
ROBOTICS

Technická referenční příručka
Přehled RAPID

Trace back information:
Workspace 25-3 version a38
Checked in 2025-12-02
Skribenta version 5.6.019

Technická referenční příručka
Přehled RAPID

RobotWare 7.20

ID dokumentu: 3HAC065040-014
Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.
Specifikace podléhají změně bez nutnosti oznámení.

Informace v této příručce mohou být změněny bez předchozího upozornění a nelze
je považovat za závazné pro společnost ABB. ABB nepřijímá zodpovědnost za žádné
chyby, které se v této příručce mohou vyskytnout.
S výjimkou případů výslovně vyznačených v této příručce nelze z uváděných informací
vyvozovat jakýkoli druh záruky společnosti ABB za ztráty, škody na zdraví či majetku,
vhodnost pro určitý účel apod.
Společnost ABB v žádném případě neodpovídá za náhodné nebo následné škody
vzniklé při používání této příručky a výrobků, které jsou zde popisovány.
Tato příručka ani její části nesmějí být reprodukovány ani kopírovány bez písemného
souhlasu společnosti ABB.
Uchovejte pro referenci v budoucnosti.
Další výtisky této příručky lze získat od společnosti ABB.

Překladem původního návodu k používání.

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.
Specifikace podléhají změně bez nutnosti oznámení.

Obsah
7Přehled této příručky ..
9Jak číst tuto příručku ..

111 Základní programování RAPID
111.1 Struktura programu ...
111.1.1 Úvod ...
131.1.2 Základní prvky ..
171.1.3 Moduly ..
201.1.4 Předdefinovaná data ..
211.1.5 Rutiny ...
271.2 Programová data ...
271.2.1 Datové typy ..
291.2.2 Deklarace dat ...
351.3 Výrazy ...
351.3.1 Typy výrazů ...
381.3.2 Používání dat ve výrazech ..
391.3.3 Používání celků ve výrazech ...
401.3.4 Používání volání funkcí ve výrazech ...
421.3.5 Priorita mezi operátory ...
431.3.6 Syntaxe ...
451.4 Instrukce ...
461.5 Kontrola toku programu ..
481.6 Různé instrukce ..
501.7 Nastavení pohybů ...
551.8 Pohyb ...
631.9 Vstupní a výstupní signály ..
661.10 Komunikace ...
701.11 Přerušení ...
741.12 Obnovení po chybě ...
781.13 UNDO ...
811.14 Systémový & čas ..
831.15 Matematika ..
871.16 Funkce souborových operací ...
881.17 Podpůrné instrukce RAPID ...
921.18 Kalibrační servis & ..
931.19 Řetězcové funkce ..
951.20 Multitasking ...

1011.21 Zpětné vykonávání ..

1052 Programování pohybu a V/V (I/O)
1052.1 Souřadnicové systémy ...
1052.1.1 Střední bod nástroje robotu (TCP) ..
1062.1.2 Souřadnicové systémy používané při určování pozice TCP
1132.1.3 Souřadnicové systémy používané při určování směru nástroje
1162.2 Polohování během vykonávání programu ..
1162.2.1 Úvod ...
1172.2.2 Interpolace pozice a orientace nástroje ...
1212.2.3 Interpolace rohových drah ..
1272.2.4 Nezávislé osy ...
1302.2.5 Měkké servo ...
1312.2.6 Stop a restart ..
1322.3 Synchronizace s logickými instrukcemi ...
1352.4 Konfigurace robotu ..
1392.5 Kinematické modely robotů ...
1432.6 Dohled pohybu/detekce kolize ...
1472.7 Singularity ...

Technická referenční příručka - Přehled RAPID 5
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Obsah

1502.8 Omezení optimalizovaného zrychlení ..
1512.9 Světové zóny ..
1562.10 I/O principy ..

1593 Glosář

163Rejstřík

6 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Obsah

Přehled této příručky
O této příručce

Toto je referenční příručka obsahující podrobné vysvětlení programovacího jazyka
a všech instrukcí, funkcí a druhů dat. Tato příručka je zvlášť užitečná při
programování offline. Nezkušení uživatelé by měli začít s Operating
manual - OmniCore.
Tato příručka popisuje RobotWare 7.

Použití
Tato příručka by se měla používat během programování.

Kdo by si měl přečíst tuto příručku?
Tato příručka je určena pro uživatele s předchozí zkušeností s programováním,
např. programátory robotů.

Uspořádání kapitol
Příručka je rozčleněna do následujících kapitol:

ObsahKapitola

Odpovědi na otázky jako „Kterou instrukci bych měl použít?“ nebo
„Co znamená tato instrukce?“. Tato kapitola krátce popisuje
všechny instrukce, funkce a datové typy seskupené v souladu se
seznamy instrukcí, které používáte při programování. Zahrnuje také
souhrn syntaxí, který je zvláště užitečný při programování offline.
Vysvětluje také vnitřní podrobnosti jazyka.

Základní programová-
ní RAPID

Tato kapitola popisuje souřadné systému robotu, jeho rychlost a
další pohybové vlastnosti během provádění.

Programování pohybu
a V/V (I/O)

Glosář pomůže lépe pochopit výrazy a souvislosti.Glosář

Reference

ID dokumentuReference

3HAC065036-001Operating manual - OmniCore

3HAC065038-014Technická referenční příručka - RAPID - Instrukce, funkce a datové
typy

3HAC065039-014Technická referenční příručka - RAPID kernel

3HAC065041-001Technical reference manual - System parameters

3HAC066554-001Application manual - Controller software OmniCore

Revize

PopisRevize

Vydáno s verzí RobotWare 7.0.A

Vydáno s verzí RobotWare 7.0.2.
• Obrázek přidaný v části Chování zpětného vykonávání na str 102.

B

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 7
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Přehled této příručky

PopisRevize

Vydáno s verzí RobotWare 7.1.
• Přidaná podpora pro symboly UTF-8 (UNICODE), viz Řetězcové

hodnoty na str 14.
• Přidané informace o formátech souborů .modx a .sysx, viz Moduly

na str 17.
• Instrukce Break změnila název na DebugBreak.
• StrFormat přidané k Řetězcové funkce na str 93.
• Přidané informace o nezávislém zastavení kolize bez brzdy.

C

Vydáno s verzí RobotWare 7.2.
• Aktualizované informace o signálech, viz Vstupní a výstupní signály

na str 63.

D

Vydáno s verzí RobotWare 7.6.
• Přidána podpora pro dělení pos, viz Aritmetické výrazy na str 35.
• Přidána informace, že jak PP na Main, tak PP na rutinu odstraní do-

časné světové zóny.
• Objasněné omezení pro chyby zpětného provádění a provádění.

E

Vydáno s verzí RobotWare 7.8.
• Přidána podpora pro dělení skalárního vektoru pos, viz Aritmetické

výrazy na str 35.

F

Vydáno s verzí RobotWare 7.10.
• Doplněny informace o instrukcích FitX, viz Umístění tvarů k bodům

na str 85.
• Instrukce UIShow a datový typ uishownum jsou z příručky odstraně-

ny, protože v RobotWare 7 nefungují.

G

Vydáno s verzí RobotWare 7.12.
• Byly přidány funkce GetNextOption a GetNextProduct.
• Byly přidány instrukce Break, Continue a TriggAbsJ.
• Byly přidány informace o příponách souborů, viz Formát souboru

umožní používání znaků UTF8 v řetězcích a komentářích na str 17.

H

Vydáno s verzí RobotWare 7.13.
• Byly přidány nové maticové instrukce.
• Přidání instrukcí WristOpt.

J

Vydáno s verzí RobotWare 7.15.
• Byly přidány informace o MultiMove.
• Byly aktualizovány obecné informace o zpětném vykonávání.
• Byly odebrány všechny objekty a odkazy na Machine Synchronizati-

on.

K

Vydáno s verzí RobotWare 7.16.
• Přidání instrukcí MoveAbsL.
• Drobné korektury

L

Vydáno s verzí RobotWare 7.18.
• Přidání instrukcí BytesReset.

M

Vydáno s verzí RobotWare 7.19.
• Přidána funkce ReadDnum.

N

Vydáno s verzí RobotWare 7.20.
• Přidány instrukce ResetData.
• Byly opraveny popisy pro CorrCon a CorrWrite.
• Název společnosti byl aktualizován tak, aby odrážel současné právní

subjekty.

P

Vydáno s verzí RobotWare 7.20.
• Přidána sekce Appendix na str 161.

Q

8 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Přehled této příručky
Pokračování

Jak číst tuto příručku
Typografické zvyklosti

Příklady programů se zobrazují vždy stejným způsobem jako je proveden jejich
výstup do souboru nebo na tiskárnu. To se liší od zobrazení na FlexPendant
následujícími způsoby:

• Určitá kontrolní slova, která jsou maskována na displeji, jsou vytištěna,
například slova ukazující počátek a konec rutiny.

• Deklarace dat a rutin se tisknou ve formální podobě, například VAR num
reg1;.

V popisech v této příručce jsou všechna jména instrukcí, funkcí a datových typů
napsána ve strojovém fontu, například: TPWrite. Jména proměnných, systémových
parametrů a doplňků jsou psána kurzívou. Komentáře v příkladovém kódu nejsou
překládány (i když příručka je přeložena).

Pravidla syntaxe
Instrukce a funkce jsou popsány pomocí zjednodušené syntaxe a formální syntaxe.
Jestli používáte pro programování FlexPendant, obvykle potřebujete znát pouze
zjednodušenou syntaxi, jelikož robot automaticky zajišťuje, že je použita správná
syntaxe.

Příklad zjednodušené syntaxe
Toto je příklad zjednodušené syntaxe s instrukcí TPWrite.

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient] | [\Dnum]

• Nezbytné argumenty nejsou vloženy do závorek.
• Volitelné argumenty jsou vloženy do hranatých závorek []. Tyto argumenty

mohou být vypuštěny.
• Argumenty, které nejsou slučitelné, tzn. nemohou existovat v instrukci ve

stejný okamžik, se oddělují svislou čarou |.
• Argumenty, které se mohou libovolně opakovat, jsou vepsány do složených

závorek { }.
Shora uvedený příklad používá následující argumenty:

• String je nezbytným argumentem.
• Num, Bool, Pos, Orient, a Dnum jsou volitelné argumenty.
• Num, Bool, Pos, Orient, a Dnum jsou neslučitelné.

Příklad formální syntaxe
TPWrite

[String ':='] <expression (IN) of string>

['\'Num':=' <expression (IN) of num>] |

['\'Bool':=' <expression (IN) of bool>] |

['\'Pos':=' <expression (IN) of pos>] |

['\'Orient ':=' <expression (IN) of orient>] |

['\' Dnum':=' <expression (IN) of dnum]';'

• Text mezi hranatými závorkami [] se může vypustit.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 9
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Jak číst tuto příručku

• Argumenty, které nejsou slučitelné, tzn. nemohou existovat v instrukci ve
stejný okamžik, se oddělují svislou čarou |.

• Argumenty, které se mohou libovolně opakovat, jsou vepsány do složených
závorek { }.

• Symboly, které jsou zapsány kvůli získání správné syntaxe, se vkládají mezi
apostrofy ' '.

• Datový typ argumentu a další vlastnosti jsou vloženy do lomených závorek
< >. Viz popis parametrů rutiny, kde je více podrobností.

Základní prvky jazyka a konkrétní instrukce jsou zapsány pomocí speciální syntaxe
EBNF. Je založena na stejných pravidlech, ale s některými doplňky.

• Symbol ::= znamená je definováno jako.
• Text vložený do hranatých závorek < > je definován v samostatné řádce.

Příklad
GOTO <identifier> ';'

<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

10 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Jak číst tuto příručku
Pokračování

1 Základní programování RAPID
1.1 Struktura programu

1.1.1 Úvod

Instrukce
Program se skládá z řady instrukcí, které popisují práci robotu. Jsou tam konkrétní
instrukce pro různé příkazy, jako posunutí robotu, nastavení výstupu atd.
Instrukce mají obecně řadu připojených argumentů, které definují, co bude v
konkrétní instrukci. Například, instrukce pro nové resetování výstupu obsahuje
argument, který definuje, který výstup bude resetován; například Reset do5. Tyto
argumenty mohou být určeny jedním z následujících způsobů:

• Jako numerická hodnota, například 5 nebo 4.6

• jako reference k datům, například reg1

• jako výraz, například 5+reg1*2

• jako volání funkce, například Abs(reg1)

• jako řetězcová hodnota, například "Producing part A"

Rutiny
Existují tři typy rutin – procedury, funkce a trap rutiny.

• Procedura se používá jako podprogram.
• Funkce vrací hodnotu konkrétního typu a používá se jako argument instrukce.
• Rutiny trap poskytují prostředky pro odezvu na přerušení. Rutinu trap můžeme

spojit s konkrétním přerušením; například, když je nastaven vstup, a později
je provedena automaticky, když se toto přerušení objeví.

Data
Informace mohou být také uloženy v datech, například data nástroje (která obsahují
veškeré informace o nástroji, jako jeho TCP a váha) a numerická data (která se
mohou používat, například, pro výpočet počtu dílů ke zpracování). Data jsou
seskupena do různých datových typů, které popisují různé druhy informací, jako
jsou nástroje, pozice a zatížení. Jelikož tato data se mohou vytvářet a mohou jim
být přidělována libovolná jména, neexistuje limit (kromě těch, dodaných pamětí)
na počet dat. Tato data mohou existovat globálně v programu nebo lokálně v rámci
rutiny.
Existují tři druhy dat – konstanty, proměnné a perzistenty.

• Konstanta představuje neměnnou hodnotu a může jí být přidělena nová
hodnota pouze ručně.

• Proměnné může být přidělena nová hodnota také během provádění programu.
• Perzistent můžeme popsat jako „trvalou“ proměnnou. Když je program uložen,

inicializační hodnota odráží aktuální hodnotu perzistentu.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 11
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.1 Úvod

Jiné funkce
Další funkce v jazyce:

• Parametry rutiny
• Aritmetické a logické výrazy
• Automatické ošetření chyb
• Modulární programy
• Víceúlohový

Jazyk není citlivý na velikost písmen, například velká písmena a malá písmena
jsou považována za totožná.

12 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.1 Úvod
Pokračování

1.1.2 Základní prvky

Identifikátory
Identifikátory se používají pro pojmenování modulů, rutin, dat a návěstí, například:

MODULE module_name

PROC routine_name()

VAR pos data_name;

label_name:

Jsou povoleny pouze znaky v ISO 8859-1.
První znak v identifikátoru musí být písmeno. Další znaky mohou být písmena,
číslice nebo spodní podtržení (_).
Maximální délka identifikátoru je 32 znaků, každý z těchto znaků je významný.
Identifikátory, které jsou totožné, kromě toho, že jsou psány velkými písmeny, jsou
považovány za totožné.

Rezervovaná slova
Slova uvedená dále jsou rezervovaná. Mají zvláštní význam s jazyku RAPID a proto
se nesmí používat jako identifikátory.
Existuje také řada předdefinovaných jmen pro datové typy, systémová data,
instrukce a funkce, která se nesmí používat jako identifikátory.

BREAKBACKWARDANDALIAS

CONTINUECONSTCONNECTCASE

ELSEDODIVDEFAULT

ENDIFENDFUNCENDFORELSEIF

ENDTESTENDRECORDENDPROCENDMODULE

EXITERRORENDWHILEENDTRAP

FUNCFROMFORFALSE

LOCALINOUTIFGOTO

NOTNOSTEPINMODULEMOD

PROCPERSORNOVIEW

RETRYRECORDREADONLYRAISE

TESTSYSMODULESTEPRETURN

TRUETRAPTOTHEN

VIEWONLYVARUNDOTRYNEXT

XORWITHWHILE

Mezery a znaky na nové řádce
Programovací jazyk RAPID je volnoformátový jazyk, což znamená, že mezery je
možné používat kdekoliv kromě:

• identifikátory
• rezervovaná slova
• numerické hodnoty

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 13
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.2 Základní prvky

• blokátory místa
Znaky nové řádky, tabelátoru a formuláře se mohou používat kdekoliv, kde je
možné použít mezeru, kromě komentářů.
Identifikátory, rezervovaná slova a numerické hodnoty musí být od sebe odděleny
mezerou, novou řádkou, tabelátorem nebo znakem formuláře.

Numerické hodnoty
Numerickou hodnotu je možné vyjádřit jako

• celé číslo, například 3, -100, 3E2
• desetinné číslo, například 3.5, -0.345, -245E-2

Hodnota musí být v rozsahu určeném normou ANSI IEEE 754 pro aritmetiku
plovoucího bodu.

Logické hodnoty
Logickou hodnotu je možné vyjádřit jako TRUE nebo FALSE.

Řetězcové hodnoty
Řetězcová hodnota je sekvence znaků UTF-8 a kontrolních znaků (mimo ISO 8859-1
(Latin-1). Mohou být zahrnuty znakové kódy, což umožní do řetězce vkládat také
netisknutelné znaky (binární data). Délka řetězce může být max. 80 bajtů.
UTF-8 symboly jsou podporovány pouze na následujících místech:

• Komentáře v kódu RAPID
• Obsah v řetězcích RAPID

Příklad:
"This is a string"

"This string ends with the BEL control character \07"

Jestliže je vloženo zpětné lomítko (které označuje kód znaku) nebo dvojité
uvozovky, musí být napsány dvakrát.
Příklad:

"This string contains a "" character"

"This string contains a \\ character"

Komentáře
Komentáře se používají kvůli lepšímu porozumění programu. Neovlivňují žádným
způsobem význam programu.
Komentáře využívají formát UTF-8, což znamená, že jsou podporovány všechny
symboly, včetně symbolů používaných v různých jazycích a emoji.
Komentář začíná vykřičníkem (!) a končí znakem nové řádky. Obsazuje zbytek
řádku (začínaje vykřičníkem) a nemůže se objevit mimo deklaraci modulu.

! comment

IF reg1 > 5 THEN

! comment

reg2 := 0;

ENDIF

Pokračování na další straně
14 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.2 Základní prvky
Pokračování

Blokátory místa
Blokátory místa se mohou používat pro dočasné zastoupení částí programu, které
dosud nejsou definovány. Program, který obsahuje blokátory místa, je syntakticky
správný a může být načten do paměti programu.

PopisBlokátor místa

definice datového typu<TDN>

deklarace dat<DDN>

deklarace rutiny<RDN>

formální volitelný alternativní parametr<PAR>

volitelný formální parametr<ALT>

formální (konformní) rozměr pole<DIM>

instrukci<SMT>

reference datového objektu (proměnné, perzistentu
nebo parametru)

<VAR>

jinak, jestliže je klauzulí nebo instrukcí<EIT>

klausule skupiny dat zkušební instrukce<CSE>

výraz<EXP>

argument volání procedury<ARG>

identifikátor<ID>

Hlavička souboru
Soubor programu může začínat následující hlavičkou souboru (není požadováno):

%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

Syntaxe

Identifikátory
<identifier> ::= <ident> | <ID>

<ident> ::= <letter> {<letter> | <digit> | '_'}

Numerické hodnoty
<num literal> ::=

<integer> [<exponent>]

| <decimal integer>) [<exponent>]

| <hex integer> | <octal integer>

| <binary integer>

| <integer> '.' [<integer>] [<exponent>]

| [<integer>] '.' <integer> [<exponent>]

<integer> ::= <digit> {<digit>}

<hex integer> ::= '0' ('X' | 'x')

<hex digit> {<hex digit>}

<octal integer> ::= '0' ('O' | 'o') <octal digit> {<octal digit>}

<binary integer> ::= '0' ('B' | 'b') <binary digit> {<binary digit>}

<exponent> ::= ('E' | 'e') ['+' | '-'] <integer>

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 15
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.2 Základní prvky

Pokračování

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<octal digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

<binary digit> ::= 0 | 1

Logické hodnoty
<bool literal> ::= TRUE | FALSE

Hodnoty řetězce
<string literal> ::= '"' {<character> | <character code> } '"'

<character code> ::= '\' <hex digit> <hex digit>

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

Komentáře
<comment> ::= '!' {<character> | <tab>} <newline>

Znaky
<character> ::= -- UTF-8 symbols --

<newline> ::= -- newline control character --

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d |
e | f

<letter> ::= <upper case letter> | <lower case letter>

<upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | Ý | Þ | ß

<lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | ß | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | ð | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | ý | þ | ÿ

16 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.2 Základní prvky
Pokračování

1.1.3 Moduly

Úvod
Program je rozdělen na programové moduly a systémové moduly.
Formát souboru pro modul programu je .modx a pro modul systému .sysx.

xx1100000550

Formát souboru umožní používání znaků UTF8 v řetězcích a komentářích
Při používání přípon souborů .modx a .sysx čte kompilátor daný soubor s využitím
kódování UTF8. S kódováním UTF8 je možné používat v řetězcích a komentářích
všechny znaky Unicode. Bude možné používat například čínské znaky, azbuku a
emoji.
Příklad:
MODULE Module1

PROC main()

! Alert that robot needs service

TPWrite "Robot needs service: ⚠";
ENDPROC

ENDMODULE

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 17
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.3 Moduly

Soubory ve formátu .mod nebo .sys
V RobotWare 7.0 a dřívějších verzích tyto formáty byly .mod a .sys. Pro použití
těchto souborů v novějších vydáních je soubory nutno konvertovat, nikoliv pouze
přejmenovat. Pro manuální konverzi souboru je soubor nutno uložit jako UTF-8
bez BOM (značka pořadí bajtů). Při jejich načítání v ovladači RobotWare 7.1 nebo
pozdější verze využívajícím RobotStudio jsou automaticky konvertovány při uložení.

Programové moduly
Programový modul se může skládat z různých dat a rutin. Každý modul nebo celý
program je možné kopírovat na disk apod. a opačně.
Jeden z modulů obsahuje vstupní proceduru, globální proceduru s názvem Main.
Provedení programu znamená fakticky provedení procedury Main. Program může
zahrnovat mnoho modulů, ale jen jeden z nich bude mít hlavní proceduru.
Modul může, například, definovat rozhraní s externím vybavením nebo obsahovat
geometrická data, která jsou buď vytvářena systémy CAD nebo vytvářena online
digitalizací (výuka programování).
Zatímco malé instalace jsou často obsaženy v jednom modulu, větší instalace
mohou mít hlavní modul, který odkazuje na rutiny a/nebo data obsažená v jednom
nebo několika dalších modulech.

Systémové moduly
Systémové moduly se používají pro definování společných dat a rutin podle
systému, stejně tak jako nástrojů. Nejsou vloženy, když je program ukládán, což
znamená, že každá aktualizace systémového modulu ovlivní v něm momentálně
přítomné programy, nebo jsou načteny v pozdější fázi do paměti programu.

Deklarace modulu
Deklarace modulu určuje jméno a atributy tohoto modulu. Tyto atributy mohou být
doplněny pouze offline, nikoliv pomocí FlexPendantu. Následují příklady atributů
modulu:

Jestliže je určenoAtribut

Modul je systémový modul, jinak se jedná o programový modulSYSMODULE

Modul nemůže být vložen během postupného prováděníNOSTEPIN

Modul není možné modifikovatVIEWONLY

Modul není možné modifikovat, ale atribut může být odstraněnREADONLY

Modul není možné prohlížet, pouze provést. Přístup ke globál-
ním rutinám je možný z jiných modulů a jsou vždy prováděny
jako NOSTEPIN. Aktuální hodnoty pro globální data jsou dostup-
né od jiných modulů nebo z datového okna na FlexPendantu.
NOVIEW je možné definovat pouze offline z PC.

NOVIEW

Například:
MODULE module_name (SYSMODULE, VIEWONLY)

!data type definition

!data declarations

!routine declarations

ENDMODULE

Pokračování na další straně
18 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.3 Moduly
Pokračování

Modul nesmí mít stejné jméno jako jiný modul nebo globální rutina nebo data.

Struktura souborů programu
Jak je uvedeno shora, všechny programové moduly jsou obsaženy v programu s
konkrétním názvem programu. Při ukládání programu je vytvořen nový adresář se
jménem programu. V tomto adresáři budou všechny programové moduly uloženy
s příponou .modx, společně s popisem souboru se stejným jménem, jaké má
program a s příponou .pgf. Popisný soubor bude zahrnovat seznam všech modulů
obsažených v programu.

Syntaxe

Deklarace modulu
<module declaration> ::=

MODULE <module name> [<module attribute list>]

<type definition list>

<data declaration list>

<routine declaration list>

ENDMODULE

<module name> ::= <identifier>

<module attribute list> ::= '(' <module attribute> { ',' <module
attribute> } ')'

<module attribute> ::=

SYSMODULE

| NOVIEW

| NOSTEPIN

| VIEWONLY

| READONLY

POZNÁMKA

Jestliže je použit jeden nebo více atributů, musí být ve shora uvedeném pořadí,
atribut NOVIEW může být určen pouze samostatně nebo společně s atributem
SYSMODULE.

<type definition list> ::= { <type definition> }

<data declaration list> ::= { <data declaration> }

<routine declaration list> ::= { <routine declaration> }

Technická referenční příručka - Přehled RAPID 19
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.3 Moduly
Pokračování

1.1.4 Předdefinovaná data

Úvod
Za účelem zjednodušení programování jsou předdefinovaná data dodávána s
robotem. Tato data není nutné vytvářet a mohou se používat přímo.
Jestliže se používají tato data, prvotní programování se tím usnadní. Je, nicméně,
obvykle lepší dát svá vlastní jména datům, která používáte, protože to vám usnadní
čtení programu.

Obsah
Předdefinováno je pět numerických dat (registrů) a jedny hodiny.

DeklaraceDatový typNázev

VAR num reg1:=0numreg1

VAR num reg2:=0numreg2

VAR num reg3:=0numreg3

VAR num reg4:=0numreg4

VAR num reg5:=0numreg5

VAR clock clock1clockclock1

20 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.4 Předdefinovaná data

1.1.5 Rutiny

Úvod
Existují tři typy rutin (podprogramů): procedury, funkce a trap rutiny.

• Procedury nevracejí hodnotu a používají se v kontextu instrukcí.
• Funkce vracejí hodnotu konkrétního typu a používají se v kontextu výrazů.
• Trap rutiny poskytují prostředky pro řešení přerušení. Trap rutina může být

spojena s konkrétním přerušením a potom, jestliže takové přerušení nastane
v pozdější fázi, bude automaticky provedena. Trap rutinu není možné volat
přímo z programu.

Rámec rutiny
Rámec rutiny označuje oblast, ve které je rutina viditelná. Volitelná lokální směrnice
deklarace rutiny klasifikuje rutinu jako lokální (v rámci modulu), jinak je globální.
Příklad:

LOCAL PROC local_routine (...

PROC global_routine (...

Následující rámcová pravidla se vztahují na rutiny:
• Rámec globální rutiny může zahrnovat jakýkoliv modul v úloze.
• Rámec lokální rutiny zahrnuje modul, ve kterém je obsažena.
• V tomto rámci skrývá lokální rutina jakoukoliv globální rutinu nebo data se

stejným jménem.
• V tomto rámci skrývá rutina instrukce a předdefinované rutiny a data se

stejným jménem.

xx1100000551

V příkladu nahoře mohou být následující rutiny volány od Routine h:
• Module1: Routine c, d.
• Module2: Všechny rutiny.

Rutina nesmí mít stejné jméno jako jiná rutina, data nebo datový typ ve stejném
modulu. Globální rutina nesmí mít stejné jméno jako modul nebo globální rutina,
globální data nebo globální datový typ v jiném modulu.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 21
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny

Parametry
Seznam parametrů deklarace rutiny určuje argumenty (skutečné parametry), které
musí/mohou být dodány, když je rutina volána.
Existují čtyři různé typy parametrů (v přístupovém režimu):

• Normálně se parametr používá pouze jako vstup a je považován za
proměnnou rutiny. Změnou této proměnné se nezmění odpovídající argument.

• Parametr INOUT udává, že odpovídající argument musí být proměnná (celá,
prvek nebo komponent) nebo celý perzistent, který může být změněn rutinou.

• Parametr VAR udává, že odpovídající argument musí být proměnná (celá,
prvek nebo komponent), která může být změněna rutinou.

• Parametr PERS udává, že odpovídající argument musí být celý perzistent,
který může být změněn rutinou.

Jestliže je aktualizován parametr INOUT, VAR nebo PERS, fakticky to znamená, že
samotný argument je aktualizován a že je možné použít argumenty pro vrácení
hodnot volající rutině.
Příklad:

PROC routine1 (num in_par, INOUT num inout_par,

VAR num var_par, PERS num pers_par)

Parametr může být volitelný a může být vypuštěn ze seznamu argumentů volání
rutiny. Volitelný parametr je označen zpětným lomítkem (\) před parametrem.
Příklad:

PROC routine2 (num required_par \num optional_par)

Hodnota volitelného parametru, který je vypuštěn ve volání rutiny, nesmí být
odkazována. To znamená, že volání rutiny musí být kontrolována na volitelné
parametry ještě předtím, než je volitelný parametr použit.
Dva nebo více volitelných parametrů může být neslučitelných (to je deklarováno
vyloučením každého z nich), což znamená, že pouze jeden z nich může být přítomen
ve volání rutiny. Je to označeno svislou čárou (|) mezi parametry, kterých se to
týká.
Příklad:

PROC routine3 (\num exclude1 | num exclude2)

Speciální typ, switch, může být přidělen (pouze) volitelným parametrům a
poskytuje prostředky pro použití přepínacích argumentů, to znamená argumentů,
které jsou určeny pouze jmény (nikoliv hodnotami). Hodnotu není možné převést
na parametr switch. Jediný způsob, jak použít parametr switch, je kontrola jeho
přítomnosti pomocí předdefinované funkce Present.
Příklad:

PROC routine4 (\switch on | switch off)

...

IF Present (off) THEN

...

ENDPROC

Pole mohou být procházena jako argumenty. Stupeň argumentu pole musí souhlasit
se stupněm odpovídajícího formálního parametru. Rozměr argumentu pole je
konformní (označeno s *). Skutečný rozměr tedy závisí na rozměru odpovídajícího

Pokračování na další straně
22 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny
Pokračování

argumentu ve volání rutiny. Rutina může určit skutečný rozměr parametru pomocí
předdefinované funkce Dim.
Příklad:

PROC routine5 (VAR num pallet{*,*})

Ukončení rutiny
Provedení procedury je buď přímo ukončeno instrukcí RETURN nebo nepřímo
ukončeno, když bylo dosaženo konce procedury (ENDPROC, BACKWARD, ERROR,
nebo UNDO).
Vyhodnocení funkce musí být ukončeno instrukcí RETURN.
Provedení trap rutiny je přímo ukončeno pomocí instrukce RETURN nebo nepřímo
ukončeno, když je dosaženo konce trap rutiny (ENDTRAP, ERROR, nebo UNDO).
Provádění pokračuje od bodu, kde nastalo přerušení.

Deklarace rutiny
Rutina může obsahovat deklarace rutiny (včetně parametrů), data, tělo, zpětný
obslužný program (pouze procedury), obslužný program pro řešení chyb a obslužný
program pro vracení změn. Deklarace rutiny nemohou být vnořeny, to znamená,
že není možné deklarovat rutinu uvnitř rutiny.

xx1100000553

Deklarace procedury
Například, vynásobte všechny prvky v num poli faktorem:

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO dim(array, 1) DO

array{index} := array{index} * factor;

ENDFOR

ENDPROC

Deklarace funkce
Funkce může vrátit hodnotu jakéhokoliv datového typu, ale nikoliv hodnotu pole.
Například, vrátit délku vektoru.

FUNC num veclen (pos vector)

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 23
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny
Pokračování

RETURN Sqrt(Pow(vector.x,2)+Pow(vector.y,2)+Pow(vector.z,2));

ENDFUNC

Deklarace trap
Například, reagujte na přerušení prázdného podavače:

TRAP feeder_empty

wait_feeder;

RETURN;

ENDTRAP

Volání procedury
Když je procedura volána, měly by být použity argumenty, které odpovídají
parametrům procedury:

• Povinné parametry musí být stanoveny. Musí být také stanoveny ve správném
pořadí.

• Volitelné parametry mohou být vypuštěny.
• Podmíněné argumenty se mohou používat pro přenesení parametrů z jednoho

volání rutiny do druhého.
Viz část Používání volání funkcí ve výrazech na str 40.
Jméno procedury může být buď stanoveno statisticky pomocí identifikátoru (včasná
vazba) nebo vyhodnoceno při běhu z výrazu řetězcového typu (opožděná vazba).
Přestože by včasná vazba mohla být pokládána za normální formu volání procedury,
opožděná vazba někdy poskytne velmi účinný a kompaktní kód. Opožděná vazba
je definována vložením značek procent před a za řetězec, který označuje jméno
procedury.
Příklad:

! early binding

TEST products_id

CASE 1:

proc1 x, y, z;

CASE 2:

proc2 x, y, z;

CASE 3:

...

! same example using late binding

% “proc” + NumToStr(product_id, 0) % x, y, z;

...

! same example again using another variant of late binding

VAR string procname {3} :=[“proc1”, “proc2”, “proc3”];

...

% procname{product_id} % x, y, z;

...

Vezměte na vědomí, že opožděná vazba je k dispozici pouze pro volání procedury
a nikoliv pro volání funkce. Jestliže je udána reference na neznámou proceduru
pomocí opožděné vazby, systémová proměnná ERRNO se nastaví na
ERR_REFUNKPRC. Jestliže je reference udána na chybu volání procedury (syntaxe,
nikoliv procedura) pomocí opožděné vazby, systémová proměnná ERRNO se nastaví
na ERR_CALLPROC.

Pokračování na další straně
24 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny
Pokračování

Syntaxe

Deklarace rutiny
<routine declaration> ::=

[LOCAL] (<procedure declaration>

| <function declaration>

| <trap declaration>)

| <comment>

| <RDN>

Parametry
<parameter list> ::=

<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=

<parameter declaration>

| <optional parameter declaration>

| <PAR>

<next parameter declaration> ::=

',' <parameter declaration>

| <optional parameter declaration>

| ','<optional parameter declaration>

| ',' <PAR>

<optional parameter declaration> ::=

'\' (<parameter declaration> | <ALT>)

{ '|' (<parameter declaration> | <ALT>) }

<parameter declaration> ::=

[VAR | PERS | INOUT] <data type>

<identifier> ['{' ('*' { ',' '*' }) | <DIM>] '}'

| 'switch' <identifier>

Deklarace procedury
<procedure declaration> ::=

PROC <procedure name>

'(' [<parameter list>] ')'

<data declaration list>

<instruction list>

[BACKWARD <instruction list>]

[ERROR <instruction list>]

[UNDO <instruction list>]

ENDPROC

<procedure name> ::= <identifier>

<data declaration list> ::= {<data declaration>}

Deklarace funkce
<function declaration> ::=

FUNC <value data type>

<function name>

'(' [<parameter list>] ')'

<data declaration list>

<instruction list>

[ERROR <instruction list>]

[UNDO <instruction list>]

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 25
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny
Pokračování

ENDFUNC

<function name> ::= <identifier>

Deklarace rutiny trap
<trap declaration> ::=

TRAP <trap name>

<data declaration list>

<instruction list>

[ERROR <instruction list>]

[UNDO <instruction list>]

ENDTRAP

<trap name> ::= <identifier>

Volání procedury
<procedure call> ::= <procedure> [<procedure argument list>] ';'

<procedure> ::=

<identifier>

| '%' <expression> '%'

<procedure argument list> ::= <first procedure argument> {
<procedure argument> }

<first procedure argument> ::=

<required procedure argument>

| <optional procedure argument>

| <conditional procedure argument>

| <ARG>

<procedure argument> ::=

',' <required procedure argument>

| <optional procedure argument>

| ',' <optional procedure argument>

| <conditional procedure argument>

| ',' <conditional procedure argument>

| ',' <ARG>

<required procedure argument> ::= [<identifier> ':='] <expression>

<optional procedure argument> ::= '\' <identifier> [':='
<expression>]

<conditional procedure argument> ::= '\' <identifier> '?' (
<parameter> | <VAR>)

26 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.1.5 Rutiny
Pokračování

1.2 Programová data

1.2.1 Datové typy

Úvod
Existují tři odlišné druhy datových typů:

• Typ atomický je atomický v tom smyslu, že není definován na základě
žádného jiného typu a nemůže být rozdělen na části nebo komponenty,
například num.

• Datový typ záznam je kompozitní typ s jmenovitými, seřazenými komponenty,
např. pos. Komponent může být atomického nebo záznamového typu.
Hodnota záznamu může být vyjádřena pomocí úhrnného zobrazení, například
[300, 500, depth] pos record aggregate value.
Ke specifickému komponentu záznamu dat může být přístup pomocí jména
tohoto komponentu, například pos1.x := 300; přidělení x-komponentu pos1.

• Datový typ alias je z definice rovný jinému typu. Typy Alias umožňují
klasifikovat datové objekty.

Nehodnotové datové typy
Každý dostupný datový typ je buď hodnotový datový typ nebo nehodnotový datový
typ. Jednoduše řečeno, hodnotový datový typ představuje jistou formu hodnoty.
Nehodnotová data se nemohou použít v operacích orientovaných na hodnotu:

• Inicializace
• Přidělení (:=)
• Kontroly Rovný (=) a nerovný (<>)
• TEST instrukce
• Parametry IN (přístupový režim) ve voláních rutiny
• Funkční (návrat) datové typy

Signálové datové typy (signalai, signaldi, signalgi,signalao, signaldo, signalgo)
jsou datové typy polohodnotové. Tato data se mohou používat v operacích
orientovaných na hodnotu, kromě inicializace a přidělení.
V popisu datového typu je pouze stanoveno, kdy je to polohodnotový datový typ
a kdy nehodnotový datový typ.

Rovnocenné (alias) datové typy
Datový typ alias je definován jako rovný jinému typu. Data se stejnými datovými
typy mohou být vyměněna za jiný.
Příklad:

VAR num level;

VAR dionum high:=1;

level:= high;

To je v pořádku, jelikož dionum je datový typ alias pro num.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 27
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.1 Datové typy

Syntaxe
<type definition>::=

[LOCAL] (<record definition>

| <alias definition>)

| <comment>

| <TDN>

<record definition>::=

RECORD <identifier>

<record component list>

ENDRECORD

<record component list> ::=

<record component definition> |

<record component definition> <record component list>

<record component definition> ::=

<data type> <record component name> ';'

<alias definition> ::=

ALIAS <data type> <identifier> ';'

<data type> ::= <identifier>

28 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.1 Datové typy
Pokračování

1.2.2 Deklarace dat

Úvod
Existují tři druhy dat:

• Proměnné může být přidělena nová hodnota během provádění programu.
• Perzistentmůže být popsán jako trvalá proměnná. Je možné nechat aktualizaci

hodnoty perzistentu, aby automaticky zajistila inicializační hodnotu deklarace
perzistentu, která bude aktualizována. (Když je program uložen, inicializační
hodnota jakékoliv deklarace perzistentu odráží aktuální hodnotu perzistentu.)

• Konstanta představuje statickou hodnotu a nemůže jí být přiřazena nová
hodnota.

Deklarace dat zavádí data spojením jména (identifikátoru) s datovým typem. Kromě
předdefinovaných dat a smyčkových proměnných musí být veškerá data
deklarována.

Datový rámec
Datový rámec označuje oblast, ve které jsou data viditelná. Volitelná lokální
směrnice deklarace dat klasifikuje data jako lokální (v rámci modulu), jinak jsou
globální. Vezměte na vědomí, že lokální směrnice smí být použita pouze na úrovni
modulu, nikoliv uvnitř rutiny.

Příklad
LOCAL VAR num local_variable;

VAR num global_variable;

Programová data
Data deklarovaná mimo rutinu se nazývají programová data. Následující rámcová
pravidla se vztahují k programovým datům:

• Rámec předdefinovaných nebo globálních programových dat může zahrnovat
jakýkoliv modul.

• Rámec lokálních programových dat zahrnuje modul, ve kterém jsou obsažena.
• V tomto rámci skrývají lokální programová data veškerá globální data nebo

rutinu se stejným jménem (včetně instrukcí a předdefinovaných rutin a dat).
Programová data nesmí mít stejné jméno jako jiná data nebo rutina ve stejném
modulu. Globální programová data nesmí mít stejné jméno jako jiná globální data
nebo rutina v jiném modulu.

Data rutiny
Data deklarovaná uvnitř rutiny se nazývají data rutiny. Vezměte na vědomí, že
parametry rutiny jsou také zpracovávány jako data rutiny. Následující rámcová
pravidla se vztahují k datům rutiny:

• Rámec dat rutiny zahrnuje rutinu, ve které jsou obsažena.
• V tomto rámci skrývají data rutiny jakoukoliv jinou rutinu nebo data se stejným

jménem.
Data rutiny nesmějí mít stejné jméno jako jiná data nebo návěstí ve stejné rutině.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 29
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat

Příklad
V tomto příkladu mohou být následující data volána od rutiny e:

• Module1: Data c, d.
• Module2: Data a, f, g, e1.

Následující data mohou být volána od rutiny h:
• Module1: Data d.
• Module2: Data a, f, g, h1, c.

xx1100000554

Deklarace proměnné
Proměnná je zavedena deklarací proměnné a může být deklarována jako globální
(není nutný předpis) nebo lokální.
Příklad:
MainModule je načten do úlohy T_ROB1.

MODULE MainModule

! The scope of this variable is within T_ROB1, i.e. it can be

! accessed from any module in T_ROB1.

VAR num global_var := 123;

! The scope of this variable is within this module.

LOCAL VAR num local_var := 789;

PROC main()

! The scope of this variable is within this procedure.

VAR num local_var2 := 321;

...

ENDPROC

ENDMODULE

Proměnná deklarovaná v modulu, který je instalován sdíleně, může být deklarována
s předpisem TASK, viz Technical reference manual - System parameters, téma
Controller, typ Automatic Loading of Modules. K takové proměnné bude přístup

Pokračování na další straně
30 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat
Pokračování

ze všech úloh, ale bude mít jedinečnou hodnotu pro každou úlohu. Například,
změna hodnoty proměnných z jedné úlohy nebude mít žádný účinek na ostatní
úlohy.
Příklad:
SharedModule je instalován sdíleně v systému.

MODULE SharedModule(SYSMODULE)

! This variable is accessible from all tasks, but has a

! unique value for each task.

TASK VAR num global_var := 123;

...

ENDMODULE

Použití předpisu TASK v modulu, který není instalován sdíleně, nebude mít žádný
účinek.
Proměnným každého typu může být dán formát pole (stupně 1, 2 nebo 3) přidáním
rozměrové informace k deklaraci. Rozměr je hodnota celého čísla větší než 0.
Příklad:

VAR pos pallet{14, 18};

Proměnné s hodnotovými typy mohou být inicializovány (je jim dána prvotní
hodnota). Výrazem použitým pro inicializaci programové proměnné musí být
konstanta. Vezměte na vědomí, že hodnota neinicializované proměnné může být
použita, ale je nedefinována, to znamená, že je nastavena na nulu, jestliže num.
Řetězec je nastaven na prázdný řetězec a boolean je nastaven na FALSE.
Příklad:

VAR string author_name := "John Smith";

VAR pos start := [100, 100, 50];

VAR num maxno{10} := [1, 2, 3, 9, 8, 7, 6, 5, 4, 3];

Inicializační hodnota se nastaví, když:
• program/modul je načten.
• ukazatel programu je přenastaven, například ukazatel programu na main.

Deklarace perzistentu
Perzistenty mohou být deklarovány pouze na úrovni modulu, nikoliv uvnitř rutiny.
Perzistenty mohou být deklarovány jako systémově globální (není nutný předpis),
úlohově globální nebo lokální.
Příklad:
Následující modul je načten jak do T_ROB1, tak i do T_ROB2.

MODULE MainModule

! The scope of this persistent is within the task it’s been

! loaded to. But, it will share the current value with any

! other task declaring the same persistent. I.e. changing the

! value in T_ROB1 will automatically change the value in T_ROB2.

PERS num globalpers := 123;

! The scope of this persistent is within the task this

! module has been loaded to.

TASK PERS num taskpers := 456;

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 31
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat

Pokračování

! The scope of this persistent is within this module.

LOCAL PERS num localpers := 789;

...

ENDMODULE

Lokální a úlohové globální perzistenty musí obdržet inicializační hodnotu. Pro
systémové globální perzistenty může být počáteční hodnota vypuštěna. Inicializační
hodnota musí být jednoduchá hodnota (bez datových referencí nebo operandů)
nebo jednoduchý celek se členy, kteří jsou jednoduchými hodnotami nebo
jednoduchými celky.
Příklad:

PERS pos refpnt := [100.23, 778.55, 1183.98];

Perzistentům každého typu může být dán formát pole (stupně 1, 2 nebo 3) přidáním
rozměrové informace k deklaraci. Rozměr je hodnota celého čísla větší než 0.
Příklad:

PERS pos pallet{14, 18} := [...];

Vezměte na vědomí, že jestli se aktuální hodnota perzistentu změní, způsobí to
aktualizaci inicializační hodnoty (jestliže nebyla vypuštěna) deklarace perzistentu,
který má být aktualizován. Nicméně, kvůli provozním problémům neproběhne tato
aktualizace během provádění programu. Počáteční hodnota bude aktualizována
při ukládání modulu (Záloha, Uložit modul, Uložit program). Aktualizace proběhne
také při editování programu. FlexPendantu bude vždy ukazovat aktuální hodnotu
perzistentu.
Příklad:

PERS num reg1 := 0;

...

reg1 := 5;

Po uložení modulu, jestliže byl proveden kód, vypadá uložený modul takto:
PERS num reg1 := 5;

...

reg1 := 5;

Deklarace konstanty
Konstanta je zavedena deklarací konstanty. Hodnotu konstanty není možné
upravovat.
Příklad:

CONST num pi := 3.141592654;

Konstantě každého typu může být dán formát pole (stupně 1, 2 nebo 3) přidáním
rozměrové informace k deklaraci. Rozměr je hodnota celého čísla větší než 0.

CONST pos seq{3} := [[614, 778, 1020], [914, 998, 1021], [814, 998,
1022]];

Initiating data
Inicializační hodnotou pro konstantu nebo proměnnou může být konstantní výraz.
Inicializační hodnotou pro perzistent může být pouze doslovný výraz.
Příklad:

CONST num a := 2;

Pokračování na další straně
32 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat
Pokračování

CONST num b := 3;

!Correct syntax

CONST num ab := a + b;

VAR num a_b := a + b;

PERS num a__b := 5; !

!Faulty syntax

PERS num a__b := a + b;

V tabulce dole můžete vidět, co se děje při různých činnostech, jako je restart,
nový program, start programu atd.

Spustit
program
(po za-
stavení)

Spustit
program
(po cyk-
lu)

Spustit
program
(Volat ru-
tinu)

Spustit
program
(Posu-
nout PP
kekurzo-
ru)

Spustit
program
(Posu-
nout PP
k rutině)

Spustit
program
(Posu-
nout PP
na hlav-
ní)

Otevřít,
Zavřít a
Nový
program

Zapnutí
(Restart)

Systémo-
vá udá-
lost
ovlivňu-
je

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Inicializa-
ce

Inicializa-
ce

Inicializa-
ce

Nezmě-
něno

Konstan-
ta

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Inicializa-
ce

Inicializa-
ce

Inicializa-
ce

Nezmě-
něno

Proměn-
ná

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Inicializa-
ce i /

Nezmě-
něno

Trvalá

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

MizíMizíMizíZnovu
přikázá-
no

Přikáza-
ná přeru-
šení

Žádný
běh

Žádný
běh

Žádný
běh

Žádný
běh

Žádný
běh

SpustitSpustit iiŽádný
běh

Startova-
cí rutina
SYS_RE-
SET (s
nastave-
ními po-
hybu)

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

ZavíráZavíráZavíráZavíráSoubory

Nezmě-
něno

Nezmě-
něno

Nezmě-
něno

MizíMizíMizíMizíObnove-
no při za-
pnutí

Cesta

i Perzistenty bez počáteční hodnoty jsou inicializovány pouze v případě, že nebyly dosud deklarovány.
ii Generuje chybu, když se vyskytne sémantická chyba v aktuálním programu úlohy.

Třída paměti
Třída paměti datového objektu určuje, kdy systém alokuje a dealokuje paměť pro
datový objekt. Třída paměti datového objektu je určena druhem datového objektu
a kontextem jeho deklarace a může být buď statická nebo proměnlivá.
Konstanty, perzistenty a proměnné modulů jsou statické, tj. mají stejnou paměť
(úložiště) během existence úlohy. To znamená, že každá hodnota přidělená
perzistentu nabo proměnné modulu zůstává vždy nezměněna až do příštího
přidělení.
Proměnné rutiny jsou proměnlivé. Paměť potřebná pro uložení hodnoty proměnlivé
proměnné je alokována nejdříve na volání rutiny, ve které je deklarace proměnné

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 33
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat

Pokračování

obsažena. Paměť je později dealokována v bodě návratu k volajícímu rutiny. To
znamená, že hodnota proměnné rutiny je vždy nedefinována před voláním rutiny,
a je vždy ztracena (stane se nedefinovanou) na konci provádění rutiny.
V řetězci rekurzivních volání rutiny (rutina volá sama sebe přímo nebo nepřímo)
přijímá každá instance rutiny svoje vlastní umístění v paměti pro stejnou proměnnou
rutiny - je vytvořena řada instancí stejné proměnné.

Syntaxe

Deklarace dat
<data declaration> ::=

[LOCAL] (<variable declaration>

| <persistent declaration>

| <constant declaration>)

| TASK <persistent declaration>

| <comment>

| <DDN>

Deklarace proměnných
<variable declaration> ::=

VAR <data type> <variable definition> ';'

<variable definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

[':=' <constant expression>]

<dim> ::= <constant expression>

Deklarace perzistentu
<persistent declaration> ::=

PERS <data type> <persistent definition> ';'

<persistent definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

[':=' <literal expression>]

POZNÁMKA

Literální výraz může být vypuštěn pouze u systémově globálních perzistentů.

Deklarace konstanty
<constant declaration> ::=

CONST <data type> <constant definition> ';'

<constant definition> ::=

<identifier> ['{' <dim> { ',' <dim> } '}']

':=' <constant expression>

<dim> ::= <constant expression>

34 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.2.2 Deklarace dat
Pokračování

1.3 Výrazy

1.3.1 Typy výrazů

Popis
Výraz určuje způsob vyhodnocení hodnoty. Lze použít například:

například: a:=3*b/c;v instrukci přidělení

například: IF a>=3 THEN ...jako podmínka v instrukci IF

například: WaitTime time;jako argument v instrukci,

například: a:=Abs(3*b);jako argument ve volání funkce.

Aritmetické výrazy
Aritmetický výraz se používá pro vyhodnocení numerické hodnoty.
Příklad:

2*pi*radius

Výsledkový typTypy operanduProvozOperátor

num inum + numdoplnění+

dnum idnum + numdoplnění+

stejný ii , i+num nebo +dnum
nebo +pos

unární plus; zachovat
znak

+

pospos + pospřidání vektoru+

num inum - numodečtení-

dnum idnum - dnumodečtení-

stejný ii, i-num nebo -posunární mínus; změnit
znak

-

stejný ii, i-num nebo -dnum ne-
bo -pos

unární mínus; změnit
znak

-

pospos - posodečtení vektoru-

num inum * numnásobení*

dnum idnum * dnumnásobení*

posnum * pos nebo pos *
num

násobení skalárního
vektoru

*

pospos * posvektorový produkt*

orientorient * orientpropojování rotací*

numnum / numdělení/

dnumdnum / dnumdělení/

pospos / numdělení skalárního vek-
toru

/

numnum DIV numdělení celého číslaDIV iii

dnumdnum DIV dnumdělení celého číslaDIV iii

numnum MOD nummodul celého čísla;
upomínka

MOD iii

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 35
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.1 Typy výrazů

Výsledkový typTypy operanduProvozOperátor

dnumdnum MOD dnummodul celého čísla;
upomínka

MOD iii

i Chrání (přesné) znázornění celého čísla, pokud jsou operandy a výsledek udržovány v rámci
subdomény celého čísla numerického typu.

ii Výsledek přijímá stejný typ jako operand. Jestliže operand má datový typ alias, výsledek přijímá
„základní“ typ aliasu (num, dnum nebo pos).

iii Operace celého čísla, například 14 DIV 4=3, 14 MOD 4=2. (operandy ne-celého čísla jsou zakázány.)

Logické výrazy
Logický výraz se používá k vyhodnocení logické hodnoty (TRUE/FALSE).
Příklad:

a>5 AND b=3

Výsledkový typTypy operanduProvozOperátor

boolnum < numméně než<

booldnum < dnumméně než<

boolnum <= numméně než nebo stejně
jako

<=

booldnum <= dnumméně než nebo stejně
jako

<=

booljakýkoliv i = jakýkolivstejný jako=

boolnum >= numvětší než nebo stejný
jako

>=

booldnum >= dnumvětší než nebo stejný
jako

>=

boolnum > numvětší než>

booldnum > dnumvětší než nebo stejný
jako

>

boolvšechny <> všechnynení stejný jako<>

boolbool AND boolaAND

boolbool XOR boolexkluzivní neboXOR

boolbool OR boolneboOR

boolNOT boolunární ne; negaceNOT

i Pouze datové typy hodnoty. Operandy musí být rovnocenné typy.

Pokračování na další straně
36 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.1 Typy výrazů
Pokračování

xx1100000555

Řetězcové výrazy
Řetězcový výraz se používá k vykonávání operací na řetězcích.
Příklad: "IN" + "PUT" dává výsledek "INPUT"

Výsledkový typTypy operanduProvozOperátor

stringstring + stringkonkatenace řetězce+

Technická referenční příručka - Přehled RAPID 37
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.1 Typy výrazů

Pokračování

1.3.2 Používání dat ve výrazech

Úvod
Celá proměnná, perzistent nebo konstanta mohou být součástí výrazu.
Příklad:

2*pi*radius

Pole
Proměnná, perzistent nebo konstanta deklarované jako pole mohou být odkazovány
k celému poli nebo jednoduchému prvku.
Prvek pole je odkazován pomocí indexového čísla prvku. Index je hodnota celého
čísla většího než 0 a nesmí porušit deklarovaný rozměr. Indexová hodnota 1 vybírá
první prvek. Počet prvků v seznamu indexů musí souhlasit s deklarovaným stupněm
(1, 2 nebo 3) pole.
Příklad:

VAR num row{3};

VAR num column{3};

VAR num value;

! get one element from the array

value := column{3};

! get all elements in the array

row := column;

Záznamy
Proměnná, perzistent nebo konstanta deklarované jako záznam mohou být
odkazovány k celému záznamu nebo jednoduchému komponentu.
Komponent záznamu je odkazován pomocí jména komponentu.
Příklad:

VAR pos home;

VAR pos pos1;

VAR num yvalue;

..

! get the Y component only

yvalue := home.y;

! get the whole position

pos1 := home;

38 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.2 Používání dat ve výrazech

1.3.3 Používání celků ve výrazech

Úvod
Celek se používá pro hodnoty záznamu nebo pole.
Příklad:

! pos record aggregate

pos := [x, y, 2*x];

! pos array aggregate

posarr := [[0, 0, 100], [0,0,z]];

Požadavky
Datový typ celku je (musí být schopen být) určen kontextem. Datový typ každého
člena celku musí být rovnocenný typu odpovídajícího člena určeného typu.
Příklad (aggregate type pos - určeno od p1):

VAR pos pl;

p1 :=[1, -100, 12];

Příklad toho, co není dovoleno (není dovoleno, protože datový typ žádného z celků
nemůže být určen podle kontextu):

VAR pos pl;

IF [1, -100, 12] = [a,b,b,] THEN

Technická referenční příručka - Přehled RAPID 39
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.3 Používání celků ve výrazech

1.3.4 Používání volání funkcí ve výrazech

Úvod
Volání funkce iniciuje vyhodnocení konkrétní funkce a přijímá hodnotu vrácenou
funkcí.
Příklad:

Sin(angle)

Argumenty
Argumenty volání funkce jsou používány k přenosu dat k (a pravděpodobně i od)
volané funkci. Datový typ argumentu musí být rovnocenný s typem odpovídajícího
parametru funkce. Volitelné argumenty mohu být vypuštěny, ale pořadí (přítomných)
argumentů musí být stejné jako je pořadí formálních parametrů. Dva nebo více
parametrů může být deklarováno jako vzájemně neslučitelné, v takovém případě
může jeden z nich být přítomen v seznamu argumentů.
Požadovaný (povinný) argument se odděluje od předchozího argumentu čárkou
(,). Jméno formálního parametru může být vloženo nebo vynecháno.

PopisPříklad

Dva požadované argumenty bez nebo se jménem
parametru.

Polar(3.937, 0.785398)

Polar(Dist:=3.937,
Angle:=0.785398)

Jeden požadovaný argument, bez nebo s jedním
spínačem.

Cosine(45)

Cosine(0.785398\Rad)

Jeden požadovaný argument, bez nebo s jedním
volitelným argumentem.

Dist(p2)

Dist(\distance:=pos1, p2)

Volitelný argument musí být předcházen zpětným lomítkem (\) a jménem formálního
parametru. Argument typu přepínač je poněkud speciální; nesmí zahrnovat žádný
výraz argumentu. Místo toho může být takový argument pouze přítomný nebo
nepřítomný.
Podmíněné argumenty se používají k podpoře hladkého šíření volitelných
argumentů skrz řetězce volání rutin. Podmíněný argument je považován za
přítomný, jestliže stanovený volitelný parametr (volající funkce) je přítomen, jinak
je jednoduše považován za vynechaný. Všimněte si, že stanovený parametr musí
být volitelný.
Příklad:

PROC Read_from_file (iodev File \num Maxtime)

..

character:=ReadBin (File \Time?Maxtime);

! Max. time is only used if specified when calling the routine

! Read_from_file

..

ENDPROC

Pokračování na další straně
40 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.4 Používání volání funkcí ve výrazech

Parametry
Seznam parametrů funkce přiděluje přístupový režim každému parametru.
Přístupový režim může být buď in, inout, var, nebo pers:

• Parametr IN (výchozí) umožňuje argumentu být jakýmkoliv výrazem. Volaná
funkce ukáže parametr jako konstantu.

• Parametr INOUT vyžaduje odpovídající argument jako proměnnou (celá,
prvek pole nebo komponent záznamu) nebo celý perzistent. Volaná funkce
získává plný (čtení/zápis) přístup k argumentu.

• Parametr VAR vyžaduje odpovídající argument jako proměnnou (celá, prvek
pole nebo komponent záznamu). Volaná funkce získává plný (čtení/zápis)
přístup k argumentu.

• Parametr PERS vyžaduje odpovídající argument jako celý perzistent. Volaná
funkce získává plný (čtení/zápis) přístup k argumentu.

Technická referenční příručka - Přehled RAPID 41
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.4 Používání volání funkcí ve výrazech

Pokračování

1.3.5 Priorita mezi operátory

Pravidla priority
Relativní priorita operátorů určuje pořadí, ve kterém jsou vyhodnocovány. Závorky
poskytují prostředky pro potlačení priority operátoru. Pravidla nahoře vyjadřují
následující prioritu operátoru:

obsluhu robotaPriorita

* / DIV MODNejvyšší

+ -

< > <> <= >= =

AND

XOR OR NOTNejnižší

Operátor s vysokou prioritou je vyhodnocen před operátorem s nízkou prioritou.
Operátory se stejnou prioritou jsou hodnoceny zleva doprava.

KomentářPořadí hodnoceníPříklad výrazu

Pravidlo zleva doprava(a + b) + ca + b + c

* vyšší než +a + (b * c)a + b * c

Pravidlo zleva doprava(a OR b) OR ca OR b OR c

AND vyšší než OR(a AND b) OR (c AND d)a AND b OR c AND d

< vyšší než AND(a < b) AND (c < d)a < b AND c < d

42 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.5 Priorita mezi operátory

1.3.6 Syntaxe

Výrazy
<expression> ::= <expr> | <EXP>

<expr> ::= [NOT] <logical term> { (OR | XOR) <logical term> }

<logical term> ::= <relation> { AND <relation> }

<relation> ::= <simple expr> [<relop> <simple expr>]

<simple expr> ::= [<addop>] <term> { <addop> <term> }

<term> ::= <primary> { <mulop> <primary> }

<primary> ::=

<literal>

| <variable>

| <persistent>

| <constant>

| <parameter>

| <function call>

| <aggregate>

| '(' <expr> ')'

obsluhu robota
<relop> ::= '<' | '<=' | '=' | '>' | '>=' | '<>'

<addop> ::= '+' | '-'

<mulop> ::= '*' | '/' | DIV | MOD

Konstantní hodnoty
<literal> ::= <num literal>

| <string literal>

| <bool literal>

Data
<variable> ::=

<entire variable>

| <variable element>

| <variable component>

<entire variable> ::= <ident>

<variable element> ::= <entire variable> '{' <index list> '}'

<index list> ::= <expr> { ',' <expr> }

<variable component> ::= <variable> '.' <component name>

<component name> ::= <ident>

<persistent> ::=

<entire persistent>

| <persistent element>

| <persistent component>

<constant> ::=

<entire constant>

| <constant element>

| <constant component>

Celky
<aggregate> ::= '[' <expr> { ',' <expr> } ']'

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 43
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.6 Syntaxe

Volání funkcí
<function call> ::= <function> '(' [<function argument list>]

')'

<function> ::= <ident>

<function argument list> ::= <first function argument> { <function
argument> }

<first function argument> ::=

<required function argument>

| <optional function argument>

| <conditional function argument>

<function argument> ::=

',' <required function argument>

| <optional function argument>

| ',' <optional function argument>

| <conditional function argument>

| ',' <conditional function argument>

<required function argument> ::= [<ident> ':='] <expr>

<optional function argument> ::= '\' <ident> [':=' <expr>]

<conditional function argument> ::= '\' <ident> '?' <parameter>

Speciální výrazy
<constant expression> ::= <expression>

<literal expression> ::= <expression>

<conditional expression> ::= <expression>

Parametry
<parameter> ::=

<entire parameter>

| <parameter element>

| <parameter component>

44 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.3.6 Syntaxe
Pokračování

1.4 Instrukce

Popis
Instrukce jsou prováděny v řadě, pokud instrukce toku programu nebo přerušení
nebo chyba nezpůsobí pokračování provádění na některém jiném místě.
Většina instrukcí je ukončena středníkem (;). Návěstí se ukončuje dvojtečkou (:).
Některé instrukce mohou obsahovat jiné instrukce a ukončují se specifickými
klíčovými slovy.

Ukončovací slovoInstrukce

ENDIFIF

ENDFORFOR

ENDWHILEWHILE

ENDTESTTEST

Příklad:
WHILE index < 100 DO

.

index := index + 1;

ENDWHILE

Uchopovací seznamy
Všechny instrukce se soustřeďují do konkrétních skupin, které jsou popsány v
následujících sekcích. Toto seskupování je stejné, jako můžeme vidět v
uchopovacích seznamech používaných při doplňování nových instrukcí do programu
na FlexPendant.

Syntaxe
<instruction list> ::= { <instruction> }

<instruction> ::=

[<instruction according to separate chapter in this manual>

| <SMT>

Technická referenční příručka - Přehled RAPID 45
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.4 Instrukce

1.5 Kontrola toku programu

Úvod
Program se provádí postupně jako pravidlo, to znamená instrukce za instrukcí.
Někdy nastává situace, že instrukce, které přerušují toto postupné provádění a
volají jinou instrukci, musí řešit různé situace, které mohou během provádění
vzniknout.

Programovací zásady
Tok programu je možné řídit podle pěti různých zásad:

• Voláním jiné rutiny (procedury), a když je tato rutina provedena, pokračujícím
prováděním s instrukcí následující volání rutiny.

• Provedením různých instrukcí podle toho, jestli je daná podmínka splněna
nebo nikoliv.

• Několikanásobným opakováním sekvence instrukcí nebo až do splnění dané
podmínky.

• Přechodem k návěstí v rámci stejné rutiny.
• Zastavením provádění programu.

Volání jiné rutiny

Použito kInstrukce

Volat (přejít k) jinou rutinuProcCall

Volat procedury se specifickými jményCallByVar

Vrátit se k původní rutiněRETURN

Řízení programu v rámci rutiny

Použito kInstrukce

Proveďte pouze jednu instrukci, když je podmínka splněnaKompakt IF

Proveďte sekvenci různých instrukcí podle toho, jestli je daná
podmínka splněna nebo nikoliv.

IF

Opakujte několikrát sekci programuFOR

Opakujte několikrát sekvenci instrukcí až do splnění dané
podmínky

WHILE

Proveďte různé instrukce podle hodnoty výrazuTEST

Přejděte k návěstíGOTO

Stanovte návěstí (jméno řádky)label

Ukončete nejmenší uzavírající smyčku, například smyčku
While

Break

Přeskočte zbytek smyčky a spusťte další iteraci smyčkyContinue

Pokračování na další straně
46 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.5 Kontrola toku programu

Zastavení provádění programu

Použito kInstrukce

Ukončit provádění programuStop

Zastavte provádění programu, když není povolen restart pro-
gramu

EXIT

Zastavte provádění programu dočasně z důvodu doladěníDebugBreak

Zastavte provádění programu a pohyb robotuSystemStopAction

Zastavit aktuální cyklus

Použito kInstrukce

Zastavte aktuální cyklus a posuňte ukazatel programu na první
instrukci v hlavní rutině.

ExitCycle

Když je zvolen prováděcí režim CONT, provádění bude pokra-
čovat s dalším programovým cyklem.

Technická referenční příručka - Přehled RAPID 47
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.5 Kontrola toku programu

Pokračování

1.6 Různé instrukce

Úvod
Různé instrukce se používají k

• přidělit hodnoty datům
• čekejte daný čas nebo čekejte až do splnění podmínky
• vložit komentář do programu
• načíst programové moduly.

Přidělování hodnoty datům
Datům může být přidělena libovolná hodnota. Mohou být, například inicializována
s konstantní hodnotou, například 5, nebo aktualizována s aritmetickým výrazem,
například reg1+5*reg3.

Použito kInstrukce

Přidělit hodnotu datům:=

Čekat
Robot může být naprogramován pro čekání po stanovený čas nebo pro čekání až
do splnění libovolné podmínky; například čekat na nastavení vstupu.

Použito kInstrukce

Čekejte daný čas nebo čekejte, až se robot přestane pohybovatWaitTime

Čekejte do splnění podmínkyWaitUntil

Čekejte do nastavení digitálního vstupuWaitDI

Čekejte do nastavení digitálního výstupuWaitDO

Komentáře
Komentáře jsou jsou vkládány do programu pouze pro zlepšení jeho čitelnosti.
Provádění programu není ovlivněno komentářem.

Použito kInstrukce

Komentář k programu. Řádka začínající ! (vykřičníkem) je ko-
mentář a je vyřazena provedením programu.

!

Načítání programových modulů
Programové moduly mohou být načítány z velkokapacitní paměti nebo mazány z
programové paměti. Tímto způsobem mohou být řešeny velké programy s malou
pamětí.

Použito kInstrukce

Načíst programový modul do paměti programuLoad

Uvolnit programový modul z paměti programuUnLoad

Načíst programový modul do paměti programu během prová-
dění

StartLoad

Připojte modul, jestliže je načten s StartLoad, k programové
úloze

WaitLoad

Pokračování na další straně
48 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.6 Různé instrukce

Použito kInstrukce

Zrušit načítání modulu, který je načítán nebo byl načten s in-
strukcí StartLoad

CancelLoad

Zkontrolovat reference programuCheckProgRef

Uložit programový modulSave

Vymazat modul z paměti programuEraseModule

Použito kDatový typ

Naprogramovat akci zatíženíloadsession

Různé funkce

Použito kInstrukce

Otestujte, jestli je datový objekt platným celým číslem.TryInt

Použito kFunkce

Načíst aktuální provozní režim robotuOpMode

Načíst aktuální prováděcí režim programu robotuRunMode

Načíst aktuální prováděcí režim Non-Motion programové úlohyNonMotionMode

Získat rozměry poleDim

Zjistěte, jestli volitelný parametr byl přítomen, když bylo prove-
deno volání rutiny

Present

Vrátit jméno datového typu pro určenou proměnnouType

Zkontrolujte, jestli je parametr perzistentemIsPers

Zkontrolujte, jestli je parametr proměnnouIsVar

Základní data

Použito k definováníDatový typ

Logická data (s hodnotami True nebo False)bool

Numerické hodnoty (desetinné nebo celé číslo)num

Numerické hodnoty (desetinné nebo celé číslo). Datový typ s
větším rozsahem než num.

dnum

Řetězce znakůstring

Parametry rutiny bez hodnotyswitch

Konverzní funkce

Použito kFunkce

Konvertovat byte na data řetězce s definovaným datovým for-
mátem byte.

ByteToStr

Konvertovat řetězec s definovaným datovým formátem byte
na byte data.

StrToByte

Technická referenční příručka - Přehled RAPID 49
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.6 Různé instrukce

Pokračování

1.7 Nastavení pohybů

Úvod
Některé z pohybových vlastností robotu jsou determinovány pomocí logických
instrukcí, které se vztahují na všechny pohyby:

• Max. rychlost TCP
• Max. rychlost a potlačení rychlosti
• Zrychlení
• Správa různých robotických konfigurací
• Payload
• Chování blízko u singulárních bodů
• Relativní adresa programu
• Měkké servo
• Ladicí hodnoty
• Aktivace a deaktivace zásobníku událostí
• Potlačit varování rohové dráhy

Programovací zásady
Základní charakteristiky pohybu robotu jsou vymezeny daty stanovenými pro
každou polohovací instrukci. Některá data, nicméně, jsou stanovena v oddělených
instrukcích, které se vztahují na všechny pohyby, dokud data nejsou změněna.
Všeobecná nastavení pohybu jsou stanovena pomocí řady instrukcí, ale mohou
být také načtena pomocí systémové proměnné C_MOTSET nebo C_PROGDISP.
Výchozí hodnoty jsou nastavovány automaticky (vykonáním rutiny SYS_RESET v
systémovém modulu BASE_SHARED)

• při používání restartovacího režimu Resetovat systém
• když je nový program načten,
• při spuštění programu od začátku.

Funkce max. rychlosti TCP

Použito kFunkce

Vrátit max. rychlost TCP pro používaný typ robotuMaxRobSpeed

Definování rychlosti
Absolutní rychlost je naprogramována jako argument v polohovací instrukci. Navíc,
max. rychlost a potlačení rychlosti (procentní část naprogramované rychlosti)
mohou být definovány.
Omezení rychlosti může být také nastaveno, a je později omezeno, když je nastaven
systémový vstupní signál.

Použito k definováníInstrukce

Max. rychlost a potlačení rychlostiVelSet

Aktualizovat potlačení rychlosti pro probíhající pohybSpeedRefresh

Pokračování na další straně
50 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.7 Nastavení pohybů

Použito k definováníInstrukce

Nastavit omezení rychlosti pro osu. Bude později aplikováno
systémovým vstupním signálem.

SpeedLimAxis

Nastavit omezení rychlosti pro kontrolní body. Bude později
aplikováno systémovým vstupním signálem.

SpeedLimCheckPoint

Definování zrychlení
Když jsou zpracovávány např. křehké díly, zrychlení může být sníženo pro část
programu.

Použito kInstrukce

Definovat max. zrychleníAccSet

Limitování zrychlení/zpomalení nástroje (a úchopového zatíže-
ní) ve světovém souřadnicovém systému.

WorldAccLim

Nastavte nebo resetujte limitace na zrychlení a/nebo zpomalení
TCP podél dráhy pohybu.

PathAccLim

Definování správy konfigurace
Konfigurace robotu se normálně kontroluje během pohybu. Jestliže je použit pohyb
spoje (osa po ose), bude dosaženo správné konfigurace. Když je použit lineární
nebo kruhový pohyb, robot se bude vždy pohybovat směrem k nejbližší konfiguraci,
ale bude provedena kontrola, jestli je stejná jako ta naprogramovaná. Nicméně, je
možné toto změnit.

Použito kInstrukce

Kontrola konfigurace zapnuta/vypnuta během pohybu spojeConfJ

Kontrola konfigurace zapnuta/vypnuta během lineárního pohy-
bu

ConfL

Definování užitečné zátěže
K dosažení nejlepšího výkonu robotu musí být definováno správné užitečné zatížení.

Použito k definováníInstrukce

Definovat užitečné zatížení chapadlaGripLoad

Definování chování poblíž singulárních bodů
Robot je možné naprogramovat pro vyhnutí se singulárním bodům automatickou
změnou orientace nástroje.

Použito k definováníInstrukce

Definovat interpolační metoda singulárními bodySingArea

Aktivace a deaktivace zásobníku událostí
Aby bylo možné dosáhnout nejlepšího výkonu robotu a dobrého chování aplikace
při kombinaci aplikace pomocí jemných bodů a pokračující aplikace, kde je nutné

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 51
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.7 Nastavení pohybů

Pokračování

nastavit signály předem kvůli pomalému procesnímu vybavení, zásobník událostí
může být aktivován a deaktivován.

Použito k definováníInstrukce

Aktivovat konfigurovaný zásobník událostíActEventBuffer

Deaktivovat použití zásobníku událostíDeactEventBuffer

Potlačit varování rohové dráhy
Aby se zabránilo zasílání varovných hlášení na FlexPendant, když dojde k chybě
rohové dráhy, tato varování je možno aktivovat a deaktivovat.

Použito k definováníInstrukce

Potlačit nebo povolit varování rohové dráhyCornerPathWarning

Nahrazení programu
Když musí být část programu nahrazena, například po hledání, může být přidáno
nahrazení programu.

Použito kInstrukce

Aktivovat nahrazení programuPDispOn

Aktivovat nahrazení programu určením hodnotyPDispSet

Deaktivovat nahrazení programuPDispOff

Aktivovat ofset přídavné osyEOffsOn

Aktivovat ofset přídavné osy stanovením hodnoty.EOffsSet

Deaktivovat ofset přídavné osyEOffsOff

Použito kFunkce

Kalkulovat náhradu programu ze tří pozicDefDFrame

Kalkulovat náhradu programu ze šesti pozicDefFrame

Odstraňte náhradu programu z poziceORobT

Definovat rámec od původních pozic a nahrazených pozicDefAccFrame

Soft servo
Jedna nebo více os robotu může být uděláno jako „měkké“ (soft). Při použití této
funkce bude robot ochotný a může nahradit, například pružinový nástroj.

Použito kInstrukce

Aktivovat soft servo pro jednu nebo více osSoftAct

Deaktivovat soft servoSoftDeact

Pokračování na další straně
52 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.7 Nastavení pohybů
Pokračování

Seřídit ladicí hodnoty robotu
Obecně, činnost robotu je samostatně optimalizační; nicméně, v některých
extrémních případech může vzniknou např. přejetí. Můžete upravit ladicí hodnoty
robotu k dosažení optimální činnosti.

Použito kInstrukce

Seřídit ladicí hodnoty robotuTuneServo

Resetovat ladění na normálTuneReset

Upravit rozlišení geometrické dráhyPathResol

Vyberte způsob, jak se nástroj bude reorientovat během kruho-
vé interpolace

CirPathMode

Použito kDatový typ

Zobrazit typ ladění jako symbolickou konstantutunetype

Světové zóny
Může být definováno až 10 různých svazků v rámci pracovní oblasti robotu. Mohou
se používat pro:

• Indikace, že TCP robotu je definitivní součástí pracovní oblasti.
• Vymezení pracovní oblasti pro robot a předcházení kolizím s nástrojem.
• Vytvoření pracovní oblasti společné pro dva roboty. Pracovní oblast je potom

dostupná vždy jen pro jeden robot.
Instrukce v tabulce dole jsou dostupné pouze když je robot vybaven doplňkem
World Zones.

Použito kInstrukce

Definovat globální zónu tvaru boxWZBoxDef

Definovat cylindrickou globální zónuWZCylDef

Definovat sférickou globální zónuWZSphDef

Definovat globální zónu v souřadnicích spojůWZHomeJointDef

Definovat globální zónu v souřadnicích spojů pro omezení
pracovní oblasti.

WZLimJointDef

Aktivovat supervizi limitů pro globální zónuWZLimSup

Aktivovat globální zónu pro nastavení digitálních výstupůWZDOSet

Deaktivovat supervizi dočasné globální zónyWZDisable

Aktivovat supervizi dočasné globální zónyWZEnable

Vymazat supervizi dočasné globální zónyWZFree

Identifikovat dočasnou globální zónuwztemporary

Identifikovat stacionární globální zónuwzstationary

Popsat geometrii globální zónyshapedata

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 53
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.7 Nastavení pohybů

Pokračování

Různé pro nastavení pohybů

Použito kInstrukce

Čekejte, až robot a přídavná osa dosáhnou stop bodu nebo
mají nulovou rychlost.

WaitRob

Použito kDatový typ

Nastavení pohybů kromě nahrazení programumotsetdata

Relativní adresa programuprogdisp

54 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.7 Nastavení pohybů
Pokračování

1.8 Pohyb

Zásada pro pohyb robotu
Pohyby robotu jsou naprogramovány jako pohyby pozice-pozice, to znamená
pohyb od aktuální pozice k nové pozici. Dráha mezi těmito dvěma pozicemi je
potom automaticky spočítána robotem.

Programovací zásady
Základní vlastnosti pohybu, jako je typ dráhy, jsou stanoveny výběrem příslušné
polohovací instrukce. Zbývající vlastnosti pohybu jsou stanoveny definováním dat,
která jsou argumenty instrukce.

• Poziční data (koncová pozice pro robot a přídavné osy)
• Rychlostní data (požadovaná rychlost)
• Zónová data (přesnost pozice)
• Data nástroje (například pozice TCP)
• Data pracovního objektu (například aktuální souřadnicový systém)

Některé z pohybových vlastností robotu jsou určeny pomocí logických instrukcí,
které se vztahují na všechny pohyby: (viz Nastavení pohybů na str 50):

• Max. rychlost a potlačení rychlosti
• Zrychlení
• Správa různých robotických konfigurací
• Payload
• Chování blízko u singulárních bodů
• Relativní adresa programu
• Měkké servo
• Ladicí hodnoty
• Aktivace a deaktivace zásobníku událostí

Robot a pomocné osy jsou polohovány pomocí stejných instrukcí. Pomocné osy
jsou posunovány konstantní rychlostí a dosáhnou koncové pozice ve stejném čase
jako robot.

Polohovací instrukce

Druh pohybuInstrukce

TCP se pohybuje podél kruhové dráhy.MoveC

Pohyb spoje.MoveJ

TCP se pohybuje podél lineární dráhy.MoveL

Absolutní pohyb spoje.MoveAbsJ

Absolutní lineární pohyb.MoveAbsL

Posouvá lineární nebo rotační přídavné osy bez TCP.MoveExtJ

Posouvá robot kruhově a nastavuje analogový výstup v rohuMoveCAO

Posouvá robot kruhově a nastavuje digitální výstup uprostřed
rohové dráhy.

MoveCDO

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 55
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb

Druh pohybuInstrukce

Posouvá robot kruhově a nastavuje skupinový výstupní signál
v rohu

MoveCGO

Posouvá robot pohybem spoje a nastavuje analogový výstup
v rohu

MoveJAO

Posouvá robot pohybem spoje a nastavuje digitální výstup
uprostřed rohové dráhy.

MoveJDO

Posouvá robot pohybem spoje a nastavuje skupinový výstupní
signál v rohu

MoveJGO

Posouvá robot lineárně a nastavuje analogový výstup v rohuMoveLAO

Posouvá robot lineárně a nastavuje digitální výstup uprostřed
rohové dráhy.

MoveLDO

Posouvá robot lineárně a nastavuje skupinový výstupní signál
v rohu

MoveLGO

Posunuje robot kruhově a vykonává proceduru RAPID.MoveCSync

Posunuje robot pohybem spoje a vykonává proceduru RAPID.MoveJSync

Posunuje robot lineárně a vykonává proceduru RAPID.MoveLSync

Hledání
Během pohybu může robot hledat například pozici pracovního objektu. Hledaná
pozice (indikovaná signálem senzoru) je uložena a později se může použít pro
polohování robotu nebo pro výpočet nahrazení programu.

Druh pohybuInstrukce

TCP podél kruhové dráhy.SearchC

TCP podél lineární dráhy.SearchL

Pohyb spoje mechanické jednotky bez TCP.SearchExtJ

Aktivace výstupů nebo přerušení na konkrétních pozicích
Normálně jsou logické instrukce vykonávány v přechodu od jedné polohovací
instrukce k jiné. Jestliže, nicméně, jsou použity speciální instrukce pro pohyb,
mohou se vykonat místo toho, když je robot ve specifické pozici.

Použito kInstrukce

Absolutní pohyby spoje robotu s událostmiTriggAbsJ

Spusťte robot (TCP) kruhově s aktivovanou podmínkou trigg.TriggC

Definovat kontrolu I/O na dané poziciTriggCheckIO

Definovat trigg podmínku pro nastavení výstupu na dané pozici
s možností vložit časovou kompenzaci pro zpoždění v externím
vybavení.

TriggEquip

Kopírovat obsah do proměnné triggdataTriggDataCopy

Resetovat obsah do proměnné triggdataTriggDataReset

Definovat trigg podmínku pro rampování analogového výstup-
ního signálu nahoru a dolů na dané pozici s možností vložit
časovou kompenzaci pro zpoždění v externím vybavení.

TriggRampAO

Spusťte robot osu po ose s aktivovanou podmínkou trigg.TriggJ

Pokračování na další straně
56 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb
Pokračování

Použito kInstrukce

Spusťte robot (TCP) osu po ose s aktivovanou I/O podmínkou
trigg.

TriggJIOs

Definovat trigg podmínku pro vykonání trap rutiny na dané
pozici

TriggInt

Definovat trigg podmínku pro nastavení výstupu na dané poziciTriggIO

Spusťte robot (TCP) lineárně s aktivovanou podmínkou trigg.TriggL

Spusťte robot (TCP) lineárně s aktivovanou I/O podmínkou
trigg.

TriggLIOs

Posunout zpět na své dráze v událostní rutině RESTART.StepBwdPath

Vytvořte interní proces supervize v systému pro nulové nasta-
vování určitých procesních signálů a vygenerování dat restartu
v určené proměnné perzistentu při každém zastavení programu
(STIOP) nebo nouzovém zastavení (QSTOP) v systému.

TriggStopProc

Použito kFunkce

Zkontrolujte, jestli obsah proměnné triggdata je platnýTriggDataValid

Použito kDatové typy

Trigg podmínkytriggdata

Analogová I/O trigger podmínkaaiotrigg

Data pro TriggStopProcrestartdata

Trigg podmínky pro TriggJIOs a TriggLIOstriggios

Trigg podmínky pro TriggJIOs a TriggLIOstriggstrgo

Trigg podmínky pro TriggJIOs a TriggLIOstriggiosdnum

Ovládání analogového výstupního signálu úměrného ke skutečnému TCP

Použito kInstrukce

Definovat podmínky a činnosti pro ovládání analogového vý-
stupního signálu s výstupní hodnotou přiměřenou skutečné
rychlosti TCP.

TriggSpeed

Kontrola pohybu, jestliže probíhá chyba/přerušení
K napravení chyby nebo přerušení může být dočasně zastaven pohyb a potom
znovu restartován.

Použito kInstrukce

Definovat podmínky a činnosti pro ovládání analogového vý-
stupního signálu s výstupní hodnotou přiměřenou skutečné
rychlosti TCP.

StopMove

Restartujte pohyby robotuStartMove

Restartujte pohyby robotu a udělejte retry v jedné nedělitelné
sekvenci

StartMoveRetry

Resetujte stav stop pohybu, ale nespouštějte pohyby robotuStopMoveReset

Uložit poslední vygenerovanou dráhuStorePath

Regerovat dráhu uloženou dříveRestoPath

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 57
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb

Pokračování

Použito kInstrukce

Vyčistit celou dráhu pohybu na aktuální úrovni dráhy pohybu.ClearPath

Získat aktuální úroveň dráhy.PathLevel

Pozastavit synchronizované koordinované pohyby na úrovni
StorePath.

SyncMoveSuspend i

Obnovit synchronizované koordinované pohyby na úrovni
StorePath.

SyncMoveResume i

i Jestliže je robot vybaven doplňkem MultiMove Coordinated.

Použito kFunkce

Získat status příznaků stop pohybu.IsStopMoveAct

Získat info robotu v systému MultiMove
Použito k získání jména nebo reference k robotu v aktuální programové úloze.

Použito kFunkce

Získat jméno kontrolovaného robotu v aktuální programové
úloze, pokud existuje.

RobName

Použito kData

Získat data obsahující reference ke kontrolovanému robotu v
aktuální programové úloze, pokud existuje.

ROB_ID

Kontrolování přídavných os
Robot a přídavné osy jsou obvykle polohovány pomocí stejných instrukcí. Stejné
instrukce, nicméně, ovlivňují pouze pohyby přídavných os.

Použito kInstrukce

Deaktivujte externí mechanickou jednotkuDeactUnit

Aktivujte externí mechanickou jednotkuActUnit

Definovat užitečnou zátěž pro mechanickou jednotkuMechUnitLoad

Načíst nejmenší hranici točivého momentuGetTorqueMargin

Resetovat nejmenší hranici točivého momentuResetTorqueMargin

Použito kFunkce

Načíst aktuální točivý moment robotu a motorů externích os a
může se použít ke zjištění, jestli servo chapadlo drží náklad
nebo nikoliv.

GetMotorTorque

Načíst jméno a data pro mechanické jednotkyGetNextMechUnit

Zkontrolujte, jestli je mechanická jednotka aktivována nebo
nikoliv

IsMechUnitActive

Pokračování na další straně
58 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb
Pokračování

Nezávislé osy
Osa robotu 6 (a 4 na IRB 1600, 2600 a 4600 kromě ID verzí) nebo přídavná osa
může být posunuta nezávisle na jiných pohybech. Pracovní oblast osy může být
také resetována, což zkrátí časy cyklu.
Instrukce v tabulce dole jsou dostupné pouze když je robot vybaven doplňkem
Independent Axis.

Použito kInstrukce

Změňte osu do nezávislého režimu a posuňte osu do absolutní
pozice.

IndAMove

Změňte osu do nezávislého režimu a spusťte průběžný pohyb
osy.

IndCMove

Změňte osu do nezávislého režimu a posuňte osu na vzdále-
nost delta.

IndDMove

Změňte osu do nezávislého režimu a posuňte osu do relativní
pozice (v rámci otáčení osy).

IndRMove

Změnit osu do nezávislého režimu nebo/a resetovat pracovní
oblast.

IndReset

Resetujte pozici spojů zápěstí na manipulátorech dutých zá-
pěstí, jako je IRB 5402 a IRB 5403.

HollowWristReset i

i Může se používat pouze na IRB 5402 a IRB 5403.
Funkce v tabulce dole jsou dostupné pouze když je robot vybaven doplňkem
Independent Axis.

Použito kFunkce

Zkontrolujte, jestli nezávislá osa je v pozici.IndInpos

Zkontrolujte, jestli nezávislá osa dosáhla naprogramované
rychlosti.

IndSpeed

Korekce dráhy
Instrukce, funkce a datové typy v tabulkách dole jsou dostupné pouze když je robot
vybaven doplňky Path Corrections nebo RobotWare-Arc sensor.

Použito kInstrukce

Připojuje se ke generátoru korekcíCorrCon

Zapisuje do generátoru korekcíCorrWrite

Odpojit od dříve připojeného generátoru korekcíCorrDiscon

Odstraňte všechny připojené generátory korekcíCorrClear

Použito kFunkce

Načíst celkové korekce dodané všemi připojenými generátory
korekcí

CorrRead

Použito kDatový typ

Přidat geometrické ofsety do souřadnicového systému dráhycorrdescr

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 59
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb

Pokračování

Záznamník dráhy
Instrukce, funkce a datové typy v tabulkách dole jsou dostupné pouze když je robot
vybaven doplňkem Path Recovery.

Použito kInstrukce

Spustit záznam dráhy robotuPathRecStart

Zastavit záznam dráhy robotuPathRecStop

Posunout robot zpět podél zaznamenané dráhyPathRecMoveBwd

Posunout robot zpět do pozice, kde byl proveden PathRecMo-
veBwd

PathRecMoveFwd

Použito kFunkce

Zkontrolujte, jestli záznamník dráhy je aktivní a jestli je dostup-
ná zaznamenaná zpětná dráha

PathRecValidBwd

Zkontrolujte, jestli záznamník dráhy může být použit pro pohyb
dopředu

PathRecValidFwd

Použito kDatový typ

Identifikovat bod přerušení pro záznamník dráhypathrecid

Sledování dopravníku
Instrukce v tabulce dole jsou dostupné pouze když je robot vybaven doplňkem
Conveyor tracking.

Použito kInstrukce

Čekejte na pracovní objekt nebo dopravníkWaitWObj

Shodit pracovní objekt na dopravníkDropWObj

Servo sledování pro indexování dopravníku
Instrukce v tabulce dole jsou dostupné pouze když je robot vybaven doplňkem
Conveyor tracking.

Použito kInstrukce

Používá se pro ruční přidání objektu k objektové frontě.IndCnvAddObject

Začněte poslouchat digitální vstup a proveďte indexovací pohyb
při spuštění.

IndCnvEnable

Systém zastaví poslech digitálního vstupu.IndCnvDisable

Nastavit indexovanou funkčnost dopravníkuIndCnvInit

Aby bylo možné krokově přesouvat (jog) nebo provádět instruk-
ci pohybu pro indexový dopravník, systém potřebuje být nasta-
ven do normálního režimu, a to se provádí s touto instrukcí
nebo při přesunu PP k main.

IndCnvReset

Používá se pro nastavení chování funkčnosti indexového do-
pravníku.

indcnvdata

Pokračování na další straně
60 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb
Pokračování

Identifikace zatížení a kolize kolizí

Použito kInstrukce

Deaktivovat/aktivovat supervizi (dohled) pohybuMotionSup i

Platná pozice robotu pro identifikaci parametruParIdPosValid

Platný typ robotu pro identifikaci parametruParIdRobValid

Identifikace zatížení nástroje nebo užitečné zátěžeLoadId

Identifikace zátěže externího manipulátoruManLoadId

i Pouze jestliže je robot vybaven doplňkem Collision Detection.

Použito kDatový typ

Zastoupit celé číslo symbolickou konstantouloadidnum

Zastoupit celé číslo symbolickou konstantouparidnum

Zastoupit celé číslo symbolickou konstantouparidvalidnum

Poziční funkce

Použito kFunkce

Přidat ofset k pozici robotu, vyjádřený ve vztahu k pracovnímu
objektu

Offs

Přidat ofset vyjádřený v souřadnicovém systému nástrojeRelTool

Vypočítává robtarget z jointtargetCalcRobT

Načíst aktuální pozici (pouze x, y, z robotu)CPos

Načíst aktuální pozici (kompletní robtarget)CRobT

Načíst aktuální úhly spojeCJointT

Načíst aktuální úhly motoruReadMotor

Načíst aktuální hodnotu tooldataCTool

Načíst aktuální hodnotu wobjdataCWObj

Odstraňte náhradu programu z poziceORobT

Zrcadlit poziciMirPos

Vypočítat úhly spoje z robtargetCalcJointT

Vzdálenost mezi dvěma pozicemiDistance

Zkontrolovat přerušenou dráhu po výpadku napájení

Použito kFunkce

Zkontrolujte, jestli dráha byla přerušena při výpadku napájení.PFRestart

Stavové funkce

Použito kFunkce

Načíst potlačení rychlosti nastavené operátorem z Programo-
vého editoru nebo Okna produkce.

CSpeedOverride

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 61
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb

Pokračování

Pohybová data
Pohybová data se používají jako argument v polohovacích instrukcích.

Použito k definováníDatový typ

Koncová pozicerobtarget

Koncová pozice pro instrukci MoveAbsJ/L, MoveExtJ nebo
TriggAbsJ

jointtarget

Rychlostspeeddata

Přesnost pozice (stop bod nebo fly-by bod)zonedata

Souřadnicový systém nástroje a zatížení nástrojetooldata

Souřadnicový systém pracovního objektuwobjdata

Ukončení pozicestoppointdata

Číslo použité pro kontrolu synchronizování dvou nebo více
koordinovaných synchronizovaly spolu pohyb

identno

Základní data pro pohyby

Použito k definováníDatový typ

Pozice (x, y, z)pos

Orientaceorient

Souřadnicový systém (pozice + orientace)pose

Konfigurace os robotuconfdata

Pozice přídavných osextjoint

Pozice os roboturobjoint

Zátěžloaddata

Externí mechanická jednotkamecunit

Související informace

Další informaceMožnosti

Application manual - Controller software OmniCoreCollision Detection
Independent Axis
Path Recovery

Application manual - Conveyor trackingConveyor tracking

Application manual - MultiMoveMultiMove

62 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.8 Pohyb
Pokračování

1.9 Vstupní a výstupní signály

Signály
Robot může být vybaven řadou digitálních a analogových uživatelských signálů,
které se mohou načítat a měnit z programu.

Programovací zásady
Jména signálů jsou definovány v systémových parametrech, Tato jména jsou vždy
dostupná v programu pro načítání nebo nastavování I/O operací.
Hodnota analogového signálu, digitálního signálu nebo skupiny digitálních signálů
je určena jako numerická hodnota. Pro analogový signál a digitální signál je číselná
hodnota typu num. Pro analogový signál je číselná hodnota typu dnum.

Změna hodnoty signálu.

Použito k definováníInstrukce

Invertovat hodnotu digitálního výstupního signálu.InvertDO

Generovat impuls na digitálním výstupním signáluPulseDO

Resetovat digitální výstupní signál (na 0)Reset

Nastavit digitální výstupní signál (na 1)Set

Změnit hodnotu digitálního výstupního signálu.SetAO

Změnit hodnotu digitálního výstupního signálu (symbolická
hodnota; například vysoká/nízká)

SetDO

Změnit hodnotu skupiny digitálních výstupních signálůSetGO

Čtení hodnoty vstupních signálů
Hodnota vstupního signálu se může číst přímo v programu, například:

VAR num mynum;

VAR dnum mydnum;

! Digital input

IF di1 = 1 THEN ...

mynum:=di1;

! Digital group input

IF gi1 = 5 THEN ...

mydnum:=gi1;

! Analog input

IF ai1 > 5.2 THEN ...

mynum:=ai1;

Následující odstranitelné chyby mohou být generovány. Chyby je možné řešit v
chybovém handleru. Systémová proměnná ERRNO bude nastavena na:
ERR_NO_ALIASIO_DEF jestliže proměnná signálu je proměnná deklarovaná v
RAPIDu. Nebyla připojena k I/O signálu definovanému v I/O konfiguraci s instrukcí
AliasIO.
ERR_NORUNUNIT jestliže není žádný kontakt s jednotkou I/O.
ERR_SIG_NOT_VALID jestli není přístup k I/O signálu (platí pouze pro sběrnici ICI).

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 63
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.9 Vstupní a výstupní signály

Načítání hodnoty výstupních signálů
Hodnota výstupního signálu se může číst přímo v programu, například:

! Digital output

IF do1 = 1 THEN ...

! Digital group output

IF go1 = 5 THEN ...

! Analog output

IF ao1 > 5.2 THEN ...

Následující odstranitelné chyby mohou být generovány. Chyby je možné řešit v
chybovém handleru. Systémová proměnná ERRNO bude nastavena na:
ERR_NO_ALIASIO_DEF jestliže proměnná signálu je proměnná deklarovaná v
RAPIDu. Nebyla připojena k I/O signálu definovanému v I/O konfiguraci s instrukcí
AliasIO.
ERR_NORUNUNIT jestliže není žádný kontakt s jednotkou I/O.
ERR_SIG_NOT_VALIDNení přístup k I/O signálu (platí pouze pro aplikační sběrnici
ICI).

Testování vstupních nebo výstupních signálů

Použito k definováníInstrukce

Čekejte do nastavení nebo resetování digitálního vstupuWaitDI

Čekejte do nastavení nebo resetování digitálního výstupuWaitDO

Čekejte do nastavení skupiny digitálních vstupních signálů na
hodnotu

WaitGI

Čekejte do nastavení skupiny digitálních výstupních signálů
na hodnotu

WaitGO

Čekejte, až bude analogový vstup menší nebo větší než hod-
nota

WaitAI

Čekejte, až bude analogový výstup menší nebo větší než
hodnota

WaitAO

Použito k definováníFunkce

Otestujte nastavení digitálního vstupuTestDI

Platný I/O signál k přístupuValidIO

Získat informaci o původu I/O signáluGetSignalOrigin

Použito k definováníDatový typ

Definovat původ I/O signálusignalorigin

Aktivace a deaktivace I/O modulů
I/O moduly se aktivují automaticky při startu, ale mohou se deaktivovat během
vykonávání programu a později znovu aktivovat.

Použito k definováníInstrukce

Aktivovat I/O modulIOActivate

Deaktivovat I/O modulIODeactivate

Pokračování na další straně
64 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.9 Vstupní a výstupní signály
Pokračování

Potlačení a povolení hlášení z modulů I/O
Po spuštění jsou povolena hlášení z modulů I/O, ale lze je potlačit, aby se zamezilo
vysílání hlášení událostí I/O během vykonávání programu.

Použito k definováníInstrukce

Potlačte hlášení událostí I/O ze zařízení.IODeviceMute

Definování vstupních a výstupních signálů

Použito k definováníInstrukce

Definovat signál se jménem aliasuAliasIO

Použito k definováníDatový typ

Symbolická hodnota digitálního signáludionum

Jméno analogového vstupního signálusignalai

Jméno analogového výstupního signálusignalao

Jméno digitálního vstupního signálusignaldi

Jméno digitálního výstupního signálusignaldo

Jméno skupiny digitálních vstupních signálůsignalgi

Jméno skupiny digitálních výstupních signálůsignalgo

Definovat původ I/O signálusignalorigin

Získat stav sítě a zařízení I/O

Použito k definováníFunkce

Vrací aktuální stav I/O zařízeníIODeviceState

Vrací aktuální stav I/O sítěIONetworkState

Použito k definováníDatový typ

Stav I/O zařízeníiodevice_state

Stav sítě I/Oionetwork_state

Načíst informace skupinového signálu

Použito k definováníInstrukce

Načíst informace o digitálním skupinovém signálu.GetGroupSignalInfo

Technická referenční příručka - Přehled RAPID 65
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.9 Vstupní a výstupní signály

Pokračování

1.10 Komunikace

Probíhá komunikace přes I/O zařízení a soubory
Existují čtyři možné způsoby komunikace přes soubory nebo zařízení I/O:

• Výstup zpráv může být na displeji FlexPendantu a uživatel může odpovídat
na dotazy, např. ohledně počtu kusů, které je třeba zpracovat.

• Znakově založené informace se mohou zapisovat do (nebo načítat z)
textových souborů do velkokapacitní paměti. Tímto způsobem mohou být
např. ukládány výrobní statistiky a později zpracovávány na PC. Informace
je možné také tisknout na tiskárně připojené k robotu.

• Binární informaci je možné přenést například mezi robotem a senzorem.
• Binární informaci je možné přenést mezi robotem a jiným počítačem například

linkovým protokolem.

Programovací zásady
Rozhodnutí, jestli použít informace založené na znacích nebo binární, záleží na
tom, jak může takové informace zpracovávat zařízení, se kterým robot komunikuje.
Soubor může mít např. data, která jsou uložena ve formě znaků nebo jako binární.
Jestliže je komunikace požadována v obou směrech současně, binární přenos je
nezbytný.
Každé použité I/O zařízení nebo soubor musí být nejdříve otevřeno. Zařízení/soubor
při tom přijme popisovač, který je potom používán jako reference při načítání/zápisu.
Kdykoliv je možné použít FlexPendant a nemusí být otevřen.
Tisknout je možné text a hodnoty různých typů dat.

Komunikace pomocí FlexPendantu, funkční skupina TP

Použito kInstrukce

Vyčistit display operátora na FlexPendantuTPErase

Zapsat text na displej operátora FlexPendantuTPWrite

Zapsat text na displej FlexPendantu a současně uložit tuto
zprávu do chybového zápisu programu.

ErrWrite

Označit funkční klávesy, aby bylo vidět, která klávesa je stisk-
nuta

TPReadFK

Načíst numerickou hodnotu z FlexPendantuTPReadDnum

Načíst numerickou hodnotu z FlexPendantuTPReadNum

Zvolte okno na FlexPendantu od RAPIDu.TPShow

Zastoupit okno FlexPendantu symbolickou konstantoutpnum

Komunikace pomocí FlexPendantu, funkční skupina UI

Použito kInstrukce

Zapsat zprávu do FlexPendantuUIMsgBox

Načíst stisknuté tlačítko z FlexPendantu
Type basic

Pokračování na další straně
66 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.10 Komunikace

Použito kFunkce

Zapsat zprávu do FlexPendantuUIMessageBox

Načíst stisknuté tlačítko z FlexPendantu
Type advanced

Načíst numerickou hodnotu z FlexPendantuUIDnumEntry

Ladit numerickou hodnotu z FlexPendantuUIDnumTune

Načíst numerickou hodnotu z FlexPendantuUINumEntry

Ladit numerickou hodnotu z FlexPendantuUINumTune

Načíst text z FlexPendantuUIAlphaEntry

Vyberte položku ze seznamu od FlexPendantuUIListView

Je FlexPendant připojen k systémuUIClientExist

Použito kDatový typ

Zastoupit ikonu symbolickou konstantouicondata

Zastoupit tlačítko symbolickou konstantoubuttondata

Definovat položky seznamu nabídeklistitem

Zastoupit vybrané tlačítko symbolickou konstantoubtnres

Načítání z, nebo zapisování do sériového kanálu/souboru založeného na znacích

Použito kInstrukce

Otevřít kanál/soubor pro načítání nebo zápisOpen

Zapsat text do kanálu/souboruWrite

Zavřít kanál/souborClose

Použito kFunkce

Přečíst numerickou hodnotu dnumReadDnum

Načíst numerickou hodnotuReadNum

Načíst textový řetězecReadStr

Probíhá komunikace pomocí binárních I/O zařízení nebo souborů

Použito kInstrukce

Otevřít I/O zařízení nebo soubor pro binární přenos datOpen

Zapsat data do binárního I/O zařízení nebo souboruWriteBin

Zapsat data do kteréhokoliv binárního I/O zařízení nebo soubo-
ru

WriteAnyBin

Zapsat řetězec do binárního I/O zařízení nebo souboruWriteStrBin

Nastavte pozici souboru na začátek souboruRewind

Zavřít I/O zařízení nebo souborClose

Přečíst data ze kteréhokoliv binárního I/O zařízení nebo soubo-
ru

ReadAnyBin

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 67
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.10 Komunikace

Pokračování

Použito kInstrukce

Zapsat data rawbytes typu do binárního I/O zařízení nebo
souboru

WriteRawBytes

Přečíst data rawbytes typu z binárního I/O zařízení nebo sou-
boru

ReadRawBytes

Použito kFunkce

Přečíst data z binárního I/O zařízení nebo souboruReadBin

Přečíst řetězec z binárního I/O zařízení nebo souboruReadStrBin

Komunikace pomocí rawbytes
Instrukce a funkce dole se používají pro podporu komunikačních instrukcí
WriteRawBytes a ReadRawBytes.

Použito kInstrukce

Nastavit proměnnou rawbytes na nuluClearRawBytes

Kopírovat z jedné proměnné rawbytes do druhéCopyRawBytes

Zabalit obsah proměnné do kontejneru rawbytes typuPackRawBytes

Rozbalit obsah kontejneru rawbytes typu do proměnnéUnPackRawBytes

Zabalit hlavičku zprávy DeviceNet do kontejneru rawbytesPackDNHeader

Použito kFunkce

Získat aktuální délku platných bytů v proměnné rawbytesRawBytesLen

Data pro I/O zařízení nebo soubory

Použito k definováníDatový typ

Reference k I/O zařízení nebo souboru, která může být potom
použita pro načítání a zápis

iodev

Všeobecný datový kontejner, který se používá ke komunikaci
s I/O zařízeními

rawbytes

Komunikace pomocí zásuvek

Použito kInstrukce

Vytvoření nové zásuvkySocketCreate

Připojte se ke vzdálenému počítači (pouze klientské operace)SocketConnect

Odeslat data ke vzdálenému počítačiSocketSend

Odeslat data ke vzdálenému počítačiSocketSendTo

Přijmout data od vzdáleného počítačeSocketReceive

Přijmout data od vzdáleného počítačeSocketReceiveFrom

Zavřít zásuvkuSocketClose

Provést vazbu zásuvky k portu (pouze serverové aplikace)SocketBind

Poslouchejte spojení (pouze serverové aplikace)SocketListen

Přijměte spojení (pouze serverové aplikace)SocketAccept

Pokračování na další straně
68 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.10 Komunikace
Pokračování

Použito kFunkce

Získat aktuální stav zásuvkySocketGetStatus

Test přítomnosti dat na zásuvceSocketPeek

Použito k definováníDatový typ

Zásuvkové zařízenísocketdev

Stav zásuvkysocketstatus

Komunikace pomocí front zpráv RAPID

Použito k definováníDatový typ

Hlavička rmqheader je součástí datového typu rmqmessage
a používá se k popisu zprávy

rmqheader i

Všeobecný datový kontejner, který se používá při komunikaci
s funkčností fronty zpráv RAPID

rmqmessage

Číslo identity úlohy RAPID nebo klienta SDKrmqslot

Přikázat a zapnout přerušení pro určený datový typIRMQMessage

Najít číslo identity fronty konfigurované pro úlohu RAPID nebo
klienta SDK

RMQFindSlot

Získat první zprávu z fronty této úlohyRMQGetMessage

Vyjímá data ze zprávyRMQGetMsgData

Vyjímá informaci hlavičky ze zprávyRMQGetMsgHeader

Odeslat data do fronty fronty konfigurované pro úlohu RAPID
nebo klienta SDK

RMQSendMessage

Odeslat zprávu a čekat na odpověďRMQSendWait

Vyprázdnit RMQ připojený k instrukci pro vykonání úlohy.RMQEmptyQueue

Čekejte, až zpráva dojde nebo čas vyprší.RMQReadWait

i Pouze pokud je robot vybaven alespoň jedním z doplňků RobotStudio Connect nebo Multitasking.

Použito kFunkce

Získat jméno klienta fronty zpráv RAPID od daného čísla
identity, tzn. od daného rmqslot

RMQGetSlotName i

i Pouze pokud je robot vybaven alespoň jedním z doplňků RobotStudio Connect nebo Multitasking.

Technická referenční příručka - Přehled RAPID 69
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.10 Komunikace

Pokračování

1.11 Přerušení

Úvod
Přerušení jsou programem definované události identifikované podle čísel přerušení.
Přerušení vznikne, když se splní podmínka přerušení. Na rozdíl od chyb není vznik
přerušení přímo vztažen (synchronizován) s konkrétní pozicí kódu. Vznik přerušení
způsobí pozastavení normálního vykonávání programu a ovládání je předáno trap
rutině .
I když robot uznává vznik přerušení okamžitě (pouze s prodlevou kvůli rychlosti
hardwaru), odezva ve formě volání odpovídající trap rutiny může nastat pouze ve
specifických pozicích programu, jmenovitě:

• když je vložena další instrukce,
• kdykoliv během provádění čekající instrukce, například WaitUntil,
• kdykoliv během provádění pohybové instrukce, například MoveL.

Toto normálně vede k prodlevě 2-30 ms mezi uznáním přerušení a odezvou v
závislosti na typu prováděného pohybu v době přerušení.
Pozvednutí přerušení může být vypnuto a zapnuto. Jestliže jsou přerušení
deaktivována, každé vzniklé přerušení je zařazeno do fronty a pozvednuto do
chvíle, než jsou přerušení znovu aktivována. Všimněte si, že fronta přerušení může
obsahovat více než jedno čekající přerušení. Přerušení ve frontě jsou pozvednuta
v pořadí FIFO (první dovnitř, první ven). Přerušení jsou vždy vypnuta během
vykonávání trap rutiny.
Při běhu po krocích a když byl program zastaven, nebudou žádná přerušení řešena.
Přerušení ve frontě při zastavení budou odhozena a nebudou brána v úvahu žádná
přerušení generovaná během zastavení, kromě bezpečných přerušení, viz Uložit
přerušení. na str 72.
Max. počet definovaných přerušení je kdykoliv omezen na 100 na jednu
programovou úlohu.

Programovací zásady
Každému přerušení je přidělena identita přerušení. Dostává svoji identitu vytvořením
proměnné (datového typu intnum) a připojením k trap rutině.
Identita přerušení (proměnná) je potom použita k přikazování přerušení, tj. určení
důvodu přerušení. To může být jedna z následujících událostí:

• Vstup nebo výstup je nastaven na jedna nebo na nulu.
• Dané množství uplynutých časových úseků po přikázání přerušení.
• Bylo dosaženo konkrétní pozice.

Když je přerušení přikázáno, je také automaticky zapnuto, ale může být dočasně
vypnuto. To se může stát dvěma způsoby:

• Všechna přerušení mohou být vypnuta. Každé přerušení, které se objeví
během této doby, bude umístěno do fronty a potom automaticky generováno,
až budou přerušení znovu zapnuta.

• Individuální přerušení mohou být deaktivována. Všechna přerušení vzniklá
během té doby budou ignorována.

Pokračování na další straně
70 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.11 Přerušení

Připojování přerušení k trap rutinám

Použito kInstrukce

Připojit proměnnou (identitu přerušení) k trap rutiněCONNECT

Přikazování přerušení

Použito k přikázáníInstrukce

Přerušení od digitálního vstupního signáluISignalDI

Přerušení od digitálního výstupního signáluISignalDO

Přerušení od skupiny digitálních vstupních signálůISignalGI

Přerušení od skupiny digitálních výstupních signálůISignalGO

Přerušení od analogového vstupního signáluISignalAI

Přerušení od analogového výstupního signáluISignalAO

Časově omezené přerušeníITimer

Přerušení s pevnou pozicí (ze seznamu výběru pohybů)TriggInt

Přerušení při změně perzistentu.IPers

Přikázat a zapnout přerušení, když se objeví chybaIError

Přerušení při příjmu určeného datového typu frontou zpráv
RAPID.

IRMQMessage i

i Pouze pokud je robot vybaven alespoň jedním z doplňků RobotStudio Connect nebo Multitasking.

Zrušení přerušení

Použito kInstrukce

Zrušit (vymazat) přerušeníIDelete

Zapnutí/vypnutí přerušení

Použito kInstrukce

Deaktivovat individuální přerušeníISleep

Aktivovat individuální přerušeníIWatch

Vypnout všechna přerušeníIDisable

Zapnout všechna přerušeníIEnable

Data přerušení

Použito kInstrukce

Získat data přerušení pro aktuální TRAPGetTrapData

Získat informace o chyběReadErrData

Datový typ přerušení

Použito kDatový typ

Definovat identitu přerušení.intnum

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 71
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.11 Přerušení

Pokračování

Použito kDatový typ

Obsahuje data přerušení, které způsobilo vykonání aktuální
trap rutiny.

trapdata

Určit druh chyby (závažnost)errtype

Přikázat a zapnout přerušení, když se objeví chyba.errdomain

Určit doménu chyby.errdomain

Uložit přerušení.
Některé instrukce, například ITimer a ISignalDI, se mohou používat společně
s bezpečným přerušením. Bezpečná přerušení jsou přerušení, která budou umístěna
do fronty, jestliže přijdou během zastavení nebo krokového vykonávání. Přerušení
ve frontě budou řešena, jakmile se obnoví průběžné vykonávání a budou
zpracována v pořadí FIFO. Přerušení ve frontě při zastavení budou rovněž řešena.
Instrukce ISleep nemůže být použita společně s bezpečnými přerušeními.

Manipulace s přerušením
Definováním přerušení se systém s ním seznámí. Definice určuje podmínku
přerušení a aktivuje a zapíná přerušení.
Příklad:

VAR intnum sig1int;

ISignalDI di1, high, sig1int;

Aktivované přerušení může být deaktivováno (a opačně).
Během doby deaktivace jsou všechna generovaná přerušení určeného typu
vyhozena bez vykonání trap rutiny.
Příklad:

! deactivate

ISleep sig1int;

! activate

IWatch sig1int;

Zapnuté přerušení může být vypnuto (a opačně).
Během času vypnutí jsou všechna generovaná přerušení určeného typu umístěna
do fronty a pozvednuta teprve když jsou přerušení opět zapnuta.
Příklad:

! disable

IDisable sig1int;

1 enable

IEnable sig1int;

Vymazáním přerušení se odstraní jeho definice. Není nutné explicitně odstraňovat
definici přerušení, ale nové přerušení nemůže být definováno k proměnné přerušení,
dokud nebude předchozí definice vymazána.
Příklad:

IDelete sig1int;

Pokračování na další straně
72 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.11 Přerušení
Pokračování

Trap rutiny
Trap rutiny poskytují prostředky pro zacházení s přerušeními. Trap rutinu je možné
připojit ke konkrétnímu přerušení pomocí instrukce CONNECT. Když se objeví
přerušení, ovládání je okamžitě přeneseno k připojené trap rutině (pokud existuje).
Jestliže se objeví přerušení, která nemá žádnou připojenou trap rutinu, je s ním
jednáno jako s fatální chybou, to znamená, že způsobí okamžité ukončení
vykonávání programu.
Příklad:

VAR intnum empty;

VAR intnum full;

PROC main()

! Connect trap routines

CONNECT empty WITH etrap;

CONNECT full WITH ftrap;

! Define feeder interrupts

ISignalDI di1, high, empty;

ISignalDI di3, high, full;

...

! Delete interrupts

IDelete empty;

IDelete full;

ENDPROC

! Responds to “feeder empty” interrupt

TRAP etrap

open_valve;

RETURN;

ENDTRAP

! Responds to “feeder full” interrupt

TRAP ftrap

close_valve;

RETURN;

ENDTRAP

Několik přerušení může být připojeno ke stejné trap rutině. Systémová proměnná
INTNO obsahuje číslo přerušení a může být použita trap rutinou k identifikaci
přerušení. Po provedení nezbytné činnosti může být trap rutina ukončena pomocí
instrukce RETURN nebo když je dosaženo konce (ENDTRAP nebo ERROR) trap rutiny.
Vykonávání pokračuje od místa, kde se vyskytlo přerušení.

Technická referenční příručka - Přehled RAPID 73
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.11 Přerušení

Pokračování

1.12 Obnovení po chybě

Úvod
Mnoho chyb, která vzniknou při vykonávání programu, může být vypořádáno v
programu, což znamená, že vykonávání programu nemusí být přerušeno. Tyto
chyby jsou buď typu detekovaného systémem, jako je dělení nulou, nebo typu,
který je pozvednut programem, jako je pozvednutí chyby programem, když je
čtečkou čárového kódu načtena nesprávná hodnota.
Chyba vykonávání je abnormální situace se vztahem k vykonávání konkrétního
kusu programu. Chyba znemožní další vykonávání (nebo ho učiní přinejmenším
riskantním). Přetečení a dělení nulou jsou příklady chyb.

Chybová čísla
Chyby se identifikují podle jejich unikátního chybového čísla a jsou vždy uznány
systémem. Vznik chyby způsobí přerušení normálního vykonávání programu a
ovládání je předáno na chybový handler. Koncepce chybových handlerů umožňuje
na tuto situaci reagovat a podle možnosti i provést obnovu po chybách vzniklých
během vykonávání programu. Jestliže další vykonávání není možné, chybový
handler alespoň zajistí, aby program byl řádně zastaven.

Programovací zásady
Když vznikne chyba, je volán chybový handler rutiny (jestliže existuje). Je také
možné vytvořit chybu z programu a potom přeskočit na chybový handler.
V chybovém handleru je možné vypořádat se s chybami pomocí běžných instrukcí.
Systémová data ERRNO se mohou použít k určení typu chyby, která vznikla. Návrat
od chybového handleru může potom probíhat různými způsoby (RETURN, RETRY,
TRYNEXT, a RAISE).
Jestliže aktuální rutina nemá chybový handler, situaci přebírá přímo vnitřní chybový
handler robotu. Vnitřní chybový handler vydává chybovou zprávu a zastavuje
vykonávání programu s ukazatelem programu na vadné instrukci.

Vytvoření chybové situace z instrukce programu

Použito kInstrukce

Vytvořit chybu a volat chybový handlerRAISE

Instrukce rezervování chybového čísla

Použito kInstrukce

Rezervovat nové chybové číslo systému RAPID.BookErrNo

Restart/návrat od chybového handleru

Použito kInstrukce

Zastavit vykonávání programu v případě fatální chybyEXIT

Volat chybový handler rutiny, která zavolala aktuální rutinuRAISE

Nové provedení instrukce, která způsobila chybuRETRY

Pokračování na další straně
74 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.12 Obnovení po chybě

Použito kInstrukce

Provést instrukci následující po instrukci, která způsobila chybuTRYNEXT

Vrátit se k rutině, která volala aktuální rutinuRETURN

Od rutiny NOSTEPIN je chyba pozvednuta k chybovému han-
dleru na uživatelské úrovni.

RaiseToUser

Instrukce, která nahrazuje dvě instrukce StartMove a RETRY.
Obě obnovují pohyby a znovu provádějí instrukci, která způso-
bila chybu.

StartMoveRetry

Přeskočit poslední vyžádanou varovnou zprávu.SkipWarn

Resetovat počet spočítaných nových pokusů.ResetRetryCount

Použito kFunkce

Zbývající nové pokusy, které se mají udělat.RemainingRetries

Generovat procesní chybu

Použito kInstrukce

Zobrazit chybovou zprávu na FlexPendant a zapsat ji do proto-
kolu zpráv robotu.

ErrLog

Vytvořit chybu v programu a potom volat chybový handler ruti-
ny.

ErrRaise

Použito kFunkce

Generovat procesní chybu během pohybu robotu.ProcerrRecovery

Data pro ošetření chyby

Použito kDatový typ

Důvod chybyerrnum

Text v chybové zprávěerrstr

Konfigurace pro ošetření chyby

Použito k definováníSystémový parametr

Počet, kolikrát bude selhávající instrukce znovu zkoušena,
jestliže chybový handler používá RETRY. No Of Retry patří k
typu System Misc v tématu Controller.

No Of Retry

Chybové handlery
Každá rutina může obsahovat chybový handler. Chybový handler je skutečně
součástí rutiny a rámec dat jakékoliv rutiny také zahrnuje chybový handler rutiny.
Když vznikne chyba během vykonávání rutiny, ovládání je přeneseno k chybovému
handleru.
Příklad:

FUNC num safediv(num x, num y)

RETURN x / y;

ERROR

IF ERRNO = ERR_DIVZERO THEN

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 75
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.12 Obnovení po chybě

Pokračování

TPWrite "The number cannot be equal to 0";

RETURN x;

ENDIF

ENDFUNC

Systémová proměnná ERRNO obsahuje chybové číslo (nejnovější) chyby a může
ji použít chybový handler k identifikaci této chyby. Po nezbytných činnostech může
chybový handler:

• Obnovit vykonávání od instrukce, ve které se chyba objevila. To se provádí
pomocí instrukce RETRY. Jestliže tato instrukce způsobí stejnou chybu znovu,
následují až čtyři pokusy o obnovu; potom se vykonávání zastaví. Aby bylo
možné provést více než čtyři pokusy, musíte nakonfigurovat systémový
parametr No Of Retry, viz Technical reference manual - System parameters.

• Obnovit vykonávání s instrukcí následující po instrukci, ve které vznikla
chyba. To se provádí pomocí instrukce TRYNEXT.

• Vrátit ovládání volajícímu rutiny pomocí instrukceRETURN, viz . Jestliže rutina
je funkce, instrukceRETURN musí určit příslušnou vratnou hodnotu.

• Rozšířit chybu k volajícímu rutiny pomocí instrukce RAISE.

Systémový chybový handler
Jestliže chyba vznikne v rutině, která neobsahuje chybový handler nebo dosáhne
konce chybového handleru (ENDFUNC, ENDPROC, nebo ENDTRAP), je volán
systémový chybový handler. Systémový chybový handler jen nahlásí chybu a
zastaví vykonávání.
V řetězci volání rutiny může mít každá rutina svůj vlastní obslužný program pro
chyby (handler). Když se vyskytne chyba v rutině s obslužným programem pro
chyby, chyba je explicitně rozšířena pomocí instrukceRAISE, stejná chyba je
pozvednuta znovu v bodě volání rutiny, - chyba je rozšířena. Jestliže je dosaženo
vrcholu řetězce volání (vstupní rutina úlohy) bez nalezení obslužného programu
pro chyby nebo když je dosaženo konce programu pro chyby v řetězci volání, je
volán systémový obslužný program pro chyby. Tento program jen ohlásí chybu a
zastaví vykonávání. Jelikož trap rutina může být volána pouze systémem (jako
reakce na přerušení), každé šíření chyby od trap rutiny je provedeno směrem k
systémového obslužnému programu pro chyby.
Ošetřování chyb není dostupné pro instrukce ve zpětném handleru. Takové chyby
jsou vždy rozšířeny k systémovému chybovému handleru.
Není možné zotavení nebo reakce na chyby, které vzniknou v obslužném programu
pro chyby. Takové chyby jsou vždy rozšířeny k systémovému obslužnému programu
pro chyby.

Chyby pozvednuté programem
Kromě chyb detekovaných a pozvednutých robotem může program explicitně
pozvednout chyby pomocí instrukce RAISE. Tento způsob je možné použít k obnově
po složitých situacích. Může se, například, použít pro opuštění hluboce vnořených
kódových pozic. Chybová čísla 1-90 se mohou použít v instrukci pro pozvednutí.
Explicitně pozvednuté chyby jsou ošetřovány přesně jako chyby pozvednuté
systémem.

Pokračování na další straně
76 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.12 Obnovení po chybě
Pokračování

Protokol událostí
Chyby, které jsou ošetřovány chybovým handlerem, mají za výsledek varování v
protokolu událostí. Používáním protokolu událostí je možné sledovat chyby, které
se objevily.
Jestliže chcete, aby chyba byla ošetřena bez varovného zápisu do protokolu
událostí, použijte instrukci SkipWarn v chybovém handleru. To může být výhodné
při používání chybového handleru pro testování (například jestli existuje nějaký
soubor) bez opouštění stop, jestliže test selže.

Technická referenční příručka - Přehled RAPID 77
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.12 Obnovení po chybě

Pokračování

1.13 UNDO

Úvod
Rutiny RAPID mohou obsahovat handler UNDO. Handler se vykonává automaticky,
jestliže ukazatel programu je posunut ven z rutiny. Předpokládá se, že to bude
použito pro vyčištění postranních efektů po částečně vykonaných rutinách, například
při rušení modálních instrukcí (jako je otevření souboru). Většina částí jazyka
RAPID se může použít v handleru UNDO, ale existují některá omezení, například
pohybové instrukce.
Kód v handleru UNDO se musí vykonávat co nejrychleji bez jakýchkoli prodlev,
protože uživatel si nejspíš není vědom toho, že v daném bodě poběží nějaký kód.

Terminologie
Následující výrazy se vztahují k UNDO.

• UNDO: Vykonání vyčištění kódu před resetem programu.
• Handler UNDO: Doplňková část procedury RAPID nebo funkce obsahující

kód RAPID, který je vykonáván na UNDO.
• Rutina UNDO: Procedura nebo funkce s handlerem UNDO.
• Řetězec volání: Všechny procedury nebo funkce aktuálně mezi sebou

propojené dosud nedokončenými invokacemi rutiny. Předpokládá se spuštění
v rutině Main, jestliže není určeno nic jiného.

• Kontext UNDO: Když je aktuální rutina součástí řetězce volání spuštěného
v handleru UNDO.

Kdy použít UNDO
Rutinu RAPID je možné předčasně ukončit ve kterémkoliv bodu posunutím
ukazatele programu mimo rutinu. V některých případech, když program provádí
konkrétní citlivé rutiny, je předčasné ukončení nevhodné. Použitím UNDO je možné
chránit takové citlivé rutiny proti neočekávanému resetu programu. S UNDO je
možné mít určitý kód proveden automaticky, jestliže rutina je předčasně ukončena.
Tento kód by měl typicky provádět čisticí činnosti, například zavřít soubor.

Chování UNDO detailně
Když je aktivováno UNDO, všechny handlery UNDO v aktuálním řetězci volání jsou
vykonány. Tyto handlery jsou doplňkovými součástmi procedury nebo funkce
RAPID, obsahující kód RAPID. Aktuálně aktivní handlery UNDO jsou ty, které patří
k procedurám nebo funkcím, které byly uplatněny, ale dosud nebyly ukončeny, to
znamená rutinám v aktuálním řetězci volání.
UNDO se aktivuje, když ukazatel programu je neočekávaně posunut ven z rutiny
UNDO, například když uživatel posune ukazatel programu na Main. UNDO je také
spuštěn, když je vykonávána instrukce EXIT, která způsobí reset programu, nebo
když je program resetován z nějakého jiného důvodu, například při změně některé
konfigurace nebo jestliže program nebo modul je vymazán. Nicméně, UNDO není
spuštěn, když program dosáhne konce rutiny nebo příkazu RETURN a vrací se jako
obvykle od rutiny.

Pokračování na další straně
78 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.13 UNDO

Jestliže existuje více než jedna rutina UNDO v řetězci volání, UNDO handlery rutin
budou zpracovány ve stejném pořadí, které by rutiny vrátily, zdola nahoru. Handler
UNDO, který je nejblíže ke konci řetězce volání, bude proveden jako první a ten,
který je nejblíže k Main, bude proveden jako poslední.

Omezení
Handler UNDO může přistoupit ke každé proměnné nebo symbolu, dosažitelným
od těla normální rutiny včetně lokálně deklarovaných proměnných. RAPID kód,
který má být vykonán v kontextu UNDO, má nicméně omezení.
Handler UNDO nesmí obsahovat STOP, DEBUGBREAK, RAISE nebo RETURN. Jestliže
je podniknut pokus použít jakoukoliv z těchto instrukcí v kontextu UNDO, instrukce
bude ignorována a bude vydáno varování ELOG.
Pohybové instrukce, např.MoveL, nejsou dovoleny ani v kontextu UNDO.
Vykonávání je v UNDO vždy plynulé, není možné krokovat. Když se UNDO spustí,
prováděcí režim je automaticky nastaven na plynulý. Po skončení akce UNDO je
obnoven starý prováděcí režim.
Jestliže je program zastaven při vykonávání handleru UNDO, zbytek handleru
nebude vykonán. Jestliže v řetězci volání existují další handlery UNDO, které nebyly
dosud vykonány, budou také ignorovány. Výsledkem bude varování ELOG. To
také zahrnuje zastavení kvůli chybě při běhu.
Ukazatel programu není viditelný v UNDO handleru. Když se vykonává UNDO,
ukazatel programu zůstává na své staré pozici, ale je aktualizován, když je UNDO
handler (-y) dokončen.
Instrukce EXIT předčasně ukončuje UNDO stejným způsobem jako chyba při běhu
nebo Stop. Zbytek UNDO handlerů je ignorován a ukazatel programu je posunut
na Main.

Příklad
Program:

PROC B

TPWrite "In Routine B";

Exit;

UNDO

TPWrite "In UNDO of routine B";

ENDPROC

PROC A

TPWrite "In Routine A";

B;

ENDPROC

PROC main

TPWrite "In main";

A;

UNDO

TPWrite "In UNDO of main";

ENDPROC

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 79
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.13 UNDO
Pokračování

Výstup:
In main

In Routine A

In Routine B

In UNDO of routine B

In UNDO of main

xx1100000588

80 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.13 UNDO
Pokračování

1.14 Systémový & čas

Popis
Systémové a časové instrukce umožňují uživateli měřit, kontrolovat a zaznamenávat
čas.

Programovací zásady
Instrukce hodin umožňují uživateli používat hodiny, které fungují jako stopky. Tímto
způsobem je možné používat program robotu pro časování jakékoliv požadované
události.
Přesný čas nebo datum mohou být získány do řetězce. Tento řetězec může být
potom zobrazen pro operátora na displeji FlexPendantu nebo použit pro log soubory
s časovým a datovým razítkem.
Je také možné získat komponenty aktuálního systémového času jako numerickou
hodnotu. To umožňuje programu robotu provést činnost v určitém čase nebo v
určitém dni týdne.

Použití hodin pro načasování události

Použito kInstrukce

Resetovat hodiny používané pro časováníClkReset

Spustit hodiny používané pro časováníClkStart

Zastavit hodiny používané pro časováníClkStop

Použito kFunkce

Načíst hodiny používané pro časováníClkRead

Použito kDatový typ

Načasování - ukládá naměřený čas v sekundáchclock

Načítání přesného času a datumu

Použito kFunkce

Načíst aktuální datum jako řetězecCDate

Načíst přesný čas jako řetězecCTime

Načíst přesný čas jako numerickou hodnotuGetTime

Získat časovou informaci ze souboru

Použito kFunkce

Získat poslední čas pro modifikaci souboru.FileTimeDnum

Získat čas modifikace souboru pro načtený modul.ModTimeDnum

Zkontrolujte, jestli existuje programový modul.ModExist

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 81
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.14 Systémový & čas

Zjistit velikost volné paměti programu

Použito kFunkce

Získat velikost volné paměti programu.ProgMemFree

82 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.14 Systémový & čas
Pokračování

1.15 Matematika

Popis
Matematické instrukce a funkce se používají k výpočtu a změně hodnoty dat.

Programovací zásady
Výpočty se normálně provádějí pomocí instrukce přidělení, například reg1:=

reg2 + reg3 / 5. Existují také některé instrukce používané pro jednoduché
výpočty, jako je vynulování numerické proměnné.

Jednoduché kalkulace numerických dat

Použito kInstrukce

Vynulovat hodnotuClear

Přičíst nebo odečíst hodnotuAdd

Přírůstek po 1Incr

Snížení o 1Decr

Vygenerovat náhodné čísloRand

Pokročilejší výpočty

Použito kInstrukce

Provést výpočty jakéhokoliv typu dat.:=

Aritmetické funkce

Použito kFunkce

Vypočítat absolutní hodnotuAbs

Vypočítat absolutní hodnotuAbsDnum

Vrací nejvyšší ze dvou hodnot.Max

Vrací nejnižší ze dvou hodnot.Min

Zaokrouhlit numerickou hodnotuRound

Zaokrouhlit numerickou hodnotuRoundDnum

Zaokrouhlit numerickou hodnotuTrunc

Zaokrouhlit numerickou hodnotuTruncDnum

Vypočítat druhou odmocninuSqrt

Vypočítat druhou odmocninuSqrtDnum

Vypočítat exponenciální hodnotu se základnou „e“Exp

Vypočítat exponenciální hodnotu s libovolnou základnouPow

Vypočítat exponenciální hodnotu s libovolnou základnouPowDnum

Vypočítat hodnotu arkuskosinuACos

Vypočítat hodnotu arkuskosinuACosDnum

Vypočítat hodnotu arkussinuASin

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 83
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.15 Matematika

Použito kFunkce

Vypočítat hodnotu arkussinuASinDnum

Vypočítat hodnotu arkustangens v pásmu [-90,90]ATan

Vypočítat hodnotu arkustangens v pásmu [-90,90]ATanDnum

Vypočítat hodnotu arkustangens v pásmu [-180,180]ATan2

Vypočítat hodnotu arkustangens v pásmu [-180,180]ATan2Dnum

Vypočítat hodnotu kosinuCos

Vypočítat hodnotu kosinuCosDnum

Vypočítat hodnotu sinuSin

Vypočítat hodnotu sinuSinDnum

Vypočítat hodnotu tangentyTan

Vypočítat hodnotu tangentyTanDnum

Vypočítat Eulerovy úhly z orientaceEulerZYX

Vypočítat orientaci z Eulerových úhlůOrientZYX

Invertovat poziciPoseInv

Znásobit poziciPoseMult

Znásobit pozici a vektorPoseVect

Vypočítat magnitudu pos vektoruVectMagn

Vypočítat bodový (nebo skalární) produkt dvou pos vektorůDotProd

Vypočítat křížový (nebo vektorový) součin dvou pos vektorůCrossProd

Normalizovat nenormalizovanou orientaci (kvaternion)NOrient

Konvertovat numerickou hodnotu dnum na numerickou hodnotu
num

DnumToNum

Konvertovat numerickou hodnotu num na numerickou hodnotu
dnum

NumToDnum

Bitové funkce

Použito kInstrukce

Vyčistit určený bit v definovaném bytu nebo dnum datech.BitClear

Nastavit určený bit na 1 v definovaném bytu nebo dnum datech.BitSet

Nastavit všechny prvky v poli bajtů na nulu 0)BytesReset

Použito kFunkce

Zkontrolujte, jestli je určený bit v definovaných byte datech
nastaven na 1.

BitCheck

Zkontrolujte, jestli určený bit v definovaných dnum datech je
nastaven na 1.

BitCheckDnum

Provést logickou bitovou AND operaci na datových typech
byte.

BitAnd

Provést logickou bitovou AND operaci na datových typech
dnum.

BitAndDnum

Pokračování na další straně
84 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.15 Matematika
Pokračování

Použito kFunkce

Provést logickou bitovou NEGATION operaci na datových ty-
pech byte.

BitNeg

Provést logickou bitovou NEGATION operaci na datových ty-
pech dnum.

BitNegDnum

Provést logickou bitovouOR operaci na datových typech byte.BitOr

Provést logickou bitovouOR operaci na datových typech dnum.BitOrDnum

Provést logickou bitovou XOR operaci na datových typech
byte.

BitXOr

Provést logickou bitovou XOR operaci na datových typech
dnum.

BitXOrDnum

Provést logickou bitovou LEFT SHIFT operaci na datových ty-
pech byte.

BitLSh

Provést logickou bitovou LEFT SHIFT operaci na datových ty-
pech dnum.

BitLShDnum

Provést logickou bitovou RIGHT SHIFT operaci na datových
typech byte.

BitRSh

Provést logickou bitovou RIGHT SHIFT operaci na datových
typech dnum.

BitRShDnum

Použito kDatový typ

Používá se společně s instrukcemi a funkcemi, které ošetřují
bitovou manipulaci (8 bitů).

byte

Používá se společně s instrukcemi a funkcemi, které ošetřují
bitovou manipulaci (52 bitů).

dnum

Funkce matice

Použito kInstrukce

Vypočítá součet dvou matic.MatrixAdd

Invertuje matici.MatrixInverse

Násobí dvě matice nebo násobí matici skalárem.MatrixMult

Nastaví všechny prvky matice na 0.MatrixReset

Vyřešit systémy lineární rovnice na formě A*x=b.MatrixSolve

Vypočítat QR-faktorizaci (m x n) matrice A.MatrixSolveQR

Vypočítá rozdíl mezi dvěma maticemiMatrixSub

Vypočítat dekompozici singulární hodnoty (SVD).MatrixSVD

Transponuje matici.MatrixTranspose

Umístění tvarů k bodům

Použito kInstrukce

Umístění kružnice k 3D bodům.FitCirle

Umístění přímky k sadě bodů.FitLine

Umístění roviny k sadě bodů.FitPlane

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 85
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.15 Matematika

Pokračování

Použito kInstrukce

Umístění koule k sadě bodů.FitSphere

86 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.15 Matematika
Pokračování

1.16 Funkce souborových operací

Instrukce

Použito kInstrukce

Vytvoření nového adresáře.MakeDir

Odstranit adresář.RemoveDir

Otevřít adresář pro další průzkum.OpenDir

Zavřít adresář v rovnováze s OpenDir.CloseDir

Odstranit soubor.RemoveFile

Přejmenovat soubor.RenameFile

Kopírovat soubory.CopyFile

Funkce

Použito kFunkce

Zkontrolovat typ souboru.ISFile

Vyhledat velikost souborového systému.FSSize

Vyhledat velikost určeného souboru.FileSize

Načíst další vstupní data v adresáři.ReadDir

Datové typy

Použito kDatový typ

Přejít strukturami adresáře.dir

Technická referenční příručka - Přehled RAPID 87
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.16 Funkce souborových operací

1.17 Podpůrné instrukce RAPID

Popis
Různé funkce pro podporu jazyka RAPID:

• Získání systémových dat, systémových informací, informací o paměti
• Načíst a zapsat konfigurační data
• Restart kontroleru
• Otestovat systémová data
• Získat jméno objektu
• Získat jméno úlohy
• Vyhledat symboly
• Získat aktuální typ události, prováděcí handler nebo úroveň provádění
• Načíst servisní informaci

Získat systémová data

Použito kInstrukce

Získat data a jméno aktuálního aktivního nástroje nebo pracov-
ního objektu.

GetSysData

Resetovat stav pro ukazatel programu posunutý v ručním reži-
mu.

ResetPPMoved

Aktivovat určené jméno systémových dat pro určený datový
typ.

SetSysData

Použito kFunkce

Otestovat identitu systému.IsSysID

Získat informace o pohybu ukazatele programu (PP).IsStopStateEvent

Otestovat, jestli se ukazatel programu posunul v ručním režimu.PPMovedInManMode

Zkontrolovat, jestli je provedeno vykonávání na ovladači robotu
(RC) nebo virtuálním ovladači (VC).

RobOS

Získání informací o systému
Funkce pro získání informací o doplňcích, produktech, sériovém čísle, verzi
softwaru, typu robotu, LAN IP adrese nebo jazyku ovladače.

Použito kFunkce

Získat název nainstalovaných doplňků.GetNextOption

Získat název nainstalovaných produktů.GetNextProduct

Získat informace o systému.GetSysInfo

Získat informace o paměti

Použito kFunkce

Zjistit velikost volné paměti programuProgMemFree

Pokračování na další straně
88 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.17 Podpůrné instrukce RAPID

Načíst konfigurační data
Instrukce pro načítání jednoho atributu jmenovitého systémového parametru.

Použito kInstrukce

Načíst jeden atribut jmenovitého systémového parametru.ReadCfgData

Zapsat konfigurační data
Instrukce pro zápis jednoho atributu jmenovitého systémového parametru.

Použito kInstrukce

Zapsat jeden atribut jmenovitého systémového parametru.WriteCfgData

Uložit konfigurační data
Instrukce k uložení systémového parametru do souboru.

Použito kInstrukce

Uložit systémové parametry do souboruSaveCfgData

Restartovat ovladač

Použito kInstrukce

Restartovat ovladač, například když jste změnili systémové
parametry od RAPIDu.

WarmStart

Instrukce textové tabulky

Použito kInstrukce

Instalovat textovou tabulku do systému.TextTabInstall

Použito kFunkce

Získat číslo textové tabulky uživatelsky definované textové ta-
bulky.

TextTabGet

Získat textový řetězec ze systémových textových tabulek.TextGet

Otestujte, jestli jméno textové tabulky (řetězec textového
zdroje) je volně k použití nebo nikoliv.

TextTabFreeToUse

Získat jméno objektu
Instrukce k získání jména původního datového objektu pro aktuální argument nebo
aktuální data.

Použito kInstrukce

Vrátit jméno objektu původních dat.ArgName

Získat informaci o úlohách

Použito kFunkce

Získat identitu aktuální programové úlohy s jejím jménem a
číslem.

GetTaskName

Získat číslo aktuálního plánovače pohybů.MotionPlannerNo

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 89
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.17 Podpůrné instrukce RAPID

Pokračování

Použito kFunkce

Zkontrolujte, jestli je úloha prováděna.TaskIsExecuting

Získat aktuální typ události, prováděcí handler nebo prováděcí úroveň

Použito kFunkce

Získat typ rutiny aktuální události.EventType

Získat typ prováděcího handleru.ExecHandler

Získat prováděcí úroveň.ExecLevel

Použito kDatový typ

Typ rutiny události.event_type

Typ prováděcího handleru.handler_type

Prováděcí úroveň.exec_level

Zjistěte aktuální stav panelu volby úloh pro programovou úlohu

Použito kFunkce

Zjistěte aktuální stav panelu volby úlohGetTSPStatus

Zkontrolujte, jestli je normální úloha aktivní.TaskIsActive

Použito kDatový typ

Stav panelu volby úlohtsp_status

Vyhledat symboly
Instrukce k hledání datových objektů v systému.

Použito kInstrukce

Nastavit novou hodnotu všem datovým objektům určitého typu,
který odpovídá dané gramatice.

SetAllDataVal

Společně s GetNextSymmohou být ze systému získány datové
objekty.

SetDataSearch

Získat hodnotu od datového objektu, který je určen s proměn-
nou řetězce.

GetDataVal

Nastavit hodnotu pro datový objekt, který je určen s proměnnou
řetězce.

SetDataVal

Použito kFunkce

Společně s SetDataSearch mohou být ze systému získány
datové objekty.

GetNextSym

Použito kDatový typ

Udržuje informaci o tom, kde je určitý objekt definován v sys-
tému.

datapos

Pokračování na další straně
90 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.17 Podpůrné instrukce RAPID
Pokračování

Načíst servisní informace

Použito kInstrukce

Načíst servisní informace ze systému.GetServiceInfo

Převody

Použito kFunkce

Převádí pole bajtů na hodnotuBytesToVal

Převádí hodnotu na pole bajtůValToBytes

Resetuje všechny prvky na výchozí hodnotyResetData

Technická referenční příručka - Přehled RAPID 91
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.17 Podpůrné instrukce RAPID

Pokračování

1.18 Kalibrační servis &

Popis
Dostupná je řada instrukcí pro kalibraci a testování systému robotu.

Kalibrace nástroje

Použito kInstrukce

Kalibrovat otáčení pohybujícího se nástroje.MToolRotCalib

Kalibrovat středový bod nástroje (TCP) pro pohybující se ná-
stroj.

MToolTCPCalib

Kalibrovat středový bod nástroje (TCP) a rotaci stacionárního
nástroje.

SToolRotCalib

Kalibrovat středový bod nástroje (TCP) pro stacionární nástroj.SToolTCPCalib

Různé kalibrační metody

Použito kFunkce

Vypočítat uživatelský souřadný systém rotačního typu osy.CalcRotAxisFrame

Vypočítat uživatelský souřadný systém rotačního typu osy,
když nadřazený robot a pomocná osa jsou umístěny v různých
úlohách RAPID.

CalcRotAxFrameZ

Definovat rámec od původních pozic a posunutých pozicDefAccFrame

Směrování hodnoty k testovacímu signálu robotu
Referenční signál, jako jsou otáčky motoru, může být směrován k analogovému
výstupnímu signálu na propojovací rovině robotu.

Použito kInstrukce

Definovat testovací signálTestSignDefine

Resetovat všechny definice testovacích signálůTestSignReset

Použito kFunkce

Načíst hodnotu testovacího signáluTestSignRead

Použito kDatový typ

Pro programovací instrukci TestSignDefinetestsignal

Záznam vykonávání
Zaznamenaná data se ukládají do souboru pro pozdější analýzu a jsou určena pro
ladění programů RAPID, konkrétně pro víceúlohové systémy.

Použito kInstrukce

Spustit záznam instrukčních a časových dat během vykonávání.SpyStart

Zastavit záznam časových dat během vykonávání.SpyStop

92 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.18 Kalibrační servis &

1.19 Řetězcové funkce

Popis
Řetězcové funkce se používají pro operace s řetězci, jak je kopírování, konkatenace,
porovnávání, hledání, konverze atd.

Základní operace

Použito kDatový typ

Řetězec.string

Předdefinované konstanty STR_DIGIT, STR_UPPER,
STR_LOWER, a STR_WHITE.

Použito kInstrukce/operátor

Formátovací řetězec.StrFormat

Přidělit hodnotu (kopírovat řetězec):=

Konkatenace řetězce+

Použito kFunkce

Najít délku řetězceStrLen

Získat část řetězceStrPart

Najít velikost řetězceStrSize

Srovnávání a hledání

Použito kOperátor

Test je totožný s=

Test není totožný s<>

Použito kFunkce

Zkontrolovat, jestli znak patří do sadyStrMemb

Hledat znak v řetězciStrFind

Hledat vzor v řetězciStrMatch

Zkontrolovat, jestli řetězce jsou v pořádkuStrOrder

Konverze

Použito kFunkce

Konvertovat byte na data řetězceByteToStr

Konvertovat číslo určené v čitelném řetězci v základně 10 do
základny 16

DecToHex

Konvertovat numerickou hodnotu na řetězecDnumToStr

Konvertovat číslo určené v čitelném řetězci v základně 16 do
základny 10

HexToDec

Konvertovat numerickou hodnotu na řetězecNumToStr

Konvertovat řetězec na hodnotuStrToVal

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 93
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.19 Řetězcové funkce

Použito kFunkce

Mapovat řetězecStrMap

Konvertovat řetězec na byteStrToByte

Konvertovat hodnotu na řetězecValToStr

94 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.19 Řetězcové funkce
Pokračování

1.20 Multitasking

Popis
Události v robotické buňce jsou často paralelní, takže proč programy nejsou
paralelní?
Multitasking RAPID je způsob vykonávání programů (pseudo) paralelně. Jeden
paralelní program může být umístěn do pozadí nebo popředí jiného programu.
Může být také na stejné úrovni jako jiný program.
Pro všechna nastavení viz Technical reference manual - System parameters.

Omezení
Existuje několik omezení při používání Multitaskingu RAPID.

• Nesměšujte paralelní programy s PLC. Doba odezvy je stejná jako doba
odezvy přerušení pro jednu úlohu. To je pravda, samozřejmě, když úloha
není v pozadí jiného zaměstnaného programu.

• Při běhu instrukce Wait v ručním režimu se simulační box objeví po 3
sekundách. To se stane pouze v úloze NORMAL.

• Pohybové instrukce mohou být vykonávány pouze v pohybové úloze (úloha
svázaná s programovou instancí 0, viz Technical reference manual - System
parameters).

• Vykonávání úlohy se přeruší během času, kdy některé jiné úlohy přistupují
k souborovému systému, to znamená, jestliže operátor zvolí uložení nebo
otevření programu, nebo když program v úloze použije instrukce
načíst/vymazat/číst/zapisovat.

• FlexPendant nemá přístup k jiným úlohám než je úloha NORMAL. Takže
vývoj programů RAPID pro jiné SEMISTATIC nebo STATIC úlohy může být
proveden pouze v případě, kdy je kód načten do úlohyNORMAL nebo offline.

Základy
Pro použití této funkce musí být robot konfigurován s jednou extra ÚLOHOU pro
každý dodatečný program. Každá úloha může být typu NORMAL, STATIC, nebo
SEMISTATIC.
Až 20 různých úloh může běžet v pseudo paralelním režimu. Každá úloha se skládá
ze sady modulů, a to stejným způsobem jako normální program. Všechny moduly
jsou v každé úloze lokální.
Proměnné, konstanty a perzistenty jsou lokální v každé úloze, ale to neplatí pro
globální perzistenty. Perzistent je globální z principu, pokud není deklarován jako
LOCAL nebo TASK. Globální perzistent se stejným jménem a typem je dosažitelný
ve všech úlohách, ve kterých je deklarován. Jestliže dva globální perzistenty mají
stejné jméno, ale jejich typ nebo velikost (rozměr pole) se liší, objeví se chyba za
běhu.
Úloha má vlastní ošetřování trapu a událostní rutiny jsou spouštěny pouze na své
vlastní stavy systému úloh (např. Start/Stop/Restart....).

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 95
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking

Všeobecné instrukce a funkce

Použito kInstrukce

Synchronizovat několik programových úloh na speciálním bodu
v každém programu

WaitSyncTask i

i Jestliže je robot vybaven doplňkem MultiTasking.

Použito kFunkce

Vyhledat exkluzivní právo ke specifickým kódovým oblastem
RAPID nebo systémovým zdrojům (napište user poll)

TestAndSet

Vyhledat exkluzivní právo ke specifickým kódovým oblastem
RAPID nebo systémovým zdrojům (napište interrupt control)

WaitTestAndSet

Zkontrolujte, jestli programová úloha řídí jakoukoliv mechanic-
kou jednotku.

TaskRunMec

Zkontrolujte, jestli programová úloha řídí jakýkoliv TCP robot.TaskRunRob

Získat jméno mechanické jednotkyGetMecUnitName

Použito kDatový typ

Identifikovat dostupné programové úlohy v systému.taskid

Určit jméno synchronizačního bodusyncident

Určit několik programových úloh RAPIDtasks

Systém MultiMove s koordinovanými roboty

Použito kInstrukce

Spustit sekvenci synchronizovaných pohybůSyncMoveOn i

Ukončení synchronizovaných pohybůSyncMoveOff

Resetovat synchronizované pohybySyncMoveUndo

i Jestliže je robot vybaven doplňkem MultiMove Coordinated.

Použito kFunkce

Sdělte, jestli aktuální úloha je v synchronizovaném režimuIsSyncMoveOn

Vrací počet synchronizovaných úlohTasksInSync

Použito kDatový typ

Určení jména synchronizačního bodusyncident i

Určit několik programových úloh RAPIDtasks

Identita pro pohybové instrukceidentno

i Jestliže je robot vybaven doplňkem MultiTasking.

Synchronizace úloh
V mnoha aplikacích paralelní úloha dohlíží pouze na některou jednotku buňky,
poměrně nezávisle na jiných úlohách, které jsou vykonávány. V takových případech
není nutný synchronizační mechanismus. Ale jsou tam jiné aplikace, které potřebují
vědět, například, co dělá hlavní úloha.

Pokračování na další straně
96 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking
Pokračování

Synchronizace pomocí výzvy (polling)
To je nejsnazší způsob, jak to udělat, ale provedení bude nejpomalejší. Perzistenty
jsou použity společně s instrukcemi WaitUntil, IF, WHILE, nebo GOTO.
Jestliže je použita instrukce WaitUntil, bude vyzývat interně každých 100 ms. V
jiných implementacích nevyzývejte častěji.

Příklad
ÚLOHA 1:

MODULE module1

PERS bool startsync:=FALSE;

PROC main()

startsync:= TRUE;

ENDPROC

ENDMODULE

ÚLOHA 2:
MODULE module2

PERS bool startsync:=FALSE;

PROC main()

WaitUntil startsync;

ENDPROC

ENDMODULE

Synchronizace pomocí přerušení
Jsou použity instrukce SetDO a ISignalDO

Příklad
ÚLOHA 1:

MODULE module1

PROC main()

SetDO do1,1;

ENDPROC

ENDMODULE

ÚLOHA 2:
MODULE module2

VAR intnum isiint1;

PROC main()

CONNECT isiint1 WITH isi_trap;

ISignalDO do1, 1, isiint1;

WHILE TRUE DO

WaitTime 200;

ENDWHILE

IDelete isiint1;

ENDPROC

TRAP isi_trap

.

ENDTRAP

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 97
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking

Pokračování

ENDMODULE

Meziúlohová komunikace
Všechny typy dat je možné posílat mezi dvěma (nebo více) úlohami s proměnnými
globálního perzistentu.
Proměnná globálního perzistentu je globální ve všech úlohách. Proměnná
perzistentu musí být stejného typu a velikosti (rozměr pole) ve všech úlohách,
které ji deklarují. Jinak se objeví chyba při běhu.

Příklad
ÚLOHA 1:

MODULE module1

PERS bool startsync:=FALSE;

PERS string stringtosend:=””;

PROC main()

stringtosend:=”this is a test”;

startsync:= TRUE

ENDPROC

ENDMODULE

TASK 2:
MODULE module2

PERS bool startsync:=FALSE;

PERS string stringtosend:=””;

PROC main()

WaitUntil startsync;

!read string

IF stringtosend = “this is a test” THEN

...

ENDIF

ENDPROC

ENDMODULE

Typ úlohy
Každá úloha může být typu NORMAL, STATIC nebo SEMISTATIC.
Úlohy STATIC a SEMISTATIC se spouští ve spouštěcí sekvenci systému. Jestliže
je úloha typu STATIC, bude znovu spuštěna na aktuální pozici (kde byl PP, když
systém byl vypnut). Jestliže je typ nastaven na SEMISTATIC, bude spuštěna od
začátku vždy, když je napájení zapnuto, a moduly určené v systémových
parametrech budou znovu načteny, jestliže soubor modulu je novější než načtený
modul.
Úlohy typu NORMAL nebudou spuštěny při uvedení do chodu. Jsou spouštěny
normálním způsobem, například z FlexPendantu.

Pokračování na další straně
98 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking
Pokračování

Priority
Způsob provádění úloh jako standard je provádět všechny úlohy na stejné úrovni
způsobem round-robbin (jeden základní krok na každé instanci). Ale je možné
změnit prioritu jedné úlohy stanovením úlohy do pozadí jiné. Potom se bude pozadí
vykonávat pouze když popředí čeká na nějaké události nebo zastavilo vykonávání
(odstavení). Program robotu s pohybovými instrukcemi bude ve stavu odstavení
po většinu času.
Příklad dole popisuje některé situace, kde systém má 10 úloh (viz Obrázek 9).
Řetězec 1 round-robbin: úlohy 1, 2 a 9 jsou zaměstnané
Řetězec 2 round-robbin: úlohy 1, 4, 5, 6 a 9 jsou zaměstnané, úlohy 2 a 3 jsou
odstavené.
Řetězec 3 round-robbin: úlohy 3, 5, a 6 jsou zaměstnané, úlohy 1, 2, 9 a 10 jsou
odstavené.
Řetězec 4 round-robbin: úlohy 7 a 8 jsou zaměstnané, úlohy 1, 2, 3, 4, 5, 6, 9 a 10
jsou odstavené.

xx1100000589

Obrázek 9: Tyto úlohy mohou mít odlišné priority

TrustLevel
TrustLevel ošetřuje chování systému, když je z nějakého důvodu zastavena úloha
SEMISTATIC nebo STATIC nebo není proveditelná.

• SysFail - To je výchozí chování, všechny ostatní úlohy NORMAL se také
zastaví a systém bude nastaven do stavu SYS_FAIL. Všechny příkazy
krokování a spuštění programu budou odmítnuty. Pouze nový teplý start

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 99
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking

Pokračování

resetuje systém. Mělo by se to používat, když má úloha některé bezpečnostní
dohledy.

• SysHalt - Všechny úlohy NORMAL budou zastaveny. Systém je přinucen
vypnout motory. Při snaze přimět systém zapnout motory je možné ručně
krokovat robotem, ale nový pokus o spuštění programu bude odmítnut. Nový
teplý start restartuje systém.

• SysStop - Všechny úlohy NORMAL budou zastaveny, ale mohou být
restartovány. Je také možné krokování (jogging).

• NoSafety - Zastaví se pouze samotná aktuální úloha.
Viz Technical reference manual - System parameters, téma Controller, napište
Task.

Doporučení
Při určování priorit úlohy přemýšlejte o následujícím:

• V dohledových úlohách používejte vždy mechanismus přerušení nebo smyček
s prodlevami. Jinak FlexPendant nikdy nedostane žádný čas pro interakci s
uživatelem. A jestliže je dohledová úloha v popředí, nikdy neumožní vykonávat
jinou úlohu v pozadí.

100 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.20 Multitasking
Pokračování

1.21 Zpětné vykonávání

Popis
Program se může vykonávat zpětně vždy po jedné instrukci. Pro zpětné vykonávání
platí následující všeobecná omezení:

• Při krokování směrem zpět není možné se dostat ven z příkazů IF, FOR,
WHILE a TEST.

• Při krokování směrem zpět není možné se dostat ven z rutiny, když jste
dosáhli začátku rutiny.

• Instrukce pro nastavení pohybu a některé další instrukce ovlivňující pohyb,
se nemohou provádět zpětně (pozpátku). Při pokusu o vykonání takové
instrukce bude do protokolu událostí zapsáno varování.

• Většina instrukcí a funkcí nedělá nic, když jsou vykonávány zpětně.
• Při provádění zpětných handlerů a nastane-li chyba při provádění, nebude

možné zpracovat chybu v handleru chyby.

Zpětné handlery
Procedury mohou obsahovat zpětný handler, který definuje zpětné vykonávání
volání procedury. Při volání rutiny uvnitř zpětného handleru bude rutina vykonána
dopředu.
Zpětný handler je skutečnou součástí procedury a rámec všech dat rutiny zahrnuje
také zpětný handler procedury.
Instrukce ve zpětném nebo chybovém handleru rutiny se nesmí vykonávat zpětně
(pozpátku). Zpětné vykonávání se nemůže vnořovat, to znamená, že dvě instrukce
v řetězci volání se nesmí vykonávat současně pozpátku.
Procedura s žádným zpětným handlerem nemůže být vykonána zpětně. Procedura
s prázdným zpětným handlerem je vykonána jako „bez operace“.

Příklad 1
PROC MoveTo ()

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

Když je procedura volána během dopředného vykonávání, stane se následující:
MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

Příklad 2
PROC MoveTo ()

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 101
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.21 Zpětné vykonávání

MoveL p4,v500,z10,tool1;

BACKWARD

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

ENDPROC

Když je procedura volána během dopředného vykonávání, bude proveden
následující kód (kód procedury až do zpětného handleru):

MoveL p1,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p4,v500,z10,tool1;

Když je procedura volána během zpětného vykonávání, bude proveden následující
kód (kód ve zpětném handleru):

MoveL p4,v500,z10,tool1;

MoveC p2,p3,v500,z10,tool1;

MoveL p1,v500,z10,tool1;

Omezení pohybových instrukcí ve zpětném handleru
Typ a sekvence pohybové instrukce ve zpětném handleru musí být zrcadlem typu
a sekvence pohybové instrukce pro dopředné vykonávání ve stejné rutině:

xx1100000633

Všimněte si, že pořadí CirPoint p2 a ToPoint p3 v MoveC by mělo být stejné.
Pohybové instrukce zahrnují všechny instrukce, jejichž výsledkem je nějaký pohyb
robotu nebo doplňkových os, jako MoveL, SearchC, TriggJ, ArcC nebo PaintL.

VAROVÁNÍ

Jakákoliv odchylka od tohoto programovacího omezení ve zpětném handleru
může mít za důsledek chybný zpětný pohyb. Lineární pohyb se může pro některou
část zpětné trasy změnit na kruhový pohyb a opačně.

Chování zpětného vykonávání

Rutiny MoveC a nostepin
Při krokování dopředu instrukcí MoveC se robot zastaví na kruhovém bodu
(instrukce se vykonává ve svou krocích). Nicméně, při krokování zpět instrukcí
MoveC, se robot nezastaví na kruhovém bodu (instrukce se vykonává v jednom
kroku.

Pokračování na další straně
102 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.21 Zpětné vykonávání
Pokračování

Není dovoleno měnit vykonávání od dopředného na zpětné, když robot vykonává
instrukci MoveC.
Aby bylo možné měnit mezi prováděním dopředu a dozadu v rutině nostepin, nebo
naopak, musí se nastavit systémový parametr StepOutNoStepin.

Cíl, typ pohybu a rychlosti
Při krokování programu vpřed ukazatel programu ukazuje, která instrukce se má
provést jako příští, a ukazatel pohybu ukazuje pohybovou instrukci, kterou robot
provádí.
Když krokujete programovým kódem směrem zpět, ukazatel programu ukazuje
instrukci nad ukazatelem pohybu. Když ukazatel programu ukazuje jednu
pohybovou instrukci a ukazatel pohybu ukazuje jinou, příští zpětný pohyb se
přesune na cíl zobrazený ukazatelem programu s použitím typu pohybu a rychlosti
indikované ukazatelem pohybu.
Výjimka, ve významu rychlosti zpětného vykonávání, je instrukce MoveExtJ.. Tato
instrukce používá rychlost vztaženou k robtarget jak pro dopředné, tak i zpětné
vykonávání.

Příklad
Tento příklad znázorňuje chování při krokování pohybových instrukcí směrem zpět.
Ukazatel programu a ukazatel pohybu pomáhají sledovat bod, ve kterém se nachází
provádění programu RAPID a ve kterém se nachází robot.

B

C

A

xx1900002301

Ukazatel programuA

Ukazatel pohybuB

Zvýraznění robtarget, ke kterému se robot pohybuje nebo kterého již
dosáhl.

C

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 103
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.21 Zpětné vykonávání

Pokračování

1 Program je krokován dopředu, dokud robot není v p5. Ukazatel pohybu bude
ukazovat P5 a ukazatel programu bude ukazovat příští pohybovou instrukci
(MoveL p6).

2 První stisknutí zpětného tlačítka neposune robot, ale ukazatel programu se
přesune na předchozí instrukci (MoveC p3, p4). To označuje, že toto je
instrukce, která bude provedena při příštím stisknutí zpětného tlačítka.

3 Druhé stisknutí zpětného tlačítka posune robot na p4 lineárně rychlostí v300.
Cíl pro tento pohyb (p4) je převzat z instrukce MoveC. Typ pohybu (lineární)
a rychlost jsou převzaty z instrukce dole (MoveL p5). Ukazatel pohybu bude
indikovat p4 a ukazatel programu se posune nahoru na MoveL p2.

4 Třetí stisknutí zpětného tlačítka posune robot kruhově, přes p3 na p2 rychlostí
v100. Cíl p2 je převzat z instrukce MoveL p2. Typ pohybu (kruhový), kruhový
bod (p3) a rychlost jsou převzaty z instrukceMoveC. Ukazatel pohybu bude
indikovat p2 a ukazatel programu se posune nahoru na MoveL p1.

5 Čtvrté stisknutí zpětného tlačítka posune robot lineárně k P1 rychlostí v200.
Ukazatel pohybu bude indikovat p1 a ukazatel programu se posune nahoru
na MoveJ p0.

6 První stisknutí dopředného tlačítka neposune robot, ale ukazatel programu
se přesune na další instrukci (MoveL p2).

7 Druhé stisknutí dopředného tlačítka posune robot k p2 rychlostí v200.

104 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

1 Základní programování RAPID
1.21 Zpětné vykonávání
Pokračování

2 Programování pohybu a V/V (I/O)
2.1 Souřadnicové systémy

2.1.1 Střední bod nástroje robotu (TCP)

Popis
Pozice robotu a jeho pohyby mají vždy vztah ke střednímu bodu nástroje (TCP).
Tento bod je normálně definován někde na nástroji, například v ústí lepicí pistole,
ve středu chapadla nebo na konci srovnávacího nástroje.
Několik TCP (nástrojů) může být definováno, ale pouze jeden smí být aktivní v
kterékoliv době. Když je pozice zaznamenána, je to pozice TCP, která je
zaznamenána. Toto je také bod, který se pohybuje podél dané dráhy a danou
rychlostí.
Jestliže robot drží pracovní objekt a pracuje na stacionárním nástroji, použije se
stacionární TCP. Jestliže tento nástroj je aktivní, naprogramovaná dráha a rychlost
jsou vztaženy k pracovnímu objektu. Viz Stacionární TCP na str 114.

Související informace

Další informace

Technical referencemanual - System para-
meters

Definice světového souřadnicového systému

Operating manual - OmniCoreDefinice uživatelského souřadnicového systé-
mu

Operating manual - OmniCoreDefinice souřadnicového systému objektu

Operating manual - OmniCoreDefinice souřadnicového systému objektu

Operating manual - OmniCoreDefinice středového bodu nástroje

Operating manual - OmniCoreDefinice rámce posunu

Operating manual - OmniCoreKrokování (jogging) v různých souřadnicových
systémech

Technická referenční příručka - Přehled RAPID 105
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.1 Střední bod nástroje robotu (TCP)

2.1.2 Souřadnicové systémy používané při určování pozice TCP

Popis
Pozice nástroje (TCP) se může určit v různých souřadnicových systémech kvůli
usnadnění programování a nastavování programů.
Definovaný souřadný systém závisí na tom, co má robot dělat. Když není definován
žádný souřadný systém, pozice robotu jsou definovány v souřadnicovém systému
základny.

Souřadný systém základny
V jednoduché aplikaci se programování může provádět v souřadnicovém systému
základny; tady je osa z časově shodná s osou 1 robotu.

xx1100000611

Souřadný systém základny se nachází na základně robotu:
• Počátek je situován na průsečíku osy 1 a montážní plochy základny.
• xy plane (rovina xy) je stejná jako montážní plocha základny.
• Osa x směřuje dopředu.
• Osa y směřuje doleva (z pohledu robotu).
• Osa z směřuje nahoru.

Světový souřadný systém
Jestliže je robot namontován na podlaze, programování v souřadnicovém systému
základny je snadné. Jestliže, nicméně, je robot namontován vzhůru nohama
(zavěšen), programování v souřadnicovém systému základny je obtížnější, protože
směry os nejsou stejné jako hlavní směry v pracovním prostoru. V takových
případech je užitečné definovat světový souřadný systém. Světový souřadný
systém bude časově shodný se souřadnicovým systémem základny, jestliže není
specificky definován.
Někdy pracuje několik robotů na stejném pracovním místě. V tomto případě se
používá společný světový souřadný systém, aby robotické programy mohly spolu
komunikovat. Může být také dobrý nápad používat tento typ systému, když mají
být pozice vztaženy k pevnému bodu v dílně.
Následující obrázek ukazuje dva roboty (jeden pozastavený) se společným
světovým souřadnicovým systémem.

Pokračování na další straně
106 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP

xx1100000612

Uživatelský souřadný systém
Robot může pracovat s různými upínadly nebo pracovními plochami, které mají
odlišné pozice a orientace. Uživatelský souřadný systém může být definován pro
každé upínadlo. Jestliže všechny pozice jsou uloženy v souřadnicích objektu,
nebudete potřebovat nové programování, jestliže je třeba upínadlo odstranit nebo
otočit. Po posunutí/otočení uživatelského souřadného systému o tolik, o kolik bylo
upínadlo posunuto/otočeno, budou všechny naprogramované pozice následovat
upínadlo a nebude se vyžadovat nové programování.
Uživatelský souřadnicový systém se definuje na základě světového souřadnicového
systému.
Následující obrázek ukazuje dva uživatelské souřadnicové systémy popisují pozici
dvou různých upínadel.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 107
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP

Pokračování

xx1100000613

Souřadný systém objektu
Uživatelský souřadný systém se používá k získání různých souřadnicových systémů
pro různá upínadla nebo pracovní plochy. Upínadlo, nicméně, může zahrnovat
několik pracovních objektů, které budou zpracovány nebo manipulovány robotem.
Tudíž, často to pomáhá definovat souřadný systém pro každý objekt za účelem
usnadnění úpravy programu, jestliže objekt je posunut nebo jestliže nový objekt,
stejný jako ten předchozí, musí být naprogramován pro jiné místo. Souřadný systém
odkazovaný k objektu se nazývá souřadný systém objektu. Tento souřadný systém
je také velmi vhodný pro programování offline, jelikož určené pozice je obvykle
možné brát přímo z výkresu pracovního objektu. Souřadný systém objektu se může
také používat při krokování (jogging) robotu.
Souřadný systém objektu je definován na základě uživatelského souřadného
systému.
Následující obrázek ukazuje dva souřadnicové systémy objektu popisují pozici
dvou různých pracovních objektů umístěných ve stejném upínadle

Pokračování na další straně
108 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP
Pokračování

xx1100000614

Naprogramované pozice jsou vždy definovány ve vztahu k souřadnicovému systému
objektu. Jestliže upínadlo je posunuto/otočeno, může být provedena kompenzace
posunutím/otočením uživatelského souřadnicového systému. Nemusí se měnit
ani naprogramované pozice, ani definované souřadnicové systémy objektu. Jestliže
pracovní objekt je posunut/otočen, může být provedena kompenzace
posunutím/otočením souřadnicového systému objektu.
Jestliže uživatelský souřadný systém je pohyblivý, to znamená, že jsou použity
koordinované pomocné osy, potom se souřadný systém objektu posune s
uživatelským souřadným systémem. To umožní posunout robot ve vztahu k objektu,
i když je s pracovním stolem manipulováno.

Souřadný systém posunu
Někdy musí být provedena stejná dráha na několika místech na stejném objektu.
Aby se nemusely pokaždé znovu programovat všechny pozice, definuje se souřadný
systém známý jako souřadný systém posunu. Tento souřadný systém se může
použít také v souvislosti s hledáními kvůli kompenzaci rozdílů v pozicích
individuálních částí.
Posunutý souřadnicový systém se definuje na základě souřadnicového systému
objektu.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 109
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP

Pokračování

xx1100000615

Jestliže posun programu je aktivní, všechny pozice jsou posunuty

Koordinované pomocné osy

Koordinace uživatelského souřadného systému
Jestliže pracovní objekt je umístěn na externí mechanické jednotce, která se
pohybuje, zatímco robot vykonává dráhu definovanou v souřadném systému
objektu, pohyblivý uživatelský souřadný systém může být definován. Pozice a
orientace uživatelského souřadného systému bude v tomto případě závislá na
rotacích os externí jednotky. Naprogramovaná dráha a rychlost bude tedy vztažena
k pracovnímu objektu a není nutné zvažovat fakt, že objekt byl posunut externí
jednotkou.
Následující obrázek ukazuje uživatelský souřadný systém definovaný k následování
pohybů 3osé externí mechanické jednotky.

Pokračování na další straně
110 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP
Pokračování

xx1100000616

Koordinace souřadného systému základny
Pohyblivý souřadný systém může být také definován pro základnu robotu. To je v
zájmu instalace, kde robot je upevněn například na kolejnici nebo portálu. Pozice
a orientace souřadného systému základny bude jako u pohyblivého uživatelského
souřadného systému závislá na pohybech externí jednotky. Naprogramovaná dráha
a rychlost bude tedy vztažena k souřadnicovému systému objektu a není nutné
přemýšlet o faktu, že základna robotu je posouvána externí jednotkou. Koordinovaný
uživatelský souřadný systém a koordinovaný souřadný systém základny mohou
být oba definovány ve stejný čas.
Následující obrázek ukazuje koordinovanou interpolaci s tratí pohybující
souřadnicovým systémem základny robotu.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 111
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP

Pokračování

xx1100000617

Aby bylo možné vypočítat souřadnicové systémy uživatele a základny, když
zúčastněné jednotky jsou v pohybu, robot musí vnímat, že:

• Kalibrační pozice uživatele a souřadnicového systému základny.
• Vztahy mezi úhly pomocných os a překladem/ rotací souřadnicových systémů

uživatele a základny.
• Tyto vztahy jsou definovány v systémových parametrech.

112 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.2 Souřadnicové systémy používané při určování pozice TCP
Pokračování

2.1.3 Souřadnicové systémy používané při určování směru nástroje

Popis
Orientace nástroje na naprogramované pozici je dána orientací souřadného systému
nástroje. Souřadný systém nástroje je odkazován ke koordinovanému systému
zápěstí, definovanému na montážní přírubě na zápěstí robotu.

Souřadný systém zápěstí
V jednoduché aplikaci se může použít souřadný systém zápěstí k definování
orientace nástroje; tady je osa z časově shodná s osou 6 robotu.

xx1600000580

Souřadný systém zápěstí se nemůže měnit a je vždy stejný jako montážní příruba
robotu v následujících ohledech:

• Počátek je situován ve středu montážní příruby (na montážní ploše).
• Body osy x v opačném směru, ke kontrolnímu otvoru montážní příruby.
• Body osy z směrem ven, v pravých úhlech k montážní přírubě.

Souřadný systém nástroje
Nástroj upevněný na montážní přírubě robotu často vyžaduje svůj vlastní souřadný
systém, aby mohl aktivovat definici svého TCP, což je počátek souřadného systému
nástroje. Souřadný systém nástroje se může také používat pro získávání příslušných
směrů pohybu při krokování (jogging) robotu.
Jestliže je nástroj poškozen nebo vyměněn, musíte pouze znovu definovat souřadný
systém nástroje. Program není nutné normálně měnit.
TCP (počátek) se volí jako bod na nástroji, který musí být správně polohován,
například ústí na lepicí pistoli. Osy souřadnice nástroje jsou definovány jako ty
přirozené pro zmíněný nástroj.
Následující obrázek ukazuje souřadný systém nástroje, jak je obvykle definován
pro pistoli obloukového svařování (vlevo) a pistoli bodového svařování (vpravo).

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 113
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.3 Souřadnicové systémy používané při určování směru nástroje

xx1600000581

Souřadnicový systém nástroje se definuje na základě souřadnicového systému
zápěstí.
Následující obrázek ukazuje souřadný systém nástroje se definuje ve vztahu k
souřadnému systému zápěstí, zde pro chapadlo.

xx1600000582

Stacionární TCP
Jestliže robot drží pracovní objekt a pracuje na stacionárním nástroji, použije se
stacionární TCP. Jestliže tento nástroj je aktivní, naprogramovaná dráha a rychlost
jsou vztaženy k pracovnímu objektu drženému robotem. To znamená, že
souřadnicové systémy budou obráceny, jako je na následujícím obrázku.
Následující obrázek ukazuje pevný TCP, kde je souřadnicový systém objektu
založen na souřadnicovém systému zápěstí.

Pokračování na další straně
114 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.3 Souřadnicové systémy používané při určování směru nástroje
Pokračování

xx1100000635

Na následujícím obrázku není použit ani uživatelský souřadný systém, ani posun
programu. Je ale možné je použít, a když se tak stane, budou ve vzájemném vztahu.

xx1100000636

Může být použit také posun programu společně se stacionárními TCP.

Technická referenční příručka - Přehled RAPID 115
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.1.3 Souřadnicové systémy používané při určování směru nástroje

Pokračování

2.2 Polohování během vykonávání programu

2.2.1 Úvod

Jak jsou prováděny pohyby
Během vykonávání programu polohovací instrukce v programu robotu řídí všechny
pohyby. Hlavním úkolem polohovacích instrukcí je poskytovat následující informace
o tom, jak provádět pohyby:

• Cílový bod pohybu (definovaný jako pozice středového bodu nástroje,
orientace nástroje, konfigurace robotu a pozice pomocných os).

• Interpolační metoda používaná k dosažení cílového bodu, například
interpolace spoje, lineární interpolace nebo kruhová interpolace.

• Rychlost robotu a pomocných os.
• Zónová data (definují, jak robot a pomocné osy projdou bodem určení,

například bodem stop nebo fly-by)
• Souřadnicové systémy (nástroj, uživatel a objekt) použité pro pohyb.

Jako alternativa pro definování rychlosti robotu a pomocných os může být
naprogramován čas pro pohyb. Tomu je ale možné se vyhnout, jestliže se použije
funkce weaving. Pro omezení rychlosti by měly být namísto toho použity rychlosti
orientace a pomocných os, když se provádějí malé nebo žádné pohyby TCP.

VAROVÁNÍ

Při manipulaci s materiálem a paletových aplikacích s intenzivními a častými
pohyby může dohled pohonného systému vypnout a zastavit robot, aby se
předešlo přehřátí pohonů nebo motoru. Jestliže k tomu dojde, je nutné čas cyklu
mírně prodloužit snížením naprogramované rychlosti nebo zrychlení.

Související informace

Popsáno v:

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Definice rychlosti

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Definice zón (rohové dráhy)

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Instrukce pro interpolaci spoje

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Instrukce pro lineární interpolaci

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Instrukce pro kruhovou interpolaci

Technická referenční příručka - RAPID - Instrukce,
funkce a datové typy

Instrukce pro modifikovanou inter-
polaci

Singularity na str 147Singularita

Synchronizace s logickými instrukcemi na str 132Souběžné vykonávání programu

Technical reference manual - System parametersOptimalizace CPU

116 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.1 Úvod

2.2.2 Interpolace pozice a orientace nástroje

Interpolace spoje
Když přesnost dráhy není příliš důležitá, používá se tento druh pohybu, aby se
nástroj rychle posunul z jedné pozice na druhou. Interpolace spoje také umožňuje
posun osy z jakékoliv místa na jiné v jednoduchém pohybu a v rámci svého
pracovního prostoru.
Všechny osy se posunou od bodu startu k bodu určení konstantní rychlostí osy.
Interpolace spoje je často nejrychlejší způsob pohybu mezi dvěma body, protože
osy robotu následují nejbližší dráhu mezi bodem startu a bodem určení (z pohledu
úhlů osy).

xx1100000637

Rychlost středového bodu nástroje je vyjádřena v mm/s (v souřadnicovém systému
objektu). Jelikož interpolace probíhá osa-po-ose, rychlost nebude přesně
naprogramovanou hodnotou.
Během interpolace je stanovena rychlost omezující osy, tzn. osy, která postupuje
nejrychleji ve vztahu ke své maximální rychlosti, aby vykonala pohyb. Potom jsou
rychlosti ostatních os vypočítány tak, aby zbývající osy dosáhly bodu určení ve
stejnou dobu.
Všechny osy jsou koordinovány, aby se získala dráha, která je nezávislá na
rychlosti. Zrychlení se automaticky optimalizuje na max. výkon robotu.

Lineární interpolace
Během lineární interpolace postupuje TCP podél přímé linie mezi body startu a
učení.

xx1100000638

Abychom získali lineární dráhu v souřadnicovém systému objektu, osy robotu musí
následovat nelineární dráhu v prostoru osy. Čím více je konfigurace robotu
nelineární, tím více se vyžaduje zrychlení a zpomalení, aby se nástroj pohyboval
po přímé linii a byla získána požadovaná orientace nástroje. Jestliže konfigurace
je extrémně nelineární (například v blízkosti zápěstí nebo singularit ramena), jedna
nebo více os bude vyžadovat více točivého momentu, než motory mohou dát. V
tomto případě bude rychlost všech os automaticky snížena.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 117
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.2 Interpolace pozice a orientace nástroje

Orientace nástroje zůstává neměnná během celého pohybu, pokud nebyla
naprogramována reorientace. Jestliže nástroj je reorientován, je otáčen neměnnou
rychlostí.
Maximální rychlost otáčení (ve stupních za sekundu) může být určena při otáčení
nástroje. Jestliže je nastavena na nízkou hodnotu, reorientace bude hladká, bez
ohledu na rychlost definovanou pro středový bod nástroje. Jestliže je to vysoká
hodnota, rychlost reorientace je omezena pouze max. otáčkami motoru. Dokud
žádný motor nepřekročí limit pro točivý moment, definovaná rychlost bude udržena.
Jestliže, na druhé straně, jeden z motorů překročí aktuální limit, rychlost celého
pohybu (s ohledem na pozici a orientaci) bude snížena.
Všechny osy jsou koordinovány, aby se získala dráha, která je nezávislá na
rychlosti. Zrychlení se optimalizuje automaticky.

Kruhová interpolace
Kruhová dráha se definuje pomocí tří naprogramovaných pozic, které definují
segment kruhu. První naprogramovaný bod je start segmentu kruhu. Další bod je
podpůrný bod (bod kruhu) používaný k definování křivosti kruhu, a třetí bod
označuje konec kruhu. Tři naprogramované body by měly být rozptýleny v
pravidelných intervalech podél oblouku kruhu, aby byl tak přesný, jak je to možné.
Orientace definovaná pro podpůrný bod se používá k volbě mezi krátkým a dlouhým
kroucením pro orientaci od bodu startu k bodu určení. Jestliže naprogramovaná
orientace je stejná ve vztahu ke kruhu v bodech startu a určení a orientace u
podpory je blízká stejné orientaci ve vztahu ke kruhu, orientace nástroje zůstane
neměnná ve vztahu ke dráze.
Následující obrázek ukazuje kruhovou interpolaci s krátkým kroucením pro část
kruhu (segment kruhu) s bodem startu, bodem kruhu a bodem určení

xx1100000639

Nicméně, jestliže orientace v podpůrném bodě je naprogramována blíže k orientaci
otočené o 180°, je zvoleno alternativní kroucení (viz následující obrázek).

Pokračování na další straně
118 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.2 Interpolace pozice a orientace nástroje
Pokračování

xx1100000640

Dokud žádný z točivých momentů motorů nepřekročí max. přípustné hodnoty,
nástroj se bude pohybovat naprogramovanou rychlostí podél oblouku kruhu.
Jestliže točivý moment kteréhokoliv z motorů je nedostatečný, rychlost bude
automaticky snížena v těch částech kruhové dráhy, kde je výkon motoru
nedostatečný.
Všechny osy jsou koordinovány, aby se získala dráha, která je nezávislá na
rychlosti. Zrychlení se optimalizuje automaticky.

SingArea\Wrist
Během vykonávání v blízkosti singulárního bodu může být lineární nebo kruhová
interpolace problematická. V tomto případě je nejlepší použít modifikovanou
interpolaci, což znamená, že osy zápěstí jsou interpolovány osa-za-osou, s TCP
následujícím lineární nebo kruhovou dráhu. Orientace nástroje, nicméně, se bude
poněkud lišit od naprogramované orientace. Výsledná orientace v
naprogramovaném bodě se může také lišit od naprogramované orientace vzhledem
ke dvěma singularitám.

xx1100000641

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 119
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.2 Interpolace pozice a orientace nástroje

Pokračování

První singularita je, když TCP je přímo vpředu od osy 2 (a2 na obrázku nahoře).
TCP nemůže přejít na druhou stranu osy 2, namísto toho bude osa 2 a 3 trochu
uhýbat, aby se TCO udrželo na stejné straně, a koncová orientace pohybu bude
potom otočena od naprogramované orientace se stejnou velikostí.
Druhá singularita je, když TCP projde blízko z osy osy 1 (z1 na obrázku nahoře).
Osa 1 se bude v tomto případě otáčet kolem s plnou rychlostí a orientace nástroje
bude následovat stejným způsobem. Směr otočky závisí na tom, na kterou stranu
půjde TCP. Doporučujeme změnit interpolaci spoje (MoveJ) poblíž osy z. Všimněte
si, že to je TCP, kdo dělá singularitu, nikoliv WCP jako když se použije
SingArea\Off.
V případě SingArea\Wrist bude orientace ve středním podpůrném bodě stejná
jako je naprogramovaná. Nicméně, nástroj nebude mít neměnný směr ve vztahu
k rovině kruhu jako u normální kruhové interpolace. Jestliže kruhová dráha prochází
singularitou, orientace v naprogramovaných pozicích musí být někdy modifikována,
aby se předešlo velkým pohybům zápěstí, což se může objevit, jestliže je
generována kompletní rekonfigurace zápěstí, když je vykonáván kruh (spoje 4 a
6 posunuty o 180 stupňů).

120 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.2 Interpolace pozice a orientace nástroje
Pokračování

2.2.3 Interpolace rohových drah

Popis
Rohové dráhy se používají pro získání souvislých pohybů za naprogramované
pozice. Tímto způsobem mohou být pozice přecházeny vysokou rychlostí bez
nutnosti snižování rychlosti. Fly-by bod generuje rohovou dráhu (dráha paraboly)
za naprogramovanou pozici. Začátek a konec této rohové dráhy je definován zónou
kolem naprogramované pozice.

Corner zone

for the TCP path

Corner path

Programmed

position

xx1100000643

Všechny osy jsou koordinovány, aby se získala dráha, která je nezávislá na
rychlosti. Rychlost a zrychlení se optimalizují automaticky.

Definování rohové dráhy
Velikost rohové zóny je definována v typu dat zonedata, které se používají jako
argument v pokynech pohybu. Další informace viz zonedata v Technická referenční
příručka - RAPID - Instrukce, funkce a datové typy.

Hladký přechod mezi různými rychlostmi
Jestliže musely být naprogramovány různé rychlosti TCP před a po rohové pozici,
přechod bude hladký a bude probíhat v rámci rohové dráhy bez ovlivnění aktuální
dráhy.
Jestliže jsou naprogramovány odlišné rychlosti reorientace před a po rohové poloze,
a jestliže rychlosti reorientace omezují pohyb, přechod od jedné rychlosti ke druhé
proběhne hladce v rámci rohové dráhy.

Doladění dráhy
Jestliže nástroj má provést proces (jako obloukové svařování, lepení nebo řezání
vodním paprskem) podél rohové dráhy, velikost zóny je možné nastavit kvůli získání
požadované dráhy. Jestliže tvar parabolické rohové dráhy neodpovídá geometrii
objektu, naprogramované pozice mohou být umístěny blíže k sobě, aby bylo možné
vytvořit přibližnou požadovanou dráhu pomocí dvou nebo více menších
parabolických drah.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 121
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah

Rohové dráhy s reorientací
Fly-by bod může mít jednu velikost zóny pro pozici TCP (zóna pozice) a jednu
velikost zóny pro reorientaci nástroje a pohyb pomocných os (reorientace a zóna
pomocné osy).
Reorientaci a zónu pomocné osy je možno definovat podobně jako zónu pozice.
Reorientace zóna pomocné osy se obvykle stanoví větší než zóna pozice. V tomto
případě reorientace začne přispívat k orientaci další polohy, než se spustí další
rohová dráha. Reorientace poté bude hladší.
Nástroj bude přeorientován, aby orientace na konci zóny byla stejná, jako by bal
programován bod ukončení (viz následující obrázek). Upozorňujeme, že orientace
mimo reorientaci a zónu pomocné osy je v obou případech stejná (poloha C - E),
ale orientace uvnitř zóny se mění snadněji než u naprogramované polohy.

Position zone

Reorientation and

additional axis zone

p1

p2

p3

C

D

E

xx1100000648

Jestliže střední pozice by byla fly-by
bodem, vykonávání programu by vypa-
dalo takto.

p1

p2

p3

A B

C

D

E

xx1100000647

Pokud jsou v bodech zastavení naprogramovány
tři pozice s různou orientací nástroje, provedení
programu bude vypadat následovně.

Zóna reorientace a pomocných os se běžně vyjadřuje v mm. Takto můžete přímo
určit, kde na dráze zóna začíná a končí. Jestliže nástroj není posunut, velikost
zóny je vyjádřena v úhlu rotačních stupňů namísto TCP-mm.
Zóna reorientace a pomocných os může být také definována pro pomocné osy, a
to stejným způsobem jako pro orientaci. Jestliže zóna reorientace a pomocných
os je nastavena tak, aby byla větší než zóna pozice, interpolace pomocných os ve
směru destinace další naprogramované pozice bude spuštěna předtím, než začne
rohová dráha pozice TCP. To se může používat pro vyhlazení pohybů pomocných
os, stejným způsobem jako je orientace nástroje používána pro vyhlazení pohybů
zápěstí.

Rohové dráhy při změně interpolační metody
Rohové dráhy jsou také generovány, když jedna interpolační metoda je změněna
na jinou. Interpolační metoda použitá v aktuálních rohových drahách je zvolena
tak, aby přechod od jedné metody ke druhé byl tak hladký, jak je to možné. Jestliže
zóny rohové dráhy pro reorientaci a pozici nemají stejnou velikost, může se v
rohové dráze použít více než jedna interpolační metoda (viz Obrázek 30).
viz následující obrázek ukazuje interpolaci při změně z jedné interpolační metody
na druhou. Lineární interpolace byla naprogramována mezi p1 a p2; interpolace
spoje mezi p2 a p3; a Sing Area\Wrist interpolace mezi p3 a p4.

Pokračování na další straně
122 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah
Pokračování

xx1100000649

Jestliže interpolace se mění z normálního TCP-pohybu na reorientaci bez
TCP-pohybu nebo opačně, nebude generována žádná rohová zóna. Stejný bude
případ, když interpolace se mění na nebo z externího pohybu spoje bez pohybu
TCP.

Interpolace, když se mění souřadný systém
Když je v rohové dráze změna souřadného systému, například nový TCP nebo
nový pracovní objekt, použije se interpolace spoje rohové dráhy. To je také
použitelné při změně z koordinované operace na nekoordinovanou operaci nebo
opačně.

Omezení velikosti naprogramovaných rohových zón
Pokud jsou naprogramované pozice příliš blízko u sebe, naprogramované zóny
se obvykle přesahují. Pro získání vyhovující definice dráhy a dosažení neustále
optimální rychlosti robot sníží velikost zóny. Implicitně robot zmenší velikost zóny
na polovinu vzdálenosti z jednoho naprogramovaného bodu do druhého.

Chování mezi fly-by body
Příliš velké naprogramované zóny působí odříznutí zón na polovinu vzdálenosti
od jedné přesahující naprogramované pozice k jiné (viz následující obrázek).

p1

p2

p3

p4

Generated

path

Programmed

position zone

Corner zone as

calculated by the robot

xx1800000783

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 123
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah

Pokračování

Zóna pozice i reorientace a zóna pomocné osy mohou přesahovat. Jakmile jedna
z těchto oblastí rohové zóny bude příliš velká, tato zóna bude zmenšena.

Chování mezi fly-by bodem a jemným bodem
Pro pohyb od jemného bodu k fly-by bodu může být v pohybové instrukci použit
volitelný argument \KeepStartPath Tím se nastavuje zóna kolem jemného bodu,
ve které musí pohyb následovat naprogramovanou dráhu a nevstupovat do žádné
rohové zóny.
Příklad:

MoveL p1,v500,fine,tool1;

MoveL p2,v500 \KeepStartPath:=15,z40,tool1;

MoveL p3,v500,fine,tool1;

p1

p2

p3

Generated

path
Programmed

corner zone

Corner zone as

calculated by the robot

StartZone

xx1800000784

Pro pohyb od fly-by bodu k jemnému bodu může být v pohybové instrukci použit
volitelný argument \KeepEndPath Tato koncová zóna je vzdálenost od jemného
bodu, během níž musí pohyb následovat naprogramovanou dráhu, takže každá
rohová zóna musí končit ještě před tím, než vstoupí do koncové zóny.
Příklad:

MoveL p1,v500,fine,tool1;

MoveL p2,v500,z30,tool1;

MoveL p3,v500 \KeepEndPath:=15,fine,tool1;

Pokračování na další straně
124 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah
Pokračování

p1

p2

p3

Generated

path

Programmed

corner zone
Corner zone as

calculated by the robot

End zone for

finepoint

xx1800000944

KeepStartPath a KeepEndPath jsou uvedeny v mm TCP pohybu. Zatímco TCP
je uvnitř této zóny, reorientace nástroje a dodatečný pohyb osy musí také
následovat naprogramovaný pohyb a není součástí žádné reorientace a rohové
zóny přídavné osy.

Plánování času pro fly-by body
Příležitostně, jestliže další pohyb není plánován v čase, naprogramované fly-by
body mohou být podnětem k vyvolání stop bodu. To se může stát, když:

• Větší počet logických instrukcí s dlouhými časy vykonávání programu jsou
naprogramovány mezi krátkými pohyby.

• Body jsem velmi blízko sebe při vysokých rychlostech.
Jestliže stop body jsou problém, potom použijte souběžné vykonávání programu.
Pro potlačení varování v případě selhání rohové dráhy použijte pokyn
CornerPathWarning.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 125
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah

Pokračování

POZNÁMKA

Jestliže fly-by point je změněn na finepoint, dráha po přepočítaném bodu může
být také ovlivněna.
Dráha, když p2 je fly-by point (průchozí bod):

p1

p2

p3

Generated

path

Programmed

corner zone

Corner zone as

calculated by the robot

p4

xx1800002286

Dráha, když p2 je finepoint:

p1

p2

p3

Generated

path

Programmed

corner zone

Corner zone as

calculated by the robot

p4

xx1800001538

126 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.3 Interpolace rohových drah
Pokračování

2.2.4 Nezávislé osy

Popis
Nezávislá osa je taková osa, která se pohybuje nezávisle na jiných osách v systému
robotu. Je možné změnit osu na nezávislý režim a později zpět na normální režim.
Speciální sada instrukcí ošetřuje nezávislé osy. Čtyři různé pohybové instrukce
určují pohyb osy. Například, instrukce IndCMove spouští osu k plynulému pohybu.
Osa potom udržuje pohyb neměnnou rychlostí (bez ohledu na to, co robot dělá)
až do vykonání nové nezávislé instrukce.
Pro změnu zpět k normálnímu režimu se používá resetová instrukce IndReset.
Resetová instrukce může také nastavit novou referenci pro měřicí systém - typ
nové synchronizace osy. Jakmile je osa změněna zpět na normální režim, je možné
ji provozovat jako normální osu.

Vykonávání programu
Osa je okamžitě změněna do nezávislého režimu, když je vykonána instrukce
Ind_Move. K tomu dojde, i když osa se v té době pohybuje, jako když předchozí
bod byl naprogramován jako fly-by bod nebo když se používá vykonávání
souběžného programu.
Jestliže je vykonána nová instrukce Ind_Move před dokončením poslední instrukce,
nová instrukce okamžitě potlačí (zruší) starou.
Jestliže je vykonávání programu zastaveno, když se nezávislá osa pohybuje, tato
osa se zastaví. Když je program restartován, nezávislá osa se spustí automaticky.
V normálním režimu neprobíhá žádná aktivní koordinace mezi nezávislými a
ostatními osami.
Jestliže nastane výpadek napájení, když je osa v nezávislém režimu, program není
možné restartovat. Zobrazí se chybová zpráva a program je třeba restartovat od
začátku.
Všimněte si, že mechanická jednotka nesmí být deaktivována, když jedna z jejích
os je v nezávislém režimu.

Krokové vykonávání
Během krokového vykonávání je vykonána nezávislá osa pouze v případě, že je
vykonávána jiná instrukce. Pohyb osy bude také krokový v linii s vykonáváním
ostatních nástrojů.

xx1100000652

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 127
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.4 Nezávislé osy

Jogging
Osy v nezávislém režimu nemohou být posunovány ručně (jog). Jestliže je podniknut
pokus vykonávat osu ručně, osa se nebude pohybovat a zobrazí se chybová zpráva.
Proveďte instrukci IndReset nebo posuňte ukazatel programu na main, aby
nezávislý režim byl opuštěn.

Pracovní rozsah
Fyzický pracovní rozsah je celkový pohyb osy.
Logický pracovní rozsah je rozsah používaný instrukcemi RAPID a čtenými v okně
ručního posuvu (jogging).
Po synchronizaci (aktualizované počítadlo otáček) se fyzický a logický pracovní
rozsah kryjí. Použitím instrukce IndReset může být logická pracovní oblast
posunuta (viz následující obrázek).

xx1100000653

Rozlišení pozic je sníženo při pohybu od logické pozice 0. Nízké rozlišení společně
s tuhým laděním ovladače může mít za výsledek nepřijatelný točivý moment, hluk
(šum) a nestabilitu ovladače. Při instalaci zkontrolujte ladění ovladače a činnost
osy blízko u limitu pracovního rozsahu. Také zkontrolujte, jestli je přijatelné rozlišení
pozice a činnost dráhy.

Rychlost a zrychlení
V ručním režimu se sníženou rychlostí je rychlost snížena na stejnou úroveň, jako
kdyby osa běžela jako nezávislá. Všimněte si, že funkce IndSpeed nebude TRUE,
jestliže rychlost osy je snížena.
Instrukce VelSet a korekce rychlosti v procentech přes okno produkce jsou aktivní
pro nezávislý pohyb. Všimněte si, že korekce přes okno produkce brzdí hodnotu
TRUE z funkce IndSpeed.
V nezávislém režimu se používá pro zrychlení a zpomalení nejnižší hodnota
zrychlení a zpomalení určená v konfiguračním souboru. Tato hodnota může být
snížena o hodnot rampy v instrukci (1 - 100 %). Instrukce AccSet neovlivňuje osy
v nezávislém režimu.

Osy robotu
Pouze osa robotu 6 se může použít jako nezávislá osa. Normálně se používá
instrukce IndReset pouze pro tuto osu. Nicméně, instrukci IndReset je také
možné použít pro osu 4 na modelech IRB 1600, 2600 a 4600 (nikoliv u verzí ID).

Pokračování na další straně
128 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.4 Nezávislé osy
Pokračování

Jestliže je IndReset použit pro osu robotu 4, potom osa 6 nesmí být v nezávislém
režimu.
Jestliže se osa 6 použije jako nezávislá osa, mohou se objevit problémy singularity,
protože se stále používá normální 6-osová funkce transformace souřadnic. Jestliže
vznikne problém, vykonejte stejný program s osou 6 v normálním režimu. Modifikujte
body nebo použijte instrukce SingArea\Wrist nebo MoveJ

Osa 6 je také interně aktivní ve výpočtu činnosti dráhy. Výsledkem je zjištění, že
interní pohyb osy 6 může snížit rychlost ostatních os v systému.
Nezávislý pracovní rozsah pro osu 6 je definován s osou 4 a 5 v základní (home)
pozici. Jestliže osa 4 nebo 5 je mimo základní pozici, pracovní rozsah pro osu 6
se posune kvůli spřáhlu. Nicméně, pozice načtená od FlexPendantu pro osu 6 je
kompenzována s pozicemi osy 4 a 5 přes spřáhlo.

Technická referenční příručka - Přehled RAPID 129
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.4 Nezávislé osy

Pokračování

2.2.5 Měkké servo

Popis
V některých aplikacích vzniká potřeba serva, které funguje jako mechanická pružina.
To znamená, že síla od robotu na pracovní objekt bude narůstat jako funkce
vzdálenosti mezi naprogramovanou pozicí (za pracovním objektem) a kontaktní
pozicí (nástroj robotu - pracovní objekt).

Měkkost
Vztah mezi poziční odchylkou a silou je definován parametrem zvaným měkkost.
Čím vyšší je parametr měkkosti, tím větší je poziční odchylka požadovaná k získání
stejné síly.
Parametr měkkosti se nastavuje v programu a je možné měnit hodnoty měkkosti
kdekoliv v programu. Různé hodnoty měkkosti se mohou nastavovat pro různé
spoje a je také možné směšovat spoje s normálním servem se spoji s měkkým
servem.
Aktivace a deaktivace měkkého serva, stejně tak jako změna hodnot měkkosti se
mohou provádět, když se robot pohybuje. Po dokončení bude provedeno ladění
mezi různými servo režimy a mezi různými hodnotami měkkosti kvůli dosažení
hladkých přechodů. Doba ladění se může nastavovat z programu s rampou
parametru. S ramp = 1 bude přechod trvat 0,5 sekundy, a v obecném případě bude
čas přechodu ramp x 0.5 v sekundách.

POZNÁMKA

Deaktivace měkkého serva by se neměla provádět, jestliže existuje síla mezi
robotem a pracovním objektem.

POZNÁMKA

S vysokými hodnotami měkkosti přichází riziko, že poziční odchylky serva mohou
být tak velké, že osy se posunou mimo pracovní rozsah robotu.

130 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.5 Měkké servo

2.2.6 Stop a restart

Zastavení pohybu
Pohyb je možné zastavit třemi různými způsoby:

• Pro zastavení programu, jemný stop nebo rychlý stop, robot zastaví na dráze,
což usnadní start.

• Pro zastavení s vypnutými motory se mechanické brzdy používají k dosažení
vzdálenosti zpomalení, která je tak krátká, jak je uvedeno kvůli bezpečnostním
důvodům. Odchylka dráhy bude obvykle větší pro zastavení s vypnutými
motory, než pro tuhý stop.

Počáteční pohyb
Po zastavení (jakéhokoliv typu uvedeného nahoře) je možné vždy provést restart
na přerušené dráze. Jestliže robot zastavil mimo naprogramovanou dráhu, restart
začne návratem na pozici dráhy, kde robot měl zastavit.
Restart po výpadku napájení je rovnocenný restartu po zastavení s vypnutými
motory. Mělo by být bráno na vědomí, že robot se vždy vrátí k dráze před
restartováním přerušené programové operace, i v případech, kdy výpadek napájení
nastal při běhu logické instrukce. Při restartu jsou všechny časy počítány od
začátku; například, polohování v přesném čase nebo přerušení v instrukci
WaitTime.

Technická referenční příručka - Přehled RAPID 131
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.2.6 Stop a restart

2.3 Synchronizace s logickými instrukcemi

Logické instrukce
Instrukce se normálně vykonávají postupně v programu. Nicméně, logické instrukce
je také možné vykonávat a určitých pozicích nebo během probíhajícího pohybu.
Logickou instrukcí je jakákoliv instrukce, která negeneruje pohyb robotu nebo
pohyb pomocné osy, například I/O instrukce.

Postupné vykonávání programu na stop bodech
Jestliže polohovací instrukce byla naprogramována jako stop bod, následná
instrukce se nevykoná, dokud robot a pomocné osy nepřejdou do klidu, tzn. když
bylo dosaženo naprogramované pozice.

xx1100000654

Postupné vykonávání programu na fly-by bodech
Jestliže polohovací instrukce byla naprogramována jako fly-by bod, následné
logické instrukce se vykonají nějaký čas před dosažením největší zóny (pro pozici,
orientaci a pomocné osy). Viz následující obrázky. Tyto instrukce se potom vykonají
v pořadí po sobě.

xx1100000656

Logická instrukce následující fly-by bod se
vykoná před dosažením největší zóny.

xx1100000655

Logická instrukce následující fly-by bod se
vykoná před dosažením největší zóny.

Čas, ve kterém jsou vykonány (DT), zahrnuje následující časové komponenty:
• Čas, který potřebuje robot pro naplánování dalšího pohybu: asi 0,1 sek.
• Prodleva robotu (prodleva serva) v sekundách: 0-1,0 sekund v závislosti na

rychlosti a aktuálním zpomalení robotu.

Souběžné vykonávání programu
Souběžné vykonávání programu je možné naprogramovat pomocí argumentu
\Conc v polohovací instrukci. Tento argument se používá pro vykonání jedné nebo

Pokračování na další straně
132 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.3 Synchronizace s logickými instrukcemi

dvou logických instrukcí ve stejném čase, kdy se pohybuje robot, aby se zkrátil
čas cyklu (například použito při komunikaci přes I/O zařízení).
Když je vykonávána polohovací instrukce s argumentem \Conc, jsou také
vykonávány následující logické instrukce (v pořadí):

Jestliže předchozí polohovací instrukce
skončí u fly-by bodu, logické instrukce se
vykonají v daném čase (DT) před dosažením
největší zóny (pro pozici, orientaci nebo
pomocné osy).

Jestliže robot se nepohybuje, nebo když
předchozí polohovací instrukce skončila stop
bodem, logické instrukce se vykonají, jakmile
se spustí aktuální polohovací instrukce (ve
stejném čase jako pohyb).

xx1100000658

xx1100000657

Instrukce, které nepřímo ovlivňují pohyby, jako ConfL a SingArea, jsou vykonávány
stejně jako jiné logické instrukce. Ale neovlivňují pohyby přikázané předchozími
polohovacími funkcemi.
Jestliže je smíšeno několik polohovacích funkcí s argumentem \Conc a několik
logických funkcí v dlouhé sekvenci, logické instrukce se vykonávají přímo, v pořadí,
jak byly naprogramovány. To probíhá ve stejném čase jako pohyb, co znamená,
že logické instrukce se vykonávají v dřívější fázi na dráze, než byly naprogramovány.

xx1100000659

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 133
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.3 Synchronizace s logickými instrukcemi

Pokračování

Během souběžného vykonávání programu jsou naprogramovány následující
instrukce, aby se ukončila sekvence a následně znovu synchronizovaly polohovací
instrukce a logické instrukce:

• polohovací instrukce ke stop bodu bez argumentu \Conc

• instrukce WaitTime nebo WaitUntil s argumentem \Inpos.

Synchronizace dráhy
Kvůli synchronizaci procesního vybavení (pro aplikace jako je lepení, lakování a
obloukové svařování) s pohyby robotu mohou být generovány různé typy
synchronizačních signálů dráhy.
Takzvanou poziční událostí bude generován trig signál, když robot přejde
předdefinovanou pozici na dráze. S časovou událostí bude generován signál v
předdefinovaném čase před zastavením robota na stop pozici. Navíc, řídicí systém
také ošetřuje události weave, které generují impulsy na úhlech předdefinované
fáze pohybu weave.
Všech pozičních synchronizovaných signálů je možné dosáhnout jak před (dopředný
čas), tak i po (čas prodlevy) čase, kdy robot přechází předdefinovanou pozici.
Pozice je definována naprogramovanou pozicí a může být laděna jako dráhová
vzdálenost před naprogramovanou pozicí.
Typická přesnost opakování pro sadu digitálních výstupů na dráze je +/- 2 ms.
V případě výpadku napájení a restartu v instrukci Trigg budou všechny trigg
události generovány ještě jednou na zbývající dráze pohybu pro instrukci Trigg.

Související informace

Popsáno v:

Pohyb na str 55Polohovací instrukce

Technická referenční příručka - RAPID - Instrukce, funkce a datové
typy

Definice velikosti zóny

134 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.3 Synchronizace s logickými instrukcemi
Pokračování

2.4 Konfigurace robotu

Různé typy konfigurací robotu
Obvykle je možné získat stejnou pozici a orientaci nástroje robotu několika různými
způsoby pomocí různých sad úhlů os. Říkáme jim různé konfigurace robotu.
Jestliže, například, pozice je umístěna přibližně uprostřed pracovní buňky, některé
roboty se mohou dostat do této pozice shora a zdola při použití různých směrů
osy 1, jak je vidět na následujícím obrázku, kde je dosaženo konfigurace doprava
otáčením ramena zpět. Osa 1 je otočena o 180 stupňů.

xx1100000660

Některé roboty se mohou dostat do této pozice také shora a zdola při použití
stejného směru osy 1. To je možné u typů robotů s rozšířeným pracovním rozsahem
osy 3. Na následujícím obrázku jsou dvě odlišné konfigurace ramena použité pro
dosažení stejné pozice a orientace. Úhel osy 1 je stejný pro obě konfigurace.
Konfigurace na pravé straně je dosaženo otáčením dolního ramena dopředu a
horního ramena dozadu.

xx1100000661

Toho může být také dosaženo otočením přední části horního ramena robotu (osa
4) vzhůru nohama při současném otáčení os 5 a 6 do požadované pozice a
orientace.
Následující obrázek ukazuje dvě odlišné konfigurace zápěstí použité pro dosažení
stejné pozice a orientace. V konfiguraci, ve které přední část horního ramena
ukazuje nahoru (spodní), osa 4 se otočila o 180 stupňů, osa 5 přes 180 stupňů a

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 135
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.4 Konfigurace robotu

osa 6 přes 180 stupňů, aby dosáhly konfigurace, ve které přední část horního
ramena ukazuje dolů (horní).

xx1100000662

Vymezení konfigurace robotu
Při programování pozice robotu je také konfigurace robotu určena s confdata
cf1, cf4, cf6, cfx.
Způsob stanovení konfigurace robotu se liší u různých druhů typů robotů (viz
Technická referenční příručka - RAPID - Instrukce, funkce a datové typy - confdata
pro kompletní popis). Nicméně, u většiny typů robotů je zde zahrnuto definování
vhodných čtvrtotáček os 1, 4 a 6. Například, jestliže osa 1 je mezi 0 a 90 stupni,
potom cf1=0, viz následující obrázky.

xx1100000664

Čtvrtotáčka pro záporný úhel spoje
xx1100000663

Čtvrtotáčka pro kladný úhel spoje

Řízení a sledování konfigurace
Aby bylo dosaženo správně definovaného pohybu robotu, je obvykle žádoucí
nechat robot dosáhnout stejné konfigurace během vykonávání programu, jako je
ta, která je určena v programu. Z toho důvodu by se mělo použít řízení a sledování
konfigurace s ConfL\On nebo ConfJ\On. Sledování konfigurace zahrnuje
porovnávání konfigurace naprogramované pozice s pozicí robotu.
Během lineárního pohybu se robot vždy pohybuje k nejbližší možné konfiguraci.
Jestliže sledování konfigurace je aktivní s ConfL\On, předem je provedeno ověření,
aby bylo vidět, jestli je možné dosáhnout naprogramované konfigurace. Jestliže
to není možné, program je zastaven. Když je pohyb dokončen (v zóně nebo v
jemném bodu), je rovněž ověřeno, že robot dosáhl naprogramované konfigurace.
Jestliže konfigurace je odlišná, program je zastaven. Podrobný popis konfiguračních
dat pro konkrétní typ robotu najdete v datovém typu confdata v Technická
referenční příručka - RAPID - Instrukce, funkce a datové typy.

Pokračování na další straně
136 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.4 Konfigurace robotu
Pokračování

Během pohybu osa-po-ose se robot vždy pohybuje k naprogramované konfiguraci,
jestliže je použit ConfJ\On. Neprovádí se žádný dohled nad pohyby osy, když je
řízení konfigurace zapnuto. Podle vzdálenosti mezi konfigurací počátečního bodu
a konfigurací koncového bodu může být výsledkem velký pohyb, zvláště zápěstí.
Jestliže dohled konfigurace není aktivní, robot se pohybuje k určené pozici a
orientaci s konfigurací, která má nejbližší hodnoty spoje v porovnání s počátečním
bodem.
Když je vykonávání naprogramované pozice zastaveno kvůli konfigurační chybě,
může to být často způsobeno z jednoho z následujících důvodů:

• Pozice byla naprogramována offline s vadnou konfigurací.
• Nástroj robotu byl změněn, což způsobilo, že robot převzal jinou konfiguraci,

než která byla naprogramována.
• Pozice je předmětem operace aktivního rámce (posun, uživatel, objekt,

základna).
• Správnou konfiguraci v cílové pozici je možné nalézt polohováním robotu

do její blízkosti a přečtením konfigurace na FlexPendantu.
Jestliže parametry konfigurace se změní kvůli operaci aktivního rámce, může být
kontrola konfigurace deaktivována.

Podrobná informace o ConfJ
MoveJ s ConfJ\Off:

• Robot je posunut na naprogramovanou pozici, s pozicí osy, která je nejblíže
k pozici osy na startu. To znamená, že confdata v instrukci se nepoužívá.
Není proveden žádný dohled konfigurace.

MoveJ s ConfJ\On:
• Robot je posunut na naprogramovanou pozici, s takovou pozicí osy, že

odpovídající konfigurace je stejná nebo blízká naprogramované konfiguraci
v confdata.

• Jestliže je aktivní posun programu nebo korekce dráhy, vzniká riziko, že
naprogramovaná konfigurace se bude lišit od původní pozice. Jako výsledek
může robot provádět velké pohyby osy zápěstí, aby bylo dosaženo
naprogramované konfigurace.

Podrobná informace o ConfL
MoveL s ConfL\Off:

• Robot je posunut podél rovné linie k naprogramované pozici, s pozicí osy,
která je nejblíže k pozici osy na startu. To znamená, že confdata v instrukci
se nepoužívá a není proveden žádný dohled konfigurace.

MoveL s ConfL\On:
• Nejprve se vypočítá koncová pozice ve spojích pomocí naprogramovaného

confdata, aby bylo možné stanovit řešení. Potom jsou porovnány hodnoty
spojů pro konfigurační osy v koncové pozici s odpovídajícími osami pro
startovní pozici.
Jestliže nová konfigurační data jsou v pořádku ve srovnání s bodem startu,
bude povolen pohyb. V jiných případech se robot zastaví v pozici startu s

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 137
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.4 Konfigurace robotu

Pokračování

chybovou zprávou. Podrobnosti o dovolené konfigurační chybě u různých
typů robotů najdete v popisu confdata, Technická referenční
příručka - RAPID - Instrukce, funkce a datové typy.

• Jestliže před začátkem pohybu nebyla hlášena žádná chyba, systém znovu
zkontroluje konfiguraci, když je pohyb dokončen. Jestliže to není stejné jako
naprogramovaná konfigurace, program bude zastaven.

Související informace

Popsáno v:

Technická referenční příručka - RAPID - Instruk-
ce, funkce a datové typy

Definice konfigurace robotu

Pohyb na str 55Aktivace/deaktivace dohledu konfigurace

138 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.4 Konfigurace robotu
Pokračování

2.5 Kinematické modely robotů

Kinematika robotů
Pozice a orientace robotu je určena z kinematického modelu jeho mechanické
konstrukce. Konkrétní modely mechanických jednotek se musí stanovit pro každou
instalaci. U standardních nadřazených a externích robotů ABB jsou tyto modely
předdefinovány v ovladači (řadiči).

Nadřazený robot
Kinematický model nadřazeného robotu modeluje pozici a orientaci nástroje robotu
ve vztahu k jeho základně jako funkci úhlů spojů robotu.
Kinematické parametry určující délky ramen, ofsety a polohy spojů, jsou
předdefinovány v konfiguračním souboru pro každý typ robotu.

xx1100000666

Kalibrační procedura podporuje definici rámce základny nadřazeného robotu ve
vztahu ke světovému rámci.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 139
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.5 Kinematické modely robotů

xx1100000667

Externí robot
Koordinace s externím robotem také vyžaduje kinematický model pro externí robot.
Je podporována řada předdefinovaných tříd 2- a 3-rozměrných mechanických
konstrukcí.
Následující obrázek ukazuje kinematickou konstrukci robotu ORBIT 160B pomocí
předdefinovaného modelu.

xx1100000668

Pokračování na další straně
140 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.5 Kinematické modely robotů
Pokračování

Kalibrační procedury pro definování rámce základny ve vztahu ke světovému rámci
se dodávají pro každou třídu konstrukcí.

xx1100000670

Referenční body na točně pro kalibraci rámce základny
robotu ORBIT 160B ve výchozí (home) pozici pomocí
předdefinovaného modelu.

xx1100000669

Rámec základny robotu ORBIT
160B.

Všeobecná kinematika
Mechanické konstrukce nepodporované předdefinovanými konstrukcemi se mohou
modelovat pomocí všeobecných kinematických modelů. To je možné u externích
robotů.
Modelování je založeno na konvenci Denavit-Hartenberg podle Introduction to
Robotics, Mechanics & Control, autor John J. Craigh (Addison-Wesley 1986).
Následující obrázek ukazuje kinematickou konstrukci robotu ORBIT 160B pomocí
všeobecného kinematického modelu.

xx1100000671

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 141
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.5 Kinematické modely robotů

Pokračování

Kalibrační procedura podporuje definici rámce základny externího robotu ve vztahu
ke světovému rámci.

xx1100000673

Referenční body na točně pro kalibraci rámce
základny robotu ORBIT 160B ve výchozí (home)
pozici (spoje = 0 stupňů).

xx1100000672

Rámec základny robotu ORBIT ORBIT
160B pomocí všeobecného kinematického
modelu.

Související informace

Popsáno v:

Technical reference manual - System parame-
ters

Definice všeobecné kinematiky externího
robotu

142 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.5 Kinematické modely robotů
Pokračování

2.6 Dohled pohybu/detekce kolize

Úvod
Dohled pohybu je název pro soubor funkcí pro vysoce citlivý, na modelu založený
dohled nad pohyby robotu. Dohled pohybu zahrnuje funkčnost pro detekci kolizí,
rušení a nesprávnou definici zatížení. Tato funkčnost se nazývá detekce kolizí
(doplněk Collision Detection).
Detekce kolizí se může spustit, jestliže data pro zátěže upevněné na robotu nejsou
správná. To zahrnuje zátěžová data pro nástroje, data pro užitečné zátěže a zátěže
ramen. Jestliže data pro nástroj nebo užitečnou zátěž nejsou známa, pro jejich
definování je možné použít funkci identifikace zátěže. Data zatížení ramen není
možné identifikovat.
Jakmile je spuštěna detekce kolize, robot se co nejrychleji zastaví. Implicitně se
obrací kroutivý moment a použijí se brzdy, ale je rovněž možno konfigurovat
zastavení, při kterém se brzdy nepoužívají.
Dohled pohybu je běžně aktivní pouze když alespoň jedna osa (včetně pomocných
os) je v pohybu. Když všechny osy stojí v klidu, funkce je deaktivována. Je to proto,
aby se vyloučilo zbytečné spuštění kvůli silám externího procesu. Systémový
parametr Collision detection at standstill aktivuje detekci každé kolize i v klidovém
stavu, více informaci najdete v Technical reference manual - System parameters.

Ladění úrovní detekce kolizí
Detekce kolizí používá variabilní úroveň dohledu. Při nízkých rychlostech je citlivější,
než během vysokých rychlostí. Z toho důvodu by uživatel neměl vyžadovat žádné
ladění funkce při normálních provozních podmínkách. Nicméně, je možné zapnout
a vypnout tuto funkci a ladit úrovně dohledu. Samostatné ladicí parametry jsou
dostupné pro ruční krokování (jogging) a vykonávání programu. Různé ladicí
parametry jsou popsány v Technical reference manual - System parameters.
Existuje instrukce RAPID zvaná MotionSup, která zapíná a vypíná funkci a
modifikuje úroveň dohledu. Je vhodná pro aplikace kde síly externího procesu
působí na robot v určitých částech cyklu. Instrukce MotionSup je popsána v
Technická referenční příručka - RAPID - Instrukce, funkce a datové typy.
Ladicí hodnoty se nastavují v procentech základního ladění, kde 100 % odpovídá
základním hodnotám. Zvyšováním procenta dochází k méně citlivému systému a
snižování přináší opačný efekt. Je důležité si pamatovat: jestliže ladicí hodnoty se
nastavují v systémových parametrech a v instrukci RAPID, obě hodnoty jsou brány
v úvahu. Příklad: Jestliže ladicí hodnota je nastavena v systémových parametrech
na 150 % a ladicí hodnota je nastavena na 200 % v instrukci RAPID, výsledná ladicí
úroveň bude 300 %.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 143
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.6 Dohled pohybu/detekce kolize

xx1100000674

Existuje max úroveň, na kterou může být celková ladicí úroveň detekce kolizí
změněna. Tato úroveň je nastavena automaticky na 300 %, ale může se modifikovat
přes systémový parametr motion_sup_max_level.

Modifikace dohledu pohybu
Kvůli úpravě dohledu pohybu otevřete úlohy.

1 Klepněte na Úloha a zvolte úlohu. Máte-li více než jednu úlohu, musíte
nastavit požadované hodnoty samostatně pro každou úlohu.

2 Klepněte naOFF/ON (Zapnout/Vypnout) pro odstranění nebo aktivaci dohledu
dráhy. Klepněte na -/+ pro upravení citlivosti. Citlivost můžete nastavit mezi

Pokračování na další straně
144 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.6 Dohled pohybu/detekce kolize
Pokračování

0 a 300. Pokud nemáte nainstalovaný doplněk Collision Detection , dohled
dráhy ovlivňuje pouze robot v auto nebo ručním režimu s plnou rychlostí.

3 Klepněte naOFF/ON (Zapnout/Vypnout) pro odstranění nebo aktivaci dohledu
ručního krokování (jog). Klepněte na -/+ pro úpravu citlivosti. Citlivost můžete
nastavit mezi 0 a 300. Pokud nemáte nainstalovaný doplněk Collision
Detection , nastavení nebude mít žádný efekt.

Další informace o doplňku Collision Detection obsahuje příručka Application
manual - Controller software OmniCore.

Digitální výstupy
Digitální výstup MotSupOn je vysoko, když je funkce detekce kolizí aktivní, a nízko,
když funkce není aktivní. Všimněte si, že změna stavu funkce má účinek, když
pohyb začne. Tudíž, jestliže detekce kolizí je aktivní a robot se pohybuje, MotSupOn
je vysoko. Jestliže je robot zastaven a funkce vypnuta, MotSupOn je stále vysoko.
Když se robot začne pohybovat, MotSupOn přepne na nízkou hodnotu.
Digitální výstup MotSupTrigg je vysoko, když se spustí detekce kolizí. Zůstává
vysoko, dokud není potvrzen chybový kód , buď od FlexPendantu nebo přes digitální
vstup AckErrDialog.
Digitální výstupy jsou popsány podrobněji v Operating manual - OmniCore a
Technical reference manual - System parameters.

Omezení
Dohled pohybu je dostupný pouze pro osy robotu. Není dostupný pro pohyby trati,
oběžné stanice nebo jiné externí manipulátory.
Detekce kolizí se deaktivuje, když alespoň jedna osa je provozována v nezávislém
režimu spoje. To je také případ, když se jedná o pomocnou osu, která je
provozována jako nezávislý spoj.
Detekce kolizí se může spustit, když se robot používá v režimu měkkého serva.
Proto je vhodné vypnout detekci kolizí, když robot je v režimu měkkého serva.
Jestliže RAPID instrukce MotionSup se používá pro vypnutí detekce kolizí, bude
mít účinek pouze když se robot začne pohybovat. Výsledkem může být, že digitální
výstup MotSupOn může být dočasně vysoko při spuštění programu, předtím, než
se robot začne pohybovat.
Vzdálenost, na kterou se robot vrací po kolizi, je úměrná rychlosti pohybu před
kolizí. Jestliže se opakovaně objeví kolize při nízké rychlosti, robot se nemusí vrátit
úspěšně, aby uvolnil napětí kolize. Jako výsledek nemusí být možné ručně posunout
robot krokováním (jog) bez dohledového spouštění. V tomto případě použijte
nabídku krokování (jog) pro dočasné vypnutí detekce kolizí a ručně přesuňte robot
pryč od překážky.
V případě tuhé kolize během vykonávání programu může trvat několik sekund, než
se robot začne vracet.
Jestliže je robot upevněn na pásu, detekce kolizí by se měla nastavit na Vypnuto,
když se pás pohybuje. Jestliže není vypnuta, detekce kolizí se může spustit, když
se pás pohne, i když se nejedná o kolizi.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 145
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.6 Dohled pohybu/detekce kolize

Pokračování

Související informace

Popsáno v:

Pohyb na str 55RAPID instrukce MotionSup

Technical reference manual - System parametersSystémové parametry pro ladění

Technical reference manual - System parametersI/O signály dohledu pohybu

Technical reference manual - System parametersDetekce kolize v klidovém stavu

Technical reference manual - System parametersNezávislé zastavení kolize bez brzdy

Operating manual - OmniCoreNačíst identifikaci

146 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.6 Dohled pohybu/detekce kolize
Pokračování

2.7 Singularity

Popis
Některých pozic v pracovním prostoru robotu může být dosaženo použitím
nekonečného počtu konfigurací robotu pro polohování a orientování nástroje. Tyto
pozice, známé jako singulární body (singularity) představují problém při výpočtu
úhlů ramena robotu na základě pozice a orientace nástroje.
Obecně řečeno, robot má dva typy singularit: singularity ramena nebo singularity
zápěstí.
Singularity ramena jsou všechny konfigurace, kde střed zápěstí (průsečík os 4, 5
a 6) končí přímo nad osou 1. Singularity zápěstí jsou konfigurace, kde osa 4 a osa
6 jsou na stejné linii, to znamená, že osa 5 má úhel rovný 0.

xx1100000676

Singularita zápěstí vzniká, když osa 5 je
na 0 stupních.

xx1100000675

Singularita ramena vzniká v místě, kde se střed
zápěstí a osa 1 protínají.

Body singularity robotů bez paralelní tyče
Roboty bez paralelní tyče (roboty se sériovým propojením) mají singularitu zápěstí
a singularitu ramena a navíc, mají třetí druh singularity. Tato singularita se objevuje

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 147
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.7 Singularity

na pozicích robotu, kde jsou v přímé linii střed zápěstí a středy rotace os 2 a 3 (viz
následující obrázek).

xx1100000677

Body singularity sériových linkových robotů se 7 osami
Sériové linkové roboty se 7 osami, jako je IRB 14000/14050, mají všechny singularity
6-osých robotů, ale mají také dvě další singularity.
První z nich je, když osa 2 má úhel shodný s nulou, takže osa 1 a osa 7 jsou ve
stejné linii. To je podobné singularitě zápěstí.
Druhá singularita se váže k výpočtu úhlu ramena a mění se podle konfigurovaného
směru reference, jelikož singularita vzniká, když WCP je ve směru reference. Více
informací najdete v systémovém parametru Arm-Angle Reference Direction v
Technical reference manual - System parameters.

Vykonávání programu prostřednictvím singularit
Během interpolace spoje se problémy neobjevují, když robot prochází singulárními
body.
Když se vykonává lineární nebo kruhová dráha poblíž singularity, rychlosti v
některých spojích (1 a 6/4 a 6) mohou být velmi vysoké. Aby nebyly překročeny
max rychlosti spojů, je snížena rychlost lineární dráhy.
Vysoké rychlosti spojů je možné snížit použitím režimu (SingArea\Wrist), kdy
jsou osy zápěstí interpolovány do úhlů spojů při udržování lineární dráhy nástroje
robotu. Chyba orientace porovnaná s plnou lineární interpolací je nicméně
zavedena.
Všimněte si, že konfigurace robotu se dramaticky mění, když robot prochází blízko
singularity s lineární nebo kruhovou interpolací. Aby se předešlo nové konfiguraci,

Pokračování na další straně
148 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.7 Singularity
Pokračování

první pozice na druhé straně singularity by měla být naprogramována s orientací,
která odstraňuje nutnost nové konfigurace.
Všimněte si také, že robot nesmí být ve své singularitě, když se pohybují jen externí
spoje. Může to způsobit zbytečné pohyby spojů robotu.
U robotů se 7 nebo více osami může být robot schopen automaticky nastavovat
úhel ramena, aby vyloučil některé singularity, viz Operating manual - OmniCore.

Ruční posuv (jogging) skrz singularity
Během interpolace spoje se problémy neobjevují, když robot prochází singulárními
body.
Během lineární interpolace robot nemůže procházet singulárními body. Pohyb
blízko k singularitám může vést k nižší rychlosti TCP při velkých pohybech kloubu
(spoje).

Související informace

Popsáno v:

Technická referenční příručka - RAPID - Instruk-
ce, funkce a datové typy

Kontrola, jak robot bude reagovat na vyko-
návání poblíž singulárních bodů

Technická referenční příručka - Přehled RAPID 149
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.7 Singularity
Pokračování

2.8 Omezení optimalizovaného zrychlení

Popis
Zrychlení a rychlost robotu jsou stále kontrolovány, takže definované limity nejsou
překračovány.
Limity jsou definovány uživatelským programem (například naprogramovaná
rychlost nebo AccSet) nebo definovány samotným systémem (například max
točivý moment v převodovce nebo motoru, max točivý moment nebo síla v
konstrukci robotu).

Zátěžová data (Načíst data)
Dokud jsou zátěžová data (hmotnost, těžiště a setrvačnost) v rámci limitů na
zátěžovém grafu a správně vložena do nástrojových dat, potom nejsou třeba žádné
uživatelsky definované limity zrychlení a provozní životnost robotu je automaticky
zajištěna.
Jestliže zátěžová data leží mimo limity na zátěžovém grafu, potom mohou být
nezbytná speciální omezení, to znamená AccSet nebo nižší rychlost, jak stanoví
ABB na vyžádání.

Zrychlení TCP
Zrychlení TCP a rychlost jsou řízeny plánovačem dráhy s pomocí kompletního
modelu ramen robotu včetně uživatelsky definovaných zátěží.
Zrychlení a rychlost TCP závisí na pozici, rychlosti a zrychlení všech os v jakémkoliv
okamžiku a proto skutečné zrychlení stále kolísá. Tímto způsobem se získává
optimální doba cyklu, tj. jeden nebo více limitů je na své max hodnotě v každém
okamžiku. To znamená, že motoru a konstrukce robotu jsou stále využívány na
svoji max kapacitu.

150 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.8 Omezení optimalizovaného zrychlení

2.9 Světové zóny

Popis světových zón
Při používání světových zón (doplněk World Zones) se robot zastaví nebo výstup
je automaticky nastaven, jestliže robot je uvnitř speciální, uživatelsky definované
oblasti. Zde je několik příkladů aplikací:

• Když dva roboty sdílejí část svých vlastních pracovních oblastí. Možnost
kolize dvou robotů může být bezpečně eliminována dohledem nad těmito
signály.

• Když je externí vybavení umístěno uvnitř pracovní oblasti robotu. Zakázaná
pracovní oblast může být vytvořena kvůli ochraně robotu před kolizí s tímto
vybavením.

• Indikace, že robot je v pozici, kde je přípustné spustit vykonávání programu
od PLC.

VAROVÁNÍ

Z bezpečnostních důvodů by se tento software neměl používat pro ochranu
personálu. Místo toho použijte hardwarové ochranné vybavení.

Používání světových zón
Použít světové zóny:

• Indikace, že středový bod nástroje je v konkrétní části pracovní oblasti.
• Vymezení pracovní oblasti pro robot, aby se předcházelo kolizi s nástrojem.
• Úprava současné společné pracovní oblasti pro dva roboty tak, aby byla

dostupná vždy jen pro jeden robot.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 151
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.9 Světové zóny

Definice světových zón ve světovém souřadném systému
Světové zóny jsou definovány ve světovém souřadném systému. Strany boxů jsou
paralelní k osám souřadnic a osa válce je paralelní s osou z světového souřadného
systému.

xx1100000678

Světová zóna může být definována uvnitř nebo vně tvaru boxu, koule nebo válce.
Světová zóna může být definována také ve spojích. Zóna bude definována mezi
(uvnitř) nebo nikoliv mezi (vně) dvěma hodnotami spojů u jakéhokoliv robotu nebo
pomocných os.

Dohled nad TCP robotu

xx1100000679

Pohyb středového bodu nástroje je sledován a nikoliv jiné body na robotu.
TCP je vždy sledován bez ohledu na provozní režim, například, vykonávání
programu a ruční posuv (jogging).

Stacionární TCP
Jestliže robot drží pracovní objekt a pracuje na stacionárním nástroji, použije se
stacionární TCP. Jestliže tento nástroj je aktivní, nástroj se nebude pohybovat a
jestliže je uvnitř světové zóny, potom je vždy uvnitř.

Pokračování na další straně
152 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.9 Světové zóny
Pokračování

Akce

Nastavit digitální výstup, když TCP je uvnitř světové zóny
Tato činnost nastavuje digitální výstup, když TCP je uvnitř světové zóny. Je to
vhodné pro indikaci, že robot se zastavil v určené oblasti.

xx1100000680

Nastavit digitální výstup předtím, než TCP dosáhne světové zóny
Tato činnost nastavuje digitální výstup předtím, než TCP dosáhne světové zóny.
Může se používat pro zastavení robotu právě uvnitř světové zóny.

xx1100000681

Zastavit robot předtím, než TCP dosáhne světové zóny
Světová zóna může být definována tak, že je vně pracovní oblasti. Robot se potom
zastaví se středovým bodem nástroje právě vně světové zóny, když směřuje k
zóně.

xx1100000682

Když byl robot přesunut do světové zóny definované jako vnější pracovní oblast,
například, uvolněním brzd a ručním zatlačením, potom je jediným způsobem, jak
se dostat ven ze zóny, je ruční krokování (jogging) nebo ruční zatlačení s
uvolněnými brzdami.

Minimální velikost světových zón
Dohled nad pohybem středových bodů nástroje je prováděn na diskrétních bodech
s časovým intervalem mezi nimi, který závisí na rozlišení dráhy. Je na uživateli,

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 153
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.9 Světové zóny

Pokračování

aby vytvořil zóny dostatečně velké, aby se robot nemohl pohybovat skrz zónu, aniž
by byl zkontrolován uvnitř zóny.
Zajistěte, aby zóny byly poněkud větší, než je min velikost.

xx1100000683

Jestliže se stejný digitální výstup používá pro více než jednu světovou zónu,
vzdálenost mezi zónami musí překročit min velikost, jak je vidět v tabulce dole,
aby byl vyloučen nesprávný status pro tento výstup.
Je možné, že robot může přejít právě rohem zóny bez toho, že by byl zaznamenán,
jestliže čas, po který je robot uvnitř zóny, je příliš krátký. Proto udělejte velikost
zóny větší, než je nebezpečná oblast.

xx1100000684

Jestliže se světové zóny používají v kombinaci měkkého serva, velikost zóny musí
být dodatečně zvětšena, aby se kompenzovala prodleva od měkkého serva.
Prodleva měkkého serva je vzdálenost mezi TCP robotu a dohledem ve světové
zóně v době interpolace. Prodleva měkkého serva se prodlouží s větší měkkostí
definovanou v instrukci SoftAct.

Maximální počet světových zón
Ve stejném čase může být definováno max 20 světových zón.

Pokračování na další straně
154 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.9 Světové zóny
Pokračování

Výpadek napájení, restart a pokračování běhu
Stacionární světové zóny budou vymazány při výpadku napájení a musí být znovu
vloženy při zapnutí napájení událostní rutinou připojenou k události POWER ON.
Dočasné světové zóny přežijí výpadek napájení, ale budou vymazány, když je
načten nový program nebo když je program spuštěn z hlavního programu (PP na
Main nebu PP na rutinu).
Digitální výstupy pro světové zóny budou aktualizovány nejprve u Motors on. To
znamená, když je ovladač restartován, statut světové zóny bude nastaven během
startu na vnější. Nejprve bude po restartu světové zóny správně aktualizován
MOTORS ON.
Jestliže robot je posunut během MOTORS OFF, statut světové zóny nebude
aktualizován až do dalšího příkazu MOTORS ON.
Tvrdé nouzové zastavení (nikoliv SoftAS, SoftGS nebo SoftES) může mít za
výsledek nesprávný statut světové zóny, jelikož robot se může pohybovat během
pohybu zastavení dovnitř nebo ven ze zóny během bez aktualizace jakýchkoliv
signálů světové zóny. Signály světové zóny budou správně aktualizovány po
příkazu MOTORS ON.

Související informace

Souřadné systémyPrincipy pohybu a I/O

Technická referenční příručka - RAPID - Instrukce, funkce a
datové typy

Datové typy:
• wztemporary

• wzstationary

• shapedata

Technická referenční příručka - RAPID - Instrukce, funkce a
datové typy

Instrukce:
• WZBoxDef

• WZSphDef

• WZCylDef

• WZHomeJointDef

• WZLimJointDef

• WZLimSup

• WZDOSet

• WZDisable

• WZEnable

• WZFree

Technická referenční příručka - Přehled RAPID 155
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.9 Světové zóny

Pokračování

2.10 I/O principy

Popis
Obecně má robot jednu nebo více I/O desek. Každá z desek má několik digitálních
a/nebo analogových kanálů, které musí být připojeny k logickým signálům předtím,
než se mohou používat, To se provádí v systémových parametrech a už to bylo
obvykle provedeno pomocí standardních jmen před dodáním robotu. Logické
signály se musí vždy používat během programování.
Fyzický kanál může být připojen k několika logickým signálům, ale může být i bez
logických připojení, jak je znázorněno v následujícím obrázku.
Aby bylo možné používat I/O desku, jejím kanálům musí být přiděleny logické signály. Na následujícím
obrázku je fyzický výstup 2 připojen ke dvěma odlišným logickým signálům. IN16, na druhé straně,
nemá žádné logické signály a proto nemůže být použit.

xx1100000685

Vlastnosti signálů
Vlastnosti signálu závisí na použitém fyzickém kanálu, stejně tak na skutečnosti,
jak je kanál definován v systémových parametrech. Fyzický kanál určuje časové
prodlevy a napěťové úrovně (viz specifikace produktu pro řadič robotu). Vlastnosti,
časy filtru a škálování mezi naprogramovanými a fyzickými hodnotami jsou
definovány v systémových parametrech.
Když je zdroj napájení k robotu zapnut, všechny signály se nastaví na nulu. Nejsou,
nicméně, ovlivněny nouzovým zastavením nebo podobnými událostmi.
Výstup je možné nastavit na jedna nebo nula z programu. To může být učiněno
také pomocí prodlevy nebo ve formě impulsu. Jestliže jsou impuls nebo opožděná
změna přikázány pro výstup, vykonávání programu pokračuje. Změna je potom
provedena bez ovlivnění zbytku vykonávání programu. Jestliže, na druhé straně,
nová změna je přikázána pro stejný výstup před uplynutím daného času, první
změna není provedena.

Pokračování na další straně
156 Technická referenční příručka - Přehled RAPID

3HAC065040-014 Revize: Q
© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.10 I/O principy

Následující obrázek ukazuje příklad kdy není instrukce SetDO vůbec provedena, protože nový příkaz

je zadán před uplynutím doby prodlevy.

xx1100000686

Signály připojené k přerušení
Funkce přerušení RAPID se mohou připojovat ke změnám digitálních signálů.
Funkci je možné volat při zvedajícím se nebo padajícím okraji signálu. Nicméně,
jestliže se digitální signál mění velmi rychle, přerušení může být minuto.
Například, jestliže je funkce připojena k signálu nazývanému do1 a programový
kód je následující:

SetDO do1,1;

SetDO do1,0;

Signál nejprve půjde vysoko (1) a potom nízko (0) během několika málo milisekund.
V tomto případě může být přerušení ztraceno. Abyste se ujistili, že přerušení
nebude ztraceno, zajistěte nastavení výstupu před jeho resetováním.
Například:

SetDO do1,1;

WaitDO do1 ,1;

SetDO do1,0;

S touto metodou nebudou žádná přerušení ztracena.

Systémové signály
Logické signály se mohou vzájemně propojovat prostřednictvím speciálních
systémových funkcí. Jestliže, například, vstup je připojen k systémové funkci
Start, spuštění programu se automaticky generuje, jakmile je zapnut tento vstup.
Tyto systémové funkce jsou obecně zapínány pouze v automatickém režimu.

Křížová propojení
Digitální signály se mohou vzájemně propojovat tak, že automaticky ovlivňují jeden
druhý:

• Výstupní signál může být připojen k jednomu nebo více vstupním nebo
výstupním signálům.

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 157
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.10 I/O principy

Pokračování

• Vstupní signál může být připojen k jednomu nebo více vstupním nebo
výstupním signálům.

• Jestliže stejný signál je použit v několika křížových spojeních, hodnota tohoto
signálu je stejná jako hodnota, která byla zapnuta (změněna) nejpozději.

• Křížová spojení mohou být vzájemně propojena, jinými slovy, jedno křížové
spojení může ovlivňovat druhé. Nicméně, nesmí být propojena takovým
způsobem, aby tvořila „bludný kruh“, například křížové spojení di1 k di2,
zatímco di2 je křížově propojeno k di1.

• Jestliže je křížové spojení na vstupním signálu, odpovídající fyzické spojení
je automaticky vypnuto. Jakékoliv změny k tomuto fyzickému kanálu nebudou
tedy zjištěny.

• Impulsy nebo prodlevy nejsou přenášeny přes křížová spojení.
• Logické podmínky mohou být definovány pomocí NOT, AND, and OR.

PopisPříklady

Jestliže se di1 změní, potom di2, di3 a do4 budou změněny na
odpovídající hodnotu.

di2=di1

di3=di2

do4=di2

Jestliže do7 je nastaveno na 1, do8 bude také nastaveno na 1.
Jestliže di5 je potom nastaveno na 0, do8 bude také změněno
(navzdory faktu, že do7 je stále 1).

do8=do7

do8=di5

do5 je nastaveno na 1, když di6 a do1 jsou nastaveny na 1.do5 = di6 AND
do1

Omezení
Max 10 signálů může pulzovat ve stejnou dobu a max 20 signálů může být ve
stejnou dobu zpožděno.

Související informace

Další informace

Technical reference manual - System parametersDefinice I/O desek a signálů

Vstupní a výstupní signály na str 63Instrukce pro zpracování I/O

Operating manual - OmniCoreRuční manipulace I/O

158 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

2 Programování pohybu a V/V (I/O)
2.10 I/O principy
Pokračování

3 Glosář
Glosář

PopisTermín

Části instrukce, které mohou být změněny, to znamená všechno
kromě jména instrukce.

Argument

Použitelný režim, když je volič provozního režimu nastaven naAutomatický režim

xx1100000688

Jedna část záznamu.Komponent

Pozice os robotu na konkrétním místě.Konfigurace

Data, která je možné měnit pouze ručně.Konstanta

Generovaná dráha při přecházení fly-by bodu.Rohová dráha

Část rutiny nebo dat, která definuje vlastnosti.Deklarace

Dialogové boxy na FlexPendantu musí být vždy potvrzeny (ob-
vykle klepnutím na OK nebo Cancel) dříve, než mohou být za-
vřeny.

Dialog/Dialogový box

Samostatná část rutiny, kde je možné se postarat o chybu.
Normální vykonávání může být potom znovu spuštěno automa-
ticky.

Chybový handler

Sekvence dat a spojených operandů; například reg1+5 or
reg1>5.

Výraz

Bod, který robot pouze přejde v blízkosti - bez zastavení. Vzdá-
lenost k tomuto bodu závisí na velikosti naprogramované zóny.

Fly-by bod

Rutina, která vrací hodnotu.Funkce

Řada digitálních signálů, které jsou seskupeny dohromady a
řešeny jako jeden signál.

Skupinový signál

Událost, která dočasně přerušuje vykonávání programu a pro-
vádí trap rutinu.

Přerušení

Elektrické vstupy a výstupy.I/O

Rutina, která se obvykle spouští při stisknutí tlačítka startu.Hlavní (Main) rutina

Použitelný režim, když je přepínač provozního režimu nastaven
na

Ruční režim

xx1100000687

Skupina pomocných os.Mechanická jednotka

Skupina rutin a dat, které je součástí programu.Modul

Pokračování na další straně
Technická referenční příručka - Přehled RAPID 159
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

3 Glosář

PopisTermín

Stav robotu, tzn. jestli je zapnut přívod elektřiny k motorům nebo
nikoliv.

Motory zapnuty/vypnuty

Panel umístěný v přední části ovladače (řadiče).Panel operátora

Směr koncového efektoru.Orientace

Vstupní data rutiny odeslaná s voláním rutiny. Odpovídá to ar-
gumentu instrukce.

Parametr

Proměnná, jejíž hodnotou je perzistent.Perzistent

Rutina, která může po zavolání nezávisle formovat instrukci.Procedura

Sada instrukcí a dat, která definuje úlohu robotu.Program
Programy nicméně neobsahují systémové moduly.

Data, ke kterým je možné přistupovat v kompletním modulu
nebo v kompletním programu.

Programová data

Module zahrnutý do programu robotu a který bude přenesen při
kopírování programu na disketu.

Programový modul

Složený datový typ.Záznam

Podprogram.Rutina

Lokální data, která mohou být použita pouze v rutině.Data rutiny

Instrukce, která bude vykonána jako první při spuštění vykoná-
vání programu.

Bod startu

Bod, u kterého se robot zastaví, předtím než pokračuje k dalšímu
bodu.

Bod zastavení

Modul, který je vždy přítomen v paměti programu. Když je nový
program načítán, systémové moduly zůstávají v paměti progra-
mu.

Systémový modul

Nastavení, která definují vybavení a vlastnosti robotu; jinými
slovy - konfigurační data.

Systémové parametry

Bod, obecně na špičce nástroje, který se pohybuje podél napro-
gramované dráhy naprogramovanou rychlostí.

Střední bod nástroje
(TCP)

Rutina, která definuje, co se má stát, když se objeví konkrétní
přerušení.

Trap rutina

Data, která mohou být změněna z programu, ale která ztrácejí
svoji hodnotu (vracejí se ke své počáteční hodnotě), když je
program spuštěn od začátku.

Proměnná

Sférický prostor, který obklopuje fly-by bod. Jakmile robot
vstoupí do této zóny, začne se pohybovat k další pozici.

Zóna

160 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

3 Glosář
Pokračování

Appendix
Best practice for RAPID is currently only available in English.

Technická referenční příručka - Přehled RAPID 161
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Appendix

Best practice for programming robots

Introduction
This document outlines best practices for programming robots to achieve high performance
and reliability. It provides guidelines on task prioritization, RAPID instruction execution,
performance optimization, and mathematical efficiency. The recommendations are based on
practical experience and aim to help developers structure their programs effectively.

Task prioritization
One of the key aspects of robot programming is setting task priorities correctly. The most
important task, typically the motion task that moves the robot, should be set as the
foreground task. This is achieved using the parameter 'TaskInForeground'.

In a RAPID program, instructions consist of direct execution and waiting instructions. If a
foreground task runs direct instructions without waiting time, background tasks stay
waiting. One way to solve the problem is to add waiting time to the foreground task. Wait
time can also be useful in background tasks to balance the system's resource usage.

RAPID instruction execution
There is a limit to how many simple RAPID instructions can be executed per millisecond.
When this limit is reached, the execution will prioritize instructions in the following order:
Safety, Motion, I/O communication, RAPID, and other communication. For RobotWare 7, the
limit is 15, for RobotWare 6, it is 42. In RobotWare 7, this limit can be increased to 42.

However, if the execution in the task in the foreground has no waiting time, then the tasks in
the background will not get a chance to execute regardless of the limit.

RAPID instruction complexity
Compound RAPID instructions execute many simple RAPID instructions in one call. This
makes it hard to know how many instructions per millisecond are actually used. In general,
all instructions listed in Technical reference manual – RAPID Instructions, Functions and Data
types are simple instructions.

Structure the program for priority
If a program runs at maximum instruction capacity for the higher-priority domains, lower-
priority domains may be halted. This behavior should be considered when designing the
program structure.

Structure the program to perform only essential tasks at any given moment. Avoid including
non-essential instructions in every cycle.

For example, split the program into procedures. In the following example, the high priority
procedures are executed in every cycle, while medium priority procedures are executed
every 5th cycle, and low priority every 100th cycle.

VAR num cycleCounter := 0;
PROC main()
 DoHighPriorityProcs;
 IF (cycleCounter MOD 5) = 0 THEN
 DoMediumPriorityProcs;
 ENDIF
 IF (cycleCounter MOD 100) = 0 THEN
 DoLowPriorityProcs;
 ENDIF
 WaitTime 0.1;
 cycleCounter := cycleCounter + 1;
ENDPROC

Shared modules save memory instead of duplicating data in many tasks.

Performance considerations
Avoid performance-consuming mathematical calculations in the RAPID program. Instead,
use existing RAPID instructions for mathematical operations, such as matrix calculations.
See mathematical instructions in RAPID Overview.

Position, path and speed programming
When programming positions, avoid setting the fly-by zone to 0 when the speed is higher
than 70 mm/s. A higher zone value requires fewer resources and improves performance.
Use 0 only where precision is critical.

Try to program paths with as long segments as possible, as this reduces the load. If short
segments are required, then try lowering the speed.

Event driven execution
It is recommended to have events triggering execution instead of polling loops running
without wait time that are checking conditions. For example:

Use WaitDI, WaitDO, WaitGI, WaitGO, WaitAI, WaitAO
instead of having
WaitUntil mydo1=1 \Pollrate:=0.004;

Or
 WHILE do1=0 DO
 ! Do some stuff
 ENDWHILE

Costly execution
Some instructions such as IF or FOR loops can become very costly. For example, if used for
resetting arrays which take a long time. This can be simplified by ResetData.

Good practice 1 - Use of constant to initialize the values that I want to use
CONST triggios trigsingle{1}:=[[TRUE,0,TRUE,0,"do6",1]];
TriggLIOs p2, v500, \TriggData1:=trigsingle, z50, tool1;

Good practice 2 - Use of constant for array dimension. No need to use Dim function in FOR
loop
Use the constant triggios_init that can initialize most of the record component. Then
initialize values for the specifics.

CONST num TRIGGIOS_SIZE:=5;
CONST triggios triggios_init:=[TRUE,0,TRUE,0,stEmpty,1];
VAR triggios trigiosarr{TRIGGIOS_SIZE};

FOR i FROM 1 TO TRIGGIOS_SIZE DO
trigiosarr{i}:=triggios_init;

ENDFOR

trigiosarr{1}.signalname:="do1";
trigiosarr{1}.distance:=1;
trigiosarr{2}.signalname:="do2";
trigiosarr{2}.distance:=5;
trigiosarr{3}.signalname:="do3";
trigiosarr{3}.distance:=10;
trigiosarr{4}.signalname:="do4";
trigiosarr{4}.distance:=15;
trigiosarr{5}.signalname:="do5";
trigiosarr{5}.distance:=20;
TriggLIOs p2, v500, \TriggData1:=trigiosarr, z50, tool1;

Constants consume less memory than VAR, and VAR consumes less than PERS. See RAPID
Kernel.

Communication
WebApp UI update frequency should be considered, as this communication takes
bandwidth from other communication with the controller.

MultiMove considerations
In a MultiMove setup, declaring variables as TASK PERS is a good idea instead of just using
PERS. TASK PERS gives you unique variables per task. If declaring with only PERS then the
variables share the content between the tasks.

Paths with positioners
If a positioner is used in coordinated movements, it is a good idea to increase the size of the
positioner’s zone in zonedata, so the positioner can start to move earlier. This reduces the
risk of forcing the robot to move through the zone at a lower speed than programmed.

Conclusion
By following these best practices, developers can ensure their robot programs are efficient,
reliable, and maintain high performance. Proper task prioritization, optimized instruction
execution, and thoughtful program structure are key to successful robot programming.

If certain functionality is missing, then contact ABB Robotics to discuss if it is possible to
create new RAPID instructions or similar to simplify programming and speed up execution.

Tato stránka je záměrně prázdná

Rejstřík
.modx, 17
.sysx, 17

7
7-osé roboty, 148

A
aliasové datové typy, 27
AND, 36
argument, 159

podmíněný, 40
argumenty

popis, 11
aritmetické funkce, 83
aritmetické výrazy, 35
atomický datový typ, 27
automatický režim, 159

B
binární komunikace, 67
bitové funkce, 84
blokátory místa, 15
bod startu, 160
bod zastavení, 160
bool, 49

C
celek, 27
celky

výrazy, 39
citlivost skupiny dat, 12
confdata, 136
ConfJ, 137
ConfL, 137
CONST, 32
chybová čísla, 74
chybové handlery, 75
chybový handler, 159

č
časové instrukce, 81
čtvrtinové otáčky, 136

D
data, 27

deklarace, 29
iniciační, 32
konstanta, 29
perzistent, 29
popis, 11
používaná ve výrazech, 38
program, 29
proměnná, 29
přidělování hodnoty, 48
rámec, 29
rutina, 29
třída paměti, 33

data rutiny, 29, 160
datové typy, 27

alias, 27
atomický, 27
komponenty, 27
nehodnotový, 27
poloviční hodnota, 27
záznam, 27

datové typy types
celky, 27

deklarace, 159
konstanty, 32
modul, 18
perzistenty, 31
proměnné, 30
rutina, 23

deklarace funkce, 23
deklarace modulu, 18
deklarace procedury, 23
deklarace rutiny, 23
deklarace trap, 24
detekce kolize, 143
detekce kolizí, 61
dialogový box, 159
DIV, 35
dnum, 49
dohled

konfigurace robotu, 136
dohled konfigurace robotu, 136
dohled pohybu, 143
doplňky, 88

E
ERRNO, 76

F
fly-by bod, 121, 159
fly-by body, 132
fronty zpráv RAPID, 69
funkce, 21, 159
funkce souborových operací, 87

G
globální

data, 29
rutina, 21

glosář, 159

H
hlavička souboru, 15
hlavní (main) rutina, 159
hlavní rutina, 18
hodiny, 81

I
I/O, 159
I/O principy, 156
I/O signály, 63
I/O stanovení polohy, 134
I/O synchronizace, 132
identifikace zatížení, 61
identifikátory, 13
indexování dopravníku, 60
informace o systému, 88
iniciační data, 32
INOUT, 22
instrukce

popis, 11
tok programu, 46
uchopovací seznamy, 45

instrukce čekat, 48
instrukce hledání, 56
instrukce toku programu, 46
interpolace, 117, 121
interpolace spoje, 117

Technická referenční příručka - Přehled RAPID 163
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Rejstřík

K
kalibrace, 92
kinematické modely, 139
kinematika robotů, 139
komentář, 14
komentáře, 48
komentáře v UTF-8, 14
komponent záznamu, 27, 159
komunikace I/O zařízení, 67
komunikace pomocí zásuvek, 68
komunikace s rawbytes, 68
komunikační instrukce, 66
konfigurace, 159

robot, 135
konfigurace osy, 135
konfigurace robotu, 135
konfigurační data, 89
konstanta, 29, 159
konstanty, 32
Konstantyinicializační

inicializační hodnoty, 32
konverze, 49, 93
koordinované pomocné osy, 110
korekce dráhy, 59
kruhová interpolace, 118
kruhový pohyb, 55, 118
křížová propojení, 157

L
lineární interpolace, 117
lineární pohyb, 55, 117
logické hodnoty, 14
logické výrazy, 36
lokální

data, 29
rutina, 21

M
matematické instrukce, 83
Mechanická jednotka, 159
měkké servo, 130
MOD, 35
modifikovaná lineární interpolace, 119
modul, 159
moduly, 17

popis, 17
motory zapnuty/vypnuty, 160
MultiMove, 58, 96
Multitasking, 95

N
načítání modulů, 48
nastavení pohybů

instrukce, 50
nehodnotové datové typy, 27
nezávislé osy, 59, 127
NOT, 36
num, 49
numerické hodnoty, 14

O
obnovení po chybě, 74
OR, 36
orientace, 160

P
paměť, 88

panel operátora, 160
panel volby úloh, 90
parametr, 22, 160
PERS, 31
perzistent, 29, 160
perzistenty, 31

inicializační hodnoty, 32
podmíněný argument, 40
pohyb, 55
pohybová data, 62
pohybové instrukce, 55
pohyb spoje, 55, 117
pole

proměnné, 31
výrazy, 38

polohodnotové datové typy, 27
polohovací instrukce, 55
pomocné osy, 110
poziční funkce, 61
pravidla syntaxe, 9
priorita

operátory, 42
úlohy, 99

priorita operátoru, 42
procedura, 21, 160
program, 17, 160
programová data, 27, 29, 160
programové moduly, 18
programový modul, 160
proměnná, 29, 160
proměnné, 30

inicializační hodnoty, 32
pole, 31

protokol událostí, 77
prováděcí handler, 90
prováděcí úroveň, 90
předdefinovaná data, 20
přerušená dráha, 61
přerušení, 56, 70, 159
přídavné osy, 58
přidělování hodnoty datům, 48

R
rámec

data, 29
routina, 21

restartovat ovladač, 89
rezervovaná slova, 13
robot se sériovým propojením, 147
rohová dráha, 121, 159
rovnocenné datové typy, 27
ruční režim, 159
rutina, 21, 160
rutiny

popis, 11

ř
řetězcové funkce, 93
řetězcové výrazy, 37
řetězec, 14

S
servis, 92
servisní informace, 91
servo sledování, 60
signály, 63, 156
singularity, 119, 147

164 Technická referenční příručka - Přehled RAPID
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Rejstřík

skupinový signál, 159
sledování dopravníku, 60
soft servo, 52
souběžné vykonávání, 132
souborové instrukce, 67
souřadné systémy, 139
souřadnicové systémy, 105
souřadný systém nástroje, 113
souřadný systém objektu, 108
souřadný systém posunu, 109
souřadný systém základny, 106, 111
souřadný systém zápěstí, 113
stacionární TCP, 114
stavové funkce, 61
stop, 131
string, 49
střední bod nástroje, 105, 160
světové zóny, 53, 151
světový souřadný systém, 106
switch, 22, 49
symboly, 14
synchronizace, 132
synchronizace dráhy, 134
systémová data, 88
systémové moduly, 18
systémové parametry, 160
systémový modul, 160

T
TCP, 105, 160

stacionární, 114
trap routiny, 70
trap rutina, 21, 160
trap rutiny, 73

typ události, 90

U
uchopovací seznamy, 45
ukončení rutiny, 23
úlohy, 89, 95
UNDO, 78
UTF-8, 14
uživatelský souřadný systém, 107, 110

V
VAR, 30
volání funkcí, 40
volání procedury, 24
volitelný parametr, 22
vstupní signály, 63
výraz, 159
výrazy

aritmetické, 35
logický, 36
řetězec, 37

výstupní signály, 63

X
XOR, 36

Z
zastavení provádění programu, 47
záznam, 27, 160
záznamník dráhy, 60
záznamy

výrazy, 38
zóna, 121, 160
zpětné handlery, 101
zpětné vykonávání, 101

Technická referenční příručka - Přehled RAPID 165
3HAC065040-014 Revize: Q

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.

Rejstřík

ABB Robotics Sweden AB
S-721 71 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB Robotics Norway AS
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Robotics (Shanghai) Limited
No. 39, 99 Miaoqiao Road,
Pudong New Area,
Shanghai, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics
3H

A
C
0
65
0
40

-0
14
,R
ev

Q
,c
s

© Copyright 2019-2025 ABB. Všechna práva vyhrazena.
Specifikace podléhají změně bez nutnosti oznámení.

	Titulní strana
	Obsah
	Přehled této příručky
	Jak číst tuto příručku
	1 Základní programování RAPID
	1.1 Struktura programu
	1.1.1 Úvod
	Instrukce
	Rutiny
	Data
	Jiné funkce

	1.1.2 Základní prvky
	Identifikátory
	Rezervovaná slova

	Mezery a znaky na nové řádce
	Numerické hodnoty
	Logické hodnoty
	Řetězcové hodnoty
	Komentáře
	Blokátory místa
	Hlavička souboru
	Syntaxe
	Identifikátory
	Numerické hodnoty
	Logické hodnoty
	Hodnoty řetězce
	Komentáře
	Znaky

	1.1.3 Moduly
	Úvod
	Formát souboru umožní používání znaků UTF8 v řetězcích a komentářích
	Soubory ve formátu .mod nebo .sys

	Programové moduly
	Systémové moduly
	Deklarace modulu
	Struktura souborů programu
	Syntaxe
	Deklarace modulu

	1.1.4 Předdefinovaná data
	Úvod
	Obsah

	1.1.5 Rutiny
	Úvod
	Rámec rutiny
	Parametry
	Ukončení rutiny
	Deklarace rutiny
	Deklarace procedury
	Deklarace funkce
	Deklarace trap

	Volání procedury
	Syntaxe
	Deklarace rutiny
	Parametry
	Deklarace procedury
	Deklarace funkce
	Deklarace rutiny trap
	Volání procedury

	1.2 Programová data
	1.2.1 Datové typy
	Úvod
	Nehodnotové datové typy
	Rovnocenné (alias) datové typy
	Syntaxe

	1.2.2 Deklarace dat
	Úvod
	Datový rámec
	Příklad
	Programová data
	Data rutiny
	Příklad

	Deklarace proměnné
	Deklarace perzistentu
	Deklarace konstanty
	Initiating data
	Třída paměti
	Syntaxe
	Deklarace dat
	Deklarace proměnných
	Deklarace perzistentu
	Deklarace konstanty

	1.3 Výrazy
	1.3.1 Typy výrazů
	Popis
	Aritmetické výrazy
	Logické výrazy
	Řetězcové výrazy

	1.3.2 Používání dat ve výrazech
	Úvod
	Pole
	Záznamy

	1.3.3 Používání celků ve výrazech
	Úvod
	Požadavky

	1.3.4 Používání volání funkcí ve výrazech
	Úvod
	Argumenty
	Parametry

	1.3.5 Priorita mezi operátory
	Pravidla priority

	1.3.6 Syntaxe
	Výrazy
	obsluhu robota
	Konstantní hodnoty
	Data
	Celky
	Volání funkcí
	Speciální výrazy
	Parametry

	1.4 Instrukce
	Popis
	Uchopovací seznamy
	Syntaxe

	1.5 Kontrola toku programu
	Úvod
	Programovací zásady
	Volání jiné rutiny
	Řízení programu v rámci rutiny
	Zastavení provádění programu
	Zastavit aktuální cyklus

	1.6 Různé instrukce
	Úvod
	Přidělování hodnoty datům
	Čekat
	Komentáře
	Načítání programových modulů
	Různé funkce
	Základní data
	Konverzní funkce

	1.7 Nastavení pohybů
	Úvod
	Programovací zásady
	Funkce max. rychlosti TCP
	Definování rychlosti
	Definování zrychlení
	Definování správy konfigurace
	Definování užitečné zátěže
	Definování chování poblíž singulárních bodů
	Aktivace a deaktivace zásobníku událostí
	Potlačit varování rohové dráhy
	Nahrazení programu
	Soft servo
	Seřídit ladicí hodnoty robotu
	Světové zóny
	Různé pro nastavení pohybů

	1.8 Pohyb
	Zásada pro pohyb robotu
	Programovací zásady
	Polohovací instrukce
	Hledání
	Aktivace výstupů nebo přerušení na konkrétních pozicích
	Ovládání analogového výstupního signálu úměrného ke skutečnému TCP
	Kontrola pohybu, jestliže probíhá chyba/přerušení
	Získat info robotu v systému MultiMove
	Kontrolování přídavných os
	Nezávislé osy
	Korekce dráhy
	Záznamník dráhy
	Sledování dopravníku
	Servo sledování pro indexování dopravníku
	Identifikace zatížení a kolize kolizí
	Poziční funkce
	Zkontrolovat přerušenou dráhu po výpadku napájení
	Stavové funkce
	Pohybová data
	Základní data pro pohyby
	Související informace

	1.9 Vstupní a výstupní signály
	Signály
	Programovací zásady
	Změna hodnoty signálu.
	Čtení hodnoty vstupních signálů
	Načítání hodnoty výstupních signálů
	Testování vstupních nebo výstupních signálů
	Aktivace a deaktivace I/O modulů
	Potlačení a povolení hlášení z modulů I/O
	Definování vstupních a výstupních signálů
	Získat stav sítě a zařízení I/O
	Načíst informace skupinového signálu

	1.10 Komunikace
	Probíhá komunikace přes I/O zařízení a soubory
	Programovací zásady
	Komunikace pomocí FlexPendantu, funkční skupina TP
	Komunikace pomocí FlexPendantu, funkční skupina UI
	Načítání z, nebo zapisování do sériového kanálu/souboru založeného na znacích
	Probíhá komunikace pomocí binárních I/O zařízení nebo souborů
	Komunikace pomocí rawbytes
	Data pro I/O zařízení nebo soubory
	Komunikace pomocí zásuvek
	Komunikace pomocí front zpráv RAPID

	1.11 Přerušení
	Úvod
	Programovací zásady
	Připojování přerušení k trap rutinám
	Přikazování přerušení
	Zrušení přerušení
	Zapnutí/vypnutí přerušení
	Data přerušení
	Datový typ přerušení
	Uložit přerušení.
	Manipulace s přerušením
	Trap rutiny

	1.12 Obnovení po chybě
	Úvod
	Chybová čísla
	Programovací zásady
	Vytvoření chybové situace z instrukce programu
	Instrukce rezervování chybového čísla
	Restart/návrat od chybového handleru
	Generovat procesní chybu
	Data pro ošetření chyby
	Konfigurace pro ošetření chyby
	Chybové handlery
	Systémový chybový handler
	Chyby pozvednuté programem
	Protokol událostí

	1.13 UNDO
	Úvod
	Terminologie
	Kdy použít UNDO
	Chování UNDO detailně
	Omezení
	Příklad

	1.14 Systémový & čas
	Popis
	Programovací zásady
	Použití hodin pro načasování události
	Načítání přesného času a datumu
	Získat časovou informaci ze souboru
	Zjistit velikost volné paměti programu

	1.15 Matematika
	Popis
	Programovací zásady
	Jednoduché kalkulace numerických dat
	Pokročilejší výpočty
	Aritmetické funkce
	Bitové funkce
	Funkce matice
	Umístění tvarů k bodům

	1.16 Funkce souborových operací
	Instrukce
	Funkce
	Datové typy

	1.17 Podpůrné instrukce RAPID
	Popis
	Získat systémová data
	Získání informací o systému
	Získat informace o paměti
	Načíst konfigurační data
	Zapsat konfigurační data
	Uložit konfigurační data
	Restartovat ovladač
	Instrukce textové tabulky
	Získat jméno objektu
	Získat informaci o úlohách
	Získat aktuální typ události, prováděcí handler nebo prováděcí úroveň
	Zjistěte aktuální stav panelu volby úloh pro programovou úlohu
	Vyhledat symboly
	Načíst servisní informace
	Převody

	1.18 Kalibrační servis &
	Popis
	Kalibrace nástroje
	Různé kalibrační metody
	Směrování hodnoty k testovacímu signálu robotu
	Záznam vykonávání

	1.19 Řetězcové funkce
	Popis
	Základní operace
	Srovnávání a hledání
	Konverze

	1.20 Multitasking
	Popis
	Omezení
	Základy
	Všeobecné instrukce a funkce
	Systém MultiMove s koordinovanými roboty
	Synchronizace úloh
	Synchronizace pomocí výzvy (polling)
	Příklad

	Synchronizace pomocí přerušení
	Příklad

	Meziúlohová komunikace
	Příklad

	Typ úlohy
	Priority
	TrustLevel
	Doporučení

	1.21 Zpětné vykonávání
	Popis
	Zpětné handlery
	Příklad 1
	Příklad 2

	Omezení pohybových instrukcí ve zpětném handleru
	Chování zpětného vykonávání
	Rutiny MoveC a nostepin
	Cíl, typ pohybu a rychlosti
	Příklad

	2 Programování pohybu a V/V (I/O)
	2.1 Souřadnicové systémy
	2.1.1 Střední bod nástroje robotu (TCP)
	Popis
	Související informace

	2.1.2 Souřadnicové systémy používané při určování pozice TCP
	Popis
	Souřadný systém základny
	Světový souřadný systém
	Uživatelský souřadný systém
	Souřadný systém objektu
	Souřadný systém posunu
	Koordinované pomocné osy
	Koordinace uživatelského souřadného systému
	Koordinace souřadného systému základny

	2.1.3 Souřadnicové systémy používané při určování směru nástroje
	Popis
	Souřadný systém zápěstí
	Souřadný systém nástroje
	Stacionární TCP

	2.2 Polohování během vykonávání programu
	2.2.1 Úvod
	Jak jsou prováděny pohyby
	Související informace

	2.2.2 Interpolace pozice a orientace nástroje
	Interpolace spoje
	Lineární interpolace
	Kruhová interpolace
	SingArea\Wrist

	2.2.3 Interpolace rohových drah
	Popis
	Definování rohové dráhy
	Hladký přechod mezi různými rychlostmi
	Doladění dráhy
	Rohové dráhy s reorientací
	Rohové dráhy při změně interpolační metody
	Interpolace, když se mění souřadný systém
	Omezení velikosti naprogramovaných rohových zón
	Chování mezi fly-by body
	Chování mezi fly-by bodem a jemným bodem

	Plánování času pro fly-by body

	2.2.4 Nezávislé osy
	Popis
	Vykonávání programu
	Krokové vykonávání
	Jogging
	Pracovní rozsah
	Rychlost a zrychlení
	Osy robotu

	2.2.5 Měkké servo
	Popis
	Měkkost

	2.2.6 Stop a restart
	Zastavení pohybu
	Počáteční pohyb

	2.3 Synchronizace s logickými instrukcemi
	Logické instrukce
	Postupné vykonávání programu na stop bodech
	Postupné vykonávání programu na fly-by bodech
	Souběžné vykonávání programu
	Synchronizace dráhy
	Související informace

	2.4 Konfigurace robotu
	Různé typy konfigurací robotu
	Vymezení konfigurace robotu
	Řízení a sledování konfigurace
	Podrobná informace o ConfJ
	Podrobná informace o ConfL

	Související informace

	2.5 Kinematické modely robotů
	Kinematika robotů
	Nadřazený robot
	Externí robot

	Všeobecná kinematika
	Související informace

	2.6 Dohled pohybu/detekce kolize
	Úvod
	Ladění úrovní detekce kolizí
	Modifikace dohledu pohybu
	Digitální výstupy
	Omezení
	Související informace

	2.7 Singularity
	Popis
	Body singularity robotů bez paralelní tyče
	Body singularity sériových linkových robotů se 7 osami
	Vykonávání programu prostřednictvím singularit
	Ruční posuv (jogging) skrz singularity
	Související informace

	2.8 Omezení optimalizovaného zrychlení
	Popis
	Zátěžová data (Načíst data)
	Zrychlení TCP

	2.9 Světové zóny
	Popis světových zón
	Používání světových zón
	Definice světových zón ve světovém souřadném systému
	Dohled nad TCP robotu
	Stacionární TCP
	Akce
	Nastavit digitální výstup, když TCP je uvnitř světové zóny
	Nastavit digitální výstup předtím, než TCP dosáhne světové zóny
	Zastavit robot předtím, než TCP dosáhne světové zóny

	Minimální velikost světových zón
	Maximální počet světových zón
	Výpadek napájení, restart a pokračování běhu
	Související informace

	2.10 I/O principy
	Popis
	Vlastnosti signálů
	Signály připojené k přerušení
	Systémové signály
	Křížová propojení
	Omezení
	Související informace

	3 Glosář
	Glosář

	Appendix
	

	Rejstřík

