A matplotlib drawing of the arena

The preceding diagram shows the arena drawn by the computer from our code. It has grid coordinates 
along the left and the bottom.

We can now look at moving this model data to the robot where it will be used.
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Serving the arena from the robot

The robot should be the source of truth for arena data, so let’s put the arena model there. Make a robot 
folder on your computer and move arena.py into it. We will be copying the contents of this robot 
folder to Raspberry Pi Pico. From the previous chapters, copy robot.py, pid_controller.
py, and pio_encoder.py into the robot folder.

We can then add a little code to serve up our arena boundary lines from the robot. In robot/code.
py, start with imports and helpers:

import asyncio

import json

import arena

import robot

def send_json(data):

    robot.uart.write((json.dumps(data)+"\n").encode())

def read_json():

    data = robot.uart.readline()

    decoded = data.decode()

    return json.loads(decoded)

On the robot, we can handle commands as we have been since Chapter 10, Using the PID Algorithm 
to Follow Walls; however, we will use JavaScript Object Notation (JSON), a convenient method to 
represent more complex information.

Any data we send is converted into JSON, and then a "\n" newline is added to show that it’s a 
complete message. We then encode this. The data we receive is unpacked with json.loads, which 
will result in data structures of dictionaries.

We can then add a handler to this that will send back the arena when requested:

async def command_handler():

    print("Starting handler")

    while True:

        if robot.uart.in_waiting:

            request = read_json()

            print("Received: ", request)

            if request["command"] == "arena":
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                send_json({

                    "arena": arena.boundary_lines,

                })

        await asyncio.sleep(0.1)

asyncio.run(command_handler())

This will loop and wait for the arena command. It prints out any JSON it receives for troubleshooting. 
It will use the JSON to send back the arena data. 

The robot can be interacted with via the Bluefruit app in UART mode by sending {"command": 
"arena"}. The robot will send the boundary lines back as lists. However, ideally, we want the 
computer to display this from the robot with matplotlib. We’ll need to connect the computer to 
the robot first.

The Bleak library

The Bleak Python library allows Python on a computer to connect and interact with Bluetooth LE 
devices. In a terminal, use python3 -mpip install bleak to install this. Bleak is documented 
at https://bleak.readthedocs.io/en/latest/.

We will also need information about the Adafruit Bluefruit system. Bluetooth LE has device IDs, 
and IDs for services on Bluetooth. See https://learn.adafruit.com/introducing-
adafruit-ble-bluetooth-low-energy-friend/uart-service for details. We will 
be using these in the following piece of code.

We’ll start with an example to list the devices, to check whether we can find the robot’s Bluetooth 
UART. Create the find_devices.py file and add the following:

import asyncio

import bleak

async def run():

    ble_uuid = "6E400001-B5A3-F393-E0A9-E50E24DCCA9E"

    ble_name = "Adafruit Bluefruit LE"

    devices = await bleak.BleakScanner.discover(service_
uuids=[ble_uuid])

    print(f"Found {len(devices)} devices")

    print([device.name for device in devices])

    matching_devices = [device for device in devices if device.
name==ble_name]

    if len(matching_devices) == 0:

https://bleak.readthedocs.io/en/latest/
https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service
https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service
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        raise RuntimeError("Could not find robot")

    ble_device_info = matching_devices[0]

    print(f"Found robot {ble_device_info.name}...")

asyncio.run(run())

This code starts by importing the asyncio and bleak libraries. The run function needs to be 
asynchronous so that it can await the bleak scanner.

We define the ID and name of the Adafruit Bluefruit based on the Adafruit documentation, and then 
ask the bleak library to discover available devices with the Adafruit UART service. After waiting for 
the result, the next few lines print these out. The function then filters for the device with the matching 
name, checks that it found it, and prints it successfully.

Run this with python3 find_devices.py. If the robot is off, you will see a Could not 
find robot error. However, running with the robot turned on should show the following output:

Found 1 devices

['Adafruit Bluefruit LE']

Found robot Adafruit Bluefruit LE...

From time to time, bleak will have trouble finding the robot and display the preceding error. You 
will need to rerun the example to find the robot. We can now put this code into a library that we can 
use in the remaining experiments in this chapter.

Creating a Bluetooth LE wrapper library

We’ll call the library robot_ble_connection.py. We’ll start with imports:

import asyncio

import bleak

We’ll put our connection handling into a class:

class BleConnection:

    ble_uuid = "6E400001-B5A3-F393-E0A9-E50E24DCCA9E"

    rx_gatt = "6E400003-B5A3-F393-E0A9-E50E24DCCA9E"

    tx_gatt = "6E400002-B5A3-F393-E0A9-E50E24DCCA9E"

    ble_name = "Adafruit Bluefruit LE"

See https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-
low-energy-friend/gatt-service-details for an explanation of these variables.

https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/gatt-service-details
https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/gatt-service-details
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When we create the object to handle the connection, we will have two functions that the client code 
can provide, one for a connection being complete and one for data being received:

    def __init__(self, receive_handler):

        self.ble_client = None

        self.receive_handler = receive_handler

receive_handler is a function that can be called with a Python bytes object holding the 
received data. We’ll adapt our receive handler into one that the bleak library can use to receive data:

    def _uart_handler(self, _, data: bytes):

        self.receive_handler(data)

Now, we add a connect method. This starts the same as the find_devices example:

    async def connect(self):

        print("Scanning for devices...")

        devices = await bleak.BleakScanner.discover(

            service_uuids=[self.ble_uuid]

        )

        matching_devices = [device for device in devices if 
device.name==self.ble_name]

        if len(matching_devices) == 0:

            raise RuntimeError("Could not find robot")

        ble_device_info = matching_devices[0]

        print(f"Found robot {ble_device_info.name}...")

However, we then need to connect to this device and handle the received data:

        self.ble_client = bleak.BleakClient(ble_device_info.
address)

        await self.ble_client.connect()

        print("Connected to {}".format(ble_device_info.name))

        self.notify_task = asyncio.create_task(

            self.ble_client.start_notify(self.rx_gatt, self._
uart_handler)

        )

We create a BleakClient object and then wait for a connection to the robot. After connection, it 
will create a background task to notify the handler when data arrives. This start_notify method 
uses rx_gatt to receive UART data from this Adafruit Bluefruit device.
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We need to be able to close the connection:

    async def close(self):

        await self.ble_client.disconnect()

Then, the final part of this code can send data to the robot:

    async def send_uart_data(self, data):

        await self.ble_client.write_gatt_char(self. tx_gatt, 
data)

This will wait for data to be sent and use the right UUID for transmitting to the UART.

This robot_ble_connection library is now ready to be used in code.

Showing the robot’s data on the computer screen

We can use matplotlib to display the data from the robot, connecting to the robot with the 
preceding code, and asking it for the arena. This demonstration will tie matplotlib together with 
a Bluetooth connection.

We’ll put this in a new file named display_from_robot.py, starting with the imports:

import asyncio

import json

import matplotlib.pyplot as plt

from robot_ble_connection import BleConnection

We’ll put our display system in a class called RobotDisplay:

class RobotDisplay:

    def __init__(self):

        self.ble_connection = BleConnection(self.handle_data)

        self.buffer = ""

        self.arena = {}

        self.closed = False

        self.fig, self.axes = plt.subplots()

The first part sets up the BLE connection and prepares it with a handle_data method (this is the 
BLE data handler, which we’ll implement shortly).

When data arrives via BLE to the computer, a whole message can be split across a few calls to the 
handle_data method. We are working in lines of text, so we will use self.buffer to store any 
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partial line until we get a line ending, signaling a line is complete. We also have a place to store the 
arena from the robot, and a flag to detect when the app is closed. The display system is prepared with 
plt.subplots, which gets a figure and axes – we’ll use these in a draw method to draw the display.

Let’s make a handler for the app being closed:

    def handle_close(self, _):

        self.closed = True

This handler will just set the closed flag to True, which we can check for later. matplotlib will 
automatically create an app window for us to display output.

Next, we will build the BLE data handler:

    def handle_data(self, data):

        self.buffer += data.decode()

        while "\n" in self.buffer:

            line, self.buffer = self.buffer.split("\n", 1)

            print(f"Received data: {line}")

            try:

                message = json.loads(line)

            except ValueError:

                print("Error parsing JSON")

                return

            if "arena" in message:

                self.arena = message

This collects decoded incoming data into the self.buffer variable. While that buffer has line 
endings, "\n", it splits a single line off and decodes it as JSON. 

We then check whether this JSON has arena data in it. If so, we store it in the arena data member. 

Next, we put the arena line drawing into a method:

    def draw(self):

        self.axes.clear()

        if self.arena:

            for line in self.arena["arena"]:

                self.axes.plot(

                    [line[0][0], line[1][0]], [line[0][1], 
line[1][1]], color="black"

                )
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This function clears the previous display using the self.axes.clear() function and then 
redraws the arena lines.

The app main method starts the connection and asks the robot for the arena:

    async def main(self):

        plt.ion()

        await self.ble_connection.connect()

        try:

            request = json.dumps({"command": "arena"}).encode()

            print(f"Sending request for arena: {request}")

            await self.ble_connection.send_uart_data(request)

            self.fig.canvas.mpl_connect("close_event", self.
handle_close)

This function enables interactive mode in matplotlib with plt.ion() – this means we get to 
handle when the screen is redrawn, which suits our data model. 

We then call and wait for the BLE connect function. Once a connection has been made, we wrap 
the rest in a try/finally block that will ensure the BLE connection is closed if this code is stopped 
or breaks. We then send a request to the robot, asking for the arena.

The code sets up the close handler so we can detect whether the window is closed, and immediately 
gets into a main while loop based on the closed flag:

            while not self.closed:

                self.draw()

                plt.draw()

                plt.pause(0.05)

                await asyncio.sleep(0.01)

        finally:

            await self.ble_connection.close()

The main loop uses plt.draw() to update the display and then waits 0.05 seconds, giving 
matplotlib time to handle interactive events. It also has a 0.01-second asynchronous sleep to give 
the BLE tasks time to run. These sleeps and pauses must be called frequently. At the end, finally 
ensures we close the BLE connection.

We then need to create an instance of the class and start the main loop:

robot_display = RobotDisplay()

asyncio.run(robot_display.main())
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At this point, the display code is complete. Send the robot folder to Raspberry Pi Pico, and with 
battery power turned on, start the display code with the following:

python3 display_from_robot.py

You should see the BLE connecting messages and then the following output on the computer:

Sending request for arena: b'{"command": "arena"}'

Received data: {"arena": [[[0, 0], [0, 1500]], [[0, 1500], 
[1500, 1500]], [[1500, 1500], [1500, 500]], [[1500, 500], 
[1000, 500]], [[1000, 500], [1000, 0]], [[1000, 0], [0, 0]]]}

After around 30 seconds, you should see the computer display the arena. This will look identical to 
Figure 13.6, but the data is now coming from the robot.

We have the computer connecting to the robot and retrieving arena information from it. The robot 
has modeled the space in simple terms.

In the next section, we’ll look more at robot poses, displaying them on our computer, and updating 
them from encoder sensors. 

Using sensors to track relative pose
In this section, we will explore what a pose is, how to create, send, and display poses, and how to move 
the poses relative to the movement of the robot.

Setting up poses

We’ll make some random poses in robot/code.py using NumPy, a numeric manipulation library 
for fast array operations, with ulab providing this functionality in CircuitPython. This library also 
gives us handy ways of storing and dealing with arrays.

Import the ulab library, and random to generate random poses:

import asyncio

import json

import random

from ulab import numpy as np

After the read_json function, we’ll add a Simulation class to hold the poses:

class Simulation:

    def __init__(self):

        self.population_size = 20
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        self.poses = np.array(

            [(

                int(random.uniform(0, arena.width)),

                int(random.uniform(0, arena.height)),

                int(random.uniform(0, 360))) for _ in 
range(self.population_size)],

            dtype=np.float,

        )

We will create a small population of 20 random poses. The poses variable is a NumPy array of 
population_size items, with each item an X, Y heading pose. NumPy allows us to specify a 
datatype; we use the float type so that we can work in fractional values.

Add a function (before Simulation) to send X and Y pose coordinates to the computer:

def send_poses(samples):

    send_json({

        "poses": np.array(samples[:,:2], dtype=np.int16).
tolist(),

    })

The [:, :2] notation lets us extract the first two entries of each pose in the poses array, the X 
and Y coordinates. We convert this to int16 to reduce how much data is being sent – the UART is 
easily overwhelmed by pose data.

The command handler can now send poses after the arena for now:

async def command_handler(simulation):

    print("Starting handler")

    while True:

        if robot.uart.in_waiting:

            request = read_json()

            print("Received: ", request)

            if request["command"] == "arena":

                send_json({

                    "arena": arena.boundary_lines,

                })

                send_poses(simulation.poses)

        await asyncio.sleep(0.1)

simulation = Simulation()

asyncio.run(command_handler(simulation))
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Now, command_handler has the simulation passed into it and sends the poses back after the arena. 
Before we start the handler, we create simulation from its class. 

This code is now ready for the computer to display these poses.

Displaying poses

We can now enhance our matplotlib file, display_from_robot.py, with the poses. First, 
we will add numpy to the imports:

import asyncio

import json

import numpy as np

import matplotlib.pyplot as plt

When we set up the display in the __init__ method, we add an empty poses member:

        self.fig, self.axes = plt.subplots()

        self.poses = None

Next, we need to extend handle_data to load poses into an int16 NumPy array:

            if "arena" in message:

                self.arena = message

            if "poses" in message:

                self.poses = np.array(message["poses"], 
dtype=np.int16)

We then add extend the draw method to display poses, checking whether any are loaded and, if so, 
putting them into a scatter plot, slicing into the X and Y components to fit matplotlib :

        if self.arena:

            for line in self.arena["arena"]:

                self.axes.plot(

                    [line[0][0], line[1][0]], [line[0][1], 
line[1][1]], color="black"

                )

        if self.poses is not None:

            self.axes.scatter(self.poses[:,0], self.poses[:,1], 
color="blue")
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Send the robot folder over to Pico, and then run display_from_robot.py on the computer, 
and after the BLE startup, you should see something like the following screenshot:

Figure 13.7 – Poses drawn in the arena

Figure 13.7 shows the arena with 20 poses drawn as dots. Each dot is a potential guess of where the 
robot might be. Some are in the cutout area and will later be eliminated.

These poses will need to move when our robot moves, so let’s make our robot move.

Moving with collision avoidance

The robot will be moving while we perform the simulation, and it would be good to avoid collisions 
while the robot moves. We’ll do this as an asynchronous routine so that other parts of the code can 
run at the same time. The following architecture diagram shows how this works:
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Figure 13.8 – A simulation with a collision avoidance architecture

The command handler system accepts Bluetooth command requests. The command handler 
starts the main loop in simulation. The simulation will start both a Collision Avoider and a 
Distance Sensor Tracker, as shown in Figure 13.8. The distance sensor tracker will store sensor data 
used by the simulation and the collision avoider. The collision avoider will drive the robot’s motors. 
The simulation main method also sends poses via Bluetooth.

We will start with DistanceSensorTracker, a class to keep tabs on the distance sensors and 
their last readings. Place this in robot/code.py under the imports:

class DistanceSensorTracker:

    def __init__(self):

        robot.left_distance.distance_mode = 2

        robot.right_distance.distance_mode = 2

        self.left = 300

        self.right = 300

We are being explicit about sensor mode here, adjusting it to the size of the arena. We also put in 
starting values until a reading is available.
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The sensor tracker loop fetches readings when ready and resets the sensor interrupts:

    async def main(self):

        robot.left_distance.start_ranging()

        robot.right_distance.start_ranging()

        while True:

            if robot.left_distance.data_ready and robot.left_
distance.distance:

                self.left = robot.left_distance.distance * 10

                robot.left_distance.clear_interrupt()

            if robot.right_distance.data_ready and robot.right_
distance.distance:

                self.right = robot.right_distance.distance * 10

                robot.right_distance.clear_interrupt()

            await asyncio.sleep(0.01)     

We are multiplying the sensor readings by 10 to convert them to mm, and then storing them. The 
remaining code can just use these stored readings.

Next, we’ll build the CollisionAvoid class to turn the robot away from a wall that it detects with 
the sensors. Add this class after the DistanceSensorTracker class:

class CollisionAvoid:

    def __init__(self, distance_sensors):

        self.speed = 0.6

        self.distance_sensors = distance_sensors

This has an initial robot speed, along with a reference to the distance sensor tracker. This then has a 
main collision-avoiding loop:

    async def main(self):

        while True:

            robot.set_right(self.speed)

            while self.distance_sensors.left < 300 or \

                    self.distance_sensors.right < 300:

                robot.set_left(-self.speed)

                await asyncio.sleep(0.3)

            robot.set_left(self.speed)

            await asyncio.sleep(0)
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This loop starts the right motor moving, and if a collision looks likely, it will set the left motor going 
backward and wait before driving forward. The asyncio.sleep delays mean that other tasks can 
continue on the robot.

Inside the Simulation class, add the sensors and collision_avoider to the __init__ method:

        self.distance_sensors = DistanceSensorTracker()

        self.collision_avoider = CollisionAvoid(self.distance_
sensors)

Then, we add a simulation main method below the __init__ simulation. This starts tasks for the 
other components and then loops over, sending the poses back to the computer:

    async def main(self):

        asyncio.create_task(self.distance_sensors.main())

        collision_avoider = asyncio.create_task(self.collision_
avoider.main())

        try:

            while True:

                await asyncio.sleep(0.1)

                send_poses(self.poses)

        finally:

            collision_avoider.cancel()

            robot.stop()

There’s also error handling to stop the robot if anything goes wrong here – we cancel the collision 
avoider task (which would set the robot’s speed) and stop the motors. The sleep here allows the other 
tasks to run and avoids overwhelming the BLE UART.

Extend the command_handler method to start the simulation’s main task. We’ll do so based on 
a Start button in the display UI. First, we’ll store the task state at the top of the handler:

async def command_handler(simulation):

    print("Starting handler")

    simulation_task = None

    while True:

Then, we’ll handle a start command in it:

            if request["command"] == "arena":

                send_json({

                    "arena": arena.boundary_lines,
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                })

            elif request["command"] == "start":

                if not simulation_task:

                    simulation_task = asyncio.create_
task(simulation.main())

The start button will run the simulation main task if it’s not yet been run.

Adding the start button on the computer

We need to add the corresponding button to the computer display code. Open display_from_
robot.py. In the imports, add the following:

from matplotlib.widgets import Button

In the RobotDisplay class, we can add a helper to send a JSON command, much as we did on the 
robot. Add this to the robot display class above its main method:

    async def send_command(self, command):

        request = (json.dumps({"command": command})  ).encode()

        print(f"Sending request: {request}")

        await self.ble_connection.send_uart_data(request)

This must be asynchronous to use await on the BLE send_uart_data function. 

Above main, add a start button handler to call when the button is pressed:

    def start(self, _):

        self.button_task = asyncio.create_task(self.send_
command("start"))

This will start sending the data but not wait for it – so the matplotlib event loop doesn’t get 
stuck waiting.

We can replace the JSON sending in the main method with the send_command method:

        await self.ble_connection.connect()

        try:

            await self.send_command("arena")
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We then add the button. Add the highlighted code into the main method:

            self.fig.canvas.mpl_connect("close_event", self.
handle_close)

            start_button = Button(plt.axes([0.7, 0.05, 0.1, 
0.075]), "Start")

            start_button.on_clicked(self.start)

            while not self.closed:

The code uses the send_command wrapper to request the arena on startup. We then add start_
button, using plt.axes to position it.

We connect a button on_clicked handler to the start method to enable the button.

Send the robot folder to Raspberry Pi Pico, and on the computer, run display_from_robot.
py. I recommend propping the robot up for troubleshooting while connected, and then test it in the 
arena. The display will look like the following screenshot:

Figure 13.9 – The arena display with a button
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Figure 13.9 shows the Start button on the display. Press Start to get the robot running – poses will 
appear, and the robot should be avoiding walls in the arena. If not, the next section will help.

Troubleshooting

These suggestions will help if you are having trouble here:

• If the distance sensors are showing errors, please go back to Chapter 8, Sensing Distances to 
Detect Objects with Pico, and check the wiring, using the tests there. 

• If the robot is turning too far and getting trapped in the corners, lower the sleep after robot.
set_left(-self.speed).

• If the robot is going very quickly, either reduce self.speed or replace the motors with a 
greater gear ratio – ideally, 298:1, as recommended in Chapter 11 in the Slowing the Robot 
Down section.

While the robot is now avoiding walls, the poses are not changing when the robot moves. To remedy 
this, we can add a motion model in the next section.

Moving poses with the encoders

We want the poses to move with our robot’s motion, updating both their position and their heading. 
The wheel encoders provide data about each wheel’s motion, and we can convert this into rotations and 
translations of the pose. First, we need to store more data about the shape of the chassis in robot/
robot.py:

ticks_per_revolution = encoder_poles * gear_ratio

ticks_to_mm = wheel_circumference_mm / ticks_per_revolution

ticks_to_m = ticks_to_mm / 1000

m_to_ticks = 1 / ticks_to_m

wheelbase_mm = 170

We ensure our tick conversion is in mm. We then add the wheelbase – this is a measurement between 
the central contact point of each wheel. Use a value measured from your own robot. We can use the 
wheelbase to calculate the robot’s movement from the encoders, as shown in the following diagram:
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Figure 13.10 – Calculating motion from encoders

Figure 13.10 (a) shows the robot moving along an arc. Each wheel encoder will sense travel along 
an arc on an inner radius or an outer radius. Our robot uses a differential drive, so we can assume 
all motion takes place around the axis between the two wheels. The center of the robot, our pose, 
travels along the turn radius. We can use these with the wheel distance – the distance between the 
two wheels to calculate the arc.

Figure 13.10 (b) relates an arc length to the arc angle and radius. Each wheel will have traveled an arc, 
and the encoder will have measured the arc length. This arc length is the radius multiplied by the angle 
(in radians). We will use this to calculate the arc. From the motion of the two wheels, measured by the 
encoders (arc lengths) and the wheel distance, we can get the radius and angle change (d_theta).

Figure 13.10 (c) represents a robot motion. Although the robot has moved in an arc, for the simulation, 
we will simplify this arc motion into three components – rotation 1 aligns the robot for a straight-line 
translation, and then rotation 2 turns the robot to face the heading expected at the end of the curve. 
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Add the following into the Simulation class in robot/code.py:

    def convert_odometry_to_motion(self, left_encoder_delta, 
right_encoder_delta):

        left_mm = left_encoder_delta * robot.ticks_to_mm

        right_mm = right_encoder_delta * robot.ticks_to_mm

        if left_mm == right_mm:

            return 0, left_mm, 0

This function will take the changes (or deltas) in encoders and convert them to obtain representations 
of rotation 1, translation, and rotation 2. The encoder changes are turned into measurements in mm. 
We then check for the straight-line case, and if it is there, return a translation component only. This 
prevents 0 causing the next part to crash.

The remaining cases now need us to calculate an arc:

        radius = (robot.wheelbase_mm / 2) * (left_mm + right_
mm) / (right_mm - left_mm)

        d_theta = (right_mm - left_mm) / robot.wheelbase_mm

        arc_length = d_theta * radius

The first line uses the wheelbase and the two encoder movements to calculate an arc radius. The 
difference between the motion of the two wheels is then used to calculate d_theta, how much the 
robot’s heading changed throughout this arc. The d prefix represents a delta.

The arc length is then d_theta multiplied by the radius. Because this will be called fairly frequently, 
we are going to assume that the arc length is close enough to the translation. 

From here, the rotation components can be calculated:

        rot1 = np.degrees(d_theta/2)

        rot2 = rot1

        return rot1, arc_length, rot2

If we assume the arc to be regular, then each rotation component is half of the full arc rotation. We 
also convert this into degrees. 

We can then write a method to move poses this way. Add this to Simulation by following these steps:

1. Define the method and add the first rotation into the array of pose rotations (the third element):

    def move_poses(self, rot1, trans, rot2):

        self.poses[:,2] += rot1



Determining Position Using Monte Carlo Localization318

2. We then move the translation term in the new pose direction:

        rot1_radians = np.radians(self.poses[:,2])

        self.poses[:,0] += trans * np.cos(rot1_radians)

        self.poses[:,1] += trans * np.sin(rot1_radians)

The rot1_radians variable will hold a NumPy array. This comes from the second element 
of the poses array, converted into radians. The ability of NumPy (or ulab) to operate on whole 
arrays is handy here. We will use it again to calculate the X and Y motions. trans * np.cos 
applies the cosine function to every element in rot1_radians and multiplies each one by 
the translation term.

3. We then need to add the rot2 term:

        self.poses[:,2] += rot2

        self.poses[:,2] = np.array([float(theta % 360) 
for theta in self.poses[:,2]])

Finally, we constrain the angles between 0 and 360 degrees.

4. Next, we need to tie these together with getting the encoder deltas. First, we extend the 
Simulation.__init__ method to get the initial encoder readings:

        self.collision_avoider = CollisionAvoid(self.
distance_sensors)

        self.last_encoder_left = robot.left_encoder.
read()

        self.last_encoder_right = robot.right_encoder.
read()

We will use this encoder data in a motion model, moving all our poses with the robot’s motion. In 
the Simulation class, we will then add a motion_model method:

5. It first gets the latest encoder readings:

    def motion_model(self):

        new_encoder_left = robot.left_encoder.read()

        new_encoder_right = robot.right_encoder.read()



Using sensors to track relative pose 319

6. We calculate the deltas and feed these into convert_odometry_to_motion:

        rot1, trans, rot2 = self.convert_odometry_to_
motion(

            new_encoder_left - self.last_encoder_left, 

            new_encoder_right - self.last_encoder_right)

7. We must update the last encoder readings so that we'll get deltas next time:

        self.last_encoder_left = new_encoder_left

        self.last_encoder_right = new_encoder_right

8. Now, we apply these odometry values to our poses:

        self.move_poses(rot1, trans, rot2)

We now need to call this motion model. In Simulation.main, add the highlighted code:

            while True:

                await asyncio.sleep(0.05)

                self.motion_model()

                send_poses(self.poses)

This will apply the motion model at every cycle before sending the poses. Since the motion model 
requires time to run, the sleep is reduced to compensate, keeping the UART data rate similar. Copy the 
contents of the robot folder to Raspberry Pi Pico, and launch the display_from_robot app.

When you press Start, you should now see the poses moving as the robot moves around the arena. 
All the poses should follow the same path, but each from a different starting point and orientation.

These poses are moving, but the real world is messy, so let’s add randomness to this.

Pose movement probabilities

Robot movement is not always certain; although we have encoders, wheels can slip, wheel sizes can 
have minor variations, and our calculations might not be 100% accurate. Imagine that the preceding 
poses are in a cluster or the cloud, and then our robot drives in a particular direction. The following 
diagram should demonstrate this:
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Figure 13.11 – Movement probability distributions

Figure 13.11 (a) shows a section of the arena, with arena coordinates shown on the axes. The cluster 
around the point (250,300) is the initial robot pose guesses. The thick line and angle arc show a robot 
movement at 300 mm, bearing 30 degrees. However, due to the uncertainties of the motion, the 
cluster gets spread out. The arc shape is due to uncertainty in the angle of the motion, and the width 
of the arc represents the uncertainty of the forward motion of the robot. This banana shape represents 
where a robot could end up. The image here has been exaggerated, as the spread on the robot should 
be far less than this.
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Figure 13.11 (b) shows how we can model this uncertainty centered around a mean (average or most 
likely value) of 0, with a variation on either side. A probability distribution maps how likely a value 
is to come up in a random selection. The height of each point signifies how likely a particular value is 
to come up. If we use a uniform distribution, all possibilities between -1.0 and +1.0 are equal, giving us 
a rectangle shown for n=1. However, we want this distribution centered around the mean. If we sum 
two samples from the uniform distribution from -1.0 to 1.0 and divide by 2, we get the n=2 graph. This 
is approximately a triangle. Here, n represents the number of uniform random sample picks we add 
together. We could refine this to the n=4 curve, using a sum of four uniform samples and dividing by 
4; however, the trade-off between ideal curves and the time cost for each uniform distribution sample 
makes the triangle at n=2 good enough for our purposes to center the distribution.

We will use the n=2 distribution in our model. In robot/code.py, add the following piece of code 
before class Simulation:

def get_random_sample(mean, scale):

    return mean + (random.uniform(-scale, scale) + random.
uniform(-scale, scale)) / 2

This code will add the two samples, scaling the uniform distributions to match how much the model 
varies, divide by 2, and then add the mean.

The other factor we will need to account for is that the larger the movement we make, the larger the 
random error factor will be. A large forward motion will influence the rotation, and large rotations will 
affect the forward motion (translation). It is conventional to refer to the factors for these influences 
as alpha. Let’s add these values to our Simulation.__init__ class:

        self.last_encoder_right = robot.right_encoder.read()

        self.alpha_rot = 0.09

        self.alpha_rot_trans = 0.05

        self.alpha_trans = 0.12

        self.alpha_trans_rot = 0.05        

We have four terms here. They should be values between 0 and 1 and kept low. The value 0.05 will 
represent a 5% error. Tune them to reflect the error seen in your robot.

We will use this to apply randomness to our model:

1. Add the following method in Simulation, after move_poses:

    def randomise_motion(self, rot1, trans, rot2):
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2. Calculate the scaling factors from the alpha terms:

        rot1_scale = self.alpha_rot * abs(rot1) + self.
alpha_rot_trans * abs(trans)

        trans_scale = self.alpha_trans * abs(trans) + 
self.alpha_trans_rot * (abs(rot1) + abs(rot2))

        rot2_scale = self.alpha_rot * abs(rot2) + self.
alpha_rot_trans * abs(trans)

The rotation scaling factors are based on the absolute value of each element; they must not 
be negative. The rotation scales have both a rotation factor and a lower translation factor. The 
translation scale has a translation factor (usually larger) and a factor based on both rotations. 

3. We will now use this to generate noise around the motion for every pose:

        rot1_model = np.array([get_random_sample(rot1, 
rot1_scale) for _ in range(self.poses.shape[0])])

        trans_model = np.array([get_random_sample(trans, 
trans_scale) for _ in range(self.poses.shape[0])])

        rot2_model = np.array([get_random_sample(rot2, 
rot2_scale) for _ in range(self.poses.shape[0])])

This uses the scaled sample function we created, with our scale factor. It uses the calculated 
rotation or translation as a mean. We run this through loops for each pose dimension, so for a 
population of 200, we will get 200 random samples, centered around the calculated measurement, 
with variation scaled to the calculated factor.

4. Finally, we return these models:

        return rot1_model, trans_model, rot2_model

We now have a model that generates noise in our motion, meaning that it will compensate for the 
inaccuracies in the measurement by modeling the uncertainty in that measurement. Add the highlighted 
code for this to the motion_model method:

    def motion_model(self):

        """Apply the motion model"""

        new_encoder_left = robot.left_encoder.read()

        new_encoder_right = robot.right_encoder.read()

        rot1, trans, rot2 = self.convert_odometry_to_motion(

            new_encoder_left - self.last_encoder_left, 

            new_encoder_right - self.last_encoder_right)

        self.last_encoder_left = new_encoder_left

        self.last_encoder_right = new_encoder_right
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        rot1_model, trans_model, rot2_model = self.randomise_
motion(rot1, trans, rot2)

        self.move_poses(rot1_model, trans_model, rot2_model)

The changes swap the rot1 variable out for rot1_model and do a similar swap for the other 
pose elements. As rot1_model has the same number of elements as our poses, passing this into 
move_poses will add each sample element-wise to the respective pose element. This method takes 
advantage of how NumPy manipulates lists.

Copy the robot folder to the robot and run the display_from_robot.py app on your 
computer. The motion will be a little randomized. Now, let’s check that your robot code is working 
and behaving as expected.

Troubleshooting

If this example does not work, try the following methods:

• Run with the robot propped up and connected to the computer so that the Mu editor serial can 
see its state. This will show you whether there are any errors in the code. 

• If the movements are too far or too little, adjust the measurements in robot/robot.py to 
match your robot, as they may vary from example values.

• If you see sensor or I2C issues, backtrack to check the wiring and previous sensor demonstration 
examples. Also, ensure that you have fresh batteries.

We now have our poses motion model based on the encoders. We can now bring the distance sensors 
and arena data into play with the Monte Carlo simulation.

Monte Carlo localization
Our robot’s poses are going outside of the arena, and the distance sensor readings should show which 
guesses (poses) are more likely than others. The Monte Carlo simulation can improve these guesses, 
based on the sensor-reading likelihood. 

The simulation moves the poses and then observes the state of the sensors to create weights based on 
their likelihood, a process known as the observation model.

The simulation resamples the guesses by picking them, so those with higher weights are more likely. 
The result is a new generation of guesses. This movement of particles followed by filtering is why this 
is also known as a particle filter.

Let’s start by giving our poses weights, based on being inside or outside the arena, and then we’ll look 
at how to resample from this.



Determining Position Using Monte Carlo Localization324

Generating pose weights from a position

The initial weight generation can be based on a simple question – is the robot inside the arena or not? 
If not, then we can reduce the pose probability. Note that we don’t eliminate these, as the robot could 
have been placed outside the arena map or been tested on your desk. We will just give them a lower 
probability than those that are inside the arena.

In the robot/arena.py file, do the following:

1. We can add a value to indicate a very low probability – close to but not zero:

low_probability = 10 ** -10

2. Add a function to check whether the arena contains a point:

def contains(x, y):

3. First, check whether the point’s outside the arena rectangle:

  if x < 0 or x > width \

    or y < 0 or y > height:

    return False

4. Then, we check whether it’s in the cutout section:

  if x > (width - cutout_width) and y < cutout_height:

    return False

5. Otherwise, this point is in the arena:

  return True

We can then add an observation_model method to our robot/code.py Simulation 
class to generate the weights:

1. We set up the weights to ones, with a weight per pose:

    def observation_model(self):

        weights = np.ones(self.poses.shape[0], dtype=np.
float)

2. We can then loop over the poses, lowering the weights of those outside the arena:

        for index, pose in enumerate(self.poses):

            if not arena.contains(pose[0], pose[1]):

                weights[index] = arena.low_probability
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3. We then return the weights:

        return weights

At this point, the weights aren’t being used. We will need to resample them for them to act on the poses.

Resampling the poses

As we step through the Monte Carlo simulation on the robot, we would like a subsequent generation of 
particles to favor more likely poses. We are going to use a technique illustrated in the following diagram:

Figure 13.12 – Low variance resampling

Figure 13.12 starts with Weighted Sample Space, a number line between 0 and the sum of all weights. 
Below this is a bar representing 10 samples (named a to j) in a sample space. The weights of these 
samples are represented by their widths. The shading highlights the different samples.

In the diagram, we generate a new space with five samples (n=5). This number could be the same as 
the original space (for generating a new generation), may have a smaller number for sending via BLE, 
and may have a larger number for interpolating.

Resampling the original set starts by dividing the total sum by the number of new samples, which will 
give a sample interval size of sum/n, shown as Sample intervals. We then generate a single uniform 
random number between 0 and sum/n, which will shift the intervals.

We can then look at the weighted sample space and pick out the sample that matches the start of each 
interval – this is the weight index. This will produce New sample space. Note that sample c, which 
has the highest weight, gets sampled more times. With larger sample populations, the resampled space 
will more accurately resemble the original.
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The new samples do not have weights and are all considered equally weighted, but some samples 
appear multiple times to represent their previous weight. 

This technique of using random shifted intervals is known as the low variance resampling method. 
We will now see how to perform this through code:

1. In robot/code.py, inside the Simulation class, add the following:

    def resample(self, weights, sample_count):

        samples = np.zeros((sample_count, 3))

The weights variable refers to the list of weights, and sample_count refers to the number 
of samples to get. This method will sample new poses from the poses array. We will set up a 
samples variable to hold the new samples.

2. Next, we set up the interval size based on sample_count:

        interval = np.sum(weights) / sample_count

        shift = random.uniform(0, interval)

We can use that to set the interval shift value – the start position.

3. We are going to store the cumulative weights while we loop through the original samples 
(poses). We will also store an index in the source sample set:

        cumulative_weights = weights[0]

        source_index = 0

4. The code will loop until we have the expected number of samples. For each sample, there is a 
weight_index parameter:

        for current_index in range(sample_count):

            weight_index = shift + current_index * 
interval

5. We now start adding up weights from the source samples in cumulative_weights, until 
they meet the weight index:

            while weight_index > cumulative_weights:

                source_index += 1

                source_index = min(len(weights) - 1, 
source_index)

                cumulative_weights += weights[source_
index]

We keep track of the source sample index that met this weight requirement.
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6. We can use this source_index to add a sample to our set:

            samples[current_index] = self.poses[source_
index]

This will drop out of the while loop and be the end of the for loop.

7. Finally, we return the new set of samples:

        return samples

We can also increase our population, while sending only a subset. In Simulation.__init__, 
change the population size:

    def __init__(self):

        self.population_size = 200

We are limiting the population size here due to Pico memory constraints.

We can then apply our observation model in the main loop (in Simulation.main):

            while True:

                weights = self.observation_model()

                send_poses(self.resample(weights, 20))

                self.poses = self.resample(weights, self.
population_size)

                await asyncio.sleep(0.05)

                self.motion_model()

In our loop, we use the observation model to get weights for the poses. We use the resample method 
to get 20 poses to send. We then use resample again to get a new population of poses. The cycle of 
updating our poses, observing their state, weighting the poses, and then resampling them is known 
as a recursive Bayes filter.

If you send the robot folder to Raspberry Pi Pico and launch the app, you should start seeing the 
number of samples outside the arena being reduced. They will jump around, since we are sampling 
20 from a larger set of 200.

The system reduces the sample space to those that are more likely. However, we can include distance 
sensors to improve this process.
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Incorporating distance sensors

Our robot has two distance sensors. Our code will check distances the robot senses against model 
data. If each pose is an imaginary map pin, then the distance to the nearest obstacle would be a string 
stretched out from this pin, or a sensor beam with a sensed endpoint – the beam endpoint model. 
With 200 poses, this could be slow. Let’s see a faster method to model them.

Modeling distance sensors in our space

One way we could do this is to take an estimate of the robot’s position, and then perform the math 
needed to get the distance to the nearest obstacle. However, we can make a lookup table to simplify this.

Let’s look at the following diagram:

 

Figure 13.13 – Distance representation
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Figure 13.13 (a) shows a likelihood field based on distance. The white dot is the endpoint at the 
distance reading from the distance sensor. The bright middle line of this grid represents an arena wall. 
Each grid square has a value between 0 and 1 (shown as brightness), representing how likely a sensed 
distance projected here is to have detected the wall. Instead of asking the question, Is this distance 
measurement a match?, we can ask, How likely is this distance sensor a match? We can calculate this 
grid once only when the system starts up, so other code can make fast lookups into the grid to check 
for sensor readings. 

Figure 13.13 (b) shows how the likelihood changes, with a distance from 0 to 1,500 in a decaying 
function. The Y axis shows the likelihood of it being a hit. The dashed vertical line is a value, currently 
250, at the inflection point, at which the curve changes direction. A smaller inflection point makes a 
tighter curve; a larger value makes a wider curve.

Let’s import numpy at the top of robot/arena.py:

from ulab import numpy as np

We will convert these values to a grid of 50 mm2 cells. As some poses will have distance endpoints 
outside the boundary, we’ll give the grid an overscan. Extend the robot/arena.py library with 
the following:

grid_cell_size = 50

overscan = 2

We’ll start with how we get the distance to a grid square. In robot/arena.py, after defining 
boundary_lines, add the following:

def get_distance_to_segment(x, y, segment):

    x1, y1 = segment[0]

    x2, y2 = segment[1]

    if y1 == y2 and x >= min(x1, x2) and x <= max(x1, x2):

        return abs(y - y1)

    if x1 == x2 and y >= min(y1, y2) and y <= max(y1, y2):

        return abs(x - x1)

    return np.sqrt(

        min(

            (x - x1) ** 2 + (y - y1) ** 2, 

            (x - x2) ** 2 + (y - y2) ** 2

        )

    )
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The code unpacks the line segment into x1 and y1, and x2 and y2. It then checks whether the line 
is horizontal (the same Y), and whether the point being checked is above or below it; this allows a 
shortcut by subtracting the Y values. The code can repeat this for vertical lines.

The code then uses Pythagoras’ theorem, where the resulting distance will be the hypotenuse. 

We will convert distances into likelihoods with a decaying function, which will return a lower value 
as we get further from zero. The following function will, for a specific point, find the nearest segment 
distance and then apply a decaying function to it:

def get_distance_likelihood(x, y):

    min_distance = None

    for segment in boundary_lines:

        distance = get_distance_to_segment(x, y, segment)

        if min_distance is None or distance < min_distance:

            min_distance = distance

    return 1.0 / (1 + min_distance/100) ** 2

We can make a function to generate this grid. It starts by making a 2D array of float fields filled with 
zeros to hold the grid values:

def make_distance_grid():

    grid = np.zeros((

            width // grid_cell_size + 2 * overscan, 

            height // grid_cell_size + 2 * overscan

        ), dtype=np.float)

The width of the grid in cells is the width of the arena divided by the cell sizes. We then add in the 
overscan for either side of the arena. The height uses a similar calculation.

We then loop over the grid rows and columns to fill in the cell data: 

    for x in range(grid.shape[0]):

        column_x = x * grid_cell_size - (overscan * grid_cell_
size)

        for y in range(grid.shape[1]):

            row_y = y * grid_cell_size - (overscan * grid_cell_
size)

            grid[x, y] = get_distance_likelihood(

                column_x, row_y

            )
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    return grid 
distance_grid = make_distance_grid()

This loop gets the arena X and Y coordinates for each cell and uses the coordinates to fetch the 
likelihood at that position, storing it in the grid. We call this function and store the result in the 
distance_grid variable so that this calculation will run when the arena.py file is imported. 
The calculated distance grid looks like the following diagram:

Figure 13.14 – The distance-based likelihood field

Figure 13.14 shows the distance-based likelihood field. 

The overscan extends to -500 mm and 2,000 mm, and the boundary lines are drawn in black. Each 
cell’s value is based on its bottom-left coordinate.

We can now use this likelihood field in the observation model.

Generating weights from the distance sensors

For each pose, we will need to project the sensed distances from the sensor positions. See the 
following diagram:
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Figure 13.15 – Distance sensor geometry

Figure 13.15 (1) shows poses A, B, and C as dots, with an arrow showing their heading. There are 
dark bars representing the location of the two distance sensors relative to the pose – they stick out 
to the side and forward. From this location, we will have sensor readings, represented by the arrows 
pointing from the front of the bars.

By projecting the sensor distances against the likelihood field, we can see that pose B is a more likely 
match than pose C, with A as the least likely pose here.

Figure 13.15 (2) shows how we can project the sensors. Ds is how far the distance sensor goes out to 
the side (dist_side_mm in the code). Df is how far forward the sensors are from the robot wheels 
(dist_forward_mm). Dr is the distance sensed, from Df. We will have to add this to every pose. 
Pre-calculating a triangle from the sensed distance makes this a little easier. θ is the robot’s heading. 
Using the SOHCAHTOA mnemonic, we can get θr, the angle from the robots heading to the right 
sensor, and using Pythagoras’ theorem, we can get Hr, the hypotenuse. The adjacent side will be Df 
and Dr, and the opposite Ds. We can then add Hr at the θr angle to each pose to get the right sensor 
beam endpoint for every pose. The same can be applied to the left sensor reading. While complicated, 
this is faster than calculating the endpoint projecting out to the side and forward for each pose.

Measure the position of the distance sensors on your robot relative to the middle of the wheels (or use 
the CAD drawings). The active part of each sensor to measure to is the shiny part at the top middle 
of each sensor.
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We’ll add these distance sensor positions to our robot/robot.py measurement after the 
wheelbase_mm definition:

dist_side_mm = 37

dist_forward_mm = 66

We need to add a function to robot/arena.py to look up a position in the distance grid:

1. The function converts an (x,y) pose argument to grid coordinates:

def get_distance_likelihood_at(x, y):

  """Return the distance grid value at the given 
point."""

  grid_x = int(x // grid_cell_size + overscan)

  grid_y = int(y // grid_cell_size + overscan)

2. Out-of-bounds requests should return an incredibly low probability:

  if grid_x < 0 or grid_x >= distance_grid.shape[0] or 
grid_y < 0 or grid_y >= distance_grid.shape[1]:

    return low_probability

3. We can then return the result stored at the grid location:

  return distance_grid[grid_x, grid_y]

In the robot/code.py file, we can add a method to the Simulation class to perform the 
preceding triangle calculations, to get the sensor endpoints for each pose:

4. This method will take the sensor reading, and inform us whether it’s on the right side:

    def get_sensor_endpoints(self, sensor_reading, 
right=False):

5. We then calculate the adjacent and angle of our triangle:

        adjacent = sensor_reading + robot.dist_forward_mm

        angle = np.atan(robot.dist_side_mm / adjacent)

        if right:

            angle = - angle
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Note here that we calculate the negative of the angle if it is on the right side.

6. We then get the hypotenuse – this will be the distance from between the wheels to the sensor 
beam endpoints:

        hypotenuse = np.sqrt(robot.dist_side_mm**2 + 
adjacent**2)

7. Now, we use numpy to help us calculate the angle relative to each pose, converting the pose 
angle to radians as we go:

        pose_angles = np.radians(self.poses[:,2]) + angle

8. We can then build a list of endpoints by projecting from the coordinate of each pose, with the 
hypotenuse at the calculated angle:

        sensor_endpoints = np.zeros((self.poses.shape[0], 
2), dtype=np.float)

        sensor_endpoints[:,0] = self.poses[:,0] + 
hypotenuse * np.cos(pose_angles)

        sensor_endpoints[:,1] = self.poses[:,1] + 
hypotenuse * np.sin(pose_angles)

        return sensor_endpoints

We finally return these calculated lists.

We now create an observe_the_distance_sensors method inside the Simulation class 
and apply those to the existing set of weights:

1. Start by accepting an existing list of weights as an argument:

    def observe_distance_sensors(self, weights):

2. We then call get_sensor_endpoints for each side:

        left_sensor = self.get_sensor_endpoints(self.
distance_sensors.left)

        right_sensor = self.get_sensor_endpoints(self.
distance_sensors.right, True)
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We now have a list of distance sensor projections for every pose. We can look up the distance 
likelihood grid at each of those points and add them:

        for index in range(self.poses.shape[0]):

            sensor_weight = arena. get_distance_
likelihood_at(left_sensor[index,0], left_sensor[index,1])

            sensor_weight += arena. get_distance_
likelihood_at(right_sensor[index,0], right_
sensor[index,1])

3. We can then multiply this by the existing weight (inside or outside the arena):

            weights[index] *= sensor_weight

4. Now, we leave this loop and return the modified weights:

        return weights

We then need to incorporate this code into observation_model. Make the highlighted change:

    def observation_model(self):

        weights = np.ones(self.poses.shape[0], dtype=np.float)

        for index, pose in enumerate(self.poses):

            if not arena.contains(pose[0], pose[1]):

                weights[index] = arena.low_probability

        weights = self.observe_distance_sensors(weights)

        weights = weights / np.sum(weights)

        return weights

If you send this code to the robot, it will weigh and resample from two distance sensors. The robot 
poses will start to form in blobs, located around likely positions for the sensors. The blobs will form, 
scatter, and reform as the robot filters and moves them. The following diagram shows what you will 
see on the display:
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Figure 13.16 – The localization blob

In Figure 13.16, the poses have grouped together in a blob, roughly representing the robot’s position, 
which will move with the robot as it drives around the arena.

You may see one blob, or a few, and they may drive exactly with the robot or seem a little off. This is 
where you will need to tune the model to better suit the situation.

Tuning and improving the Monte Carlo model

Tuning the following factors can improve this model:

• The ch-13/4.3-monte-carlo_perf folder in the GitHub repository contains an 
instrumented version of the code in this chapter for troubleshooting. You will need to tune 
robot.py and arena.py for your own setup, but this code reports issues and tracebacks 
back to the computer for diagnosis, weight output from the observation model rendered on 
the display, and, if you are connected via USB, also sends performance data.

• Measurements in robot/robot.py – the accuracy of measurements such as wheel diameters, 
wheelbase, gear ratio, and encoders will guide the odometry model. If the movement of the blob 
doesn’t match the speed and turning, these are the likely suspects. The model assumes wheels 
to be identical in size, which may be false if it’s consistently pulling to one side.
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• Similarly, if the distance sensor position measurements in robot/robot.py are incorrect or 
the sensors need calibration, the position will be consistently off. The sensors can be disrupted 
by strong sunlight and flickering room lighting.

• In the arena, the get_distance_likelihood factor, 100, adjusts the decay for the 
likelihood field around each boundary. Lowering this will tighten the fields.

• In code.py, the number of poses is a major factor. Increasing this will make for a better 
model, but beware of memory constraints on Raspberry Pi Pico.

• The code.py alpha factors encode your certainty in the motion model; make these lower if 
you trust the motion model more.

• The model also assumes the arena construction to be fairly accurate. Errors in these assumptions 
can stack up to make it harder for the localization algorithm.

You will need to spend time with these factors to make a model that is more likely to find its location, 
or is quicker in doing so.

Let’s summarize what we have learned in this chapter.

Summary
In this chapter, we started by building a test arena for our robot using foam board construction, then 
modeled this in code, and displayed it along with a distance sensor likelihood field. We put this on 
the robot, sent it over BLE, and then added poses.

We modeled how poses move using sensors, adding uncertainty to the model. We then added a 
model of distance sensor observations, generating weights that we used in a resampling algorithm 
to generate new poses. 

We finished with a look at tuning factors to improve the performance of this system.

In the next chapter, we will summarize your Raspberry Pi Pico robotics learning journey so far and 
discuss how you can continue your journey by improving this robot or building more robots.
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Exercises
The following exercises will deepen your understanding of the topics discussed in this chapter and 
make the robot code better:

• The IMU could be added by storing a previous state and calculating the delta. You could mix 
this into the rot1/rot2 values by taking the average of encoder calculations versus the IMU 
angles, or consider whether one sensor is more trusted than the others. You will need to calibrate 
the IMU before it can be used.

• The robot’s pose guesses get stuck in local maxima – good but wrong guesses that are likely 
based on sensor positions. Consider throwing in 10 fresh guesses at every population to nudge 
the code to try other options.

• We are using only two observations per pose – having more distance sensors could improve 
this but will make the model slower. 

• Could you add a target zone to the arena? Consider how PIDs could be used to steer the robot 
toward this. Perhaps feed the PID with the mean pose.

• You can improve the visualization by sending more pose data, including orientation. You may 
need to consider the msgpack library or switching to Wi-Fi or BLE over SPI, as the amount 
of data can easily overwhelm the BLE UART connection.

Further reading
These aids for further study will let you read on and dive deeper into the Monte Carlo algorithm and 
its quirks:

• Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox, published by MIT 
Press, covers the Monte Carlo particle filter, along with the Kalman filter and other probability-
based models in far more depth. 

• I strongly recommend the Khan Academy material on modeling data distributions for learning 
and practicing data distributions.

• A playlist of 21 videos from Bonn University and Cyrill Stachniss at https://www.youtube.
com/playlist?list=PLgnQpQtFTOGQEn33QDVGJpiZLi-SlL7vA covers the topics 
used here in detail. I recommend them if you want to dive far deeper into this topic.

https://www.youtube.com/playlist?list=PLgnQpQtFTOGQEn33QDVGJpiZLi-SlL7vA
https://www.youtube.com/playlist?list=PLgnQpQtFTOGQEn33QDVGJpiZLi-SlL7vA
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Continuing Your Journey – Your 

Next Robot

Throughout this book, you’ve learned how to plan, design, build, and program a robot. We’ve covered 
many fundamental topics with some hands-on experience, examples demonstrating the basics, and 
ideas for improving them. In this chapter, we will briefly recap our knowledge to take it further. 

Thinking about your next robot, we’ll answer questions such as the following – how would you plan 
and design it? What skills might you need to research and experiment with? What would you build?

In this chapter, we will cover the following main topics:

• A summary of what you have learned in this book

• Planning to extend this robot

• Planning your next robot

• Further suggested areas to learn about

Technical requirements
For this chapter, you will require the following:

• Diagramming tools such as a pen or pencil and paper to sketch ideas

• Cardboard, a ruler, and cutting tools to make a test fit

• A computer with internet access

• Sketching tools such as https://app.diagrams.net/

https://app.diagrams.net/
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A summary of what you have learned in this book
As a robot builder, you have started from the basic plan for a robot. You learned about skills useful for 
robotics, designing, building with tools, programming, interfacing electronics, or integrating systems 
combining all of these, so let’s dive deeper.

Basic robotics with Raspberry Pi Pico

From the first chapter, we learned about Raspberry Pi Pico, why it’s a great controller for robots, and 
how it stacks against others, considering the trade-offs between Pico and its larger Raspberry Pi family.

We covered ways in which Raspberry Pi Pico can be programmed and chose CircuitPython for it. 
CircuitPython has excellent access to hardware, with a growing library of support for many electronics 
modules used in robotics.

We took a tour of concepts such as the interface ports:

• GPIO to control or interface externally from Pico.

• UART, SPI, and I2C form data buses to send and receive data from devices.

• The unique Programmable Input/Output (PIO) peripheral lets you adapt or build interfaces.

We then planned a robot around Raspberry Pi Pico, considering its size, type, and complexity. We 
calculated the power requirements and specified a driver board to control motor power. We thought 
about the sensors we might want to use and how all these decisions are trade-offs.

We considered the GPIO pin usage, ensuring that all the chosen devices would be usable on Raspberry 
Pi Pico together.

We then used simple cardboard templating to test-fit our basic robot design to see whether it was a 
viable plan to take to the next stage.

We looked at places to shop for parts, drew up a parts list to shop for, and bought the components 
and tools needed to build the moving robot.

In Chapter 3 and Chapter 4, after designing a robot using FreeCAD in 3D, we then built the robot 
using sheet plastic and simple tools.

After building the robot platform, in Chapter 5, we used GPIO to control the motors, demonstrating 
the initial movements of the robot. Then, we used this to drive along a planned path, demonstrating 
that we can control it in sequence and observing some of the shortcomings of control without sensors.

After this, we looked at the initial sensors on the robot.
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Extending a Raspberry Pi Pico robot with sensors

We were able to add sensors and learned how to make use of them. In Chapter 6, we used encoder 
sensors that were part of the motor assembly, and then in Chapter 7, we specified additional sensors 
– where we would fit them, the modifications we’d need to make to the chassis, and which sensors to 
buy. Adding sensors is where block diagrams of the robot’s hardware came in handy to see what was 
connected where.

The following diagram shows the sensors we used in our robot:

Figure 14.1 – The sensors on our robot

The preceding diagram shows the sensors we used on the Raspberry Pi Pico robot. The sensors 
are numbered:

1. The encoders can measure the movement of the robot’s motors and, by extension, the robot’s 
wheels. We can use these to measure distance or speed. We covered using Raspberry Pi Pico’s 
PIO system to read these sensors continuously so that our code would not miss encoder steps.

2. The distance sensors (from Chapter 8) can detect how far away objects in front of the robot are. 
We interfaced these using I2C and looked at how to mount them and wire them in and at the 
programs used to fetch distance information from them. We learned how these sensors work 
by bouncing a signal off objects to sense them.



Continuing Your Journey – Your Next Robot342

3. Bluetooth (from Chapter 9) is not a sensor but more of a communication system. We were 
able to build a shelf to fit the Bluetooth LE module, wire it in, and write code so we could 
communicate between Raspberry Pi Pico and a smartphone. We could use the phone to control 
the robot and display or plot data from the robot.

4. We added an Inertial Measurement Unit (IMU) in Chapter 12 and learned how to use it 
to sense the robot’s orientation by combining results from an accelerometer, gyroscope, and 
magnetometer. First, we looked at how to connect this with I2C and then how to calibrate (set 
up and orient) the sensor and get initial readings.

As well as adding the sensors, we began exploring what our robot could do with them and wrote 
behaviors utilizing them.

Writing CircuitPython behavior code for Raspberry Pi Pico

We wrote programs that made the robot use sensor inputs to drive its motors in smart ways, defining 
these kinds of programs as behaviors.

The first behaviors (from Chapter 5) followed a pre-planned path with motors only; however, without 
sensors, this wasn’t very accurate. In Chapter 6, we learned about the encoder sensor and measuring 
encoder counts, and then saw how to use them to stop driving at a fixed count. This code introduced 
sensor loops, with feedback from the sensors used to control the motors.

In the next section, starting from Chapter 7, we specified more peripherals to add. We started with the 
distance sensor in Chapter 8, where we learned how to make a behavior to avoid colliding with walls.

In Chapter 9, we linked up the Bluetooth device, which opened more exciting and complex behaviors 
by letting us observe and plot sensor data.

The scope of sensor feedback loops became more interesting when we learned about the Proportional-
Integral-Derivative (PID) algorithm in Chapter 10, letting us set up smooth motor responses to 
stimuli. We demonstrated this with distance sensors to keep at a known distance from an object. We 
then used the same technique to follow walls, which was most satisfying to test with a few boxes in 
the middle of the room, watching the robot navigate autonomously around them.

The PID algorithm prompted us to revisit the encoders in Chapter 11. We converted counts into standard 
speed units and then used the PID algorithm to control the motor and wheel speeds to meet a value 
in meters per second. This refinement allowed the robot to travel in a straight line, and controlled its 
motion to drive it for a known distance at a desired speed; for example, we could instruct a robot to 
travel 1 m in a straight line at 0.17 m/s.

With the introduction of the IMU in Chapter 12, once we had connected and calibrated it, we learned 
how to use the IMU to get the robot’s orientation. We then connected that with a PID algorithm to 
make the robot turn to face north, regardless of its initial heading.

We also looked at how to use the IMU to make a precise turn – 90 degrees or otherwise.
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In Chapter 13, we learned about Monte Carlo simulation, with which we simulated many potential 
poses for the robot, using the encoders to track movements. We used sensor input to give each pose 
a likelihood weight. The weights were used in a resample algorithm to select the most likely poses. 
A combination of sensor fusion and statistics makes a robot feel smart as it estimates its position in 
an arena. We also demonstrated two behaviors running together, with collision avoidance running 
alongside Monte Carlo simulation.

This robot has some interesting capabilities, but where do we take them next?

Planning to extend this robot
I rarely view robot projects as complete, especially those that are learning and development platforms. 
There are always new sensors to try, new programming algorithms to make, or simply bugs and quirks 
to iron out. On the other hand, there are ways to make robots more robust and cope with rougher 
environments, making the chassis lighter or the electronics simpler, so let’s start by considering some 
ideas for this robot and hopefully inspire some of your own.

Sensors you could add

The first exciting way to extend this robot is to add more sensors. Sensors are fun to program to get 
data from. This means you may have to figure out how to incorporate them into existing behaviors 
and mount them, though.

The following figure shows a selection of sensor extensions that could be interesting:

Figure 14.2 – Robot sensor extensions
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The preceding figure shows a selection of sensors that would be great to extend this robot and the 
things you could get it to do. The sensor types are numbered:

1. Line detectors or reflectance sensors: These light up with an Infrared (IR) LED and then 
detect how much light reflects from an object that they point toward, or how bright/dark it 
is. Makers mount these under the robot as a line-following sensor. Some sensors, such as the 
SunFounder 5-channel line sensor, come with arrays of light detectors, which can be used with 
code to follow a line drawn on a floor. An example of a single sensor type is a TCRT5000.

2. Bump switches: Makers use these less in modern robots, and distance sensors should mean 
they aren’t needed. However, you could use them so that if a robot surpasses a safe distance 
and bumps into something, it will immediately disengage or move back. They tend to be simple 
on-off switches with long lever arms to extend the edge along which they sense.

3. Additional distance sensors: We’ve used two sensors and moved them around. A set of 
four sensors would allow the different existing behaviors to be enhanced. It also offers more 
information for Monte Carlo simulation and could be used for a maze-following behavior.

4. A camera: There are camera sensors that we could use with Pico, such as OV7670 camera 
modules. They are complicated to connect and may require an additional Raspberry Pi Pico. Using 
downscaling and running edge detection or ML algorithms on it, it is possible to match objects. 
A good alternative is cameras with onboard processing, such as the HuskyLens (https://
bit.ly/3Dzurrb). Another type of camera is a FLIR IR heat camera.

5. LIDAR sensors: These scan and return the depths of objects in their field of view. Having many 
distance sensors could extend the accuracy of Monte Carlo simulation. However, these produce 
a lot of data quickly and may need a more powerful CPU to control them. Solid-state sensors are 
low-power, small, and cheap. Pictured in Figure 14.2 is an LDRobot LD-07 solid-state LIDAR.

Light sensors can read how much light falls on them. You could use these to program behaviors that 
move toward or away from light or more complex interactions with light.

A robot can have internal sensors, such as thermal, current, and voltage monitors, to monitor its 
batteries and motors so that the code can respond to low-battery or high-current scenarios.

Optical flow sensors, such as the PAA5100JE, facilitate odometry based on the flow of the ground 
below a robot and can be used to detect the overall speed of the robot; this can compensate for issues 
such as wheels slipping, which encoders would miss.

We’ve covered some sensor ideas for our robot, but another way to get information to and from a 
robot is through user interactions.

Interacting with the robot

The robot in this book doesn’t have many options for user interaction:

https://bit.ly/3Dzurrb
https://bit.ly/3Dzurrb
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Figure 14.3 – Human interaction I/O

Figure 14.3 shows many ways to improve human interaction with the robot:

1. Buttons: Add buttons for starting and stopping a behavior on a robot.

2. LED lights: Some LED lights, perhaps with different colors, can be good to show a little feedback 
on what is running. Big LEDs can also be used as headlights.

3. RGB LED displays: These come in strips or panels, and each LED can be set to a different 
color. They can provide more debugging and can make cute eyes or faces too. They use multiple 
interfaces, a custom one-pin system, and SPI or I2C. The Pimoroni PIM435 pictured uses I2C.

4. OLED screens: These can show pictures, dials, menus, text, or graphics right on the robot. 
These come in mono or color varieties and are frequently I2C-controlled. One such mono I2C 
device is the Velleman WPI438 I2C screen.

5. Game joypads: A game joypad controller would be a nice way to control a robot. However, it 
may require a more advanced Bluetooth setup to interface with Raspberry Pi Pico.

6. A phone web app: We’ve been using the BlueFruit app, but by swapping Bluetooth for Wi-Fi 
(such as with Raspberry Pi Pico-W), you can write far more interactive phone control. This 
will require writing more code for a frontend. At the time of writing, a system for graphing 
on a smartphone requires a fair amount of code to produce over Wi-Fi, and a convenient app, 
such as BlueFruit LE Connect, doesn’t yet exist.

7. A beeper: These can make beeping and buzzing sounds for the robot. You can drive some of 
these directly from GPIO pins, with musical tones indicating the program’s state or making 
interesting sounds.

8. A microphone: There are UART-capable voice control modules suitable for Raspberry Pi Pico. 
They have a small set of commands to start behaviors, and, with LED or beeper feedback, could 
be a novel way to interact with the robot.

User interactions can manipulate behaviors, but we need somewhere good to mount these LEDs. 
What can we do to the robot’s chassis to improve and extend it?
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Chassis and form enhancements

The robot’s chassis is simple and light, but we could take this much further, making it a more robust 
or aesthetically pleasing robot:

Figure 14.4 – Chassis enhancements

Figure 14.4 has examples of two ways to improve the robot or its sensors with an outer shell:

1. Figure 14.4 (1) shows a lunchbox adapted into a robot. A lunchbox, ice cream tub, or roller paint 
tray with holes cut into it can be made into the fairing for the robot, enclosing the electronics 
and holding its wiring and electronics.

2. Figure 14.4 (2) shows a robot with sensor mounts that have been 3D-printed. Custom fairings 
and brackets can be made this way or through vacuum forming or laser cutting. See the Design 
and manufacturing section later in this chapter.

Whichever method you choose, it needs to be lightweight and easy to remove so that the electronics 
are accessible and you can change the batteries. It could be held in place by bolts or Velcro.

You‘ll need to consider how to make controls accessible – such as putting switches and charging 
ports on the outside. Having a fairing invites more decoration, the use of color, and style paneling. 
Combining this with the RGB LEDs could make for an interesting-looking robot. You could take style 
cues from your favorite sci-fi robot and use a similar color scheme.

Electronics enhancements

The electronics we’ve used so far have been composed of modules tethered together with connector 
cables, using breadboards to assemble them. Breadboards are great for prototyping but take up a lot 
of space and weight and are susceptible to movement and vibration, with wires quickly coming loose 
or forming poor connections. They also look messy. What could we research to upgrade this?
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Here are some sturdiness enhancements we can make to the robot electronics:

Figure 14.5 – Improving robot electronics

Electronics in the robot could be made smaller, lighter, and tidier. Try these ideas:

1. Pictured in Figure 14.5 (1) is an Inventor 2040 W from Pimoroni (https://shop.pimoroni.
com/products/inventor-2040-w). Motor and robot boards for Raspberry Pi Pico or 
incorporating an RP2040 will reduce the amount of wiring. The Inventor 2040 W includes 
motor control, lights, and servo connections.

2. Soldered boards will be tidier. An intermediate option is using a stripboard or perfboard. These 
pre-made printed circuit boards can mimic the wiring arrangement of breadboard strips, 
allowing you to transfer breadboard designs onto them. You can then solder parts and wires 
into them. Wires going to external parts, such as motors and sensors, will have their connectors 
soldered into the board.

Figure 14.5 (2) shows a custom Printed Circuit Board (PCB) from https://github.
com/uwrobotics/MarsRoverHardware. You can download or design your own using 
software such as KiCad. This is complicated but gives you lots of options for customization. You 
use a PCB view to lay out a circuit board and route connections between parts. Using PCBs 
allows you to make small, light, and tidy robot designs. In addition, it opens your designs to 
using surface mount electronics, which makes more components available. You can use design 
rules to ensure that the connections are all made and tracks are not touching. After this, you 
can then prepare the part for manufacture. You can take these designs to a board house, such 
as Seeed Studio (https://www.seeedstudio.com/), that prints the board for you.

https://shop.pimoroni.com/products/inventor-2040-w
https://shop.pimoroni.com/products/inventor-2040-w
https://github.com/uwrobotics/MarsRoverHardware
https://github.com/uwrobotics/MarsRoverHardware
https://www.seeedstudio.com/
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Some board houses offer a Printed Circuit Board with Assembly (PCBA) service, where, at 
additional cost, they will solder on components, sockets, and connectors before sending the 
part to you. Using a PCBA service means you just need to plug in the external sensors and 
perhaps a Pico into a socket on receiving the board. That means that you do not need to solder 
surface mount parts yourself. Just be aware that this will take experience, and you may produce 
boards that aren’t right the first time.

Figure 14.6 – Tidying wiring

3. You can tidy robot cabling using 6 mm spiral wrap and cable clips, as shown in Figure 14.6 (3), 
or just masking tape, as shown in Figure 14.6 (4). Wiring can be aesthetically pleasing if you 
make an effort to route it nicely. 

4. For connectors, we have used Dupont connectors due to their convenience. However, once 
you are on a soldered circuit board, you can consider locking connectors, such as JST or Molex 
PicoBlade connectors. These lock cables in place so that they will not vibrate loose or easily be 
pulled out, and add further protection by being polarized. You will need to get practice with a 
crimping tool to use these effectively, but it will be worth it for better robot builds.

With a robust chassis and tidier electronics, perhaps you can get more ambitious with further outputs. 
Let’s see things you could make the robot’s outputs do.

Outputs you could add

Outputs mean a robot could do more to move or alter its surroundings. Additional motors, such as 
servo motors, can be used to make interesting mechanical devices, for example, those shown in the 
following figure:
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Figure 14.7 – Motors and outputs in use

Figure 14.7 shows a few interesting ways to use further motors to extend the robot:

1. A gripper – This could grasp items and move them around. The Pololu Micro Gripper Kit uses 
a single servo to open or close the jaws. These are fun to attach to the front of a robot.

2. A pan-and-tilt mechanism – Putting sensors on this means you can direct a sensor at a 
particular point of interest or use the head to sweep with a sensor. One servo motor rotates 
the head left and right (panning), and the other tilts the head up and down. The Adafruit Mini 
Pan-Tilt Kit is a good example of this.

3. A lift-and-lower mechanism – These use a motor to lift and lower a platform, like a forklift. 
This could be combined with the gripper to make a robot that can stack objects.

4. A ball launcher – A launcher would be fun so that a robot could aim at targets. Robotics 
competitions such as PiWars have events that involve using these. Motors are required to direct 
the aim, and a motor or actuator is required for launching the ball.

These are just a few examples; there are plenty more mechanisms you can either buy or build. You 
could even add a whole arm with a kit such as the MeArm Servo Robot Arm Kit.

Now that we’ve seen some outputs, perhaps we can better use these sensors and outputs with 
more behaviors.
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Extending the code and behaviors

The robot’s code and behaviors are what bring the robot to life. However, there are many ways we 
could improve the code on this robot, as shown in the following figure:

Figure 14.8 – Behavior suggestions

Figure 14.8 depicts some suggestions; the following list covers these and more:

1. Line-following: Using the line detection sensors previously mentioned in the section on sensors, 
you could program a robot to follow lines drawn on the floor. Line-following can use if-then, 
bang-bang control, or a PID algorithm for smooth line-following.

2. A menu system: You can combine all the behaviors in a menu for selection. Consider how 
each program would be tidied up so another can take over. A variation of this is using a voice 
control module, along with beeps, to indicate the current robot mode.

3. Driving with a camera: Adding a camera and serving it to a phone web app means you could 
drive the robot with a camera view – a robot periscope.

4. Maze solving: With more distance sensors, the robot would be able to look for openings and 
find its way around a maze. Depending on the complexity of the maze, simple rules such as 
always turning left might work, or the robot might have a map of the maze and use the Monte 
Carlo method with precision navigation. For example, a turning-left method using the encoders 
might be able to memorize what turns it took and where, backtrack, and try other routes.
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5. Camera navigation: Camera images can be scaled to low resolutions, and algorithms can be 
used to pick out features where image intensity or colors have changed over a threshold. The 
detected feature locations can then be combined with a PID algorithm to orient the robot 
relative to such features.

6. Camera recognition: Recognition is considerably more complex and may require looking at 
a machine learning system such as TinyML. See https://bit.ly/3xy3twx for news 
on TinyML ports for CircuitPython. You can use similar techniques with microphones for 
speech recognition, but this may be intensive enough that multiple Raspberry Pi Pico boards 
would be required.

The following suggestions are not pictured but represent advanced behaviors:

• Simultaneous Location and Mapping (SLAM): A robot can use its sensors to build up a 
map of its location and then keep track of its pose relative to what it has already mapped. This 
technique would use several sensors together and benefit from the LIDAR sensors that we have 
already mentioned. However, this advanced technique can be a deep rabbit hole!

• Task planning and motion planning: Combining controlled turns, controlled movements, 
and location tracking with a hopper or gripper would mean you could make behaviors to seek 
out, collect items, and place them in a collection point.

These suggestions should hopefully inspire some creative behaviors. There are endless possibilities 
for combinations of code, sensors, and outputs, which you can use to improve your knowledge, solve 
problems with a robot, and extend your toolbox.

So far, though, these suggestions have been focused on extending the existing platform. So, what 
happens when we extend to thinking about your next robot platform?

Planning your next robot
In Chapter 1, Planning a Robot with Raspberry Pi Pico, we saw a few styles under the What style of robot 
is suitable? section. Now, inviting a greater level of imagination, let’s revisit how different a robot can be.

Form, shape, and chassis

We’ll start by considering the styles from Chapter 1 again and how you might get there:

https://bit.ly/3xy3twx
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Figure 14.9 – Different robot styles

The preceding figure shows four styles of robots. We can now imagine more variations on these:

1. A larger wheeled platform to hold more sensors and electronics, perhaps with a more interesting 
wheel arrangement.

2. A hexapod robot with six legs – for exploring walking and gaits. This will use lots of servo motors.

3. A robot arm, such as the MeArm mentioned previously. These can be servo motor-based or 
stepper motor-based. 

4. A quadcopter drone is super-light, but involves more interesting IMU and PID use. 

The following diagram shows a few other robot ideas:

Figure 14.10 – More robot types
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Figure 14.10 shows a few more types of robots you could consider for your next project; these are 
potentially more ambitious as far as the ideas go:

5. A snake robot is made of multiple robot segments with distributed electronics. The segments 
can flex like carriages on a train, with power and control running along between the segments. 
You can use servo motors to control the flex, and motors on segments driving wheels or 
tracks provide traction to pull the snake along with sensors. The front segment usually carries 
forward-facing sensors.

6. A submarine robot would be fun to use to explore lakes or ponds. These require thinking 
about how you would power an immersed motor, how you might safely retrieve a robot if it 
loses power, and how you would control it through water, which can block RF signals such 
as Bluetooth or Wi-Fi. A tether cord may be necessary. You’ll need to think about weighting, 
ballasts, and movable thrusters. A fun variation may be an amphibious floating robot that can 
drive on land, move in the water, and dive.

7. An XY or gantry-type robot frequently uses stepper motors, arranged so one set moves along 
each axis. 3D printers, CNC mills, and laser cutters frequently use this type. They can also be 
used to plot images or with a grabber to pick up objects and place them somewhere.

These robot variations should inspire you. Next, let’s look at a few variations on the wheeled platform.

Variations on wheels

The wheeled platform is still a practical and straightforward robot style. However, you can extend 
those wheels in many exciting ways:

• Caterpillar tracks can offer more traction than wheels and deal with uneven surfaces. They 
also look attractive. Some types use a single rubber molded track, such as the tracks on the 
tiny Zumo chassis, and others use tracks made of links, such as those on the Devastator robot 
chassis. Depending on these types, you may run into problems with friction when trying to 
turn, and may need more torque depending on the surface.

• Mecanum wheels are unique. As well as moving forward/back and turning, mecanum platforms 
can also “crab-walk” sideways and drive in almost any direction; you will need four independent 
motors and some specialized control algorithms for this implementation. See https://bit.
ly/3y1Kjzp for an example.

• Tristar wheels are clusters of three wheels set up so that either individual wheels can turn or 
whole clusters can turn; this allows them to climb up steps depending on their relative size. 
They are mechanically complicated, but you can drive them like regular wheels. They should 
be a four- or six-wheel drive combination.

• Independent drive uses individually steerable wheel pods; the Mars Discovery rover has these, 
with a stepper or servo motor turning each wheel assembly, and each wheel being individually 

https://bit.ly/3y1Kjzp
https://bit.ly/3y1Kjzp
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drivable too; they can both crab-walk and steer. These are more complicated than mecanum 
wheels but are robust.

Now, we have some idea of the next robot’s form and ways we could build on the simple wheeled 
chassis. What process would you use to design the robot?

Design stages

You would design a robot such as this by starting with sketches and simple cardboard parts as we 
did in Chapter 1, Planning a Robot with Raspberry Pi Pico, and then take the design to CAD as you 
become clearer on what it is you want.

We will look at some of the electronics further, but you’ll want to incorporate those into the CAD 
designs so you are clear on the dimensions and where to attach things before fabricating any parts 
for a robot.

Let’s look at the electronics.

Electronics and sensors

You will need to adapt the electronics for each form and use case. For example, larger robots with 
larger motors will naturally need larger motor controllers and power systems capable of handling 
more significant power requirements. Larger motor drivers include the LM2575, capable of handling 
15 A motors at 36 V.

Robots with servo motors will need controllers such as the Adafruit 16 servo controller to handle the 
power and control of many servo motors. Robots with stepper motors may need similar breakouts 
for stepper motors, although depending on the precision needed, a DC motor controller with four 
channels can also drive stepper motors.

Submarine robots need to be waterproof, and quadcopters need high efficiency. For these, brushless 
motors are most suitable, and they will need to be driven by Electronic Speed Controllers (ESCs). 
Some wheeled robots also use brushless motors for their great efficiency.

An integrated motor controller such as the Pimoroni Inventor 2040 W (seen in the Electronics 
enhancements section) or the Pimoroni Servo 2040 might make sense for smaller robots. For example, 
the Servo 2040 can control 18 motors, making it ideal for a 6-legged hexapod robot.

Where more battery power is required, you may need an upgrade from AA batteries to Li-ion or LiPo 
technology. In addition, you will need to carefully consider battery management systems that prevent 
catastrophic events and ensure you have chargers for them. The Lipo SHIM from Pimoroni will help 
charge these and power Raspberry Pi Pico.

In terms of sensors, you can consider the full range described previously. When planning them, 
consider which Raspberry Pi Pico pins will be in use. https://pico.pinout.xyz/ is an 
excellent resource for this purpose.

https://pico.pinout.xyz/
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As you use more pins and sensors, you may have to use more I2C sensors, which may require I2C 
multiplexers, such as TCA9548A modules. If the sensors are not I2C and simply need GPIO pins, 
then a PCF8574 adds other GPIO pins over I2C. If you need to add more complex sensors, a second 
Raspberry Pi Pico or RP2040-based board might be necessary.

You can also consider adding I2S audio amplifiers for speakers for sounds more interesting than beeps 
and microphones for sound recognition on Pico.

It is also worth considering whether the robot application requires a powerful CPU such as a full 
Raspberry Pi, and reserving Raspberry Pi Pico as an IO coprocessor.

For a robot such as a snake robot, you may consider how you’d need to wire the modules throughout 
the segments. If you build a submarine robot, how will you protect electronics against water getting in?

Next, we will look at the kind of code you might try with these designs.

Code and behavior

Choosing the code has a few factors:

• What control code do you need for the sensors, outputs, and mechanisms?

• How smart does the robot need to be to solve specific problems?

• What safety factors might be needed, and how will this interact with the form and shape? For 
example, what control system might you need to stop a robot quickly?

The control mechanism for a legged robot may need code to group servo motors into legs with 
multiple joints and then smoothly move between positions defined by gaits – walking strategies. 
These are generally sequenced patterns; they may adjust or carry on following a sequence depending 
on feedback from the legs or foot sensors. Usually, the gait code controls the movement, with another 
program steering this gait code in a horse-and-rider configuration.

With a robot arm or snake robot, researching inverse kinematic algorithms would help to position 
parts of the robot relative to other parts, choosing the angles at which the servos along the arm or the 
snake need to be to reach this point.

Robots that use a more powerful CPU running Linux may justify going beyond simple Python scripts 
into Robot Operating System (ROS).

If speed is an issue, you can consider a fast controller such as a Teensy, a powerful controller such as 
Raspberry Pi, or explore other programming languages such as C and Rust. You can use C to extend 
CircuitPython and Python to glue together different robot functions.

If you start to need multiple RP2040 controllers, how will they communicate and interact with each 
other? Via an I2C bus or UART? You may need to research and consider a protocol for them to send 
requests to each other.
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You’ve now considered the robot’s form and chassis, the electronics it might need, and the code you 
will want. Learning about more ways to build robots or situations in which to test and demonstrate 
code can help you build these new robot designs.

Further suggested areas to learn about
You have some ideas for a future robot (or even a few future robots) that you want to build. Learning 
about some other skills will allow you to take those designs further and get more creative. Let’s dive in.

Electronics

Refer to the Electronics enhancements section earlier in this chapter for inspiration here. To recap, 
see the following:

• Learn about designing circuits with stripboard or veroboard and further soldering skills.

• Learn more about designing PCBs with tools such as KiCad. You place parts such as Raspberry 
Pi Pico (or, if you are braver, an RP2040) into the schematic editor to work out their connections.

• Consider how to keep the cabling tidy, perhaps designing cable routing into drawings and 
CAD designs for a very tidy robot.

• Use connectors that reduce vibration and connect only one way to reduce mistakes.

There are further ways to extend your robots toolbox:

• Oscilloscopes to view circuit waveforms, great for looking at PWM (see the section An 
introduction to pulse width modulation speed control in Chapter 5)

• Logic analyzers to debug data buses and logic systems

• Bench power supplies to test electronics without worrying about batteries

• More advanced soldering stations

• Clamps to hold boards and components in place and test those connections

• A stock of electronic components, such as diodes, resistors, capacitors, and wires

• Some standard chips, such as op-amps and regulators, along with motor spares

Another advanced electronic capability is to look at Field-Programmable Gate Arrays (FPGAs). 
These devices allow you to program digital circuitry into them, allowing fast I/O helpers beyond 
PIO and even small CPU cores. They are not cheap or easy to use, but they offer huge flexibility in 
interfacing and prototyping new chips.

We can look at advanced manufacturing techniques now that you’ve seen some advanced 
electronics techniques.
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Design and manufacturing

We’ve used hand tools to build this robot. However, some techniques allow you to create far more 
intricate robot shapes. We touched on them in the Chassis and form enhancements section in this chapter.

The gateway to many of these is practicing using 3D CAD and learning about Blender to create more 
organic forms. It is worth experimenting with 3D CAD alternatives to FreeCAD, such as Solvespace or 
Fusion 360, and seeing which work for you. Finally, it is worth learning about the Inkscape program 
for 2D drawing or making decals to place on the 3D forms. During design, you should also be clear 
on how to assemble the parts when they arrive.

All fabrication methods require considering the limitations of the systems at design: for example, 
minimum cut widths, part thickness to avoid breaking, and how a cutting tool might access the 
different surfaces in a part.

Let’s see a list of how you can manufacture parts:

• Laser cutting is a natural extension of how we’ve been cutting parts. The CAD output is precision 
shapes to be cut into a 2D sheet of material. Designs are assembled like flat-pack furniture or 
using stand-offs. You can make impressive designs with this fabrication system. The MeArm 
(https://mearm.com/) robot arm or OhBot robot head (https://www.ohbot.
co.uk/) are made with laser cutting.

• CNC milling lets you make cuts into material with a robotically controlled cutting part, and 
can cut wood, plastic, and metal. It can cut out parts with different depths forming complicated 
shapes, but mostly operate from above and cannot make cuts from the side or below.

• 3D printing presents the possibility of fully 3D intricate parts, especially when they may be 
one-off parts for a single robot design. You can iterate with these, printing refinements to parts 
as you improve a design. Desktop 3D printers are inexpensive and can make sense in a home lab.

• Vacuum forming is where a plastic sheet is pulled against a mold (or a buck) to create a shell. 
This technique allows for thin yet single-part plastic areas and may be perfect for robot shells 
(fairings). You can use the other techniques mentioned to make the buck.

• Metal techniques such as welding, cutting, and using sheet metal may be useful for large robots 
or those that might be handled roughly. However, most small hobby robots will not need this. 
Some metal construction can be made simply by using aluminum extrusion, a hacksaw, and 
t-slot bolt heads.

Where can you get these manufactured? Many of these machines are large and expensive. If you do not 
have the space at home, you can consider sending designs to a company and have them cut them for 
you, such as https://razorlab.online/. If you are part of a school, college, or university, it 
may have these devices in its labs. Otherwise, see the Places to build robots section later in this chapter 
for information about maker spaces.

https://mearm.com/
https://www.ohbot.co.uk/
https://www.ohbot.co.uk/
https://razorlab.online/
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The preceding techniques will let you make interesting and varied robot designs, improving on parts 
and exploring different shapes. Access to these techniques and people to help you learn about them 
becomes easier if you get involved in robotics communities.

Robotic competitions and communities

There are many robotics communities. This section does not aim to be exhaustive but to get you 
started with getting involved with them.

Social media

This book has a Discord community at https://discord.gg/2VHYY3FkXV. You can use this 
to ask me questions and discuss your robotics with other robot builders.

Adafruit has a Discord community for discussing robotics, electronics, and CircuitPython – find out 
more at https://blog.adafruit.com/2019/02/05/adafruit-community-server-
on-discord-now-included-in-the-open-source-listings-discordapp-
discord-opensource-circuitpython/. 

There is a lively robotics community on Twitter. I am on there as @orionrobots, and I regularly 
share and boost robotics tweets; I will answer robotics questions and introduce robot builders into 
the community.

Many of the following communities have Twitter handles or tags, which are worth checking out. 
Twitter also has a #MakersHour tag for people talking about making anything, including robots.

I am also available on YouTube at http://youtube.com/orionrobots, where you can see 
the robots I’ve been building, on Mastodon at https://fosstodon.org/@orionrobots, 
and on Facebook at https://www.facebook.com/orionrobots.

The robot builder James Bruton showcases inspiring robot builds as @XRobotsUk at https://
twitter.com/XRobotsUK and on YouTube at https://bit.ly/3RYScxp.

Another great robot builder with a community is Kevin McAleer at https://www.youtube.
com/c/kevinmcaleer28. In addition, he has a lively Facebook robot community at https://
www.facebook.com/groups/smallrobots for discussing exactly the kinds of robots we 
have built in this book and extending far past this.

Events

The PiWars event is a competition held in the UK for robot builders using Raspberry Pi to compete 
in autonomous and manually driven challenges, showing off and improving robot building, robot 
driving, and coding skills. The community is global, welcoming, and happy to share techniques. You 
can find its website at https://piwars.org/. PiWars also has a https://twitter.com/
piwarsrobotics account and a PiWars Discord server at https://discord.gg/sjABKje.

https://discord.gg/2VHYY3FkXV
https://blog.adafruit.com/2019/02/05/adafruit-community-server-on-discord-now-included-in-the-open-source-listings-discordapp-discord-opensource-circuitpython/
https://blog.adafruit.com/2019/02/05/adafruit-community-server-on-discord-now-included-in-the-open-source-listings-discordapp-discord-opensource-circuitpython/
https://blog.adafruit.com/2019/02/05/adafruit-community-server-on-discord-now-included-in-the-open-source-listings-discordapp-discord-opensource-circuitpython/
http://youtube.com/orionrobots
mailto:https://fosstodon.org/@orionrobots
https://www.facebook.com/orionrobots
https://twitter.com/XRobotsUK
https://twitter.com/XRobotsUK
https://bit.ly/3RYScxp
https://www.youtube.com/c/kevinmcaleer28
https://www.youtube.com/c/kevinmcaleer28
https://www.facebook.com/groups/smallrobots
https://www.facebook.com/groups/smallrobots
https://piwars.org/
https://twitter.com/piwarsrobotics
https://twitter.com/piwarsrobotics
https://discord.gg/sjABKje
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The UK Micromouse and Robotics Society (UKMARS) community runs robotics competitions, with 
Micromouse being the oldest. Micromouse is a maze-running robot challenge running in the UK, 
with a lively community of robot builders. Visit https://ukmars.org/ for more information.

The First Robotics Competition (FRC) at https://bit.ly/3BnWOWG inspires people to build 
robotics and compete at robotics globally. The events occur in some local areas, with championships 
eventually taking place in Houston, Texas. The regional events mean that in-person competitions and 
collaboration can take place with teams long before traveling to Texas.

Maker faires are events held all over the world, and there may be some taking place in your country. 
Makers come to exhibit, talk about, and celebrate their creations. These are based around maker 
communities and provide great inspiration and contact between makers of all kinds, including robot 
builders. See https://makerfaire.com/ for details, including a search for maker faires near you.

Where can you build these robots if you need more help, tools, or space than you can get home?

Places to build robots

Tools and experience are important for building robots. While talking online can help, little is as useful 
as working with people experienced in the use of certain tools. Where can you find a space like the 
one in the following figure?

Figure 14.11 – A maker space

https://ukmars.org/
https://bit.ly/3BnWOWG
https://makerfaire.com/
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Maker spaces, hackspaces, or Fabrication Laboratories (Fab Labs) such as the one illustrated in 
Figure 14.11 are places where you can come and gain access to advanced tools such as 3D printers, 
laser cutters, and CNC machines, along with arrays of hand tools, electronics equipment, and large 
workbenches for them. They are usually accessible via membership and a small donation.

These spaces are usually well lit. Knowledgeable people maintain the tools and can also help you with 
your builds, with advice and training for the tools. An expert may also suggest a different manufacturing 
technique that may get you the results you want in a better way (quicker, cheaper, or stronger).

These spaces also tend to have safety systems, such as fume or dust removal, which is essential when 
soldering electronics or cutting materials such as wood. You will also find that these spaces usually 
have components or materials to hand that are needed to try a new technique. Using a small amount 
of material or borrowing a tool is essential if you want to try a technique before buying a lot of 
equipment. Searching for a Fab Lab, maker space, or hackerspace near you is strongly recommended.

Some coder dojos offer robotics programming as part of their courses. Coder dojos will focus more 
on the code and algorithms and less on building the robots. Schools that run code clubs or STEM 
clubs may also be amenable to robot programming and building.

Now that we’ve seen some communities, what further areas are there to explore in the code area?

Robotics systems and code

The software that runs on robots has a huge potential for exploration. With the ability to add additional 
controllers and memory or expand to larger and more powerful controllers, there are few limitations 
in this area.

We’ve seen in Chapter 13, Determining Position Using Monte Carlo Localization, how a robot can use 
simulation to help the robot understand its world, so you may even consider expanding upon that 
in a virtual environment too. While that is appropriate for algorithms on the robot, extending this 
to full visualization and 3D would be reinventing the wheel. Simulation using systems such as the 
Godot game engine or the ROS Gazebo system will let you start to test robot algorithms away from 
the actual robot, letting you improve planning and SLAM techniques using sensor data. You can build 
3D, physics-enabled worlds for a robot and test code there. There are considerations about being able 
to transfer code between the languages used in the simulations and CircuitPython that you’ll need to 
resolve. However, you may consider languages other than CircuitPython as you move to larger projects. 
You may be able to tune some things, but be aware that PID algorithm values will likely change when 
you attempt to try the same robot code in the real world.

Building on the idea of location mapping concepts are goal-based algorithms and task planning 
(mentioned in the Extending the code and behaviors section). These consist of planning how a robot can 
reach one location from another and what a robot may need to do if it has to move items to complete 
that operation. For example, the PiWars eco-disaster (https://bit.ly/3xBPIwz) challenge 
required planning how to move barrels to a specific location without knocking over others. With 
random barrel locations, this is a good challenge to use to learn about these advanced robot algorithms.

https://bit.ly/3xBPIwz
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We’ve briefly mentioned machine learning before. There are a few different techniques, with variations 
on neural networks being the most popular type at the time of writing. Deep learning offers image 
and sound recognition results with TensorFlow on big controllers and TinyML on small ones such 
as Raspberry Pi Pico. These extend to image analysis, as well as image classification. Combining this 
with advanced computer vision techniques and navigating with a camera or two as the sensors become 
possible. However, LIDAR sensors are still a reliable source of distance information.

Another interesting technique is clustered robots, a group of robots working as a single system. 
These would need to communicate with each other using RF, such as Wi-Fi, Bluetooth, or IR. You 
will need code that can plan how multiple robots will solve a problem. I recommend researching bird 
flocking and other artificial life subjects to build up to solving this, along with the planning techniques 
mentioned previously.

You’ve now seen algorithms to extend your learning about robotics further. Let’s recap what we have seen.

Summary
In this chapter, we have gone back over what we have learned in Raspberry Pi Pico Robotics for 
Workbench Wizards and the robot we’ve built using these skills.

We then investigated how we could extend this robot, building additional features such as sensors, 
outputs, and a more interesting or robust chassis, and extending the code to do amazing things.

We branched out further, providing ideas and inspiration or areas of research for your next robot, 
things you could design and build with a clean slate.

Finally, we dove into advanced techniques in electronics, ways to manufacture far more intricate parts, 
the robot communities and spaces you could be part of, and where robotics programming can go. 
This last section should provide plenty of inspiration for continuing to build robots!

Exercises
The following exercises will deepen your understanding of these topics and make the robot’s code better:

• Consider an interesting improvement to the current robot, plan it, and get started.

• Join a robotics community and get involved with robots on Discord, Facebook, Twitter, 
or Mastodon.

• Plan and build your next robot or robotics-related gadget. Then, share it with the communities!

Your robotics journey is just starting now. I look forward to seeing you in the robotics community, 
along with the machines you create!
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Further reading
You can continue your robot-building journey with the following books and reading areas:

• In Learn Robotics Programming by Danny Staple, Packt Publishing, I have written about building 
robots with Raspberry Pi, with another wheeled robot build, visual processing, and speech 
control covered, along with a different power system.

• Python Robotics Projects by Prof. Diwakar Vaish, Packt Publishing, shows you how to build several 
small robots, explores the code in them, and has machine learning projects to try with them.
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