Expansion-Sonar:bit

Contents

- 5.1. Introduction
- 5.2. Features
- 5.3. Parameter
- 5.4. Outlook and Dimensions
- 5.5. Quick to Start
- 5.6. Programming
- 5.7. Result
- 5.8. Exploration
- 5.9. FAQ
- 5.10. Relevant Files

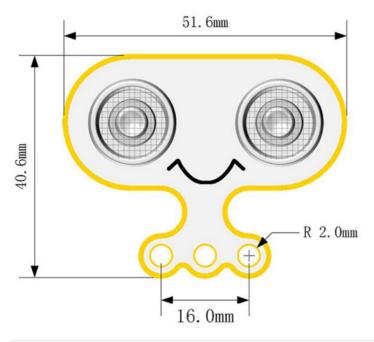
5.1. Introduction

Sonar:bit is a 3-wire ultrasonic module with the working voltage between 3-5V. It is available to be used to 3.3V or 5V micro-controller system. With only one 3-wire(GVS) cable, it can work properly. Compared to the normal 4-wire ultrasonic module, it has saved one IO port.

The measurement range of sonar:bit is 4cm-400cm. It can output stable and accurate measurement data with ± 1 cm tolerance only.

It can connect to the Ring:bit with an expansion board.

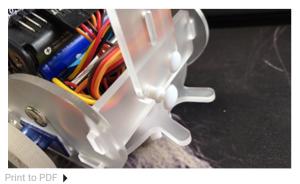
5.2. Features

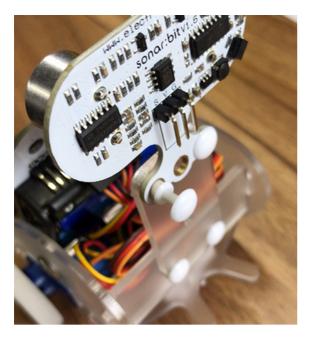

Input voltage:3V~5V and can be driven by micro:bit directly.

Standard 3-wire GVS connecotr, which occupies 1 IO port only.

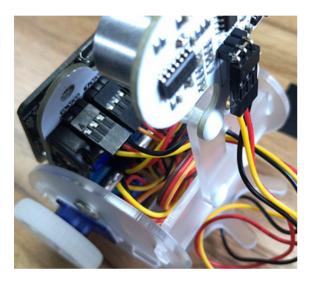
5.3. Parameter

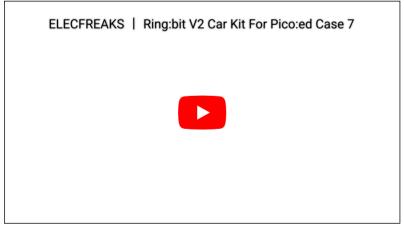
Item	Parameter	Note
Name	Ring:bit Car v2 Sonar:bit	
SKU	EF04089	
Working Voltage	DC 3-5V	
Connections	3pin GVS Connection	
Output signal	Analog	
Measurement	4~400cm	
Size	40.60×51.60mm	
NW	12g	


5.4. Outlook and Dimensions


5.5. Quick to Start

Hardware Connections


Connect the acrylic transition board to the back board with the rivets.



Connect the Sonar:bit to the other side of the acrylic transition board with rivets.

Connect the Sonar:bit to the Ring:bit breakout board with a 3-pin wire.

5.6. Programming

Preparation for Programming: Info

Samples Code

```
# Import modules that we need
import board
from ringbit import *
# Set the pins of both wheels
ringbit = Ringbit(board.P1, board.P2)
# Change the speed in accordance with the distances detected by the sonar:bit
while True:
    if ringbit.get_distance(board.P0, Unit.cm) > 20:
        ringbit.set_speed(100, 100)
else:
        ringbit.set_speed(0, 0)
```

Details of the program

1.Import the modules that we need. board is the common container, and you can connect the pins you'd like to use through it; ringbit module contains classes and functions for <u>Ring:bit</u> smart car operations.

```
import board
from ringbit import *
```

2.Set the pins of the servos

```
ringbit = Ringbit(board.P1, board.P2)
```

3. While true, set the speed to be controlled by the distance value given by the sonar:bit

```
while True:
    if ringbit.get_distance(board.P0, Unit.cm) > 20:
        ringbit.set_speed(100, 100)
    else:
        ringbit.set_speed(0, 0)
```

5.7. Result

The Ring:bit car drives normally when there are no obstacles, stops when there are obstacles, and continues to drive when the obstacles leave.

5.8. Exploration

5.9. FAQ

5.10. Relevant Files

By ELECFREAKS Team © Copyright 2022, ELECFREAKS Team.