

Catalog

Preface ..1

Unit 1 Getting started ..6

Lesson 1 Introduction to Hardware ...8

Lesson 2 Introduction to Software ... 13

Unit 2 Hardware and Programming ..22

Lesson 3 First Project: Light up LED ... 24

Lesson 4 Hello World in Electronic Hardware Programming: Blink . 32

Lesson 5 Digital Signal in Circuit — Playing with LED 40

Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor 48

Lesson 7 Analog Signal in Circuit (2) — the Use of PWM................. 56

Lesson 8 Make Buzzer Sing — the Use of Function 64

Lesson 9 Journey of Data Visualization — the Use of LCD 74

Unit 3 Project Practice ...84

Lesson 10 Temperature and Humidity Monitoring 86

Lesson 11 Intelligent Fan.. 94

Lesson 12 Intelligent Light ... 102
Lesson 13 Automatic Door .. 114

Lesson 14 Welcome Device ... 122

Unit 4 Expansion Projects .. 130

Lesson 15 Create Your Own Projects .. 132

Lesson 16 Project Presentation .. 138

1

Preface

Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040

microcontroller chip. It is designed as a low-cost, high-performance microcontroller board with

flexible digital interfaces. In the field of MCUs, Raspberry Pi Pico has become one of the most

popular topics recently. To help beginners get started with Raspberry Pi Pico quickly, we are

releasing the Starter Guide of Raspberry Pi Pico Based on MicroPython. Through four chapters

and a total of 16 lessons of study, this course can help you get started with Raspberry Pi Pico

easily. With its help, you can learn MicroPython from scratch, and build some interesting projects.

You don't need to have knowledge of MicroPython programming or electronics to begin. The

course will take you through learning this knowledge step by step, and quickly put it into practice

in each project.

2 Beginner's Guide for Raspberry Pi Pico

The first unit is an introduction to basics, which presents the hardware and software required

for the course. In the hardware portion, we need to understand the functions and features of

Raspberry Pi Pico, and the basic functions of Grove Shield for Pi Pico and Grove modules. In

software, we need to understand the concepts of Python and MicroPython, learn the installation

and use of the Thonny integrated development environment or IDE, and write our first program to

output characters through serial port: Hello World.

The second unit continues with more basic electronic hardware knowledge. We will learn

the basic syntax of MicroPython, various conditional statements, operators, variables and other

programming knowledge, and how to set the pins of electronic hardware through the standard

library. We will understand digital and analog signals in the circuit and be able to control the

electronic module to achieve different effects. At the same time, we will learn to use third-party

libraries and form a basic hardware programming knowledge framework through project practice.

The third unit begins project practice. We will integrate applications with real world scenarios

and realize various prototypes through different electronic module combinations and programming,

such as temperature and humidity monitoring, intelligent fan, intelligent light, etc. In this way, we

can skillfully apply what we have learned to life, and in so doing practice and develop project

thinking.The fourth unit outlines the steps to develop your own self-research project. We will use

the knowledge and skills learned before to complete the project production and show the results

at a project conference.

The specific framework is as follows:

3

4 Beginner's Guide for Raspberry Pi Pico

5

The course uses Pico's Grove Starter Kit, including Grove Shield for Pi Pico and common

Grove modules, which can enable quick project protyping without jumper wires and welding, and

consolidate the learned knowledge in practice. Because the Grove Starter Kit does not include

the Raspberry Pi Pico itself, we will need to prepare the following two kits before the start of the

course.

Raspberry Pi Pico Basic Kit:

• Raspberry Pi Pico * 1

• USB cable * 1

• 20 Pin Header * 2

• 3 Pin Header * 1

Are you ready? Our journey with Raspberry Pi Pico and MicroPython is about to begin.

Grove Starter Kit of Raspberry Pi Pico:

• Grove - Light Sensor

• Grove - Sound Sensor

• Grove - Mini PIR Motion Sensor

• Grove - Temperature & Humidity Sensor

• Grove - Rotary Angle Sensor

• Grove - Button

• Grove - LED Pack

• Grove - RGB LED (WS2813 Mini)

• Grove - Passive Buzzer

• Grove - Relay

• Grove - 16x2 LCD

• Grove - Servo

• Grove - Mini Fan

Purchase link: Grove Starter Kit of Raspberry Pi Pico

Visit the following URL to get the codes ＆ Libraries:

Codes: https://files.seeedstudio.com/wiki/Grove_Shield_for_Pi_Pico_V1.0/Codes.rar

Libraries: https://files.seeedstudio.com/wiki/Grove_Shield_for_Pi_Pico_V1.0/Libraries.rar

https://files.seeedstudio.com/wiki/Grove_Shield_for_Pi_Pico_V1.0/Codes.rar
https://files.seeedstudio.com/wiki/Grove_Shield_for_Pi_Pico_V1.0/Libraries.rar

6 Beginner's Guide for Raspberry Pi Pico

Unit 1
Getting started

7

8 Beginner's Guide for Raspberry Pi Pico

Lesson 1 Introduction to Hardware

Hello! Welcome to the starter guide of Raspberry Pi Pico based on MicroPython. This guide

is a course based on the Starter Kit developed by Raspberry Pi Pico. In this course, we will use

Raspberry Pi Pico as the controller, along with the Grove Starter Kit of Raspberry Pi Pico, to learn

how to program Pico with MicroPython. In the first lesson of this series, I will give you a detailed

introduction to the main characters of this series: Raspberry Pi Pico and Pico's Grove Starter Kit.

Introduction of Pico

No one expected that Raspberry Pi, the most popular single-board computer maker in

the world, would suddenly release a microcontroller of its own. What's more surprising is that

Raspberry Pi Pico does not base its design on the common ESP32 or SAMD21, but instead a

brand new microcontroller chip: the RP2040 microcontroller. The RP2040 microcontroller is a

microcontroller chip independently designed by Raspberry Pi, and is powered by a dual-core ARM

Cortex-M0+ processor that runs up to 133Mhz.

GPIO Pins

In addition to the powerful new chip, the board of Raspberry Pi Pico exposes 26 multi-

function GPIO pins, including 2 * SPI, 2 * I2C, 2 * UART, 3 * 12-bit ADC, and 16 controllable

PWM channels. I will explain the functions of these pins in later chapters.

In addition to these GPIO pins, Pico also has eight ground pins and a series of power pins.

In this course, however, we will not utilize them as we will not be performing tedious wiring with

breadboards or DuPont wires when building projects. The expansion board — Grove Shield for Pi

Pico — will helps you do this instead.

Raspberry Pi Pico

Knowledge Base

9Lesson 1 Introduction to Hardware

Grove Shield for Pi Pico is a plug-and-play expansion board for Raspberry Pi Pico. It

integrates various kinds of Grove connectors on one compact expansion board, including 2 * I2C,

3 * ADC, 2 * UART, 3 * Digital ports, SWD debug interface and an SPI pin. When using Pico and

Grove modules to build a prototype or project, you no longer need to do complicated wiring work.

You simply need to plug the Pico pins into the interface of the Shield, and directly connect various

Grove electronic modules to Pico using Grove wires.

There is also a 3.3V/5V power switch on the Shield, which can switch the voltage between

3.3V/5V to meet the needs of a greater variety of projects.

Grove Shield for Pi Pico

10 Beginner's Guide for Raspberry Pi Pico

The Grove Starter Kit of Raspberry Pi Pico is a learning kit that can help you quickly start

building projects with Raspberry Pi Pico. The kit contains 14 handpicked modules, including 5

sensors/ 5 actuators/ 2LED/ 1 LCD display/ 1 Grove Shield for Pi Pico. Let's take a look at these

Grove modules one by one.

Grove modules in Starter Kit

Grove - Light Sensor

Grove - Light Sensor is an analog module, which can output

the amount of light detected as various electrical signals to an

attached microcontroller board. It is an ideal LDR sensor module

for light measurement, light detection and light-controlled switch.

Grove - Temperature & Humidity Sensor

Grove - Temperature & Humidity Sensor is mainly used to

detect the temperature and humidity values in the environment.

Grove - Rotary Angle Sensor

Grove - Rotary Angle Sensor can change the resistance

value to achieve different output levels by rotating the

300-degree adjusting knob on the potentiometer. It has a

maximum resistance value of 10KΩ.

Grove - Sound Sensor

Grove - Sound Sensor can detect the sound intensity in

the environment. The main component of the module is a simple

microphone, which consists of a L358 amplifier and an electret

microphone.

Grove - Mini PIR Motion Sensor

Grove - Mini PIR Motion Sensor uses passive infrared

radiation to detect motion, and is often used in projects such as

alarm systems, visitor systems, light switches, etc.

11Lesson 1 Introduction to Hardware

Grove - Button

Grove - Button is an independent “momentary on/off"

button. “Momentary" means that the button rebounds on its

own after it is released. The button outputs a high signal when

pressed, and a low when released.

Grove - LED Pack

Grove - LED Pack includes LEDs in four different colours:

red, green, blue and white. You can change the light color at

any time by swapping out the LED with other LEDs in the LED

Pack. There is also a knob on the module to control the LED

brightness.

Grove - RGB LED (WS2813 mini)

Grove - RGB LED (WS2813 Mini) can be set to full-color

display and can be connected to other RGB LED rings or RGB

LED bars in series.

Grove - Passive Buzzer

Grove - Passive Buzzer is a low-cost tunable passive

buzzer.

Grove - Relay

Grove - Relay is used to supply greater power to modules

that require it, such as an external motor. It can handle currents

of up to 5A at 250VAC for long periods of time. When the relay

is switched on, the LED on the module will light up.

Grove - 16x2 LCD

Grove - 16x2 LCD is a blue backlight 16x2 LCD display. It

has excellent high contrast and is easy to use.

12 Beginner's Guide for Raspberry Pi Pico

Grove - Servo

Grove - Servo is a rotary actuator that allows for precise

control of angular position, which makes them suitable for

projects where precise position control is needed.

Grove - Mini Fan

Grove - Mini Fan is equipped with a DC motor, a motor

drive board and a soft fan-blade. The soft fan-blade is safe for

use, and the easy-to-use Grove connector can let you build your

own project prototype quickly.

That's the basic information about the electronic modules included in the Raspberry Pi Pico

and the Grove Starter Kits of Raspberry Pi Pico. More interesting information about them will be

presented as we go along in the later courses.

Try remembering the function of each Grove module. You can ask questions with your

partners.

Thinking Expanding

13Lesson 2 Introduction to Software

·Note·

Lesson 2 Introduction to Software

To build interesting projects with Raspberry Pi Pico, you need to learn how to program it first.

Raspberry Pi Pico supports two types of programming languages: C++ and MicroPython.

C++ is a general-purpose language developed on the basis of the C language. It is often used

in the development of ESP32 and Arduino, so most microcontroller users are familiar with this

language. However, to make things simple in this course, we will use another language to program

Pico: MicroPython.

Python is an interpreted general-purpose language. Since the first version of Python was

designed and released by Guido van Rossum of the National Research Institute for Mathematics

and Computer Science in 1991, Python has rapidly become one of the most popular languages in

the world with its concise syntax, excellent code readability and hot community resources.

MicroPython

Knowledge Base

What is an interpreted language?

The computer cannot directly understand the high-level language we use when

programming. When the computer executes the program, it needs to translate the code

written in a high-level language into a machine language that it can understand in some

way and then execute it. There are two ways to translate high-level language into machine

language: using a compiler or using an interpreter to translate a high-level language.

Therefore, we refer to programming languages that use a compiler for translation as a

compiled language, while a language that uses an interpreter for translation is known as an

interpreted language.

14 Beginner's Guide for Raspberry Pi Pico

Thonny is a Python/ MicroPython IDE (integrated development environment) for programming

beginners, developed by the University of Tartu in Estonia. The platform integrates many tools that

users need to use when developing. Its interface is simple and easy to understand, which is very

suitable for beginners.

In this course, all of

our development work

will be done in Thonny.

MicroPython has made strides in keeping compatibility with ordinary Python as much as

possible. If you are a beginner, you will learn a lot about Python while learning MicroPython. On

the other hand, if you already have some understanding of Python, you will be able to quickly get

started with MicroPython while deepening your knowledge.

However, the powerful Python is not omnipotent. Although Python performs well on desktop

computers, large terminals and servers, it cannot be deployed on microcontrollers with limited

resources and small memory. As a result, MicroPython, a Python-based interpreted language

specially designed for microcontrollers, was born. MicroPython optimizes Python cleverly, and the

optimized MicroPython can run perfectly in all kinds of resource-constrained microcontrollers.

MicroPython also inherits various advantages of Python, such as its ease of use.

Thonny

15Lesson 2 Introduction to Software

Practice & Operation

In this lesson, we will write and run our first program on Pico: Hello World! But before we

start, we will need to do some preparatory work.

The installation of Thonny is very simple. Since Python 3.7 is built into Thonny, all you need

is a simple installer and you're ready to start learning to program. First, click Thonny.org to enter

the download page, and select the installation package of Thonny to download in the upper

right corner of the page according to your operating system. After downloading the installation

package, double-click to open it and follow the on-screen instructions to install it.

After the installation, open Thonny. You should be directly greeted by the main interface.

1. Install Thonny

https://thonny.org/

16 Beginner's Guide for Raspberry Pi Pico

The main interface of Thonny is simple, and can be divided into the following four parts:

1. Toolbar: the toolbar offers icon-based quick-access to commonly used program functions,

 such as new, open, save, run the current script, stop, etc.

2. Script Area: the script area is the core area of Thonny, where your Python programs are

 written.

3. Python Shell: the Shell allows you to run console commands and also provides information

 about running programs.

4. Interpreter: the interpreter allows you to change the interpreter version used to run your

 programs. Click on “Python 3.7.9", look for “MicroPython (Raspberry Pi Pico)" in the menu,

 click “OK", and switch it to Pico's exclusive interpreter.We can also switch languages in

"Theme ＆ Font".

In addition to installing Thonny on the computer, we also need to install the MicroPython

firmware on the Pico itself.The MicroPython firmware download link is preloaded inside Pico, so

we can directly use this link to enter the download interface.

First, hold down the “BOOTSEL" button on Pico; then, while still holding it down, connect

Pico to a computer using a USB cable.

2. Install MicroPython for Pico

17Lesson 2 Introduction to Software

At this point, a drive called RPI-RP2 should show up as a removable device on your computer.

Navigate to it to find this file: INDEX.HTM.

Open INDEX.HTM to be taken to the download page. Drop down and click on the MicroPython

tab where you can find information about Pico and MicroPython. Click on the “Download UF2.file"

button in this tab to download the MicroPython firmware.

18 Beginner's Guide for Raspberry Pi Pico

Just as a young child learns to crawl before they walk, programmers learn how to output “Hello,

world" as the first step in learning a new language. Now, let's take a look at how to write your first

program.

First, connect Pico to the computer using a USB cable; then, open Thonny, and click on

the “restart back-end process" button on the toolbar. If you successfully connect Pico to your

computer, you will see the MicroPython version information and device name returned by Pico in

the Shell area.

3. Write Your First Program: Hello World!

Finally, drag the downloaded MicroPython firmware into the RPI-RP2 directory to complete

the firmware installation.

19Lesson 2 Introduction to Software

After connected, click on the Shell area and type the instruction:

print() is a common function used as a printout. When you need to output some data to the

Shell, you can use this function.

When you press ENTER after you type the instruction, you’ll see the execution result of the

input instruction is displayed in the Python Shell area, which means, the message “Hello, World!" is

printed out in the Python Shell area.

Now let's try to type the same instruction in the script area. When you press ENTER this time,

nothing happens — except that a new, blank line is created in the script.

20 Beginner's Guide for Raspberry Pi Pico

·Note·

Where should I save the program?

To be honest, there's no definitive answer. Where you save your program depends on

your needs. If you want to show your program to your friends, you should save it to your Pico

and take it with you. If you simply want to save the program for later use, just save it to your

computer.

The next time you want to open your saved program, click the “open" button on the toolbar

to find the corresponding program.

To make your program in the script work, you'll have to click the “Run current script" button

in the toolbar.

If you are running a new program that has never been saved, then when you click the “Run

current script" button, Thonny automatically shows you a menu with two options — save the

program to “This computer" or “Raspberry Pi Pico". You can choose where to store the program

according to your own needs. Once your program is saved, you'll see the execution result of the

program in the Shell area.

21Lesson 2 Introduction to Software

Try using the print() function to print other information, such as your name, age, etc.

Thinking Expanding

22 Beginner's Guide for Raspberry Pi Pico

Unit 2
Hardware and Programming

23Lesson 2 Introduction to Software

24 Beginner's Guide for Raspberry Pi Pico

Lesson 3 First Project: Light up LED

In the previous lesson, you've learned a little about how to work with Pico and write your very

first program.

However, we so far run the program on Pico without using any other external electronic

hardware. In this lesson, we will try to attach other electronic hardware to Pico. More specifically,

we will use an LED, and write a program to light up that LED. But before you start programming,

let’s first learn a little more about the program structure.

The programs that we write with MicroPython are generally composed of three basic program

structures. Complex programs are built with a combination of these basic structures, so it is

important to learn them first. They are: sequence structure, loop structure and selection structure.

Sequence structure is the most basic program structure. In sequence structure, programs run

line-by-line, top-to-bottom, in turn. For example, when the following program runs, it prints “Hello"

first, and then “World".

Execution result:

If you look closely you can find that, unlike other languages where a specific terminator

is required to end each line of the statement, you simply need to press ENTER to end a line in

MicroPython.

Basic Program Structure

Sequence Structure

Knowledge Base

25Lesson 3 First Project: Light up LED

Practice & Operation

Now, let's go back to the project and practice what we've just learned. To get started with

this lesson, we will use the Grove Shield for Pi Pico to connect Pico to other Grove electronics for

more interesting projects. Upon observation, you might notice that Pico does not come with the

metal pins to connect the Grove Shield for Pi Pico. To do so, you need to solder the headers for

Pico.

First, get everything you need to solder the headers: a soldering iron, some solder, a cleaning

sponge, a stand, two 20-pin headers, a breadboard, and of course, your Pico.

For easy soldering, we can use a breadboard to fix the two 20-pin headers first. With the

black plastic block on the headers as the boundary, slowly insert the long end of the headers into

the breadboard. When inserting, make sure that the two headers are aligned up and down, and

spaced the same width as Pico.

Then, turn your Pico right side up and make sure the reserved pinholes on the PCB board

are aligned with the headers that are fixed on the breadboard. After alignment, slowly insert the

two headers into the reserved hole of Pico, and keep pushing until the black plastic block on the

headers are sandwiched between your Pico and your breadboard. At this time, you'll see a small

length of each pin sticking up out of the reserved pinholes on the PCB board.

Project 1: Soldering the Headers

26 Beginner's Guide for Raspberry Pi Pico

Put your soldering iron in its stand, and turn on the switch to heat it. It will take 3–5 minutes

for the tip of the iron to get hot. Make sure the metal tip isn't resting up against anything when

heating.During heating, dampen your cleaning sponge first and put it in a convenient place for

clean the iron later.

After heating, pick up your soldering iron by the handle, brush the metal tip repeatedly on the

sponge you prepared until the tip looks shiny and clean.

Attention! The metal parts of soldering iron are very, very hot. Under no circumstances should

you ever touch the metal parts of a soldering iron.

After cleaning, use the tip of the soldering iron to heat the pin and the gold-colored pad

beneath it closest to you. Pick up some solder with the other hand, and slowly push it from the

opposite direction of the soldering iron into the joint of the pin and the pad. The heated pin

and pad melt the solder and make it flow around the pad. After completing the soldering in one

direction, continue to push the solder in other directions until the pad is completely covered by the

solder.

27Lesson 3 First Project: Light up LED

Attention! Do not use too much solder when soldering. If the solder overflows to adjacent

pads, a short circuit will occur later when using the Pico.

Well, congratulations on your soldering of the first pin! Now, you just need to solder the

remaining 39 pins in the same way. When soldering, remember to wipe your iron with a clean

sponge from time to time to keep the tip clean and shiny.

After soldering, slowly pull Pico out of the breadboard. If the pins and the breadboard are

plugged too tightly, forcibly pulling Pico out will easily cause the pads to fall off. If this happens,

you can shake Pico from side to side, and try to move Pico out bit by bit.

All right, we're done! Let's get started on our first task!

Now that you have completed the soldering of Pico pins, we can finally connect the Grove

modules using the Grove Shield for Pi Pico. Let's try to light up an LED first.

Hardware Connection

In this project, we’ll use the following electronic hardware:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - LED Pack

With the help of the Grove Shield for Pi Pico, the work of connecting the electronic hardware

becomes very easy. First, we just need to insert the soldered pins of Pico into the Shield:

Project 2: Light up LED Module

28 Beginner's Guide for Raspberry Pi Pico

·Note·

When inserting, you can observe the screen print of pins on the back of Pico and the screen

print on the Shield to check whether your inserting direction is correct.

Then, connect the Grove - LED to the D16 port of the Shield using the Grove cables.

This line of code imports a MicroPython function library named “machine". To understand

exactly what this line of code does, we need to understand the concept of “library".

Write a Program

First, use a USB cable to connect Pico and the computer, then open Thonny and click the “new"

button in the toolbar to create a new program. Click into the script area, and start your program

with the following line:

Function library

Simply put, a library is a collection of programs with related functions written by other

senior developers. Libraries are not standalone programs; they are code that provides

services to other programs. When we do project development, we can directly import the

written functional modules from these libraries to build programs to reduce the development

cost and time cost.

29Lesson 3 First Project: Light up LED

·Note·

With the help of the machine library, you can easily define the pin of the LED in the next line

of the program.

In this line of code, we created an object called “LED" to help us control the LED, and used

the Pin function in the machine library to define the pin number and mode for the LED. The pin

function has two parameters in total. The first parameter 16 represents the pin number you

defined. Because we connected the LED light to D16 when building the project hardware, we set

it to 16 here. The second parameter, machine.Pin.OUT, tells Pico the pin should be used as an

output rather than an input.

In this line of code, we import a MicroPython library named “machine", which contains various

functions related to specific hardware. It can directly access the hardware functions of the system

(such as CPU, timer, bus, etc.) without restriction, so that we can use MicroPython to control

other electronic hardware connected to Pico more efficiently. This includes setting pins for various

electronic hardware connected to Pico.

In the development of hardware projects, it is not sufficient to simply connect the hardware to

the Pico. For example, we have connected LED to D16 of the Shield, but Pico would not be aware

of this unless we specifically informed it – you have to write a program to define the pins that

control the electronic hardware.In the machine library, there is a class of functions called “Pin".

Pin class

We can use the Pin class function to set the pins of electronic hardware. In the pin class,

there are functions for setting pin mode (in, out, etc.), and functions for setting digital logic.

Among them, the common functions are:

• Create Pin

Pin(num,Pin.OUT/IN)

“num" represents pin number; “IN/OUT" represents input and output respectively.

• Write Pin value

p0.value(0)/p0.value(1)

• Get Pin value

p0.value()

• Set a pin with pull-up resistor

p2 = Pin(num, Pin.IN, Pin.PULL_UP)

30 Beginner's Guide for Raspberry Pi Pico

OK, now type the last line:

In this line of code, we use the value function to write the value for the pin we just defined to

turn on the light. When controlling pins of Pin class, we usually use a value of 1 to assign a high

level (on) and a value of 0 to assign a low level (off).

Our first hardware program is finished. The complete program code is as follows:

Click the “run" buttonin the toolbar, save the program to any location, and you can see

the LED plugged into D16 is lit up.

If you want to turn off the LED light, simply change the value from 1 to 0.

After we finish the program, use a USB cable to connect Pico to the computer, as shown in

the following figure. In the following lessons, when we want to run a program, we always need to

connect Pico and the computer with a USB cable.

31Lesson 3 First Project: Light up LED

Try to turn off the LED using the program.

Thinking Expanding

32 Beginner's Guide for Raspberry Pi Pico

Lesson 4 Hello World in Electronic
Hardware Programming: Blink

When we try software programming with a certain language, “Hello World" is often the first

program we write. Blink, which is the task of flashing an LED, is the Hello World in the electronic

hardware world. In this lesson, we will try to write a Blink program. To do this, we will need to use

another of the three basic programming structures – the loop structure!

Unlike the sequence structure, a program with a loop structure repeatedly executes one or

more instructions. According to the number of repeated execution, the loop structure can be

subdivided into definite loop structure and indefinite loop structure. When a program with definite

loop structure is executed, it only repeats a limited number of times; when it meets a certain

condition, the loop will automatically terminate. However, a program with indefinite loop structure

will continue to repeat the loop without stopping. In Python, we often use the for-loop and the

while-loop.

Let's first take a look at a program written with while-loop statement:

The program is first executed in the sequence structure. At the beginning of the program, we

first declare a variable “a" and print a line of characters “loop start" with print().

Loop Structure

while-loop

Knowledge Base

33Lesson 4 Hello World in Electronic Hardware Programming: Blink

Next, we use the while statement to create a definite loop structure. This specifies that when

the variable “a" is less than 5, the program should repeatedly execute the instructions contained

in the while statement. That is, it should print out the value of “a", and add one to “a", until “a" is

greater than or equal to 5.

Looking at the execution results of the sample program, we can find that the program does

not start to execute the last print() statement until it has executed several loops within the while

statement.

But, how does the computer know which statements need to be repeated in the while

loop statement and which statements are outside the while loop statement? MicroPython uses

indentation and colon “:" to distinguish the levels between code blocks, unlike other programming

languages (such as Java and C) which use braces “{}" to separate code blocks. This change

makes code written in MicroPython clear and easy to understand.

The output of the program is as follows:

·Note·

What is a variable?

Variables are values that have no fixed values and can be changed at any time. We use

variables to store data so that they can be called in later portions of our code. In a program,

a variable generally has two aspects: variable name and variable value. The variable name is

the identity of the variable, whereas the variable value is the value stored in the variable. For

example, in the above code, “a” is the variable name whereas 0 is the variable value. When

multiple variables are used in a programme, unique names are used to distinguish them.

Variables in Python do not need to be declared. Each variable must be assigned before

use, and will be created at the same time as when it is first assigned.

34 Beginner's Guide for Raspberry Pi Pico

·Note·

Python is very strict on code indentation. The same level of code block indentation

must be consistent. In general, we can use BACKSPACE or TAB to complete the indentation.

However, whether we manually type multiple spaces or use TAB to indent, we usually define

the length on an indentation as four spaces (by default, one tab is equal to four spaces).

A for-loop is generally used to traverse all elements in a sequence, such as:

Where, range() is a built-in function of MicroPython, which can generate a list of integers.

Generally, we use this function in for-loop. For example, range (10) creates a list of nine integers

from 0 to 9.

In this program, we will use the for-loop to traverse and use print() to output all the integers

to the Shell.

for-loop

Practice & Operation

In this project, we will control the LED on and off with a for-loop to achieve flashing.

The output of the program is as follows:

Project 1: Control LED On and Off with For-loop

35Lesson 4 Hello World in Electronic Hardware Programming: Blink

In the last lesson, we have learned how to control the LED on and off. To realize the final

Blink program, we only need to make some slight modifications.

Click the “run" button and look at the LED. You will find that the LED just flashes only once

very quickly. This is because:

1. The execution speed of the program is so fast that the flash effect is not obvious.

2. We did not set the loop structure for the program, and the flashing part of the program

was executed only once.

Let's solve the first problem. Since the problem is that the program runs too fast, we can set

a delay between each LED on and off.

At the beginning of the program, we introduce a new function library: utime.

Hardware Connection

In this project, we will use the following electronics hardware:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - LED Pack

Similar to before, we connect the LED to D16.

Write a Program

First, let's try to modify the program like this:

36 Beginner's Guide for Raspberry Pi Pico

·Note·

Utime Function Library

The utime function library is one of the standard libraries of MicroPython, and its

functions provide us with time-related functions such as obtaining time and date, measuring

time interval, setting delay and so on.

The commonly used functions are:

• Declare the library used — import utime

• Sleep for the given number of seconds — utime.sleep(seconds)

• Sleep for the given number of milliseconds — utime.sleep_ms(ms)

• Convert the time expressed in seconds into a date-time tuple — utime.localtime([secs])

Next, we use the sleep function in utime to add a delay after each program that operates the

LED.

The default unit of the sleep function is in seconds unless otherwise specified. By modifying

the program, we have set the time for each light on and off to 1 second.

Let's first try to use the for-loop to simply turn the LED on and off. The program is as

follows:

37Lesson 4 Hello World in Electronic Hardware Programming: Blink

When we execute this program, we can find that the LED stops flashing after ten loops. This

is because there are only 10 integers generated by using the range() function, so the for-loop only

loops 10 times. When we change range(10) to range(20), the LED loops 20 times.

Of course, no matter how large we set this value to, the loop is always a definite loop. If

we want to keep the program running, we need to use the indefinite loop structure to write the

program.

In this project, we will use the while-loop to achieve the effect of a continuously flashing LED.

The “while True" is a use of while-loop statement. Unlike a general while-loop that only

executes the loop when a certain condition is met, this “while True" is an indefinite loop statement,

which means that the program will be executed repeatedly and continuously until it is artificially

terminated.

The complete code is as follows:

Project 2: Realize Blink with While-loop

Write a Program

Using the while loop, we can easily make the program repeat indefinitely. We only need to

change the “for i in range(10)" in the program to “while True":

38 Beginner's Guide for Raspberry Pi Pico

Click the “run" button again, and the LED connected to the Shield starts flashing. Unless the

process is artificially stopped, the LED will continue to flash.

39Lesson 4 Hello World in Electronic Hardware Programming: Blink

Try to use the two loop structures and sleep() function to achieve different lighting effects.

For example, you can reduce the delay time to produce more rapid flashing.

Thinking Expanding

40 Beginner's Guide for Raspberry Pi Pico

Whether it is to use the button to control the LED on or off, or use Pico to control other types

of electronic modules, the key lies in the signal transmission. In an electronic circuit, we generally

divide signals into two types: digital signal and analog signal.

Lesson 5 Digital Signal in Circuit —
Playing with LED

In the last lesson, we learned the loop structure, and put it to practice by flashing an LED

continuously. In reality, it is impossible to rewrite the program to control the LED every time we

need to turn it on or off. Most of the time, we use some external hardware devices to control it on

and off — for example, a simple button. In this lesson, we will learn how to use a button to control

the LED.

A digital signal is a signal expressed in the binary form such as 0 and 1. The use of binary

form to express the signal signifies the presence of only two states in the circuit, that is, on and

off.

For Pico, many pins can be used for digital signal input and output. When using these pins to

transmit digital signals, we only need to configure them as different types according to our needs.

In fact, in the last lesson, we have configured and used digital pins many times. For example:

In previous lessons, we have learned sequence structure and loop structure in the three

basic program structures. The final one is selection structure. The selection structure makes

a judgement according to the defined conditions and executes the corresponding operation

according to the result of the judgment. For example, after judging the weather, we choose to

This program has set Pin 16 as the output mode and written a high level to the pin to light

the LED.

Digital Signal

Selection Structure

Knowledge Base

41Lesson 5 Digital Signal in Circuit — Playing with LED

take an umbrella if it’s raining, and vice versa. In Python, you can use the “if... else" statement to

write such evaluative condition in the following three forms.

“if" statement

This is the simplest conditional judgment. If the expression is true, the code block will be

executed. If the expression is not true, nothing will be done. For example, to take an umbrella if it's

raining, but do nothing if not.

“if……else" statement

If the expression is true, code block 1 will be executed. If the expression is not true, code

block 2 will be executed instead. For example, to take an umbrella if it's raining, and not take an

umbrella otherwise.

“if……elif……else" statement

This statement is used to judge a variety of conditions. Python will judge whether an

expression is true one by one from top to bottom. Once an expression is true, the following code

block will be executed. At this point, the remaining conditions will no longer be evaluated and thus

not executed, regardless of whether they would have been true. If none of the expressions is true,

the code block following “else” will be executed.

42 Beginner's Guide for Raspberry Pi Pico

Practice & Operation

In this project, we use a button to turn the LED on and off. When the button is pressed, the

LED light is switched on. When the button is released, the LED light is switched off.

Hardware Connection

In this project, the electronic hardware

we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - LED Pack

• Grove - Button

The Grove - Button is a simple module.

When the button is pressed, its return value

is 1. When the button is released, its return

value is 0.Connect Pico and the Shield. Use

Grove data cables to connect the button to

D16, and the LED to D18.

Write a Program

At the beginning of the program, we need to import the machine library and use the Pin

function in the library to set the pins for the two electronic modules.

In addition to the previous program, when we introduce the function in the library, apart from

using “Pin.OUT" to set Pin 18 as the output pin, we also need to use “Pin.IN" to set Pin 16 as the

input pin to receive the data returned by the button.

After setting the pins, we can use the following code to obtain the value returned by the

button:

Next, let's go back to the project to practice what we just learned. In the first project, let's

take a look at how to use a button to control the LED on and off.

Project 1: Control LED On and Off with Button

43Lesson 5 Digital Signal in Circuit — Playing with LED

In this line of code, we use the value() function to read the return value of the button. If

you still remember, we have also used the value() function to write the value for the LED in the

previous program.The difference between them is that when a value is written in brackets of the

value() function, it will output the value to the pin, for example:

And when there is no value in brackets, it will read the input value of the pin.

Finally, we use the conditional statement "if" to evaluate the following condition. When the

button is pressed, the return value is 1 and the LED is switched on; otherwise, the LED remains off:

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location. Now, press the Grove button to see the program in action!

44 Beginner's Guide for Raspberry Pi Pico

By observing the implementation of the program in Project 1, we find that the LED only lights

up when the button is pressed. When we release it, the LED will turn off immediately. This is not

the same as a typical button light in our daily life, which turns on when pressed, and off when

pressed again. Let’s now try to achieve this.

Write a Program

First, import the required machine library and utime library, and configure the pins for the

button and the LED.

Previously, we directly used the value returned by the button to control the LED, and the

button returns 1 only when it is pressed and returns 0 when it is released – producing the

outcome that we observed.Therefore, we cannot directly use the button to control the LED, but

will instead need to create a variable to indirectly control the LED state.

First, we need to create a new variable in the program and set its initial value to 0

Project 2: Button Light

45Lesson 5 Digital Signal in Circuit — Playing with LED

Then, write a program to run in an indefinite “while True" loop. Each time the button is

pressed, the value of this variable will be increased by 1:

We just need to switch the value of the variable between 0 and 1. Thus, when the value of

the variable is increased to 2, we will reset it to 0. Here, we can use "elif" to add the additional

condition to the “if" statement:

In this way, the value of the variable “val" that we set can be switched between 0 and 1

every time we press the button. Finally, we can use this variable to control the LED. The complete

program is as follows:

46 Beginner's Guide for Raspberry Pi Pico

When you write the program, you will find that every time you use a function from a

library, you need to define the function fully as referenced from the machine library. It is a bit

inconvenient to write the program:

Thinking Expanding

47Lesson 5 Digital Signal in Circuit — Playing with LED

Here, we can write the program in a more concise way:

Unlike “import", which imports an entire library, “from...import" only imports some functions in

the library. After we use "from...import" to import the class of the function we want to use, we can

use the function directly in the later program without having to continuously declare which library

the function comes.

48 Beginner's Guide for Raspberry Pi Pico

Lesson 6 Analog Signal in Circuit (1) —
Rotary Angle Sensor

In the last lesson, we learned to use digital signals to control LED lights (button control). In

this lesson, we will learn to use another signal to control a device: the analog signal.

Analog signal refers to the electrical information represented by continuous physical

quantities. The amplitude and frequency of the signal change continuously with the change of

time. In electronics, we use sensors to measure the data of light, humidity, temperature and other

physical quantities, obtain the numerical changes over a period of time, and use electrical signals

to simulate its numerical changes. For example, when a sound signal is received by a microphone

or other sensor and converted into an electrical signal, the voltage directly reflects the volume, and

the frequency (tone) of the sound is directly converted into the frequency of the electrical signal.

This is the meaning of the word "analog" in the analog signal.

Of course, an analog signal also has the difference between input and output, but unlike a

digital signal, the input analog signal can not be directly used by Pico.

As a microcontroller, Pico's chip is composed of thousands of transistors like other

microcontrollers. These transistors can only switch between two states: on (1) or off (0) — just

like a digital signal, which enables Pico to process digital signals directly. For the analog signals

which cannot be described with 0s and 1s, the

analog signals must be converted into digital

signals before they can be recognized by Pico. The

electronic component for this operation is called

“ADC (Analog to Digital Converter)". On Pico, there

are three ADC channels that can be used. They are

located on GP26, GP27 and GP28. When you plug

Pico into the Shield, these pins are then connected

to the A0, A1 and A2 of the Shield. So when we

use sensors that need to utilise the ADC channel to

return analog signals, we can only plug them into

the A0, A1 or A2 ports of the Shield.

Analog Signal

ADC

Knowledge Base

49Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor

By definition, a rotary potentiometer refers to a potentiometer that can change its resistance

value according to the rotation of the adjusting knob on the potentiometer. This method of

adjusting resistance can effectively reduce the size of the potentiometer so that it can be used

in many commercial electronic products. Therefore, although rotary potentiometers sound

foreign, many products in our life that we are familiar with are actually implemented with rotary

potentiometers, such as volume adjustment knobs on audio, on various industrial equipment

consoles, etc. So how does a rotary potentiometer work?

The following figure shows the internal structure of an ordinary rotary potentiometer:

Operators are symbols used to perform code operations in various expressions of programs,

and operands are the objects of operators. For example, 2 > 3, where the operands are 2 and

3 and the operator is “>". Depending on different functions, operators can be divided into many

kinds, such as arithmetic operators, comparison operators, etc. In this lesson, we will first learn

about comparison and logical operators.

When you rotate the knob, the sliding wiper connected to the knob slides on the resistive

material with the rotation. With the sliding, the length of resistive material between A–B and B–

C changes, which causes the resistance value and thus the output voltage to change accordingly.

Using the Rotary Angle Sensor, we can easily input analog signals of different values to Pico.

However, to make use of these input analog signals to complete the project, we need to learn how

to use comparison operators to process them.

In this lesson, we will first use a Rotary Angle Sensor that inputs analog signals to Pico, to

help you understand the input of analog signals.

Rotary Angle Sensor

Operator

50 Beginner's Guide for Raspberry Pi Pico

Comparison Operator

Comparison operators, also known as relational operators, are used to compare the values of

constants, variables, or expressions. If the comparison is true, it returns True; otherwise, it returns

False.

In fact, you would have seen them in various conditional judgment statements in the projects

of previous lessons. For example, when we programmed a button to control the state of an LED in

the last lesson, we used the comparison operator “==" to evaluate whether the return value of the

button is 1:

Logical operators

Logical operators can concatenate two or more simple statements to form even more

complex statements. We often use them in all kinds of conditional statements.

The common logical operators are as follows:

Next, I will list all the comparison operators in Python and their usage, where a = 1, B = 2:

51Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor

Practice & Operation

This project displays the analog value returned by the

Rotary Angle Sensor in the Shell.

Hardware Connection

In this project, the electronic hardware we need to

use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Rotary Angle Sensor

Plug the Pico and the Shield, and connect the Rotary

Angle Sensor to A0.

Write a Program

First, import the functions we need: the ADC function in the machine library and the sleep()

function in the utime library:

Using the “from... import" we learned in the last lesson to import functions can make our

program more concise.

Then, set and define the pins. It is very easy to set the pins by using the ADC function, which

can be written as follows:

Next, we will use the Rotary Angle Sensor to input analog signal to Pico to control the LED.

But before that, we need to understand the range of values for the analog signal returned by the

Rotary Angle Sensor.

Project 1: Check Return Value of Rotary Angle Sensor

52 Beginner's Guide for Raspberry Pi Pico

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, you can see the analog value returned by Rotary Angle Sensor in the Shell area.

By rotating the Rotary Angle Sensor, we can find that the value will change with the rotation

of the knob, and vary within the range of 0–65535. But no matter how you rotate the knob, the

return value will not be equal to 0. This is because the maximum resistance of the Rotary Angle

Sensor is limited in reality, making it virtually impossible to reduce voltage to 0.

·Note·

Why 65535?

In the program, we use "read_u16()" to read the analog value returned by the pin, where

"u16" means to read the analog value as an unsigned binary integer of up to 16 bits. The

maximum value of the 16-bit binary integer is 1111111111111111, which is equal to 65535

after being converted into decimal form.

First, let's try to write a simple program to turn on the LED when the Rotary Angle Sensor

rotates through the center point.

Project 2: Turn an LED On and Off with a Rotary Angle Sensor

ADC(0) means setting A0 as the ADC pin, while ADC(1) and ADC(2) means setting A1 and A2

as the ADC pin.

Then set up a loop, using “read_u16()" which reads the return value of the pin and prints it

out. The complete program is as follows:

53Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor

Hardware Connection

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - LED Pack

• Grove - Rotary Angle Sensor

Plug the Pico and the Shield, use a Grove data cable to connect the LED to D16, and connect

the Rotary Angle Sensor to A1.

Write a Program

Similarly, at the beginning of the program, import the functions that need to be used in the

machine library, and define pins:

Then use the “if" statement to judge the condition. When the return value of the Rotary Angle

Sensor is greater than 30000, the LED turns on; otherwise, the LED turns off.

54 Beginner's Guide for Raspberry Pi Pico

Control LED On and Off with Rotary Angle Sensor 1.mp4 (12.8 MB)

In the "if" statement, we use the comparison operator ">" to compare the relationship

between the analog value read from the Rotary Angle Sensor and the 30000 threshold.

You can test the effect of the program by changing the comparison operator used in the "if"

statement. Note that if we use "==" to write expressions in the program, it is difficult to achieve

the effect we want. This is because the value range of analog value is wide. When we rotate the

knob, it is difficult to turn it to a specific value to fulfill the condition of the expression.

In addition to using the comparison operator to complete a single expression statement, we

can also use the logical operator to concatenate two independent statements to control the LED

to light only within a specific value range:

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622612625379-d75a8685-3a5e-4710-b4e0-f27ddc956d6c.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fgsvrgr

55Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor

Control LED On and Off with Rotary Angle Sensor 2.mp4 (16 MB)

Try to explore more uses of operators with the LED and the Rotary Angle Sensor. For

example, when the reading of the Rotary Angle Sensor is greater than 30000, program the LED

to turn off; otherwise, turn the LED on. You can also try to use the logical operator "or". If you

change the "and" operator in Project 2 to "or", what will happen?

Thinking Expanding

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622613475549-5fb02980-4876-496f-82a5-bf31883c812a.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fgsvrgr

56 Beginner's Guide for Raspberry Pi Pico

Lesson 7 Analog Signal in Circuit (2) — the
Use of PWM

You should have noticed that with a simple digital signal output, we can only switch the

output value between 0 and 1, that is, to turn the light on or off. We can't control the brightness

of the light, let alone any other advanced effects. In order to realize more effects, we need to use

analog signals for output to control the brightness of the light.

As mentioned in the last lesson, Pico, as a microcontroller, cannot work with an analog signal

directly. The analog signal must be converted into the digital signal by the ADC (Analog to Digital

Converter) for Pico to process and understand the data.

Similarly, Pico cannot directly send an analog signal to control the analog circuit. It must first

convert its digital signal into an analog signal in some way. However, Pico itself does not have a

DAC (Digital to Analog Converter) to convert a digital signal into an analog signal. So when Pico

needs to output an analog signal, it needs to use another method to control the analog circuit —

PWM.

PWM is short for pulse width modulation. Where, “pulse" refers to the pulse signal, which is a

digital signal sent out at periodic continuous on and off patterns by the microcontroller. Because

the signal sent out by the transistor only has two states, on and off, the signal switches only

between high level and low level. PWM pulse signal is mainly defined by three components: cycle,

duty cycle and frequency.

As shown in the figure below, cycle (T) is the total time for a pulse signal to go through a

high-level state (T1) and a low-level state (T2), that is, cycle (T) = T1 + T2. Duty cycle represents

the ratio of the time when the

signal is at a high level to the cycle

in a cycle, so a duty cycle can be

calculated as cycle (T) / T1.

Frequency represents the

number of cycles per second (1000

Hz means 1000 cycles per second).

The shorter the cycle, the higher

the frequency.

PWM

Knowledge Base

57Lesson 7 Analog Signal in Circuit (2) — the Use of PWM

The objective of pulse width modulation is to modulate the duty cycle of the pulse signal

according to the demand without changing other parameters of the pulse signal, so as to disguise

a digital signal as a constant voltage analog signal.

So how is pulse width modulation realized? Take controlling the brightness of LED as an

example. When we input a PWM signal to the LED, the LED actually receives a digital signal that

constantly switches between high level and low level. This digital signal makes the LED turn on

and off constantly.

When the frequency of on and off is fast enough, that is, the frequency of PWM is high

enough, this flashing of light will not be recognized by human eyes.

At this time, under the conditions of a constant cycle, we only need to change the ratio of

the time when the LED is turned on relative to the time that it is turned off. Thus, by adjusting the

duty cycle, we can then change the brightness of the LED.

You can better understand this concept by bringing in some numbers. If the LED is turned

on in 0.5 ms and turned off in 0.5 ms within 1 ms, you will not notice the light flashing since the

frequency is too fast. You will instead only observe the brightness of the light as reduced to half

of its always-on state. On the other hand, when the light turned on in 0.1 ms and turned off in 0.9

ms in a 1 ms cycle, the light perceived by your eyes will be only one tenth of its original brightness.

To operate on the duty cycle, you need to use arithmetic operators.

Arithmetic operators, as the name suggests, are operators for mathematical operations. The

“+" “-" “*" “/" that we often use belong to arithmetic operators. By using arithmetic operators,

we can do mathematical operations on variables or other objects in the program to change their

values.

Arithmetic Operator

58 Beginner's Guide for Raspberry Pi Pico

The common arithmetic operators are described as follows, where a = 1, b = 2:

Practice & Operation

First, let's learn how to use the PWM signal to output analog signal, and use the return value

of the Rotary Angle Sensor to control the brightness of the LED.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Rotary Angle Sensor

Plug the Pico and the Shield, use a Grove data cable to connect the LED to D18, and connect

the Rotary Angle Sensor to A0.

Project 1: Check Return Value of Rotary Angle Sensor

59Lesson 7 Analog Signal in Circuit (2) — the Use of PWM

We need to use PWM to set related pins. Although each pin of Pico can be set as a PWM pin,

some pins cannot be simultaneously set to PWM mode. This is because the pulse width modulator

on Pico is divided into eight parts, where each part has two outputs — A and B. Pico has 26 pins,

which causes some pins on Pico to share the same pulse width modulator. Therefore, when you

need to set multiple PWM pins, you need to be careful to avoid conflicting pin settings.

Fortunately, we don't need to account for this problem in this program. All we have to do is

set a single PWM pin:

After setting the pin, use the “freq()" function to set the frequency of the PWM signal to 500:

Write a Program

Just like the Pin function, the function of setting pins to PWM mode is also available in the

machine library:

60 Beginner's Guide for Raspberry Pi Pico

It is very important to choose the right frequency. If the frequency is very low, the flash of

the LED during power on and off will be visible to the naked eye and occur intermittently. If the

frequency is very high, it will cause the LED switch to fail to open and close normally, affecting the

stability.

In this program, we use “read_u16()" to read the return value of the Rotary Angle Sensor,

and use “duty_u16()" to output analog value to the LED. As the range of the two values is the

same: 0–65535, we can directly use the return value of the Rotary Angle Sensor to control the

brightness of the LED.

In the cycle, we first save the input analog value of the Rotary Angle Sensor to the variable

“val", and then set the duty cycle of the PWM signal of the LED to “val". The complete program is

as follows:

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, you can see the actual running effect of the program.

Control LED Brightness with Rotary Angle Sensor.mp4 (16.7 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622616209972-13fb359e-ed05-4bbe-8a49-1da502bd7d2d.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Foe1aw5

61Lesson 7 Analog Signal in Circuit (2) — the Use of PWM

In this project, we will realize the effect of breathing light. That is, the brightness of LED will

be changed from dark to light, and then from light to dark.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - LED Pack

Connect the LED to D18.

Write a Program

To realize the effect of breathing light, we need

to use arithmetic operators to operate the duty cycle

of the PWM signal.First, declare the functions in the

library we need to use, and set the pins.

Project 2: Breathing Light

62 Beginner's Guide for Raspberry Pi Pico

After setting the pin, use the “freq()" function to set the frequency of the PWM signal to 500:

Through analysis, we can find that the breathing light is actually composed of two parts. The

first part is that the LED lights up gradually from the dim state, and enters the second part when

the brightness reaches the maximum. In the second part, the brightness of the LED will begins

to decay until it goes out. Repeating these two parts in alternation, we can realize the effect of a

breathing light.

We can use two while-loop statements to realize the effects of these two parts. First, we

set a variable "val" to help us adjust the duty cycle of the PWM signal. At the beginning of the

program, we set val to 0:

Then, we will place both loops in another “while True" loop to make the two parts of the

program run continuously, and the effect of breathing light is completed.

Then we’ll work on the first part, where the LED lights up gradually:

In this program, we increase the value of “val" by 50 every millisecond until it is greater than

65535, and use the “duty_u16" function to adjust the duty cycle of the PWM signal using this

same value.

When the value of “val" is greater than 65535, our code will exit the first while-loop and

enter the next while-loop. Similarly, to make the light dim gradually, we keep decreasing the value

of “val" until it is 0.

63Lesson 7 Analog Signal in Circuit (2) — the Use of PWM

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, you can see the program in action.

Breathing Light.mp4 (18.1 MB)

Besides LED, do you know which electronic modules can be controlled with a PWM signal?

Buzzer: Servo:

Thinking Expanding

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622617570516-cb7bcc2c-a842-484b-90f8-364f0efc371e.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Foe1aw5

64 Beginner's Guide for Raspberry Pi Pico

Lesson 8 Make Buzzer Sing — the Use of
Function

The term “function" in mathematics generally refers to a corresponding relationship and

change process between values. In the field of programming, a function is a program with specific

functions that can complete specific tasks, thus reducing the workload of repetitive programming.

The use of PWM analog signal can not only control the brightness of the light but also control

many other electronic devices, and the buzzer is one of them. In this lesson, we will learn about

the basic knowledge and usage of a buzzer, and how to use functions to simplify programs and

even create simple music.

A buzzer is a common sound device, and is often used as a sound generator in computers,

printers, copiers, alarms, electronic toys, automotive electronic equipment, telephones, timers and

other electronic products. They can be divided into either passive or active buzzers.

The “source" here does not refer to power source but instead the source of the oscillation.

Buzzer

Knowledge Base

65Lesson 8 Make Buzzer Sing — the Use of Function

The oscillation source is the oscillation circuit, which can convert the input DC signal into a

physical oscillation which drives the buzzer to sound.The active buzzer has a built-in oscillation

source, which can work by providing a constant DC voltage when it is in use. Its sound frequency

is determined by the internal oscillation circuit, and its tone generally cannot be changed.

The passive buzzer has no oscillation source, and can only rely on the external input PWM

(square wave) signal to achieve the alternating magnetic field. So, we can use the PWM signal to

drive the vibration device to make the buzzer sound. By adjusting the frequency and duty cycle of

the PWM signal, we can control the tone and volume of the buzzer.

The passive buzzer has no oscillation source, and can only rely on the external input PWM

(square wave) signal to achieve the alternating magnetic field. So, we can use the PWM signal to

drive the vibration device to make the buzzer sound. By adjusting the frequency and duty cycle of

the PWM signal, we can control the tone and volume of the buzzer.

In this lesson, we will use the buzzer to play simple music. But before we start, we will learn

how to reduce our workload by defining functions.

In mathematics, “function" refers to a corresponding relationship and change process

between values. In the field of programming, a function is a program with specific functions and

can complete specific tasks. When we complete this program, we can call it repeatedly in later

programs to deal with the same task without writing more code!In the previous lessons, you have

used many Python built-in functions, such as print(), pin(), etc. Similarly, we can also use our own

custom functions.

In Python, we use “def" to define functions. The syntax of defining functions is as follows:

When defining a function, the function code block starts with “def", followed by the function

name and the parenthesis “()". The colon “:" after the parenthesis indicates the beginning of the

function body. The function body contains all the code that define a function. When you complete

the function definition, the system can execute the code in the function body every time you call

the function.

Let's look at the example program:

Define Function

66 Beginner's Guide for Raspberry Pi Pico

The execution result of the program is as follows:

In this program, we define a function named “HelloWorld". Every time we call the function

with “HelloWorld()", we execute the “print(“Hello World")" statement in the function body.

In the brackets after the function name, we can also write the parameters that may need to

be used by the function, for example:

In this program, we create a function named “max()", which introduces two parameters into

the parameter list. In the function body, the program compares the two numbers and returns the

larger number.The “return [expression]" represents the end of the function, and it returns a value

to the function calling it. For example, in this program, we judge the larger number between a and

b through the “if" condition and return the chosen value. Therefore, the execution result of the

program is 5, that is, the value of b which is greater.

And that's how functions are defined.

Practice & Operation

First, let's try to control the buzzer to play seven basic notes: do, re, mi, fa, sol, la, si.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Shield for Pi Pico

• Grove - Passive Buzzer

Project 1: Playing Basic Notes

67Lesson 8 Make Buzzer Sing — the Use of Function

Write a Program

If we want to use the buzzer to play music, we need to learn to control the two dimensions of

the sound emitted by the buzzer: volume and tone.

For the volume, like adjusting the brightness of the LED, we can control it by changing the

duty cycle of the PWM signal as well. On the other hand, since the tone of a sound is determined

by its frequency, we can control it by just modifying the frequency of the PWM signal.

Let's write a program to let the buzzer send out seven notes: do, re, mi, fa, sol, la, si.

In this program, we need to define pins and use the “sleep()" function to control the duration

of each note. As usual, we need to declare the function library at the beginning of the program:

Next, define the pin:

Next, we need to use “freq()" and “duty_u16()" to define the tone and volume:

Attach the Pico and the Shield, and use a Grove data cable to connect the buzzer to A1.

68 Beginner's Guide for Raspberry Pi Pico

Finally, use “sleep()" to specify the duration of each note, and complete the program. The

complete program is as follows:

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location. Now, you can hear the buzzer play seven basic notes.

Playing Basic Notes.mp4 (10.1 MB)

Next, let's try to control the buzzer to play the complete music of Two Tigers by defining a

function to simplify the program.

Write a Program

When we write a simple piece of music, we can write the program line by line. However,

complex programs written this way are too long and repetitive. If we want to reproduce whole

Project 2: Two Tigers

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622688045144-3c5c14e8-d92d-45db-93e6-e53673ed5577.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fzkmuqa

69Lesson 8 Make Buzzer Sing — the Use of Function

music, whether it is from the perspective of improving code reuse or program readability, we need

to use custom functions to simplify the program. Following Project 1, we can define every note as

a function that can be called when we want to play that note.

Taking DO as an example, the program to define the function is as follows:

Define seven notes and a stop-sound program, N(), as functions in the same way:

In the later program, we only need to call these functions to complete the music. The program

of playing Two Tigers is then as follows:

70 Beginner's Guide for Raspberry Pi Pico

71Lesson 8 Make Buzzer Sing — the Use of Function

If you look at our program carefully, you will find it's much simpler than writing the program

line by line. Now, the only part that is always repeated in this program is the “sleep()" function. In

complete music, many notes sound at different times – thus we cannot simply add the “sleep()"

function to the function body. Instead, we need to create a custom function with parameters.

Similarly, taking the note DO as an example, the program to DO(0.5)the note DO with duration is

as follows:

In the fifth line of the program, we defined a variable named “vol" to represent the duty cycle

value of the PWM signal in later programs. Now, whenever we want to modify the volume of the

buzzer, we only need to modify the initial value of the variable “vol".

When we use this function, we need to type the parameter of the function body in the

parentheses. The parameter is called by the “sleep() function" in the function body so that we

can conveniently control the sound time of the note. For example, when the note DO needs to be

sounded for 0.5 seconds, we can write the program like this:

How about it? Is it more concise? By defining functions this way, we can make the program

both more efficient and easier to read. The final program is as follows:

72 Beginner's Guide for Raspberry Pi Pico

73Lesson 8 Make Buzzer Sing — the Use of Function

Two Tigers.mp4(25.4 MB)

Use a USB cable to connect Pico to the computer, and click the “run" button to save the

program to any location. Now, you can hear the buzzer play Two Tigers.

Try to use what you learned in this lesson to write a program that can play Twinkle Twinkle

Little Star.

The reference program is as follows:

Thinking Expanding

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622688781259-a7e4419e-04ff-4c0d-a39d-7a289963e085.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fzkmuqa

74 Beginner's Guide for Raspberry Pi Pico

Lesson 9 Journey of Data Visualization —
the Use of LCD

In our lives, we see displays everywhere. All kinds of visualization devices, such as TV,

computer, mobile phone, car display, LCD billboards in shopping malls and so on, provide various

possibilities for human-computer interaction. In our previous projects, if we want to visualize data,

we normally rely on the Thonny Shell. However, in some projects, we cannot always connect Pico

to the computer. At this time, we need to use some other electronic hardware to complete this

work, and a variety of display devices come in handy.

In various open-source hardware projects, the common displays are LCD, LED, 3D, OLED,

etc. They have their own advantages and disadvantages as display devices and can be used in

different fields and scenarios according to their characteristics. In this lesson, we will specifically

learn how to use LCDs to realize data visualization.

LCD is short for liquid-crystal display. In 1888, Austrian botanist Reinitzer discovered liquid

crystals, which is a unique organic compound with two melting points.

 Reinitzer Lehmann

LCD

Knowledge Base

75Lesson 9 Journey of Data Visualization — the Use of LCD

When scientists heat the solid liquid crystal to 145℃, the liquid crystal first melts into a turbid

liquid. When they continue to heat the liquid crystal to 175℃ , it melts again and becomes a clear

and transparent liquid. Later, through careful observation, the German physicist Lehmann found

that when the liquid crystal melts into a turbid liquid, it is liquid in appearance, but it shows the

unique birefringence of crystal. Thus, Lehmann named it "liquid crystal", which is the origin of its

name. Reinitzer and Lehman were later known as the father of liquid crystals. Since liquid crystals

were discovered, people did not know what they were used for. In fact, it was not until 1968 that

people began to use it as a material for the electronics industry.

In 1968, RCA found that when the liquid crystal is affected by different electric fields, its

molecules will turn in different directions, thus changing the refractive index of the liquid crystal,

and affecting the direction of passing light. Therefore, the final imaging effect of LCD can be

determined as long as the undesired light is filtered out through a polarizer.

alignment
layer

polarizer

voltage

polarizer

liquid
crystal

molecule

76 Beginner's Guide for Raspberry Pi Pico

The Grove - 16 x 2 LCD module we use is an electronic module that uses an I2C

communication protocol to communicate with the motherboard. I2C is a simple two-way two-

wire synchronous serial bus developed by Philips. It only needs two wires to transmit information

between devices connected to the bus. Communication over I2C takes place on two lines: a clock

line (called SCL) and a data line (called SDA).

Therefore, when configuring pins for I2C access modules, we need to configure pins for both

lines at the same time.

In previous lessons, we defined and used functions in the program But if we want to rewrite a

new program, all the functions and variables we defined will disappear.

Python provides a solution to this problem by storing these programs that define functions or

variables in specific files. When we want to use these definitions, we only need to use “import" at

the beginning of the program to refer to this file, just like we do for a library file.

In short, a library file is a file that contains all the functions and variables you define, with the

Significantly, the liquid crystal itself cannot produce light, it can only change the direction of

the light passing through it. So, in addition to the liquid crystal layer, we often need a backlight

panel as the light source in an LCD. According to this characteristic, RCA developed a dynamic

scattering LCD, and used this technology to develop the first LCD watch in 1972. Since then, LCD

technology has become tremendously practical for commercial use.

The Grove - 16 x 2 LCD module we use in this lesson is an LCD display module. 16 x 2

means that the LCD display datas in two rows, and each line can display 16 characters, to make a

total of 32 possible characters shown at a time.

I2C Bus

External Function Library

77Lesson 9 Journey of Data Visualization — the Use of LCD

3. Select “Raspberry Pi Pico" and save it in Pico.

extension “.py". Library files can be imported by other programs to use the functions in the library

files.

For Python, libraries are generally divided into two categories. One is the standard library of

python, which contains many function libraries commonly used in project development. In previous

lessons, the machine library and utime library we used are all the standard libraries of Python.

Another category is the third-party library developed by Python users. Thanks to the growth

of the Python community, you can find many very helpful function libraries when using Python to

complete projects.

For standard libraries, we don't need to do extra work when using them. We can simply refer

to them directly in the program. For third-party libraries, however, we need to save library files

onto the Pico before using them.

For example, in this lesson, if we want to use a third-party library to control the Grove - 16 x

2 LCD, we need to save it to Pico first.

1. Click to download the third-party library file lcd1602.py (7kB) we want to use, and save it to

the computer.

2. Connect Pico to the computer, use Thonny to open the file, click on the “file" option at the

top left, and select “save as".

https://www.yuque.com/attachments/yuque/0/2021/py/2746511/1622689796783-a455445f-31a3-496f-bcd8-a71b7ac030df.py?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fxw38wg

78 Beginner's Guide for Raspberry Pi Pico

When saving, Thonny asks you to name the file. Here we type “lcd1602.py" as its name. Note

that we also need to type the extension of the file, otherwise it cannot be used.

Practice & Operation

After adding the library file, let's write a simple program

to let the LCD display "Hello, world!".

Hardware Connection

In this project, the electronic hardware we need to use is

as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - 16 x 2 LCD

Plug the Pico and the Shield, use a Grove data cable to

connect the LCD to I2C1.

Project 1: Display “Hello, world!" with LCD

79Lesson 9 Journey of Data Visualization — the Use of LCD

The functions available in the lcd library are as follows:

• display() — Enable the display.

• no_display() — Disable the display.

• clear() — Clear the current display and return the cursor.

• setCursor(col, row) — Set the display position, “col" is the number of columns, “row" is the

number of rows.

• print(text) — Display characters.

Next, define the pin. Unlike other pin definitions, pin I2C needs to define data lines SCL and

SDA respectively.

It is written as “machine.I2C(id,*,scl,sda,freq=400000)", where:

• “id" identifies a specific I2C peripheral, and its allowed value depends on the specific port/

board.

• “scl" uses the Pin function to specify the pin used for SCL.

• “sda" uses the Pin function to specify the pin used for SDA.

• “freq" is the integer of the maximum frequency of SCL, which is generally adjusted

according to the different devices used. Here we set it to 40000.

Finally, use the functions in the library to display “Hello, World" on the LCD, and the program

is completed. The complete program is as follows:

Write a Program

First, define the function libraries that we need to use, including the third-party function

library lcd1602 that has just been saved in the Pico.

80 Beginner's Guide for Raspberry Pi Pico

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, you can see the program in action.

In addition to displaying the characters we have written, the LCD can also display the values

returned by other sensors.

Hardware Connection

In this project, the electronic hardware we

need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - 16 x 2 LCD

• Grove - Rotary Angle Sensor

Plug the Pico and the Shield, use a Grove

data cable to connect the LCD to I2C1, and

connect the Rotary Angle Sensor to A0.

Project 2: Display Rotary Angle Sensor Reading with LCD

81Lesson 9 Journey of Data Visualization — the Use of LCD

Write a Program

In Lesson 6, we learned how to use ADC to read the Rotary Angle Sensor value. Can we use

“d.print()" to display the reading directly? Let's try the following program first:

Running the program, Thonny tells us that there is an error in the program, and the error is on

line 14. The error message is:

TypeError: ‘int' object isn't iterable

82 Beginner's Guide for Raspberry Pi Pico

This means that the parameter we pass into the print() function is not of the type it can

execute.

In “print()", we specify in the lcd1602 function library that it can only input parameters whose

data type is String, while ROTARY_ANGLE_SENSOR.read_u16() returns integer “int" of Number.

If we want to use the print() function to output the value of the Rotary Angle Sensor, we need to

convert Number data into String data. There is such a function in Python built-in functions: str(),

which can convert other data types into String. Then we can use print() to output the value of the

Rotary Angle Sensor.

The revised program is as follows:

·Note·

Data Type

In programming, due to the different storage capacities of various data, different types

of data need to be matched with the different memory spaces that they are stored in.

Therefore, it is important to know about different data types. Every time we create a variable

in Python, we are requesting a storage location from memory and storing a certain piece of

data in that memory space. In Python, we divide all kinds of data into six basic types:

• Number

• String

• List

• Tuple

• Set

• Dictionary

83Lesson 9 Journey of Data Visualization — the Use of LCD

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, rotate the Rotary Angle Sensor, you can see the actual running effect of the

program.

Display Rotary Angle Sensor Reading with LCD.mp4 (24.2 MB)

Try to add an LED controlled by PWM into the program used for this lesson, and let the LCD

display its brightness.

Thinking Expanding

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622690605301-7939e070-5c55-46fa-9a6e-55fe58f851f6.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fxw38wg

84 Beginner's Guide for Raspberry Pi Pico

Unit 3
Project Practice

85Lesson 9 Journey of Data Visualization — the Use of LCD

86 Beginner's Guide for Raspberry Pi Pico

Lesson 10 Temperature and Humidity
Monitoring

There are plenty of uses for temperature and humidity monitoring, like weather forecasting.

We pay attention to the temperature every day, especially for seasonal changes in weather where

we may need to alter our attire according to changes in temperature. In smart agriculture, farmers

pay close attention to the growing environment of crops. The most basic thing is to monitor if the

temperature of the growing environment is suitable, and whether the soil moisture is sufficient. In

the medical field, the most common use of temperature measurements are found in thermometers.

In this lesson, we will make an intelligent thermo-hygrograph to monitor surrounding temperature

and humidity.

A temperature and humidity sensor, as its name suggests, is a sensor that can detect

temperature and humidity in the environment. There are many kinds of temperature and humidity

sensors, among which the most commonly used is the DHT series. This kind of sensor can be

calibrated automatically and has a digital output. The sensor includes a capacitive sensor element

that can measure relative humidity, and an NTC thermistor that can measure temperature. For

this lesson, we choose the DHT11 sensor, which can be used in most prototype projects. If your

project needs a larger measurement range and higher accuracy, such as a medical system or

weather station, you can choose the DHT20 sensor instead.

In previous lessons, we have learned and used common operators, such as the comparison

operators, arithmetic operators, and “and" logic operator, that is, Boolean “and". First, let's review

these common logical operators.

Temperature and Humidity Sensor

Logical Operators

Knowledge Base

·Note·

If you are using the DHT20

module, please refer to the

section: Thinking Expanding.

87Lesson 10 Temperature and Humidity Monitoring

In this lesson, we will use a new logical operator Boolean “or". An example is as follows:

The output result of the above example is “variables x and y are both true, or one of them

is true". Similarly, we can use Boolean “or" to judge whether the temperature or humidity in the

environment is within an appropriate range. If one of them fails to meet the requirements, we will

sound an alarm.

Practice & Operation

In this project, we will use the Shield to connect both the temperature and humidity sensor

and LCD module, and use the Pico to display the temperature and humidity value obtained by the

sensor on the LCD. First of all, we need to use the LCD to display the value of temperature and

humidity.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Temperature & Humidity Sensor

• Grove - 16 x 2 LCD

Project 1: Display Temperature and Humidity Value with LCD

88 Beginner's Guide for Raspberry Pi Pico

Connect Pico and the Shield, use a Grove data cable to connect the LCD to I2C1, and

connect the Temperature & Humidity Sensor to D18.

Recall how we defined the I2C pin in the last lesson. To achieve I2C, we must define both the

SCL and SDA data lines and mark the data type, number of lines and the number of characters in

each line. Then, we add the pin definitions for the temperature and humidity sensor.

Next, we will read the values detected by the temperature and humidity sensor and save them

in the variables “temp" and "humid" respectively.

Write a Program

In this project, we need to use not only the third-party function library lcd1602 which has

been saved in Pico, but also a new library dht11.py(3kB) Download the library file in the same way

as in previous lessons and save it in Pico. After that, we can start to import the libraries that we

need to use.

https://www.yuque.com/attachments/yuque/0/2021/py/2746511/1622700078867-0455b464-18a8-41b2-b83a-52999927b003.py?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fyee58y

89Lesson 10 Temperature and Humidity Monitoring

Finally, we will display the read values on the LCD. There are two values, one each for

temperature and humidity, so their labels should be displayed on the screen at the same time to

distinguish them. The effect is as follows:

Temp: 25

Humid: 40

The characters of “Temp" and "Humid" can be directly displayed on the LCD, while the values

read by “temp" and “humid" cannot be directly displayed on the LCD. So, we need to use the “str()"

function to convert them into the String data type. It should also be noted that for temperature

and humidity to be displayed on different lines, the coordinate position needs to be set as shown

below:

The complete program is as follows:

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, and you can see program in action.

90 Beginner's Guide for Raspberry Pi Pico

In Project 1, we developed the function of displaying the temperature and humidity value on

the LCD. We can now also further develop the functions of monitoring and alerting by adding a

buzzer.

Hardware Connection

In this project, we will use the Grove - Passive Buzzer as the alarm device. Connect the

buzzer to D16.

Project 2: Adding an Alarm Function

91Lesson 10 Temperature and Humidity Monitoring

Write a Program

Expanding from Project 1, we only need to add code to judge the temperature and humidity

and control the buzzer for the alarm behaviour. To do this, we need to use the logical operator.

Logical operators can connect two or more simple statements to form more complex statements.

We often use them in all kinds of conditional judgment statements. Here, we need to use Boolean

“or". When the temperature “temp" is greater than 30 or the humidity “humid" is less than 30,

we would like the buzzer to give an alarm; otherwise, do nothing. To achieve this, we will use the

“if...else..." conditional statement. To make the buzzer sound, recall that we can use the freq()

function and duty_u16() function to define the tone and volume, and use “buzzer.duty_u16(0)" to

turn off the buzzer.

The complete program is as follows:

92 Beginner's Guide for Raspberry Pi Pico

Add Alarm Function.MOV (63.2 MB)

Use a USB cable to connect Pico to the computer and click the “run" button to save the

program to any location. Hold the temperature and humidity sensor with your hand, and you should

see the changing values of temperature and humidity on the LCD. Give it a try. Will the buzzer

sound an alarm?

DHT20 Temperature and Humidity Sensor

Compared with DHT11, the DHT20

Temperature and Humidity Sensor has a clear

advantage in supply voltage, measurement

range of temperature and humidity, precision

and quality of output signal. It is a product with

low power consumption, high precision and

high stability, equipped with a fully calibrated

digital I2C interface, which is the biggest

difference between DHT20 and DHT11.

Thinking Expanding

https://www.yuque.com/attachments/yuque/0/2021/mov/2746511/1622701643047-d7b44d38-a5db-4bc2-b340-1aaa664393d0.mov?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fyee58y

93Lesson 10 Temperature and Humidity Monitoring

You can see the temperature and humidity values detected by the DHT20 temperature and

humidity sensor in the Shell area.

Next, try to complete the program for both Project 1 and Project 2. For reference, the

complete code is as follows:

Project 1: display temperature and humidity value with LCD

Project 2: add alarm function

 Take note that they have slightly different definitions of pins. Download dht20.pylibrary(2kB),

use DHT20 to detect the temperature and humidity in the environment, and print the value to

the Shell area. With the “dht20.py" library, we can use the “dht20_temperature()" and “dht20_

humidity()" functions to read the temperature and humidity values returned by the temperature and

humidity sensors respectively, as shown below.

https://www.yuque.com/attachments/yuque/0/2021/py/2746511/1622701700958-aac01598-e8d7-46b2-92cf-3cc5c7cd938a.py?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fyee58y

94 Beginner's Guide for Raspberry Pi Pico

Lesson 11 Intelligent Fan

Although air conditioning is now the people's first choice for cooling, fans have always been

popular in daily life due to their portability, energy-saving characteristics and availability. In this

lesson, we will make an intelligent fan that can be automatically controlled according to the

surrounding temperature.

To make the intelligent fan, we will use the Grove - Mini Fan, which consists of a motor drive

board, DC motor, film blade and Grove connecting cables, as shown in the figure below. In general,

motors can be divided into DC motors and AC motors according to the different input currents.

Here, we use a DC motor. DC motors can realize the mutual conversion of electrical energy and

mechanical energy so that electricity supplied to the motor can be used to drive other mechanical

components.

A DC motor is composed of a stator and a rotor. The main function of the stator is to

produce a magnetic field, and the main function of the rotor is to produce electromagnetic torque

and induced electromotive force. In short, the DC motor works according to the principle that a

conductor which carries an electrical current experiences a force in the magnetic field. Motors are

widely used in our daily life, such as in industry, agriculture, and other applications where power is

needed.

Mini Fan

Knowledge Base

95Lesson 11 Intelligent Fan

Practice & Operation

First, we will try to control the fan rotation with the press of a button and achieve manual

control of the fan. At this point, you can try to recall the program that we worked on to control an

LED on and off with the button, as they have the same logic.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Mini Fan

• Grove - Button

Use a Grove data cable to connect the Button to D16 on the Grove Shield, and connect the

Mini Fan to D18.

Write a Program

Similarly, we have to first import the required libraries to set the pins for the button and the

fan. When the button is pressed, the return value is 1 and the fan turns on; otherwise, the fan is

turned off. The complete code is as follows:

Project 1: Control Fan On and Off with Button

96 Beginner's Guide for Raspberry Pi Pico

You might realise that when the fan turns on when the button is pressed, and off when the

button is released. However, this is not in line with our usage habits. Generally, after we turn

on the fan, we don't expect to have to continue pressing the button all the time. In the previous

lessons, we also learned how to create variables to solve the similar problem encountered in

achieving control of the LED with a button. In this lesson, we will instead introduce another

method, using the toggle() function to switch the fan between the high and low levels. When you

press the button, the fan will be switched to high; when you press the button again, it will be

switched to the low level, so as to “toggle” the fan on and off.

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location, and then test the running effect by pressing the button.

Control Fan On and Off with Button.mp4 (8.6 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622702348788-1b68aa2d-f617-4248-b661-0bd737c48ec1.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdrd9y7

97Lesson 11 Intelligent Fan

The function of the fan is mainly to reduce the temperature, so we can use the temperature

to control the fan on and off. Set a value that represents the maximum comfortable temperature.

When the temperature detected is higher than this value, the fan will turn on, and off when the

temperature drops below it. At the same time, the temperature value can be displayed on the LCD

for monitoring.

Hardware Connection

In this project, the electronic hardware we

need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Mini Fan

• Grove – Temperature & Humidity Sensor

• Grove - 16 x 2 LCD

Use a Grove data cable to connect the

Temperature & Humidity Sensor to D16, connect

the Mini Fan to D18, and connect the LCD to

I2C1.

Project 2: Temperature Sensing Intelligent Fan

98 Beginner's Guide for Raspberry Pi Pico

Write a Program

First of all, import the required libraries and set the pins of the temperature and humidity

sensor, LCD and mini fan.

Next, read the value detected by the temperature and humidity sensor — here we only need

to read the temperature value — and display the value on the LCD.

Finally, we judge the temperature value through the “if" conditional judgment statement, with

26 as the maximum comfortable value of temperature, and then use the comparison operator “>"

to compare the current temperature with the set temperature. When the current temperature is

higher than the set temperature, the fan turns on; otherwise, the fan turns off:

The complete program is as follows:

99Lesson 11 Intelligent Fan

If you are using a DHT20 temperature and humidity sensor, refer to the following program:

Use a USB cable to connect Pico to the computer, and click the “run" button to save the

program to any location. Now, you can see the actual running effect of the program.

Intelligent Fan.mp4 (8.6 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622703287742-a79aefae-81dd-4748-b8fe-dde01701c0e7.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdrd9y7

100 Beginner's Guide for Raspberry Pi Pico

In addition to controlling the fan through a button and temperature sensing, what other

control methods can you think of? Give it a try.

The Grove Relay is a digital normally-open switch, which can handle up to 5A current under

250VAC for a long time. It can control simple switch modules such as the LED and Mini Fan. Let's

take the Mini Fan as an example. It should be noted that the interface of the Mini Fan is packaged,

we need to remove the interface for operation. Once removed, it cannot be installed back. So, this

is only for reference.

First, we need to connect the relay to the circuit as shown in the figure below. Connect the

positive line of the DC motor (the fan) to the position as shown in the figure, then connect another

black negative connecting line of the fan to the negative interface of the motor drive board. Now,

find another DuPont wire to connect the positive interface of the motor drive board to the rest

of the relay interfaces. Finally, use Grove cables to connect the relay, motor drive board and the

button to D20, D18 and D16 interfaces respectively.

Thinking Expanding

101Lesson 11 Intelligent Fan

After the circuit is connected, we can begin to write the program. We want to write a high

output level to the fan and control the switch of the relay through the button, so as to control the

opening and closing of the whole circuit. The button should be used to toggle the fan’s circuit

between on and off.

102 Beginner's Guide for Raspberry Pi Pico

Lesson 12 Intelligent Light

Light is an essential electrical appliance in life. Since Edison invented the electric light bulb

in 1879, the technology of electric light has been developing and becoming more and more

intelligent. We can switch a light on or off, control its brightness or color through a button; or

similarly, control them through touch or a knob. In addition to controlling lights through these

artificial ways, there are also intelligent ways, such as controlling them through sound, light and

other environmental signals so as to bring convenience to our lives.

The realization of sound-controlled light and light-controlled light would be impossible to

achieve without the help of a sound sensor and light sensor. First of all, let's review their functions.

Sound Sensor

The main component of the sound sensor is a microphone,

which can detect sound from the environment and convert it

into a corresponding analog signal output. It is widely used in

mobile phones, tape recorders, sound-controlled lighting, medical

equipment, noise detection, etc.

Sound Sensor

The light sensor integrates a high-sensitivity photodiode

LS06-S photoresistor to detect the light intensity in the

environment. When the light intensity increases, the resistance

across the photoresistor decreases, and the output analog quantity

increases. It is widely used in mobile phones, laptops, displays,

televisions, and other applications where the backlight brightness

of the screen needs to be automatically adjusted.

When the sound sensor and the light sensor are combined with lights, sound-controlled and

light-controlled intelligent lights can be achieved.In sound-controlled lighting, the sound wave

generated in the environment makes the electret film on the sound sensor vibrate, resulting in the

change of capacitance, and generating a small voltage. This voltage is then converted into 0-5V

voltage and accepted by the controller after ADC, so as to control the light on and off.

Sound Sensor and Light Sensor

Knowledge Base

103Lesson 12 Intelligent Light

In light-controlled lighting, the photoresistor of the light sensor adjusts the resistance value

according to the light intensity in the environment. When the light intensity is larger, the resistance

value decreases and the analog value of the light sensor output is larger. We can control the light

on or off or brightness according to this value.

In this lesson, we will use the RGB LED (ws2813 mini) instead of a simple LED, which can be

programmed for a full-color display and different light effects.

When we set RGB LED to display different colors, we only need to set the values of red (R),

green (g), and blue (b) respectively. The red, green and blue color channels are divided into 256

levels of brightness, that is, 0-255. The value of 0 is the least bright, which is synonymous with

turning off the light, while the most bright at the value of 255. The common color values are listed

below:

In previous lessons, we have learned data types such as Number and String. In this lesson, we

will introduce the other two data types: List and Tuple.

List

List is a common data type in Python. It is a built-in variable sequence to store any number

and any type of data set. It is created as follows:

Above, we defined tuples for different colors to store corresponding color data. A new data

type is introduced here — tuple. Do you know what it is and how to use it?

RGB LED (ws2813 mini)

List and Tuple

104 Beginner's Guide for Raspberry Pi Pico

Tuple

Tuple is similar to List. The difference between them is that the element of Tuple cannot be

modified, and List uses square brackets while Tuple uses parentheses. Tuple is also created simply

by adding elements in parentheses and separating them with commas. After a Tuple is created, we

can access the values in the Tuple.

Practice & Operation

In the Introduction to Electronic Hardware, we mainly used the LED, which only has a single

color. We can control the brightness of the light through the program, but we cannot change the

color to present more diverse effects. In Project 1, we will control the RGB LED (ws2813 mini) to

display different colors in turn.

Hardware Connection

In this project, the electronic hardware we need to use

is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - RGB LED (WS2813 Mini)

Connect the Pico and the Grove Shield, use a Grove

data cable to connect the RGB LED to D18.

Project 1: Control RGB LED to Display Different Colors in Turn

105Lesson 12 Intelligent Light

After defining the colors, create a Tuple named COLORS to collect all the colors that need to

be displayed.

Finally, define the RGB LED, traverse all the color elements in the COLORS Tuple through the

“for" statement, and display them on the RGB LED. In order to display each color clearly, we will

buffer them with a delay.

Next, define the display color of the RGB LED. We have listed the codes of common colors. If

you want other colors, you can find them in the RGB Color Code List.

Write a Program

To interface with the new WS2813 RGB LED module, we will need a new library ws2812.

py(2kB) to control the RGB LED. After downloading the library file and saving it in Pico, we can

start to introduce the function library we need.

The functions used in the ws2812 library are as follows:

• pixels_fills() — RGB LED fill in color

• pixels_show() — RGB LED show color

First, introduce the function library that we need:

https://www.rapidtables.com/web/color/RGB_Color.html
https://www.yuque.com/attachments/yuque/0/2021/py/2746511/1622704794593-95ba2ad3-0a1e-455e-9a81-0933e6593261.py?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdq344v
https://www.yuque.com/attachments/yuque/0/2021/py/2746511/1622704794593-95ba2ad3-0a1e-455e-9a81-0933e6593261.py?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdq344v

106 Beginner's Guide for Raspberry Pi Pico

Use a USB cable to connect Pico to the computer, click the “run" button to save the program

to any location. Now, you can see the RGB LED displays different colors.

Control RGB LED to Display Different Colors in Turn.mp4 (5.4 MB)

The complete program is as follows:

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622705722837-d75bc038-668b-4614-bac1-7444c73e02ce.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdq344v

107Lesson 12 Intelligent Light

After knowing how to control the RGB LED, we can start to make an intelligent light. The

effect we want to achieve is a combination of light control and sound control. When the light

brightness is less than a certain value, the light turns on and displays as white; otherwise, the

sound sensor will start to work. When the detected analog signal value is greater than a certain

value, the red light turns on; otherwise, the green light turns on. Besides lighting, the light can also

be used as a noise warning device.

Hardware Connection

In this project, the electronic hardware we

need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - RGB LED (WS2813 Mini)

• Grove - Light Sensor

• Grove - Sound Sensor

Connect the Pico and the Shield, use a

Grove data cable to connect the light sensor to

A0, sound sensor to A1, and RGB LED to D18.

Write a Program

First, introduce the library, and define the

pins of the light sensor, the sound sensor and

the RGB LED.

Project 2: Intelligent Light

108 Beginner's Guide for Raspberry Pi Pico

The figure below shows the data collected by the light sensor. The range of values is between

0-65535. Do you remember why it is 65535? In this program, we use read_u16() to read the

analog value returned by the pin, where u16 refers to an unsigned binary integer up to 16 bits.

Since the maximum value of the 16-bit binary integer is 1111111111111111, we arrive at 65535

after conversion to decimal form.

However, the value range of RGB LED is 0-255. We will need to divide the value read by 256

to combine the inputs of the light sensor, the sound sensor and the output of the RGB LED. Thus,

we will use “if……else" to judge the value detected by light sensor and sound sensor. Here, we

set that when the value detected by the light sensor is less than 80, the light turns on, and the

displays white; otherwise, the sound sensor starts to work. When the value detected by the sound

sensor is greater than 50, the red light turns on for warning; otherwise, the green light turns on.

Next, we use read_u16() to read the values of the light sensor and the sound sensor, store

them in the “light" and "noise" variables respectively. Then, we use the print() function to display

the values in the Shell area.

109Lesson 12 Intelligent Light

The complete program is as follows:

110 Beginner's Guide for Raspberry Pi Pico

Running this part of the program, we find that the sound value returned in the Shell area is

now stable, and we can perform the subsequent conditional evaluation. We can divide the sound

range and the corresponding prompt color into red, yellow and green to make a more detailed

distinction. The complete program is as follows:

Use “for" to loop the value process 1000 times and calculate the average of the 1000 values.

To calculate the average, simply add the values of all the collected data and divide it by the

number of samples collected. Here we use the addition assignment operator “+=" to calculate the

sum of 1000 sound data, and then divide by 1000. The reference program is as follows:

Running the program, we find that the effect of the light sensor is as expected, but the effect

of the sound sensor appears to be unstable. Amend print(light) to print(noise), and print the value

detected by the sound sensor in the Shell area. As shown in the figure below, we find that the

value returned by the sound sensor is unstable, and 0 appears frequently. At this time, we will

need to process the data by taking 1000 data samples and calculating the average value.

111Lesson 12 Intelligent Light

Running the program, we can find that the lighting part and the noise warning part are all

successfully realized.

Intelligent Light.mp4 (17.2 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622706350526-901acb16-9525-4dc1-93cf-a960b091f43b.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fdq344v

112 Beginner's Guide for Raspberry Pi Pico

In Project 1, we displayed different colors in turn by controlling the RGB LED. In the process,

we called the functions set in the ws2812 library. There are other light effects in this library; let's

try to run the following code to see what happens.

Thinking Expanding

113Lesson 12 Intelligent Light

114 Beginner's Guide for Raspberry Pi Pico

Lesson 13 Automatic Door

An automatic door. You arrive in front of the door and it opens automatically. Isn’t it

convenient? Well, that’s what we’re going to achieve this lesson. Looking back, we haven’t

touched on any electronic module that can detect the human body or actuate the door’s motion.

At the same time, a typical motor can rotate, but its speed is too fast and difficult to control for

opening or closing a door. What other electronic modules should we use to achieve the effect of

an automatic door?

A PIR Motion Sensor is a passive infrared sensor, which is used to detect whether people or

animals are moving in its detection range. When the sensor is idle, the infrared intensity emitted

by objects within the detection range of the sensor, such as rooms, walls and tables, is almost

constant; When people or animals pass by, the infrared intensity

detected by the sensor changes. By detecting these changes, the

sensor is able to determine whether people or animals are or have

passed by. This sensor is often used in the security alarms, motion

detection, intelligent switches and robotics. Note that the maximum

detection distance of the PIR sensor is 3m to 5m, with an optimal

detection distance of about 2m.

In addition to PIR Motion Sensor the Servo is our indispensable tool for creating an automatic

door. A servo is a DC motor with a gear and feedback system, whose position can be controlled

accurately. It is also called a servo motor, and often used

in control systems that need angular change that can be

maintained, such as robotics equipment. In the automatic door

project, we can sense whether anyone is approaching through

PIR Motion Sensor, send the signal to Servo to control its

rotation, and finally drive the door to a fixed position. When

people leave, the Servo can then close the door.

PIR Motion Sensor

Servo

Knowledge Base

115Lesson 13 Automatic Door

When we need to control the Servo rotation, we need to control the output to the Servo

through a PWM signal. The duty cycle of the PWM directly determines the rotation position of the

Servo output shaft. The figure below shows the relationship between different pulse signals and

the Servo rotation angle when the frequency is 50 Hz.

However, the pulse of different Servo models may be different. The frequency of our Servo

is 100Hz, and the relationship among the corresponding pulse width, rotation angle and duty_u16

value are as follows:

Next, we will try to control the Servo by PWM signal.

Practice & Operation

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

Project 1: Control Servo

116 Beginner's Guide for Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Servo

Use a Grove data cable to connect Servo to D20. According to the table above, we will try to

make the Servo turn back and forth between 45° and 90° .

Write a Program

First, define the required libraries and define the Servo pin.

Next, rotate the Servo from 0° to 180° ten times using a for-loop. The complete program is

as follows:

117Lesson 13 Automatic Door

Running the program, we can see the Servo turns back and forth between 0° and 180° for

ten times, which is the effect we want. If we want to control Servo to other angles, we will need

to calculate the corresponding value beforehand. If we want to use Servo in other projects, we will

also need to redefine the function and the corresponding value. It doesn't seem convenient. For

this, we need function libraries. In short, a library file is a file that contains all the functions and

variables you define. It can be introduced by other programs to use the functions in the library file.

In previous lessons, we used a lot of standard libraries of MicroPython such as machine and utime,

and third-party libraries developed by users such as lcd1602 and dht11. In this lesson, we will

instead learn to write a simple library file for the Servo to define its pin and rotation angle.

• Define class

In short, a class is used to describe a collection of objects with the same properties and

methods. It defines the properties and methods common to all objects in the collection. In Python,

classes are defined by using “class", and the class name ends with a colon. For example, in

previous lessons, we introduced the Pin class in the machine library, which is the standard library

of MicroPython. This class contains all the functions related to Pin. As shown below, we define a

class of Servo.

•Constructors

Next, we use “def __init__()" to add a constructor to the Servo class. It can contain multiple

parameters. When we need to refer to a variable in the function, we need to pass in the value

of the parameter through the function body itself. Therefore, we need to set the parameter in

the function body first. For example, the function of our constructor below is to set a pin as the

pin of the output PWM signal, so the parameter we need to introduce in the function body is the

pin number. In addition to “pin", we also introduce a parameter called “self". Self represents the

instance of a class, not the class itself. This is also the difference between a class function and an

ordinary function.

Next, we define the “turn" function to calculate the rotation angle “val" of the Servo. In this

function, we output the PWM signal to the Servo through freq(), and output the analog value

to the Servo by using the duty_u16() function to control its rotation. Note that the analog value

is calculated by the formula: val/180*13000+4000. We need to convert the string or number

calculated by the formula into the integer through the int() function.

118 Beginner's Guide for Raspberry Pi Pico

The completed library file is as follows:

After completing the library file, we name it “servo.py" and store it in Pico. Then we can call

the functions in the library directly. Modifying the program of Project 1 as follows, we can input

the rotation angle of Servo, run the program, and watch the magic happen!

Control Servo.mp4 (18.8 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622708682032-c9975356-d72b-45ee-9087-773e879390fb.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Foggmga

119Lesson 13 Automatic Door

Next, we will use the PIR Motion Sensor to control the Servo to realize the automatic door.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove – Servo

• Grove – PIR Motion Sensor

Connect the PIR Motion Sensor to D18, and connect the Servo to D20.

Project 2: Control Servo Rotation with PIR Motion Sensor

120 Beginner's Guide for Raspberry Pi Pico

Write a Program

First, introduce the required library, and define the pins of the Servo and the PIR Motion

Sensor. Here, we refer to the newly built servo library.

There are only two states of the PIR Motion Sensor, triggered and not triggered. Therefore,

we only need to judge whether the returned value is 1. If so, we print “Motion Detected" in the

Shell area to indicate that the sensor is triggered.

When the Servo turns to 160° , it means that the door is open. After waiting for 10 seconds,

the door will close automatically. The complete program is as follows:

Run the program, save it in any location of the computer. Wave your hand around the PIR

Motion Sensor to see the effect of the Servo rotation.

Control Servo Rotation with PIR Motion Sensor.mp4 (13.8 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622710734513-a43261bd-6187-4c86-b62b-2ddc918e5ed7.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Foggmga

121Lesson 13 Automatic Door

In Project 1 and 2, we controlled the Servo rotation to the desired angle by writing the analog

value to the Servo pin. Can you try to write a program to make the Servo gradually rotate from 0°

to 180° ?

Thinking Expanding

122 Beginner's Guide for Raspberry Pi Pico

Lesson 14 Welcome Device

In this lesson, we will summarize the projects of this chapter and explore new projects

through different combinations of electronic hardware. We will also prepare for creating your own

projects by consolidating the creation and use of software libraries through practice.

Through the study of this chapter, we have put electronic hardware and programming

knowledge to practice in solving some practical problems. First of all, let's review what projects

we have done and what functions we have built!

There is a lot we can do by combining different sensors and actuators. For example, LEDs

can be used as lighting, but also as warning lights or reminder devices; buzzers can be used

to play music, but serve as alarm devices. Combining buzzers with LEDs, we can achieve more

effective outcomes with both sound and light. Therefore, we should aim to have a more flexible

understanding of different electronic modules. Try to expand or transform the projects in the

above table and fill in the following:

Knowledge Base

123Lesson 14 Welcome Device

Here’s an example: We can add a welcome feature to our automatic door project.

Now, let’s work together to realize the project.

Practice & Operation

The difficulty of this project is in programming the buzzer to play the welcome music. Looking

back at Lesson 8, we need to adjust the frequency and duty cycle of the PWM signal to control

the passive buzzer, and we also need to set the seven basic notes individually. Like before, it

would greatly simplify our code to use custom functions for

each note. In this lesson, we will further simplify the program by

encapsulating the functions of notes into a library.

Project 1: Play Welcome Music with Buzzer

Hardware Connection

In this project, the electronic hardware we need to use is

as follows:

• Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Passive Buzzer

Plug the Pico and the Shield, use a Grove data cable to

connect the buzzer to A1.

124 Beginner's Guide for Raspberry Pi Pico

Write a Program

First, create a buzzer library. In it, we define the PWM pin and seven basic notes of the buzzer

as follows:

After creating the library file, name it “buzzer.py" and save it in the Pico. Now, you can call

the buzzer library to play music.

Let's play out a single line of of Jingle Bells. The program is as follows:

125Lesson 14 Welcome Device

Run the program and listen, does it sound right?

Play Welcome Music with Buzzer.mp4 (13.9 MB)

Project 2: Welcome Device

Next, we will realize the function of the welcome device. When we detect someone

approaching, the Servo should turn to open the door, the LCD should display “welcome", and the

buzzer should finally play the welcome music.

Hardware Connection

In this project, the electronic hardware we need to use is as follows:

• Raspberry Pi Pico

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622712004650-ea57b26e-89a0-4845-8a96-027bd45d5a77.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fgx5fzx

126 Beginner's Guide for Raspberry Pi Pico

• Grove Shield for Pi Pico

• Grove - Passive Buzzer

• Grove - 16x2 LCD

• Grove - Servo

• Grove - PIR Motion Sensor

Connect the buzzer to A1, connect the PIR Motion Sensor to D18, connect the Servo to D20,

and connect the LCD to I2C1.

Write a Program

First, introduce the libraries that we need to use, including the machine and utime standard

libraries, lcd1602, servo, and the buzzer library we just created. Define the pins of the modules we

want to use.

127Lesson 14 Welcome Device

Next, we use the “if" statement to evaluate the state detected by the PIR Motion Sensor.

When a person is detected, the Servo rotates 160° to open the door, the LCD displays “welcome",

and the buzzer starts to play the welcome music.To achieve our welcome sequence, all we have to

do is combine the steps that we have learned in the previous lessons. The complete program is as

follows:

128 Beginner's Guide for Raspberry Pi Pico

After completion, save the program in any location of the computer, move your hand around

to the PIR Motion Sensor, and test the effect of the welcome device.

Welcome Device.mp4 (27.6 MB)

https://www.yuque.com/attachments/yuque/0/2021/mp4/2746511/1622716669493-7e604395-1fe2-47b7-b6f2-9967b2f73585.mp4?from=https%3A%2F%2Fwww.yuque.com%2Ftinkergen_helper%2Fpi-pico%2Fgx5fzx

129Lesson 14 Welcome Device

In this lesson, we expanded the automatic door project by using what we have learned before

to complete the function of the welcome device. Next, try to realize the project you conceptualized

on your own!

Thinking Expanding

130 Beginner's Guide for Raspberry Pi Pico

Unit 4
Expansion Projects

131Lesson 14 Welcome Device

132 Beginner's Guide for Raspberry Pi Pico

Lesson 15 Create Your Own Projects

In previous lessons, we have learned a great deal of knowledge surrounding the Pico and

supporting electronic hardware, in addition to programming with Thonny. At this point, we have

mastered the basic programming language of MicroPython and applied it through various projects.

Congratulations! You are now already have the hard skills to be a maker. However, it is now time

to develop your soft skills as a maker — to know how to design a prototype product and create

your own project!

Staying Curious — Where Does Inspiration Come From?

“I recall that when I was young, I was able to open my eyes to the sun and notice the most

subtle things. When I saw small things, I would observe their texture carefully, so I often felt the

joy beyond the things themselves."When we were young, we were curious about the world – about

the scent of flowers, the texture of soil, about teaching and interacting with others. However,

as we grow older, our curiosity gradually shrank. Although there were more and more ways to

get knowledge, we gradually lost the desire to actively explore, instead passively accepting new

experiences. Yet there remains a group of people who still maintain a strong curiosity, who are

good at discovering problems in life, and like to explore. They can be engineers, programmers,

designers, teachers, singers, and the most creative people in their industry. They are makers.

Makers are people who have a strong curiosity and imagination, love technology, and are keen on

practicing it. They can live and work through

technology, turn imagination into reality, and

are willing to share and communicate.

Returning to the question of how to

design a prototype product, start by carefully

recalling the little things in your life. For

example, you may dirty your clothes if you

walk outdoors on a rainy day, but is there any

way to solve it? Just like Newton was hit on

the head by an apple, inspiration often comes

from our life when we least expect it. Only by

keeping our curiosity about the things around

us can we seize these fleeting inspirations,

explore deeply, and put in efforts towards a

good creation.

(The picture shows students from Shenzhen Experimental High School exploring the principle of Tesla coil)

133Lesson 15 Create Your Own Projects

From Divergence to Focus — Precise Positioning
There can be a lot of inspiration that you can play with at your own discretion. But

for prototype products, your idea may require some precise positioning. One good method

to approach this is, however, is the Empathy Map.The Empathy Map is a good way to find

requirements. In short, the Empathy Map directly depicts what users think, feel, see, say, do,

and hear in a visual drawing. It helps us to think for users in different scenarios, open our minds,

explore the user's deep motivation, and help us to discover the real needs.

It is recommended for a large number of people to participate in the Empathy Map together.

It is mainly divided into the following parts:

SAYS

What does he/she usually say?

What do they need to say to others?

How would they express themselves?

THINKS

How does he/she consider the current situation?

What does he/she think of it?

DOES

What does he/she do at work?

FEELS

What does he/she feel?

about work (or current affairs)

You can try this game with your friends. Determine an object, which can be “pet", “old man",

“programmer", “policeman", “cleaner", etc. Then, focus on the problem through the Empathy Map

– explore real needs so as to determine the positioning of the product.

134 Beginner's Guide for Raspberry Pi Pico

Designers Are Not People Who Can Draw — Design Thinking in
Prototype Production

When we talk about design, we often have a narrow impression that design is drawing. That

is true to a certain degree, but in a broad sense, all targeted and planned creative activities are

“design", which can include art design, industrial design, website design, product design, and

so on. It contains a mode of thinking, a mode of problem-solving based on people's real needs.

Unlike the general straight-line path of finding and solving problems, it explores every link. Taking

product design as an example, from the beginning of finding problems, we should stand in the

perspective of the user, understand the user through empathy, listen to the real voice of the

user, and form the user portrait. Once we make clear the user's requirements and determine the

product's positioning, then can we begin on prototype design. In this process, we then need to

carry out the selection of hardware, designing of software functions, materials and packaging,

so as to form our preliminary product prototype.Taking the Intelligent Fan in the project practice

unit as an example, we temporarily positioned the product as a small intelligent fan in a desktop

setting. During the hardware selection and construction, we first selected the button to control the

rotation of the Mini Fan, but decided that such manual control was too primitive. Therefore, we

used the Temperature & Humidity Sensor instead of the button. When the temperature exceeds

the comfortable temperature range, the fan can be turned on automatically. Similarly, you can add

the LCD to display the current temperature, or also add a PIR Motion Sensor to make the fan run

only when someone is nearby to save energy.

135Lesson 15 Create Your Own Projects

As can be seen from the above table, even for the hardware selection of prototype products,

many factors can be considered and will contribute to your final design. Then, we have to devise

the entire program to achieve our intended purpose in software.

So far, the functional part of the prototype product is completed. Next is the design of the

external appearance, including the materials and and construction of structures. For example,

we often use 3D printing technology or laser cutting technology to design and manufacture a

housing for our products. Of course, we can also use common materials in life, such as hardboard

or cardboard. Thus, even if we don't know how to use digital tools, we can still quickly build

prototypes. The following picture shows various prototypes that have been made of different

materials.

136 Beginner's Guide for Raspberry Pi Pico

Go Through Fire and Water — Testing and Optimization of Prototype
Works

After completing our prototype, testing and optimization are also very important. We need to

verify whether its function is realized and whether it meets the original design requirements. This

process should involve the target users as much as possible and lead into further improvements

through their feedback. In the process of testing, it is normal to even rework the idea from

scratch. However, it is only in this way that we can identify the gaps in our initial solution and work

towards a better prototype that effectively serves the needs of our users.

Create Your Own Project

Next, try to create your own project based on what you learned in this and previous lessons,

and develop a corresponding project scheme according to the guidelines below. After the scheme

is formed, you can begin work on your project, in preparation of the presentation that will take

place in the next lesson.

137Lesson 15 Create Your Own Projects

138 Beginner's Guide for Raspberry Pi Pico

Lesson 16 Project Presentation

In this lesson, we will share and show your projects in the form of a project presentation. You

can showcase your project and the story behind it through posters, PPTs or videos. Through this

process, we can consolidate the key knowledge of of previous lessons by immersing in discussion

and communication, and learn to share, and think and explore problems from different angles.

If this material is used in schools, institutions, societies or other educational settings, teachers

or counselors are encouraged to organize a project presentation. Students can work in groups

on different projects, and receive feedback from mentors after the presentation. Teachers may

also wish to invite students' parents and other school teachers to form an expert group to provide

invaluable feedback to students.

Practice & Operation

Rules of Presentation

Preparation before Presentation

Time limit: 3 minutes (timekeeper shall remind the time)

Form: PPT or animation + explanation

Content: explain according to the content on PPT, including:

1. Product name and picture

2. Product design concept

3. Product features

4. Product structure or details

5. Product functions

6. Question and answer

1. Organizer of the presentation & on-site host: 1

Timekeeper: 1

Teller: 3

Photographers: 2

2. Material personnel

Material requirement: computer, page flipper

Classroom arrangement: the arrangement of tables, chairs and benches

Data collection: PPT collection and display

Vote making: expert vote making

Prize preparation: prepare prize for 6 awards

139Lesson 16 Project Presentation

Presentation

Selection Rules

Award References

1.Product Showcase

Each group explains and shows the products in turn under the arrangement of the host.

2.Expert Comments

The invited experts and teachers comment on the performance of the group.

3. Selection

After all products are showed, the selection shall be carried out.

4. Award Presentation

According to the results of the vote, the awards of Most Creative, Most Practical, Most

Investable, Most Technological, Best Team, and Future Star are selected and presented.

5. Speech by Student Representatives

Invite the representatives of 1–2 winning groups to share.

1. If there are 6 awards in total, then each group has 6 ballots to vote. However, the ballots should

represent the opinions of the group instead of individuals, so please take the opinions of all the

group members into consideration before making a collective vote.

2. Expert Ballots

Each expert group has 6 ballots, and each ballot is equivalent to 5 ballots of the ordinary

group. These ballots are also accumulated into the total number of ballots.

3. Cumulative ballots

The ballots shall be counted by the teller and announced in time.

If this course is used by individuals or enthusiasts, you can also publish your designed

projects on social media or maker community platforms, such as Instructable or hackster.io.

Most Creative Award: the product concept may not have been completed at this point, but the

idea is bold and creative, and is likely to be realized in the future;

Most Practical Award: high degree of completion, comprehensive use of the knowledge learned,

and practical product design;

Most Investable Award: creative marketing, with clear business model market strategy;

Most Technological Award: product function design and on-site demonstration are grounded on

cutting-edge science and technologies;

Best Team Award: good teamwork, clear task division, mutual help and cooperation, smooth

product showing, and good product completion;

Future Star Award: team and project with strong potential, with ideas and executive abilities to

show and realize their ideas well;

https://www.instructables.com/
https://www.hackster.io/

140 Beginner's Guide for Raspberry Pi Pico

Of course, we would also love to have you share your project with us.

Email: contact@chaihuo.org

141Lesson 16 Project Presentation

Course Developers

CONTACTS

This course was co-authored by the following SeeedStudio employees:

Authors:Yimeng Shi, Haixu Liu

Designer:Yihui Meng

Proofreaders:Lei Feng,Jonathan Tan

Tel: +86-0755-86716703

Address: 1002, G3 Building, TCL International E City, 1001 Zhongshan Park Road, Nanshan

District, Shenzhen

General：contact@chaihuo.org

Tech Support: techsupport@chaihuo.org

www.tinkergen.com

www.seeedstudio.com

mailto:contact@chaihuo.org
mailto:techsupport@chaihuo.org
http://www.tinkergen.com
http://www.seeedstudio.com

142 Beginner's Guide for Raspberry Pi Pico

	 Preface
	Unit 1 Getting started
	Lesson 1 Introduction to Hardware
	Lesson 2 Introduction to Software

	Unit 2 Hardware and Programming
	Lesson 3 First Project: Light up LED
	Lesson 4 Hello World in Electronic Hardware Programming: Blink
	Lesson 5 Digital Signal in Circuit — Playing with LED
	Lesson 6 Analog Signal in Circuit (1) — Rotary Angle Sensor
	Lesson 7 Analog Signal in Circuit (2) — the Use of PWM
	Lesson 8 Make Buzzer Sing — the Use of Function
	Lesson 9 Journey of Data Visualization — the Use of LCD

	Unit 3 Project Practice
	Lesson 10 Temperature and Humidity Monitoring
	Lesson 11 Intelligent Fan
	Lesson 12 Intelligent Light
	Lesson 13 Automatic Door
	Lesson 14 Welcome Device

	Unit 4 Expansion Projects
	Lesson 15 Create Your Own Projects
	Lesson 16 Project Presentation

