

Page | 1

Page | 2

Contents

Getting started Page 3

Programming the buttons Page 9

Making a simple animation Page 13

Making a more complicated
animation

Page 17

Using looping commands Page 20

Making a light meter Page 23

Making a night light Page 27

Making a thermometer Page 33

Making a step counter Page 37

Making a compass Page 41

Making a reaction game Page 47

Wire following game Page 55

Connecting a speaker to your
Microbit

Page 66

Composing a tune Page 68

Making a tug of war game Page 76

Making a circuit with a
breadboard

Page 87

Primary colours of light Page 96

Secondary colours of light Page 102

Making more colours Page 105

Making a random light
generator

Page 108

Generating colour codes Page 113

Making a flashing light Page 118

Page | 3

Activity 1 – Getting started

Hello and welcome to the ‘Coding with the BBC Micro:bit’. We

hope you are excited about learning to code on your own mini-

computer. The projects in this book will get gradually more

difficult and by the end of the book you will have coded

animations, computer games and even created your own circuits.

As well as these written instructions, all activities also have their

own video instructions which you can find online at

www.fun-science.org.uk/bigboxofcodingvideos

The Microbit can accept four different ‘languages’ of coding –

JavaScript, Blockly, Touch Develop and Python. We are going to

be using Blockly for our coding. The first thing you need to do is

to plug your Microbit into the computer using the USB cable. The

Microbit looks like this…

… but it may be a slightly different colour.

The USB cable is a thick black wire with a large flat end and a

smaller thin end. It will look something like this.

Page | 4

Plug the smaller end of the cable into the Microbit and the larger

end of the cable into a USB socket on your computer. Ask a

grownup if you aren’t sure which is the USB socket. If you visit

‘My Computer’ or ‘This PC’ or ‘Finder’ (On a Mac) you should see

MICROBIT on the left-hand side of your screen. This just shows

that you have connected your Microbit properly.

Next, you need to open a website browser page. This could be

Chrome, Safari, Firefox, Internet Explorer etc. In the address bar,

type in makecode.microbit.org and you should see a screen that

looks like this.

Page | 5

Click on ‘New Project’ and you will be taken to a screen like this.

On the left-hand side of the screen you will see a picture that

looks exactly like your Microbit! This is a place for you to test out

your codes before you download them onto your actual

Page | 6

Microbit. On the right-hand side is where you will be making

your code. At the moment, there are two commands on the

right-hand side – ‘on start’ and ‘forever’. You can get rid of these

by clicking on them and dragging them over to the left. You will

then see a bin icon appear and if you let go of the command it

will disappear. You can also click on them and press the delete

button on your keyboard.

Go ahead and get rid of the ‘forever’ command and leave the ‘on

start’ command there.

‘On start’ means what we want the Microbit to do when we turn

it on. At the moment, it’s not doing anything because there is a

gap underneath ‘on start’. We need to tell the system to do

something by dragging another command into that gap.

Click on basic (blue) and you should see this menu appear:

Page | 7

These are all commands that we can ask our Microbit to do when

we turn it on. Click and drag ‘show string’ over to your ‘on start’

command so that it sits in the gap. Like this:

Now you should see that your Microbit simulator on the left-

hand side is saying hello!

You can change the text to whatever you want by double clicking

in the box where ‘hello’ is and typing whatever you want the

Microbit to say when you turn it on.

Next, find the box at the bottom which says ‘untitled’ and

replace this with the name of your project. You could call it ‘first

project’ or ‘message’. Click the purple ‘Download’ button and

choose somewhere on your computer to save your project. Don’t

save it directly to your Microbit because the Microbit can only

hold one programme at a time so when you next save something

onto it your project would be lost. Once you have downloaded

your file, you should then go back to ‘My Computer’ or ‘Finder’

(or equivalent) and find the file. Click and drag it to the

MICROBIT on the left-hand side. An orange light on the Microbit

will flash for a few seconds and a window may appear on your

screen showing the file moving over. After a few seconds, the

light will stop and that means your file is transferred.

Page | 8

If you are having trouble getting started or transferring your

programme onto your Microbit, don’t forget that you can watch

our videos at

www.fun-science.org.uk/bigboxofcodingvideos

Once you have copied your programme onto your Microbit, you

will need to unplug it from the USB cable. This means your

Microbit has no power! Instead, you need to plug the batteries

into the Microbit. Attach your battery pack to the Microbit. It

may look something like this.

Insert your batteries into the holder, making sure you get them

the correct way around (ask a grownup for help if you aren’t

sure) and then push the white end of the wire into the square

white hole on your Microbit. Your Microbit should turn on and

Page | 9

you should see your message on the screen. That’s it, you’ve

completed your first project!

Activity 2 – Programming the buttons

Another thing that you can do, is to programme the Microbit to

do different things when you press the A and B buttons. Plug

your Microbit into the computer and go back to

Makecode.microbit.org

Open up the project from activity 1.

Click input (purple) and then drag the ‘on button A pressed’

command to anywhere in your editor. It can be here…

Page | 10

Here…

Or anywhere else that you want to put it!

Now, we need to tell the system what we want it to do when we

press button A. Just like before, go to the basic (blue) menu and

this time, drag the show icon command into the gap under the

‘on button A pressed’ command. Like this:

Page | 11

The default icon is a heart and this will be shown by the little

lights on your Microbit’s screen. You can change this icon by

clicking the little white arrow next to the heart and choosing a

different picture.

Next, let’s programme button B.

Go back to the Input (purple) menu and drag another ‘on button

A pressed’ block to your editor. Again, you can put it wherever

you like. The command will be grey to begin with because you

can’t have two ‘on button A pressed’ commands on the screen at

the same time.

Use the button next to ‘A’ and change it to B and it will go

purple. Go back to the basic menu and choose another ‘show

icon’ command. Drag it to the gap under the ‘on button B

pressed’ command. Use the arrow to choose a different icon.

It should look something like this.

The whole thing should look a bit like this but your commands

may be in different places and your text and pictures will be

different.

Page | 12

Just like last time click the purple ‘Download’ button and choose

somewhere on your computer to save your project. Remember

not to save it directly to your Microbit. Transfer your project to

your Microbit, make sure the battery pack is connected, and

press the different buttons to see your different pictures.

Page | 13

Activity 3 – Making a simple animation

Now that you know the basics, you are going to be programming

your Microbit to show an animation. There are two ways that

you can do this and we are going to try both!

The first way is just to set one picture to show when you press

button A and another to show when you press button B. You can

then quickly press one button then the other to show a flick-

book style animation.

Let’s give it a go! First open your browser and go to

makecode.microbit.org then click on new project.

Remove the ‘on start’ and ‘forever’ commands and go to the

input (purple) menu and drag the ‘on button A pressed’

command over to the editor. This time, instead of putting a pre-

made icon in the gap, we are going to be making our own!

Go to the basic (blue) menu and drag the ‘show leds’ command

over to the gap under your ‘on button A pressed’ command. LED

stands for Light Emitting Diode. These are the 25 little lights on

the front of your Microbit. You should see a grid that looks like

this.

Page | 14

Each square in this command block represents an LED on your

Microbit. You can click in the squares to draw a picture. Try

drawing a smiley face like this.

Page | 15

Try using the simulator. When you press button A on the

simulator, you should see your smiley face.

Now, let’s programme button B.

Just like in the last activity, drag another ‘on button A pressed’

command over to your screen and use the arrow to change the

letter A to B.

Just like before, drag another ‘show leds’ command to the gap

underneath ‘on button B pressed’. It should look like this.

Page | 16

Next, draw a sad face like this

That’s it! You are ready to download your project. Give the

project a name and download it to your computer then transfer

it to your Microbit like we did in the last two activities.

Now, try pressing A then B then A then B on your Microbit and

keep doing this really fast. This is like a flick book! It should look

like your face is going happy and sad. Can you think of another

simple animation with two pictures? Make sure the two pictures

are not too different to each other or else it won’t look as good.

When you have tried a few different pictures, have a go at the

next activity which is a slightly more complicated way of making

a longer animation.

Page | 17

Activity 4 - Making a more complicated animation

Let’s try and make a more complicated animation with lots of

different frames. Frames are the words animators use for each

individual picture that is put together to make an animation.

Start a new project and get rid of the ‘on start’ command but

keep the ‘forever’ command.

Underneath the ‘forever’ command, drag a ‘show leds’ command

(from the basic menu) and draw the pattern below.

Now, drag another ‘show leds’ command underneath that first

one and draw this pattern on it.

Page | 18

Add another ‘show leds’ command under that and draw this

pattern.

Just one last command to do – put in another ‘show leds’

command underneath and draw this pattern again.

Page | 19

The whole thing should look like this

Page | 20

Because the commands are all within a ‘forever’ command, this

will keep repeating forever whenever your Microbit is switched

on. Can you see your animation running in the simulator on the

left hand side? Give your project a name, download it and put it

onto your Microbit. Can you see the animation on the Microbit?

Try out some different patterns and make your own animation. It

can be as long as you like!

Activity 5 – Using looping commands

Let’s try one last animation. This time, instead of the animation

running all the time, we will set it to only run when the A key is

held down using a looping block from the green menu. As soon

as you let go of the A button, the animation will stop.

Start a new project and get rid of the ‘on start’ command.

Go to the loops (green) menu and drag a ‘while true do’

command under your ‘forever’ command. It should look like this

Go to the Input (purple) menu and drag a ‘button A is pressed’

command to replace the blue ‘true’. Like this.

Page | 21

This is telling the system that we only want it to play the

animation when button A is pressed down. When you release

button A it will stop the animation. Now, stack up ‘show leds’

commands inside this green command block to make an

animation, just like before. You could make your own animation

up or copy the one below.

Page | 22

Give your project a name and download it onto your Microbit.

Does it work? Keep changing your animation until you are happy

with it.

Page | 23

Activity 6 – Making a light meter

In this activity, we are going to be using the light sensor that is

built into your Microbit. In fact, the LEDS on your Microbit

actually work as light sensors as well as lights! The way this

works is the 6 LEDs circled below all take a light reading and then

the system works out an average of these numbers to calculate

how much light is around in the room. In simple terms it can tell

you how light or dark your room is.

Light sensors are used in lots of computers and electronic

devices that need to either turn on when it’s dark or turn off

when it’s dark. One use is in a night light that turns on when it’s

dark and off when it’s light. Most mobile phones have light

sensors so that the screen can get brighter when there is lots of

light around and dimmer when the room is darker.

Start off by going to makecode.microbit.org and starting a new

project. You can delete the ‘on start’ and ‘forever’ blocks.

Page | 24

First, we need to create a variable and define it. A variable is

something that can change (like light level, temperature, speed

etc.) and defining it just means telling the system what it means.

Go to the red variables menu and click ‘make a variable’. Call the

variable ‘level’. You should then see these options appear.

Drag the ‘set level to 0’ block onto your screen. It will show as

grey for the moment because you haven’t put it underneath a

basic or input command. That’s ok, we will sort that out later.

We have now set the variable but next we need to define it. At

the moment, the system doesn’t know what the word ‘level’

means so we have to tell it. Go to the purple input menu and find

the ‘light level’ command. Drag this to replace the 0 in ‘set level

to 0’. It should look like this.

Page | 25

Next, we need to tell the system when we want this to happen.

Let’s use the ‘on button A pressed’ command. Can you

remember where this one is?

It’s in the purple menu! Click and drag an ‘on button A pressed’

command over to your screen and then put the ‘set level to light

level’ block that you created earlier underneath it. Like this.

Now we have told the system that when we press button A,

‘level’ means ‘light level’. Next, we need to tell it to show us

what that light level is on the screen.

Go to the basic (blue) menu and drag a ‘show number’ command

under the ‘set level to light level’ command.

Page | 26

Lastly, we just need to replace the 0 with ‘level’ to tell the system

that we want to see the level of light displayed on the screen.

Go to the red variables menu and drag a ‘level’ command to

replace the number 0.

The final programme should look like this

Download your programme onto your Microbit and see what

happens when you press the A button. A reading of 0 means

pitch black and a reading of 255 means really bright! Try and find

the darkest room in your house and the brightest room or try

shining a torch on the Microbit and moving the torch closer and

further away from the LEDs.

Page | 27

Activity 7 – Making a night light

Now you’ve had a play with the light sensor reading, let’s make a

night light that automatically comes on in the dark and goes off

in the light.

Come back to the Blockly editor (makecode.microbit.org) and

start a new project. Call this project something like ‘night light’.

We are going to be using the ‘forever’ command and you can

remove the ‘on start’ command.

In this activity, we are going to be telling the system that if the

light level drops below a certain level, we would like it to turn the

lights on the Microbit on.

To do this, we need one of the logic blocks from the light

blue/green menu. The command we are using is the one that

looks a bit like a giant E and has ‘if true then ________

else_________’ written on it. Drag it onto your screen

underneath the forever command.

This command basically tells the system that if something is true

then it needs to do an action but if something is not true then it

Page | 28

needs to do something else. What we need to tell it next is what

the ‘something’ is and also what the two different actions we

want it to take are.

First, we need to replace the true block with something else. Go

back to the logic menu and find this block

Drag it so that it replaces the ‘true’ diamond like this.

At the moment this doesn’t make much sense because the sign <

means ‘less than’ so this command says ‘if 0 is less than 0’ which

is impossible! We need to replace the first 0 with ‘light level’

from the purple menu. It will look like this.

Page | 29

This still doesn’t make any sense because the light level can’t be

less than 0 as that’s the lowest possible number and means pitch

black! We need to change this 0 to a different number. When

you were testing the light sensor earlier you will have got a bit of

an idea of which number means quite dark, which number

means quite light etc. Choose a number that you think is dark

enough for your night light to turn on. Don’t make it too low

because it’s rare that your bedroom will have absolutely no light,

even in the dark, because of the moon and streetlights. I’m going

to go for 100.

Next, we need to tell the system what we want it to do when the

light level is less than 100. We are making a night light so we

want it to light up. Go to the basic (blue) menu and drag a ‘show

leds’ command to below the ‘if light level < 0 then’ command.

You can then click on the LEDs that you would like to be turned

on. I’ve decided to turn them all on but you may want to make a

pattern.

Page | 30

Next, we need to decide how bright we want our night light to

be. This probably depends on what you want your light to be

used for. If it’s a night light for beside your bed you may want it

to be quite dim so it doesn’t keep you awake. If you want your

light to be used as an emergency light that will turn on if all the

power goes out in your house, you would probably want it to be

really bright!

Go to the purple Led menu and click on more. Select the ‘set

brightness’ command and drag it to above your ‘show leds’

command. Just like with the light sensor, 255 means very bright

and 0 means completely off. Choose how bright you would like

your LEDs to be. I’ve chosen 255 because I want my night light to

be very bright!

Page | 31

The last thing we need to do is to tell the system to turn all the

lights off if the light level is not below 100. We are going to go to

the blue basic menu and drag a ‘clear screen’ command to

underneath the word ‘else’ like this.

Page | 32

This tells the system that if the light level is less than 100 we

would like it to show all the LEDs very brightly but if it is higher

than 100 we would like it to clear the screen/not show any LEDs.

Download the project onto your Microbit and test it out. If it

lights up too often, change the ‘if light level < 100’ to be a lower

number so it only lights up when it is really dark. If your night

light is too bright, change the ‘set brightness 255’ to a lower

number to make a dimmer light. If the programme isn’t working,

make sure your Microbit is placed face up on a flat surface. If you

have a room in your house with no windows, go to that room

and turn the lights in the room on. Now turn the lights off!

Page | 33

Activity 8 - Making a thermometer

Your Microbit also has a built-in temperature sensor. This detects

how hot the CPU (central processing unit) in your Microbit is. It

tends to be a few degrees hotter than the outside world because

the Microbit generates a little bit of its own heat. Remember,

you should not use your Microbit in very hot or very cold

temperatures as it could get damaged. With the light sensor we

tested it by shining lights on it. Do not test the temperature

sensor by putting the Microbit in the ‘fridge or the oven! Just

take it to different parts of your house to see the different

temperatures inside and outside the house.

To make a temperature sensor we are actually going to do

almost exactly what we did when we made our light meter

reader. Start off by going to makecode.microbit.org and starting

a new project. You can delete the ‘on start’ and ‘forever’ blocks.

Just like before, we need to create a variable and define it.

Go to the red variables menu and click ‘make a variable’. Call the

variable ‘level’ just like we did before. You should then see these

options appear.

Page | 34

Drag the ‘set level to 0’ block onto your screen. It will show as

grey for the moment because you haven’t put it underneath a

basic or input command.

We have now set the variable but next we need to define it like

we did last time. Go to the purple input menu and find the

‘temperature’ command. Drag this to replace the 0 in ‘set level

to 0’. It should look like this.

Next, we need to tell the system when we want this to happen.

Let’s use the ‘on button B pressed’ command this time. It’s in the

purple menu! Click and drag an ‘on button A pressed’ command

Page | 35

over to your screen, change the A to a B and then put the ‘set

level to temperature’ block that you created earlier underneath

it. Like this.

So now, we have told the system that when we press button B,

‘level’ means temperature in degrees Celsius. Next, we need to

tell it to show us what that temperature is on the screen.

Go to the basic (blue) menu and drag a ‘show number’ command

under the ‘set level to temperature’ command.

Lastly, we just need to replace the 0 with ‘level’ to tell the system

that we want to see the temperature displayed on the screen.

Go to the red variables menu and drag a ‘level’ command to

replace the number 0.

Page | 36

The final programme should look like this

You can now download this onto your Microbit and when you

press B you should see the temperature in degrees Celcius. If you

have a thermometer in your house, compare the two together to

see how accurate the Microbit is. Remember it’s likely to be a bit

hotter than your thermometer says it is because the Microbit

makes a bit of heat.

To run the light sensor and temperature sensor in the same

programme, you just need to put the programme from the light

sensor onto the screen at the same time as the programme from

the temperature sensor. It will look like this.

Page | 37

Now, when you press button A you should see the light level and

when you press button B you will see the temperature.

Download the programme and give it a go! Remember not to put

your Microbit in the oven!

Activity 9 – Making a step counter

Inside your Microbit is something called an ‘accelerometer’

which can detect movement so it can tell you if your Microbit is

shaken, turned or dropped. Most phones and tablets have

accelerometers in them so that they can turn the screen when

you turn the phone. We are going to be using that accelerometer

to turn your Microbit into a step-counter which will be able to

tell you how many steps you have taken.

Start a new project and get rid of the ‘on start’ block.

The first thing we need to do is define a variable like we did in

the light sensor and thermometer projects. Click the red

variables menu and click make a variable. Name your variable

‘steps’. Drag the ‘change steps by 1’ onto your screen. It will be

grey but that is ok!

We are going to design this so that you will hold the Microbit in

your hand when you run. When you run, you tend to shake your

arms up and down. On one step you will move your right arm up

and then on the next step you will move it down. This up and

down movement is one ‘shake’. For every two steps you take,

each arm does one shake. So, we need to tell the Microbit to

Page | 38

move the number of steps up by two every time you shake it.

Change the number from 1 to 2 and then grab an ‘on shake’

command from the purple input menu and put it on your screen.

Put the two commands together like this.

Now, we need to tell the system to show us (in lights) how many

steps we have taken in total.

Inside the ‘forever’ command, you should put a ‘show number’

command from the blue basic menu. Change the number 0 to

‘steps’ from the variables menu. It will look like this.

So now, the system knows to keep showing you the number of

steps you have done and to keep increasing that number by two

every time you shake the Microbit.

The last thing we need to make is a reset button to put the

number of steps back to 0.

Drag an ‘on button A pressed’ command from the purple input

menu onto your screen. Change A to A + B using the drop-down

menu. Like this

Page | 39

Lots of devices ask you to press two buttons to reset them

instead of just one. This is because you are less likely to do this

by accident.

Now we need to tell the system what we would like it to do

when we press the A and B buttons at the same time.

Go to the red variables menu and drag a ‘set steps to 0’

command into the right place like this.

That’s our step counter finished but there is one optional extra

we can add on.

Sometimes, when we have done lots of steps, the system will be

trying to show us one number and then we shake the Microbit

again and we want it to stop the first number and show us the

next one immediately.

Imagine that we had done 1000 steps and the system is scrolling

the number 1000 across the screen. This takes around 5 seconds.

Whilst this is happening, we take another step. We don’t want to

have to wait for the number 1000 to go across the screen before

the system shows us 1002 because that 1000 is not relevant

anymore. Anytime we have to wait for a system to finish one

Page | 40

thing before it does the thing we actually want it to do, we call

this ‘lag’.

To get rid of this lag we need to tell the system that every time it

is shaken it can stop whatever number it was trying to tell us and

move straight onto the next one.

Go to the purple Led menu and click more. Drag a ‘stop

animation’ command underneath your ‘change steps by 2’

command. The whole thing should look like this.

Download this to your Microbit and hold the Microbit and power

pack in one hand. Go for a run and make sure you swing your

arms!

Page | 41

Activity 10 – Making a compass

Did you know, the Earth is one big giant magnet? Your Microbit

has a built-in magnetic field sensor which means it can work out

whether it is pointing North, South, East or West. We are going

to build a programme to turn your Microbit into a compass.

Start a new project and call it something like ‘compass’

Remove the ‘on start’ command but keep the ‘forever’

command.

Next, we need to create a new variable just like in the step

counter activity. Go to the red variables menu, click ‘Make a

Variable’ and call it degrees. Drag the ‘set degrees to 0’

command to underneath the forever command. Like this.

Next, we need to define the variable. Degrees is going to mean

whereabouts on the compass we are. So, let’s tell the system.

Go to the purple input menu and drag ‘compass heading’ to

replace the 0 like this.

Page | 42

But what does this actually mean? A compass is basically a big

circle and ‘degrees’ is how far around that circle we are. Look at

the picture below. Can you see all the numbers around the

outside? We call these degrees. So North is from around 316

degrees to 45 degrees. East is from 46 degrees to 135 degrees;

South is from 136 degrees to 225 degrees and West is from 226

degrees to 315 degrees.

The magnetic field detector in the Microbit will work out how

many degrees around that circle we are and then we are going to

programme it to tell us if we are at North, East, South or West

using the LEDs.

Page | 43

Go to the light blue logic menu and drag a an ‘if true then _____

else________’ command under your ‘set degrees to compass

heading’ command. Like this.

This is like what we did when we made our night light. Next, we

need to replace that ‘true’ command with a 0 < 0 command

exactly like when we made our night light. Grab the command

from the light blue logic menu and drag it to replace the ‘true’

block. Like this.

Page | 44

Remember, this doesn’t really make sense because it is saying if

0 is less than 0 and 0 can’t be less than 0! So, we need to tell the

system that if ‘degrees’ is less than 45, we are facing North and

so the screen should show the letter N.

Replace the first 0 with ‘degrees’ from the red variables menu

and replace the second 0 with the number 45. Like this.

Next, go to the blue basic menu and drag a ‘show string’

command into the gap underneath ‘if degrees < 45’ to tell the

system what it should show if the degrees are less than 45.

Change the string to the letter N. Like this.

Page | 45

So now, the system knows that if the degrees is between 0 and

45 then it should show a letter N on the screen so we know that

we are pointing North. This isn’t quite right because North

should be between 316 degrees and 360 degrees as well as 0 and

45 degrees. But it’s half way there! We will worry about that

extra bit later.

Next, let’s do the same for East, South and West. You will need

to click the little ‘+’ sign underneath the word ‘else’ three times

to get three extra gaps like this.

Page | 46

Next, fill these in exactly like we did for North but for the other

directions. You may want to copy the picture below to help you.

Finally, we just need to fill in that bottom gap with ‘show string

N’. This is telling the system that if degrees is more than 315 it

should show the letter N because that will mean it is pointing

North. Remember that’s the bit we missed out earlier.

Now, you just need to download your project onto your Microbit

and give it a try. When you turn on your Microbit for the first

time, something strange will happen. You may see some words

scroll across the screen or lots of dots filling the screen. This is

because every time you put a new programme that uses the

Page | 47

compass onto your Microbit, the system needs to calibrate itself.

In this case, the word calibrate means it needs to work out

where it is!

What you will need to do is to tilt the screen in the direction of

any LEDs that are not lit up until they all light up. Then your

compass will be ready to use. If you need any help with this,

there is a video about calibrating your compass at

www.fun-science.org.uk/bigboxofcodingvideos

Test your compass out. Like a normal compass, the compass on

your Microbit can go wrong if you put it near a magnet or some

metal because it will then pick up the magnet instead of the

Earth.

If you like, you could put in even more commands to be able to

show North East, North West, South East and South West.

Activity 11 - Making a reaction game

This next game will test your reactions. You will be creating a

game where a light moves across the screen from left to right

and you have to press the A button when it is in the middle of

the screen. If you press the button at the right time, you get a

point. If you press it when the light is not in the middle, you lose

the game.

The first thing we need to do is create a variable and name it

‘sprite’. In coding, a sprite is a moveable item that can either

move on its own or be controlled by the player. ‘Steve’ in

Minecraft is a sprite. Our sprite is going to be a single light that

moves across the screen.

Page | 48

Click in the variables menu, click ‘make a variable’ and name your

variable sprite. Drag the ‘set sprite to 0’ command to the ‘on

start’ block.

Next, we are going to be using the dark green ‘game’ menu. You

can find this under ‘advanced’ on the left-hand side. Find the

‘create sprite at x 2 y 2’ command and drag it to replace the 0 in

‘set sprite to 0’ like this.

So what does this mean? Each of the lights on your Microbit has

its own unique number made up of an ‘x’ value and a ‘y’ value.

We call these co-ordinates. Look at the grid on the next page.

The light circled is 3,2. Can you see why? Its x value (the numbers

along the top) is 3 and its y value (the numbers along the side) is

2. Can you work out the value of the very centre light?

Page | 49

It’s 2,2 because the x value is 2 and the y value is 2.

So, when we created this command…

…we told the system to create a ‘sprite’ (a light) right in the

centre of the screen (at 2,2). You should see it in the simulator

on the left-hand side.

Now, we want to make the sprite move from side to side across

the screen. Go back to the ‘game’ menu and find the ‘sprite

Page | 50

move by 1’ command and drag it into the ‘forever’ command

block. Like this.

This will make the little light start moving to the right. At the

moment, the light moves to the right but then it stops once it

gets to the side of the screen. We want it to bounce back and

keep moving.

Go back to the game menu and find the command ‘sprite, if on

edge bounce’. Put this underneath ‘sprite move by 1’.

Now, when the light reaches the edge of the screen, it will

bounce back in the other direction. This will keep going forever

because it’s in the forever command!

At the moment, it’s quite fast so let’s slow it down. Go to the

basic menu and grab a ‘pause’ command and put it under the

Page | 51

‘sprite if on edge, bounce’ command. Like this. The bigger the

number, the slower the sprite will move and the easier the game

will be.

The last thing we need to do is to tell the system what happens

when button A is pressed and when the game is won or lost. Get

an ‘on button A pressed’ command from the purple input menu

and put it on your screen. Go to the logic menu and get an ‘if

true then ____________ else_______’ command and put it

inside the ‘on button A pressed’ command. Like this.

Page | 52

We need to tell the system that if we press the A button when

the sprite is at 2,2 (in the middle) we get a point but if we press it

at any other time, we lose the game. Go to the logic menu and

get a ‘if 0 = 0’ command to replace the ‘true’ command.

Go to the game menu and replace the first 0 with ‘sprite x’ and

the second 0 with a number 2 like this.

Page | 53

This tells the system that it needs to do something if the sprite’s

x (horizontal) position is 2 and something else if it is anything

else (0, 1, 3 or 4).

We don’t need to worry about the y position because the sprite

doesn’t move up and down so its y position is always 2.

Now, we just need to tell it what the two options are.

If the sprite’s x position is 2, the light is in the middle, so we want

the system to increase the score by 1. Go to the game menu, find

the ‘change score by 1’ command and drag it under the ‘if sprite

x = 2’ command.

If we press the button when the sprite isn’t in the middle (when x

does not equal 2) then we have lost the game. To tell the system

this, go to the game menu and drag a ‘game over’ command

under ‘else’. The system has a built-in game over sequence which

Page | 54

plays a little animation, scrolls the words game over and then

shows you your score. The final code will look like this.

Download this and give it a go! After you have lost the game you

will need to press A and B together to restart it. If it is too easy,

increase the speed by putting a smaller number in the pause

command. If it’s too difficult, decrease the speed by putting a

bigger number in the pause command.

Page | 55

Activity 12 - Wire following game

In this activity, you are going to create a wire following game. It’s

like a buzz wire game – without the buzz! The actual coding for

this project is fairly simple, but you will also need to have two

alligator test leads, a short piece of conductive (e.g. copper) wire

and blue tack to build a game which will connect to your

Micro:bit. You can buy copper wire in most craft stores. You will

create a maze out of conductive wire and a separate hook, also

out of conductive wire. The aim of the game is to pass the hook

around the maze without it touching the maze. If it touches the

maze, you get one ‘loss’. The aim of the game is to pass the hook

around the maze with the least possible number of losses.

In this project, we need to set up a scoring system to count your

‘losses’ and tell our Micro:bit when to display the amount of

‘losses’ We also need to set up a system to be able to reset the

game once you have played it.

Start by visiting makecode.microbit.org and clicking on ‘new

project’. You can name your new project something like ‘buzz

wire’ or ‘wire following game’.

You can delete the ‘forever’ and ‘on start’ commands because

we don’t need them for this project. You may decide later to put

them back in so that your Micro:bit shows a welcome message or

a picture when you turn it on.

The first step is to tell your system that a new game will start

when the player presses button A. Click ‘Input’ (purple) and

then drag an ‘on button A pressed’ command onto your screen.

Page | 56

At the beginning of the game, we need the number of ‘losses’ to

be 0 but before we can do that, we need to create a ‘losses’

variable. This number will be the number of times that your hook

has touched your maze. Click on ‘Variables’ (red) and then ‘Make

a new Variable’. Name the variable losses.

Drag the ‘set losses to 0’ command to your ‘on button A pressed’

command.

This will reset the number of losses to 0 when you press the A

button.

Next, we need to tell the system to display the number of losses

(0) when the A button is pressed so that you know it’s been

reset. To do this, first drag a ‘show number’ command from

‘Basic’ (blue) to underneath your ‘set losses to 0’ command.

Page | 57

Then click on Variables (red) and drag the button

into the place of the 0 so that your screen looks like the picture

below.

Page | 58

Test your script using the tester on the left of the screen. Clicking

button A should display the number of losses, which has been set

to 0.

Next, we need to tell the Microbit what to do if the hook touches

the maze. You are going to be connecting your hook to the ‘0’ pin

on the bottom of your Microbit and connecting your maze to the

GND (ground) pin. We need to tell the Microbit that when it

detects a connection at ‘0’ it should show a cross, a sad face or a

message and then increase the losses by 1.

First let’s programme the system to show a picture if the hook

touches the maze.

Go to input (purple) and select the ‘on pin P0 pressed’ command.

Drag it to your screen below the ‘on button A’ pressed

Page | 59

commands from before so your screen looks like the image

below.

Next, go to the basic commands (blue) and select what you

would like your Micro:bit to display if your hook touches your

maze. You may write a short message using ‘show string’, use

‘show leds’ to show your own picture or choose one of the icons.

You could even make a short animation by making a series of

pictures like in our animation activity. We’ve gone for a cross

icon below.

Page | 60

If you are using an image you will want it to stay on screen for a

little while so you don’t miss it. Go to the basic commands again

(blue) and drag a pause command underneath the show icon or

show LEDs command. This is how long you want your image to

show for. We’ve gone for 100milliseconds

Finally, all we need to do is tell the system to add an extra loss on

every time the hook touches the wire.

Click variables (red) and drag a ‘change losses by 1’ command

below your pause command.

Page | 61

Finally, we need to tell the system to show the number of losses

again every time the hook touches the maze. We did this right at

the beginning. All you have to do is drag a ‘show

number’ command from ‘Basic’ (blue) to underneath your

‘change losses’ command.

Your programme is now finished! Now you need to download it

to your Microbit and then we can get started building the actual

game itself.

Your Microbit has 25 gold pins. You can see them all in the

picture below. Pins are places where other things can be

connected to the Microbit such as wires, speakers, etc.

Page | 62

The five big holes are the ones we are going to focus on today as

they are the pins that we can connect the alligator test leads to.

0, 1 and 2 can be used for lots of different things so are called

general pins. 3V is a power supply. Your Microbit receives power

from either the USB cable or the battery pack. It can then give

some of this power out to other devices through the 3V pin so

you don’t need to power those other devices separately. This

would be useful if you were attaching an amplified speaker to

your Microbit.

GND means ground and is used to complete a circuit. In our wire

following game, we programmed the Microbit to know when pin

0 is connected to the GND pin. You can test this with your body!

Download the wire following game onto your Microbit and

attach the battery pack. Press A to start the game then hold the

GND pin with your right thumb and finger and touch the 0 pin

with your left hand and then release it. Did you see your ‘loss’

animation/picture/word and see the number of losses go up?

This is because electricity is going through your body and

connecting the pin 0 to the ground pin. Don’t worry, it’s perfectly

safe – you just had around 3V of electricity going through you –

the same amount as if you pick up a 3V battery and touch both

sides. It’s not enough for you to even feel it! Don’t worry if this

doesn’t work for you, it doesn’t always work for everyone.

Next, let’s turn that into a game.

WARNING – never connect the 3V and GND pins together

because it can damage your Microbit.

Connect one end of one of your test leads to the 0 pin using the

clip that looks a bit like an alligator’s mouth. Connect one end of

the other test lead to the GND pin like in the picture below. You

may wish to slide the plastic cover off the clip to make it a bit

Page | 63

easier. If you touch the other empty ends of the leads together,

you should see your loss animation.

Page | 64

Now, with your long conductive wire, make a maze shape. Use

blue tack or modelling clay to hold the wire up. Like this.

With the short conductive wire, make a small hook shape. This

will be used to move around your maze so the smaller it is, the

harder the game will be.

Take the end of the lead that is connected to the 0 pin and

connect it to your maze.

Take the end of the lead that is connected to the GND pin and

connect it to your hook. Like this.

Page | 65

Now, you are ready to play. Take your hook and place it at the

start of your maze. Move it along the whole maze, trying not to

touch the maze. You may want to get someone to watch your

Microbit’s screen and tell you if you touch the maze. At the end

of the maze, see how many losses you’ve had.

If it’s too easy, try making the maze more bendy or making the

hook smaller.

If you find the system is recording losses when you haven’t

touched the maze, it’s likely something else is making the

connection. Make sure you are working on a non-conductive

surface. Some tables can conduct electricity so try putting your

maze and Microbit on a piece of paper like in the picture above.

Challenge a friend and see if they can do it with less losses than

you.

Page | 66

Activity 13 – Connecting a speaker to your Microbit

For this activity you will need:

Alligator test leads x 2

Piezo speaker

Microbit and battery pack

A piezo is very small and looks like this. They can be found very

cheaply online. The two little metal legs are the places where you

will connect it to your Microbit.

To connect your speaker to the Microbit you will need to take

one of your alligator test leads and clip one end to one of the

metal ‘legs’ on the speaker. Attach the other end of this lead to

pin 0 on the Microbit.

Take the other alligator test lead and clip one end of it to the

other metal leg on the speaker. Attach the other end of this lead

to the GND pin on your Microbit. The complete circuit will look

like this.

Page | 67

Now let’s see if it works! Go to makecode.microbit.org and start

a new project. Call it something like ‘playing a tune’.

The system has a few pre-programmed tunes or you can

compose your own tune. We are going to do both! To start with,

get rid of the ‘on-start’ and ‘forever’ commands and get yourself

an ‘on button B pressed’ command. Next, go to the ‘music’ menu

and drag the command that says ‘start melody dadadum

repeating once’ into the gap in the ‘on button B pressed’

command.

Page | 68

‘dadadum is the name of a song that is pre-programmed into the

system. Press the B button on the simulator (on the left hand

side) to hear what this sounds like. Make sure your computer has

the volume turned up! If you click the arrow by ‘dadadum’ you

can change the tune. Try a few and pick your favourite. This will

play when you press button B.

Download your programme onto your Microbit, make sure your

speaker is connected and press button B. Can you hear the tune

you programmed?

Activity 14 – Composing a tune

The system can also be used to compose (create) your own

music. Open back up your project from the last activity and drag

an ‘on button A pressed’ command onto the screen and then go

back to the music menu. Drag the ‘play tone middle C for 1 beat’

command into the gap in the ‘on button A pressed’ command. It

will look like this…

Page | 69

Middle C is the name of a music note. If you click on ‘middle C’

you will see a picture of a piano keyboard come up. You can click

on whichever note you would like the Microbit to play. You can

also change where it says ‘for 1 beat’. This is how long you want

your note to go on for. 1/16 is the shortest note and 4 is the

longest note. Here I have told the system to play Middle A for

1/4 beat.

If we put lots of these commands together, the system will play

them all in a row and that is how we can play a tune. You can put

notes together in whichever order you like and then test out

your tune in the simulator. Change the notes until you are happy

with your tune. You can either make up your own tune, try and

create a tune you have heard before or copy the blocks from the

examples on the next few pages. When you are happy with your

tune, download it onto your Microbit, make sure your speaker is

connected, and then play your tune to everyone!

Page | 70

Everything is awesome

If you have ever watched the Lego Movie, you will know this

song. Copy the commands below into your Makecode editor to

have your Microbit play ‘everything is awesome’.

Page | 71

Page | 72

Page | 73

Happy birthday

Copy the commands below and on the next pages to make your

Microbit play happy birthday.

Page | 74

Page | 75

Page | 76

Activity 15 – Making a tug of war game with sound!

In this activity, we are going to be making a virtual tug of war

game on the Microbit’s screen. There will be a light in the middle

of the screen and pressing A will move the light closer to the A

button. Pressing B will move the light closer to the B button. One

player will press the A button really fast whilst the other player

presses the B button really fast. If A presses the button the

fastest, the light will move towards the A side. If B presses the

button the fastest, the light will move to the B side. If the light

gets all the way to one side, the Microbit will play a tune and the

screen will tell you that either A or B has won.

You will need to connect your speaker up to your Microbit for

the tunes to play so you can either do this now or after you’ve

downloaded the code onto your Microbit.

Start a new project at makecode.microbit.org and name it

something like ‘tug of war’.

We actually need both the ‘on start’ and ‘forever’ commands so

don’t delete either of them! First, we need to tell the Microbit to

start by putting a light in the middle of the screen. Do you

remember the ‘sprites’ from the gaming menu? Sprites are

moveable characters (or in this case lights) in a game. You may

also remember our co-ordinates from when we made the

reaction game. We can use co-ordinates to tell our system where

to put a sprite. First, we need to go to the variables menu, make

a new variable and call it ‘sprite’. Drag the ‘set sprite to 0’

command and put it in the ‘on start’ command like this.

Page | 77

Next, we need to replace that 0 with a command from the

gaming menu (underneath advanced). Drag the ‘create sprite at x

2, y2’ command to replace the 0 like this.

Look at your simulator. Can you see a light right in the middle of

the screen? That’s the sprite! It’s in the middle because that is

2,2. Take a look at the grid below and see if you can remember

why the middle light is 2,2.

Page | 78

So, now we’ve put the light in the middle, we need to tell the

system to move it in the direction of the A button when A is

pressed and in the direction of the B button when B is pressed.

Go to the inputs menu and get an ‘on button A pressed’

command. Next, go to the gaming menu and get a ‘sprite change

x by 1’ command and put it in your ‘on button A pressed’ block.

Like this

This tells the system that when A is pressed, the x value of the

sprite is going to go up by one. This means it will change from

two to three. Try it in your simulator. What do you notice? It’s

going in the wrong direction! We want the light to move towards

A when A is pressed. Change the 1 to -1 and try the simulator

again. That’s better! The only problem is, the game will be over

Page | 79

quite quickly like this because it will only take two clicks of the

button for A to win. They could win before B is even ready! So,

we are going to change the number to -0.1. Like this.

This means that you actually have to press the A button 10 times

to get the light to move one ‘jump’ towards the A. Give this a go!

Now, let’s do a similar thing for the B button. You can either

duplicate this whole block (right click on the ‘on button A

pressed’ command and click duplicate) or you can go back to the

input menu and get an ‘on button B pressed’ command then go

to the gaming menu and get another ‘sprite change x by 1’

command. This time, we want the number to be 0.1 because we

want the light to move towards the B button when B is pressed.

It should look like this.

Give it a go in the simulator. Remember that nothing will seem to

happen until you’ve pressed one of the buttons 10 times but the

system is counting the clicks!

Page | 80

Finally, we need to tell the system what to do when A wins and

what to do when B wins. Find your forever block and then go to

the logic menu and get an ‘if true then ______ else if true

then________’ command and put it inside your forever block.

Click the bottom plus and then click the bottom minus until you

get something that looks like this.

Go back to the logic menu and drag a ‘0 = 0’ command to replace

the first ‘true’ like this.

Page | 81

Now we need to replace the first 0 with a ‘sprite x’ command

from the game menu. Like this.

This tells the system that if the sprite is in the position circled

below, it needs to do something.

If the light reaches this position, it means that A has won

because the light has moved towards the A button. When A wins,

we want the system to play a tune and then tell us that A has

won. Let’s programme that now. Go to the music menu and drag

Page | 82

a ‘start melody ‘dadadum repeating once’ command to

underneath the ‘if sprite x = 0’ command. Like this.

Use the arrow next to dadadum to change the tune to whatever

you like best.

Page | 83

We also want the screen to tell us that A has won. Grab a ‘show

string hello’ command and put it underneath your ‘start

melody…’ command. Change the word ‘hello’ to ‘A wins’. Like

this.

Test your code with the simulator. Press the A button lots of

times and see what happens! The system will keep repeating the

tune and ‘A wins’ because we haven’t yet told it to reset the

game. Don’t worry about that for now.

Now we need to do the same for if B wins. Just like before, go to

the logic menu and drag an ‘if 0=0’ command to replace ‘true’

then replace the first 0 with ‘sprite x’ from the game menu. Like

this.

Page | 84

We need to change that second 0 to a 4 because B wins when

the light gets to this position.

Next, we need to choose a different tune to play when B wins.

Grab a ‘start melody dadadum’ command from the music menu

and put it in place like this. I’ve changed my melody to be ‘power

up’ but you can choose whatever you like.

Page | 85

Next, we need the screen to tell us that B has won. Get a ‘show

string hello’ command from the basic menu and drag it into place

like this. Change the words to B WINS.

Page | 86

Finally, we just need to make sure that, no matter who wins, the

system puts the light back in the middle ready for another game

and doesn’t keep playing the tune and saying that A or B has

won! Underneath ‘show string A wins’, put a ‘sprite set x to 0’

command from the game menu and change the 0 to a 2. Like

this.

Page | 87

Do exactly the same underneath ‘show string B wins’. The final

code should look like this.

Download your code onto your Microbit, make sure your speaker

is connected, and challenge someone to a battle!

Activity 16 – Making a circuit with a breadboard

For this activity you will need:

Alligator test leads x 4

Breadboard jump wires x 4 (these are the thin, coloured wires)

RGB LED (Looks like a little light. Also known as a Red, Green,

Blue, Light Emitting Diode – this is a type of component that can

light up in three different colours or a mixture of those colours)

100 ohm resistor x 3 (this is another type of component. They

look like little brown cylinders with a wire coming out of each

end)

Page | 88

Breadboard. Your breadboard may look a bit like this.

…but it may be a different colour and it may be a bit bigger.

Breadboards are used for making complicated circuits. We could

use alligator leads or wires instead but the whole thing would get

very messy and complicated! Electricians and scientists use

breadboards to test things really easily.

On top of your breadboard are 170 holes called pins. You can

push electrical wires and components (like a resistor or an LED)

into these holes and they will stay there.

Underneath your breadboard, some of the holes are connected

in rows. Like this.

This means that we can put wires into one hole and the

breadboard will connect them to other wires in the same row.

Can you see the green squares in the picture below? These are

Page | 89

all connected because they are in the same row. Don’t worry if

this all feels a bit confusing! Hopefully it will get easier when we

start adding our components.

Components just means ‘things that are going in our circuit’.

Let’s try putting some components into our breadboard. Copy

the pictures and instructions below and see if you can copy my

circuit.

Take your LED. Can you see that it has 4 ‘legs’ and one is longer

than the others? Put it into your breadboard like in the picture

below. The short legs should go where the green squares are and

the long leg where the red square is.

Page | 90

Page | 91

Next, we need to put in the resistors. Resistors reduce the

amount of power going to the LED. LEDs don’t need much power

to work so we use a resistor to ‘slow down’ the power going to

them from the Microbit. Take your three resistors and put them

across the gap in the middle of the breadboard like in the

picture. They should be in the same rows as the short legs of the

LED. Copy the diagram below. The resistors in the picture below

are blue so you can see them easily but yours are brown and

stripey.

Next you need to get your four jumper wires. You need to put

one end of each wire into the squares marked in pink on the

Page | 92

diagram below. We’ve squashed the LED in the diagram below so

that you can see where to put the wires!

Now we just have to connect all of that up to the Microbit. You

may have noticed that three of the wires (on the left hand side in

the diagram) are in the same rows as the ones with resistors in

and also the rows with the short legs of the LED in. The other

wire (on the right hand side) is in the same row as the long leg of

the LED.

Take three of your alligator test leads and attach them to the

three wires on the left hand side. One test lead per wire. Like

this.

Page | 93

Take your other alligator test lead and attach it to the wire on

the right hand side.

Page | 94

Now we are ready to attach the Microbit. In the diagram below

I’ve given each clip a colour.

Your clips may be different colours.

You need to attach the other end of the clip coloured green in

the diagram to the hole with a 0 by it on your Microbit.

You need to attach the other end of the clip coloured red in the

diagram to the hole with a 1 by it.

You need to attach the other end of the clip coloured blue in the

diagram to the hole with a 2 by it.

You need to attach the other end of the clip coloured black in the

diagram to the hole with GND by it.

Page | 95

The whole thing should look like this.

It looks a bit confusing doesn’t it! Go back through the

instructions and just double check that everything is in the right

place. Remember, if you aren’t sure, you can always watch our

videos at:

www.fun-science.org.uk/bigboxofcodingvideos

Page | 96

Activity 17 – Making the primary colours of light

Now you've connected up a circuit with your LED light we need
to find out whether it's working so we're going to be coding
something to show us a different colour light, depending on
which button we press. Start a new project by going to
makecode.microbit.org and call it ‘making a primary colour’.

Your LED actually has three lights inside it – red, green and blue.
These are the primary colours of light. Normally when we talk
about colours, we think of the primary colours as being red,
yellow and blue. These are the primary colours of paint or ink but
when we're talking about light, the primary colours are red,
green and blue. Your circuit has been made so that the green
light is connected to pin 0, the red light is connected to pin 1 and
the blue light is connected to pin 2.

First, get rid of the ‘on-start’ and ‘forever’ commands and then
drag an ‘on button A pressed’ command onto your screen from
the purple input menu. Like this.

Next, we're going to be using a new menu, which is the pins
menu. You can find it by clicking the black ‘advanced’ button
which is in the middle of the screen near the bottom. This then
shows you lots of new menus. Scroll down and click on ‘pins’.

Page | 97

In this menu you will see lots of things that might look like very
strange words! We've got ‘digital write pin’, ‘analog read pin’,
‘analog write pin’ etc. One difference between the words digital
and analog is that if something is digital, it's either on or off,
there's no in-between. Something analog can be on, off or
somewhere between like half on! For now, we are going to be
using the ‘digital write pin’ so that we can turn our different
colours of light on and off. Later, in another activity, we are going
to use the analog commands.

Click and drag the ‘digital write pin p0 to 0’ command and place
it inside the ‘on button A pressed’ command. Like this.

Page | 98

This tells the system that pin P0 (where our green light is
connected) is 0 which means off. Change this number to 1. In
digital systems, 0 means off and 1 means on.

This command basically tells the system whether to send power
to that pin or not. We’ve now told the system ‘when we press
button A, send power to the green light’ which will turn the
green light on. We are now going to do the same for pins P1 and
P2. You can save time by right clicking on ‘digital write pin P0 to
1’ and clicking ‘duplicate’ or you can just get another

 command from the pins menu.
Put this underneath the first digital write pin P0 to 1 command
and change P0 to P1 using the arrow by the P0 so you end up
with something like this.

Page | 99

We’ve now told the system that, when button A is pressed, it
should not send any power to pin P1 which is where the red light
is connected. So there will be no red light. Do exactly the same
thing again (either by right clicking and duplicating or by getting
another command from the pins menu) and change P1 to P2 so
you get something like this.

So, now, we have told the system that when button A is pressed,
it should send power to the green light and not send any power
to the red light or the blue light. This should mean that the light
shows up as green.

Page | 100

Now, let’s programme in the other lights. Right click on the ‘on
button A pressed’ command and click duplicate. This will copy
the whole command including the ‘digital write pin’ commands.
The command will appear grey because you can’t have two ‘on
button A pressed’ commands on the screen. Change ‘on button A
pressed’ to ‘on button B pressed’ so it looks like this.

At the moment, this command is exactly the same as the ‘on
button A pressed command’ so we would get another green light
if we press the B button. That’s not very interesting so we need
to tell the system to stop sending power to the green light (P0)
and send power to the red light (P1) instead. Change the number
in ‘digital write pin P0’ to 0 and change the number in ‘digital
write pin P1’ to 1. Like this.

Page | 101

Finally, let’s set button A+B to turn on the blue light. Right click
on the ‘on button B’ pressed command and duplicate it. Again, it
will be grey until you change the A to ‘A+B’ like this.

Finally, we just need to tell the system that, when A+B are
pressed, we want it to stop sending power to the red light (P1)
and send it to the blue light (P2). Change the number in ‘digital
write pin P1’ to 0 and change the number in ‘digital write pin P2’
to 1. Like this.

Page | 102

Download your project and copy it over to your Microbit. Make
sure your circuit is all connected up and then try pressing A, B
and A+B to see if you see all three colours. If it doesn't work, you
can watch the troubleshooting video, which will show you all
sorts of things that may have gone wrong with your circuit to try
and help you to fix it.

Activity 18 – Making the secondary colours of light

Now you know that your light circuit works we are going to make
some secondary colours. These are made by mixing colours of
light. Remember, the primary colours of light are red, green and
blue. From these colours we can get any colour of light that we
like!

Go to makecode.microbit.org and load up your ‘primary colours’
project from the last activity. It should look like this.

Page | 103

In all of these commands, we are telling the system to send

power to only one of the three lights. To make secondary colours

we just need to send power to two of these lights at a time.

Change your numbers so that in the ‘on button A pressed’

command you set pin P0 and pin P1 to 1. Like this.

Page | 104

Change your numbers so that in the ‘on button B pressed’

command you set pin P1 and P2 to 1. Like this.

Finally, change your numbers so that in the ‘on button A+B

pressed’ command you set pin P0 and pin P1 to 1. Like this.

That’s it! You’ve now created the three secondary colours of light

(cyan, magenta and yellow). Download your programme onto

your Microbit and give it a go. If you hold your hand or a piece of

paper close to your LED you can see the two colours that are

switched on. If you move your hand further away or just look at

the LED from a distance you will see the colour that those two

lights make when they are mixed together. Some of them may

surprise you!

Page | 105

Activity 19 - Making more colours

Now we have explored the primary and secondary colours of
light, we are going to try and create some different colours. By
adjusting the amount of red, green and blue light, we can create
any colour in the world. Web developers use this idea to create
colours on websites and they call it a RGB value (red, green,
blue).

Go to makecode.microbit.org and load up your ‘secondary
colours’ project from the last activity. It should look like this.

We learned earlier that something digital is either off (0) or on

(1). In this activity we want to be able to switch the lights

Page | 106

partially on so we will need to use analog commands instead.

Delete all the ‘digital write pin…’ commands and replace them

with ‘analogue write pin…’ commands. You will find the

‘analogue write pin…’ command in the pins menu (remember it’s

hidden under advanced) and they will all automatically be set to

1023 to begin with which means fully switched on. Your screen

should look like this when you are done.

At the moment, all the commands are the same and all the lights

are set to fully on. If you have the red, green and blue lights all

fully on they will all mix together to make white light.

If you click in one of the places where it says ‘1023’ you will see a

slider appear. If you slide this fully down to the left, the light will

be fully off. If you put it in the middle, the light will be half on.

Move your sliders around to mix up the numbers a bit. Below is

what mine looks like but you don’t need to copy my code, you

can come up with your own numbers!

Page | 107

You’ll see that when button A is pressed the system is going to

turn green (P0) on about half way, red (P1) fully on and blue (P2)

on about half way. I wonder what colour that will make!

Download your code onto your Microbit and see which three

colours you have created!

Page | 108

Activity 20 - Making a random light generator.

This project is going to let the system decide how much power to

send to each of the three pins so that you can press a button and

get a random colour of light.

Start by going to makecode.microbit.org and starting a new

project. Call this project something like ‘random light generator’.

You won’t need the ‘on start’ command so you can get rid of this

one but keep the ‘forever’ command.

For this project, we are going to start by making three variables

and calling them green, red and blue.

Start by clicking the ‘variables’ menu and clicking ‘create a

variable’. Call this variable ‘green’. Do this twice more until

you’ve created green, blue and red. Like this.

Page | 109

Now we need to ‘define’ the variables which means telling the

system what they mean.

Remember, green is the light attached to P0, red is the light

attached to P1 and blue is the light attached to P2. We know that

but the system doesn’t know that yet. Go over to the pins menu

(hidden under the advanced button) and drag an ‘analog write

pin P0 to 1023’ command to the gap in the ‘forever’ command.

Like this.

Remember, we aren’t actually going to be deciding on how

bright our green light is, the system is going to be deciding for us.

So we aren’t going to put a number in where that 1023 is.

Instead, we are going to replace that 1023 with the ‘green’

command from under the variables menu. So it looks like this.

This is us defining the variable. We are telling the system that pin

P0 is connected to the green light. If your pin P0 is connected to

Page | 110

a different colour (e.g. red) set this as ‘analog write pin P0 to

red’.

Next, drag another ‘analog write pin P0 to 1023’ command to

underneath the ‘analog write pin P0 to green’ command. Change

P0 to P1 and drag the red command from the ‘variables’ menu to

replace the 1023 number. So it looks like this.

Next, do exactly the same thing for blue. Either copy one of your

‘analog write pin…’ commands by right clicking it and clicking

‘duplicate’ or get another one from the pins menu. Change the

P1 to P2 and get the ‘blue’ command from the variables menu

and put it in place so that it looks like this.

Page | 111

That’s it! We’ve defined our variables. Next, we need to create

the piece of code that will make a random light.

Get yourself an ‘on button A pressed’ command from the inputs

menu and drag it to somewhere on your screen. Next, go to the

variables menu and drag a ‘set green to 0’ command into the ‘on

button A pressed’ command. If you can only see a ‘set blue to 0’

or ‘set red to 0’ command then drag this one onto the screen and

then use the arrow next to the colour to change the colour to

green. It should look like this.

If we left it like this, when we press button A, the system will set

the green light to 0 which means it would be switched off

completely. We want the system to set this to a number

between 0 and 1023 but we want it to decide which number on

it’s own. Go to the math menu and scroll down until you find this

command.

Click and drag this command to replace the 0 in ‘set green to 0’

like this.

Page | 112

We then need to change that 10 to 1023 because we know this is

the maximum amount of power that we can send to the green

light. So now, when we press the A button, the system will send

a random amount of power to the green light. It may choose to

completely switch it off, completely switch it on or somewhere

inbetween.

Repeat the last two steps for red and blue until you end up with

something that looks like this.

That’s it! You’ve created a random light generator.

When you press the A button, the system will send a random

amount of electricity to each colour of light and they will mix

together to create a random colour. If you press A again, it will

Page | 113

send a different amount of electricity to each pin and create a

different colour. You can keep pressing A and getting different

colours.

Download your code onto your Microbit and enjoy creating

random colours by pressing the A button!

Activity 21 – Generating colour codes

This next bit of code is going to make the screen of the Microbit

tell you exactly what amounts of power it chose for each of the

three colours. So, for example, if your Microbit had chosen to

give 1023 units of power to green (fully switched on), 0 units of

power to red (fully switched off) and 300 units of power to blue

(roughly 1/3 switched on) you would see 1023 then 0 then 300

scroll across the screen. We can call this the ‘colour code’.

Open up your random light generator code from the last activity

so that we can add in the colour code generator.

To add this code, go to the basic menu and drag a ‘show number

0’ command to underneath your ‘set blue to pick random 0 to

1023’ command. Like this.

Page | 114

Go into the variables menu and drag a ‘green’ command to

replace the 0. Like this.

Page | 115

Next, we are going to go back to the basic menu and drag a

‘pause’ command to underneath the ‘show number green’

command. Change the amount of seconds to 500ms (half a

second). This will tell the system to pause for half a second

before it shows the next number so that they don’t all get

muddled up together.

Next, copy the ‘show number green’ command and change the

green to red using the arrow next to green. Put another ‘pause’

command underneath this.

Page | 116

Lastly, copy the ‘show number red’ command and change the

red to blue. Put another pause underneath this. The whole

finished code should look like this.

Page | 117

Download the code onto your Microbit. Press the A button and

see what colour you get. Read the screen to find the ‘colour

code’ of that colour.

Page | 118

Activity 22 – Making a flashing light

This project is going to make our LED light flash from one colour

to another. We are going to be using the ‘functions’ menu which

we haven’t used before.

Start by going to makecode.microbit.org and starting a new

project. Call this project something like ‘flashing light’. You won’t

need the ‘on start’ command so you can get rid of this one but

keep the ‘forever’ command which we will use later.

We are going to start by making a ‘function’. A function is a

group of commands. Click ‘advanced’ then click ‘functions’ then

‘make a function’. This screen will appear.

Click where it says ‘doSomething’ and rename this function

‘colour1’. Then click the green done button. This command will

appear on your screen…

Page | 119

Inside this blue functions command we are going to be telling the

system to send power to each of the three coloured lights.

Go to the ‘pins’ menu and drag an ‘analogue write pin P0 to

1023’ command into the ‘function colour1’ command block. Like

this.

Next, grab two more ‘analog write pin…’ commands and put

them underneath the first one. Change one to P1 and one to P2.

Like this.

Page | 120

At the moment, our function is sending full power to all three

pins which would make white. You may want to leave this

function as white or you may want to change it. I’ve changed

mine to be full power to green and red and no power to blue.

This will make the light appear yellow.

Let’s make some more functions. You will have seen now that

functions are just colours of light. The more functions we make,

Page | 121

the more different colours will be in our flashing light! If you

want your light to just flash between two colours (e.g. blue and

red like a police car) you just need to make two colours.

Make another function by going back to the functions menu and

clicking ‘make a function’. Call the next one ‘colour2’. Inside the

‘function colour2’ command block that appears, copy three more

‘analog write pin…’ commands – one for each pin. Like this.

You will notice, I’ve chosen to turn green and blue fully on and

turn red fully off. This will make a cyan colour. You can choose

whichever values you want, just make sure they are different

enough from the values in ‘function colour1’ or else you won’t

notice your light changing colour if the two colours are too

similar!

I’ve decided to make a light with three different colours so I’m

going to make one more function and call it colour3. You may

want to make lots more functions!

Here are all my functions together.

Page | 122

So, now that I have made all my functions, it’s time to tell the

system to flash between them. Now it’s time to use the ‘forever’

command. You may need to zoom out if it’s disappeared!

Go to your ‘functions’ menu and drag a ‘call colour1’ command

into the ‘forever’ block. Like this.

Page | 123

This tells the system to change the light to the colour that we

programmed inside ‘colour1’. For my project, this is yellow.

Next, go back to the ‘functions’ menu and drag a ‘call colour2’

command under ‘call colour1’.

Keep going back to the ‘functions’ menu and getting the ‘call

colour…’ commands until you have called all your functions. For

me this looks like…

So, now we have told the system to flash between the three

different lights. The problem at the moment is that it will flash

through them much too fast and we won’t be able to see the

lights changing colour. We need to finish off by putting ‘pause’

Page | 124

commands between the colours. Go to the ‘basic’ menu and drag

a ‘pause (ms) 200’ command on to your screen. Put it between

‘call colour1’ and ‘call colour2’ and then change the amount of

time by clicking the arrow next to the ‘200’. I’ve set mine at

500ms (half a second) which means the yellow light will stay on

for half a second before changing to cyan.

Put a pause command after all your ‘call colour…’ commands.

Like this.

Page | 125

You are done! Download your code onto your Microbit and make

sure your LED is connected properly. Your light should start

flashing!

We hope you have enjoyed all these activities and have learned a

lot along the way. Maybe you could even have a go at making

your own Microbit projects or teaching a friend how to code.

For more Fun Science products including the additional

components mentioned in this book, visit

www.fun-science.org.uk/shop

Page | 126

