

School of Computing

Department of Computer Science and Engineering

UNIT 1- ARDUINO PROGRAMMING FOR

IoT BOARDS - SCSA1407

COURSE OBJECTIVES

• To program Arduino to control lights, motors, and other devices.

• To learn Arduino's architecture, including inputs and connectors for add-on devices.

• To add third-party components such as LCDs, accelerometers, gyroscopes, and GPS

trackers to extend Arduino's functionality.

• To understand various options in programming languages, from C to drag-and-drop

languages.

• To test, debug, and deploy the Arduino to solve real world problems.

COURSE OUTCOMES:

CO1: Recall the basics of sensors, its functioning.

CO2: Execute basic and advanced assembly language programs.

CO3: Learn the ways to interface I/O devices with processor for task sharing.

CO4: Recall the basics of co-processor and its ways to handle float values by its instruction

set.

CO5: Recognize the functionality of micro controller, latest version processors and its

applications.

CO6: Acquire design thinking capability, ability to design a component with realistic

constraints, to solve real world engineering problems and analyse the results.

UNIT 1: Introduction to sensors 9 hours

Transducers, Classification, Roles of sensors in IOT, Various types of sensors, Design of

sensors, sensor architecture, special requirements for IOT sensors, Role of actuators, types of

actuators.

UNIT 2: Hardware 9 hours

Physical device – Arduino Interfaces, Hardware requirement for Arduino, Connecting remotely

over the network using VNC, GPIO Basics, Controlling GPIO Outputs Using a Web Interface,

– Programming, APIs / Packages- Quark SOC processor, programming, Arduino Boards using

GPIO (LED, LCD, Keypad, Motor control and sensor)

UNIT 3: Platforms 9 hours

History - Creative Coding Platforms - Open Source Platforms – PIC - Arduino, Sketch,

Iterative coding methodology – Python Programming - Mobile phones and similar devices -

Arm Devices - Basic Electronics (circuit theory, measurements, parts identification) Sensors

and Software: Understanding Processing Code Structure, variables and flow control,

Interfacing to the Real World

Unit 4 Programming an Arduino IoT Device 9 hours

Preparing the development environment (Arduino IDE), Exploring the Arduino language

(C/C++) syntax, Coding, compiling, and uploading to the microcontroller, Working with

Arduino Communication Modules: Bluetooth Modules, WiFi Modules and I2C and SPI,

Interfacing arduino and Blynk via USB : LED Blinking, Controlling a Servomotor.

Unit 5 Programming ESP 8266 Module 9 hours

ESP8266 WiFi Serial Module: Overview, Setting Up the Hardware, Interfacing with Arduino,

Creating an IoT Temperature and Humidity Sensor System, Overview of DHT-22 Sensor,

Interfacing the Hardware: Arduino, ESP8266 WiFi Module, and DHT-22 Sensor, Checking

Your Data via ThingSpeak, Connecting Your Arduino Set-up to Blynk via WiFi

 Max 45 hours

SCSA1407- ARDUINO PROGRAMMING FOR IoT BOARDS

UNIT 1: Introduction to sensors

Transducers, Classification, Roles of sensors in IOT, Various types of sensors, Design of

sensors, sensor architecture, special requirements for IOT sensors, Role of actuators, types of

actuators.

1. TRANSDUCER

The transducer changes the physical quantity into an electrical signal. It is an electronic device

which has two main functions, i.e., sensing and transduction. It senses the physical quantity

and then converts it into mechanical works or electrical signals.

The transducer is of many types, and they can be classified by the following criteria.

1. By transduction used.

2. as a primary and secondary transducer

3. as a passive and active transducer

4. as analogue and digital transducer

5. as the transducer and inverse transducer

The transducer receives the measurand and gives a proportional amount of output signal. The

output signal is sent to the conditioning device where the signal is attenuated, filtered, and

modulated.

Fig. 1 Types of Transducer

https://circuitglobe.com/transducer.html

The input quantity is the non-electrical quantity, and the output electrical signal is in the form

of the current, voltage or frequency. The transducer is classified by the transduction medium.

The transduction medium may be resistive, inductive or capacitive depends on the conversion

process that how input transducer converts the input signal

into resistance, inductance and capacitance respectively.

1.1 Primary and Secondary Transducer

Primary Transducer – The transducer consists the mechanical as well as the electrical

devices. The mechanical devices of the transducer change the physical input quantities into a

mechanical signal. This mechanical device is known as the primary transducers.

Secondary Transducer – The secondary transducer converts the mechanical signal into an

electrical signal. The magnitude of the output signal depends on the input mechanical signal.

Example of Primary and Secondary Transducer

Consider the Bourdon’s Tube shown in the figure below. The tube act as a primary transducer.

It detects the pressure and converts it into a displacement from its free end. The displacement

of the free ends moves the core of the linear variable displacement transformer. The movement

of the core induces the output voltage which is directly proportional to the displacement of the

tube free end.

Thus, the two type of transduction occurs in the Bourdon’s tube. First, the pressure is converted

into a displacement and then it is converted into the voltage by the help of the L.V.D.T.

The Bourdon’s Tube is the primary transducer, and the L.V.D.T is called the secondary

transducer.

1.2 Passive and Active Transducer

The transducer is classified as the active and passive transducer.

https://circuitglobe.com/what-is-a-resistance.html
https://circuitglobe.com/what-is-a-inductance.html
https://circuitglobe.com/what-is-a-capacitance.html

Passive Transducer – The transducer which requires the power from an external supply source

is known as the passive transducer. They are also known as the external power transducer. The

capacitive, resistive and inductive transducers are the example of the passive transducer.

Active Transducer – The transducer which does not require the external power source is

known as the active transducer. Such type of transducer develops theirs owns voltage or

current, hence known as a self-generating transducer. The output signal is obtained from the

physical input quantity.

The physical quantity like velocity, temperature, force and the intensity of light is induced with

the help of the transducer. The piezoelectric crystal, photo-voltaic cell, tacho generator,

thermocouples, photovoltaic cell are the examples of the active transducers.

Examples – Consider the examples of a piezoelectric crystal. The crystal is sandwiched

between the two metallic electrodes, and the entire sandwiched is fastened to the base. The

mass is placed on the top of the sandwiched.

The piezo crystal has the special property because of which when the force is applied to the

crystal, they induce the voltage. The base provides the acceleration due to which the voltage is

generated. The mass applies on the crystals induces an output voltage. The output voltage is

proportional to the acceleration. The above mention transducer is known as the accelerometer

which converts the acceleration into an electric voltage. This transducer does not require any

auxiliary power source for the conversion of physical quantity into an electrical signal.

1.3 Analog and Digital Transducer

The transducer can also be classified by their output signals. The output signal of the transducer

may be continuous or discrete.

Analog Transducer – The Analog transducer changes the input quantity into a continuous

function. The strain gauge, L.V.D.T, thermocouple, thermistor are the examples of the

analogue transducer.

https://circuitglobe.com/thermistor.html

Digital Transducer – These transducers convert an input quantity into a digital signal or in

the form of the pulse. The digital signals work on high or low power.

1.4 Transducer and Inverse Transducer

Transducer – The device which converts the non-electrical quantity into an electric quantity

is known as the transducer.

Inverse Transducer – The transducer which converts the electric quantity into a physical

quantity, such type of transducers is known as the inverse transducer. The transducer has high

electrical input and low non-electrical output.

Examples of transducer

1. A mechanical force or displacement being converted into an electrical signal.

2. A thermistor reacts to temperature variations.

3. A photo cell changes in light intensity.

4. Measurement of electrical noise.

5. Telemetering system—when input and output are in electrical form.

Characteristics of Transducer

Sensitivity. It can be defined as the ratio of the incremental output and the incremental input.

While defining the sensitivity, we assume that the input-output characteristic of the instrument

is approximately linear in that range.

Range. The range of the sensor is the maximum and minimum values of applied parameters

that can be measured.

Precision. The concept of precision refers to the degree of reproducibility of a measurement.

In other words, if exactly the same value were measured a number of times, an ideal sensor

would output exactly the same value every time. But real sensors output a range of values

distributed in some manner relative to the actual correct value.

Resolution. The smallest difference between measured values that can be discriminated. For

example, it corresponds to the last stable figure on a digital display. This specification is the

smallest detectable incremental change of the input parameter that can be detected in the output

signal. Resolution can be expressed either as a proportion of the reading (or the full-scale

reading) or in absolute terms.

Accuracy. The accuracy of the sensor is the maximum difference that will exist between the

actual value and the indicated value at the output of the sensor. Again, the accuracy can be

expressed either as a percentage of full scale or in absolute terms.

Linearity. The linearity of the transducer is an expression of the extent to which the actual

measured curve of a sensor departs from the ideal curve.

Examples of transducer

1. A mechanical force or displacement being converted into an electrical signal.

2. A thermistor reacts to temperature variations.

3. A photo cell changes in light intensity.

4. Measurement of electrical noise.

5. Telemetering system—when input and output are in electrical form.

1.5 Characteristics of Transducer

Sensitivity. It can be defined as the ratio of the incremental output and the incremental input.

While defining the sensitivity, we assume that the input-output characteristic of the instrument

is approximately linear in that range.

Range. The range of the sensor is the maximum and minimum values of applied parameters

that can be measured.

Precision. The concept of precision refers to the degree of reproducibility of a measurement.

In other words, if exactly the same value were measured a number of times, an ideal sensor

would output exactly the same value every time. But real sensors output a range of values

distributed in some manner relative to the actual correct value.

Resolution. The smallest difference between measured values that can be discriminated. For

example, it corresponds to the last stable figure on a digital display. This specification is the

smallest detectable incremental change of the input parameter that can be detected in the output

signal. Resolution can be expressed either as a proportion of the reading (or the full-scale

reading) or in absolute terms.

Accuracy. The accuracy of the sensor is the maximum difference that will exist between the

actual value and the indicated value at the output of the sensor. Again, the accuracy can be

expressed either as a percentage of full scale or in absolute terms.

Linearity. The linearity of the transducer is an expression of the extent to which the actual

measured curve of a sensor departs from the ideal curve.

1.6 Transducer Types Characteristics

The characteristics of a transducer are given below that are determined by examining the o/p

response of a transducer to a variety of i/p signals. Test conditions create definite operating

conditions as closely as possible. The methods of computational and standard statistical can be

applied to the test data.

The characteristics of the transducer play a key role while selecting the appropriate transducer,

especially for a specific design. So knowing its characteristics is essential for suitable selection.

So transducer characteristics are categorized into two types like static and dynamic.

• Precision

• Resolution

• Sensitivity

• Drift

• Linearity

• Conformance

• Span

• Hysteresis

• Distortion

• Noise

• Linearity

• Sensitivity

• Resolution

• Threshold

• Span & Range

• Accuracy

• Stability

• Drift

• Repeatability

• Responsiveness

• Threshold

• Input & O/P Impedances

1.6.1 Static Characteristics

The transducer’s static characteristics are a set of act criteria that are recognized throughout

static calibration which means the explanation of the value of measurement through

fundamentally maintaining the calculated quantities because constant values change very

slowly.

For instruments, the set of criteria can be defined to calculate the quantities which are gradually

changing with time otherwise mostly constant that does not differ through time is known as

static characteristics. The characteristics include the following.

1.6.2 Dynamic Characteristics

The transducer’s dynamic characteristics relay toward its performance once the measured

capacity is a function of time which changes quickly with respect to time. Once these

characteristics rely on the transducer’s performance, then the measured quantity is basically

stable.

So these characteristics rely on dynamic inputs because they are reliant on their own parameters

& the character of the input signal. The dynamic characteristics of the transducer include the

following.

• Fidelity

• Speed of Response

• Bandwidth

• Dynamic Error

In general, both the characteristics of a transducer like static & dynamic will verify its

performance & specify how efficiently it can recognize preferred input signals as well as refuse

unnecessary inputs.

1.7 Transducer Types Applications

The applications of transducer types are discussed below.

• The transducer types are used in electromagnetic applications like antennas,

magnetic cartridges, hall-effect sensors, disk read & writes heads.

• The transducer types are used in electromechanical applications like accelerometers,

LVDT, galvanometers, pressure sensors, load cells, MEMS, potentiometers, airflow

sensors, linear & rotary motors.

• The transducer types are used in electrochemical applications like oxygen sensors,

hydrogen sensors, pH meters,

• The transducer types are used in electroacoustic applications like speakers,

piezoelectric crystals, microphones, ultrasonic transceivers, sonar, etc

• The transducer types are used in photoelectric applications like LED, photodiodes,

laser diodes, photoelectric cells, LDRs, fluorescent, incandescent lamps, and

phototransistor

• The transducer types are used in thermoelectric applications like thermistors,

thermocouples, Resistance Temperature Detectors (RTD)

• The transducer types are used in radio acoustic applications like Geiger-Muller

Tube, radio transmitters & receivers.

2. ROLE OF SENSORS

Different types of applications require different types of sensors to collect data from the

environment. This article takes a look at some common IoT sensors. In an Internet of Things

(IoT) ecosystem, two things are very important: the Internet and physical devices like sensors

and actuators. As shown in Fig. 1, the bottom layer of the IoT system consists of sensor

connectivity and network to collect information. This layer is an essential part of the IoT system

and has network connectivity to the next layer, which is the gateway and network layer.

Fig. 2 IoT Architecture Layers

The main purpose of sensors is to collect data from the surrounding environment. Sensors, or

‘things’ of the IoT system, form the front end. These are connected directly or indirectly to

IoT networks after signal conversion and processing. But all sensors are not the same and

different IoT applications require different types of sensors. For instance, digital sensors are

straightforward and easy to interface with a microcontroller using Serial Peripheral Interface

(SPI) bus. But for analogue sensors, either analogue-to-digital converter (ADC) or Sigma-

Delta modulator is used to convert the data into SPI output.

2.1 Types of sensors

All the parameters i.e. the Sensors (which give inputs to the Computers), the Computers (the

brains of the system) and the mechanics (the outputs of the system like engines and motors)

are equally important in building a successful automated system. Sensor as an input device

which provides an output (signal) with respect to a specific physical quantity (input). Sensor

means that it is part of a bigger system which provides input to a main control system (like a

Processor or a Microcontroller).

S.No Sensor Applications Technology

1. Inertial sensors

Industrial machinery,

automotive, human activity

MEMS and

Gyroscope

2.
Speed Measuring

Sensor

Industrial machinery,

automotive, human activity
Magnetic, light

3.
Proximity sensor

Industrial machinery,

automotive, human activity

Capacitive,

Inductive,

Magnetic, Light,

Ultrasound

4.
Occupancy sensor

Home/office monitoring

PassiveIR,

Ultrasound most

common

5.
Temperature/humidity

sensor

Home/office HVAC

control, automotive,

industrial

Solid state,

thermocouple

6. Light sensor
Home/office/industrial

lighting control

Solid state,

photocell, Photo

resistor,

photodiode

7.
Power (current)

sensor

Home/office/industrial

powermonitoring/control

Technology

Coil (Faraday’s

law), Hall effect

8.
Air/fluid pressure

sensor

Industrial

monitoring/control,

automotive, agriculture

Capacitive,

Resistive

9. Acoustic sensor

Industrial

monitoring/control, human

interface

Diaphragm

condenser

10. Strain sensor

Industrial

monitoring/control, civil

infrastructure

Resistive thin

films

In the first classification of the sensors, they are divided in to Active and Passive. Active

Sensors are those which require an external excitation signal or a power signal. Passive

Sensors, on the other hand, do not require any external power signal and directly generates

output response. The other type of classification is based on the means of detection used in the

sensor. Some of the means of detection are Electric, Biological, Chemical, Radioactive etc.

The next classification is based on conversion phenomenon i.e. the input and the output. Some

of the common conversion phenomena are Photoelectric, Thermoelectric, Electrochemical,

Electromagnetic, Thermo-optic, etc. The final classification of the sensors are Analog and

Digital Sensors. Analog Sensors produce an analog output i.e. a continuous output signal with

respect to the quantity being measured.

Digital Sensors, in contrast to Analog Sensors, work with discrete or digital data. The data in

digital sensors, which is used for conversion and transmission, is digital in nature.

Fig 3.Examples of Sensors

1.IR LED

It is also called as IR Transmitter. It is used to emit Infrared rays. The range of these

frequencies are greater than the microwave frequencies (i.e. >300GHz to few hundreds of

THz). The rays generated by an infrared LED can be sensed by Photodiode explained below.

The pair of IR LED and photodiode is called IR Sensor.

Fig 4. LED sensor

2.Photo Diode (Light Sensor)

It is a semiconductor device which is used to detect the light rays and mostly used as IR

Receiver. Its construction is similar to the normal PN junction diode but the working principle

differs from it. As we know a PN junction allows small leakage currents when it is reverse

biased so, this property is used to detect the light rays. A photodiode is constructed such that

light rays should fall on the PN junction which makes the leakage current increase based on

the intensity of the light that we have applied. So, in this way, a photodiode can be used to

sense the light rays and maintain the current through the circuit. Check here the working

of Photodiode with IR sensor.

Fig. 5 Photo diode

3.Proximity Sensor

A Proximity Sensor is a non-contact type sensor that detects the presence of an object.

Proximity Sensors can be implemented using different techniques like Optical (like Infrared or

Laser), Ultrasonic, Hall Effect, Capacitive, etc.

Fig .6 Proximity sensor

Some of the applications of Proximity Sensors are Mobile Phones, Cars (Parking Sensors),

industries (object alignment), Ground Proximity in Aircrafts, etc. Proximity Sensor in

Reverse Parking is implemented in this Project: Reverse Parking Sensor Circuit.

4.LDR (Light Dependent Resistor)

As the name itself specifies that the resistor that depends upon the light intensity. It works on

the principle of photoconductivity which means the conduction due to the light. It is generally

made up of Cadmium sulfide. When light falls on the LDR, its resistance decreases and acts

similar to a conductor and when no light falls on it, its resistance is almost in the range of

MΩ or ideally it acts as an open circuit. One note should be considered with LDR is that it

won’t respond if the light is not exactly focused on its surface.

Fig. 7 LDR

With a proper circuitry using a transistor it can be used to detect the availability of light. A

voltage divider biased transistor with R2 (resistor between base and emitter) replaced with an

LDR can work as a light detector.

5.Thermistor (Temperature Sensor)

A thermistor can be used to detect the variation in temperature. It has a negative temperature

coefficient that means when the temperature increases the resistance decreases. So, the

thermistor’s resistance can be varied with the rise in temperature which causes more current

flow through it. This change in current flow can be used to determine the amount of change

in temperature. An application for thermistor is, it is used to detect the rise in temperature and

control the leakage current in a transistor circuit which helps in maintaining its stability. Here

is one simple application for Thermistor to control the DC fan automatically.

Fig. 8 Thermistor

6.Thermocouple (Temperature Sensor)

Another component that can detect the variation in temperature is a thermocouple. In its

construction, two different metals are joined together to form a junction. Its main principle is

when the junction of two different metals are heated or exposed to high temperatures a

potential across their terminals varies. So, the varying potential can be further used to measure

the amount of change in temperature.

Fig. 9 Thermo couple

7.Strain Gauge (Pressure/Force Sensor)

A strain gauge is used to detect pressure when a load is applied. It works on the principle of

resistance, we know that the resistance is directly proportional to the length of the wire and is

inversely proportional to its cross-sectional area (R=ρl/a). The same principle can be used

here to measure the load. On a flexible board, a wire is arranged in a zig-zag manner as shown

in the figure below. So, when the pressure is applied to that particular board, it bends in a

direction causing the change in overall length and cross-sectional area of the wire. This leads

to change in resistance of the wire. The resistance thus obtained is very minute (few ohms)

which can be determined with the help of the Wheatstone bridge. The strain gauge is placed

in one of the four arms in a bridge with the remaining values unchanged. Therefore, when the

pressure is applied to it as the resistance changes the current passing through the bridge varies

and pressure can be calculated.

Strain gauges are majorly used to calculate the amount of pressure that an airplane wing can

withstand and it is also used to measure the number of vehicles allowable on a particular road

etc.

Fig .10 Strain Guage

8.Load Cell (Weight Sensor)

Load cells are similar to strain gauges which measure the physical quantity like force and give

the output in form of electrical signals. When some tension is applied on the load cell it

structure varies causing the change in resistance and finally, its value can be calibrated using

a Wheatstone bridge. Here is the project on how to measure weight using Load cell.

Fig 11.Load Cell

9.Potentiometer

A potentiometer is used to detect the position. It generally has various ranges of resistors

connected to different poles of the switch. A potentiometer can be either rotary or linear type.

In rotary type, a wiper is connected to a long shaft which can be rotated. When the shaft has

rotated the position of the wiper alters such that the resultant resistance varies causing the

change in the output voltage. Thus the output can be calibrated to detect the change its

position.

Fig 12.Potentiometer

10.Encoder

To detect the change in the position an encoder can also be used. It has a circular rotatable

disk-like structure with specific openings in between such that when the IR rays or light rays

pass through it only a few light rays get detected. Further, these rays are encoded into a digital

data (in terms of binary) which represents the specific position.

Fig 13.Encoder

11 Hall Sensor

The name itself states that it is the sensor which works on the Hall Effect. It can be defined as

when a magnetic field is brought close to the current carrying conductor (perpendicular to the

direction of the electric field) then a potential difference is developed across the given

conductor. Using this property a Hall sensor is used to detect the magnetic field and gives

output in terms of voltage. Care should be taken that the Hall sensor can detect only one pole

of the magnet.

Fig 14.Hall sensor

The hall sensor is used in few smartphones which are helpful in turning off the screen when

the flap cover (which has a magnet in it) is closed onto the screen. Here is one practical

application of Hall Effect sensor in Door Alarm.

12. Flex Sensor

A FLEX sensor is a transducer which changes its resistance when its shape is changed or

when it is bent. A FLEX sensor is 2.2 inches long or of finger length. Simply speaking the

sensor terminal resistance increases when it’s bent. This change in resistance can do no good

unless we can read them. The controller at hand can only read the changes in voltage and

nothing less, for this, we are going to use voltage divider circuit, with that we can derive the

resistance change as a voltage change.

Fig 15. Flex sensor

13.Microphone (Sound Sensor)

Microphone can be seen on all the smartphones or mobiles. It can detect the audio signal and

convert them into small voltage (mV) electrical signals. A microphone can be of many types

like condenser microphone, crystal microphone, carbon microphone etc. each type of

microphone work on the properties like capacitance, piezoelectric effect, resistance

respectively. Let us see the operation of a crystal microphone which works on the

piezoelectric effect. A bimorph crystal is used which under pressure or vibrations produces

proportional alternating voltage. A diaphragm is connected to the crystal through a drive pin

such that when the sound signal hits the diaphragm it moves to and fro, this movement changes

the position of the drive pin which causes vibrations in the crystal thus an alternating voltage

is generated with respect to the applied sound signal. The obtained voltage is fed to

an amplifier in order to increase the overall strength of the signal.

https://circuitdigest.com/calculators/voltage-divider-calculator
https://circuitdigest.com/electronic-circuits/lm386-audio-amplifier-circuit

Fig 16.Microphone

14.Ultrasonic sensor

Ultrasonic means nothing but the range of the frequencies. Its range is greater than audible

range (>20 kHz) so even it is switched on we can’t sense these sound signals. Only specific

speakers and receivers can sense those ultrasonic waves. This ultrasonic sensor is used to

calculate the distance between the ultrasonic transmitter and the target and also used to

measure the velocity of the target.

Ultrasonic sensor HC-SR04 can be used to measure distance in the range of 2cm-400cm

with an accuracy of 3mm. Let’s see how this module works. The HCSR04 module generates

a sound vibration in ultrasonic range when we make the ‘Trigger’ pin high for about 10us

which will send an 8 cycle sonic burst at the speed of sound and after striking the object, it

will be received by the Echo pin. Depending on the time taken by sound vibration to get back,

it provides the appropriate pulse output. We can calculate the distance of the object based on

the time taken by the ultrasonic wave to return back to the sensor.

Fig 17.Utrasonic sensor

There are many applications with the ultrasonic sensor. We can make use of it avoid obstacles

for the automated cars, moving robots etc. The same principle will be used in the RADAR for

detecting the intruder missiles and airplanes. A mosquito can sense the ultrasonic sounds. So,

ultrasonic waves can be used as mosquito repellent.

15.Touch Sensor

In this generation, we can say that almost all are using smartphones which have widescreen

that too a screen which can sense our touch. So, let’s see how this touchscreen works.

Basically, there are two types of touch sensors resistive based and a capacitive based touch

screens. Let’s know about working of these sensors briefly.

The resistive touch screen has a resistive sheet at the base and a conductive sheet under the

screen both of these are separated by an air gap with a small voltage applied to the sheets.

When we press or touch the screen the conductive sheet touches the resistive sheet at that

point causing current flow at that particular point, the software senses the location and relevant

action is performed.

Fig 18.Touch sensor

16.PIR sensor

PIR sensor stands for Passive Infrared sensor. These are used to detect the motion of

humans, animals or things. We know that infrared rays have a property of reflection. When

an infrared ray hits an object, depending upon the temperature of the target the infrared ray

properties changes, this received signal determines the motion of the objects or the living

beings. Even if the shape of the object alters, the properties of the reflected infrared rays can

differentiate the objects precisely. Here is the complete working or PIR sensor.

Fig 19.PIR Sensor

17.Accelerometer (Tilt Sensor)

An accelerometer sensor can sense the tilt or movement of it in a particular direction. It

works based on the acceleration force caused due to the earth’s gravity. The tiny internal parts

of it are such sensitive that those will react to a small external change in position. It has a

piezoelectric crystal when tilted causes disturbance in the crystal and generates potential

which determines the exact position with respect to X, Y and Z axis.

Fig 20.Accelerometer

These are commonly seen in mobiles and laptops in order to avoid breakage of processors

leads. When the device falls the accelerometer detects the falling condition and does

respective action based on the software.

18.Gas sensor

In industrial applications gas sensors plays a major role in detecting the gas leakage. If no

such device is installed in such areas it ultimately leads to an unbelievable disaster. These gas

sensors are classified into various types based on the type of gas that to be detected. Let’s see

how this sensor works. Underneath a metal sheet there exists a sensing element which is

connected to the terminals where a current is applied to it. When the gas particles hit the

sensing element, it leads to a chemical reaction such that the resistance of the elements varies

and current through it also alters which finally can detect the gas.

Fig 21.Gas Sensor

So finally, we can conclude that sensors are not only used to make our work simple to measure

the physical quantities, making the devices automated but also used to help living beings with

disasters.

19. Resistive Sensors

Resistive sensors, such as the potentiometer, have three terminals: power input, grounding

terminal, and variable voltage output. These mechanical devices have varied resistance that

can be changed through movable contact with its fixed resistor. Output from the sensor varies

depending on whether the movable contact is near the resistor's supple end or ground end.

Thermistors are also variable resistors, although the resistance of the sensor varies with

temperature

Fig 22 Resistive Sensors

20.Voltage generating sensors

Voltage-generating sensors, such as piezo electrics, generate electricity by pressure with types

of crystals like quartz. As the crystal flexes or vibrates, AC voltage is produced. Knock

sensors utilize this technology by sending a signal to an automobile's on-board computer that

engine knock is happening. The signal is generated through crystal vibration within the sensor,

which is caused by cylinder block vibration. The computer, in turn, reduces the ignition timing

to stop the engine knock.

.

Fig 23.Voltage Generating Sensors

21.Switch Sensors

Switch sensors are composed of a set of contacts that open when close to a magnet. A reed

switch is a common example of a switch sensor and is most commonly used as a speed or

position sensor. As a speed sensor, a magnet is attached to the speedometer cable and spins

along with it. Each time one of the magnet's poles passes the reed switch, it opens and then

closes. How fast the magnet passes allows the sensor to read the vehicle's speed.

Fig 24.Switch Sensors

3. WIRELESS SENSOR NETWORK ARCHITECTURE AND ITS

APPLICATIONS

Currently, WSN (Wireless Sensor Network) is the most standard services employed in

commercial and industrial applications, because of its technical development in a processor,

communication, and low-power usage of embedded computing devices. The wireless sensor

network architecture is built with nodes that are used to observe the surroundings like

temperature, humidity, pressure, position, vibration, sound, etc. These nodes can be used in

various real-time applications to perform various tasks like smart detecting, a discovery of

neighbor nodes, data processing and storage, data collection, target tracking, monitor and

controlling, synchronization, node localization, and effective routing between the base station

and nodes. Presently, WSNs are beginning to be organized in an enhanced step. It is not

awkward to expect that in 10 to 15 years that the world will be protected with WSNs with

entree to them via the Internet. This can be measured as the Internet becoming a physical n/w.

This technology is thrilling with infinite potential for many application areas like medical,

environmental, transportation, military, entertainment, homeland defense, crisis management,

and also smart spaces.

A Wireless Sensor Network is one kind of wireless network that includes a large number of

circulating, self-directed, minute, low powered devices named sensor nodes called motes.

These networks certainly cover a huge number of spatially distributed, little, battery-operated,

embedded devices that are networked to caringly collect, process, and transfer data to the

operators, and it has controlled the capabilities of computing & processing. Nodes are tiny

computers, which work jointly to form networks.

https://www.elprocus.com/wireless-sensor-networks-projects-ideas/
https://www.elprocus.com/ban-body-area-network/

Fig. 25 Wireless Sensor Network

The sensor node is a multi-functional, energy-efficient wireless device. The applications of

motes in industrial are widespread. A collection of sensor nodes collects the data from the

surroundings to achieve specific application objectives. The communication between motes

can be done with each other using transceivers. In a wireless sensor network, the number of

motes can be in the order of hundreds/ even thousands. In contrast with sensor n/ws, Ad Hoc

networks will have fewer nodes without any structure.

The most common wireless sensor network architecture follows the OSI architecture Model.

The architecture of the WSN includes five layers and three cross layers. Mostly in sensor n/w,

we require five layers, namely application, transport, n/w, data link & physical layer. The three

cross planes are namely power management, mobility management, and task management.

These layers of the WSN are used to accomplish the n/w and make the sensors work together

in order to raise the complete efficiency of the network. The architecture used in WSN is sensor

network architecture. This kind of architecture is applicable in different places such as

hospitals, schools, roads, buildings as well as it is used in different applications such as security

management, disaster management & crisis management, etc. There are two types of

architectures used in wireless sensor networks which include the following. There are 2 types

of wireless sensor architectures: Layered Network Architecture, and Clustered Architecture.

These are explained as following below.

• Layered Network Architecture

• Clustered Network Architecture

Layered Network Architecture

This kind of network uses hundreds of sensor nodes as well as a base station. Here the

arrangement of network nodes can be done into concentric layers. It comprises five layers as

well as 3 cross layers which include the following.

The five layers in the architecture are:

• Application Layer

• Transport Layer

• Network Layer

• Data Link Layer

• Physical Layer

The three cross layers include the following:

• Power Management Plane

• Mobility Management Plane

• Task Management Plane

These three cross layers are mainly used for controlling the network as well as to make the

sensors function as one in order to enhance the overall network efficiency. The above

mentioned five layers of WSN are discussed below.

Fig. 27 Wireless Sensor Network Architecture

3.1 Application Layer

The application layer is liable for traffic management and offers software for numerous

applications that convert the data in a clear form to find positive information. Sensor networks

arranged in numerous applications in different fields such as agricultural, military,

environment, medical, etc.

3.2 Transport Layer

The function of the transport layer is to deliver congestion avoidance and reliability where a

lot of protocols intended to offer this function are either practical on the upstream. These

protocols use dissimilar mechanisms for loss recognition and loss recovery. The transport layer

is exactly needed when a system is planned to contact other networks.

Providing a reliable loss recovery is more energy-efficient and that is one of the main reasons

why TCP is not fit for WSN. In general, Transport layers can be separated into Packet driven,

Event-driven. There are some popular protocols in the transport layer namely STCP (Sensor

Transmission Control Protocol), PORT (Price-Oriented Reliable Transport Protocol and PSFQ

(pump slow fetch quick).

3.3 Network Layer

The main function of the network layer is routing, it has a lot of tasks based on the application,

but actually, the main tasks are in the power conserving, partial memory, buffers, and sensor

don’t have a universal ID and have to be self-organized.

The simple idea of the routing protocol is to explain a reliable lane and redundant lanes,

according to a convincing scale called a metric, which varies from protocol to protocol. There

are a lot of existing protocols for this network layer, they can be separated into; flat routing and

hierarchal routing or can be separated into time-driven, query-driven & event-driven.

3.4 Data Link Layer

The data link layer is liable for multiplexing data frame detection, data streams, MAC, & error

control, confirm the reliability of point–point (or) point– multipoint.

3.5 Physical Layer

The physical layer provides an edge for transferring a stream of bits above the physical

medium. This layer is responsible for the selection of frequency, generation of a carrier

frequency, signal detection, Modulation & data encryption. IEEE 802.15.4 is suggested as

typical for low rate particular areas & wireless sensor networks with low cost, power

consumption, density, the range of communication to improve the battery life. CSMA/CA is

used to support star & peer to peer topology. There are several versions of IEEE 802.15.4.V.

The main benefits of using this kind of architecture in WSN is that every node involves simply

in less-distance, low- power transmissions to the neighboring nodes due to which power

utilization is low as compared with other kinds of sensor network architecture. This kind of

network is scalable as well as includes a high fault tolerance.

3.6 Clustered Network Architecture

In this kind of architecture, separately sensor nodes add into groups known as clusters which

depend on the “Leach Protocol” because it uses clusters. The term ‘Leach Protocol’ stands for

“Low Energy Adaptive Clustering Hierarchy”. The main properties of this protocol mainly

include the following.

Fig. 28 Clustered Network Architecture

• This is a two-tier hierarchy clustering architecture.

• This distributed algorithm is used to arrange the sensor nodes into groups, known as

clusters.

• In every cluster which is formed separately, the head nodes of the cluster will create

the TDMA (Time-division multiple access) plans.

• It uses the Data Fusion concept so that it will make the network energy efficient.

This kind of network architecture is extremely used due to the data fusion property. In every

cluster, every node can interact through the head of the cluster to get the data. All the clusters

will share their collected data toward the base station. The formation of a cluster, as well as its

head selection in each cluster, is an independent as well as autonomous distributed method.

3.7 Design Issues of Wireless Sensor Network Architecture

The design issues of wireless sensor network architecture mainly include the following.

• Energy Consumption

• Localization

• Coverage

• Clocks

• Computation

• Cost of Production

• Design of Hardware

• Quality of Service

3.7.1 Energy Consumption

In WSN, power consumption is one of the main issues. As an energy source, the battery is used

by equipping with sensor nodes. The sensor network is arranged within dangerous situations

so it turns complicated for changing otherwise recharging batteries. The energy consumption

mainly depends on the sensor nodes’ operations like communication, sensing & data

processing. Throughout communication, the energy consumption is very high. So, energy

consumption can be avoided at every layer by using efficient routing protocols.

3.7.2 Localization

For the operation of the network, the basic, as well as critical problem, is sensor localization.

So sensor nodes are arranged in an ad-hoc manner so they don’t know about their location. The

difficulty of determining the sensor’s physical location once they have been arranged is known

as localization. This difficulty can be resolved through GPS, beacon nodes, localization based

on proximity.

3.7.3 Coverage

The sensor nodes in the wireless sensor network utilize a coverage algorithm for detecting data

as well as transmit them to sink through the routing algorithm. To cover the whole network,

the sensor nodes should be chosen. There efficient methods like least and highest exposure path

algorithms as well as coverage design protocol are recommended.

3.7.4 Clocks

In WSN, clock synchronization is a serious service. The main function of this synchronization

is to offer an ordinary timescale for the nodes of local clocks within sensor networks. These

clocks must be synchronized within some applications like monitoring as well as tracking.

3.7.5 Computation

The computation can be defined as the sum of data that continues through each node. The main

issue within computation is that it must reduce the utilization of resources. If the life span of

the base station is more dangerous, then data processing will be completed at each node before

data transmitting toward the base station. At every node, if we have some resources then the

whole computation should be done at the sink.

3.7.6 Production Cost

In WSN, the large number of sensor nodes is arranged. So if the single node price is very high

then the overall network price will also be high. Ultimately, the price of each sensor node has

to be kept less. So the price of every sensor node within the wireless sensor network is a

demanding problem.

3.7.7 Hardware Design

When designing any sensor network’s hardware like power control, micro-controller &

communication unit must be energy-efficient. Its design can be done in such a way that it uses

low-energy.

3.7.8 Quality of Service

The quality of service or QoS is nothing but, the data must be distributed in time. Because some

of the real-time sensor-based applications mainly depend on time. So if the data is not

distributed on time toward the receiver then the data will turn useless. In WSNs, there are

different types of QoS issues like network topology that may modify frequently as well as the

accessible state of information used for routing can be imprecise.

3.8 Structure of a Wireless Sensor Network

The structure of WSN mainly comprises various topologies used for radio communications

networks like a star, mesh, and hybrid star. These topologies are discussed below in brief.

3.8.1 Star Network

The communication topology like a star network is used wherever only the base station can

transmit or receive a message toward remote nodes. There is a number of nodes are available

which are not allowed to transmit messages to each other. The benefits of this network mainly

comprise simplicity, capable of keeping the power utilization of remote nodes to a minimum.

It also lets communications with less latency among the base station as well as a remote node.

The main drawback of this network is that the base station should be in the range of radio for

all the separate nodes. It is not robust like other networks because it depends on a single node

to handle the network.

3.8.2 Mesh Network

This kind of network permits to the transmission of the data from one node to another within

the network that is in the range of radio transmission. If a node needs to transmit a message to

another node and that is out of radio communications range, then it can utilize a node like an

intermediate to send the message toward the preferred node.

The main benefit of a mesh network is scalability as well as redundancy. When an individual

node stops working, a remote node can converse to any other type of node within the range,

then forwards the message toward the preferred location. Additionally, the network range is

not automatically restricted through the range among single nodes; it can extend simply by

adding a number of nodes to the system.

The main drawback of this kind of network is power utilization for the network nodes that

execute the communications like multi-hop are usually higher than other nodes that don’t have

this capacity of limiting the life of battery frequently. Moreover, when the number of

communication hops increases toward a destination, then the time taken to send the message

will also increase, particularly if the low power process of the nodes is a necessity.

3.8.3 Hybrid Star – Mesh Network

A hybrid among the two networks like star and mesh provides a strong and flexible

communications network while maintaining the power consumption of wireless sensor nodes

to a minimum. In this kind of network topology, the sensor nodes with less power are not

allowed to transmit the messages.

This permits to maintenance least power utilization. But, other network nodes are allo wed with

the capability of multi-hop by allowing them to transmit messages from one node to another

on the network. Usually, the nodes with the multi-hop capacity have high power and are

frequently plugged into the mains line. This is the implemented topology through the upcoming

standard mesh networking called ZigBee.

3.9 Structure of a Wireless Sensor Node

The components used to make a wireless sensor node are different units like sensing,

processing, transceiver & power. It also includes additional components that depend on an

application like a power generator, a location finding system & a mobilizer. Generally, sensing

units include two subunits namely ADCs as well as sensors. Here sensors generate analog

signals which can be changed to digital signals with the help of ADC, after that it transmits to

the processing unit.

Generally, this unit can be associated through a tiny storage unit to handle the actions to make

the sensor node work with the other nodes to achieve the allocated sensing tasks. The sensor

node can be connected to the network with the help of a transceiver unit. In the sensor node,

one of the essential components is a sensor node. The power-units are supported through power

scavenge units like solar cells whereas the other subunits depend on the application.

A wireless sensing nodes functional block diagram is shown above. These modules give a

versatile platform to deal with the requirements of wide applications. For instance, based on

the sensors to be arranged, the replacement of signal conditioning block can be done. This

permits to use of different sensors along with the wireless sensing node. Likewise, the radio

link can be exchanged for a specified application.

3.10 Characteristics of Wireless Sensor Network

The characteristics of WSN include the following.

• The consumption of Power limits for nodes with batteries

• Capacity to handle node failures

• Some mobility of nodes and Heterogeneity of nodes

• Scalability to a large scale of distribution

• Capability to ensure strict environmental conditions

• Simple to use

• Cross-layer design

3.11 Advantages of Wireless Sensor Networks

The advantages of WSN include the following

• Network arrangements can be carried out without immovable infrastructure.

• Apt for the non-reachable places like mountains, over the sea, rural areas, and deep

forests.

• Flexible if there is a casual situation when an additional workstation is required.

• Execution pricing is inexpensive.

• It avoids plenty of wiring.

• It might provide accommodations for the new devices at any time.

• It can be opened by using centralized monitoring.

3.12 Wireless Sensor Network Applications

Wireless sensor networks may comprise numerous different types of sensors like low sampling

rate, seismic, magnetic, thermal, visual, infrared, radar, and acoustic, which are clever to

monitor a wide range of ambient situations. Sensor nodes are used for constant sensing, event

ID, event detection & local control of actuators. The applications of wireless sensor networks

mainly include health, military, environmental, home, & other commercial areas.

• Military Applications

• Health Applications

• Environmental Applications

• Home Applications

• Commercial Applications

• Area monitoring

• Health care monitoring

• Environmental/Earth sensing

• Air pollution monitoring

• Forest fire detection

• Landslide detection

• Water quality monitoring

• Industrial monitoring

4. REQUIREMENTS OF IOT SENSOR

Smart devices, powered by the hyper-connected Internet of Things (IoT), are becoming ever

more prevalent and pervasive in our lives, and the trend will only continue. Every industry is

seeking ways to use device-enabled insights to improve the lives of their customers, and the

https://www.elprocus.com/automatic-wireless-health-monitoring-system-circuit/
https://www.elprocus.com/industrial-automation-control-using-can-protocol/

health of machines. With a growing number of devices, the opportunities to use IoT to reshape

industries and societies are also increasing.

Yet many organisations are facing challenges in their IoT journey. In reaping the benefits of

IoT, enterprises face many challenges, including integration of the IoT infrastructure with

existing systems, understanding unfamiliar data formats, and communication protocols as well

as implementing new technologies across the IoT continuum. Navigating these challenges

requires careful planning, domain knowledge, and rigorous implementation. In order to make

the IoT initiatives a su4ccess, there are five essential requirements for processes and practices

that organisations should consider:

4.1 Edge computing/analytics

Edge computing, a technology that is expected to grow at a high by 2023, captures and

analyses data on distributed devices positioned at the edge of a network. It involves both local

sensors that gather data and edge gateways that process it. Edge computing enables data

analysis close to where it is captured, resulting in faster response to changing conditions. In

fact, an edge-processing system can respond in a few milliseconds, compared with a cloud

system, which could take more than 100 milliseconds.

Before considering edge computing, organisations should, firstly, fully assess lifetime device

costs at the planning stage, factoring in the operational overhead expenses, such as monitoring,

upgrades, and power requirement. Secondly, they need to create policies to secure devices with

appropriate firewalls and hardened operating systems, and encrypt data at rest and in transit.

Lastly, organisations should assess which analyses are most time-critical for their business and

perform them at the edge to allow immediate action.

4.2 Data ingestion and stream processing

Six out of 10 IT executives say collecting, storing, integrating and analysing real-time data

from endpoint devices is a key barrier to a successful IoT implementation. Organisations

should put processes in place to gather data from multiple devices and sensors, and transform

https://www.cognizant.com/whitepapers/the-future-of-it-infrastructure-codex2946.pdf

it for use by cloud-based analytic platforms. Data ingestion refers to device telemetry data

being imported and converted into a format usable by cloud-based IoT services. It helps to

normalise the data into a common data model that is easier to analyse by business applications

and users. Data ingestion also comes handy when organisations have to ensure that ingested

data is stored in compliance with government or industry regulations, such as European

Union’s General Data Protection Regulation or Personal Data Protection Act in Singapore.

4.3 Security and device management

With rapid proliferation of IoT sensors, and growing complexity and volume of data exchanges,

it is imperative for organisations to strengthen their adoption and enforcement of highly

evolved security practices and procedures. The scale of investments, talent as well as thought

leadership around security would need to dramatically increase as IoT implementations grow

in scale and start becoming the backbone of day-to-day operations in organisations.

Businesses need to ensure their IoT devices are provisioned securely, communicate efficiently,

and can be updated with accelerated and agile approaches. Device management covers the

hardware, software, and the processes that ensure devices are properly registered, managed,

secured, and upgraded.

Required functions include device configuration, security, command dispatching, operational

control, remote monitoring, and troubleshooting. The organisation will need to account for

these functions, even if the cloud provider doesn’t offer the required device management

components. Comprehensive device management enables connected devices to easily and

securely communicate with other devices and cloud platforms, while helping the enterprise

reliably scale to billions of connected devices and trillions of messages.

4.4 Cold path and advanced analytics

Currently, large-scale processing can include loads greater than 100,000 events per second.

With the adoption of cold path processing, large amounts of data are analysed by advanced

algorithms after the data is stored on the cloud platform.

Such analysis can uncover trends or corrective actions needed to improve the business or

customer experience. Unlike streaming analytics (hot path) that apply relatively simple rules

to data in real time for short-term actions (detecting fraud, security breaches, or critical

component failures), cold path processing involves more sophisticated big data analytics, such

as machine learning and AI, being applied to provide deeper insights.

To drive the most insights from data, organisations should consider using a complex event

processing framework that combines data from multiple sources, such as enterprise

applications and IoT devices, to dynamically define and process analytical rules by inferring

meaning from complex situations. It is also important to aggregate data before than during

analysis to improve processing speed. Usage of data lakes, which store data in their native

format, can also help consolidate data and allow easier access. Organisations should also

consider creating dedicated data services to make it easier for users to access data on demand.

4.5 Enterprise integration with business systems

IoT insights need to be delivered to enterprise systems and receive reference metadata in

order to interpret device data. Integration with business applications and enterprise systems

enables the sharing of raw and processed data, as well as analysis-driven insights. With deep

enterprise integration, the IoT architecture can deliver benefits such as improved efficiencies,

reduced costs, increased sales, heightened customer satisfaction, and the ability to create and

lead new markets. To share data and insights, businesses need mechanisms such as application

programming interface (API) gateways, service buses and custom connectors.

Every IoT implementation will be distinct, depending on each business’s requirements,

expected outcomes, levels of IoT and data skills, and technology infrastructure maturity. In all

cases, however, these five requirements are essential to ensuring a successful IoT

implementation, with minimal cost and delay. Each enterprise must conduct a rigorous needs

assessment, and carefully plan its roadmap to deliver a flexible, secure, and scalable IoT

solution. To help guide the implementation, organisations should also consider using pre-built

solutions, reference architectures, and blueprints from experienced technology service

providers.

5. ACTUATOR

Actuators use energy from a source upon the receipt of a signal so as to bring about a

mechanical motion. This blog tells you about how they function and the many types of

actuators used today. Actuators are mechanical or electro-mechanical devices that, upon being

operated electrically, manually, or by various fluids, allow controlled and sometimes limited

movements or positioning. They refer to that component of a machine that helps carry out the

moving and controlling of a mechanism or system; take for instance opening a valve. To put it

simply, they can be called movers.

Actuators basically need a control signal and a source of energy. Upon receiving a control

signal, the actuator uses energy from the source to bring about a mechanical motion. The

control system can be a human, a fixed mechanical or electronic system, or even software-

based, say a printer driver, or a robot control system. Examples of actuators include electric

motors, stepper motors, electroactive polymers, screw jacks, servomechanism, solenoids and

hydraulic cylinders.

5.1 Types of Actuators

Actuator types also vary depending on motions, power configurations, styles and sizes

depending on the application.

5.1.1 Mechanical actuators

Mechanical actuators create movement by converting one kind of motion, such as rotary

motion, into another kind, such as linear motion. Say for instance, a rack and a pinion. Another

example is that of a chain block hoisting weight where the mechanical motion of the chain is

used to lift a load.The functioning of mechanical actuators relies on the combinations of their

structural components, such as gears and rails, or pulleys and chains. High reliability, simplicity

of utilisation, easier maintenance and greater precision of positioning are some of the

advantages. They can be categorised into hydraulic, pneumatic and electric actuators.

 5.1.2 Hydraulic actuators

Hydraulic actuators have a cylinder or fluid motor that uses hydraulic power to generate

mechanical motion, which in turn leads to linear, rotatory or oscillatory motion. Given the fact

that liquids are nearly impossible to compress, a hydraulic actuator can exert a large force.

When the fluid enters the lower chamber of the actuator’s hydraulic cylinder, pressure inside

increases and exerts a force on the bottom of the piston, also inside the cylinder. The pressure

causes the sliding piston to move in a direction opposite to the force caused by the spring in

the upper chamber, making the piston move upward and opening the valve. The downside with

these actuators is the need for many complementary parts and possibility of fluid leakage.

 5.1.3 Pneumatic actuators

Pneumatic actuators convert energy in the form of compressed air into mechanical

motion. Here pressurised gas or compressed air enters a chamber thus building up the pressure

inside. Once this pressure goes above the required pressure levels in contrast to the atmospheric

pressure outside the chamber, it makes the piston or gear move kinetically in a controlled

manner, thus leading to a straight or circular mechanical motion. Examples include pneumatic

cylinders, air cylinders, and air actuators. Cheaper and often more powerful than other

actuators, they can quickly start or stop as no power source has to be stored in reserve for

operation. Often used with valves to control the flow of air through the valve, these actuators

generate considerable force through relatively small pressure changes. Examples of maker

projects using pneumatic actuators include lifting devices and humanoid robots with arms and

limbs, typically used for lifting.

5.1.4 Electric Linear actuators

Taking off from the two basic motions of linear and rotary, actuators can be classified

into these two categories: linear and rotary. Electric linear actuators take electrical energy and

turn it into straight line motions, usually for positioning applications, and they have a push and

pull function. They convert energy from the power source into linear motion using mechanical

transmission, electro-magnetism, or thermal expansion; they are typically used whenever

tilting, lifting, pulling and pushing are needed. They are also known for offering precision and

smooth motion control; this is why they are used in industrial machinery, in computer

peripherals such as disk drives and printers, opening and closing dampers, locking doors and

for braking machine motions. They are also used in 3d printers and for controlling valves. Some

of them are unpowered and manually operated with a rotating knob or handwheel. Electric

linear actuators

5.1.5 Electric Rotary actuators

Consisting of motors and output shaft mechanisms with limited rotary travel, electric rotary

actuators convert electrical energy into rotary motion. Used in a wide range of industries where

positioning is needed, and driven by various motor types, voice coils, these actuators work as

per specifications such as the intended application, drive method, number of positions, output

configuration, mounting configuration, physical dimensions and electrical characteristics. A

common use is for controlling valves such as ball or butterfly valves. Other applications include

automation applications where a gate, door or valve needs controlled movement to certain

rotational positions.

 5.1.6 Electromechanical actuators

Electromechanical actuators are mechanical actuators where there’s an electric motor in place

of the control knob or handle. The rotary motion of the motor leads to linear displacement. The

inclined plane concept is what drives most electromechanical actuators; the lead screw’s

threads work like a ramp converting the small rotational force by magnifying it over a long

distance, thus allowing a big load to be moved over a small distance. While there are many

design variations among electromechanical actuators available today, most have the lead screw

and the nut incorporated into the motion. The biggest advantages are their greater accuracy in

relation to pneumatics, their longer lifecycle and low maintenance effort required. On the other

hand, they do not boast the highest speed.

 5.1.7 Electrohydraulic actuators

Instead of hydraulic systems, electrohydraulic actuators have self-contained actuators

functioning solely on electrical power. They are basically used to actuate equipment such as

multi-turn valves, or electric-powered construction and excavation equipment. In case of

controlling the flow of fluid through a valve, a brake is typically installed above the motor to

prevent the fluid pressure from forcing open the valve. The main advantage here is that these

actuators help do away with the need for separate hydraulic pumps and tubing, simplifying

system architectures and enhancing reliability and safety. Originally developed for the

aerospace industry, today they are found in many other industries where hydraulic power is

used.

 5.1.8 Thermal actuators

A thermal actuator is a non-electric motor that generates linear motion in response to

temperature changes. Its main components are a piston and a thermal sensitive material. When

there is a rise in temperature, the thermal-sensitive materials begin to expand in response,

driving the piston out of the actuator. Similarly, upon detecting a drop in the temperature, the

thermal-sensitive materials inside contract, making the piston retract. Thus these actuators can

be used for carrying out tasks such as releasing latches, working switches and opening or

closing valves. They have many applications, particularly in the aerospace, automotive,

agricultural and solar industries.

 5.1.9 Magnetic actuators

Magnetic actuators are those that use magnetic effects to produce motion of a part in the

actuator. They usually come in the following categories: moving coil actuator, moving magnet

actuator, moving iron actuator and electromagnetic actuator.

In case of the first kind (moving coil actuator), a mobile coil driven by a current is placed in a

static magnetic field, where it is subject to the Lorentz force. This force is proportional to the

applied current.

Moving magnet actuators work differently; here mobile permanent magnet is placed between

two magnet poles and is switched from one pole to the other using coils. Such actuators can

generate high forces but are not easily controlled.

In moving iron actuators, a soft magnetic part placed into a coil system moves in a fashion that

keeps the system magnetic energy to a minimum.

Lastly, electromagnetic actuators are the ones comprising electric motors such as Brushless DC

motors (BLDC) and stepper motors. These magnetic actuators are used for various purposes

such as valve control, pump and compressor actuation, locking mechanisms, aerospace

engineering, vibration generation, fast positioning etc. Advantages include reduced system

cost, improved robustness, and reduced control complexity.

https://www.youngwonks.com/blog/Different-types-of-motors-used-by-makers-and-hobbyists
https://www.youngwonks.com/blog/Different-types-of-motors-used-by-makers-and-hobbyists

School of Computing

Department of Computer Science and Engineering

UNIT- II ARDUINO PROGRAMMING FOR

IoT BOARDS - SCSA1407

Unit II

Physical device – Arduino Interfaces, Hardware requirement for Arduino, Connecting remotely

over the network using VNC, GPIO Basics, Controlling GPIO Outputs Using a Web Interface,

– Programming, APIs / Packages- Quark SOC processor, programming, Arduino Boards using

GPIO (LED, LCD, Keypad, Motor control and sensor)

1. PHYSICAL DEVICE- INTRODUCTION TO AUDUINO

Arduino is an open-source platform used for building electronics projects. Arduino

consists of both a physical programmable circuit board (often referred to as a microcontroller)

and a piece of software, or IDE (Integrated Development Environment) that runs on your

computer, used to write and upload computer code to the physical board. Accepts analog and

digital signals as input and gives desired output.

BOARD DETAILS:

• Power Supply:

• USB or power barrel jack

• Voltage Regulator

• LED Power Indicator

• Tx-Rx LED Indicator

• Output power,

• Ground

• Analog Input Pins

• Digital I/O Pin

ARDUIN0 UN0

 Feature Value

OperatingVoltage 5V

ClockSpeed 16MHz

Digital I/O 14

AnalogInput 6

PWM 6

UART 1

Interface USB via ATMega16U2

http://arduino.cc/
http://en.wikipedia.org/wiki/Microcontroller
http://arduino.cc/en/Main/Software

SET UP:

• Power the board by connecting it to a PC via USB cable

• Launch the Arduino IDE

• Set the board type and the port for the board

• TOOLS -> BOARD -> select your board

• TOOLS -> PORT -> select your port

TYPES:

1. Arduino Uno (R3)

2. LilyPad Arduino

3. RedBoard

4. Arduino Mega (R3)

5. Arduino Leonardo

Fig. 1 Arduino Board

Power (USB / Barrel Jack):

Every Arduino board needs a way to be connected to a power source. The Arduino

UNO can be powered from a USB cable coming from your computer or a wall power supply

(like this) that is terminated in a barrel jack. In the picture above the USB connection is

labeled (1) and the barrel jack is labeled (2). The USB connection is also how you will load

code onto your Arduino board.

https://www.sparkfun.com/products/8269

NOTE: Do NOT use a power supply greater than 20 Volts as you will overpower (and thereby

destroy) Arduino. The recommended voltage for most Arduino models is between 6 and 12

Volts.

Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF):

The pins on your Arduino are the places where you connect wires to construct a circuit

(probably in conjunction with a breadboard and some wire. They usually have black plastic

‘headers’ that allow you to just plug a wire right into the board. The Arduino has several

different kinds of pins, each of which is labeled on the board and used for different functions.

GND (3): Short for ‘Ground’. There are several GND pins on the Arduino, any of which can

be used to ground your circuit.

5V (4) & 3.3V (5): As you might guess, the 5V pin supplies 5 volts of power, and the 3.3V pin

supplies 3.3 volts of power. Most of the simple components used with the Arduino run happily

off of 5 or 3.3 volts.

Analog (6): The area of pins under the ‘Analog In’ label (A0 through A5 on the UNO) are

Analog In pins. These pins can read the signal from an analog sensor (like a temperature sensor)

and convert it into a digital value that we can read.

Digital (7): Across from the analog pins are the digital pins (0 through 13 on the UNO). These

pins can be used for both digital input (like telling if a button is pushed) and digital output (like

powering an LED).

PWM (8): You may have noticed the tilde (~) next to some of the digital pins (3, 5, 6, 9, 10,

and 11 on the UNO). These pins act as normal digital pins, but can also be used for something

called Pulse-Width Modulation (PWM). We have a tutorial on PWM, but for now, think of

these pins as being able to simulate analog output (like fading an LED in and out).

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/
https://learn.sparkfun.com/tutorials/working-with-wire
https://www.sparkfun.com/products/10988
https://learn.sparkfun.com/tutorials/pulse-width-modulation

AREF (9): Stands for Analog Reference. Most of the time you can leave this pin alone. It is

sometimes used to set an external reference voltage (between 0 and 5 Volts) as the upper limit

for the analog input pins.

Reset Button

Just like the original Nintendo, the Arduino has a reset button (10). Pushing it will temporarily

connect the reset pin to ground and restart any code that is loaded on the Arduino. This can be

very useful if your code doesn’t repeat, but you want to test it multiple times. Unlike the

original Nintendo however, blowing on the Arduino doesn’t usually fix any problems.

Power LED Indicator

Just beneath and to the right of the word “UNO” on your circuit board, there’s a tiny LED next

to the word ‘ON’ (11). This LED should light up whenever you plug your Arduino into a power

source. If this light doesn’t turn on, there’s a good chance something is wrong. Time to re-

check your circuit!

TX RX LEDs

TX is short for transmit, RX is short for receive. These markings appear quite a bit in

electronics to indicate the pins responsible for serial communication. In our case, there are two

places on the Arduino UNO where TX and RX appear – once by digital pins 0 and 1, and a

second time next to the TX and RX indicator LEDs (12). These LEDs will give us some nice

visual indications whenever our Arduino is receiving or transmitting data (like when we’re

loading a new program onto the board).

Main IC

The black thing with all the metal legs is an IC, or Integrated Circuit (13). Think of it as the

brains of our Arduino. The main IC on the Arduino is slightly different from board type to

board type, but is usually from the ATmega line of IC’s from the ATMEL company. This can

be important, as you may need to know the IC type (along with your board type) before loading

up a new program from the Arduino software. This information can usually be found in writing

https://learn.sparkfun.com/tutorials/serial-communication

on the top side of the IC. If you want to know more about the difference between various IC’s,

reading the datasheets is often a good idea.p

Voltage Regulator

The voltage regulator (14) is not actually something you can (or should) interact with on the

Arduino. But it is potentially useful to know that it is there and what it’s for. The voltage

regulator does exactly what it says – it controls the amount of voltage that is let into the Arduino

board. Think of it as a kind of gatekeeper; it will turn away an extra voltage that might harm

the circuit. Of course, it has its limits, so don’t hook up your Arduino to anything greater than

20 volts.

ARDINO IDE OVERVIEW:

Program coded in Arduino IDE is called a SKETCH

1. To create a new sketchFile -> New

 To open an existing sketch File -> open ->

 There are some basic ready-to-use sketches available in the EXAMPLES section

 File -> Examples -> select any program

2. Verify: Checks the code for compilation errors

3. Upload: Uploads the final code to the controller board

4. New: Creates a new blank sketch with basic structure

5. Open: Opens an existing sketch

6. Save: Saves the current sketch

 Fig. 2 Compilation and Execution

 Serial Monitor: Opens the serial console

 All the data printed to the console are displayed here

 Fig. 3 Structure of SKETCH

 A sketch can be divided into two parts:

 Setup ()

 Loop()

 The function setup() is the point where the code starts, just like the main() function in C and

C++

 I/O Variables, pin modes are initialized in the Setup() function Loop() function, as the

name suggests, iterates the specified task in the program

 DATA TYPES:

 Void ,Long, Int ,Char ,Boolean, Unsigned char ,Byte, Unsigned int, Word ,Unsigned long

,Float, Double, Array ,String-char array, String-object, Short

 Arduino Function libraries

 Input/Output Functions:

The arduino pins can be configured to act as input or output pins using the pinMode() function

Void setup ()

{

pinMode (pin , mode);

}

 Pin- pin number on the Arduino board Mode- INPUT/OUTPUT

digitalWrite() : Writes a HIGH or LOW value to a digital pin

analogRead() : Reads from the analog input pin i.e., voltage applied across the pin

Character functions such as isdigit(), isalpha(), isalnum(), isxdigit(), islower(), isupper(),

isspace() return 1(true) or 0(false)

Delay() function is one of the most common time manipulation function used to provide a delay

of specified time. It accepts integer value (time in miliseconds)

EXAMPLE BLINKING LED:

 Requirement:

 Arduino controller board, USB connector, Bread board, LED, 1.4Kohm resistor, connecting

wires, Arduino IDE

 Connect the LED to the Arduino using the Bread board and the connecting wires

 Connect the Arduino board to the PC using the USB connector

 Select the board type and port Write the sketch in the editor, verify and upload

Connect the positive terminal of the LED to digital pin 12 and the negative terminal to the

ground pin (GND) of Arduino Board

void setup()

{

 pinMode(12, OUTPUT); // set the pin mode

} void loop()

{

 digitalWrite(12, HIGH); // Turn on the LED delay(1000);

 digitalWrite(12, LOW); //Turn of the LED delay(1000);

}

Set the pin mode as output which is connected to the led, pin 12 in this case.

Use digitalWrite() function to set the output as HIGH and LOW

Delay() function is used to specify the delay between HIGH-LOW transition of the output

Connect he board to the PC

 Set the port and board type

 Verify the code and upload,

 notice the TX – RX led in the board starts flashing as the code is uploaded.

2. RASPBERRY PI:

Raspberry Pi is a credit card sized micro processor available in different models with

different processing speed starting from 700 MHz. Whether you have a model B or model B+,

or the very old version, the installation process remains the same. People who have checked

out the official Raspberry Pi website, But using the Pi is very easy and from being a beginner,

one will turn pro in no time. So, it's better to go with the more powerful and more efficient OS,

the Raspbian. The main reason why Raspbian is extremely popular is that it has thousands of

pre built libraries to perform many tasks and optimize the OS. This forms a huge advantage

while building applications.

Fig. 4 Raspberry Pi Elements

As for the specifications, the Raspberry Pi is a credit card-sized computer powered by

the Broadcom BCM2835 system-on-a-chip (SoC). This SoC includes a 32-bit ARM1176JZFS

processor, clocked at 700MHz, and a Videocore IV GPU. It also has 256MB of RAM in a POP

package above the SoC. The Raspberry Pi is powered by a 5V micro USB AC charger or at

least 4 AA batteries (with a bit of hacking). While the ARM CPU delivers real-world

performance similar to that of a 300MHz Pentium 2, the Broadcom GPU is a very capable

graphics core capable of hardware decoding several high definition video formats. The

Raspberry Pi model available for purchase at the time of writing — the Model B —

features HDMI and composite video outputs, two USB 2.0 ports, a 10/100 Ethernet port, SD

card slot, GPIO (General Purpose I/O Expansion Board) connector, and analog audio output

(3.5mm headphone jack). The less expensive Model A strips out the Ethernet port and one of

the USB ports but otherwise has the same hardware. Raspberry Pi Basics: installing Raspbian

and getting it up and running.

1 Downloading Raspbian and Image writer.

You will be needing an image writer to write the downloaded OS into the SD card (micro SD

card in case of Raspberry Pi B+ model). So download the "win32 disk imager" from the

website.

2 Writing the image

Insert the SD card into the laptop/pc and run the image writer. Once open, browse and select

the downloaded Raspbian image file. Select the correct device, that is the drive representing

the SD card. If the drive (or device) selected is different from the SD card then the other

selected drive will become corrupted. SO be careful.

After that, click on the "Write" button in the bottom. As an example, see the image below,

where the SD card (or micro SD) drive is represented by the letter "G:\"

Fig. 5 OS Installation

Once the write is complete, eject the SD card and insert it into the Raspberry Pi and turn it on.

It should start booting up.

3 Setting up the Pi

https://www.howtoforge.com/images/raspbian_basics/big/win32.png

Please remember that after booting the Pi, there might be situations when the user credentials

like the "username" and password will be asked. Raspberry Pi comes with a default user name

and password and so always use it whenever it is being asked. The credentials are:

login: pi

password: raspberry

When the Pi has been booted for the first time, a configuration screen called the "Setup

Options" should appear and it will look like the image below.

Fig. 6 Raspberry Configuration

If you have missed the "Setup Options" screen, its not a problem, you can always get it by

typing the following command in the terminal.

sudo raspi-config

Once you execute this command the "Setup Options" screen will come up as shown in the

image above.

Now that the Setup Options window is up, we will have to set a few things. After completing

each of the steps below, if it asks to reboot the Pi, please do so. After the reboot, if you don't

get the "Setup Options" screen, then follow the command given above to get the

screen/window.

https://www.howtoforge.com/images/raspbian_basics/big/raspiconfig.png

• The first thing to do:

select the first option in the list of the setup options window, that is select the "Expand

Filesystem" option and hit the enter key. We do this to make use of all the space present

on the SD card as a full partition. All this does is, expand the OS to fit the whole space on

the SD card which can then be used as the storage memory for the Pi

• The second thing to do:

Select the third option in the list of the setup options window, that is select the "Enable

Boot To Desktop/Scratch" option and hit the enter key. It will take you to another

window called the "choose boot option" window that looks like the image below.

Fig. 7 Boot Options

In the "choose boot option window", select the second option, that is, "Desktop Log in as

user 'pi' at the graphical desktop" and hit the enter button. Once done you will be taken back

to the "Setup Options" page, if not select the "OK" button at the bottom of this window and

you will be taken back to the previous window. We do this because we want to boot into the

desktop environment which we are familiar with. If we don't do this step then the Raspberry Pi

boots into a terminal each time with no GUI options. Once, both the steps are done, select the

"finish" button at the bottom of the page and it should reboot automatically. If it doesn't, then

use the following command in the terminal to reboot.

https://www.howtoforge.com/images/raspbian_basics/big/raspiconfig2.png

sudo reboot

Updating the firmware

After the reboot from the previous step, if everything went right, then you will end up on the

desktop which looks like the image below.

Fig. 8 Raspberry Desktop

Once you are on the desktop, open a terminal and enter the following command to update the

firmware of the Pi.

sudo rpi-update

Updating the firmware is necessary because certain models of the Pi might not have all the

required dependencies to run smoothly or it may have some bug. The latest firmware might

have the fix to those bugs, thus its very important to update it in the beginning itself.

5 Conclusion

So, we have covered the steps to get the Pi up and running. This method works on all the

different models of Raspberry Pi (model A, B, B+ and also RPi 2) as Raspbain was made to be

supported on all models. However, while installing other software or libraries, the procedure

might change a bit while installing depending on the model of the Pi or the version of Raspbian

itself. The concept of Raspberry is to keep trying till you get the result or build that you want.

This might involve a lot of trial and error but spending the time will be worth it. The actual

usage doesn't end here. This is just the beginning. It is up to you to go ahead to build something

amazing out of it.

Fig. 9 GPIO Pins

GPIO:

Act as both digital output and digital input.

Output: turn a GPIO pin high or low.

Input: detect a GPIO pin high or low

Installing GPIO library:

Open terminal

Enter the command “sudoapt-get install python-dev” to install python development

Enter the command “sudoapt-get install python-rpi.gpio” to install GPIO library.

Basic python coding:

Open terminal enter the command

sudo nano filename.py

This will open the nano editor where you can write your code

 Ctrl+O : Writes the code to the file

 Ctrl+X : Exits the editor

Blinking LED Code:

import RPi.GPIO as GPIO #GPIO library import time

GPIO.setmode(GPIO.BOARD) # Set the type of board for pin numbering

GPIO.setup(11, GPIO.OUT) # Set GPIO pin 11as output pin

for i in range (0,5): GPIO.output(11,True) # Turn on GPIO pin 11

time.sleep(1)

GPIO.output(11,False)

 time.sleep(2)

GPIO.output(11,True)

GPIO.cleanup()

Power Pins

The header provides 5V on Pin 2 and 3.3V on Pin 1. The 3.3V supply is limited to 50mA. The

5V supply draws current directly from your microUSB supply so can use whatever is left over

after the board has taken its share. A 1A power supply could supply up to 300mA once the

Board has drawn 700mA.

 Basic GPIO

The header provides 17 Pins that can be configured as inputs and outputs. By default they are

all configured as inputs except GPIO 14 & 15.

In order to use these pins you must tell the system whether they are inputs or outputs. This can

be achieved a number of ways and it depends on how you intend to control them. I intend on

using Python.

SDA & SCL: The 'DA' in SDA stands for data, the 'CL' in SCL stands for clock; the S stands

for serial. You can do more reading about the significance of the clock line for various types

of computer bus, You will probably find I2C devices that come with their own userspace drivers

and the linux kernel includes some as well. Most computers have an I2C bus, presumably for

some of the purposes listed by wikipedia, such as interfacing with the RTC (real time clock)

and configuring memory. However, it is not exposed, meaning you can't attach anything else

to it, and there are a lot of interesting things that could be attached -- pretty much any kind of

common sensor (barometers, accelerometers, gyroscopes, luminometers, etc.) as well as output

devices and displays. You can buy a USB to I2C adapter for a normal computer, but they cost

a few hundred dollars. You can attach multiple devices to the exposed bus on the pi.

UART, TXD & RXD: This is a traditional serial line; for decades most computers have had a

port for this and a port for parallel.1 Some pi oriented OS distros such as Raspbian by default

boot with this serial line active as a console, and you can plug the other end into another

computer and use some appropriate software to communicate with it. Note this interface does

not have a clock line; the two pins may be used for full duplex communication (simultaneous

transmit and receive).

PCM, CLK/DIN/DOUT/FS: PCM is is how uncompressed digital audio is encoded. The data

stream is serial, but interpreting this correctly is best done with a separate clock line (more

lowest level stuff).

SPI, MOSI/MISO/CE0/CE1: SPI is a serial bus protocol serving many of the same purposes

as I2C, but because there are more wires, it can operate in full duplex which makes it faster and

more flexible.

Raspberry Pi Terminal Commands

[sudo apt-get update] - Update Package Lists

[sudo apt-get upgrade] - Download and Install Updated Packages

[sudo raspi-config] - The Raspberry Pi Configuration Tool

[sudo apt-get clean] - Clean Old Package Files

[sudo reboot] - Restart your Raspberry Pi

[sudo halt] - Shut Down your Raspberry Pi

3. REMOTE DESKTOP ON THE RASPBERRY Pi WITH VNC

• VNC: stands for Virtual Network Computing, allows you to access your Raspberry Pi

• RealVNC: a company which originated VNC (there are many other implementations).

A RealVNC server is included with the Raspberry Pi, so that’s the implementation

we’re going to use.

• VNC Server: an application which runs on the Raspberry Pi, and allows the VNC

client to connect, view and control your Raspberry Pi desktop.

• VNC Client: an application which you can install on your desktop computer

(Windows / Linux / Mac / …) or smartphone / tablet, to connect to the Raspberry Pi

running the VNC server also called VNC viewer

Fig. 10 Using RealVNC to access the Raspberry Pi's graphical desktop

Enable VNC

You will need to interact with your Pi in order to turn on the VNC server. To do this, you have

several options:

• Connect a keyboard, mouse, and monitor. Click the Terminal icon on the top left of

the desktop to open a terminal window.

https://cdn.sparkfun.com/assets/learn_tutorials/7/9/5/VNC_Tutorial-02.jpg

Fig .11 VNC Connect

Enable VNC Cloud Connection on the Pi

Enable RealVNC using the Raspberry Pi Configuration tool

Click on the Raspberry Pi OS menu, select Preferences, and in the submenu Raspberry Pi

Configuration.

https://cdn.sparkfun.com/assets/learn_tutorials/7/9/5/screen-05.png

Fig. 12 Raspberry Pi Configuration

Configure your Raspberry Pi system using the Raspberry Pi Configuration tool. The tool will

have several tabs, click on the tab “Interfaces”, to see the available options there. Note that

VNC is disabled by default: Raspberry Pi Configuration tool, showing VNC as disabled

(“Enable remote access to this Pi using RealVNC”) Click on the enable radio button, and then

on ok button. VNC is now enabled in the Interfaces tab of the Raspberry Pi Configuration tool.

Watch the task bar at the top of the screen. A new icon with a V2 symbol will appear. Raspberry

Pi taskbar top right corner, before enabling VNC

Second step: obtain your Raspberry Pi RealVNC IP address and credentials

To be able to control your Raspberry Pi remotely, you need to know the IP address of the

Raspberry Pi running the RealVNC server to connect to it.

Click on the new icon (V2) in the taskbar (using the left mouse button, single click). A window

will appear, showing you all you need to know to connect:

Fig. 13 Real VNC

VNC Server VNC connect by RealVNC Raspberry Pi Edition. Showing the IP address, and

the identity check signature and Catchphrase. Authentication is with your UNIX user name

and password. Download and install the RealVNC viewer.

The following steps are run on your main system, from which you desire to control the

Raspberry Pi remotely using VNC. Be sure to select the appropriate operating system

(Windows / macOS / Linux / Raspberry Pi / iOS / Android / Chrome / Solaris / HP-UX / AIX).

Install the VNC viewer according to the default procedure on your operating system. We can

also use other VNC viewers, but using the RealVNC VNC viewer is recommended, since they

have the best interoperability.

Here you can enter the Raspberry Pi IP address we have identified in step 2. Type in the address,

and click on the “connect to address or hostname” area (or simply press enter).Now the VNC

Viewer will show you an authentication screen, asking you to sign in with your credentials

(password and username).

Fig 14 Authentication

Fig 15 View Raspberry using VNC Viewer

On your host machine, download and install the RealVNC viewer. Open the application, and

click the Sign in button in the top-right. Enter your email and password, and click Sign in.

On the right side, you should see an address book (previously used connections) and something

showing your "Team" (computers available for a VNC cloud connection). Click on your Team,

and you should see your VNC-ready Raspberry Pi listed.

Double-click on your Raspberry Pi to connect to it. You should see a pop-up window

explaining that the VNC server on your Raspberry Pi has been verified. Click Continue. You

should be prompted with an Authentication window. If you did not change the login username

and password for your Pi, your default login credentials are:

• Username: pi

• Password: raspberry

https://www.realvnc.com/en/connect/download/viewer/

Another slick feature is the ability to control your Raspberry Pi from your smartphone or tablet!

Download the VNC Viewer app from the iTunes store or Google Play. Open the app, sign in,

and connect to your Raspberry Pi!

4. CONTROLLING GPIO USING WEB INTERFACE

In this part, we will install Apache web server in Raspberry Pi to control the LED from a

webpage that can be accessed from anywhere over the internet. Here we control an LED

connected to Raspberry Pi by using Apache web server. For this, we create an HTML/php

web page which has two buttons - one for turning on the LED and the second for turning off

the LED.

 Components Required

1. Raspberry pi board (With Raspbian operating system)

2. LED

3. 4. 250-ohm resistor

4. Jumper Wires

 An SSH client (Putty) is used to connect the Raspberry pi using a Laptop or computer. For

this, the raspberry pi needs to be connected to a network via LAN or Wi-Fi. If you have a

separate monitor for your raspberry pi, then it's better to connect raspberry pi with the monitor

and you don’t have to use any SSH client. Python is a very useful programming language that

has an easy to read syntax, and allows programmers to use fewer lines of code than would be

possible in languages such as assembly, C, or Java.

The Python programming language actually started as a scripting language for Linux. Python

programs are similar to shell scripts in that the files contain a series of commands that the

computer executes from top to bottom. Compare a “hello world” program written in C to the

same program written in Python:

https://itunes.apple.com/us/app/vnc-viewer-remote-desktop/id352019548
https://play.google.com/store/apps/details?id=com.realvnc.viewer.android
https://iotdesignpro.com/raspberry-pi-projects

Unlike C programs, Python programs don’t need to be compiled before running them.

However, you will need to install the Python interpreter on your computer to run them. The

Python interpreter is a program that reads Python files and executes the code.

It is possible to run Python programs without the Python interpreter installed though. Like shell

scripts, Python can automate tasks like batch renaming and moving large amounts of files. It

can be used just like a command line with IDLE, Python’s REPL (read, eval, print, loop)

function. However, there are more useful things you can do with Python. For example, you can

use Python to program things like:

• Web applications

• Desktop applications and utilities

• Special GUIs

• Small databases

• 2D games

Python also has a large collection of libraries, which speeds up the development process. There

are libraries for everything you can think of – game programming, rendering graphics, GUI

interfaces, web frameworks, and scientific computing.

Many (but not all) of the things you can do in C can be done in Python. Python is generally

slower at computations than C, but its ease of use makes Python an ideal language for

prototyping programs and designing applications that aren’t computationally intensive.

https://wiki.python.org/moin/UsefulModules
https://www.circuitbasics.com/wp-content/uploads/2015/12/Hello-World-Program-in-Python-vs-C-Programming.png

4.1 INSTALLING AND UPDATING PYTHON

Python 2 and Python 3 come pre-installed on Raspbian operating systems, but to install

Python on another Linux OS or to update it, simply run one of these commands at the command

prompt:

sudo apt-get install python3

Installs or updates Python 3.

sudo apt-get install python

Installs or updates Python 3

4.2 WRITING A PYTHON PROGRAM

To demonstrate creating and executing a Python program, we’ll make a simple “hello world”

program. To begin, open the Nano text editor and create a new file named hello-world.py by

entering this at the command prompt:

sudo nano hello-world.py

Enter this code into Nano, then press Ctrl-X and Y to exit and save the file:

#!/usr/bin/python

print "Hello, World!";

All Python program files will need to be saved with a “.py” extension. You can write the

program in any text editor such as Notepad or Notepad++, just be sure to save the file with a

“.py” extension. To run the program without making it executable, navigate to the location

where you saved your file, and enter this at the command prompt:

python hello-world.py

CONNECT THE LED TO THE RASPBERRY PI

Components:

• Raspberry Pi

• One LED

• One 330 Ohm resistor

• Jumper wires

• Breadboard

Connect the components as shown in the wiring diagram below.

Fig. 16 Raspberry pi with LED

The 330 Ohm resistor is a current limiting resistor. Current limiting resistors should always be

used when connecting LEDs to the GPIO pins. If an LED is connected to a GPIO pin without

a resistor, the LED will draw too much current, which can damage the Raspberry Pi or burn

out the LED. Here is a nice calculator that will give you the value of a current

https://www.amazon.com/Raspberry-Pi-Computer-Suitable-Workstation/dp/B0899VXM8F?keywords=Raspberry+Pi+4+Model+B&qid=1636845883&sr=8-4&linkCode=ll1&tag=circbasi-20&linkId=fa08c0dbd273d4ca54acbe204154e563&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/DiCUNO-450pcs-Colors-Emitting-Assorted/dp/B073QMYKDM?keywords=led+assortment&qid=1636596249&sr=8-1-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyMzVCV1JFMVBHV0RZJmVuY3J5cHRlZElkPUEwNzM3ODkwWTJMRjU0M01TNVdQJmVuY3J5cHRlZEFkSWQ9QTAzOTI1NDIxWDVHMlpOQldTNE0yJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ%3D%3D&linkCode=ll1&tag=circbasi-20&linkId=e1c4eaf63a248e6ee8c05af4948918d3&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/BOJACK-Values-Resistor-Resistors-Assortment/dp/B08FD1XVL6?crid=EX4H35ZMUZR9&keywords=resistor+assortment&qid=1637303059&sprefix=resistor+assor%2Celectronics%2C228&sr=8-5&linkCode=ll1&tag=circbasi-20&linkId=0b108786387042541a11d1ba39c0b1e7&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/gp/product/B07GD2PGY4/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=circbasi-20&creative=9325&linkCode=as2&creativeASIN=B07GD2PGY4&linkId=830b215653e24d7801a496770987b18d
https://www.amazon.com/Pcs-MCIGICM-Points-Solderless-Breadboard/dp/B07PCJP9DY/ref=as_li_ss_tl?dchild=1&keywords=breadboard+half+size&qid=1592634346&sr=8-3&linkCode=ll1&tag=circbasi-20&linkId=f97646ce253865f4baa507b649e207a5&language=en_US
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-led-series-resistor

limiting resistor to use for different LEDs. After connecting the hardware components, the next

step is to create a Python program to switch on and off the LED. This program will make the

LED turn on and off once every second and output the status of the LED to the terminal. The

first step is to create a Python file. To do this, open the Raspberry Pi terminal and type nano

LED.py. Then press Enter. This will create a file named LED.py and open it in the Nano text

editor. Copy and paste the Python code below into Nano and save and close the file.

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

GPIO.setwarnings(False)

GPIO.setup(14,GPIO.OUT)

While loop

while True:

 # set GPIO14 pin to HIGH

 GPIO.output(14,GPIO.HIGH)

 # show message to Terminal

 print "LED is ON"

 # pause for one second

 time.sleep(1)

 # set GPIO14 pin to HIGH

https://www.amazon.com/BOJACK-Values-Resistor-Resistors-Assortment/dp/B08FD1XVL6?crid=EX4H35ZMUZR9&keywords=resistor+assortment&qid=1637303059&sprefix=resistor+assor%2Celectronics%2C228&sr=8-5&linkCode=ll1&tag=circbasi-20&linkId=0b108786387042541a11d1ba39c0b1e7&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/DiCUNO-450pcs-Colors-Emitting-Assorted/dp/B073QMYKDM?keywords=led+assortment&qid=1636596249&sr=8-1-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEyMzVCV1JFMVBHV0RZJmVuY3J5cHRlZElkPUEwNzM3ODkwWTJMRjU0M01TNVdQJmVuY3J5cHRlZEFkSWQ9QTAzOTI1NDIxWDVHMlpOQldTNE0yJndpZGdldE5hbWU9c3BfYXRmJmFjdGlvbj1jbGlja1JlZGlyZWN0JmRvTm90TG9nQ2xpY2s9dHJ1ZQ%3D%3D&linkCode=ll1&tag=circbasi-20&linkId=e1c4eaf63a248e6ee8c05af4948918d3&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/Raspberry-Pi-Computer-Suitable-Workstation/dp/B0899VXM8F?keywords=Raspberry+Pi+4+Model+B&qid=1636845883&sr=8-4&linkCode=ll1&tag=circbasi-20&linkId=fa08c0dbd273d4ca54acbe204154e563&language=en_US&ref_=as_li_ss_tl

 GPIO.output(14,GPIO.LOW)

 # show message to Terminal

 print "LED is OFF"

 # pause for one second

 time.sleep(1)

At the top of the program we import the RPi.GPIO and time libraries. The RPi.GPIO library

will allow us to control the GPIO pins. The time library contains the sleep() function that we

will use to make the LED pause for one second.

Next we initialize the GPIO object with GPIO.setmode(GPIO.BCM). We are using the BCM

pin numbering system in this program. We use .GPIO.setwarnings(False) to disable the

warnings and GPIO.setup(14,GPIO.OUT) is used to set GPIO14 as an output.

Now we need to change the on/off state of GPIO14 once every second. We do this with the

GPIO.output() function. The first parameter of this function is the GPIO pin that will be

switched high or low. We have the LED connected to GPIO14 in this circuit, so the first

argument is 14.

The second parameter of the GPIO.output() function is the voltage state of the GPIO pin. We

can use either GPIO.HIGH or GPIO.LOW as an argument to turn the pin on or off.

Each GPIO.output() function in the code above is followed by a sleep() function that causes

the pin to hold its voltage state for the time (in seconds) defined in the parameter of the function.

In this program we are switching the LED on and off once every second so the argument is 1.

You can change this value to make the LED blink on and off faster or slower. Run the Python

program above by entering the following into the Raspberry Pi’s terminal:

sudo python LED.py

You should see the LED blinking on and off once every second.

You should also see a message in the terminal with “LED is ON“ when the LED is turned on,

and “LED is OFF” when the LED is turned off.

Fig. 17 output

4.3 Using a PIR sensor

Humans and other animals emit radiation all the time. This is nothing to be concerned about,

though, as the type of radiation we emit is infrared radiation (IR), which is pretty harmless at

the levels at which it is emitted by humans. In fact, all objects at temperatures above absolute

zero (-273.15C) emit infrared radiation. A PIR sensor detects changes in the amount of infrared

radiation it receives. When there is a significant change in the amount of infrared radiation it

detects, then a pulse is triggered. This means that a PIR sensor can detect when a human (or

any animal) moves in front of it. The pulse emitted when a PIR detects motion needs to be

amplified, and so it needs to be powered. There are three pins on the PIR: they should be

labelled Vcc, Gnd, and Out. These labels are sometimes concealed beneath the Fresnel lens

(the white cap), which you can temporarily remove to see the pin labels.

Fig. 18 Raspberry with PIR

1. As shown above, the Vcc pin needs to be attached to a 5V pin on the Raspberry Pi.

2. The Gnd pin on the PIR sensor can be attached to any ground pin on the Raspberry

Pi.

3. Lastly, the Out pin needs to be connected to any of the GPIO pins.

Tuning a PIR

Most PIR sensors have two potentiometers on them. These can control the sensitivity of the

sensors, and also the period of time for which the PIR will signal when motion is detected.

Program

import RPi.GPIO as GPIO

import time

GPIO.setmode(GPIO.BCM)

PIR_PIN = 7

GPIO.setup(PIR_PIN, GPIO.IN)

try:

 print “PIR Module Test (CTRL+C to exit)”

 time.sleep(2)

 print “Ready”

 while True:

 if GPIO.input(PIR_PIN):

 print “Motion Detected!”

 time.sleep(1)

except KeyboardInterrupt:

 print “ Quit”

 GPIO.cleanup()

4.4 Controlling LED using Raspberry Pi Webserver

Step 1: Connections

The connections in this project are quite simple - the positive pin of LED is connected to GPIO

27 pin and the negative pin to a 270 ohm resistor, the other side of which is connected to GND

pin.

Fig 19 LED with Raspberry pi

Step 2: Installing WiringPi Library

WiringPi is a PIN-based GPIO access library written in C for the BCM2835, BCM2836, and

BCM2837 SoC devices used in all Raspberry Pi versions. It’s released under the GNU LGPLv3

license and is usable from C, C++, and RTB (BASIC) as well as many other languages with

suitable wrappers.

1. First we will update our Pi with the latest versions of Raspbian using the command:

sudo apt-get update

2. Now we will install git by using this command:

sudo apt-get install git-core

3. Now obtain WiringPi using git by this command:

git clone git://git.drogon.net/wiringPi

4. Then install WiringPi library using:

cd wiringP./build

Step 3: Installing a Web Server

Apache is a very popular webserver, designed to create web servers that have the ability to host

one or more HTTP-based websites. Apache Web Server can be enhanced by manipulating the

code base or adding multiple extensions/add-ons. In our project, we are using an HTTP server

and its PHP extension.

To Install Apache web server, we will use the following commands:

First, update the available packages:

sudo apt-get update

 Now, install the apache2 package by using this command in the terminal:

sudo apt-get install apache2 -y

To test the web server whether it is working or not, go to your browser and type the Pi’s IP

address in the tab. To find the Pi's IP address, type ifconfig at the command line. By default,

Apache puts a test HTML file in the web folder. This default web page is served when you

browse to http://192.168.1.31 (whatever the Pi's IP address is) from another computer on the

network. Browse to the default web page either on the Pi or from another computer on the

network and you will see the following:

Fig. 20 Apache web Server

 Now we will see how to change the default web page with your own HTML page

This default web page is just an HTML file on the filesystem. It is located

at var/www/html/index.html.

Navigate to this directory in a terminal window and have a look at what's inside:

cd var/www/html

ls -al

This will show you:

total 12

drwxr-xr-x 2 root root 4096 Jan 8 01:29 .

drwxr-xr-x 12 root root 4096 Jan 8 01:28 ..

-rw-r--r-- 1 root root 177 Jan 8 01:29 index.html

This shows that by default there is one file in /var/www/html/ called index.html and it is owned

by the root user. To edit the file, you need to change its ownership to your own username.

Change the owner of the file using:

Sudo chown pi: index.html.

 You can now try editing this file and then refresh the browser to see the web page change.

 Install PHP in Raspberry Pi

Now if we want to use PHP code along with HTML, then we have to further install the PHP

extension in Raspberry pi. Using PHP code, we can create shell commands to control the LED

from the PHP script.

To allow the Apache server to edit PHP files, we will install the latest version of PHP and the

PHP module for Apache. Use the following command in terminal to install these:

sudo apt-get install php libapache2-mod-php -y

 Now remove the default index.html file:

sudo rm index.html

 And create your own index.php file:

sudo nano index.php

 Now enter the below code in index.php to test the PHP installation.

<?php phpinfo(); ?>

 Save it by pressing CTRL + X and the ‘y’ and enter. Now refresh the webpage in your browser,

you will see a long page with lots of information about PHP. This shows that the PHP extension

is installed properly. If you have any problem with the pages or if the pages do not appear, try

reinstalling the apache server and its PHP extension.

 Step 5: Start Coding for controlling GPIO pin using this Raspberry Pi Webserver

Now delete the previous code in index.php (<?php phpinfo(); ?>) file and insert below PHP

code to control GPIO pins inside body of HTML code.

Below is the complete code for creating two buttons to turn on and off the LED connected to

Raspberry Pi.

<html>

<head>

<meta name="viewport" content="width=device-width" />

<title>Raspberry Pi WiFi Controlled LED</title>

</head>

 <body>

 <center><h1>Control LED using Raspberry Pi Webserver</h1>

 <form method="get" action="index.php">

 <input type="submit" style = "font-size: 14 pt" value="OFF" name="off">

 <input type="submit" style = "font-size: 14 pt" value="ON" name="on">

 </form>

 </center>

<?php

 shell_exec("/usr/local/bin/gpio -g mode 27 out");

 if(isset($_GET['off']))

 {

 echo "LED is off";

 shell_exec("/usr/local/bin/gpio -g write 27 0");

 }

 else if(isset($_GET['on']))

 {

 echo "LED is on";

 shell_exec("/usr/local/bin/gpio -g write 27 1");

 }

?>

 </body>

</html>

In the above code there is a PHP script which checks which button is pressed by using below

code and then turns on and off the LED accordingly.

<?php

 shell_exec("/usr/local/bin/gpio -g mode 27 out");

 if(isset($_GET['off']))

 {

 echo "LED is off";

 shell_exec("/usr/local/bin/gpio -g write 27 0");

 }

 else if(isset($_GET['on']))

 {

 echo "LED is on";

 shell_exec("/usr/local/bin/gpio -g write 27 1");

 }

?>

Here we have used shell_exec() command in php code, this command is used to run the shell

command from the PHP script. Learn more about shell_exec here. If you run the command

inside shell_exec directly form the terminal of Raspberry pi, you can directly make GPIO pin

27 low or high. Below are two commands to test the LED directly from terminal.

/usr/local/bin/gpio -g write 27 0

/usr/local/bin/gpio -g write 27 1

After completing this, run the code in your browser by typing the IP address of raspberry pi in

the browser. You will see 2 buttons - ON, OFF to control your LED by clicking these buttons.

5.LIQUID CRYSTAL DISPLAYS (LCD) WITH ARDUINO

The Liquid Crystal library allows you to control LCD displays that are compatible with the

Hitachi HD44780 driver. There are many of them out there, and you can usually tell them

by the 16-pin interface.

Fig. 21 Output of the sketch in 16x2 LCD

http://php.net/manual/en/function.shell-exec.php
https://www.arduino.cc/reference/en/libraries/liquidcrystal/
https://docs.arduino.cc/static/7a7f1f877f04d48236ab166814aab58f/0a47e/lcd_photo.png

The LCDs have a parallel interface, meaning that the microcontroller has to manipulate

several interface pins at once to control the display. The interface consists of the following

pins:

• A register select (RS) pin that controls where in the LCD's memory you're writing

data to. You can select either the data register, which holds what goes on the screen,

or an instruction register, which is where the LCD's controller looks for instructions

on what to do next.

• A Read/Write (R/W) pin that selects reading mode or writing mode

• An Enable pin that enables writing to the registers

• 8 data pins (D0 -D7). The states of these pins (high or low) are the bits that you're

writing to a register when you write, or the values you're reading when you read.

There's also a display contrast pin (Vo), power supply pins (+5V and GND) and LED

Backlight (Bklt+ and BKlt-) pins that you can use to power the LCD, control the display

contrast, and turn on and off the LED backlight, respectively.

The process of controlling the display involves putting the data that form the image of what

you want to display into the data registers, then putting instructions in the instruction

register. The LiquidCrystal Library simplifies this for you so you don't need to know the

low-level instructions.

The Hitachi-compatible LCDs can be controlled in two modes: 4-bit or 8-bit. The 4-bit

mode requires seven I/O pins from the Arduino, while the 8-bit mode requires 11 pins. For

displaying text on the screen, you can do most everything in 4-bit mode, so example shows

how to control a 16x2 LCD in 4-bit mode.

Hardware Required

• Arduino Board

• LCD Screen (compatible with Hitachi HD44780 driver)

• pin headers to solder to the LCD display pins

https://www.arduino.cc/reference/en/libraries/liquidcrystal/

• 10k ohm potentiometer

• 220 ohm resistor

• hook-up wires

• breadboard

Before wiring the LCD screen to your Arduino board we suggest to solder a pin header

strip to the 14 (or 16) pin count connector of the LCD screen, as you can see in the image

further up.

To wire your LCD screen to your board, connect the following pins:

• LCD RS pin to digital pin 12

• LCD Enable pin to digital pin 11

• LCD D4 pin to digital pin 5

• LCD D5 pin to digital pin 4

• LCD D6 pin to digital pin 3

• LCD D7 pin to digital pin 2

• LCD R/W pin to GND

• LCD VSS pin to GND

• LCD VCC pin to 5V

• LCD LED+ to 5V through a 220 ohm resistor

• LCD LED- to GND

Additionally, wire a 10k potentiometer to +5V and GND, with it's wiper (output) to LCD

screens VO pin (pin3).

Fig. 22 Arduino with LCD

The circuit (made using Fritzing).

Schematic

The schematic (made using Fritzing).

https://docs.arduino.cc/static/7d7b6e99f40c7e55f2e9c6175c6db5b5/260cd/LCD_Base_bb_Fritz.png

Hello world example

/*

 LiquidCrystal Library - Hello World

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal

 library works with all LCD displays that are compatible with the

 Hitachi HD44780 driver. There are many of them out there, and you

 can usually tell them by the 16-pin interface.

 This sketch prints "Hello World!" to the LCD

 and shows the time.

 The circuit:

 * LCD RS pin to digital pin 12

 * LCD Enable pin to digital pin 11

 * LCD D4 pin to digital pin 5

 * LCD D5 pin to digital pin 4

 * LCD D6 pin to digital pin 3

 * LCD D7 pin to digital pin 2

 * LCD R/W pin to ground

 * LCD VSS pin to ground

 * LCD VCC pin to 5V

 * 10K resistor:

 * ends to +5V and ground

 * wiper to LCD VO pin (pin 3)

 // include the library code:

#include <LiquidCrystal.h>

// initialize the library by associating any needed LCD interface pin

// with the arduino pin number it is connected to

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 // Print a message to the LCD.

 lcd.print("hello, world!");

}

void loop() {

 // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting begins with 0):

 lcd.setCursor(0, 1);

 // print the number of seconds since reset:

 lcd.print(millis() / 1000);

}

Autoscroll Example

This example sketch shows how to use the autoscroll() and noAutoscroll() methods to move

all the text on the display left or right.

autoscroll() moves all the text one space to the left each time a letter is added

noAutoscroll() turns scrolling off

This sketch prints the characters 0 to 9 with autoscroll off, then moves the cursor to the bottom

right, turns autoscroll on, and prints them again.

/*

 LiquidCrystal Library - Autoscroll

 Demonstrates the use a 16x2 LCD display. The LiquidCrystal

 library works with all LCD displays that are compatible with the

 Hitachi HD44780 driver. There are many of them out there, and you

 can usually tell them by the 16-pin interface.

 This sketch demonstrates the use of the autoscroll()

 and noAutoscroll() functions to make new text scroll or not.

 The circuit:

 * LCD RS pin to digital pin 12

 * LCD Enable pin to digital pin 11

 * LCD D4 pin to digital pin 5

 * LCD D5 pin to digital pin 4

 * LCD D6 pin to digital pin 3

 * LCD D7 pin to digital pin 2

 * LCD R/W pin to ground

 * 10K resistor:

 * ends to +5V and ground

 * wiper to LCD VO pin (pin 3)

// include the library code:

#include <LiquidCrystal.h>

// initialize the library by associating any needed LCD interface pin

// with the arduino pin number it is connected to

const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;

LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

}

void loop() {

 // set the cursor to (0,0):

 lcd.setCursor(0, 0);

 // print from 0 to 9:

 for (int thisChar = 0; thisChar < 10; thisChar++) {

 lcd.print(thisChar);

 delay(500);

 }

 // set the cursor to (16,1):

 lcd.setCursor(16, 1);

 // set the display to automatically scroll:

 lcd.autoscroll();

 // print from 0 to 9:

 for (int thisChar = 0; thisChar < 10; thisChar++) {

 lcd.print(thisChar);

 delay(500);

 }

 // turn off automatic scrolling

 lcd.noAutoscroll();

 // clear screen for the next loop:

 lcd.clear();

}

6.ARDUINO WITH KEYPAD

The buttons on a keypad are arranged in rows and columns. A 3X4 keypad has 4 rows and 3

columns, and a 4X4 keypad has 4 rows and 4 columns:

Fig. 23 Keypad

https://www.circuitbasics.com/wp-content/uploads/2017/05/Arduino-Keypad-Tutorial-3X4-and-4X4-Keypads.jpg

Beneath each key is a membrane switch. Each switch in a row is connected to the other

switches in the row by a conductive trace underneath the pad. Each switch in a column is

connected the same way – one side of the switch is connected to all of the other switches in

that column by a conductive trace. Each row and column is brought out to a single pin, for a

total of 8 pins on a 4X4 keypad:

Fig. 24 keypad Structure

Pressing a button closes the switch between a column and a row trace, allowing current to

flow between a column pin and a row pin. The Arduino detects which button is pressed by

detecting the row and column pin that’s connected to the button.

This happens in four steps:

1. First, when no buttons are pressed, all of the column pins are held HIGH, and all of the

row pins are held LOW:

https://www.circuitbasics.com/wp-content/uploads/2017/05/How-to-Set-Up-a-Keypad-on-an-Arduino-Back-Side-of-Keypad.jpg

2. When a button is pressed, the column pin is pulled LOW since the current from the HIGH

column flows to the LOW row pin:

3. The Arduino now knows which column the button is in, so now it just needs to find the row

the button is in. It does this by switching each one of the row pins HIGH, and at the same time

reading all of the column pins to detect which column pin returns to HIGH:

4. When the column pin goes HIGH again, the Arduino has found the row pin that is connected

to the button:

The pin layout for most membrane keypads will look like this:

Fig 25 Pin Layout

https://www.circuitbasics.com/wp-content/uploads/2017/07/Arduino-Keypad-Tutorial-4X4-and-3X4-Keypad-Pin-Diagram.png

Follow the diagrams below to connect the keypad to an Arduino Uno, depending on whether

you have a 3X4 or 4X4 keypad: First, find out which keypad pins are connected to the button

rows. Insert the ground (black) wire into the first pin on the left. Press any button in row 1 and

hold it down. Now insert the positive (red) wire into each one of the other pins. If the LED

lights up at one of the pins, press and hold another button in row 1, then insert the positive wire

into each one of the other pins again. If the LED lights up on a different pin, it means the

ground wire is inserted into the row 1 pin. If none of the buttons in row 1 make the LED light

up, the ground wire is not connected to row 1. Now move the ground wire over to the next pin,

press a button in a different row, and repeat the process above until you’ve found the pin for

each row.

To figure out which pins the columns are connected to, insert the ground wire into the pin you

know is row 1. Now press and hold any one of the buttons in that row. Now insert the positive

wire into each one of the remaining pins. The pin that makes the LED light up is the pin that’s

connected to that button’s column. Now press down another button in the same row, and insert

the positive wire into each one of the other pins. Repeat this process for each one of the other

columns until you have each one mapped out.

PROGRAMMING THE KEYPAD

For a basic demonstration of how to setup the keypad, I’ll show you how to print each key

press to the serial monitor. We’ll use the Keypad library by Mark Stanley and Alexander

Brevig. This library takes care of setting up the pins and polling the different columns and

rows. To install the Keypad library, go to Sketch > Include Library > Manage Libraries and

search for “keypad”. Click on the library, then click install. Once the Keypad library is

installed, you can upload this code to the Arduino if you’re using a 4X4 keypad:

THE CODE FOR A 3X4 KEYPAD

If you’re using a 3X4 keypad, you can use this code:

http://playground.arduino.cc/Code/Keypad

#include <Keypad.h>

const byte ROWS = 4;

const byte COLS = 4;

char hexaKeys[ROWS][COLS] = {

 {'1', '2', '3', 'A'},

 {'4', '5', '6', 'B'},

 {'7', '8', '9', 'C'},

 {'*', '0', '#', 'D'}

};

byte rowPins[ROWS] = {9, 8, 7, 6};

byte colPins[COLS] = {5, 4, 3, 2};

Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS,

COLS);

void setup(){

 Serial.begin(9600);

}

 void loop(){

 char customKey = customKeypad.getKey();

 if (customKey){

 Serial.println(customKey);

 }

}

7.ARDUINO WITH SENSORS

7.1 Ultrasonic sensor

It works by sending sound waves from the transmitter, which then bounce off of an object

and then return to the receiver. You can determine how far away something is by the time

it takes for the sound waves to get back to the sensor. Let's get right to it! . Connections

The connections are very simple:

• VCC to 5V

• GND to GND

• Trig to pin 9

• Echo to pin 10

You can actually connect Trig and Echo to whichever pins you want, 9 and 10 are just the ones I'm

using.

Fig 26. Ultra Sonic Sensor

Code:

we define the pins that Trig and Echo are connected to.

const int trigPin = 9;

const int echoPin = 10;

Then we declare 2 floats, duration and distance, which will hold the length of the sound

wave and how far away the object is.

float duration, distance;

Next, in the setup, we declare the Trig pin as an output, the Echo pin as an input, and start

Serial communications.

void setup() {

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 Serial.begin(9600);

}

Now, in the loop, what we do is first set the trigPin low for 2 microseconds just to make

sure that the pin in low first. Then, we set it high for 10 microseconds, which sends out an

8 cycle sonic burst from the transmitter, which then bounces of an object and hits the

receiver(Which is connected to the Echo Pin).

void loop() {

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

When the sound waves hit the receiver, it turns the Echo pin high for however long the

waves were traveling for. To get that, we can use a handy Arduino function called pulseIn().

It takes 2 arguments, the pin you are listening to(In our case, the Echo pin), and a

state(HIGH or LOW). What the function does is waits for the pin to go whichever sate you

put in, starts timing, and then stops timing when it switches to the other state. In our case

we would put HIGH since we want to start timing when the Echo pin goes high. We will

store the time in the duration variable. (It returns the time in microseconds)

duration = pulseIn(echoPin, HIGH);

Now that we have the time, we can use the equation speed = distance/time, but we will

make it time x speed = distance because we have the speed. What speed do we have? The

speed of sound, of course! The speed of sound is approximately 340 meters per second, but

since the pulseIn() function returns the time in microseconds, we will need to have a speed

in microseconds also, which is easy to get. A quick Google search for "speed of sound in

centimeters per microsecond" will say that it is .0343 c/μS. You could do the math, but

searching it is easier. Anyway, with that information, we can calculate the distance! Just

multiply the duration by .0343 and the divide it by 2(Because the sound waves travel to the

object AND back). We will store that in the distance variable.

distance = (duration*.0343)/2;

The rest is just printing out the results to the Serial Monitor.

Serial.print("Distance: ");

 Serial.println(distance);

 delay(100);

}

7.2 Temperature Sensor

These sensors have little chips in them and while they're not that delicate, they do

need to be handled properly. Be careful of static electricity when handling them and make

sure the power supply is connected up correctly and is between 2.7 and 5.5V DC.They

come in a "TO-92" package which means the chip is housed in a plastic hemi-cylinder

with three legs. The legs can be bent easily to allow the sensor to be plugged into a

breadboard. You can also solder to the pins to connect long wires.

Reading the Analog Temperature Data

Unlike the FSR or photocell sensors we have looked at, the TMP36 and friends doesn't act

like a resistor. Because of that, there is really only one way to read the temperature value

from the sensor, and that is plugging the output pin directly into an Analog (ADC) input.

Remember that you can use anywhere between 2.7V and 5.5V as the power supply. For

this example I'm showing it with a 5V supply but note that you can use this with a 3.3v

supply just as easily. No matter what supply you use, the analog voltage reading will range

from about 0V (ground) to about 1.75V.

If you're using a 5V Arduino, and connecting the sensor directly into an Analog pin, you

can use these formulas to turn the 10-bit analog reading into a temperature:

Voltage at pin in milliVolts = (reading from ADC) * (5000/1024)

This formula converts the number 0-1023 from the ADC into 0-5000mV (= 5V) If you're

using a 3.3V Arduino, you'll want to use this:

Voltage at pin in milliVolts = (reading from ADC) * (3300/1024)

This formula converts the number 0-1023 from the ADC into 0-3300mV (= 3.3V) Then,

to convert millivolts into temperature, use this formula:

Centigrade temperature = [(analog voltage in mV) - 500] / 10

Fig 27 Temperature Sensor

This example code for Arduino shows a quick way to create a temperature sensor, it simply

prints to the serial port what the current temperature is in both Celsius and Fahrenheit.

For better results, using the 3.3v reference voltage as ARef instead of the 5V will be more

precise and less noisy.

int sensorPin = 0;

 * setup() - this function runs once when you turn your Arduino on

void setup()

{

 Serial.begin(9600); //Start the serial connection with the computer

 //to view the result open the serial monitor

}

void loop() // run over and over again

{

 //getting the voltage reading from the temperature sensor

 int reading = analogRead(sensorPin);

 // converting that reading to voltage, for 3.3v arduino use 3.3

 float voltage = reading * 5.0;

 voltage /= 1024.0;

 // print out the voltage

 Serial.print(voltage); Serial.println(" volts");

 // now print out the temperature

 float temperatureC = (voltage - 0.5) * 100 ; //converting from 10 mv per degree wit 500

mV offset

 //to degrees ((voltage - 500mV) times 100)

 Serial.print(temperatureC); Serial.println(" degrees C");

 // now convert to Fahrenheit

 float temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;

 Serial.print(temperatureF); Serial.println(" degrees F");

 delay(1000); //waiting a second

}

School of Computing

Department of Computer Science and Engineering

UNIT III - ARDUINO PROGRAMMING FOR

IoT BOARDS - SCSA1407

UNIT 3: Platforms

History - Creative Coding Platforms - Open Source Platforms – PIC - Arduino, Sketch,

Iterative coding methodology – Python Programming - Mobile phones and similar devices -

Arm Devices - Basic Electronics (circuit theory, measurements, parts identification) Sensors

and Software: Understanding Processing Code Structure, variables and flow control,

Interfacing to the Real World

1. CREATIVE CODING PLATFORMS

There’s no reason why they can’t choose the language in the same way they do for a desktop

project. If a Raspberry Pi is running Linux, it's behaviour is not that different from a desktop.

By the time the debate on languages makes its way to the servers, there’s no difference there,

either. They speak with the hubs and sensors—usually with some kind of microservice

architecture—then the data is pushed into standard databases. While the usual suspects of

popular languages dominate the IoT space already, the Eclipse survey found at least 14

different languages that were mentioned by 5 percent or more of the developers. Here are some

of the top choices that are being used to build the foundations of the next generation of things

connected to the Internet.

1.1 Java

The top choice of the Eclipse survey and another survey by embedded-computing.com was

Java, a result that’s not surprising for a language still known for being “write once, run

anywhere.” The original project was aimed at set-top boxes, one of the first domains for non-

desktop computing. Java’s advantages are well known. Developers can create and debug code

on their desktop and then move it to any chip with a Java Virtual Machine. That means the

code can run not just on places where JVMs are common (servers and smartphones), but also

on the smallest machines.

http://techbeacon.com/5-fundamentals-successful-microservice-design
http://techbeacon.com/5-fundamentals-successful-microservice-design
http://embedded-computing.com/guest-blogs/developers-are-choosing-java-for-their-intelligent-iot-gateways/

Java ME, or micro edition, has been available on small phone handsets and other embedded

devices since the specification was approved in 2000. It saved space with a very limited

collection of class libraries and other tools. Today, most of the focus is on Java SE Embedded,

which is much closer in capability to the Standard Edition. Developers can use the latest

features of the Java 8 platform and then move their code to a smaller, embedded device. Most

of the computing resource savings with Java SE Embedded comes from stripping out the

classes needed to display information when the machines can be configured to run headlessly,

without a monitor or keyboard. All of the communication goes through the network. There are

multiple open-source projects, such as Pi4J and BlueJ, that show how the embedded version of

Java runs well, even on chips that seem limited.

1.2 C programming

The syntax is cluttered with punctuation, and there are a million different little mistakes you

can make, but the language is still the first choice for many programmers who write for the

lowest layer of software, the one closest to the hardware. The language hides nothing from you,

and that means you can fiddle with every part of the code to squeeze out the best performance

from an underpowered device. Every bit can be flipped. Every value on the stack is available.

Just don’t make a mistake, because there are few safety nets.

More advanced or bigger devices with full operating systems still use plenty of C code, he

added, but he said that other languages such as Java are starting to be used just as frequently.

When a smartphone comes from Apple, much of the programming is still done in Objective C,

but this will probably be gradually replaced by Swift.

1.3 Python

It started as a scripting language to glue together real code, but it’s increasingly used as the

main language for many developers. When small devices have enough memory and

computational power, the developers are free to choose the language that makes their life easier

http://www.oracle.com/technetwork/java/embedded/embedded-se/learnmore/index.html
http://pi4j.com/
http://www.bluej.org/raspberrypi/

and that is more and more often turning out to be Python. The syntax is clean and simple,

attracting a greater range of programmers. The language is often the first choice for social

scientists and biologists, for instance. When they need a smart device in the lab, they’re happy

to use a language they know, Python. “Python is the language of choice for one of the most

popular microcontrollers on the market, the Raspberry Pi,” said Covey. Much of the training

literature is written in Python, and many schools use the platform to teach computer

programming. If the project is relatively simple and there are no great computational demands,

it’s possible to build effective tools from the same boards and libraries that are used in

elementary schools. There are also versions designed to be even smaller.

The MicroPython board and software package is a small microcontroller optimized to run

Python on a small board that’s only a few square inches.

1.4 JavaScript

While many still think of JavaScript as a language for popping up alert boxes on web pages,

the language’s relatively newfound popularity on the server makes it a surprisingly popular

choice for IoT applications. A full 41.8 percent of the developers in the Eclipse survey chose

JavaScript, and 31.5 percent indicated that they were using Node.js in their projects. Much of

this work is focused on the servers and gateways or hubs that gather the information and then

store it. The smaller smart hubs and sensors that run Linux can usually run Node.js. But even

if most of the Node.js code runs on larger machines, there are some efforts designed to bring it

to smaller ones. Espruino and Tessel are two examples of microcontrollers that run JavaScript

from the beginning. Tessel, for instance, is built around Node.js, making it easy for web

developers to move into the IoT without learning a new language.

1.5 Swift

While Swift is still mainly used to build applications for Apple’s iOS and macOS devices, the

preponderance of these machines means that it’s often part of the IoT stack. If you want your

things to interact with an iPhone or an iPad, you’re probably going to want to build the app in

https://www.raspberrypi.org/
https://micropython.org/
http://techbeacon.com/highlights-stack-overflow-2016-developer-survey
http://www.espruino.com/
https://www.dragoninnovation.com/projects/22-tessel

Swift (or perhaps its predecessor, Objective C). There are other good reasons to work in this

space. Apple wants to make its iOS devices the center of the home network of sensors, so it’s

been creating libraries and infrastructure that handle much of the work. These libraries are the

foundation of its HomeKit platform, which provides support for integrating the data feeds from

a network of compatible devices. This means you can concentrate on the details of your task

and leave much of the integration overhead to HomeKit.

1.6 PHP

This language may be the first choice of bloggers and website prototypers, but it is also

surprisingly popular in the IoT. After the big languages and their cousins such as C#, PHP is

the one language that is mentioned the most often by developers in the Eclipse survey; 11.2

percent say they are including PHP code in their stack. While the code’s role on the server to

juggle microservices is an obvious application, it is also finding some traction at the lowest

level. A number of Raspberry Pi developers are talking about starting up a full LAMP stack

with Apache, MySQL, and PHP running on top of Linux. They are effectively inverting the

paradigm and turning the lowliest thing on the Internet into a full web server.

2. Open Source Platforms

IoT Platforms

1. Zetta

2. Arduino

3. OpenRemote

4. Node-RED

5. Flutter

6. M2MLabs Mainspring

7. ThingsBoard

8. Kinoma

http://www.apple.com/ios/homekit/
https://geekflare.com/iot-platform-tools/#anchor-zetta
https://geekflare.com/iot-platform-tools/#anchor-arduino
https://geekflare.com/iot-platform-tools/#anchor-openremote
https://geekflare.com/iot-platform-tools/#anchor-node-red
https://geekflare.com/iot-platform-tools/#anchor-flutter
https://geekflare.com/iot-platform-tools/#anchor-m2mlabs-mainspring
https://geekflare.com/iot-platform-tools/#anchor-thingsboard
https://geekflare.com/iot-platform-tools/#anchor-kinoma

9. Kaa IoT Platform

10. SiteWhere

11. DSA

12. Thinger

IoT platforms and tools are considered as the most significant component of the IoT ecosystem.

Any IoT device permits to connect to other IoT devices and applications to pass on information

using standard Internet protocols. IoT platforms fill the gap between the device sensors and

data networks. It connects the data to the sensor system and gives insights using back-end

applications to create a sense of the plenty of data developed by the many sensors. The Internet

of Things (IoT) is the future of technology that helps the Artificial intelligence (AI) to regulate

and understand the things in a considerably stronger way. We have picked up a mix of best

known IoT platforms and tools that help you to develop the IoT projects in an organized way.

2.1 Zetta

Zetta is API based IoT platform based on Node.js. It is considered as a complete toolkit to

make HTTP APIs for devices. Zetta combines REST APIs, WebSockets to make data-intensive

and real-time applications. The following are some notable features.

• It can run on the cloud, or a PC, or even modest development boards.

• Easy interface and necessary programming to control sensors, actuators, and

controllers.

• Allows developers to assemble smartphone apps, device apps, and cloud apps.

• It is developed for data-intensive and real-time applications.

• Turns any machine into an API.

2.2 Arduino

If you are seeking to make a computer that can perceive and exercise stronger control over the

real world when related to your ordinary stand-alone computer, then Arduino can be your wise

preference. Offering an appropriate blend of IoT hardware and software, Arduino is a simple-

https://geekflare.com/iot-platform-tools/#anchor-kaa-iot-platform
https://geekflare.com/iot-platform-tools/#anchor-sitewhere
https://geekflare.com/iot-platform-tools/#anchor-dsa
https://geekflare.com/iot-platform-tools/#anchor-thinger
https://geekflare.com/web-backend-security-risk/
https://geekflare.com/web-backend-security-risk/
https://click.linksynergy.com/deeplink?id=jf7w44yEft4&mid=40328&murl=https%3A%2F%2Fwww.coursera.org%2Fspecializations%2Fiot
https://click.linksynergy.com/deeplink?id=jf7w44yEft4&mid=40328&murl=https%3A%2F%2Fwww.coursera.org%2Fspecializations%2Fiot
http://www.zettajs.org/
https://www.arduino.cc/

to-use IoT platform. It operates through an array of hardware specifications that can be given

to interactive electronics. The software of Arduino comes in the plan of the Arduino

programming language and Integrated Development Environment (IDE).

2.3 OpenRemote

OpenRemote has introduced a new open-source IoT platform to create professional energy

management, crowd management, or more generic asset management applications. Summing

up the most important features:

• Generic asset and attribute model with different asset types

• Protocol agents like HTTP REST or MQTT to connect your IoT devices, gateways, or

data services or build a missing vendor-specific API.

• Flow editor for data processing, and a WHEN-THEN and a Groovy UI for event-based

rules.

• Standard Dashboard for provisioning, automating, controlling, and monitoring your

application as well as Web UI components to build project-specific apps.

• Android and iOS consoles which allow you to connect to your phone services, e.g.,

geofences, and push notifications.

• Edge Gateway solution to connect multiple instances with a central management

instance.

• Multi-realms multi-tenant solution, combined with account management and identity

service.

2.4 Node-RED

Node-RED is a visual tool for lining the Internet of Things, i.e., wiring together hardware

devices, APIs, and online services in new ways. Built on Node.js, Node-RED describes itself

as “a visual means for wiring the Internet of Things.”

https://openremote.io/
https://nodered.org/

It provides developers to connect devices, services, and APIs using a browser-based flow

editor. It can run on Raspberry Pi, and further 60,000 modules are accessible to increase its

facilities.

2.5 Flutter

Flutter is a programmable processor core for electronics projects, designed for students, and

engineers. Flutter’s take to glory is it’s long-range. This Arduino-based board includes a

wireless transmitter that can show up to more than a half-mile. Plus, you don’t require a router;

flutter boards can interact with each other quickly.

It consists of 256-bit AES encryption, and it’s simple to use. Some of the other features are

below.

• Fast Performance

• Expressive and Flexible UI

• Native Performance

• Visual finish and functionality of existing widgets.

2.6 M2MLabs Mainspring

M2MLabs Mainspring is an application framework for developing a machine to machines

(M2M) applications such as remote control, fleet administration, or smart terminal. Its facilities

include flexible design of devices, device structure, connection between machines and

applications, validation and normalization of data, long-term data repository, and data retrieval

functions.

It’s based on Java and the Apache Cassandra NoSQL database. M2M applications can be

modeled in hours rather than weeks and subsequently passed on to a high-performance

execution environment made on top of a standard J2EE server and the highly-scalable Apache

Cassandra database.

https://flutter.dev/
http://www.m2mlabs.com/

2.7 ThingsBoard

ThingsBoard is for data collection, processing, visualization, and device management. It

upholds all standard IoT protocols like CoAP, MQTT, and HTTP as quickly as cloud and on-

premise deployments. It builds workflows based on design life cycle events, REST API events,

RPC requests.

Let’s take a look at the following ThigsBoard features.

• A stable platform that is combining scalability, production, and fault-tolerance.

• Easy control of all connected devices in an exceptionally secure system

• Transforms and normalizes device inputs and facilitates alarms for generating alerts on

all telemetry events, restores, and inactivity.

• Enables use-state specific features using customizable rule groups.

• Handles millions of devices at the same time.

• No single moment of failure, as every node in the bundle is exact.

• Multi-tenant installations out-of-the-wrap.

• Thirty highly customized dashboard widgets for successful user access.

2.8 Kinoma

Kinoma, a Marvell Semiconductor hardware prototyping platform, involves three different

open source projects. Kimona Create is a DIY construction kit for prototyping electronic

devices. Kimona Studio is the development environment that functions with Set up and the

Kinoma Platform Runtime. Kimona Connect is a free iOS and Android app that links

smartphones and stands with IoT devices.

2.9 Kaa IoT Platform

Kaa is a production-ready, flexible, multi-purpose middleware platform for establishing end-

to-end IoT solutions, connected applications, and smart devices. It gives a comprehensive way

https://thingsboard.io/
https://github.com/Kinoma
https://www.kaaproject.org/

of carrying out effective communication, deals with, and interoperation capabilities in

connected and intelligent devices.

It mounts from tiny startups to a great enterprise and holds advanced deployment models for

multi-cloud IoT solutions. It is primarily based on flexible microservices and readily conforms

to virtually any need and application — some other features as below.

• Facilitates cross-device interoperability.

• Performs real-time device control, remote device provisioning, and structure.

• Create cloud services for smart products

• Consists of topic-based warning systems to provide end-users to deliver messages of

any predefined format to subscribed endpoints.

• Perform real-time device monitoring

• Manage an infinite quantity of connected devices

• Collect and analyze sensor data

2.10 SiteWhere

SiteWhere platform offers the ingestion, repository, processing, and assimilation of device

inputs. It runs on Apache Tomcat and provides highly tuned MongoDB and HBase

implementations. You can deploy SiteWhere to cloud platforms like AWS, Azure, GCP, or on-

premises. It also supports Kubernetes cluster provisioning.

The following are some of the other features.

• Run any estimate of IoT applications on a single SiteWhere instance

• Spring brings the root configuration framework.

• Add widgets through self-registration, REST services, or in batches.

• InfluxDB for event data storage

• Connect devices with MQTT, Stomp, AMQP and other protocols

• Integrates third-party integration frameworks

• 3Eclipse Californium for CoAP messaging

https://sitewhere.io/en/

• HBase for the non-relational datastore

• Grafana to visualize SiteWhere data

2.11 DSA

Distributed Services Architecture (DSA) is for implementing inter-device communication,

logic, and efforts at every turn of the IoT infrastructure. It allows cooperation between devices

in a distributed manner and sets up a network engineer to share functionality between discrete

computing systems. You can manage node attributes, permission, and links from DSLinks.

2.12 Thinger

Thinger.io provides a scalable cloud base for connecting devices. You can deal with them

quickly by running the admin console or combine them into your project logic using their REST

API. It supports all types of hackers boards such as Raspberry Pi, Intel Edison, ESP8266.

Thinger can be integrated with IFTT, and it provides real-time data on a beautiful dashboard.

3. ARDUINO SKETCHES

A sketch is the name that Arduino uses for a program. It's the unit of code that is uploaded to

and run on an Arduino board.

3.1 Comments

The first few lines of the Blink sketch are a comment:

At the start of each line is only there to make the comment look pretty, and isn't required). It's

there for people reading the code: to explain what the program does, how it works, or why it's

written the way it is. It's a good practice to comment your sketches, and to keep the comments

http://iot-dsa.org/
https://thinger.io/

up-to-date when you modify the code. This helps other people to learn from or modify your

code.

There's another style for short, single-line comments. These start with // and continue to the

end of the line. For example, in the line:

COPY

1int ledPin = 13; // LED connected to digital pin 13

the message "LED connected to digital pin 13" is a comment.

3.2 Variables

A variable is a place for storing a piece of data. It has a name, a type, and a value. For example,

the line from the Blink sketch above declares a variable with the name

ledPin

, the type

int

, and an initial value of 13. It's being used to indicate which Arduino pin the LED is connected

to. Every time the name ledPin appears in the code, its value will be retrieved. In this case, the

person writing the program could have chosen not to bother creating the ledPin variable and

instead have simply written 13 everywhere they needed to specify a pin number. The advantage

of using a variable is that it's easier to move the LED to a different pin: you only need to edit

the one line that assigns the initial value to the variable. Often, however, the value of a variable

will change while the sketch runs. For example, you could store the value read from an input

into a variable.

3.3 Functions

A function (otherwise known as a procedure or sub-routine) is a named piece of code that can

be used from elsewhere in a sketch. For example, here's the definition of the setup() function

from the Blink example:

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

The first line provides information about the function, like its name, "setup". The text before

and after the name specify its return type and parameters: these will be explained later. The

code between the { and } is called the body of the function: what the function does. You can

call a function that's already been defined (either in your sketch or as part of the Arduino

language).

For example, the line pinMode(ledPin, OUTPUT) and calls the pinMode() function, passing

it two parameters: ledPin and OUTPUT. . These parameters are used by the pinMode()

function to decide which pin and mode to set. pinMode(), digitalWrite(), and delay(). The

pinMode() function configures a pin as either an input or an output. To use it, you pass it the

number of the pin to configure and the constant INPUT or OUTPUT. When configured as an

input, a pin can detect the state of a sensor like a pushbutton; this is discussed in the Digital

Read Serial tutorial. As an output, it can drive an actuator like an LED. The digitalWrite()

functions outputs a value on a pin. For example, the line:

digitalWrite(ledPin, HIGH) set the ledPin (pin 13) to HIGH, or 5 volts. Writing a LOW to pin

connects it to ground, or 0 volts. The delay() causes the Arduino to wait for the specified

number of milliseconds before continuing on to the next line. There are 1000 milliseconds in a

second, so the line delay(1000) creates a delay of one second.

setup() and loop() are two special functions that are a part of every Arduino sketch:

setup() and loop(). The setup() is called once, when the sketch starts. It's a good place to do

setup tasks like setting pin modes or initializing libraries. The loop() function is called over

and over and is heart of most sketches. You need to include both functions in your sketch, even

if you don't need them for anything.

3.4 For Loop Iteration

For instance, this example blinks 6 LEDs attached to the Arduino by using a for() loop to

cycle back and forth through digital pins 2-7. The LEDS are turned on and off, in sequence,

by using both the digitalWrite() and delay() functions. We also call this example "Knight

Rider" in memory of a TV-series from the 80's where David Hasselhoff had an AI machine

named KITT driving his Pontiac. The car had been augmented with plenty of LEDs in all

possible sizes performing flashy effects. In particular, it had a display that scanned back and

forth across a line, as shown in this exciting fight between KITT and KARR. This example

duplicates the KITT display.

Hardware Required

• Arduino Board

• 6 220 ohm resistors

• 6 LEDs

• hook-up wires

• breadboard

Circuit

Connect six LEDS, with 220 ohm resistors in series, to digital pins 2-7 on your Arduino.

https://www.arduino.cc/en/Reference/For
https://www.arduino.cc/en/Reference/DigitalWrite
https://www.arduino.cc/en/Reference/Delay
http://en.wikipedia.org/wiki/KITT
http://en.wikipedia.org/wiki/KITT
https://www.youtube.com/watch?v=PO5E5mQIy_Q

Fig. 1 Arduino with LED

Schematic:

The code below begins by utilizing a

for()

 loop to assign digital pins 2-7 as outputs for the 6 LEDs used.

In the main loop of the code, two

for()

 loops are used to loop incrementally, stepping through the LEDs, one by one, from pin 2 to

pin seven. Once pin 7 is lit, the process reverses, stepping back down through each LED.

/*

 For Loop Iteration

*/

int timer = 100; // The higher the number, the slower the timing.

void setup() {

 // use a for loop to initialize each pin as an output:

 for (int thisPin = 2; thisPin < 8; thisPin++) {

 pinMode(thisPin, OUTPUT);

https://docs.arduino.cc/static/5df02368119e92fe406e9dd4dd5c9836/29114/circuit.png

 }

}

void loop() {

 // loop from the lowest pin to the highest:

 for (int thisPin = 2; thisPin < 8; thisPin++) {

 // turn the pin on:

 digitalWrite(thisPin, HIGH);

 delay(timer);

 // turn the pin off:

 digitalWrite(thisPin, LOW);

 }

 // loop from the highest pin to the lowest:

 for (int thisPin = 7; thisPin >= 2; thisPin--) {

 // turn the pin on:

 digitalWrite(thisPin, HIGH);

 delay(timer);

 // turn the pin off:

 digitalWrite(thisPin, LOW);

 }

}

4. PYTHON IN INTERNET OF THINGS

The rapidly changing automotive industry has allowed IoT to revolutionize the

automotive industry. The IoT makes driving safe and efficient. It has unleashed a range

of benefits in agriculture from improving productivity to crop failure risks. The capability

IoT to diagnose a problem and avoid failure of the system is helping in preventing the

breakdown scenario. The usage of IoT devices has increased year to year. More than 8

billion IoT devices have registered from 2016 to 2018. As per the IoT expert’s analysis, at

the end of 2020, the count of IoT devices will reach more than 30 billion. And the market

value of IoT will reach $7 trillion. As the internet of things (IoT) is evolving continuously,

it can be difficult to analyze which tools are more useful in IoT development. Many

programming languages are used to develop IoT devices. But which programming

languages are most efficient in IoT development. Python language is one among the most

popular programming languages for IoT. The coding flexibility & dynamic nature of

python helps developers in creating intelligent IoT devices.

IoT definition says that IoT is a network of electronic devices that consist of software,

sensors, actuators, and connectivity which allows these things to connect, interact and

exchange data. The IoT is like an ecosystem in which physical objects are connected with

each other and can be accessed through the internet.

The IoT revolution is going to change the human living style in the future. It will change

the way of communication between human being. The primary use of IoT is not only an

automatic coffee maker, door opening and switching on lights. IoT collects data from the

connected devices which will help in making a fruitful decision. The IoT applications in

the hospital will help to collect patient data then analyze with different IoT monitoring

machines. This will help doctors for treating patients even from remote areas. The IoT

devices allows consumers, businesses and other connected devices to run efficiently.

https://edu.varistor.in/machine-learning-in-the-internet-of-things-applications/

Python is a very popular high-level programming language that focuses on code

readability. It is a dynamic and interpreted programming language. Python supports

multiple programming paradigm. Generally, Python has fewer steps as compared to Java

and C. Python language is also called a general-purpose programming language. Python

can be used for software development, mathematics, web development, and system

scripting. In Python web development, developers use python on the server-side to develop

web applications. Python can handle big and complex data easily. It can work on different

platforms Windows, Mac, Linux, and Raspberry Pi. Python is an efficient and fast

programming language because it runs on the interpreter. Python can be treated as

procedural, functional and object-oriented, etc. With the scripting language, you can

develop desktop applications and web applications. It also translated into binary language

like java.

4.1 Python in IoT Development

A database is a no-brainer when it comes to most IoT applications. All the IoT devices

send data to the internet. Then there should be a database required which can store

generated data. MySQL is the go-to relational database for most developers. In this regard,

mysqldb is a very convenient little tool which circumvents the need to execute shell

commands within a Python script to read and write to a database. And comes Python into

the picture. You can also use other programming languages along with Python such as:

• Assembly

• C

• C++

• Java

• Javascript

• PHP

• Python and many more

Before developers were using a java programming language in IoT development.

Nowadays Python is quite a favorite language of developers. The reason behind using

Python in IoT development is the specific feature that Python provides:

Easy to code: With the clear syntax developers get an idea on code identification instead

of {};

Simple Syntax: Python has a simple syntax similar to the English Language

Interpreted Language: Python runs on interpreter system. The code can be executed as

soon as it is written. Prototyping can be very quick.

Embeddable: Python allows integration with other languages. It is possible to put our

code in other programming languages like C++ etc.

Extensible: Python is extensible language. It allows developers to write programs with

fewer lines than some other programming languages.

Portable: Python code is portable there is no need to change the code for different

machines. You can run one code in many machines

Free and open-source: Python is open-source language. Its source code is freely available

to the public you can download it, change it and distribute it.

Community supports: Python has already got its huge response in the market with the

above-mentioned features thus provides many users grouped into community to support

the advancements further.

Easy to learn: Learning and implementation of python is relatively simple and easy when

compared to other native languages like C++ and java.

Easy to debug: Python scripting language is one of the better language to debug than C++

and C. In this source code is executed line by line.

Library support: Python supports large standard libraries. Installation of the libraries is

easy, and it saves time.

Python is very easy to learn. You can learn Python by yourself without taking any coaching

classes from outside. The software is available on Google at free of cost. You

can download Python 3.7.2, the latest version of python. Free Python documentation is

available on python.org created by the python community. Across industries, IoT is being

increasingly used to streamline processes and make them more efficient. For example,

manufacturing production lines and agriculture are great examples of different industries taking

advantage of the many benefits of IoT. In the specific case of agriculture, IoT helps coordinate

harvesters with trucks that have elevators to efficiently handle grains. For many developers,

https://www.python.org/downloads/release/python-372/
https://www.python.org/doc/versions/

Python is the language of choice in the market. It’s easy to learn, has clean syntax, and it is

supported by a large community online. In IoT, Python is a great choice for the backend side of

development as well as the software development of devices. In addition, Python is available to

run on Linux devices and you can use Micro Python for microcontrollers. Some of the many

advantages of working with Python for IoT devices are the speed at which you can develop code

and a large number of libraries for all kinds of platforms. Python is a great ally to develop device

prototypes. Even if you rewrite some of your code during production to C, C++, or Java to improve

performance, in general, the system will function perfectly in Python. In this case, you can control

the I/O ports on the Raspberry Pi expansion bar. Fortunately, the board supports wireless

communication (Bluetooth and WiFi), Ethernet, and you can also connect a monitor to the HDMI

outputs, a specialized 3.2" 320x240 TFT LCD, or a low energy consumption E-Ink 2.13" 250x122

display for Raspberry Pi. The controllers, available in a wide range of computing power and

budgets, can be chosen for your IoT system - from the fast Raspberry Pi 4 Model B 8GB to the

smallest Raspberry Pi Zero, all supporting Python. If necessary, you can install the previous

version of Python 2.7 for past compatibility.

To control the I/O ports, you can easily write a couple of lines in Python using the GPIO Zero

library: This example shows how easy it is to receive and process signals by pressing the button

on the second pin at the moment of pressing and at the moment of releasing.

The advantages of using this approach are the availability of a wide range of development tools,

libraries, and communications for the most complex devices based on Raspberry Pi, including

video processing from cameras.

from gpiozero import Button

from time import sleep

button = Button(2)

while True:

 if button.is_pressed:

 print("Button Press")

 else:

 print("Button Release")

 sleep(1)

4.2 Python on PyBoard

The next great solution for Python in IoT devices is the PyBoard with an STM32F405RG

microcontroller. The PyBoard is a compact and powerful electronics development board that runs

Micro Python. It connects to your PC via USB, giving you a USB flash drive to save your Python

scripts and a serial Python prompt (a REPL) for instant programming. This works with Windows,

Mac, and Linux. Micro Python runs bare-metal on the PyBoard, essentially giving you a Python

operating system. The built-in pyb module contains functions and classes to control the peripherals

available on the board, such as UART, I2C, SPI, ADC, and DAC. ESP8266, ESP32 with Micro

python . After installing Python on your computer, you can enter the pip install esptool from the

command line. The MicroPython installation process is quite simple: download the firmware from

the website and install it using esptool, not forgetting to format the board before installing it. There

are already quite a few IDEs for developing with Micropython. The entire development process

is carried out on a working computer, then it is compiled and stored in the memory of an ESP8266

or ESP32 microcontroller. See how simple this code might look like: MicroPython will impose a

lot of restrictions compared to regular Python but, in general, you can easily write the necessary

functionality on the client-side and run it efficiently on ESP microcontrollers. This solution is

more cost-effective than purchasing PyBoard.

from machine import Pin

import time

led_pin = Pin(2,Pin.OUT)

while True:

 led_pin.on()

 time.sleep(1)

 led_pin.off()

 time.sleep(1)

4.3 MQTT protocol with Python

The most popular connection method for IoT devices is MQTT, a protocol that is effectively

implemented with Python. The MQTT protocol is a machine-to-machine (M2M)/Internet of

Things connectivity protocol that is designed as an extremely lightweight publish/subscribe

messaging transport. It is useful for connections with remote locations where a small code

footprint is required and/or network bandwidth is at a premium.

The Eclipse Paho MQTT Python client library implements versions 5.0, 3.1.1, and 3.1 of the

MQTT protocol. The Poho library code provides a client class that enables applications to connect

to an MQTT broker to publish messages, subscribe to topics, and receive published messages. It

also provides some helper functions to make the publishing of one-off messages to MQTT servers

straightforward.

4.4 IoT backend on Flask in Python

For a quick, and hassle-free tool to write the backend for your IoT systems and easily set up server-

side input/output information, the Flask microframework is here to rescue you and is packed with

lots of functionalities. To get started, decide on the requests you need to serve from your IoT

devices, set up the Flask microframework, and write a couple of lines of code. The GET method

will now return information upon request from the client’s side. In many cases, you are best off

targeting the RESTful protocol when working with your IoT devices. This simplifies the exchange

between the system components and allows you to expand the information exchange system in

the future. Let's go further. Let's say the following task has arisen: display information from IoT

devices on a web page. The Flask microframework will rescue you again with its built-in template

mechanism where you can build the needed web page with the data display, including graphics.

The disadvantage of using this approach is the potential lack of initiating the transfer of data from

the server to the device. That is, the IoT must independently and periodically pull from the server.

Rest easy, as there are solutions to address this risk. You can use web sockets or a Python library

for Pushsafer. With PushSafer, you can easily and safely send and receive push notifications in

real-time to your iOS, Android, and Windows devices (mobile and desktop), as well as browsers

like Chrome, Firefox, Opera, etc.

5. ARM Devices

System-on-chip solutions based on ARM embedded processors address many different

market segments including enterprise applications, automotive systems, home networking and

wireless technologies. The ARM Cortex™ family of processors provides a standard

architecture to address the broad performance spectrum required by these diverse technologies.

The ARM Cortex family includes processors based on the three distinct profiles of the ARMv7

architecture; the A profile for sophisticated, high-end applications running open and complex

operating systems; the R profile for real-time systems; and the M profile optimized for cost-

sensitive and microcontroller applications. The Cortex-M3 processor is the first ARM

processor based on the ARMv7-M architecture and has been specifically designed to achieve

high system performance in power- and cost-sensitive embedded applications, such as

microcontrollers, automotive body systems, industrial control systems and wireless

networking, while significantly simplifying programmability to make the ARM architecture an

option for even the simplest applications.

 There have been several generations of the ARM design. The original ARM1 used a

32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory.

This limitation was removed in the ARMv3 series, which has a 32-bit address space, and several

additional generations up to ARMv7 remained 32-bit. Released in 2011, the ARMv8-A

architecture added support for a 64-bit address space and 64-bit arithmetic with its new 32-bit

fixed-length instruction set.Arm Ltd. has also released a series of additional instruction sets for

different rules; the "Thumb" extension adds both 32- and 16-bit instructions for improved code

density, while Jazelle added instructions for directly handling Java bytecodes, and more

recently, JavaScript. More recent changes include the addition of simultaneous multithreading

(SMT) for improved performance or fault tolerance.

 Due to their low costs, minimal power consumption, and lower heat generation than

their competitors, ARM processors are desirable for light, portable, battery-powered devices

including smartphones, laptops and tablet computers, as well as other embedded systems.

However, ARM processors are also used for desktops and servers, including the world's fastest

supercomputer. With over 180 billion ARM chips produced, as of 2021, ARM is the most

widely used instruction set architecture (ISA) and the ISA produced in the largest quantity.

Currently, the widely used Cortex cores, older "classic" cores, and specialised SecurCore cores

variants are available for each of these to include or exclude optional capabilities.

5.1 ARM1

Acorn chose VLSI Technology as the "silicon partner",as they were a source of ROMs

and custom chips for Acorn. Acorn provided the design and VLSI provided the layout and

production. The first samples of ARM silicon worked properly when first received and tested

on 26 April 1985. Known as ARM1, these versions ran at 6 MHz. The first ARM application

was as a second processor for the BBC Micro, where it helped in developing simulation

software to finish development of the support chips (VIDC, IOC, MEMC), and sped up the

CAD software used in ARM2 development. Wilson subsequently rewrote BBC BASIC in

ARM assembly language. The in-depth knowledge gained from designing the instruction set

enabled the code to be very dense, making ARM BBC BASIC an extremely good test for any

ARM emulator.

Fig. 2 ARM1 processor

5.2 ARM2

The result of the simulations on the ARM1 boards led to the late 1986 introduction of

the ARM2 design running at 8 MHz, and the early 1987 speed-bumped version at 10 to 12

MHz.[b] A significant change in the underlying architecture was the addition of a Booth

multiplier, whereas previously multiplication had to be carried out in software.[37]

Additionally, a new Fast Interrupt reQuest mode, FIQ for short, allowed registers 8 through 14

to be replaced as part of the interrupt itself. This meant FIQ requests did not have to save out

their registers, further speeding interrupts. The ARM2 was roughly seven times the

performance of a typical 7 MHz 68000-based system like the Commodore Amiga or Macintosh

SE. It was twice as fast as a Intel 80386 running at 16 MHz, and about the same speed as a

multi-processor VAX-11/784 supermini. The only systems that beat it were the Sun SPARC

and MIPS R2000 RISC-based workstations.[39] Further, as the CPU was designed for high-

speed I/O, it dispensed with many of the support chips seen in these machines, notably, it lacked

any dedicated direct memory access (DMA) controller which was often found on workstations.

The graphics system was also simplified based on the same set of underlying assumptions about

memory and timing. The result was a dramatically simplified design, offering performance on

par with expensive workstations but at a price point similar to contemporary desktops. The

ARM2 featured a 32-bit data bus, 26-bit address space and 27 32-bit registers. The ARM2 had

a transistor count of just 30,000, compared to Motorola's six-year-older 68000 model with

around 40,000.

This simplicity enabled low power consumption, yet better performance than the Intel

80286. A successor, ARM3, was produced with a 4 KB cache, which further improved

performance. The address bus was extended to 32 bits in the ARM6, but program code still had

to lie within the first 64 MB of memory in 26-bit compatibility mode, due to the reserved bits

for the status flags.

In order to achieve higher performance, processors can either work hard or work smart.

Pushing higher clock frequencies may increase performance but is also accompanied by higher

power consumption and design complexity. On the other hand, higher compute efficiency at

slower clock speeds results in simpler and lower power designs that can perform the same

tasks. At the heart of the Cortex-M3 processor is an advanced 3-stage pipeline core, based on

the Harvard architecture, that incorporates many new powerful features such as branch

speculation, single cycle multiply and hardware divide to deliver an exceptional Dhrystone

benchmark performance of 1.25 DMIPS/MHz. The Cortex-M3 processor also implements the

new Thumb®-2 instruction set architecture, helping it to be 70% more efficient per MHz than

an ARM7TDMI-S® processor executing Thumb instructions.

The Cortex-M3 processor has been designed to be fast and easy to program, with the users not

required to write any assembler code or have deep knowledge of the architecture to create

simple applications. The processor has a simplified stack-based programmer’s model which

still maintains compatibility with the traditional ARM architecture but is analogous to the

systems employed by legacy 8- and 16-bit architectures, making the transition to 32-bit easier.

Additionally a hardware based interrupt scheme means that writing interrupt service routines

(handlers) becomes trivial, and that start-up code is now significantly simplified as no

assembler code register manipulation is required. Key new features in the underlying Thumb-

2 Instruction Set Architecture (ISA) implement C code more naturally, with native bitfield

manipulation, hardware division and If/Then instructions. Further, from a development

perspective, Thumb-2 instructions speed up development and simplify long term maintenance

and support of compiled objects through automatic optimization for both performance and code

density, without the need for complex interworking between code compiled for ARM or

Thumb modes.

ARM6

 In the late 1980s, Apple Computer and VLSI Technology started working with Acorn

on newer versions of the ARM core. In 1990, Acorn spun off the design team into a new

company named Advanced RISC Machines Ltd.,which became ARM Ltd. when its parent

company, Arm Holdings plc, floated on the London Stock Exchange and NASDAQ in

1998.[46] The new Apple- ARM work would eventually evolve into the ARM6, first released

in early 1992. Apple used the ARM6-based ARM610 as the basis for their Apple Newton PDA.

Fig. 3 Microprocessor-based system on a chip

Embedded systems typically have no graphical user interface making software debug a

special challenge for programmers. In-circuit Emulator (ICE) units have traditionally been used

as plug-in devices to provide a window into the system through a familiar PC interface. As

systems get smaller and more complex, physically attaching such debug units is no longer a

viable solution. The Cortex-M3 processor implements debug technology in the hardware itself

with several integrated components that facilitate quicker debug with trace & profiling,

breakpoints, watchpoints and code patching, significantly reducing time to market.

6. SENSORS AND SOFTWARE

Sensors are devices that detect and respond to changes in an environment. Inputs can come

from a variety of sources such as light, temperature, motion and pressure. Sensors output

valuable information and if they are connected to a network, they can share data with other

connected devices and management systems. Sensors are crucial to the operation of many of

today’s businesses. They can warn you of potential problems before they become big problems,

allowing businesses to perform predictive maintenance and avoid costly downtime. The data

from sensors can also be analyzed for trends allowing business owners to gain insight into

crucial trends and make informed evidence-based decisions. Sensors come in many shapes and

sizes. Some are purpose-built containing many built-in individual sensors, allowing you to

monitor and measure many sources of data. In brownfield environments, it’s key for sensors to

include digital and analog inputs so that they can read data from legacy sensors.

6.1 Temperature Sensors

In the past, IoT temperature sensors have been used for heat, ventilation, and air

conditioning systems (HVAC), refrigerators, and other similar devices used for environmental

control. However, the emergence of IoT has seen its role expand. Nowadays, you can find

temperature sensors throughout industries such as manufacturing and agriculture. How are they

used within these industries? In the manufacturing process, there are many machines that need

both specific environment temperatures and a certain device temperature. Using an IoT

temperature sensor ensures both of these remain optimal.

When it comes to agriculture, the soil temperature is crucial for crop growth. Previously

monitoring this would have been a tiresome, manual process. Now temperature sensors make

it easier to monitor and control remotely via an IoT application. This helps enable the mass

production of plants.

https://behrtechnologies.com/blog/from-brownfield-to-digital-factory-3-ways-to-iot-enable-your-legacy-systems/?__hstc=248538648.5ed7d0117a74234d05a0deb907df2132.1643688665182.1643688665182.1643688665182.1&__hssc=248538648.1.1643688665182&__hsfp=4243540302

6.2. Pressure Sensors

An IoT pressure sensor is any device that senses pressure and converts it into an electric

signal. The level of voltage given out by the sensor depends on the level of pressure applied.

These sensors enable IoT systems that monitor systems and devices that are pressure propelled.

If there’s any deviation from standard pressure ranges, the device notifies the administrator of

the problem.

These are commonly found and used in the maintenance of whole water and heating systems.

This is because they can easily detect any fluctuations or drops in pressure. However, pressure

sensors are also used within the manufacturing industry too.

6.3 Accelerometers

An IoT accelerometer detects – or senses – an object’s acceleration. In other words, the

rate of change of an object’s velocity with respect to time. On top of acceleration, the

accelerometer can also detect changes in gravity. Typical uses of accelerometers in IoT include

smart pedometers and monitoring driving fleets. However, they’re present in millions of

devices now, including smartphones. They can also be used for anti-theft protection.

Accelerometers alert the system they’re used in if an object that should be stationary moves.

6.4. Proximity Sensors

IoT proximity sensors provide non-contact detection of objects that are in close

proximity to the sensor. They usually do this by emitting electromagnetic fields or beams of

radiation such as infrared. These are frequently found within the retail industry. This is because

they can detect motion and the correlation between customers and the product they might be

interested in. In turn, the user can be notified of any discount, special offers, or similar products

located near the sensor. Proximity sensors may also be found in parking lots of malls, stadiums,

or airports to indicate available parking spots.

6.5. Humidity Sensors

IoT humidity sensors measure the amount of water vapor in the air. In scientific terms,

they measure Relative Humidity (RH). This kind of sensor is usually used in addition to IoT

temperature sensors when a manufacturing process requires absolute perfect working

conditions. They’re usually found in heating, ventilation, and air conditioning (HVAC) systems

– in both the home and business settings. However, they are also used by meteorological centers

to report and predict the weather.

6.6. Image Sensors

IoT image sensors are used to convert images into electronic signals. These are then either

displayed or become electronically stored files. The most common use of image sensors is in

digital cameras and IoT WiFi modules. Popular IoT image sensor manufacturers include:

7. Level Sensors

Level sensors are used to detect the levels of certain types of objects. These include liquids,

granular materials, and powders.

As you can imagine, this kind of sensor is useful and used in many different industries and

applications. These include:

• Oil manufacturing

• Beverage manufacturing

• Food manufacturing

• Water treatment

8. Gas Sensors

Gas sensors monitor and detect changes in the air. These sensors are vital to our safety as

they’re able to detect the presence of potentially harmful or even toxic gases.

Gas sensors are most commonly used within the mining, oil and gas, and chemical research.

However, gas sensors are also prominent in most homes via carbon dioxide detectors.

6.9. Infrared Sensors

An Infrared Sensor – otherwise known as an IR sensor – scan and sense characteristics within

their surroundings. They do this by either emitting or detecting infrared radiation. In addition,

these IoT sensors are also able to measure the heat coming off of objects. Infrared sensors can

be adapted for several different IoT applications. However, their most common usage has been

within the healthcare industry. For instance, infrared sensors can be used to monitor or blood

flow or blood pressure.

10. Motion Detector Sensors

Not to be confused with proximity sensors, motion detector sensors are used to detect physical

movement in a given area. In turn, this then sets off an electronic signal.

The most obvious use of this is within the security industry. Businesses use motion detector

sensors in areas where there should be no movement. The sensor kicks in and alerts the systems

administrator – or security guard – when there is any form of movement.

Besides security, these IoT sensors can also be found in many devices within modern

commercial buildings. These include:

• Boom barriers

• Automated sinks, hand dryers, and towel dispensers

• Energy management systems

7. PROCESSING OVERFLOW

Processing is a simple programming environment that was created to make it easier to

develop visually oriented applications with an emphasis on animation and providing users with

instant feedback through interaction. The developers wanted a means to “sketch” ideas in code.

As its capabilities have expanded over the past decade, Processing has come to be used for

more advanced production-level work in addition to its sketching role. Originally built as a

domain-specific extension to Java targeted towards artists and designers, Processing has

evolved into a full-blown design and prototyping tool used for large-scale installation work,

motion graphics, and complex data visualization.

Processing is based on Java, but because program elements in Processing are fairly simple, you

can learn to use it even if you don't know any Java. If you're familiar with Java, it's best to

forget that Processing has anything to do with Java for a while, until you get the hang of how

the API works.

An important goal for the project was to make this type of programming accessible to a wider

audience. For this reason, Processing is free to download, free to use, and open source. But

projects developed using the Processing environment and core libraries can be used for any

purpose. This model is identical to GCC, the GNU Compiler Collection. GCC and its

associated libraries (e.g. libc) are open source under the GNU Public License (GPL), which

stipulates that changes to the code must be made available. However, programs created with

GCC (examples too numerous to mention) are not themselves required to be open source.

Processing consists of:

• The Processing Development Environment (PDE). This is the software that runs when

you double-click the Processing icon. The PDE is an Integrated Development

Environment (IDE) with a minimalist set of features designed as a simple introduction

to programming or for testing one-off ideas.

• A collection of functions (also referred to as commands or methods) that make up

the “core” programming interface, or API, as well as several libraries that support more

advanced features such as sending data over a network, reading live images from a

webcam, and saving complex imagery in PDF format.

• A language syntax, identical to Java but with a few modifications.

For this reason, references to “Processing” can be somewhat ambiguous. Are we talking about

the API, the development environment, or the web site? We'll be careful in this text when

referring to each.

7.1 Sketching with Processing

A Processing program is called a sketch. The idea is to make Java-style programming

feel more like scripting, and adopt the process of scripting to quickly write code. Sketches are

stored in the sketchbook, a folder that's used as the default location for saving all of your

projects. Sketches that are stored in the sketchbook can be accessed from File → Sketchbook.

Alternatively, File → Open... can be used to open a sketch from elsewhere on the system.

Advanced programmers need not use the PDE, and may instead choose to use its libraries with

the Java environment of choice. However, if you're just getting started, it's recommended that

you use the PDE for your first few projects to gain familiarity with the way things are done.

While Processing is based on Java, it was never meant to be a Java IDE with training wheels.

To better address our target audience, the conceptual model (how programs work, how

interfaces are built, and how files are handled) is somewhat different from Java. The Processing

equivalent of a "Hello World" program is simply to draw a line:

line(15, 25, 70, 90);

Enter this example and press the Run button, which is an icon that looks like the Play button

from any audio or video device. Your code will appear in a new window, with a gray

background and a black line from coordinate (15, 25) to (70, 90). The (0, 0) coordinate is the

upper left-hand corner of the display window. Building on this program to change the size of

the display window and set the background color, type in the code below:

size(400, 400);

background(192, 64, 0);

stroke(255);

line(150, 25, 270, 350);

This version sets the window size to 400 x 400 pixels, sets the background to an orange-red,

and draws the line in white, by setting the stroke color to 255. By default, colors are specified

in the range 0 to 255. Other variations of the parameters to the stroke() function provide

alternate results.

stroke(255); // sets the stroke color to white

stroke(255, 255, 255); // identical to the line above

stroke(255, 128, 0); // bright orange (red 255,green 128, blue 0)

stroke(#FF8000); // bright orange as a web color

stroke(255, 128, 0, 128); // bright orange with 50% transparency

The same alternatives work for the fill() function, which sets the fill color, and

the background() function, which clears the display window. Like all Processing functions that

affect drawing properties, the fill and stroke colors affect all geometry drawn to the screen until

the next fill and stroke functions.

A program written as a list of statements (like the previous examples) is called a static sketch.

In a static sketch, a series of functions are used to perform tasks or create a single image without

any animation or interaction. Interactive programs are drawn as a series of frames, which you

can create by adding functions titled setup() and draw() as shown in the code below. These are

built-in functions that are called automatically.

void setup() {

 size(400, 400);

 stroke(255);

 background(192, 64, 0);

}

void draw() {

 line(150, 25, mouseX, mouseY);

}

The setup() block runs once, and the draw() block runs repeatedly. As such, setup() can be

used for any initialization; in this case, setting the screen size, making the background orange,

and setting the stroke color to white. The draw() block is used to handle animation.

The size() function must always be the first line inside setup().

Because the background() function is used only once, the screen will fill with lines as the

mouse is moved. To draw just a single line that follows the mouse, move

the background() function to the draw() function, which will clear the display window (filling

it with orange) each time draw() runs.

void setup() {

 size(400, 400);

 stroke(255);

}

void draw() {

 background(192, 64, 0);

 line(150, 25, mouseX, mouseY);

}

Static programs are most commonly used for extremely simple examples, or for scripts that run

in a linear fashion and then exit. For instance, a static program might start, draw a page to a

PDF file, and exit. Most programs will use the setup() and draw() blocks. More advanced

mouse handling can also be introduced; for instance, the mousePressed() function will be

called whenever the mouse is pressed. In the following example, when the mouse is pressed,

the screen is cleared via the background() function:

void setup() {

 size(400, 400);

 stroke(255);

}

void draw() {

 line(150, 25, mouseX, mouseY);

}

void mousePressed() {

 background(192, 64, 0);

}

Exporting and distributing your work

One of the most significant features of the Processing environment is its ability to bundle your

sketch into an application with just one click. Select File → Export Application to package

your current sketch as an application. This will bundle your sketch as an application for

Windows, Mac OS X, or Linux depending on which operating system you're exporting from.

The application folders are overwritten whenever you export—make a copy or remove them

from the sketch folder before making changes to the contents of the folder. Alternatively, you

can turn off the automatic file erasure in the Preferences.

Creating images from your work

If you don't want to distribute the actual project, you might want to create images of its output

instead. Images are saved with the saveFrame() function. Adding saveFrame() at the end

of draw() will produce a numbered sequence of TIFF-format images of the program's output,

named screen-0001.tif, screen-0002.tif, and so on. A new file will be saved each

time draw() runs — watch out, this can quickly fill your sketch folder with hundreds of files.

You can also specify your own name and file type for the file to be saved with a function like:

saveFrame("output.png")

To do the same for a numbered sequence, use # (hash marks) where the numbers should be

placed:

saveFrame("output-####.png");

For high quality output, you can write geometry to PDF files instead of the screen, as described

in the later section about the size() function.

Examples and reference

While many programmers learn to code in school, others teach themselves and learn on their

own. Learning on your own involves looking at lots of other code: running, altering, breaking,

and enhancing it until you can reshape it into something new. With this learning model in mind,

the Processing software download includes hundreds of examples that demonstrate different

features of the environment and API.

The examples can be accessed from the File → Examples menu. They're grouped into

categories based on their function (such as Motion, Typography, and Image) or the libraries

they use (PDF, Network, and Video).

Find an interesting topic in the list and try an example. You'll see functions that are familiar,

e.g. stroke(), line(), and background(), as well as others that have not yet been covered. To see

how a function works, select its name, and then right-click and choose Find in Reference from

the pop-up menu (Find in Reference can also be found beneath the Help menu). This will open

the reference for that function in your default web browser.

In addition to a description of the function's syntax, each reference page includes an example

that uses the function. The reference examples are much shorter (usually four or five lines

apiece) and easier to follow than the longer code examples.

The size() function sets the global variables width and height. For objects whose size is

dependent on the screen, always use the width and height variables instead of a number. This

prevents problems when the size() line is altered.

size(400, 400);

// The wrong way to specify the middle of the screen

ellipse(200, 200, 50, 50);

// Always the middle, no matter how the size() line changes

ellipse(width/2, height/2, 50, 50);

In the earlier examples, the size() function specified only a width and height for the window to

be created. An optional parameter to the size() function specifies how graphics are rendered. A

renderer handles how the Processing API is implemented for a particular output function

(whether the screen, or a screen driven by a high-end graphics card, or a PDF file). The default

renderer does an excellent job with high-quality 2D vector graphics, but at the expense of

speed. In particular, working with pixels directly is slow. Several other renderers are included

with Processing, each having a unique function. At the risk of getting too far into the specifics,

here's a description of the other possible drawing modes to use with Processing.

size(400, 400, P2D);

The P2D renderer uses OpenGL for faster rendering of two-dimensional graphics, while using

Processing's simpler graphics APIs and the Processing development environment's easy

application export.

size(400, 400, P3D);

The P3D renderer also uses OpenGL for faster rendering. It can draw three-dimensional objects

and two-dimensional object in space as well as lighting, texture, and materials.

size(400, 400, PDF, "output.pdf");

The PDF renderer draws all geometry to a file instead of the screen. To use PDF, in addition

to altering your size() function, you must select Import Library, then PDF from the Sketch

menu. This is a cousin of the default renderer, but instead writes directly to PDF files.

Loading and displaying data

One of the unique aspects of the Processing API is the way files are handled.

The loadImage() and loadStrings() functions each expect to find a file inside a folder

named data, which is a subdirectory of the sketch folder.

8. ARDUINO PROGRAM CONTROL FLOW, STRUCTURE AND STATEMENTS

Single threaded means lines of codes are executed one code at a time, while sequential means

onecode line is executed after another. This method of program execution can be referred to as

“program control flow” as the name implies, we actually ‘mean how to control the flow of

the arduino program.’ As stated above, the arduino code executes sequentially one after the

other down the code lines, however, situations may arise in a program where the program

execution is expected to jump steps or return backwards even without getting to the last line of

the code, even in situations like this, the rule of thumb is that the program flow must remain

logical without errors. To tackle such situations, we need to structure the program in such a

way that the flow will be logical and error free using structural logical statements to control the

program flow.

8.1 Arduino control structure and control statements

The control structure tells how the codes are organized to enable the program take actions based

on certain conditions. Take for example; you want your program to turn on an LED only when

a sensor recorded 50°C, you have to structure your code in such a way to execute such

command accurately. The method of ensuring such actions in a program can be seen as program

control structuring, also known as “control structure”. This is seen especially when certain

conditions are present in a program, just as the one stated above. In other to realize a smart and

effective control structure in arduino programming we use control statements.

Control statements are elements (functions) in a source code that control the flow of program

execution, either to wait, jump, repeat, etc.

Arduino control statements include:

• If statement

• Else statement

• Else if statement

• For statement

• While statement

• Do while statement

• Switch case

• Continue

8.1.1 IF Statement

IF statement is basically the simplest form conditional control statements, it is a

conditional statement. An “if statement” code evaluates a unique condition, and executes a

series of instructions or just an instruction if the condition is true. An if control statement is

basically the type of control statement used to program dark activated street lights, the

statement evaluates if the environment is dark or not, if the environment is dark, the if statement

code instructs the microcontroller to execute a code instruction that will turn on the street light,

and if the environment is not dark, the if statement code instructs the microcontroller to execute

a code instruction that will not turn off the street light and keep it off until the environment gets

dark. The arduino IF statement flow chart and syntax are shown below:

Fig. 4 IF statement flow chart

Fig. 5 Simple IF statement code

8.1.2 Else Statement

Most time, an IF statement is immediately followed by an ELSE statement, the ELSE

statement tells the alternate instruction that should be executed when the IF statement is false.

Check the sketch below.

Fig. 6 IF and ELSE statements combine

The sketch in the image above is better than the sketch that has only if statement for designing

the dark activated street light.

8.1.3 ELSE IF STATEMENT

“Else if statement” is used when we want to check for three different conditions. It includes

an IF statement, ELSE IF statement and ELSE statement all in same sketch.

8.1.4 For statement

For statement is also a conditional statement for arduino control structure used for repetitive

operation. As the name implies, it is used to carry out a repetitive operation for a true condition.

Take for example, when a telecommunication company warns you that “if you try recharging

your phone number with a wrong recharge pin FOR 5 times you will be barred” the condition

there is, you can try recharging that number repetitively with a wrong recharge pin for up to

four times without being barred, however, at the fifth trail, the condition breaks and you are

barred.

For statement gives a condition and checks if the condition still holds, if it does, an action is

taking and a repetition can take place, this will keep happening until the condition no longer

holds the action that is tied to the condition stops being executed. This can be used to increment

an event. For instance, we can use a For statement to fade an LED up and down. See image

below.

\

Fig. 7 Fading an LED up and down with for loop

8.1.5 While Statement

A while statement is just like an “if statement”except it continues to repeat block of

code (a block of code is what is within the curly braces) as long as the condition is true. See

example below

Fig. 8 A While Statement used to blink two LEDs for two different conditions

8.1.6 Do While Statement

A do while statement is like the else if statement but works in the same manner as the

while loop, except that the condition is tested at the end of the loop, hence, the do statement

will always run at least once. See the sketch below:

Fig. 9 Do while statement used to blink an LED

8.1.7 Switch Case Statement

There comes a time in a design, when we wish to have an action taking with respect to a specific

result, in a wide range of results. Take for example, let’s say you are trying to monitor the level

of water in a tank using an ultrasonic sensor, you wish to turn on an LED forvarious levels of

the water in the tank. Let’s say we are looking at 10 levels. In our arduino code, we would have

a variable that records the distance of the water from the ultrasonic sensor, with this distance;

we can pick the levels we want. To program the arduino to light LEDs at the various levels we

have chosen, we can use the “if statement”. With the “if statement”, we tell the microcontroller

to light an LED if the distance recorded by the ultrasonic sensor is such and such. Using an “if

statement” will do a good job, but to make the program elegant, we use the “switch case”

statement.

Using the “if statement” will require that we repeat the statement for every level we wish to

execute. See image below:

Fig.10 Use of if statement to determine so many conditions

Fig. 11 Using switch case statement to execute conditional codes

Line 1 code initiates the switch statement to begin checking for the conditions. Line 3 code

checks for the condition when the variable distance is 50. Line 4 code carries out an action if

the case 50 is true, i.e. if distance is equal to 50 Line 5 code breaks the loop for the case

condition distance equals 50. Line 6 code checks for case distance equal to 100. The process

repeats to check for all the conditions and breaks after the break function is called. A switch

case statement makes a sketch look elegant and smart. Continue can be used to jump steps in

an iteration process. Let’s say you are counting numbers from 1 to 20 and at the same time

printing them on the screen, you can use the continue statement to skip printing some numbers

in the iteration. See code below.

Fig. 12 Using the continue statement

line 1 code iterates 1 to 20, Line 3 code creates figures to skip (5 to 8), Line 5 code calls skip

function Line 7 code prints all numbers from 1 to 20 other than the ones that should be skipped.

9. INTERFACING THE REAL WORLD

IoT applications promise to bring immense value into our lives. With newer wireless

networks, superior sensors and revolutionary computing capabilities, the Internet of

Things could be the next frontier in the race for its share of the wallet. IoT applications are

expected to equip billions of everyday objects with connectivity and intelligence. It is already

being deployed extensively, the outline of the article is as follows:

Imagine an intelligent device such as a traffic camera. The camera can monitor the streets for

traffic congestion, accidents, weather conditions, and communicate this data to a common

gateway. This gateway also receives data from other such cameras and relays the information

further to a city-wide traffic monitoring system.

Fig. 12 IoT Applications

Now, take, for instance, the Municipal Corporation decides to repair a certain road. This may

cause a traffic congestion on the way to a national highway. This insight is sent to the city-

wide traffic monitoring system. Now, considering this is a smart traffic system, it quickly learns

and predicts patterns in traffic, with the use of Machine Learning. The smart system can, thus,

analyze the situation, predict its impact and relay the information to other cities that connect to

the same highway via their own respective smart systems. The Traffic Management System

can analyze data acquired and derive routes around the project to avoid bottlenecks. The system

could also convey live instructions to drivers through smart devices and radio channels.

The bottom line is a big motivation for starting, investing in, and operating any business,

without a sound and solid business models for IoT we will have another bubble, this model

must satisfy all the requirements for all kinds of e-commerce; vertical markets, horizontal

markets, and consumer markets. One key element is to bundle service with the product, for

example, devices like Amazon’s Alexa will be considered just another wireless speaker without

the services provided like voice recognition, music streaming, and booking Uber service to

mention few.

The IoT can find its applications in almost every aspect of our daily life. Below are some of

the examples.

 1) Prediction of natural disasters: The combination of sensors and their autonomous

coordination and simulation will help to predict the occurrence of land-slides or other

natural disasters and to take appropriate actions in advance.

 2) Industry applications: The IoT can find applications in industry e.g., managing a fleet of

cars for an organization. The IoT helps to monitor their environmental performance and

process the data to determine and pick the one that need maintenance.

 3) Water Scarcity monitoring: The IoT can help to detect the water scarcity at different

places. The networks of sensors, tied together with the relevant simulation activities might

not only monitor long term water interventions such as catchment area management, but

may even be used to alert users of a stream, for instance, if an upstream event, such as the

accidental release of sewage into the stream, might have dangerous implications.

 4) Design of smart homes: The IoT can help in the design of smart homes e.g., energy

consumption management, interaction with appliances, detecting emergencies, home safety

and finding things easily, home security etc.

5) Medical applications: The IoT can also find applications in medical sector for saving lives

or improving the quality of life e.g., monitoring health parameters, monitoring activities,

support for independent living, monitoring medicines intake etc.

 6) Agriculture application: A network of different sensors can sense data, perform data

processing and inform the farmer through communication infrastructure e.g., mobile phone

text message about the portion of land that need particular attention. This may include smart

packaging of seeds, fertilizer and pest control mechanisms that respond to specific local

conditions and indicate actions. Intelligent farming system will help agronomists to have

better understanding of the plant growth models and to have efficient farming practices by

having the knowledge of land conditions and climate variability. This will significantly

increase the agricultural productivity by avoiding the inappropriate farming conditions.

7) Intelligent transport system design: The Intelligent transportation system will provide

efficient transportation control and management using advanced technology of sensors,

information and network. The intelligent transportation can have many interesting features

such as non-stop electronic highway toll, mobile emergency command and scheduling,

transportation law enforcement, vehicle rules violation monitoring, reducing environmental

pollution, anti-theft system, avoiding traffic jams, reporting traffic incidents, smart

beaconing, minimizing arrival delays etc.

 8) Design of smart cities: The IoT can help to design smart cities e.g., monitoring air quality,

discovering emergency routes, efficient lighting up of the city, watering gardens etc.

 9) Smart metering and monitoring: The IoT design for smart metering and monitoring will

help to get accurate automated meter reading and issuance of invoice to the customers. The

IoT can be used to design such scheme for wind turbine maintenance and remote monitoring,

gas, water as well as environmental metering and monitoring.

10) Smart Security: The IoT can also find applications in the field of security and

surveillance e.g., surveillance of spaces, tracking of people and assets, infrastructure and

equipment maintenance, alarming etc.

School of Computing

Department of Computer Science and Engineering

UNIT IV - ARDUINO PROGRAMMING FOR

IoT BOARDS - SCSA1407

UNIT 4 Programming an Arduino IoT Device

Preparing the development environment (Arduino IDE), Exploring the Arduino language

(C/C++) syntax, Coding, compiling, and uploading to the microcontroller, Working with

Arduino Communication Modules: Bluetooth Modules, WiFi Modules and I2C and SPI,

Interfacing arduino and Blynk via USB : LED Blinking, Controlling a Servomotor.

1. PREPARING THE DEVELOPMENT ENVIRONMENT (ARDUINO IDE)

The Arduino Integrated Development Environment - or Arduino Software (IDE) - contains a

text editor for writing code, a message area, a text console, a toolbar with buttons for common

functions and a series of menus. It connects to the Arduino hardware to upload programs and

communicate with them. Programs written using Arduino Software (IDE) are

called sketches. These sketches are written in the text editor and are saved with the file

extension .ino. The editor has features for cutting/pasting and for searching/replacing text.

The message area gives feedback while saving and exporting and also displays errors. The

console displays text output by the Arduino Software (IDE), including complete error

messages and other information. The bottom righthand corner of the window displays the

configured board and serial port. The toolbar buttons allow you to verify and upload

programs, create, open, and save sketches, and open the serial monitor.

Upload Compiles your code and uploads it to the configured board. See uploading below for

details. Open Presents a menu of all the sketches in your sketchbook. Clicking one will open

it within the current window overwriting its content. Save Saves your sketch. Serial

Monitor Opens the serial monitor.

Additional commands are found within the five menus: File, Edit, Sketch, Tools, Help. The

menus are context sensitive, which means only those items relevant to the work currently

being carried out are available.

https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics#uploading
https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics#serialmonitor

1.1 File

New Creates a new instance of the editor, with the bare minimum structure of a sketch already

in place. Open Allows to load a sketch file browsing through the computer drives and folders.

Open Recent Provides a short list of the most recent sketches, ready to be opened.

Sketchbook Shows the current sketches within the sketchbook folder structure; clicking on

any name opens the corresponding sketch in a new editor instance. Examples Any example

provided by the Arduino Software (IDE) or library shows up in this menu item. All the

examples are structured in a tree that allows easy access by topic or library. Close Closes the

instance of the Arduino Software from which it is clicked.

Save Saves the sketch with the current name. If the file hasn't been named before, a name

will be provided in a "Save as.." window. Save as... Allows to save the current sketch with

a different name. Page Setup It shows the Page Setup window for printing. Print Sends the

current sketch to the printer according to the settings defined in Page Setup.

Preferences Opens the Preferences window where some settings of the IDE may be

customized, as the language of the IDE interface. Quit Closes all IDE windows. The same

sketches open when Quit was chosen will be automatically reopened the next time you start

the IDE.

1.2 Edit

Undo/Redo Goes back of one or more steps you did while editing; when you go back, you

may go forward with Redo. Cut Removes the selected text from the editor and places it into

the clipboard. Copy Duplicates the selected text in the editor and places it into the clipboard.

Copy for Forum Copies the code of your sketch to the clipboard in a form suitable for posting

to the forum, complete with syntax coloring. Copy as HTML Copies the code of your sketch

to the clipboard as HTML, suitable for embedding in web pages. Paste Puts the contents of

the clipboard at the cursor position, in the editor. Select All Selects and highlights the whole

content of the editor. Comment/Uncomment Puts or removes the // comment marker at the

beginning of each selected line. Increase/Decrease Indent Adds or subtracts a space at the

beginning of each selected line, moving the text one space on the right or eliminating a space

at the beginning. Find Opens the Find and Replace window where you can specify text to

search inside the current sketch according to several options. Find Next Highlights the next

occurrence - if any - of the string specified as the search item in the Find window, relative to

the cursor position. Find Previous Highlights the previous occurrence - if any - of the string

specified as the search item in the Find window relative to the cursor position.

Verify/Compile Checks your sketch for errors compiling it; it will report memory usage for

code and variables in the console area. Upload Compiles and loads the binary file onto the

configured board through the configured Port. Upload Using Programmer This will overwrite

the bootloader on the board; you will need to use Tools > Burn Bootloader to restore it and

be able to Upload to USB serial port again. However, it allows you to use the full capacity

of the Flash memory for your sketch. Please note that this command will NOT burn the fuses.

Export Compiled Binary Saves a .hex file that may be kept as archive or sent to the board

using other tools. Show Sketch Folder Opens the current sketch folder. Include Library Adds

a library to your sketch by inserting #include statements at the start of your code. For more

details, see libraries below. Additionally, from this menu item you can access the Library

Manager and import new libraries from .zip files.

1.3 ARDINO IDE OVERVIEW:

Program coded in Arduino IDE is called a SKETCH

1. To create a new sketchFile -> New

 To open an existing sketch File -> open ->

There are some basic ready-to-use sketches available in the EXAMPLES section

File -> Examples -> select any program

2. Verify: Checks the code for compilation errors

3. Upload: Uploads the final code to the controller board

4. New: Creates a new blank sketch with basic structure

5. Open: Opens an existing sketch

6. Save: Saves the current sketch

https://docs.arduino.cc/software/ide-v1/tutorials/arduino-ide-v1-basics#libraries

 Fig 1.Compilation and Execution

 Serial Monitor: Opens the serial console

 All the data printed to the console are displayed here

1.4 SKETCH STRUCTURE

Fig. 2 Structure of SKETCH

 A sketch can be divided into two parts:

 Setup ()

 Loop()

 The function setup() is the point where the code starts, just like the main() function in C and

C++

 I/O Variables, pin modes are initialized in the Setup() function Loop() function, as the name

suggests, iterates the specified task in the program.

 1.5 Arduino Function

 Input/Output Functions:

The arduino pins can be configured to act as input or output pins using the pinMode() function

Void setup ()

{

pinMode (pin , mode);

}

 Pin- pin number on the Arduino board Mode- INPUT/OUTPUT

digitalWrite() : Writes a HIGH or LOW value to a digital pin

analogRead() : Reads from the analog input pin i.e., voltage applied across the pin

Character functions such as isdigit(), isalpha(), isalnum(), isxdigit(), islower(), isupper(),

isspace() return 1(true) or 0(false)

Delay() function is one of the most common time manipulation function used to provide a delay

of specified time. It accepts integer value (time in miliseconds)

1.6 Example Blinking LED

 Arduino controller board, USB connector, Bread board, LED, 1.4Kohm resistor, connecting

wires, Arduino IDE

 Connect the LED to the Arduino using the Bread board and the connecting wires

 Connect the Arduino board to the PC using the USB connector

 Select the board type and port Write the sketch in the editor, verify and upload

Connect the positive terminal of the LED to digital pin 12 and the negative terminal to the

ground pin (GND) of Arduino Board

void setup()

{

pinMode(12, OUTPUT); // set the pin mode

} void loop()

{

digitalWrite(12, HIGH); // Turn on the LED delay(1000);

digitalWrite(12, LOW); //Turn of the LED delay(1000);

}

Set the pin mode as output which is connected to the led, pin 12 in this case.

Use digitalWrite() function to set the output as HIGH and LOW

Delay() function is used to specify the delay between HIGH-LOW transition of the output

1.7 Preferences

Some preferences can be set in the preferences dialog (found under the Arduino menu on

the Mac, or File on Windows and Linux). The rest can be found in the preferences file, whose

location is shown in the preference dialog.

1.8 Boards

The board selection has two effects: it sets the parameters (e.g. CPU speed and baud rate)

used when compiling and uploading sketches; and sets and the file and fuse settings used by

the burn bootloader command. Some of the board definitions differ only in the latter, so even

if you've been uploading successfully with a particular selection you'll want to check it before

burning the bootloader. You can find a comparison table between the various boards here.

Arduino Software (IDE) includes the built in support for the boards in the following list, all

based on the AVR Core. The Boards Manager included in the standard installation allows to

add support for the growing number of new boards based on different cores like Arduino

Due, Arduino Zero, Edison, Galileo and so on.

• Arduino Yún An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog In, 20

Digital I/O and 7 PWM.

• Arduino Uno An ATmega328P running at 16 MHz with auto-reset, 6 Analog In, 14

Digital I/O and 6 PWM.

https://docs.arduino.cc/en/Products/Compare
https://docs.arduino.cc/software/ide-v1/tutorials/arduino.cc/en/Guide/Cores

• Arduino Diecimila or Duemilanove w/ ATmega168 An ATmega168 running at 16

MHz with auto-reset.

• Arduino Nano w/ ATmega328P An ATmega328P running at 16 MHz with auto-reset.

Has eight analog inputs.

• Arduino Mega 2560 An ATmega2560 running at 16 MHz with auto-reset, 16 Analog

In, 54 Digital I/O and 15 PWM.

• Arduino Mega An ATmega1280 running at 16 MHz with auto-reset, 16 Analog In,

54 Digital I/O and 15 PWM.

• Arduino Mega ADK An ATmega2560 running at 16 MHz with auto-reset, 16 Analog

In, 54 Digital I/O and 15 PWM.

• Arduino Leonardo An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog

In, 20 Digital I/O and 7 PWM.

• Arduino Micro An ATmega32u4 running at 16 MHz with auto-reset, 12 Analog In,

20 Digital I/O and 7 PWM.

• Arduino Esplora An ATmega32u4 running at 16 MHz with auto-reset.

• Arduino Mini w/ ATmega328P An ATmega328P running at 16 MHz with auto-reset,

8 Analog In, 14 Digital I/O and 6 PWM.

• Arduino Ethernet Equivalent to Arduino UNO with an Ethernet shield: An

ATmega328P running at 16 MHz with auto-reset, 6 Analog In, 14 Digital I/O and 6

PWM.

• Arduino Fio An ATmega328P running at 8 MHz with auto-reset. Equivalent to

Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328P, 6 Analog In, 14 Digital

I/O and 6 PWM.

2. EXPLORING THE ARDUINO LANGUAGE (C/C++) SYNTAX

Arduino programs can be divided in three main parts: Structure, Values (variables and

constants), and Functions. In this tutorial, we will learn about the Arduino software program,

step by step, and how we can write the program without any syntax or compilation error.

Let us start with the Structure. Software structure consist of two main functions −

• Setup() function

• Loop() function

Fig. 3 setup() Function

The setup() function is called when a sketch starts. Use it to initialize the variables, pin modes,

start using libraries, etc. The setup function will only run once, after each power up or reset of

the Arduino board. Arduino, natively, supports a language that we call the Arduino

Programming Language, or Arduino Language. This language is based upon the Wiring

development platform, which in turn is based upon Processing, which if you are not familiar

with, is what p5.js is based upon. It’s a long history of projects building upon other projects,

in a very Open Source way. The Arduino IDE is based upon the Processing IDE, and the

Wiring IDE which builds on top of it.

When we work with Arduino we commonly use the Arduino IDE (Integrated Development

Environment), a software available for all the major desktop platforms (macOS, Linux,

Windows), which gives us 2 things: a programming editor with integrated libraries support,

and a way to easily compile and load our Arduino programs to a board connected to the

computer. The Arduino Programming Language is basically a framework built on top of C++.

#define LED_PIN 13

void setup() {

 // Configure pin 13 to be a digital output

 pinMode(LED_PIN, OUTPUT);

}

void loop() {

 // Turn on the LED

 digitalWrite(LED_PIN, HIGH);

 // Wait 1 second (1000 milliseconds)

 delay(1000);

 // Turn off the LED

 digitalWrite(LED_PIN, LOW);

 // Wait 1 second

 delay(1000);

}

2.1 Handling I/O

The following functions help with handling input and output from your Arduino device.

2.1.1 Digital I/O

• digitalRead() reads the value from a digital pin. Accepts a pin number as a parameter,

and returns the HIGH or LOW constant.

• digitalWrite() writes a HIGH or LOW value to a digital output pin. You pass the pin

number and HIGH or LOW as parameters.

• pinMode() sets a pin to be an input, or an output. You pass the pin number and the

INPUT or OUTPUT value as parameters.

• pulseIn() reads a digital pulse from LOW to HIGH and then to LOW again, or from

HIGH to LOW and to HIGH again on a pin. The program will block until the pulse is

detected. You specify the pin number and the kind of pulse you want to detect (LHL or

HLH). You can specify an optional timeout to stop waiting for that pulse.

• pulseInLong() is same as pulseIn(), except it is implemented differently and it can’t be

used if interrupts are turned off. Interrupts are commonly turned off to get a more

accurate result.

• shiftIn() reads a byte of data one bit at a time from a pin.

• shiftOut() writes a byte of data one bit at a time to a pin.

• tone() sends a square wave on a pin, used for buzzers/speakers to play tones. You can

specify the pin, and the frequency. It works on both digital and analog pins.

• noTone() stops the tone() generated wave on a pin.

2.1.2 Analog I/O

• analogRead() reads the value from an analog pin.

• analogReference() configures the value used for the top input range in the analog input,

by default 5V in 5V boards and 3.3V in 3.3V boards.

• analogWrite() writes an analog value to a pin

• analogReadResolution() lets you change the default analog bits resolution for

analogRead(), by default 10 bits. Only works on specific devices (Arduino Due, Zero

and MKR)

• analogWriteResolution() lets you change the default analog bits resolution for

analogWrite(), by default 10 bits. Only works on specific devices (Arduino Due, Zero

and MKR)

• Time functions

• delay() pauses the program for a number of milliseconds specified as parameter

• delayMicroseconds() pauses the program for a number of microseconds specified as

parameter

• micros() the number of microseconds since the start of the program. Resets after ~70

minutes due to overflow

• millis() the number of milliseconds since the start of the program. Resets after ~50 days

due to overflow

2.1.3 Math functions

• abs() the absolute value of a number

• constrain() constrains a number to be within a range, see usage

• map() re-maps a number from one range to another, see usage

• max() the maximum of two numbers

• min() the minimum of two numbers

• pow() the value of a number raised to a power

• sq() the square of a number

• sqrt() the square root of a number

• cos() the cosine of an angle

• sin() the sine of an angle

• tan() the tangent of an angle

2.1.4 Alphanumeric characters

• isAlpha() checks if a char is alpha (a letter)

• isAlphaNumeric() checks if a char is alphanumeric (a letter or number)

• isAscii() checks if a char is an ASCII character

• isControl() checks if a char is a control character

• isDigit() checks if a char is a number

• isGraph() checks if a char is a printable ASCII character, and contains content (it is not

a space, for example)

• isHexadecimalDigit() checks if a char is an hexadecimal digit (A-F 0-9)

• isLowerCase() checks if a char is a letter in lower case

• isPrintable() checks if a char is a printable ASCII character

• isPunct() checks if a char is a punctuation (a comma, a semicolon, an exclamation mark

etc)

• isSpace() checks if a char is a space, form feed \f, newline \n, carriage return \r,

horizontal tab \t, or vertical tab \v.

• isUpperCase() checks if a char is a letter in upper case

• isWhitespace() checks if a char is a space character or an horizontal tab \t

• Random numbers generation

• random() generate a pseudo-random number

• randomSeed() initialize the pseudo-random number generator with an arbitrary initial

number

3. BLUETOOTH MODULES

Bluetooth Low Energy Modules available at a reasonable cost, most of these modules are not

compatible with existing devices that support the classic Bluetooth. The HC-05 is an expensive

module that is compatible with wide range of devices including smartphone, laptops and

tablets. Adding a Bluetooth to Arduino can take your project to the next level. It opens up lots

of possibilities for user interface (UI) and communication.

Fig. 5 Arduino with Bluetooth Connection

There are three main parts to this module. An Android smartphone, a Bluetooth transceiver,

and an Arduino. HC 05/06 works on serial communication. The Android app is designed to

send serial data to the Arduino Bluetooth module when a button is pressed on the app. The

Arduino Bluetooth module at the other end receives the data and sends it to the Arduino through

the TX pin of the Bluetooth module (connected to RX pin of Arduino). The code uploaded to

the Arduino checks the received data and compares it. If the received data is 1, the LED turns

ON. The LED turns OFF when the received data is 0. You can open the serial monitor and

watch the received data while connecting.

 char data = 0; //Variable for storing received data

void setup()

{

Serial.begin(9600); //Sets the data rate in bits per second (baud) for serial data transmission

pinMode(13, OUTPUT); //Sets digital pin 13 as output pin

}

void loop()

{

if(Serial.available() > 0) // Send data only when you receive data:

{

data = Serial.read(); //Read the incoming data and store it into variable data

Serial.print(data); //Print Value inside data in Serial monitor

Serial.print("\n"); //New line

if(data == '1') //Checks whether value of data is equal to 1

digitalWrite(13, HIGH);

else if(data == '0')

digitalWrite(13, LOW);

}

}

4. WiFi MODULES

ESP8266WiFi library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to a Wi-Fi

network to start sending and receiving data, this is a good place to start. If you are looking for

more in depth details of how to program specific Wi-Fi networking functionality, you are also

in the right place. The Wi-Fi library for ESP8266 has been developed based on ESP8266 SDK,

using the naming conventions and overall functionality philosophy of the Arduino WiFi

library.

https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266WiFi
https://github.com/espressif/ESP8266_NONOS_SDK
https://www.arduino.cc/en/Reference/WiFi
https://www.arduino.cc/en/Reference/WiFi

In order to get our ESP8266 to work properly with our Arduino, we need to do some initial

programming. Specifically, we will be changing the ESP8266 to work as an access point and

a client and changing the baud rate. Since most code samples out there are communicating with

the ESP module with a baud rate of 9600, that’s what we will use. We will also verify that the

ESP8266 module can connect to our router.

With your Arduino Uno connected to your computer, open the serial monitor via the Arduino

IDE (ctrl + shift + m). On the bottom of the serial monitor there are dropdowns for line endings

and baud rate. Set line endings to “Both NL & CR” and change the baud rate to “115200”.

Then send the following commands:

1. Verify that the ESP8266 is connected properly.

Command to send: AT

Expected response: OK

2. Change the mode.

Command to send: AT+CWMODE=3

Expected response: OK

3. Connect to your router (Make sure to replace YOUR_SSID and

YOUR_WIFI_PASSWORD).

Command to send: AT+CWJAP=”YOUR_SSID”,”YOUR_WIFI_PASSWORD”

Expected response:

WIFI CONNECTED

WIFI GOT IP

OK

4. Set baud rate to 9600.

Command to send: AT+UART=9600,8,1,0,0

Expected response: OK

5. Verify that the ESP8266 is communicating with baud rate of 9600.

Command to send: AT

Expected response: OK

#include "WiFiEsp.h"

#include <ArduinoJson.h>

#ifndef HAVE_HWSERIAL1

#include "SoftwareSerial.h"

// set up software serial to allow serial communication to our TX and RX pins

SoftwareSerial Serial1(10, 11);

#endif

// Set baud rate of so we can monitor output from esp.

#define ESP8266_BAUD 9600

// CHANGE THIS TO MATCH YOUR SETTINGS

char ssid[] = "MY_SSID";

char pass[] = "MY_WIFI_PASSWORD";

i

nt status = WL_IDLE_STATUS;

// Define an esp server that will listen on port 80

WiFiEspServer server(80);

void setup()

{

 // Open up communications for arduino serial and esp serial at same rate

 Serial.begin(9600);

 Serial1.begin(9600);

 // Initialize the esp module

 WiFi.init(&Serial1);

 // Start connecting to wifi network and wait for connection to complete

 while (status != WL_CONNECTED)

 {

 Serial.print("Conecting to wifi network: ");

 Serial.println(ssid);

 status = WiFi.begin(ssid, pass);

 }

 // Once we are connected log the IP address of the ESP module

 Serial.print("IP Address of ESP8266 Module is: ");

 Serial.println(WiFi.localIP());

 Serial.println("You're connected to the network");

 // Start the server

 server.begin();

}

// Continually check for new clients

void loop()

{

 WiFiEspClient client = server.available();

 // If a client has connected...

 if (client)

 {

 String json = "";

 Serial.println("A client has connected");

 while (client.connected())

 {

 // Read in json from connected client

 if (client.available())

 {

 // ignore headers and read to first json bracket

 client.readStringUntil('{');

 // get json body (everything inside of the main brackets)

 String jsonStrWithoutBrackets = client.readStringUntil('}');

 // Append brackets to make the string parseable as json

 String jsonStr = "{" + jsonStrWithoutBrackets + "}";

 // if we managed to properly form jsonStr...

 if (jsonStr.indexOf('{', 0) >= 0)

 {

 // parse string into json, bufferSize calculated by

https://arduinojson.org/v5/assistant/

 const size_t bufferSize = JSON_OBJECT_SIZE(1) + 20;

 DynamicJsonBuffer jsonBuffer(bufferSize);

 JsonObject &root = jsonBuffer.parseObject(jsonStr);

 // get and print the value of the action key in our json object

 const char *value = root["action"];

 Serial.println(value);

 if (strcmp(value, "on") == 0)

 {

 // Do something when we receive the on command

 Serial.println("Received on command from client");

 }

 else if (strcmp(value, "off") == 0)

 {

 // Do something when we receive the off command

 Serial.println("Received off command from client");

 }

 // send response and close connection

 client.print(

 "HTTP/1.1 200 OK\r\n"

 "Connection: close\r\n" // the connection will be closed after completion of the

response

 "\r\n");

 client.stop();

 }

 else

 {

 // we were unable to parse json, send http error status and close connection

 client.print(

 "HTTP/1.1 500 ERROR\r\n"

 "Connection: close\r\n"

 "\r\n");

 Serial.println("Error, bad or missing json");

 client.stop();

 }

 }

 }

 delay(10);

 client.stop();

 Serial.println("Client disconnected");

 }

}.

Devices that connect to Wi-Fi networks are called stations (STA). Connection to Wi-Fi is

provided by an access point (AP), that acts as a hub for one or more stations. The access point

on the other end is connected to a wired network. An access point is usually integrated with a

router to provide access from a Wi-Fi network to the internet. Each access point is recognized

by a SSID (Service Set IDentifier), that essentially is the name of network you select when

connecting a device (station) to the Wi-Fi.

ESP8266 modules can operate as a station, so we can connect it to the Wi-Fi network. It can

also operate as a soft access point (soft-AP), to establish its own Wi-Fi network. When the

ESP8266 module is operating as a soft access point, we can connect other stations to the ESP

module. ESP8266 is also able to operate as both a station and a soft access point mode. This

provides the possibility of building e.g. mesh networks.

https://en.wikipedia.org/wiki/Mesh_networking

Fig. 6 ESP8266 Module

5. I2C and SPI

UART, I2C and SPI are one of the most common and basic hardware communication

peripherals that makers and electricians use in microcontroller development. Similarly, for

the Arduino, they contain UART, I2C and SPI peripheral too. The Arduino Uno Rev 3 is a

microcontroller board based on the ATmega328, an 8-bit microcontroller with 32KB of

Flash memory and 2KB of RAM.

Fig.7 Arduino with I2C and SPI

• It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog

inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header,

and a reset button

5.1 UART

UART stands for Universal Asynchronous Reception and Transmission and is a simple

communication protocol that allows the Arduino to communicate with serial devices. The

UART system communicates with digital pin 0 (RX), digital pin 1 (TX), and with another

computer via the USB port. This peripheral, found on all Arduino boards, allows the Arduino

to directly communicate with a computer thanks to the fact that the Arduino has an onboard

USB-to-Serial converter. Therefore, programs written on a Windows, Mac, or Linux OS can

be used with an Arduino connected to a USB port as if it was a serial port (serial port

communication is trivial compared to USB communication). UART, which stands for

Universal Asynchronous Reception and Transmission, is a simple serial communication

protocol that allows the host (Arduino) to communicate with serial devices. UART supports

bidirectional, asynchronous and serial data transmission. It uses 2 data lines to communicate

with each other which are: TX (Pin 1) and RX (Pin 0).

• TX – Used for transmitting

• RX – Used for receiving

• They are connected between two devices (eg. USB on Arduino and

computer)

UART is found on all types of Arduino boards which allows the Arduino to communicate with

a computer due to its onboard USB to Serial converter. If your program is written on a

Windows, Mac or Linux OS and wants to use it with your Arduino, just connect them together

via their USB port as if it was a serial port.

Advantages and Disadvantages of using UART with Arduino

Advantages of using UART with Arduino

• Simple to operate and use with the Arduino. It is well documented online as it is a

widely used method by Arduino users with many resources and tutorials online.

• No clock needed

Disadvantages of using UART with Arduino

• Lower speed compared to I2C and SPI

• Baud rates of each UART must be within 10% of each other to prevent data loss.

• Cannot use multiple master systems like the Arduino and slaves.

5.2 I2C

I2C, which stands for inter-integrated-circuit, is a serial communications protocol specially

designed for microcontrollers. While this peripheral is almost never used for PC-device

communication, it is incredibly popular with modules and sensors, making it useful for projects

that require many parts working together. In fact, I2C allows you to potentially connect up to

128 devices to your main board!. When connecting two circuits to one another, think of the

main device as the “master” and the connected devices—such as sensors, pin expansions, and

drivers—as “slaves”. I2C makes it possible to connect multiple masters and slaves to your

board while maintaining a clear communication pathway.

Maintaining a clear communication pathway is possible because I2C uses an address system

and a shared bus, meaning many devices can be connected to the exact same wires. However,

the Arduino must first select a specific device by transmitting a unique address before sending

data. This provides each slave device with what it needs while also supporting multiple masters.

I2C uses fewer wires and all data is transmitted on a single wire, keeping your pin count low.

The tradeoff for this simplified wiring is slower speeds than SPI.

5.3 SPI

SPI stands for Serial Peripheral Interface. Like I2C, SPI is a different form of serial-

communications protocol specially designed for microcontrollers to talk to each other.

However, it has some key differences from its I2C counterpart. The most notable difference

right off the bat is that, while you can use multiples masters and slaves with I2C, SPI allows a

single master device with a maximum of four slave devices.

SPI is typically much faster than I2C due to the simple protocol and, while data/clock lines are

shared between devices, each device requires a unique address wire. SPI is commonly found

in places where speed is important such as with SD cards and display modules, or when

information updates and changes quickly, like with temperature sensors.

6. Interfacing arduino and Blynk

IoT based Temperature and Humidity Monitoring using BLYNK Application

The ESP8266 Integrates 802.11b/g/n HT40 a Wi-Fi transceiver, so it cannot only connect with a

Wi-Fi network and interact with the Internet. It can also set up a network of its own, allowing

other devices to connect directly to it. There’s an on-board voltage regulator that ensures the

cleanest possible power to the NodeMCU itself, as well as a push-button reset and a USB

connection for easy interface with your computer.

DHT11 is a low-cost digital sensor for sensing temperature and humidity. This sensor can easily

interfaced with any microcontroller such as Arduino, Raspberry Pi, etc… to measure humidity

and temperature instantaneously. DHT11 humidity and temperature sensor are available as a

sensor and as a module. The difference between this sensor and module is the pull-up resistor

and a power-on LED. DHT11 is a relative humidity sensor.

The working of the DHT sensor is pretty simple. DHT11 sensor consists of a capacitive humidity

sensing element and a thermistor for sensing temperature. The humidity sensing capacitor has

two electrodes with a moisture-holding substrate as a dielectric between them. Change in the

capacitance value occurs with the change in humidity levels. The IC measure, process this

changed resistance values and change them into digital form.

For measuring temperature this sensor uses a Negative Temperature coefficient thermistor, which

causes a decrease in its resistance value with an increase in temperature. To get a larger resistance

value even for the smallest change in temperature, this sensor is usually made up of

semiconductor ceramics or polymers.

Fig. 8 DHT11 Sensor

The temperature range of DHT11 is from 0 to 50 degrees Celsius with a 2-degree accuracy. The

humidity range of this sensor is from 20 to 80% with 5% accuracy. The sampling rate of this

https://robu.in/wp-content/uploads/2019/11/DHT11-Temperature-And-Humidity-Sensor-Module-2-1.jpg

sensor is 1Hz .i.e. it gives one reading for every second. DHT11 is small in size with an operating

voltage from 3 to 5 volts. The maximum current used while measuring is 2.5mA.

Blynk was designed for the Internet of Things. It can control hardware remotely, it can display

sensor data, it can store data, visualize it, and do many other cool things. Every time you press a

Button in the Blynk app, the message travels to the Blynk Cloud, where it magically finds its

way to your hardware. It works the same in the opposite direction and everything happens in a

blynk of an eye.

There are three major components in the platform:

• Blynk App - allows to you create amazing interfaces for your projects using various

widgets we provide.

• Blynk Server - responsible for all the communications between the smartphone and

hardware. You can use our Blynk Cloud or run your private Blynk server locally. It’s

open-source, could easily handle thousands of devices and can even be launched on a

Raspberry Pi.

• Blynk Libraries - for all the popular hardware platforms - enable communication with

the server and process all the incoming and outcoming commands.

For installation of the blynk app, you need to follow these steps

Go to play store app store and type blynk, you will find the green color icon for the blynk app,

then install it on your device.

https://docs.blynk.cc/#blynk-server

 Fig. 9 Blink App

Auth token will be generated this auth token you will get in the settings option of this project and

on your Gmail Account.

• Once your project is created, you have to insert different types of widget into it, For

example I will be adding two buttons from widget box shown below.

• After selecting two Gauge click on the Settings Gauge and fill the details like i did in

following image.

https://robu.in/wp-content/uploads/2020/08/1DHT11.png

Fig. 10 Dash Board

Program

#define BLYNK_PRINT Serial // Comment this out to disable prints and save space

#include <SPI.h>

#include <ESP8266WiFi.h>

#include <BlynkSimpleEsp8266.h>

#include <SimpleTimer.h>

#include <DHT.h>

char auth[] = "TB6KiXEXl----------qFo3Bp"; //you can add yout auth token

char ssid[] = "sneha123"; // your Wifi name

char pass[] = "asdfghjkl"; // your wifi password

https://robu.in/wp-content/uploads/2020/08/8Dashboard-1.png

#define DHTPIN D1 // Digital pin D1

float moisture;

#define DHTTYPE DHT11 // DHT 11

int temp, Humid;

DHT dht(DHTPIN, DHTTYPE);

SimpleTimer timer;

WidgetTerminal terminal(V1);

BLYNK_WRITE(V1)

{

 terminal.write(param.getBuffer(), param.getLength());

 terminal.println();

 // Ensure everything is sent

 terminal.flush();

}

void sendSensor()

{

 float h = dht.readHumidity();

 float t = dht.readTemperature(); // or dht.readTemperature(true) for Fahrenheit

 if (isnan(h) || isnan(t)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 // You can send any value at any time.

 // Please don't send more that 10 values per second.

 Blynk.virtualWrite(V5, h); //V5 is for Humidity

 Blynk.virtualWrite(V6, t); //V6 is for Temperature

}

void setup()

{

 Serial.begin(9600); // See the connection status in Serial Monitor

 Blynk.begin(auth, ssid, pass);

 dht.begin();

 timer.setInterval(1000L, sendSensor);

 terminal.flush();

}

void loop()

{

 temp = dht.readTemperature(); // or dht.readTemperature(true) for Fahrenheit

 Humid = dht.readHumidity();

 Serial.print("temp: ");

 Serial.print(temp);

 Serial.print(" c");

 terminal.print("temp: ");

 terminal.print(temp);

 terminal.print(" c");

 Serial.print(" Humidity: ");

 Serial.print(Humid);

 Serial.println(" %");

 terminal.print(" Humidity: ");

 terminal.print(Humid);

 terminal.println(" %");

 delay(300);

 terminal.flush();

 Blynk.run(); // Initiates Blynk

 timer.run(); // Initiates SimpleTimer

}

7. Servo meter with Arduino

Servo motors use feedback to determine the position of the shaft, you can control that

position very precisely. As a result, servo motors are used to control the position of objects,

rotate objects, move legs, arms or hands of robots, move sensors etc. with high precision. Servo

motors are small in size, and because they have built-in circuitry to control their movement,

they can be connected directly to an Arduino.

Most servo motors have the following three connections:

Black/Brown ground wire.

Red power wire (around 5V).

Yellow or White PWM wire.

In this experiment, we will connect the power and ground pins directly to the Arduino 5V and

GND pins. The PWM input will be connected to one of the Arduino's digital output pins.

Experiment 1

Hardware Required

1 x TowerPro SG90 servo motor

1 x Arduino Mega2560

3 x jumper wires

 Wiring Diagram

The best thing about a servo motor is that it can be connected directly to an Arduino. Connect

to the motor to the Arduino as shown in the table below:

Servo red wire – 5V pin Arduino

Servo brown wire – Ground pin Arduino

Servo yellow wire – PWM(9) pin Arduino

Fig. 11 Arduino with Servo motor

When the program starts running, the servo motor will rotate slowly from 0 degrees to 180

degrees, one degree at a time. When the motor has rotated 180 degrees, it will begin to rotate

in the other direction until it returns to the home position.

#include //Servo library

Servo servo_test; //initialize a servo object for the connected servo

int angle = 0;

 void setup()

{

 servo_test.attach(9); // attach the signal pin of servo to pin9 of arduino

}

 void loop()

{

 for(angle = 0; angle < 180; angle += 1) // command to move from 0 degrees to 180

degrees

 {

 servo_test.write(angle); //command to rotate the servo to the specified angle

 delay(15);

 }

 delay(1000);

 for(angle = 180; angle>=1; angle-=5) // command to move from 180 degrees to 0 degrees

 {

 servo_test.write(angle); //command to rotate the servo to the specified angle

 delay(5);

 }

 delay(1000);

}

School of Computing

Department of Computer Science and Engineering

UNIT – V ARDUINO PROGRAMMING FOR

IoT BOARDS - SCSA1407

Unit 5 Programming ESP 8266 Module

ESP8266 WiFi Serial Module: Overview, Setting Up the Hardware, Interfacing with Arduino,

Creating an IoT Temperature and Humidity Sensor System, Overview of DHT-22 Sensor,

Interfacing the Hardware: Arduino, ESP8266 WiFi Module, and DHT-22 Sensor, Checking

Your Data via ThingSpeak, Connecting Your Arduino Set-up to Blynk via WiFi

1. ESP8266 WiFi Serial Module: Overview, Setting Up the Hardware

The NodeMCU (Node MicroController Unit) is an open-source software and hardware

development environment built around an inexpensive System-on-a-Chip (SoC) called the

ESP8266. The ESP8266, designed and manufactured by Espressif Systems, contains the crucial

elements of a computer: CPU, RAM, networking (WiFi), and even a modern operating system

and SDK. That makes it an excellent choice for Internet of Things (IoT) projects of all kinds.

However, as a chip, the ESP8266 is also hard to access and use. You must solder wires, with

the appropriate analog voltage, to its pins for the simplest tasks such as powering it on or

sending a keystroke to the “computer” on the chip. You also have to program it in low-level

machine instructions that can be interpreted by the chip hardware. This level of integration is

not a problem using the ESP8266 as an embedded controller chip in mass-produced electronics.

It is a huge burden for hobbyists, hackers, or students who want to experiment with it in their

own IoT projects.

But, what about Arduino? The Arduino project created an open-source hardware design and

software SDK for their versatile IoT controller. Similar to NodeMCU, the Arduino hardware

is a microcontroller board with a USB connector, LED lights, and standard data pins. It also

defines standard interfaces to interact with sensors or other boards. But unlike NodeMCU, the

Arduino board can have different types of CPU chips (typically an ARM or Intel x86 chip)

with memory chips, and a variety of programming environments. There is an Arduino reference

design for the ESP8266 chip as well. However, the flexibility of Arduino also means significant

variations across different vendors. For example, most Arduino boards do not have WiFi

capabilities, and some even have a serial data port instead of a USB port.

1.1 NodeMCU Specifications

The NodeMCU is available in various package styles. Common to all the designs is the

base ESP8266 core. Designs based on the architecture have maintained the standard 30-pin

layout. Some designs use the more common narrow (0.9″) footprint, while others use a wide

(1.1″) footprint – an important consideration to be aware of.

The most common models of the NodeMCU are the Amica (based on the standard narrow pin-

spacing) and the LoLin which has the wider pin spacing and larger board. The open-source

design of the base ESP8266 enables the market to design new variants of the NodeMCU

continually.

Fig. 1 ESP 8266 Components

• Power Pins There are four power pins. VIN pin and three 3.3V pins.

• VIN can be used to directly supply the NodeMCU/ESP8266 and its peripherals.

Power delivered on VIN is regulated through the onboard regulator on the

NodeMCU module – you can also supply 5V regulated to the VIN pin

• 3.3V pins are the output of the onboard voltage regulator and can be used to supply

power to external components.

• GND are the ground pins of NodeMCU/ESP8266

• I2C Pins are used to connect I2C sensors and peripherals. Both I2C Master and I2C

Slave are supported. I2C interface functionality can be realized programmatically,

and the clock frequency is 100 kHz at a maximum. It should be noted that I2C clock

frequency should be higher than the slowest clock frequency of the slave device.

• GPIO Pins NodeMCU/ESP8266 has 17 GPIO pins which can be assigned to

functions such as I2C, I2S, UART, PWM, IR Remote Control, LED Light and

Button programmatically. Each digital enabled GPIO can be configured to internal

pull-up or pull-down, or set to high impedance. When configured as an input, it can

also be set to edge-trigger or level-trigger to generate CPU interrupts.

• ADC Channel The NodeMCU is embedded with a 10-bit precision SAR ADC. The

two functions can be implemented using ADC. Testing power supply voltage of

VDD3P3 pin and testing input voltage of TOUT pin. However, they cannot be

implemented at the same time.

• UART Pins NodeMCU/ESP8266 has 2 UART interfaces (UART0 and UART1)

which provide asynchronous communication (RS232 and RS485), and can

communicate at up to 4.5 Mbps. UART0 (TXD0, RXD0, RST0 & CTS0 pins) can

be used for communication. However, UART1 (TXD1 pin) features only data

transmit signal so, it is usually used for printing log.

• SPI Pins NodeMCU/ESP8266 features two SPIs (SPI and HSPI) in slave and master

modes. These SPIs also support the following general-purpose SPI features:

• 4 timing modes of the SPI format transfer

• Up to 80 MHz and the divided clocks of 80 MHz

• Up to 64-Byte FIFO

• SDIO Pins NodeMCU/ESP8266 features Secure Digital Input/Output Interface

(SDIO) which is used to directly interface SD cards. 4-bit 25 MHz SDIO v1.1 and

4-bit 50 MHz SDIO v2.0 are supported.

• PWM Pins The board has 4 channels of Pulse Width Modulation (PWM). The

PWM output can be implemented programmatically and used for driving digital

motors and LEDs. PWM frequency range is adjustable from 1000 μs to 10000 μs

(100 Hz and 1 kHz).

• Control Pins are used to control the NodeMCU/ESP8266. These pins include Chip

Enable pin (EN), Reset pin (RST) and WAKE pin.

• EN: The ESP8266 chip is enabled when EN pin is pulled HIGH. When pulled LOW

the chip works at minimum power.

• RST: RST pin is used to reset the ESP8266 chip.

• WAKE: Wake pin is used to wake the chip from deep-sleep.

Control Pins are used to control the NodeMCU/ESP8266. These pins include Chip Enable pin

(EN), Reset pin (RST) and WAKE pin.

• EN: The ESP8266 chip is enabled when EN pin is pulled HIGH. When

pulled LOW the chip works at minimum power.

• RST: RST pin is used to reset the ESP8266 chip.

• WAKE: Wake pin is used to wake the chip from deep-sleep.

1.2 Install ESP8266 Add-on in Arduino IDE

To install the ESP8266 board in your Arduino IDE, follow these next instructions:

1. In your Arduino IDE, go to File> Preferences

2. Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json

into the “Additional Boards Manager URLs” field as shown in the figure below.

Then, click the “OK” button:

Note: if you already have the ESP32 boards URL, you can separate the URLs

with a comma as follows:

https://dl.espressif.com/dl/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3. Open the Boards Manager. Go to Tools > Board > Boards Manager…

4. Search for ESP8266 and press install button for the “ESP8266 by ESP8266

Community“:

5. That’s it. It should be installed after a few seconds.

2. ESP8266 WITH ARDUINO

The ESP8266 board contain the microcontroller ESP8266EX (32-bit microcontroller)

from Espressif Systems, this low cost Wi-Fi module is a very good choice for hobbyists to

build IoT projects. IoT: Internet of Things. The ESP8266 module comes with AT firmware

which allows us to control it with AT commands through serial interface (RX and TX pins).

ESP8266 Programming with Arduino IDE:

It’s easy to start ESP8266 programming, all what we’ve to do is adding it to the Arduino IDE

software. First, open Arduino IDE and go to File —> Preferences

Add the link below to Additional Boards Manager URLs and click on OK:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/
http://arduino.esp8266.com/stable/package_esp8266com_index.json

Fig. 2 Preferences

Now go to Tools —> Board —> Boards Manager …

In the search box write esp8266 and click on Install and the installation of the board should

start (the installation may take some time depending on the connection speed):

https://simple-circuit.com/wp-content/uploads/2018/06/arduino-ide-esp8266-esp-01-board.png
https://simple-circuit.com/wp-content/uploads/2018/06/arduino-ide-install-esp8266-board.png

Fig. 3 Installation of Libraries

After the installation select the ESP-01 board by going to: Tools —> Board: —> Generic

ESP8266 Module

As known the Arduino UNO board contains Microchip ATmega16U2 microcontroller which

is used as USB-to-serial converter. This chip (ATmega16U2) can be used to program (flash)

the ESP-01 Wi-Fi module, circuit connections are shown below:

Fig. 4 ESP8266 (ESP-01) Module with Arduino UNO board

In the circuit there are 2 resistor one of 1k ohm and the other one of 2.2k ohm. The two resistors

are used to step down the 5V which comes to arduino into about 3.43V which goes to the ESP-

01 board (connected to RX pin of the ESP-01) because the ESP8266EX chip works with 3.3V

only and applying a 5V directly may damage it.

On the other hand, the TX pin of the ESP-01 is connected directly to the Arduino board without

any voltage level converter because here the ESP-01 sends data (at 3.3V) to the Arduino board

using this pin. This is a simple example which we should start with, it’s the LED blinking

example. In this example I’m going to connect one LED to ESP-01 board GPIO2 pin, and make

this LED blinks. Circuit diagram is shown below:

https://simple-circuit.com/wp-content/uploads/2018/06/arduino-esp-01-program.png

The LED is connected to pin GPIO2 of the ESP-01 module through a 330 ohm resistor.

The ESP-01 module needs a 3.3V supply. We can get the 3.3V for example from Arduino UNO

board, or using AMS1117 3V3 voltage regulator which steps down 5V into 3.3V, or directly

from 3.3V source.

Arduino code for ESP8266 module:

#define LED 2 // LED is connected to GPIO2

void setup() {

 pinMode(LED, OUTPUT); // Configure LED pin as output

}

void loop() {

 digitalWrite(LED, HIGH); // Turn the LED on

 delay(500); // wait 1/2 second

 digitalWrite(LED, LOW); // turn the LED off

 delay(500); // wait 1/2 second

 }

3. IoT BASED HUMIDITY AND TEMPERATURE MONITORING USING

ARDUINO UNO

we can control any electronic equipment in homes and industries. Moreover, you can read a

data from any sensor and analyze it graphically from anywhere in the world. Here, we can read

temperature and humidity data from DHT11 sensor and upload to a ThingSpeak cloud using

Arduino Uno and ESP8266-01 module. Arduino Uno is MCU, it fetch a data of humidity and

temperature from DHT11 sensor and Process it and give it to a ESP8266 Module.ESP8266 is

a WiFi module, it is one of the leading platform for Internet of Things. It can transfer a data to

IOT cloud.

Hardware Requirements

• Arduino Uno

• ESP8266-01

• DHT11

• AMS1117-3.3V

• 9V battery

Software Requirements

• Arduino IDE

Fig. 5 Arduino with DHT sensor

The 2nd pin is of DHT11 is a data pin, it can send a temperature and humidity value to the

5th pin of Arduino Uno.1st and 4th pin of DHT11 is a Vcc and Gnd and 3rd pin is no connection.

The Arduino Uno process a temperature and humidity value and send it to a ESP8266 WiFi

module. The Tx and Rx pin of ESP8266 is connected to the 2nd (Rx) and 3rd (Tx) of Arduino

https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module
https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module
https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module

Uno. Make sure that input voltage of ESP8266 must be 3.3V, not a 5V (otherwise it would

damage a device).For that, we are using AMS1117 Voltage regulator circuit. It can regulate a

voltage from 9V to 3.3V and will give it to Vcc pin of ESP8266.The Ch_Pd is a chip enable

pin of ESP8266 and should be pullup to 3.3V through 3.3KΩ resistor. For reset the module

pull down the RST pin of ESP8266 to Gnd.ESP8266 have 2 GPIO pins GPIO 0 and GPIO 2.

Fig. 6 Circuit diagram for monitoring Humidity and Temperature in IOT cloud

ThingSpeak is an open source platform to store and retrieve a data for Internet of Things

application. To use this, you need to register in ThingSpeak cloud and then login to your

account. After create a new channel with temperature in one field and humidity in another field

as shown in Fig: 1.2. Once you created a new channel, it will generate a two API keys, they

are READ API keys and WRITE API keys. First, copy the WRITE API keys from ThingsSpeak

and paste it into the line (String apiKey = “OX9T8Y9OL9HD0UBP”;) of the program. Next,

replace the Host_Name and Password with your WiFi name and WiFi password in the two

lines given below in the program. (String Host_Name = “Pantech” and String Password =

“pantech123”). The Arduino program Uses DHT library, if it is not presented in your arduino

IDE, select Sketch à Include library à Manage libraries à Install DHT Sensor library. Then

https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module
https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module
https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module
https://www.pantechsolutions.net/wireless-boards/esp8266-wifi-module

compile the program and upload to a Arduino Uno through Arduino IDE. Ensure that WiFi

modem and internet connection in your Smartphone or PC are working properly. After

uploaded a program, the Temperature and Humidity data is uploaded on ThingSpeak platform.

Fig.7 Creating new channel on ThingSpeak cloud

Fig. 8 Graphical representation of Humidity and Temperature data

#include <ESP8266WiFi.h>

#include "DHT.h"

String apiKey = "";

const char *ssid = "";

const char *pass = "";

const char* server = "api.thingspeak.com";

DHT dht(D2, DHT11);

WiFiClient client;

void setup() {

 Serial.begin(115200);

 delay(10);

 dht.begin();

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

}

void loop() {

 float h = dht.readHumidity();

 float t = dht.readTemperature();

 if (isnan(h) || isnan(t)) {

 Serial.println("Failed to read from DHT sensor!");

 return;

 }

 if (client.connect(server, 80)) {

 String postStr = apiKey;

 postStr += "&field1=";

 postStr += String(t);

 postStr += "&field2=";

 postStr += String(h);

 postStr += "\r\n\r\n";

 client.print("POST /update HTTP/1.1\n");

 client.print("Host: api.thingspeak.com\n");

 client.print("Connection: close\n");

 client.print("X-THINGSPEAKAPIKEY: " + apiKey + "\n");

 client.print("Content-Type: application/x-www-form-urlencoded\n");

 client.print("Content-Length: ");

 client.print(postStr.length());

 client.print("\n\n");

 client.print(postStr);

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print("\t");

 Serial.print("Humidity: ");

 Serial.println(h);

 }

 client.stop();

 delay(1000);

}

4. OVERVIEW OF DHT22 SENSOR

The DHT22 is a very low-cost sensor. It's made up of two components: a capacitive humidity

sensor and a thermistor, which measures temperature. Because it's a digital sensor, you can read

the sensor data over a GPIO pin.

• Three jump wires

• DHT22

• NodeMCU

• Micro-USB

The left-most pin of the DHT22 is the positive pin. You should connect it to 3V or Vin on the

MCU. The second pin of the DHT22 (from the left) is the data pin. You should connect it to

D2 on the MCU. The third pin of the DHT22 (from the left) does nothing. The last pin of the

DHT22 is the Ground pin. It should be connected GND. In addition to this, you'll have to install

two more libraries. To read the sensor, we are going to use Adafruit's DHT22 library. It can be

installed using Arduino's library manager. It comes in two components. First, you'll want to

download the Adafruit Unified Sensor library and install the DHT sensor library:

Program:

#include "DHT.h"

#define DHTPIN 4 // what digital pin the DHT22 is conected to

#define DHTTYPE DHT22 // there are multiple kinds of DHT sensors

DHT dht(DHTPIN, DHTTYPE);

void setup() {

https://www.adafruit.com/product/385
https://www.amazon.com/HiLetgo-Version-NodeMCU-Internet-Development/dp/B010O1G1ES
https://github.com/adafruit/DHT-sensor-library

 Serial.begin(9600);

 Serial.setTimeout(2000);

 // Wait for serial to initialize.

 while(!Serial) { }

 dht.begin();

 Serial.println("Device Started");

 Serial.println("-------------------------------------");

 Serial.println("Running DHT!");

 Serial.println("-------------------------------------");

}

int timeSinceLastRead = 0;

void loop() {

 // Report every 2 seconds.

 if(timeSinceLastRead > 2000) {

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)

 float h = dht.readHumidity();

 // Read temperature as Celsius (the default)

 float t = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float f = dht.readTemperature(true);

 // Check if any reads failed and exit early (to try again).

 if (isnan(h) || isnan(t) || isnan(f)) {

 Serial.println("Failed to read from DHT sensor!");

 timeSinceLastRead = 0;

 return;

 }

 // Compute heat index in Fahrenheit (the default)

 float hif = dht.computeHeatIndex(f, h);

 // Compute heat index in Celsius (isFahreheit = false)

 float hic = dht.computeHeatIndex(t, h, false);

 Serial.print("Humidity: ");

 Serial.print(h);

 Serial.print(" %\t");

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print(" *C ");

 Serial.print(f);

 Serial.print(" *F\t");

 Serial.print("Heat index: ");

 Serial.print(hic);

 Serial.print(" *C ");

 Serial.print(hif);

 Serial.println(" *F");

 timeSinceLastRead = 0;

 }

 delay(100);

 timeSinceLastRead += 100;

}

5. CONNECT AND SEND DATA TO THINGSPEAK

ThingSpeak is IoT Cloud platform where you can send sensor data to the cloud. You

can also analyze and visualize your data with MATLAB or other software, including making

your own applications. The ThingSpeak service is operated by MathWorks. In order to sign

up for ThingSpeak, you must create a new MathWorks Account or log in to your existing

MathWorks Account. ThingSpeak is free for small non-commercial projects. ThingSpeak

includes a Web Service (REST API) that lets you collect and store sensor data in the cloud

and develop Internet of Things applications. It works with Arduino, Raspberry Pi and

MATLAB (premade libraries and APIs exists) But it should work with all kind of

Programming Languages, since it uses a REST API and HTTP.

. 5.1 Creating a channel

To get started you will need to sign up for a free Thingspeak account. Thingspeak is organized

in a simple way: you can create channels that contains datafields. A simple example: if you're

building a temperature sensor, you probably want to create 1 channel for your device with two

fields: a temperature field and a humidity field. To create a channel, go to Channels, My

Channels and click on "New Channel".

https://savjee.be/videos/programming-esp32-with-arduino/send-data-to-thingspeak/

Fig. 9 Configuring fields in a ThingSpeak channel

5.2 Installing ThingSpeak library

Now we're ready to push data to Thingspeak and you can do this in two ways: by making HTTP

calls or by using their MQTT broker. The easiest one is by using HTTP calls, but, you don't

need to make these yourself. We can use the Thingspeak Arduino library. I'll install it by adding

it to my platformio.ini file, under the section lib_deps. As mentioned before, PlatformIO will

take care of downloading and installing this library.

#include "ThingSpeak.h"

#define CHANNEL_ID 99999999

#define CHANNEL_API_KEY "XXXXXXXXXXXXX"

WiFiClient client;

int counter = 0;

void setup() {

 Serial.begin(9600);

 connectToWiFi(); // this function comes from a previous video

 ThingSpeak.begin(client);

}

void loop() {

 counter++;

 ThingSpeak.writeField(CHANNEL_ID, 1, counter, CHANNEL_API_KEY);

 delay(15000); // 15 seconds

}

Writing multiple fields

To update multiple fields in 1 go, we have to adapt the code a bit. The example above will

make 1 request per field, which isn't efficient if you have multiple fields.

void loop()

 {

 counter++;

 ThingSpeak.setField(1, counter);

 ThingSpeak.setField(2, WiFi.RSSI());

 ThingSpeak.writeFields(CHANNEL_ID, CHANNEL_API_KEY);

 delay(15000); // 15 seconds

}

6. CONTROL ARDUINO REMOTELY OVER THE INTERNET USING BLYNK

APP

Blynk is an IoT platform that allows us to quickly build projects for controlling and

monitoring the data using Android and iOS devices. We can create a project dashboard and

add widgets like buttons, displays, sliders, etc. for controlling microcontrollers and other

peripherals. Using these widgets, we can control the devices and can monitor the sensor data

on the phone screen.

Fig. 10 Blynk Application

6.1 Features of Blynk

1. You can add a notifications service using the Blynk app without using any third-party

platform like IFTTT. For example, you can post the data on Twitter and get the e-mail when

something reaches its threshold. This can be possible just by configuring the Blynk app.

2. In IoT projects, the hardware part is easy as compare to the software part. But using Blynk,

the software part also becomes easier than the hardware. There is very less coding required and

all the code is included in its library. Blynk is perfect for building simple projects.

3. Most of the microcontroller available in the market is supported by Blynk and these

microcontrollers can be controlled using Blynk app via Wi-fi, BLE, USB, GSM, and Ethernet.

4. You can create your own local Blynk server to control the appliances locally just by using

few steps and can control easily using the Blynk app.

5. One of the most interesting features of Blynk is the use of virtual pins. Virtual Pin is a

concept invented by Blynk to provide the exchange of any data between hardware and the

Blynk mobile app. These pins are different from Digital and Analog pins, they don’t have any

physical properties.

https://iotdesignpro.com/tags/ifttt

So, if you want any data from the virtual pin, the Blynk app will send the data to a defined

virtual pin and then this data can be accessed on MCU pins. Also, the data can be sent from the

Blynk app to any virtual pin, and then the data can be easily accessed on the app.

6.2 Circuit Diagram

The circuit diagram is very simple, just connect one LED to PWM pin (5) and the other LED

to digital pin 4 of Arduino Uno.

Fig. 11 Arduino with LED

6.3 Installing and Configuring Blynk App to control LED

1. Download the Blynk app from the play store. It is available for both Android and iOS

users. Open the app and create an account by entering your e-mail ID and password.

2. Now, we will create a New Project. So, tap on New Project.

https://play.google.com/store/apps/details?id=cc.blynk&hl=en_IN

3. Give a Project name and Choose the Device as Arduino UNO and Connection Type

as USB because we are using serial communication to talk with Arduino and Blynk Server.

Now, click on Create as shown below.

Fig. 12 Blynk App Display

4. After Creating the Project, you will receive an Auth Token on registered mail id. This token

will be used in the Code.

5. Now an empty dashboard will be shown where we will place all the required widgets i.e.

buttons, displays, sliders, etc. Tap on + sign. All the available widgets are shown here. You can

explore all the widgets and can use them according to your requirements.

6. Now, set the properties of both widgets. Tap on the button on the dashboard. Choose Output

on D4 and mode as Switch then go back to dashboard and tap on the slider. Choose Output pin

on Virtual pin V1 and all properties remain the same.

Now we are ready with the Blynk app. Let's Start programming Arduino board for working

with the Blynk app, for this there is a library available for Arduino.

 6.4 Installing Blynk Library in Arduino

Before start writing the code for Arduino Uno, we will first install the Blynk Library in Arduino

IDE:

To install the library, Go to Sketch -> Include Libraries -> Manage Libraries. Then search for

Blynk and install the latest version as shown below.

Fig. 13 Installation of Blynk Library

6.5 Programming Arduino for Blynk App

1. First, declare macros using #define as required in the code. Here

macro BLYNK_PRINT is defined as DebugSerial for printing purpose.

#define BLYNK_PRINT DebugSerial

2. Now, include header files for software serial and Blynk functions and make a instance

for Software serial as DebugSerial.

#include <SoftwareSerial.h>

SoftwareSerial DebugSerial(2, 3); // RX, TX

#include <BlynkSimpleStream.h>

3. Store that auth token in the char array.

 char auth[] = "YourAuthToken";

4. In setup() function, initialize software serial, inbuilt serial and Blynk with baud rate 9600.

Function blynk.begin() takes two arguments namely Serial and auth token.

void setup()

{

DebugSerial.begin(9600);

Serial.begin(9600);

Blynk.begin(Serial, auth);

}

5. In void loop() function, there should be very minimum code so that Blynk can work without

any interrupt or loss of data. This is because when you put something in void loop function like

getting sensor reading from MCU or from the smartphone, it executes million times and this

data uploads on the Blynk server which means the Blynk cloud will flooded with tons of

messages and server will consider this as Spams so the Blynk cloud will automatically

terminate the connection. Also, avoid using the delay function in the loop because it completely

stops the functioning of MCU and the connection will close in this situation also.

The best choice for getting the sensor data from Arduino is by using the timers. Initialize the

timers in the setup function and define a function to perform the task.

There will be a bare minimum function required - Blynk.run() and timer function can handle

all the tasks of getting the data and sending it to the server. But in this tutorial, we are not

sending any data so timers are not required.

void loop()

{

 Blynk.run();

}

6. The code for toggling the LED is inbuilt in the Blynk.run() function but we have to make

a function for getting the slider value from a smartphone. There are two functions for sending

and receiving the data which are BLYNK_READ() and BLYNK_WRITE(). These functions take

virtual pins as an input argument to read and write the data. Therefore we have to use the

BLYNK_WRITE function to write the data on virtual pin V1 from the Blynk app.

Now, assign the incoming value from pin V1 to a variable, param.asInt() function returns the

received value as integer. If the received value is not integer you can use float, double or string.

param.asFloat(); // get value as a Float

param.asDouble(); // get value as a Double

param.asStr(); // get value as a String

Then put this value in the PWM pin of Arduino using the analogWrite() function.

BLYNK_WRITE(V1)

{

int pinValue = param.asInt();

analogWrite(5,pinValue);

}

6.6 Script for Internet Connection:

Here we are not using any module with Arduino board but a working internet

connection is needed to send and receive data over the cloud so there is a script included in

the Blynk library that can access our laptop/PC internet connection. Therefore, this script takes

the data from the Arduino board through serial communication and uploads the data on Blynk

cloud using the laptop internet connection. We have to run this script to start the operation.

This script can be found in the Arduino directory which is in the Documents folder, Go

to Libraries -> Blynk -> Scripts. There is a file named blynk-ser.bat which is the required

script. Edit this script with the COM port of the Arduino board and Blynk cloud port number.

Open the script using notepad and replace the following things. You have to replace only with

your COM port and save the file, all other things remain the same.

set COMM_PORT= COM(port_no.) //e.g. COM25

set COMM_BAUD=9600

set SERV_ADDR=blynk-cloud.com

set SERV_PORT=8442

 6.7 Testing - Controlling the Arduino Remotely using Blynk App

Now, we are all set to control the Arduino GPIO pin with Blynk app. Make sure you

have connected both the LEDs and have a working internet connection in your laptop and

smartphone. For running the project, double click on the script and it will start executing.

Now, open the app. Tap on the play button in the upper right corner.

Fig. 14 LED Control

Then tap on the LED button to turn on the LED and again tap on it to turn the LED off.

Similarly, move the slider to vary the brightness of the LED.

#define BLYNK_PRINT DebugSerial

#include <SoftwareSerial.h>

SoftwareSerial DebugSerial(2, 3); // RX, TX

#include <BlynkSimpleStream.h>

char auth[] = "YourAuthToken";

BLYNK_WRITE(V1)

{

 int pinValue = param.asInt();

 analogWrite(5,pinValue);

}

void setup()

{

 DebugSerial.begin(9600);

 Serial.begin(9600);

 Blynk.begin(Serial, auth);

}

void loop()

{

 Blynk.run();

}

