ﬂ

Microsoft’

ASPNET 4

| Qeorge Shepherd ’ |

i r_ A

'\L I i My o N PR
‘B eBook + exercises Al : ‘ @ e E . \O 4

N

.
& |

A

Step

' y — Y=

» 0

http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735627017
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735627017
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735627017
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735627017
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735627017/Free-Sample-Chapter

Ow 1O access
your CD files

The print edition of this book includes a CD. To access the
CD files, go to http://aka.ms/627017/files, and look for the
Downloads tab.

Note: Use a desktop web browser, as files may not be
accessible from all ereader devices.

Questions? Please contact: mspinput@microsoft.com

Microsoft Press

Microsoft

Microsoft: ASP.NET 4
Step by Step

George Shepherd

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2010 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2010925074

Printed and bound in the United States of America.

123456789 WCT 543210

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, DirectX, Expression, Expression Blend, Hotmail, IntelliSense, Internet
Explorer, MS, MSDN, MS-DOS, MSN, SharePoint, Silverlight, SQL Server, Visual Basic, Visual C#, Visual Studio,
Win32, Windows, Windows Live, Windows NT, Windows Server and Windows Vista are either registered trademarks
or trademarks of the Microsoft group of companies. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Maria Gargiulo

Project Editor: Melissa von Tschudi-Sutton and Maria Gargiulo

Editorial Production: Waypoint Press, www.waypointpress.com

Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
CM Group, Ltd.

Cover: Tom Draper Design

Body Part No. X16-61997

Dedicated to Sally Bronson Harrison and

Gene Harrison, my second mom and dad.

Contents at a Glance

Part |

SO h WNK

Part I
7

8

9
10
11
12
13

Part llI
14
15
16

Part IV
17
18
19

Fundamentals

Web ApplicationBasicso 3
ASP.NET Application Fundamentals........................ 25
The Page RenderingModel. 59
Custom Rendered Controls............... o.... 79
CompositeControls i 101
Control Potpourri ... i i 119

Advanced Features

A Consistent Lookand Feel............... 143
Configuration i i 163
Logging In o e 181
DataBinding i 207
Web Site Navigation............ o ... 237
Personalization, 257
Web Parts. ...t e e 267

Caching and State Management

Session State i e 291
Application DataCachingciiin... 321
Caching Output., 343

Diagnostics and Plumbing

Diagnostics and Debugging, 363
The HttpApplication Class and HTTP Modules.............. 385
HTTP Handlers.o e 405

vi

Contents at a Glance

part V Dynamic Data, XBAP, MVC, AJAX, and Silverlight
20 DynamicDataciiiiiiiiii i i
21 ASPNETand WPFContentc.cciiiiion...
22 The ASP.NET MVC Framework

23 AJAX......

ooo

24 Silverlightand ASPINET i,

Part VI Services and Deployment
25 Windows Communication Foundation

26 Deployment

Table of Contents

Acknowledgments. Xvii

Introduction e Xix
part| Fundamentals

1 Web ApplicationBasics ..o, 3

HTTP RequUests . ..o e e 4

HTTP Requests from a Browser. ..., 5

Making HTTP Requests Withouta Browser. 6

Hypertext Markup Language. ... 8

Dynamic Contento 9

HTML FOrms . o e 10

Common Gateway Interface: Very Retro........................... 11

The Microsoft Environmentasa Web Server 12

Internet Information Services i 12

Internet Services Application Programming Interface DLLs........... 13

Running Internet Information Services 14

Classic ASP: Putting ASP.NET into Perspective 18

Web Development CoNCepts.ottt 21

AP INET 22

Chapter 1 Quick Reference. 23

2 ASP.NET Application Fundamentals........................ 25

The Canonical Hello World Application. ..., 26

Mixing HTML with Executable Code. 31

Server-Side Executable Blocks................. oL, 33

The ASP.NET Compilation Model 41

Coding OPLIONS . ..ot 43

ASPINET Lx Style ..o 43

Modern ASP.NET Styleo 44

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

The ASP.INET HTTP Pipelineo 46
The lIS5.xand lIS6.x Pipeline......... 46

The lIS 7.x Integrated Pipeline........o o i .. 47
Tapping the Pipeline 48
Visual Studio and ASP.NET 50
Local ISWeb Sites. 50

File System—Based Web Sites. 50

FTP Web Sites. . ..o 51
Remote Web Sites 51

Hello World and Visual Studio. 52
Chapter 2 Quick Reference. ... 58
3 The Page RenderingModel............................... 59
Rendering Controls as Tagsoovieee i 59
Packaging the Ullas Components............. ... 62
The Page Using ASP.INET.t 63

The Page’s Rendering Model.o o i 64

The Page's Control Tree 66
Adding Controls Using Visual Studio 67
Layout Considerations. 77
Chapter 3 Quick Reference. 78
4 CustomRenderedControls................... 79
The Control Class e e 79
Visual Studio and Custom Controls. 81
A Palindrome Checker. 88
Controls and Events. 92
HtmliTextWriter and Controls 95
Controls and ViewState. 97
Chapter 4 Quick Reference.o 100
5 CompositeControls, 101
Composite Controls versus Rendered Controls. 101
Custom Composite Controls 102
User CoNtrols.o 110
When to Use Each Type of Control...................... ... 117

Chapter 5 Quick Reference. i, 117

Table of Contents

6 ControlPotpourri........ ..., 119
Validation. 119

How Page Validation Works. 125

Other Validators. 127

Validator Properties. 128

Image-Based Controls. ... 128

Tre@VIEW. . oo 132
MUIEIVIEW. . . 136

Chapter 6 Quick Reference. 139

Part I Advanced Features

7 A Consistent Lookand Feel.......... 143
Managing User Interface Consistency, 143

ASP.INET Master Pages.o 145

ThEMES. o 155

SKINS 159

Chapter 7 Quick Reference. ... 161

8 Configuration i 163
Windows Configuration i 164

NET Configuration.o 164
Machine.Config o i 165

Configuration Section Handlers 165

Web.Config 167

Managing Configuration in ASPNET 1.x......................... 168

Managing Configuration in Later Versions of ASPNET.............. 169

Configuring ASP.INET from IS 174

Chapter 8 Quick Reference. 180

9 LoggingIn oo e 181
Web-Based Security. 182

Securing 1S . o oo 183

Basic Forms Authentication 184

ASP.NET Authentication Services. 189

The FormsAuthentication Class iiiiiiia.... 190

An Optional Login Page 191

Managing USerso 194

Table of Contents

ASP.NET Login Controls. 200
AUthOriZING USErs. 203
Chapter 9 Quick Reference.o 206
10 DataBindingcoiiniiiiniiiiiiiii i 207
Representing Collections Without Data Binding 207
Representing Collections with Data Binding............................ 208
ListControl-Based Controls. 209
TreeView Control 209
Menu Control 209
FormView Control 209
GridView Control 209
DetailsView Control 210
DatalList Control. 210
Repeater CONtrol 210
Simple Data Binding i 210
Accessing Databases 215
The .NET Database Story. 215
CONNECLIONS .\ttt 215
ComMmMaANS .. 217
Managing Results. 218
ASP.INET Data SOUrces. . ..ot e 221
Other Data-Bound Controls. 226
LINQ ot 234
Chapter 10 Quick Reference. 236
11 Web Site Navigation. i, 237
ASP.NET Navigation Support. ... 237
Navigation Controls. 237

XML Site Maps .. oot 239

The SiteMapProvider 239

The SiteMap Class 239

The SiteMapNode. 240
Using Navigation Controls s 241
The Menu and TreeView Controls 241

The SiteMapPath Control 241

Site Map Configuration. i 242

Building Navigable Web Siteso o i 243

Table of Contents

Trapping the SiteMapResolve Event oo i ... 247
Defining Custom Attributes for Each Node.......................... ... 248
Security TrimmMING . ..o oottt 251
URL Mapping ...ttt e e e e e 251
URL REWIITING . . oo et e e 255
Chapter 11 Quick Reference.o 256
12 Personalization i 257
Personalizing Web Visits. 257
Personalization in ASP.INET. 258
User Profiles 258
Personalization Providers. 258
Using Personalization i 259
Defining Profiles in Web.Config 259
Using Profile Information. 259
Saving Profile Changes i 260
Profilesand Users. 261
Chapter 12 Quick Reference. o 266
13 Web Parts. 267
A Brief History of Web Parts. 268
What Good Are Web Parts? 268
Developing Web Parts Controls. i 269
Web Parts Page Development. i i 269

Web Parts Application Development............................. 269

The Web Parts Architecture 269
WebPartManager and WebZones 270
Built-In Zones 270
Built-In Web Partso 271
DevelopingaWeb Part. 280
Chapter 13 Quick Reference.o 288

Part Il Caching and State Management

14 SessionState e 291
Why Session State?. 292
ASP.INET and Session Statet 292
Introductionto Session State. 293

xi

xii

Table of Contents

Configuring Session State. 306
Turning Off Session State 307
Storing Session State InProc. ... i 307
Storing Session State ina State Server......... i 307
Storing Session Stateina Database 308

Tracking Session State. 309
Tracking Session State with Cookies.................. 309
Tracking Session State withthe URL.............................. 310
Using AutoDetect. 310
Applying Device Profiles. 311
Session State TiImeouts. 311

Other Session Configuration Settings. i, 311

The Wizard Control: An Alternative to Session State..................... 312

Chapter 14 Quick Reference. 320

15 ApplicationDataCachingo iiia... 321

Getting Started with Caching............. i i 321

Usingthe Data Cache ... e 324

Impact of Caching 325

Managing the Cache 327
DataSets in MeMOIY 328
Cache Expirations. 331
Cache Dependencies. 334
The SQL Server Dependencyvveuiiiiiaaiinniiiiinn, 336
Clearingthe Cache. 338

Chapter 15 Quick Reference. 341

16 CachingOutput......... ... i, 343

Caching Page Content. 343

Managing Cached Content i 346
Modifying the OutputCache Directive............ 346
The HttpCachePolicy s 351
Caching Locations 352
Output Cache Dependencies.t 353
Caching Profiles 353

Caching User Controls. 354

When Output Caching Makes Sense 357

Other Cache Providers ... 358

Chapter 16 Quick Reference. i 359

Table of Contents xiii

Part IV Diagnostics and Plumbing

17 Diagnostics and Debugging 363
Page TraCingottt 363

1= Lol e 364

Trace Statements 367

Application Tracingt 370

Enabling Tracing Programmatically 373

The TraceFinished Event e, 373

Piping Other Trace Messages.t 374

Debugging with Visual Studio 374

Error Pages 378

Unhandled EXCEPLIONS. 381

Chapter 17 Quick Reference. ... 383

18 The HttpApplication Class and HTTP Modules.............. 385
The Application: A Rendezvous Point.................... oo ... 385

Overriding HttpApplication. 387
HttpModules. 394
Global.asax vs. HttpModules. 404

Chapter 18 Quick Reference. 404

19 HTTPHandlers...... i, 405
ASP.NET Request Handlers. ... i 405

The Built-in Handlers. i 407

Handlers and IHttpHandler. 410

Handlers and Session State. 416

Generic Handlers (ASHX Files) 417

Chapter 19 Quick Reference.o 419

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

20 DynamicData......... il 423
Dynamic Data Controls. 424
Dynamic Data Detailso 428

Chapter 20 Quick Reference.o 432

xiv Table of Contents

21 ASPNETand WPFContentccociiiuiin... 433
Improving Perceived Performance by Reducing Round-Trips 433
What Is WPE? L 434

How Does WPF Relate tothe Web? 436
Loose XAMLFiles. 437
XBAP Applications 438
WPF Content and Web Applications. 442
What About Silverlight? 448
Chapter 21 Quick Reference. 448

22 The ASP.NET MVC Framework ou... 449
The Model-View-Controller (MVC) Architecture 449
ASPINET and MVC ... 452
ASPINET MVCvs.Web Forms. 453
MVC and Testingo 454
How MVC Plays with ASP.NET e 455

Following the Request Path 455
Chapter 22 Quick Reference. 472

23 AJAX e e 473
Rich Internet Applications. 473
What Is AJAX? . 474
ASPINET and AJAX . 475

Reasonsto Use AJAX. ... 476
Real-World AJAX . .o 477
AJAX N Perspective. . ..o 478
ASP.NET Server-Side Support for AJAX 478
ScriptManager Control 479
ScriptManagerProxy Control 479
UpdatePanel Control. i 479
UpdateProgress Control 480
Timer Control 480
AJAX Client SUPPOrt ... o 480
ASP.NET AJAX Control Toolkit.o i, 480
AJAX Control Toolkit Potpourri.......... 481
Getting Familiar with AJAX. 484
The Timer. ..o 490

Updating Progress 497

Table of Contents

Extender Controls. 501
The AutoComplete Extender i, 501

A Modal Pop-up Dialog-Style Component........................ 508
Chapter 23 Quick Reference. 512
24 Silverlightand ASPNETt 513
Web Applications Mature. o 514
What Is Silverlight?. 515
Creating a Silverlight Application 517
Architecture.o 521
XAML L 522
Constructing the Visual Tree 522
XAML and Namespacesootitteeee e 523
Compiling the Silverlight Application.................... 524
Adding Silverlight ContenttoaWeb Page 524
Usingthe Object Tag. oo 524
Using the ASP.NET Silverlight Server-Side Control.................. 525
Using the JavaScript Function 526
Controlsand Events. ... 526
Routed Events. ... 526
Silverlight Controls and Class Members. 527
Silverlight and Layout 528
Integrating with HTML e 533
ANIMAtioNS 535
WCF Services and Silverlight 542
Chapter 24 Quick Reference.o 551

Part VI Services and Deployment

25 Windows Communication Foundation 555
Distributed Computing Redux. i 555

A Fragmented Communications APL. 556

WCF for Connected Systems 556

WCF Constituent Elements. i 557

ENdpoints 557

Channels 558

Behaviors. 558

MESSAGES. . . ottt et 559

Xvi Table of Contents

How WCF Plays with ASP.INET e 560
Side-by-SideMode 560

ASP.NET Compeatibility Mode.o o i, 561

Writing a WCF Service.o 561
Buildinga WCF Client e 567
Chapter 25 Quick Reference. i i 573

26 Deployment. e 575
Visual Studio Web Sites. o 576
HTTP Web Siteso 576

FTP Web Sites.o 576

File System Web Sites 577
Precompiling.o 577
Precompiling for Performance 577
Precompiling for Deployment........ i 578

Visual Studio 2010 Deployment Support 578
Chapter 26 Quick Reference., 585
IndexX. ... e 587

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Acknowledgments

The last time | wrote the acknowledgments for this book, | mentioned how my son, Ted, had
written a Father's Day card for me in HTML. Ted is in college now, and | can remember his
searching out and applying for schools during the last couple of years of high school. He did
it almost entirely online, over the Web. How different that was from my experience applying
to schools!

The Web permeates our social infrastructure. Whether you're a businessperson wanting to
increase the visibility of your business, an avid reader trying to find an out-of-print book, a
student fetching homework assignments from a school Web site, or any other producer or
consumer of information, you touch the Internet.

Publishing a book is a huge effort. My name is on the lower right corner of the cover as the
author, but | did only some of the work. | have so many people to thank for helping get this
book out.

Thank you, Claudette Moore, for hooking me up with Microsoft Press again. Claudette has
acted as my agent for all my work with Microsoft Press, handling the business issues so | can
be free to write. Thank you, Maria Gargiulo, for managing the project. It's been great work-
ing with you. Thank you, Charlotte Twiss, for getting the code samples onto the CD. Thank
you, Steve Sagman, for composing the pages so beautifully. Thank you, Christina Yeager, for
copyediting the pages and making it appear that | can actually write coherent sentences,

as well as for indexing the project. You all did a wonderful job on the editing, production,
and layout. Thank you, Kenn Scribner, for providing the best technical objective eye I've ever
worked with. Thank you, Ben Ryan, for accepting the book proposal and hiring me to create
the book.

Thank you, Jeff Duntemann, for buying and publishing my first piece ever for PC Tech
Journal. Thank you, JD Hildebrand, for buying my second writing piece ever, and for the
opportunity to work with you all at Oakley Publishing. Thank you, Sandy Daston, for your
support and guidance early in my writing career. Thank you to the folks at DevelopMentor
for being an excellent group of technical colleagues and a great place for learning new
technology. Thanks to my buds at Schwab Performance Technologies.

Thanks to my evil Java twin, Pat Shepherd, and his family, Michelle, Belfie, and Bronson.
Thank you, Ted Shepherd, you're the best son ever. Thank you, George Robbins Shepherd

Xvii

xviii

Acknowledgments

and Betsy Shepherd. As my parents, you guided me and encouraged me to always do my
best. | miss you both dearly.

Finally, thank you, reader, for going through this book and spending time learning ASP.NET.

May you continue to explore ASP.NET and always find new and interesting ways to handle
HTTP requests.

—George Shepherd
Chapel Hill, NC
March, 2010

Introduction

This book shows you how to write Web applications using Microsoft ASP.NET 4, the most
current version of the Microsoft HTTP request processing framework. Web development has
come a long way since the earliest sites began popping up on the Internet in the early 1990s.
The world of Web development offers several choices of development tools. During the past
few years, ASP.NET has evolved to become one of the most consistent, stable, and feature-
rich frameworks available for managing HTTP requests.

ASP.NET, together with Microsoft Visual Studio, includes a number of features to make your
life as a Web developer easier. For example, Visual Studio offers several project templates
that you can use to develop your site. Visual Studio also supports a number of development
modes, including using Microsoft Internet Information Services (IIS) directly to test your site
during development, using a built-in Web server, and developing your site over an FTP con-
nection. With the debugger in Visual Studio, you can run the site and step through the criti-
cal areas of your code to find problems. With the Visual Studio Designer, you can develop
effective user interfaces by dropping control elements onto a canvas to see how they appear
visually. And when you are ready to deploy your application, Visual Studio makes it easy to
create a deployment package. These are but a few of the features built into the ASP.NET
framework when paired with Visual Studio.

The purpose of this book is to tell the story of ASP.NET development. Each section presents

a specific ASP.NET feature in a digestible format with examples. The stepwise instructions
yield immediate working results. Most of the main features of ASP.NET are illustrated here
using succinct, easily duplicated examples. The examples are rich to illustrate features with-
out being overbearing. In addition to showing off ASP.NET features by example, this book
contains practical applications of each feature so that you can apply these techniques in the
real world. After reading this book and applying the exercises you'll have a great head start
into building real Web sites that include such modern features as AJAX, WCF services, custom
controls, and master pages.

This book is organized so that you can read each chapter independently for the most part.
With the exception of Chapter 1, “Web Application Basics,” and the three chapters on server-
side controls (Chapters 3 to 5), which make sense to tackle together, each chapter serves as
a self-contained block of information about a particular ASP.NET feature. In addition, for

the sake of completeness, Chapter 1 also includes information about how IIS and ASP.NET
interact together.

Xix

XX Introduction

Who This Book Is For

This book is targeted at several types of developers:

B Those starting out completely new to ASP.NET The text includes enough back
story to explain the Web development saga even if you've developed only desktop
applications.

B Those migrating from either ASP.NET 1.x, 2.0, 3.x, or even classic ASP The text
explains how ASP.NET 4 is different from earlier versions of ASP.NET. It also includes
references explaining differences between ASP.NET and classic ASP.

B Those who want to consume ASP.NET how-to knowledge in digestible pieces You
don't have to read the chapters in any particular order to find the book valuable. Each
chapter stands more or less on its own (with the exception of the first chapter, which
details the fundamentals of Web applications—you might want to read it first if you've
never ventured beyond desktop application development). You might find it useful to
study the chapters about server-side controls (Chapters 3 to 5) together, but it’s not
completely necessary to do so.

Getting Started

If you've gotten this far, you're probably ready to begin writing some code.

W Important Before beginning, make sure that:
B Visual Studio 2010 is installed on your computer.

As long as you've installed the development environment, you can be sure the .NET
run-time support is installed as well.

B You have Administrator permissions on your computer.
See “Installing the C# Code Samples” later in this Introduction for more information.
B |ISis installed and running on your computer.

[IS is required to run the code samples for Chapters 1, 2, 9, and 26. To install lIS in
Windows 7, click Start, and click Control Panel. In Control Panel, click Programs and
Features, and click Turn Windows Features On or Off. In the Windows Features dialog box,
expand Internet Information Services, select the checkboxes next to Web Management
Tools and World Wide Web Services, and click OK.

Introduction xxi

If you attempt to install the code without IIS running, you might see an error message like
the following. To bypass this error message, click Ignore to continue installation.

‘_'@ Microsoft ASP.NET 3.5 Step by Step Installer Information £

Error 27500, This setup requires Internet Information
Server 4.0 or higher For configuring I1S Yirtual Roots,
Flease make sure that you have 115 4.0 or higher.

Abork] [Retry] [Ignore

The first few code examples require nothing but a text editor and a working installation of
IIS. To start, you can begin with some basic examples to illustrate the object-oriented nature
and compilation model of ASP.NET. In addition to seeing exactly how ASP.NET works when
handling a request, this is a good time to view the architecture of ASP.NET from a high level.
Next, you progress to Web form programming and begin using Visual Studio to write code—
which makes things much easier!

After learning the fundamentals of Web form development, you can see the rest of ASP.NET
through examples of ASP.NET features such as server-side controls, content caching, custom
handlers, output and data caching, and debugging and diagnostics, all the way to ASP.NET
support for Web Services.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. You can use this
book whether you are new to Web programming or you are switching from another Web
development platform. Use the following table to find your best starting point in this book.

If you are Follow these steps
New to Web 1. Install the code samples.
development 2. Work through the examples in Chapters 1 and 2 sequentially. They

ground you in the ways of Web development. They also familiarize you
with ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.

New to ASP.NET 1. Install the code samples.

and Visual Studio 2. Work through the examples in Chapter 2. They provide a foundation
for working with ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.

xxii Introduction

If you are

Migrating from earlier
versions of ASP.NET

Follow these steps

Install the code samples.

Skim the first two chapters to get an overview of Web development in
the Microsoft environment and with Visual Studio 2010.

Concentrate on Chapters 3 through 26 as necessary. You might already
be familiar with some topics and might need only to see how a par-
ticular current feature differs from earlier versions of ASP.NET. In other
cases, you might need to explore a feature that is completely new in
ASP.NET 4.

Referencing the
book after working
through the
exercises

Use the index or the table of contents to find information about
particular subjects.

Read the Quick Reference section at the end of each chapter to find a
brief review of the syntax and techniques presented in the chapter.

Conventions and Features in This Book

This book uses conventions designed to make the information readable and easy to follow.
Before you start the book, read the following list, which explains conventions you'll see
throughout the book and points out helpful features in the book that you might want to use.

Conventions

B Each chapter includes a summary of objectives near the beginning.

B FEach exercise is a series of tasks. Each task is presented as a series of steps to be

followed sequentially.

B "Tips" provide additional information or alternative methods for completing a step

successfully.

B “Important” reader aids alert you to critical information for installing and using the
sample code on the companion CD.

B Text that you type appears in bold type, like so:

class foo

{

System.Console.WriteLine(“HelloWorld”);

}

B The directions often include alternative ways of accomplishing a single result. For
example, you can add a new item to a Visual Studio project from either the main menu
or by right-clicking in Solution Explorer.

B The examples in this book are written using C#.

Introduction Xxiii
Other Features

B Some text includes sidebars and notes to provide more in-depth information about the
particular topic. The sidebars might contain background information, design tips, or
features related to the information being discussed. They might also inform you about
how a particular feature differs in this version of ASP.NET from earlier versions.

B Each chapter ends with a Quick Reference section that contains concise reminders of
how to perform the tasks you learned in the chapter.

Prerelease Software

This book was reviewed and tested against the Visual Studio 2010 release candidate one
week before the publication of this book. We reviewed and tested the examples against

the Visual Studio 2010 release candidate. You might find minor differences between the
production release and the examples, text, and screenshots in this book. However, we expect
them to be minimal.

Hardware and Software Requirements

You need the following hardware and software to complete the practice exercises in this
book:

W Important The Visual Studio 2010 software is not included with this book! The CD-ROM
packaged in the back of this book contains the code samples needed to complete the exercises.
The Visual Studio 2010 software must be purchased separately.

B Windows 7; Windows Server 2003; Windows Server 2008; or Windows Vista

B [nternet Information Services (included with Windows). You will need IIS 5.1 or later.
[IS 7.5 is the latest release at the time of this writing.

B Microsoft Visual Studio 2010 Ultimate, Visual Studio 2010 Premium, or Visual Studio
2010 Professional

B Microsoft SQL Server 2008 Express (included with Visual Studio 2010) or SQL Server
2008 (SQL Server 2008 R2 is the latest release at the time of this writing)

B 1.6-GHz Pentium or compatible processor

B 1 GB RAM for x86

B 2 GB RAM for x64

B An additional 512 MB RAM if running in a virtual machine

XXiv

Introduction
B DirectX 9—capable video card that runs at 1024 x 768 or higher display resolution
B 5400-RPM hard drive (with 3 GB of available hard disk space)
B DVD-ROM drive
B Microsoft mouse or compatible pointing device

B 5 MB of available hard disk space to install the code samples

You also need to have Administrator access to your computer to configure Microsoft SQL
Server 2008 Express.

Code Samples

WV

The companion CD inside this book contains the code samples, written in C#, that you use
as you perform the exercises in the book. By using the code samples, you won't waste time
creating files that aren't relevant to the exercise. The files and the step-by-step instructions
in the lessons also help you learn by doing, which is an easy and effective way to acquire and
remember new skills.

Digital Content for Digital Book Readers

If you bought a digital-only edition of this book, you can enjoy select content from the print
edition’s companion CD. Visit http.//www.microsoftpressstore.com/title/9780735627017 and look for the
Examples link to get your downloadable content.

Installing the C# Code Samples

Follow the steps here to install the C# code samples on your computer so that you can use
them with the exercises in this book.

Important Before you begin, make sure that you have
B Administrator permissions on your computer.
B |ISinstalled and running on your computer.

Chapters 1, 2, 9, and 26 include information about using IS, and their companion code samples
require IIS. The code sample installer modifies IIS. Working with IIS requires that you have admin-
istration privileges on your machine. If you are using your own computer at home, you probably
have Administrator rights. If you are using a computer in an organization and you do not have
Administrator rights, please consult your computer support or IT staff.

http://www.microsoftpressstore.com/title/9780735627017

Introduction XXV

To install IIS in Windows 7, click Start, and click Control Panel. In Control Panel, click
Programs and Features, and click Turn Windows Features On or Off. In the Windows
Features dialog box, expand Internet Information Services, select the checkboxes next to
Web Management Tools and World Wide Web Services, and click OK.

If you attempt to install the code without IIS running, you might see an error message like
the following. To bypass this error message, click Ignore to continue installation.

‘_'@ Microsoft ASP.NET 3.5 Step by Step Installer Information | £2

Error 27500, This setup requires Internet Information
Server 4.0 or higher for configuring I15 Yirtual Roots,
Please make sure that you have 115 4.0 or higher.

Abork] [Retry] [Ignore

1. Remove the companion CD from the package inside this book and insert it into your
CD-ROM drive.

Note A menu screen for the CD should open automatically. If it does not appear, open
Computer on the desktop or the Start menu, double-click the icon for your CD-ROM drive,
and then double-click StartCD.exe.

2. In the companion CD Ul, select Code from the menu on the left. The InstallShield
Wizard will guide you through the installation process.

3. Review the end-user license agreement. If you accept the terms, select the accept
option, and then click Next.

4. Accept the default settings to install the code.

The code samples are installed to the following location on your computer:
\C\Microsoft Press\ASP.NET 4 Step by Step\

Additionally, if you have IS running and you open the Internet Information Services conole,
you will see that the installer creates a virtual directory named aspnet4sbs under the Default
Web Site. Below the aspnet4sbs virtual directory, various Web applications are created.

XXVi

Introduction

Using the Code Samples

Each chapter in this book explains when and how to use any code samples for that chapter.

When it's time to use a code sample, the book lists the instructions for how to open the files.
Many chapters begin projects completely from scratch so that you can understand the entire
development process. Some examples borrow bits of code from previous examples.

Here's a comprehensive list of the code sample projects:

Project
Chapter 1

HelloWorld.asp, Selectnoform.asp,
Selectfeature.htm, Selectfeature2.htm,
Selectfeature.asp

WebRequestor

Description

Several Web resources illustrating different examples of
raw HTTP requests

A simple application that issues a raw HTTP request

Chapter 2

HelloWorld, HelloWorld2, HelloWorld3,
HelloWorld4, HelloWorld5, partiall.cs,
partial2.cs

Web resources illustrating compilation models and
partial classes in ASP.NET

Chapter 3

BunchOfControls.htm,
BunchOfControls.asp,
BunchOfControls.aspx

ControlsORama

Web resources illustrating rendering control tags

Visual Studio—based project illustrating Visual Studio
and server-side controls

Chapter 4

ControlsORama

Extends the example begun in Chapter 3. lllustrates
creating and using rendered server-side controls

Chapter 5

ControlsORama

Chapter 6

ControlPotpourri

Extends the example used in Chapter 4. lllustrates
creating and using composite server-side controls and
user controls

Illustrates control validation, the TreeView, the Image,
the ImageButton, the ImageMap, and the MultiView/
View controls

Chapter 7
MasterPageSite

lllustrates developing a common look and feel
throughout multiple pages in a single Web application
using master pages, themes, and skins

Introduction XXVii

Project Description

Chapter 8

ConfigORama lllustrates configuration in ASP.NET. Shows how
to manage the web.config file, how to add new
configuration elements, and how to retrieve those
configuration elements.

Chapter 9

SecureSite lllustrates Forms Authentication and authorization in a

Login.aspx, OptionalLogin.aspx,

Web.Config,

Web.ConfigForceAuthentication,
Web.ConfigForOptionalLogin

Web site

Web resources for illustrating Forms Authentication at
the very barest level

Chapter 10
DataBindORama

lllustrates data binding to several different controls,
including the GridView. lllustrates the DataSource
controls. Also illustrates loading and saving data sets
as XML and XML schema

Chapter 11

NavigateMeSite lllustrates ASP.NET navigation features

Chapter 12

MakeltPersonal lllustrates ASP.NET personalization features
Chapter 13

UseWebParts lllustrates using Web Parts in a Web application
Chapter 14

SessionState lllustrates using session state in a Web application
Chapter 15

UseDataCaching lllustrates caching data to improve performance
Chapter 16

OutputCache lllustrates caching output to improve performance
Chapter 17

DebugORama lllustrates debugging and tracing Web applications
Chapter 18

UseApplication

lllustrates using the global application object and HTTP
modaules as a rendezvous point for the application.
Illustrates storing globally scoped data and handling
application-wide events

Xxviii

Introduction

Project
Chapter 19

CustomHandlers

Description

lllustrates custom HTTP handlers, both as separate
assemblies and as ASHX files

Chapter 20

DynamicDataLinqToSQLSite

lllustrates how ASP.NET Dynamic works to create
data-driven sites

Chapter 21

XAMLORama [llustrates how to use loose XAML in a site

XBAPORama [llustrates how to create an XAML-based Browser
Application (XBAP)

Chapter 22

MVCORama lllustrates how to create and manage an MVC-based site,
complete with a database

Chapter 23

AJAXORama lllustrates using AJAX to improve the end user
experience

Chapter 24

SilverlightSite

SilverlightLayout
SilverlightAnimations
SilverlightAndWCF

lllustrates how to include Silverlight content in an
ASP.NET site

Shows how Silverlight layout panels work
Illustrates using animations in Silverlight

Shows how a Silverlight component can communicate to
a Web site via WCF

Chapter 25

WCFQuotesService Illustrates how to create and consume an ASP.NET WCF
service

Chapter 26

DeployThisApplication

lllustrates the new ASP.NET Packaging system, which
facilitates deployment

All these projects are available as complete solutions for the practice exercises (in case you

need any inspiration).

Introduction XXix

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer:

1. In Control Panel, open Add Or Remove Programs.

2. From the list of Currently Installed Programs, select Microsoft ASP.NET 4 Step by Step.
3. Click Remove.
4

. Follow the instructions that appear to remove the code samples.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article. Microsoft Press provides support for books and companion CDs at
the following Web site:

http://www.microsoft.com/learning/support/books/

If you have comments, questions, or ideas regarding the book or the companion CD, or
questions that are not answered by visiting the sites previously mentioned, please send them
to Microsoft Press by sending an e-mail message to mspinput@microsoft.com.

Please note that Microsoft software product support is not offered through the preceding
address.

We Want to Hear from You

We welcome your feedback about this book. Please share your comments and ideas through
the following short survey:

http://www.microsoft.com/learning/booksurvey

Your participation helps Microsoft Press create books that better meet your needs and your
standards.

Note We hope that you will give us detailed feedback in our survey. If you have questions
about our publishing program, upcoming titles, or Microsoft Press in general, we encourage you
to interact with us using Twitter at http://twitter.com/MicrosoftPress. For support issues, use only
the e-mail address shown earlier.

Chapter 21

ASP.NET and WPF Content

After completing this chapter, you will be able to

B Understand the benefits of Windows Presentation Foundation (WPF) over traditional
Windows user interfaces.

B Create an XAML-based browser application (XBAP) site.
B Add WPF-based content to an ASP.NET site.

The last 20 chapters demonstrate how ASP.NET makes Web development approachable by
pushing most HTML rendering to the ASP.NET Control class and its descendents. In addition,
the ASP.NET pipeline hides many of the details of a Web request so that you can focus on
your part in development. The next few chapters show alternative paths for producing con-
tent for the end user, including information on ASP.NET support for AJAX, its implementa-
tion of the Model-View-Controller pattern, and how Microsoft Silverlight works. This chapter
starts by discussing how you can render Extensible Application Markup Language (XAML)-
based content to the browser.

Improving Perceived Performance by Reducing
Round-Trips

Throughout the history of the Web, one main way developers have improved end-user
experience has been to reduce the number of round-trips to the server. For a long time, the
only way to do this was to employ client-side scripting in a Web page. That way, certain parts
of the application were executed on the client's browser, which is usually much faster than
making an entire round-trip.

Chapter 23, "AJAX," discusses AJAX, which represents a major improvement in Web-based
user interfaces (Uls). AJAX adds many elements to Web-based user interfaces that have been
available previously only to desktop applications. For example, the AJAX AutoComplete ex-
tender allows users typing text into a TextBox to select from options generated dynamically
from a Web service. With the ModalPopupExtender, you can provide content in a pane that
behaves like a standard Windows modal dialog box at run time.

However, scripting isn't the only way to push functionality to the browser. AJAX still relies
fundamentally on HTML, and although HTML includes a huge set of tags that render to
standard user interface elements that run in the browser, it stops there. Being able to run
WPF content on a site changes that. WPF represents a new way to add rich user interfaces to
a site, and it turns standard Web-based (and Windows-based) user interface programming

433

434

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

on its head. In this chapter, you see how WPF works and how it relates to the Internet and
to browser applications. You revisit some of this when you look at Silverlight, a similar
technology. For now, first look at WPF.

What Is WPF?

Windows-based user interface programming is based on an architecture that has remained
fundamentally unchanged for more than a quarter century. Since back in the early 1980s
through today, all applications have had the same basic underpinnings: The main application
runs a message loop, picks up Windows messages off of the message queue, and deposits
them into a window handler. Every window is responsible for rendering its own presenta-
tion—that is, every window, from the top-level window of the application to the most minor
control in the window.

Nearly all Windows-based applications today use the Win32 application programming inter-
face (API) at the lowest level. The classic Win32 API has worked well for a long time. However,
its design is beginning to show its age. Because every window and control is responsible for
its own rendering using the Win32 Graphics Device Interface (GDI, or the GDI+ interface, in
the case of Windows Forms), fundamental user interface limitations are built into the design
of the Windows operating system. The GDI and GDI+ interfaces have a huge array of func-
tions. However, it takes a lot of work to do much more than basic drawing and text render-
ing. That is, special effects such as transformations, transparency, and video play integration
are difficult to accomplish using the current Windows graphics interface. Windows does
support a richer graphics-based interface named Direct X; however, using it is often beyond
the scope of most Windows-based applications and is typically reserved for use by game
programmers.

The limitations of the classic Windows APl prompted Microsoft to develop a new program-
ming interface: the Windows Presentation Foundation (WPF). With WPF, programming spe-
cial effects for Windows-based applications (including presenting Web content, as described
later) is very approachable. The WPF libraries are made up of a number of classes that work
together very much like the Windows Forms classes do (on the surface at least; underneath
the goings-on are very different from Windows Forms).

WPF represents a very rich programming interface for developing a user interface. Here's a
short list of the kinds of features available through WPF (this is a broad summary and is not
exhaustive):

B User interface elements that you can modify in all kinds of ways much more easily than
you can using Win32 and subclassing

B Paths, shapes, and geometries for drawing two-dimensional presentations

Chapter 21 ASP.NET and WPF Content 435

B Transforms (scaling, translating, rotation, and skewing) that allow consistent and
uniform modifications to all user interface elements

B Ability to manage the opacity of individual elements
B Built-in layout panels
B Brushes—image, video, and drawing brushes for filling areas on the screen

B Animations

WPF applications arrange the Ul elements using layout panels. Rather than relying on
absolute positioning (as is the case for Win32 applications) or flow layout (as is the case for
ASP.NET pages), WPF introduces a number of layout options including the following:

B Grid Elements are placed in a table.

B StackPanel Elements are stacked vertically or horizontally.

B Canvas Elements are positioned absolutely.

B DockPanel Elements are positioned against the sides of the host.

B WrapPanel Elements are repositioned to fit when the host is resized.
The example that follows later uses the Canvas.

You craft a typical WPF application from files in very much the same way that you create an
ASP.NET application. A stand-alone WPF application includes a main application object that
runs the message loop and one or more windows, which are browser-based WPF applica-
tions made up of pages. WPF application components are typically composed from a markup
file, just like ASP.NET pages are. WPF layouts are defined using Extensible Application Markup
Language (XAML).

XAML files describe a WPF layout's logical tree, the collection of WPF user interface elements.
A WPF application is made up of Common Language Runtime (CLR) classes underneath the
facade of markup language, very much like the ASP.NET object model is. XAML files rep-
resent instructions for constructing a logical tree of visual elements. In the case of a stand-
alone Windows application, the logical tree exists in a top-level window. In the case of a
browser-based application, the logical tree exists in a browser pane. The following is a short
XAML listing that displays "Hello World” in a button hosted in a browser pane:

<Page
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:sys="clr-namespace:System;assembly=mscorlib"
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1" >
<Button Height="100" Width="100">Hello World</Button>

</Page>

436 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The preceding code doesn’t do a whole lot, but it is an example of the fundamental structure
of a WPF page as expressed in XAML. When run, the XAML you see listed starts a browser
session and displays a button with the string “Hello World" as its content (provided the XAML
plug-in is installed). In a real application, instead of containing a single button with a string,
the top-level WPF node can contain elaborate layouts using the different layout panels avail-
able in WPF. You see an example of this soon.

How Does WPF Relate to the Web?

What does all this mean for Web applications? Windows Internet Explorer and other
browsers running under the Windows operating system are based on the classic Windows
architecture. Browsers are responsible for rendering HTML using the graphic interface avail-
able to Windows: the Graphics Device Interface (GDI). Consequently, accomplishing special
effects in browsers (and typical HTML) is just as difficult as it is with traditional Windows
programs.

Web programming is based on submitting HTTP requests to a server, processing the re-
quests, and sending back responses to the client. In that sense, any user interface—specific
responses are constrained to whatever can be expressed in HTML. The Web is dynamic, and
HTML is basically a document technology.

Is there another markup language that provides more than just simple tags that can be in-
terpreted by an HTML browser? Yes, that's what XAML is when used in the context of a Web
application.

Remember the previous code example? If the contents of the file are saved in an ASCII text
file named HelloWorld.xaml, and you double click it in Windows Explorer, Internet Explorer
loads and parses the XAML content. Figure 21-1 shows how it appears in Internet Explorer
when you load the XAML file into the browser. Simply double-click the file name in Windows
Explorer to see the application.

When adding WPF-style content directly to a Web site, you have three options: presenting
the content through loose XAML files, creating an XAML-based browser application (XBAP),
or using Silverlight. (Silverlight is described in more detail in Chapter 24, “Silverlight and
ASP.NET.")

Chapter 21 ASP.NET and WPF Content 437

/2 C:\aspnetstepbystep#ichapterprojectsiChapter21iLooseXaml.xaml - Windows Internet Explores =] 3]
|1} Criaspnetstepbystepdichapterprojects\Chapter21 iLonsexaml.xa x| | #2|| X | [bing 2|
7 Favarites |§.5 @ suggested sites ~ @ Web Slice Gallery ~
@ Loosesanl | | Lo~ B - L o v Page - Safety~ Took - @
Hello World
| [0 T [[[[computer | Protected Mad: off [=] 7

FIGURE 21-1 A button rendered as specified by XAML.

Loose XAML Files

As just shown, if you place a properly formatted XAML file in your site and make it avail-
able through a Web server, any browser capable of using the XAML plug-in (such as Internet
Explorer) can pick it up and render it. This is one option for presenting WPF-based content
from a Web site. This technique is useful for rendering semidynamic content—that is, for
rendering anything expressible using pure XAML files.

The WPF programming model marries XAML layout instructions with accompanying code
modules in very much the same way that ASP.NET does. Events generated from user interface
elements are handled in the accompanying code. Deploying s as loose XAML files precludes
adding event handlers and accompanying code.

However, WPF elements are dynamic in the sense that they can be animated, and user in-
terface elements can be tied together using only XAML. That's why WPF content expressed
only through XAML is semidynamic. You can hook up some interactive elements using only
XAML, but there’s a limit. For example, all through XAML you can render a list of names

of images in a list box and allow users to select an image to zoom. You can attach slider
controls to user interface elements so that the end user can change various aspects of the
elements through the slider. However, you cannot implement event handlers for controls;
that requires deploying a WPF application as an XBAP application.

438

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

XBAP Applications

XBAPs are another way to deploy WPF content over the Web. They're a bit more complex
than loose XAML files are. In addition to expressing layout, XBAPs support accompanying
executable code for each page. When you deploy a WPF application over the Web, the cli-
ent receives the WPF visual layout and the accompanying code is downloaded to the client
computer. Events occurring in the XBAP are handled on the client side.

The upside of deploying an application as an XBAP is that it works in very much the same
way that a Windows-based desktop application works (though with greatly reduced permis-
sions and tightened security). For example, the application can handle mouse click events
and can respond to control events all on the client side.

Although XBAPs are not related directly to ASP.NET, XBAP content can be hosted in ASP.NET-
served pages in the same way that loose XAML content can be served. That is, you can make
redirects to XBAP files or host XBAP files from within <iframe> HTML elements.

Microsoft Visual Studio includes a wizard for generating XBAPs that can present WPF
content. In addition, the user interface elements contained in the WPF content can respond
to events and messages the same way as any other desktop application can. When browsers
surf to your XBAPs (which are ultimately deployed through Internet Information Services),
they will have a very desktop-like experience in terms of user interface rendering and
responsiveness, even though the application is running in a browser. The following exercise
illustrates how to create an XBAP.

Creating an XBAP

1. Start Visual Studio and click File, New Project. Go to the Windows application templates
and select WPF Browser Application. Name the Application XBAPORama, as shown

here:

New Project 2|
Recent Templates | KET Framework | sort by: [Defaul: =l Search Installed Templat ©
Installed Templates »

)) =1 Type: visualca
[ERT— =] e windows Forms Application Visual C#
= windouws Presentation Foundation browser
windows application
web é-_:cﬁ Class Library wisual G
Office +
Cloud Service c[: WPF Application Wisual C#
Extensibiity -
Reporting ch| WPF Browser Application Wisual C#
SharePoint
Silverlight m Consale Application Wisual C#
L=C
Test -
WCF fc'? WPF Custom Contral Library wisual C#
Workflow N
Other Languages cft | Empty Project visual C#
Other Project Types
_____] Windows Servics visual C# =l
Wame: | #BAPORama|
Location: | ct\aspretstepbystepHichapterprojectsiChapter21 =l Browse...
Solution name: | #BAPORaMa I¥ Create dirsctory For soltion
I~ Add to source contral

Chapter 21 ASP.NET and WPF Content 439

2. Visual Studio should have created for you a new XBAP that includes a page and an
application XAML file set. The file names are Pagel.xaml/Pagel.xaml.cs and App.xaml/
App.xaml.cs. This is very similar to the ASP.NET Web Form application structure in that
there is a markup file that contains the bulk of the Ul and a code file that implements
functionality to be run on the client. Visual Studio should show the Pagel.xaml file,
which contains a Grid layout panel.

3. Change the layout panel from a Grid to a StackPanel so that it is simpler to work with.
With a StackPanel, you can drop in controls and not worry about creating grid columns
and rows:

<Page x:Class="XBAPORama.Pagel"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="300"
Title="Pagel">
<StackPanel>
</StackPanel>

</Page>

4. Modify the XAML a bit more. Change the FontSize property for the Page to 16. Nest
the following controls in the StackPanel: a TextBox, a ListBox, and a Button. WPF works
very similarly to ASP.NET in that you can name controls in the markup file (the XAML
file) and they will appear as programmatic elements in the code behind. Set the Name
property for the TextBox to “theTextBox" and set the Name property of the ListBox
to “theListBox” so that you can refer to them in the code files. Finally, set the Height
property of the ListBox to 100 so that it will show up even if it is empty:

<Page x:Class="XBAPORama.Pagel"
xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1"
xmIns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmIns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="300"
Title="Pagel" FontSize="16">
<StackPanel>
<TextBox Name='"theTextBox'"></TextBox>
<ListBox Name='"theListBox" Height="100"></ListBox>
<Button>Click to Add Items</Button>
</StackPanel>
</Page>

440 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

The Designer should show all the controls in the StackPanel like this:

=% XBAPORama - Micrasoft Yisual Studio -1o] x|

Fle Edt View FProject Buld Debug Team Data Tooks Architscturs Test Analyzs Window Help

P Sl @ % a9 e - @5 b [Debug ~| [y cpu

VAl Fagel xaml X IR

] Solution "XEAPORama' (1 project)
= (5] xBAPORama

[Properties

|3l References

(| App.xaml

= Pagel.xaml

L} ¥BAPORama_Tempararyk

HEEE

Click to Add Items

™ AL | pr—

@@" d:Designiidth="38a" Page <noname>
Title="Pagel” FontSize="15" > .
<stackPanel> FfiPrope.. | Events

<TextBox lName="theTextBox"></TextBox> (4| 10)

<ListBox Nawe="thelistBox" Height="188"></ListBox>
<Button Click="Button_Click”>Click to Add Items</Button> o - =
| Style O Resource..,

Styluslugl.. # (Collect......|
Tag o I

SnapsTeD

Templste %= Resource..,

I -

5. Double-click the button to add a handler. Visual Studio creates a handler for the button
click. You can find the handler in the code file for the page. Because you didn’t name
the Button, Visual Studio gave the handler a default name of Button_Click. The method
looks very much like the ASP.NET button click handlers except the second argument is
a RoutedEventArg instead of the .NET typical EventArg.

6. Implement the handler by adding whatever is in the TextBox to the ListBox. It should
feel almost like you are programming a Web Form—the code model is very similar:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace XBAPORama
{
/// <summary>
/// Interaction logic for Pagel.xaml
/// </summary>
public partial class Pagel : Page

Chapter 21 ASP.NET and WPF Content 441

{
public Pagel()
{

InitializeComponent();

}
private void Button_Click(object sender, RoutedEventArgs e)

{
this.theListBox.Items.Add(this.theTextBox.Text);

}
3
}

7. Press Ctrl+F5 from within Visual Studio to run the application in the browser. When you
type text into the TextBox and click the Button, the code running on the client side will
add the contents of the TextBox to the ListBox, as follows (notice the .xbap extension at
the end of the file name in the URL):

/2 C:\aspnetstepbystep4' chapterprojects\Chapter21 XBAPORama' XBAPORama\\bin\Debug\ XEAPOR i [m] 5

[spterz11xBAPCRamaltBAPORamalbin|DebuglKBAPORama.xbap ¥ | #2|| X | [bing 2|

R

<7 Favorites | 5% @8 Sumgested Sites = @] wieh Sice Gallry
@& ¥BaPoRama | | Xy v B - () = v Pager Safety~ Took - @
Then, this is the string that will show up when I press the buttan again...

What's up, Doc?
Here's another string...
When I click the button, this is the string that will show up in the ListBox

Click to Add Items

‘ [T [[[[Computer | Protected Made: OFf Fa-| 7

Although this example does not strictly run in ASP.NET, it does show an alternative way
of producing content. When you compiled the application, Visual Studio created a few
files including XBAPORama.xbap and XBAPORama.exe. You can include this content as
part of an ASP.NET site by including the XBAP, the EXE, and the manifest files that re-
sulted from the compilation in a folder in an ASP.NET application. You do that shortly.

442 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

WPF Content and Web Applications

You can serve WPF content from an ASP.NET application in much the same way that ASP.NET
serves other content. You can include loose XAML files in a Web application, or you can host
some specific WPF content in an <iframe> HTML element.This exercise illustrates how you
can use WPF content in an ASP.NET application.

Adding XAML content to a site

1.

Create a new Empty ASP.NET Web Application project in Visual Studio. Name the
project XAMLORama.

Use Visual Studio to add a new text file to the project. Right-click the XAMLORama
project node in Visual Studio, and click Add, New Item. Select a text file type from the
templates.

Rename the file so that it has an .xaml extension. This file shows a paper airplane
drawing, so name the file PaperAirplane.xaml. The Visual Studio XAML designer might
show an error right away because there's no content yet. This is not a problem because
you add content in the next step.

Add some XAML content to the file, starting by defining the top-level layout node.
Include the following XML namespaces and make the window 750 units wide:

<Page xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1" Width="750">

</Page>

All WPF layouts begin with a top-level node. In this case, the node is a Page so that it
will show up in the client’s browser.

Add a Grid to the page, and add two row definitions and two column definitions:

<Page xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1" Width="750">
<Grid>
<Grid.RowDefinitions>
<RowDef1inition/>
<RowDefinition Height="100"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition/>
<ColumnDefinition Width="25"/>
</Grid.ColumnDefinitions>
</Grid>
</Page>

. Add WPF elements to the grid. Add a Canvas to the upper left corner of the Grid,

and make the Background SkyBlue. Add two Slider controls to the Grid, too. The first
Slider controls the X position of the airplane. Name the Slider sliderX. Put the slider into

Chapter 21 ASP.NET and WPF Content 443

row 1, and use the ColumnSpan to stretch the Slider across two columns. The maximum
value of this slider should be 500. Orient the second Slider vertically and configure it to
occupy column 1 in the Grid. Use the RowSpan to stretch the Slider across both rows.
This slider controls the rotation of the airplane. Name this Slider

sliderRotate. Its maximum value should be 360.

<Page xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1" Width="750">
<Grid
<!-- Grid column and row definitions are here... -->
<Canvas Background="SkyBlue" Grid.Row="0"
Grid.Column="0">

</Canvas>
<STlider x:Name="sl1iderRotate" Orientation="Vertical"
Grid.Row="0"

Minimum="0" Maximum="360"
Grid.Column="1"></S1ider>
<STider x:Name="s1iderX" Maximum="500"
Grid.Column="0" Grid.Row="1"
Grid.ColumnSpan="2"></STider>
</Grid>
</Page>

. Add the airplane and connect it to the sliders using XAML data binding. Here's how:
Create the airplane drawing using a WPF Path. The Path draws a series of line seg-
ments using a specific pen. Make the Stroke Black and set the the StrokeThickness to 3.
The Path data should connect the following points. Move the cursor to 0,0, and then
draw a line to 250,50, and then to 200,75 to 0,0. Then, move the cursor to 200,75 and
draw a line to 190,115 and another line to 180,85 to 0,0. Next, move the cursor to
180,85 and draw a line to 140,105 and then to 0,0. Finally, move the cursor to 190,115
and draw a line to 158,93. Set the Path’s relationship to the Top of the Canvas as 200.
Bind the Path’s relationship to the Left of the Canvas to sliderX's Value. Finally, add a
RenderTransform to the Path and include a RotateTransform. Bind the RotateTransform'’s
Angle to sliderRotate’s Value. Set the Path’s RenderTransformOrigin to .5, .5. Here’s the
Path code:

<Page xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1" Width="750">

<Grid>
<!-- Grid column and row definitions are here... -->
<Canvas Background="SkyBlue" Grid.Row="0"
Grid.Column="0">
<Path Stroke="Black" StrokeThickness="2" Fill="White"
Data="M0,0 L250,50 L200,75 LO,0 M200,75 L190,115 L180,85

L0,0 M180,85 L140,105 LO,0 M190,115 L158,93"
RenderTransformOrigin=".5, .5"
Canvas.Top="200"
Canvas.Left="{Binding ElementName=s1iderX,Path=Value}" >

444

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

<Path.RenderTransform>
<RotateTransform Angle=
"{Binding ElementName=s1iderRotate,Path=Value}"/>
</Path.RenderTransform>
</Path>
</Canvas>
<!-Sliders go here... -->
</Grid>
</Page>

After setting up the Canvas, the Path, and the Sliders in the grid, you should see it
appear in Visual Studio.

. Add these references to the project: WindowsBase, PresentationCore, and

PresentationFramework by right-clicking the References node in Solution Explorer and
clicking Add Reference. Look in the .NET tab of the Add Reference dialog box to find
these assemblies. Run the page. Because Visual Studio doesn’t allow you to run loose
XAML files directly, you need to navigate from another page. Add a new page to the
application. Name it Default.aspx. Add a Hyperlink to the Default.aspx page and set the
NavigationUrl property to PaperAirplane.xaml. Surf to the default page and click the
hyperlink that loads the XAML file in the browser. It should appear like this:

/2 http:/ /localhost:4234,/Paperairplane.zaml - Windows Internet Explorer =] 3]
¢ . ! =« i 5
@:) @] hetp:flocanost 4234/Paperairplans. xanl =142/ x| f© Bina 2
7 Favorites | o5 @8 suggested Sites ~ @ | Web Slice Gallery: +
& Http:jjiocalhost:4234/F aperdirplane, scaml | | X~ B - 0 gm v Page - Safety~ Took - @+
| =]
|
[[0 T [[[| meemet | Protected Mode: on [7a =] 7

9. Experiment by moving the sliders. Because the vertical slider controls the angle of

rotation, moving it up causes the airplane to spin in a clockwise direction. Because the
horizontal slider is connected to the Path’s Canvas.Left property, moving the horizontal
slider moves the plane along the x-axis, like this:

Chapter 21 ASP.NET and WPF Content 445

http:/ /localhost:4234,Paperairplane.xaml - Windows Internet Explorer I [=] 3]

EYC) = [o t1ccarost o epetirmiene.com =&l BB
4 | 3

(& hittp:fjlocalhost:4234 P aperAirplane. xaml

10. Integrate the new WPF content with some HTML. Add a new Page to the XAMLORama
file by right-clicking the XAMLORama node in Solution Explorer and adding a new Web
page. Name the page PaperAirplane.aspx. Add an <iframe> tag to the page in between
the <div> tags that Visual Studio provides. Set the <iframe> height to 500 and the
width to 750. Finally, set the <iframe> src to PaperAirplane.xaml.

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="PaperAirplane.aspx.cs"
Inherits="PaperAirplane" %>

<!DOCTYPE html PUBLIC "...">

<html xmIns="http://www.w3.0rg/1999/xhtm1">
<head runat="server">
<title>Untitled Page</title>
</head>
<body>
<form id="forml" runat="server">
<div>

<iframe height="500"
width="750"
src="paperairplane.xaml"></iframe>

</div>
</form>
</body>
</html>

446 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

11. Run the page. The PaperAirplane.xaml content appears in a frame in the page. The
XAML content has the same functionality in the frame as it did when it was run in the

browser:
/2 http:/ /lacalhost:4234/Paperdirplane.aspx - Windows Internet Explorer N [=] |
@:)] hetp:flocalhost 4234/Paperairplans. aspic Ell &[4 x| [bina 2|
7 Favorites |i-5 & suggested Sites ~ @ | Web Slice Gallery ~
(& http:iflocalhost:4234]Paper firplans aspx | | X~ B - 0 gm v Page - Safety~ Took - @+
e =
]
[
Ju|
[pane [0 [[[| | mtemet | Protected Made: on 75~ [®10% -

Because this is rendered from a typical ASP.NET page, you could include ASP.NET server
controls along with the WPF content.

12. Add the XBAP content from the previous example to this site. First, create a new folder
under the Project node in Solution Explorer. Name the folder XBAPContent. Right-
click the new folder and click Add, Exiting Item. Navigate to the previous example’s
bin directory (on my computer, it is C:\aspnetstepbystep4\chapterprojects\Chapter21\
XBAPORama\XBAPORama\bin\Debug). Add XBAPORama.xbap, XBAPORama.exe,
and XBAPORama.exe.manifest to this XAMLORama ASP.NET project.

13. Add a new link to the Default.aspx page. Set the NavigationUrl property to the
XBAPORama.xbap file in the XBAPContent folder. Run the application and click the link
that redirects to the XBAP content. You will see the XBAPORama.xbap content in the
browser. The Web server downloads the XBAP content (you can see a little status bar in
the browser, as shown in the following graphic). Try adding some items to the list box
to ensure that it works.

Chapter 21 ASP.NET and WPF Content 447

//localhost:4234,/ XBAPContent,/XBAPORama.xbap - Windows Internet Explorer i [m] 5

[&] http:jlocaihost:4234/xBAP Content /XBAPORama xbap =142/ x| f© Bina R~
7 Favorites | o5 @8 suggested Sites ~ @ | Web Slice Gallery: +

(& http:jfiocalhost: 4234/ 4BAPCONtent jXBAPOR M. <bap | | - -) gm v Page - Safety v Took - @

El

‘ | Downloading application inform ation...

Bytes already downloadec!:

Total bytes:
L2
| [[T [[| [unknown zone | Protected Mads: on [=] v
Here is the XBAP content running from in the ASP.NET site.
calhost:4234,/XBAPContent/XBAPDRama.xbap - Windows Internet Explorer =] 3]
6: [&] http:jlocaihost:4234/xBAP Content /XBAPORama xbap =142/ x| f© Bina R~
7 Favorites | o5 @8 suggested Sites ~ @ | Web Slice Gallery: +
(& httpsjjlocalhosti4234]XBAPContent jXBAPOR M xbap | | X~ B - 0 gm v Page - Safety~ Took - @+
This is XBAP Content running from within an ASP.NET site
Isn't that amazing????
Click to Add Items
[[T [[[[meemet | Protected Mode: on [Fa =] 7

This example illustrates how it is possible to integrate HTML with XAML-based content. You
also saw that it is possible to include XBAP content in an ASP.NET site. Although these tech-
niques lie somewhat outside of the usual ASP.NET pipeline, XBAP-based and XAML-based
WPF content is still useful in many cases. A full investigation of WPF is beyond the scope

of this book. WPF and XAML offer entirely new ways to present content to the end user.

Because it is such new technology, the different ways it can be exploited are only now being
invented and discovered.

448

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

What About Silverlight?

As a Web developer, you have probably been unable to avoid hearing the buzz about
Silverlight. Until now, the only effective way to produce dynamic Web content has been
through Macromedia Flash. Flash is a plug-in for rendering dynamic content over the Web
(that is, animations). However, with the advent of WPF and its dynamic content capabilities,
now there is a markup technology that rivals Flash in raw capability if you can find a way
to deliver it to the browser. Although other dynamic content technologies certainly have
worked, they have had some serious shortcomings for developers. Silverlight changes this.

Silverlight is a platform-independent WPF rendering engine. Without Silverlight, the only way
to render WPF content in a browser is to run Internet Explorer or the Firefox browser with the
XAML plug-in. Silverlight is packaged as an ActiveX Control for the Microsoft environment.
For example, the Apple Safari browser is supported by Silverlight. Visual Studio 2010 includes
full support for Silverlight applications. You visit Silverlight in Chapter 24.

Chapter 21 Quick Reference

To
Add an XAML file to your
site

Declare a Page within the
XAML file

Add a Canvas to the Page

Add content to the Canvas

Add a Grid to a Page

Add content to the Grid

Create an XAML-based
browser application

Do This

Right-click the project node in the Visual Studio Solution Explorer. Click Add
New Item. Select Text File from the available templates. Be sure to name the file
with an .xaml extension.

At the top of the file, add a beginning <Page> tag and an ending </Page> tag.
Using WPF within XAML requires the standard WPF namespace "http://schemas.
microsoft.com/winfx/2006/xaml/presentation” and the keywords namespace
"http://schemas.microsoft.com/winfx/2006/xaml” (which is often mapped to “x").

Use the <Canvas> opening tag and the </Canvas> closing tag. Nest objects
you'd like displayed in the canvas between the opening and closing tags.

Nest objects you'd like to appear on the canvas between the <Canvas> opening
tag and the </Canvas> closing tag. Assign positions within the canvas using the
Canvas.Top and Canvas.Right properties.

Declare a <Grid> opening tag and a </Grid> closing tag on the page. Use the
Grid's RowDefinitions and the Grid's ColumnDefinitions properties to define the
rows and columns.

Nest objects you'd like to appear on the canvas between the <Grid> opening
tag and the </Grid> closing tag. Assign positions within the grid using the
Grid.Row and Grid.Column properties.

Select File, New Project in Visual Studio. From the Windows application
templates, choose WPF Browser Application. Visual Studio will create an XBAP
application for you, starting with a simple page. Add WPF controls and han-
dlers to the page. If you want to run the XBAP contront from an ASP.NET site,
just make sure the XBAP,exe, and manifest files are available to the ASP.NET
Web Project.

Chapter 23

AJAX

After completing this chapter, you will be able to
B Understand the problem AJAX solves.
® Understand ASP.NET support for AJAX.
B Write AJAX-enabled Web sites.

B Take advantage of AJAX as necessary to improve the user's experience.

This chapter covers AJAX, possibly the most interesting feature added to ASP.NET recently.
AJAX stands for Asynchronous JavaScript and XML, and it promises to produce an entirely
new look and feel for Web sites throughout the world.

Rich Internet Applications

Software evolution always seems to happen in this typical fashion: Once a technology is
grounded firmly (meaning the connections between the parts work and the architecture is
fundamentally sound), upgrading the end user's experience becomes a much higher priority.
Application technology is in this stage, and the general term for this kind of application is a
Rich Internet Application (RIA). AJAX is one means of producing Rich Internet Applications.
(Microsoft Silverlight is another popular means of creating RIAs.)

The primary reason for the existence of AJAX is to improve the standard HTTP GET/POST
idiom with which Web users are so familiar. That is, the standard Web protocol in which
entire forms and pages are sent between the client and the server is getting a whole new
addition.

Although standard HTTP is functional and well understood by Web developers, it does have
certain drawbacks—the primary one is that the user is forced to wait for relatively long peri-
ods while pages refresh. This has been a common problem in all event-driven interfaces. (The
Windows operating system is one of the best examples.) AJAX introduces technology that
shields end users from having to wait for a whole page to post.

Think back to the way HTTP typically works. When you make a request (using GET or POST,
for example), the Web browser sends the request to the server, but you can do nothing until
the request finishes. That is, you make the request and wait—watching the little progress
indicator in the browser. When the request returns to the browser, you can begin using the

473

474

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

application again. The application is basically useless until the request returns. In some cases,
the browser’s window even goes completely blank. Web browsers have to wait for Web sites
to finish an HTTP request in much the same way that Windows-based programs have to

wait for message handlers to complete their processing. (Actually, if the client browser uses

a multithreaded user interface such as Windows Internet Explorer, users can usually cancel
the request—but that’s all they can really do.) You can easily demonstrate this problem by
introducing a call to System.Threading.Thread.Sleep inside the Page_Load method of an ASPX
page. By putting the thread to sleep, you force the end user to wait for the request to finish.

The AJAX solution to this problem is to introduce some way to handle the request asynchro-
nously. What if there were a way to introduce asynchronous background processing into a
Web site so that the browser would appear much more responsive to the user? What if (for
certain applications) making an HTTP request didn't stall the entire browser for the duration
of the request, but instead seemed to run the request in the background, leaving the fore-
ground unhindered and changing only the necessary portion of the rendered page? The site
would present a much more continuous and smooth look and feel to the user. As another
example, what if ASP.NET included some controls that injected script into the rendered pages
that modified the HTML Document Object Model, providing more interaction from the
client’s point of view? Well, that's exactly what ASP.NET AJAX support is designed to do.

What Is AJAX?

AJAX formalizes a style of programming meant to improve the Ul responsiveness and visual
appeal of Web sites. Many AJAX capabilities have been available for a while now. AJAX
consolidates several good ideas and uses them to define a style of programming and extends
the standard HTTP mechanism that is the backbone of the Internet. Like most Web applica-
tion development environments, ASP.NET takes advantage of HTTP capabilities in a very
standard way. The browser usually initiates contact with the server using an HTTP GET re-
quest, followed by any number of POSTs. The high-level application flow is predicated upon
sending a whole request and then waiting for an entire reply from the server. Although the
ASP.NET server-side control architecture greatly improves back-end programming, users still
get their information a whole page at a time. It operates almost like the mainframe/terminal
model popular during the 1970s and early 1980s. However, this time the terminal is one of
many modern sophisticated browsers and the mainframe is replaced by a Web server (or
Web farm).

The standard HTTP round-trip has been a useful application strategy, and the Web grew
up using it. While the Web was developing in the late 1990s, browsers had widely varying
degrees of functionality. For example, browsers ranged all the way from the rudimentary

Chapter 23 AJAX 475

America Online Browser (which had very limited capabilities) to cell phones and personal
digital assistants (PDAs), to more sophisticated browsers such as Internet Explorer and
Netscape Navigator, which were rich in capability. For instance, Internet Explorer supports
higher level features such as JavaScript and Dynamic HTML. This made striking a balance
between usability of your site and the reach of your site very difficult prior to the advent of
ASP.NET.

However, the majority of modern computing platforms can run a decent browser that can
process client-side scripting. These days, most computing environments run a modern
operating system, such as the Windows Vista or Windows 7 operating systems, or even
Macintosh OS X. These environments run browsers fully capable of supporting XML and
JavaScript. With so many Web client platforms supporting this functionality, it makes sense to
take advantage of the capabilities. As you see later in this chapter, AJAX makes good use of
these modern browser features to improve the user experience.

In addition to extending standard HTTP, AJAX is also a very clever way to use the Web service
idiom. Web services are traditionally geared toward enterprise-to-enterprise business com-
munications. However, Web services are also useful on a smaller scale for handling Web re-
quests out of band. (“Out of band” simply means making HTTP requests using other methods
instead of the standard page posting mechanism.) AJAX uses Web services behind the scenes
to make the client Ul more responsive than it is for traditional HTTP GETs and POSTs. This
chapter describes how this works, especially in the section titled “Extender Controls” later in
the chapter, which describes the ASP.NET AJAX Control Toolkit extender controls.

ASP.NET and AJAX

One of the primary changes AJAX brings to Web programming is that it depends on the
browser taking an even more active role in the process. Instead of the browser simply ren-
dering streams of HTML and executing small custom-written script blocks, AJAX includes
some new client-script libraries to facilitate the asynchronous calls back to the server.

AJAX also includes some basic server-side components to support these new asynchronous
calls coming from the client. There's even a community-supported AJAX Control Toolkit
available for the ASP.NET AJAX implementation. Figure 23-1 shows the organization of
ASP.NET AJAX support.

476

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Client Side

Server Side

The AJAX Library

ASP.NET Extensions for AJAX

Components

Nonvisual components
Behaviors, Controls

Browser Compatibility

Support for browsers:
Microsoft Internet Explorer,
Mozilla Firefox, Apple Safari

Networking

Asynchronous requests,
XML and JSON Serialization,
Web and Application Services

Core Services
JavaScript, Base Client

Scripting
Localization, Globalization,
Debugging, Tracing

Web Services

Proxy Generation,
Page Methods,
XML and JSON Serialization

Application Services

Authentication and
profile support

Server Controls
ScriptManager, Update Panel.

Extensions, Type System, Update Progress, Timer
Events, Serialization

FIGURE 23-1 The conceptual organization of ASP.NET AJAX support layers.

Reasons to Use AJAX

If traditional ASP.NET development is so entrenched and well established, why would you
want to introduce AJAX? At first glance, AJAX seems to introduce some new complexities
into the ASP.NET programming picture. In fact, it seems to reintroduce some program-

ming idioms that ASP.NET was designed to deprecate (such as overuse of client-side script).
However, AJAX promises to produce a richer experience for the user. Because ASP.NET sup-
port for AJAX is nearly seamless, the added complexities are well mitigated. When building a
Web site, there are a few reasons you might choose to enable your ASP.NET site for AJAX:

B AJAX improves the overall efficiency of your site by performing, when appropriate,
parts of a Web page's processing in the browser. Instead of waiting for the entire
HTTP protocol to get a response from the browser, you can push certain parts of the
page processing to the client to help the client to react much more quickly. Of course,
this type of functionality has always been available—as long as you're willing to write
the code to make it happen. ASP.NET AJAX support includes a number of scripts so
that you can get a lot of browser-based efficiency by simply using a few server-side
controls.

B ASP.NET AJAX introduces to a Web site Ul elements usually found in desktop applica-
tions, such as rectangle rounding, callouts, progress indicators, and pop-up windows

Chapter 23 AJAX 477

that work for a wide range of browsers (more browser-side scripting—but most of it
has been written for you).

B AJAX introduces partial-page updates. By refreshing only the parts of the Web page
that have been updated, the user’s wait time is reduced significantly. This brings Web-
based applications much closer to desktop applications with regard to perceived Ul
performance.

B AJAXis supported by most popular browsers—not just Internet Explorer. It works for
Mozilla Firefox and Apple Safari, too. Although it still requires some effort to strike a
balance between Ul richness and the ability to reach a wider audience, the fact that
AJAX depends on features available in most modern browsers makes this balance much
easier to achieve.

B AJAX introduces a huge number of new capabilities. Whereas the standard ASP.NET
control and page-rendering model provides great flexibility and extensibility for pro-
gramming Web sites, AJAX brings in a new concept—the extender control. Extender
controls attach to existing server-side controls (such as the TextBox, ListBox, and
DropDownlList) at run time and add new client-side appearances and behaviors to the
controls. Sometimes extender controls can even call a predefined Web service to get
data to populate list boxes and such (for example, the AutoComplete extender).

® AJAX improves on ASP.NET Forms Authentication and profiles and personalization ser-
vices. ASP.NET support for authentication and personalization provides a great boon to
Web developers—and AJAX just sweetens the offerings.

These days, when you browse different Web sites, you run into many examples of AJAX-style
programming. Here are some examples:

B Colorado Geographic: http.//www.coloradogeographic.com/
B Cyber Homes: http.//www.cyberhomes.com/default.aspx

B Component Art: http.//www.componentart.com/

Real-World AJAX

Throughout the 1990s and into the mid-2000s, Web applications were nearly a throwback to
1970s mainframe and minicomputer architectures. However, instead of a single large com-
puter serving dumb terminals, Web applications consist of a Web server (or a Web farm) con-
nected to smart browsers capable of fairly sophisticated rendering capabilities. Until recently,
Web applications took their input from HTTP forms and presented output in HTML pages.
The real trick in understanding standard Web applications is to see the disconnected and
stateless nature of HTTP. Classic Web applications can show only a snapshot of the state of
the application.

478 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

As this chapter describes, Microsoft supports standard AJAX idioms and patterns in the
ASP.NET framework. However, AJAX is more a style of Web programming involving out-of-
band HTTP requests than any specific technology.

You've no doubt seen sites engaging the new interface features and stylings available
through AJAX programming. Examples include Microsoft.com, Google.com, and Yahoo.com.
Very often while browsing these sites, you'll see modern features such as automatic page up-
dates that do not require you to generate a postback explicitly. Modal-type dialog boxes that
require your attention appear until you dismiss them. These are all features available through
AJAX-style programming patterns and the ASP.NET extensions (for example, a rich set of
AJAX server-side controls and extensions) for supporting AJAX.

If you're a long-time Microsoft environment Web developer, you might be asking yourself
whether AJAX is something really worthwhile or whether you might be able to get much of
the same type of functionality using a tried and true technology such as DHTML.

AJAX in Perspective

Any seasoned Web developer targeting Internet Explorer as the browser is undoubtedly
familiar with Dynamic HTML (DHTML). DHTML is a technology that runs at the browser
for enabling Windows desktop-style Ul elements in the Web client environment. DHTML
was a good start, and AJAX brings the promise of more desktop-like capabilities to Web
applications.

AJAX makes available wider capabilities than DHTML does. With DHTML, primarily you can
change the style declarations of an HTML element through JavaScript. However, that's about
as far as it goes. DHTML is very useful for implementing such Ul features as having a menu
open when the mouse pointer rests on it. AJAX expands on this idea of client-based Ul using
JavaScript as well as out-of-band calls to the server. Because AJAX is based on out-of-band
server requests (rather than relying only on a lot of client script code), AJAX has the potential
for much more growth in terms of future capabilities than does DHTML.

ASP.NET Server-Side Support for AJAX

Much of ASP.NET support for AJAX resides in a collection of server-side controls responsible
for rendering AJAX-style output to the browser. Recall from Chapter 3, “The Page Rendering
Model,” that the entire page-rendering process of an ASP.NET application is broken down
into little bite-sized chunks. Each individual bit of rendering is handled by a class derived
from System.Web.UI.Control. The entire job of a server-side control is to render output that
places HTML elements in the output stream so that they appear correctly in the browser.
For example, ListBox controls render a <select/> tag. TextBox controls render an

Chapter 23 AJAX 479

<input type="text" /> tag. ASP.NET AJAX server-side controls render AJAX-style script and
HTML to the browser.

ASP.NET AJAX support consists of these server-side controls along with client code scripts
that integrate to produce AJAX-like behavior. The following subsections describe the most
frequently used AJAX-oriented ASP.NET server controls: ScriptManager, ScriptManagerProxy,
UpdatePanel, UpdateProgress, and Timer.

ScriptManager Control

The ScriptManager control manages script resources for the page. The ScriptManager con-
trol's primary action is to register the AJAX Library script with the page so that the client
script can use type system extensions. The ScriptManager also makes possible partial-page
rendering and supports localization as well as custom user scripts. The ScriptManager assists
with out-of-band calls back to the server. Any ASP.NET site wishing to use AJAX must include
an instance of the ScriptManager control on any page using AJAX functionality.

ScriptManagerProxy Control

Scripts on a Web page often require a bit of special handling in terms of how the server
renders them. Typically, the page uses a ScriptManager control to organize the scripts at
the page level. Nested components such as content pages and user controls require the
ScriptManagerProxy to manage script and service references to pages that already have a
ScriptManager control.

This is most notable in the case of master pages. The master page typically houses the
ScriptManager control. However, ASP.NET throws an exception if a second instance of
ScriptManager is found in a given page. So, what would content pages do if they needed
to access the ScriptManager control that the master page contains? The answer is that

the content page should house the ScriptManagerProxy control and work with the true
ScriptManager control through the proxy. Of course, as mentioned, this also applies to user
controls as well.

UpdatePanel Control

The UpdatePanel control supports partial-page updates by tying together specific server-side
controls and events that cause them to render. The UpdatePanel control causes only selected
parts of the page to be refreshed instead of the whole page (as happens during a typical
HTTP postback).

480

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

UpdateProgress Control

The UpdateProgress control coordinates status information about partial-page updates
as they occur in UpdatePanel controls. The UpdateProgress control supports intermediate
feedback for long-running operations.

Timer Control

The Timer control issues postbacks at defined intervals. Although the Timer control will
perform a typical postback (posting the whole page), it is especially useful when coordinated
with the UpdatePanel control to perform periodic partial-page updates.

AJAX Client Support

ASP.NET AJAX client-side support is centered around a set of JavaScript libraries. The
following layers are included in the ASP.NET AJAX script libraries:

B The browser compatibility layer assists in managing compatibility across the most
frequently used browsers. Whereas ASP.NET by itself implements browser capabili-
ties on the server end, this layer handles compatibility on the client end (the browsers
supported include Internet Explorer, Mozilla Firefox, and Apple Safari).

B The ASP.NET AJAX core services layer extends the usual JavaScript environment by
introducing classes, namespaces, event handling, data types, and object serialization
that are useful in AJAX programming.

B The ASP.NET AJAX base class library for clients includes various components, such as
components for string management and for extended error handling.

B The networking layer of the AJAX client-side support manages communication with
Web-based services and applications. The networking layer also handles asynchronous
remote method calls.

The piéce de résistance of ASP.NET AJAX support is the community-supported Control
Toolkit. Although all the features mentioned previously provide solid infrastructure for
ASP.NET AJAX, AJAX isn't very compelling until you add a rich tool set.

ASP.NET AJAX Control Toolkit

The ASP.NET AJAX Control Toolkit is a collection of components (and samples showing how
to use them) encapsulating AJAX capabilities. When you browse through the samples, you
can get an idea of the kind of user experiences available through the controls and extenders.

Chapter 23 AJAX 481

The Control Toolkit also provides a powerful software development kit for creating custom
controls and extenders. You can download the ASP.NET AJAX Control Toolkit from the
ASP.NET AJAX Web site.

The AJAX Control Toolkit is a separate download and not automatically included with
Microsoft Visual Studio 2010. The latest version is 3.0, which was made available at the end
of September 2009. See http.//asp.net/ajax/ajaxcontroltoolkit/ for details. You can download
the binaries or the source code. If you aren't interested in the source code, you only need to
make a reference to the AjaxControlToolkit.dll assembly in your project.

If you want to build the toolkit yourself, follow these steps:

1. Download the toolkit source code.

2. After unzipping the Toolkit file, open the AjaxControlToolkit solution file in Visual
Studio.

3. Build the AjaxControlKit project.

4. The compilation process produces a file named AjaxControlToolkit.dll in the
AjaxControlToolkit\bin directory.

5. Right-click the Toolbox in Visual Studio, and click Choose Items on the menu. Browse
to the AjaxControlToolkit.dll file in the AjaxControlToolkit\bin directory and include the
DLL. This brings all the new AJAX controls from the toolkit into Visual Studio so that
you can drop them in forms in your applications.

Note You can find a wealth of AJAX-enabled server-side controls and client-side scripts avail-
able through a community-supported effort. Although they are not quite officially part of the
Microsoft AJAX release, the support includes the ASP.NET AJAX community-supported controls
(mentioned previously) as well as support for client declarative syntax (XML script) and more. Go
to http://www.asp.net/ajax/ for more information. This site includes links to download the
ASP.NET AJAX Control Toolkit, links to some interesting AJAX-enabled sites, video tutorials, and
other useful downloads.

AJAX Control Toolkit Potpourri

A number of other extenders and controls are available through a community-supported
effort. You can find a link to the AJAX Control Toolkit at http.//www.asp.net/ajax/. This
chapter discusses a few of the controls available from the toolkit. Table 23-1 lists the controls
and extenders available through this toolkit.

482 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

TABLE 23-1 The ASP.NET Control Toolkit

Component
Accordion

AlwaysVisibleControl

Animation
AsyncFileUpload
AutoComplete
Calendar

CascadingDropDown

CollapsiblePanel

ConfirmButton

DragPanel
DropDown
DropShadow
DynamicPopulate
FilteredTextBox

HoverMenu

Description

This extender is useful for displaying a group of panes one pane
at a time. It's similar to using several CollapsiblePanels constrained
to allow only one to be expanded at a time. The Accordion is com-
posed of a group of AccordionPane controls.

This extender is useful for pinning a control to the page so that
its position remains constant while content behind it moves and
scrolls.

This extender provides a clean interface for animating page
content.

This control is for uploading a file asynchronously in the
background.

This extender is designed to communicate with a Web service to list
possible text entries based on what'’s already in the text box.

This extender is targeted for the TextBox control providing client-
side date-picking functionality in a customizable way.

This extender is targeted toward the DropDownlList control. It
functions to populate a set of related DropDownlList controls
automatically.

This extender is targeted toward the Panel control for adding
collapsible sections to a Web page.

This extender is targeted toward the Button control (and types
derived from the Button control) and is useful for displaying mes-
sages to the user. The scenarios for which this extender is useful
include those requiring confirmation from the user (for example,
where linking to another page might cause the end user to lose
state).

This is an extender targeted toward Panel controls for adding the
capability for users to drag the Panel around the page.

This extender implements a Microsoft SharePoint-style drop-down
menu.

This extender is targeted toward the Panel control that applies a
drop shadow to the Panel.

This extender uses an HTML string returned by a Web service or
page method call.

This extender is used to ensure that an end user enters only valid
characters in a text box.

This extender is targeted for any WebControl that has an associ-
ated pop-up window for displaying additional content. The pop-up
window is activated when the user rests the mouse pointer on the
targeted control.

Component
ListSearch

MaskedEdit

ModalPopup

MutuallyExclusiveCheckBox

NoBot

NumericUpDown

PagingBulletedList

PasswordStrength

PopupControl

Rating

ReorderList

ResizableControl

RoundedCorners

Chapter 23 AJAX 483

Description

This extender searches items in a designated ListBox or
DropDownlList based on keystrokes as they're typed by the user.

This extender is targeted toward TextBox controls to constrain the
kind of text that the TextBox will accept by applying a mask.

This extender mimics the standard Windows modal dialog box
behavior. With the ModalPopup, a page can display content of a
pop-up window that focuses attention on itself until it is dismissed
explicitly by the end user.

This extender is targeted toward the CheckBox control. The
extender groups CheckBox controls using a key. When a number of
CheckBox controls all share the same key, the extender ensures that
only a single check box will appear selected at a time.

This control attempts to provide CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart)-like bot/
spam detection and prevention without requiring any user interac-
tion. Although a noninteractive approach might be bypassed more
easily than one requiring actual human interaction can be, this
implementation is invisible.

This extender is targeted toward the TextBox control to create a
control very similar to the standard Windows Edit control with
the Spin button. The extender adds “up” and "down” buttons for
incrementing and decrementing the value in the TextBox.

This extender is targeted toward the BulletedList control. The
extender enables sorted paging on the client side.

This extender is targeted toward the TextBox control to help when
end users type passwords. Whereas the typical TextBox hides only
the actual text, the PasswordStrength extender also displays the
strength of the password using visual cues.

This extender is targeted toward all controls. Its purpose is to open
a pop-up window for displaying additional relevant content.

This control renders a rating system from which end users rate
something using images to represent their choice (stars are
common).

This ASP.NET AJAX control implements a bulleted, data-bound list
with items that can be reordered interactively.

This extender works with any element on a Web page. Once the
ResizableControl is associated with an element, the user can resize
that control. The ResizableControl puts a handle on the lower right
corner of the control.

The RoundedCorners extender can be applied to any Web page
element to turn square corners into rounded corners.

484 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

Component Description

Seadragon The Seadragon control renders an image along with buttons for
zooming in and out, going to full screen, and panning,

Slider This extender is targeted to the TextBox control. It adds a graphical
slider that the end user can use to change the numeric value in the
TextBox.

SlideShow This extender controls and adds buttons users can use to

move between images individually and to play the slide show
automatically.

Tabs This server-side control manages a set of tabbed panels for
managing content on a page.

TextBoxWatermark TextBoxWatermark extends the TextBox control to display a
message while the TextBox is empty. When the TextBox contains
some text, the TextBox appears as a typical TextBox.

ToggleButton This extender extends the CheckBox to show custom images
reflecting the state of the CheckBox.

UpdatePanelAnimation This extender provides a clean interface for animating content
associated with an UpdatePanel.

ValidatorCallout ValidatorCallout extends the validator controls (such as
RequiredFieldValidator and RangeValidator). The callouts are small
pop-up windows that appear near the Ul elements containing
incorrect data to direct user focus to them.

Getting Familiar with AJAX

Here's a short example to help get you familiar with AJAX. It's a very simple Web Forms
application that shows behind-the-scenes page content updates with the UpdatePanel
server-side control. In this exercise, you create a page with labels showing the date and time
that the page loads. One label is outside the UpdatePanel, and the other label is inside the
UpdatePanel. You can see how partial-page updates work by comparing the date and time
shown in each label.

Implementing a simple partial-page update

1. Create a new Web site project named AJAXORama. Make it an empty, file system-
based Web site. Visual Studio 2010 creates AJAX Enabled projects right from the start.
Make sure the default.aspx file is open.

2. Add a ScriptManager control to the page by dragging one from the Toolbox onto the
page. (It is under the AJAX Extensions tab in the Toolbox instead of the normal control
tab.) Using the AJAX controls requires a ScriptManager to appear prior to any other
AJAX controls on the page. By convention, the control is usually placed outside the DIV

Chapter 23 AJAX 485

Visual Studio creates for you. After placing the script manager control on your page,
the <body> element in the Source view should look like this:

<body>
<form id="forml” runat="server”>
<asp:ScriptManager ID="ScriptManagerl” runat="server”>
</asp:ScriptManager>
<div>

</div>
</form>
</body>

. Drag a Label control onto the Default.aspx form. In the Properties pane, give the Label
control the name LabelDateTimeOfPagelLoad. Then, drop a Button on the form as well.
Give it the text Click Me. Open the code-beside file (default.aspx.cs) and update the
Page_Load handler so that the label displays the current date and time:

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString(Q;
}
}

. Run the page and generate some postbacks by clicking the button a few times. Notice
that the label on the page updates with the current date and time each time you click
the button.

. Add an UpdatePanel control to the page. (You can find this control alongside the
ScriptManager control in the AJAX node in the Visual Studio Toolbox.) Then, drop an-
other Label from the Toolbox into the content area of the UpdatePanel. Name the label
LabelDateTimeOfButtonClick.

. Add some code to the Page_Load method so that the label shows the current date and
time:

using System;
using System.Data;
using System.Configuration;

486 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

using System.Web;
using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmIControls;

public partial class _Default : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
this.LabelDateTimeOfPageLoad.Text = DateTime.Now.ToString(Q);
this.LabelDateTimeOfButtonClick.Text =
DateTime.Now.ToString(Q);
}
}

The following graphic shows the UpdatePanel, Button, and Labels as displayed in the
Visual Studio Designer (there are some line breaks in between so that the page is
readable):

% AJAXDRama (Running) - Microsoft Yisual Studio] 3]
File Edit Wew Froject Buid Debug Team Data Format Table Tools Architecturs Test Analyze Window Help
g e = - N R e = e N Any CPU |

i | (hew Inline tyle) -lo? | [one) | [iDefaukFort) | iDefaut | B £ U | A 2 ==

Default plorer

body | 2l2EEEe

ScriptManager - ScriptManagsrl = i}, Seript Documents A
B 5} windows Internet E—J

= [Default.aspx

| evalrade =
»

Defaul aspx X

L]

[LahelDateTime X fPageLoad]
[LabelDateTime OfButtonClick]

DOCUIMENT

o= H =]

click Me |

ﬂ »

O splt | (o Source | [4] <body> [<Formaform »| [<aspiUpdatePanei#UpdatePa, > |

19 1w ==

7. Run the page and generate some postbacks by clicking the button. Both labels should
be showing the date and time of the postback (that is, they should show the same
time). Although the second label is inside the UpdatePanel, the action causing the
postback is happening outside the UpdatePanel.

Chapter 23 AJAX 487

The following graphic shows the Web page running without the Button being
associated with the UpdatePanel:

calhost:17123/Default.aspx - Windows Internet Explorer N [=] |

e [&] hitp:tflocaltwost: 171 23/De ault aspec =l &) 4] x| o Eng R
i Favorites |5 @8 Sumgested Sites =] wieh Sice Galkery +

(@ hittp:flocalhost: 17123/Default. aspx | | Xy v B - () o+ Pager Safety v Took - @
12/14/2009 10:33:25 PM

12/14/2009 10:33:25 PM

Click Me

Done [T [[[mkemet| Protected Made: on [“5 - [®100% ~ 4

8. Now delete the current button from the form and drop a new button into the
UpdatePanell control. Add a Label to the UpdatePanell as well. Name the new label
LabelDateTimeOfButtonPress. Look at the Default.aspx file to see what was produced:

<%@ Page Language="C#” AutoEventWireup="true”
CodeFile="Default.aspx.cs” Inherits="_Default” %>

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.0org/TR/xhtm111/DTD/xhtm111.dtd”>
<htm1l xmIns="http://www.w3.0rg/1999/xhtm1”>
<head runat="server”>
<title>Untitled Page</title>
</head>
<body>
<form id="forml” runat="server”>
<asp:ScriptManager
ID="ScriptManagerl” runat="server” />

<asp:Label ID="LabelDateTimeOfPageLoad”
runat="server”></asp:Label>

<asp:UpdatePanel ID="UpdatePanell” runat="server”>

<ContentTemplate>

<asp:Label ID="LabelDateTimeOfButtonPress”
runat="server”>

</asp:Label>

488 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

<asp:Button ID="Buttonl”
runat="server” Text="Click Me” />
</ContentTemplate>
</asp:UpdatePanel>
</form>
</body>
</html>

The new Button should now appear nested inside the UpdatePanel along with the new
Label.

Run the page and generate some postbacks by clicking the button. Notice that only the
label showing the date and time enclosed in the UpdatePanel is updated. This is known
as a partial-page update because only part of the page is actually updated in response
to a page action, such as clicking the button. Partial-page updates are also sometimes
referred to as callbacks rather than postbacks. The following graphic shows the Web
page running with the Button being associated with the UpdatePanel:

/2 http://localhost:17123/Default.aspx - Windows Internet Explorer

=10l

J <[] hito:iocanost: 171 23Def ik, aspx Ell &[4 x| [i

<7 Favorites |55 @ Sumgested Sites = @] wieh Slce Gallery +

- S
(& http: /flocalhost: 17123/Default. aspx | | AT - [s - Page~v Zafety v Tools+ (@~

12/14/2009 10:33:25 PM
12/15/2009 6:47:04 AM

Click Me

[[[[[| & mremet | Frotected Mode: On |75 ~ [®100% ~ 2

10. Add an UpdatePanel trigger. Because the second label and the button are both associ-
ated with the single UpdatePanel, only the second Label is updated in response to the
postback generated by the button. If you could set up partial-page updates based only
on elements tied to a single UpdatePanel, that would be fairly restrictive. As it turns out,
the UpdatePanel supports a collection of triggers that generate partial-page updates.
To see how this works, you need to first move the button outside the UpdatePanel (so
that the button generates a full normal postback). The easiest way is simply to drag a
button onto the form, making sure it lands outside the UpdatePanel.

11.

12.

Chapter 23 AJAX 489

Because the button is outside the UpdatePanel again, postbacks generated by the
button are no longer tied solely to the second label, and the partial-page update
behavior you saw in step 9 is again nonfunctional.

Update the UpdatePanel’s Triggers collection to include the Button's Click event. With
the Designer open, select the UpdatePanel. Go to the properties Window and choose
Triggers.

Add a trigger and set the control ID to the button’s ID and the event to Click as shown
in the following graphic:

UpdatePanelTrigger Collection Editor 2=l
Members: AsyncPostBack: Buttonl,Click properties:
1) AsyncPostBack: Buttonl, Click 8: }H | =]
"l E Behavior
ContralID Buttonl
EventMame Click

ControlID
The trigger's target contral 1D,

Add - Remove

Ok I Cancel |

(Note that the handy drop-down lists for each property assist you with this selection.)
Run the page. Clicking the button should now generate a callback (causing a partial-
page update) in which the first label continues to show the date and time of the origi-
nal page load and the second label shows the date and time of the button click. Pretty
cool!

Async Callbacks

As you know by now, standard Web pages require the browser to instigate post-

backs. Many times, postbacks are generated by clicking a Button control (in ASP.NET
terms). However, you can enable most ASP.NET controls to generate postbacks as well.
For example, if you'd like to receive a postback whenever a user selects an item in a
DropDownlList, just flip the AutoPostBack property to true, and the control will generate
the normal postback whenever the selected item changes.

In some cases, an entire postback is warranted for events such as when the selected
item changes. However, in most cases generating postbacks is distracting for users and

490

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

leads to very poor performance of your page. That's because standard postbacks
refresh the whole page.

ASP.NET AJAX support introduces the notion of the asynchronous postback by using
JavaScript running inside the client page. The XMLHttpRequest object posts data to the
server—making an end run around the normal postback. The server returns data as
XML, JSON, or HTML and has to refresh only part of the page. The JavaScript running in
the page replaces old HTML in the Document Object Model with new HTML based on
the results of the asynchronous postback.

If you've done any amount of client-side script programming, you can imagine how
much work doing something like this can be. Performing asynchronous postbacks and
updating pages usually requires a lot of JavaScript.

The UpdatePanel control you just used in the preceding exercise hides all of the client-
side code and also the server-side plumbing. Also, because of the well-architected
server-side control infrastructure in ASP.NET, the UpdatePanel maintains the same
server-side control model you're used to seeing in ASP.NET.

The Timer

In addition to causing partial-page updates through an event generated by a control (such
as a button click), AJAX includes a timer to cause regularly scheduled events. You can find
the Timer control alongside the other standard AJAX controls in the Toolbox. By dropping a
Timer on a page, you can generate automatic postbacks to the server.

Some uses for the Timer include a “shout box"—Ilike an open chat where a number of users
type in messages and they appear near the top like a conversation. Another reason you
might like an automatic postback is if you wanted to update a live Web camera picture or to
refresh some other frequently updated content.

The Timer is very easy to use—simply drop it on a page that hosts a ScriptManager. The
default settings for the timer cause the timer to generate postbacks every minute (every
60,000 milliseconds). The Timer is enabled by default and begins firing events as soon as the
page loads.

Here's an exercise using the Timer to write a simple chat page that displays messages from

a number of users who are logged in. The conversation is immediately updated for the user
typing in a message. However, users who have not refreshed since the last message don't get
to see it—unless they perform a refresh. The page uses a Timer to update the conversation
automatically. At first, the entire page is refreshed. Then, the chat page uses an UpdatePanel
to update only the chat log (which is the element that changes).

Chapter 23 AJAX 491

Using the Timer to create a chat page

1. Open the AJAXORama application if it's not already open. The first step is to create
a list of chat messages that can be seen from a number of different sessions. Add a
global application class to the project by right-clicking in Solution Explorer and click-
ing Add New Item. Choose Global Application Class as the type of file to add. This adds
files named Global.asax and Global.asax.cs to your Web site.

2. Update the Application_Start method in Global.asax.cs to create a list for storing
messages and add the list to the application cache.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.SessionState;

namespace AJAXORama
{
pubTlic class Global : System.Web.HttpApplication

{
protected void Application_Start(object sender, EventArgs e)
{
// Code that runs on application startup
List<string> messages = new List<string>(Q);
HttpContext.Current.Cache[“Messages”] = messages;

}

// other generated code is here...

}

}

3. Create a chat page by adding a new page to the Web site and calling it
GroupChat.aspx. This will hold a text box with messages as they accumulate, and it also
gives users a means of adding messages.

4. When the messages are coming in, it would be very useful to know who sent which
messages. This page forces users to identify themselves first; then, they can start add-
ing messages. First, type in the text Group Chatting... after the ScriptManager. Give
it a large font style with block display so that it's on its own line. After that, type in the
text First, give us your name:. Then, drag a TextBox control from the Toolbox onto
the page. Give the TextBox the ID TextBoxUserID. Drop a Button on the page so that the
user can submit his or her name. Give it the text Submit ID and the ID ButtonSubmitID.

5. Drop another TextBox onto the page. This one will hold the messages, so make it large
(800 pixels wide by 150 pixels high should do the trick). Set the TextBox's TextMode
property to MultiLine, and set the ReadOnly property to True. Give the TextBox the ID
TextBoxConversation.

492 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

6. Drop one more TextBox onto the page. This one will hold the user’s current message.
Give the TextBox the ID TextBoxMessage.

7. Add one more Button to the page. This one enables the user to submit the current
message and should include the text Add Your Message. Be sure to give the button
the ID value ButtonAddYourMessage. The following graphic shows a possible layout of
these controls:

=10l
File Edit View Project Build Debug Team Data Format Table Tools Architecture Test Apalyze window Help
Pl Sl | 6 @]9 - ® - DOl B [pebug -/ [any ceu -l 2

§ (e ke 0 #F0rm1 <) a7 | [(one) -] (DefaukFort) -] (Defauk -] B 2 U | A 2 =

GroupChat.aspx < [

Group Chatting...
First, give us your name I Submit ID

Type your message here:

'
4 |
Ld Design | O3 Split | [Source | |1| <html> || <body> | | <Form#forml = | <asp:Button#ButkonSubmitlD:

Error List
@ oErrors ||| 8\ 0warmings || (i) 0 Messages

[
A B output B Find Results 1

8. Open the code-beside file GroupChat.aspx.cs for editing. Add a method that retrieves
the user’s name from session state:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)
{
}
protected string GetUserID()
{

string strUserID =

(string) Session[“UserID”];

return strUserlID;

}

Chapter 23 AJAX 493

9. Add a method to update the Ul so that users may type messages only after they've
identified themselves. If the user has not been identified (that is, the session variable is
not there), disable the chat conversation Ul elements and enable the user identification
Ul elements. If the user has been identified, enable the chat conversation Ul elements
and disable the user identification Ul elements:

using
using
using
using
using
using

System
System
System
System
System
System

.Collections.Generic;
.Ling;

.Web;

.Web.UI;
.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page

protected void Page_Load(object sender, EventArgs e)

// other code goes here...
void ManageUI()

{
{
}
{
}
3

if (

else

GetUserID() == null)

// if this is the first request, then get the user’s ID
TextBoxMessage.Enabled = false;
TextBoxConversation.Enabled = false;
ButtonAddYourMessage.Enabled = false;

ButtonSubmitID.Enabled = true;
TextBoxUserID.Enabled = true;

// if this is the first request, then get the user’s ID
TextBoxMessage.Enabled = true;
TextBoxConversation.Enabled = true;
ButtonAddYourMessage.Enabled = true;

ButtonSubmitID.Enabled = false;
TextBoxUserID.Enabled = false;

10. Add a Click event handler for the Button that stores the user ID (ButtonSubmitID). The
method should store the user’s identity in session state and then call ManageU! to
enable and disable the correct controls:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

494 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

using System.Web.UI;
using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
}
// other page code goes here...
protected void ButtonSubmitID_Click(object sender, EventArgs e)
{
Session[“UserID”] = TextBoxUserID.Text;
ManageUIQ);
}
}

11. Add a method to the page for refreshing the conversation. The code should look up
the message list in the application cache and build a string that shows the messages in
reverse order (so the most recent is on top). Then, the method should set the conversa-
tion TextBoxConversation's Text property to the new string (that is, the text property of
the TextBox showing the conversation):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
// other page code goes here...
void RefreshConversation()
{
List<string> messages = (List<string>)Cache[“Messages”];
if (messages != null)
{

string strConversation =
int nMessages = messages.Count;

for(int i = nMessages-1; i >=0; i--)
{

string s;

s = messages[i];
strConversation += s;
strConversation += “\r\n”;

}

TextBoxConversation.Text =
strConversation;

Chapter 23 AJAX 495

12. Add a Click event handler for adding your message by double-clicking the Button for
adding your message (the lower button on the form) and adding a Click event handler
to respond to the user submitting his or her message (ButtonAddYourMessage). The
method should grab the text from the user’'s message TextBoxMessage, prepend the
user’s ID to it, and add it to the list of messages held in the application cache. Then, the
method should call RefreshConversation to make sure the new message appears in the
conversation TextBox:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class GroupChat : System.Web.UI.Page
{
// Other code goes here...
protected void ButtonAddYourMessage_Click(object sender,
EventArgs e)

{
// Add the message to the conversation...
if (this.TextBoxMessage.Text.Length > 0)
{
List<string> messages = (List<string>)Cache[“Messages”];
if (messages != null)
{
TextBoxConversation.Text = “”;
string strUserID = GetUserID(Q);
if (strUserID != null)
{
messages.Add(strUserID +
Wy
TextBoxMessage.Text);
RefreshConversation();
TextBoxMessage.Text = “”;
}
}
}
}

496

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

13.

14.

15.

16.

Update the Page_Load method to call ManageUI and RefreshConversation:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Xml.Ling;
using System.Collections.Generic;

public partial class GroupChat : System.Web.UI.Page

{
// Other code goes here...
protected void Page_Load(object sender, EventArgs e)
{
ManageUIQ);
RefreshConversation();
}
}

Now run the page to see how it works. After you've identified yourself, you can start
typing in messages—and you'll see them appear in the conversation TextBox. Try
browsing the page using two separate browsers. Do you see an issue? The user typing
a message gets to see the message appear in the conversation right away. However,
other users involved in the chat don't see any new messages until after they submit
messages of their own. You can solve this issue by dropping an AJAX Timer onto the
page.

Drag a ScriptManager from the AJAX controls onto the page. Then, drag a Timer from
the AJAX controls onto the page. Although the AJAX Timer starts generating postbacks
automatically, the default interval is 60,000 milliseconds, or once per minute. Set the
Timer's Interval property to something more reasonable, such as 10,000 milliseconds
(or 10 seconds).

Now run both pages and see what happens. You should see the pages posting back
automatically every 10 seconds. However, there’s still one more issue with this scenario.
If you watch carefully enough, you'll see that the whole page is refreshed—even
though the user name is not changing. During the conversation, you're really only in-
terested in seeing the conversation TextBox updated. You can fix this by putting in an
UpdatePanel.

Drag an UpdatePanel from the AJAX controls onto the page. Position the UpdatePanel
so that it can hold the conversation text box. Move the conversation text box so that
it's positioned in the UpdatePanel. Modify the UpdatePanel's triggers so that it in-
cludes the Timer's Tick event. Now run the chat pages, and you should see only the

Chapter 23 AJAX 497

conversation text box being updated on each timer tick. The following graphic shows
the new layout of the page employing the UpdatePanel:

/1 M|l /7~ http://localhost:17123/GroupChat.aspx - Windows Internel =[P}
@ y = |@] hep:iocahast: x| | B *2 || % | [Bno i @ J =] hupiifecatest: 2] | B[42| % | @ 5na

Sy Favortes | @ suggested sites + @) wieh Sles Gallery

ol
g Favortes |l (@ suagested Stes =] web Slice Gallery =

. s S
éhttp:moca\hast:17123/Grou”.‘ ‘ faf = B - () o= - Page~ Safety - Tools - @~ (& httpifilocahost: 17123/Group. ., ‘ | fi - B - 0 s - Page - Sefety v Tooks - @~

Group Chatting... Group Chatting...

First, give us your name: |GeovgaNumbeH

Subirait D | First, give us your name |GeorgeNumber2 Subirrit D

Georgethmiberl: Happy holidays. GeorgeNumberl: Happy holidays.

GeorgetumberZ: That's funny... so did we! GeorgeNurberZ: That's funny... so did we!

Georgetnberl: We just had s hig snowstorm blow through GeorgeNuwdoerl: Ue just had = big snowstorm hlow through.

Geor 2: Hi, Geor 1, This is GeorgeNumoerz. How goes Geor 2: Hi, Geor 1, This is GeorgeNumberz. How goes it

Geor 1: Hi, Geor 2, This is GeorgeNumberl. Geor 1: Hi, Geor 2, This is GeorgeNumberl.

< <

Type your message here: Type your message here:

[Happy holidays to you, too. |
Add Your Message Add Your Message

il | | KT | »

por| | [[[| [Eh mtemet | Protected Mode: On [va v [®oo% - glleowr] [[[| | [€) itemet | Protected Mode: On

b - [0«

The ASP.NET AJAX Timer is useful whenever you need regular, periodic posts back to the

server. You can see here how it is especially useful when combined with the UpdatePanel to
do periodic partial-page updates.

Updating Progress

A recurring theme when programming any Ul environment is keeping the user updated
about the progress of a long-running operation. If you're programming Windows Forms, you
can use the BackgroundWorker component and show progress updating using the Progress
control. Programming for the Web requires a slightly different strategy. ASP.NET AJAX
support includes a component for this—the ASP.NET AJAX UpdateProgress control.

UpdateProgress controls display during asynchronous postbacks. All UpdateProgress con-

trols on the page become visible when any UpdatePanel control triggers an asynchronous
postback.

Here's an exercise for using an UpdateProgress control on a page.

Using the UpdateProgress control

1. Add a new page to the AJAXORama site named UseUpdateProgressControl.aspx.
2. Drag a ScriptManager from the Toolbox onto the page.

498

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

3. Drag an UpdatePanel onto the page. Give the panel the ID UpdatePanelForProgress so

that you can identify it later. Add the text This is from the update panel, and then
add a Button to the update panel that will begin a long-running operation. Give it the
ID ButtonLongOperation and the text Activate Long Operation.

. Add a Click event handler for the button. The easiest way to create a long-running

operation is to put the thread to sleep for a few seconds, as shown here. By introducing
a long-running operation, you have a way to test the UpdateProgress control and see
how it works when the request takes a long time to complete.

public partial class UseUpdateProgressControl : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}
protected void
ButtonLongOperation_Click(object sender,

EventArgs e)

// Put thread to sleep for five seconds
System.Threading.Thread.STeep(5000);

}

. Now add an UpdateProgress control to the page. An UpdateProgress con-

trol must be tied to a specific UpdatePanel. Set the UpdateProgress control’s
AssociatedUpdatePanellD property to the UpdatePanelForProgress panel you just
added. Note that you can simply use the provided droplist to select this ID. Also change
the DisplayAfter value to be 100 (indicating the progress indication should begin 100
milliseconds after the refresh begins).

. Add a ProgressTemplate to the UpdateProgress control—this is where the content for

the update display is declared. Add a Label to the ProgressTemplate so that you can see
it when it appears on the page:

<asp:UpdateProgress ID="UpdateProgressl”
runat="server”
AssociatedUpdatePanelID="UpdatePanelForProgress”
DisplayAfter="100">
<ProgressTemplate>
<asp:Label ID="Labell” runat="server”
Text="What’s happening? This takes a Tong time...”>
</asp:Label>
</ProgressTemplate>
</asp:UpdateProgress>

7. Run the page to see what happens. When you click the button that executes the

Chapter 23 AJAX

499

long-running operation, you should see the UpdateProgress control show its content
automatically. This graphic shows the UpdateProgress control in action:

/2 Untitled Page - Windows Internet Explorer I] |
& 'S : + | B4 -
T [&] httpiiocathost: 17123/useLpdeteProgresscontral aspx =] | B2/ X | [l 8ina 2
7 Favorites | o5 @8 suggested Sites ~ @ | Web Slice Gallery: =
& Untitied Page | | Ep - Bl - [0 e - Page~ Safety~ Took - @+
“What's happening? This seems to be taking a long time
This is from the update panel || Activate Lang Dperation -
[pane [[|| | [€hmeemet]|Protected Mode: On |75 ~ [®100% ~ 2

. Finally, no asynchronous progress updating Ul technology is complete without a means
to cancel the long-running operation. If you wish to cancel the long-running opera-

tion, you can do so by inserting a little of your own JavaScript into the page. You need

to do this manually because there's no support for this using the wizards. Write a

client-side script block and place it near the top of the page—inside the <head> tag.

The script block should get the instance of the Sys.WebForms.PageRequestManager.
The PageRequestManager class is available to the client as part of the script injected
by the ASP.NET AJAX server-side controls. The PageRequestManager has a method

named get_isinAsyncPostBack() that you can use to figure out whether the page is in

the middle of an asynchronous callback (generated by the UpdatePanel). If the page

is in the middle of an asynchronous callback, use the PageRequestManager's

abortPostBack() method to quit the request. Add a Button to the ProgressTemplate

and assign its OnClientClick property to make a call to your new abortAsyncPostback

method. In addition to setting the OnClientClick property to the new abort method,
insert return false; immediately after the call to the abort method, as shown in the

following code. (Inserting return false; prevents the browser from issuing a postback.)

<%@ Page Language="C#”
AutoEventWireup="true”
CodeFile="UseUpdateProgressControl.aspx.cs”
Inherits="UseUpdateProgressControl” %>

500 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

<!DOCTYPE htm1 PUBLIC

“ ”

. >
<html xmIns="http://www.w3.0rg/1999/xhtm1”>

<head runat="server”>
<title></title>

<script type="text/javascript”>
function abortAsyncPostback()
{
var obj =
Sys.WebForms.PageRequestManager.getInstance();
if(obj.get_isInAsyncPostBack())

{
obj.abortPostBack();
}
}
</script>
</head>
<body>
<form id="forml” runat="server”>
<div>
<asp:ScriptManager ID="ScriptManagerl” runat="server”>
</asp:ScriptManager>
</div>

<asp:UpdateProgress ID="UpdateProgressl”
runat="server”
AssociatedUpdatePanelID="UpdatePanelForProgress”
DisplayAfter="100">
<ProgressTemplate>
<asp:Label ID="Labell” runat="server”
Text="What’s happening? This takes a long time...”>
</asp:Label>
<asp:Button ID="Cancel” runat="server”
OnClientClick="abortAsyncPostback(); return false;”
Text="Cancel” />
</ProgressTemplate>
</asp:UpdateProgress>
<asp:UpdatePanel ID="UpdatePanelForProgress” runat="server”>
<ContentTemplate>
This is from the update panel
<asp:Button ID="ButtonlLongOperation”
runat="server”
onclick="ButtonLongOperation_Click”
Text="Activate Long Operation” />
</ContentTemplate>
</asp:UpdatePanel>

</form>
</body>
</html>

Chapter 23 AJAX 501

@ Caution Caveat Cancel: As you can see, canceling an asynchronous postback is completely a
client-side affair. Canceling a long-running operation on the client end is tantamount to discon-
necting the client from the server. Once the client is disconnected from the server, the client will
never see the response from the server.

Also, although the client is happy that it could cancel the operation, the server might never know
that the client canceled. So, the big caveat here is to plan for such a cancelation by making sure
you program long-running blocking operations carefully so that they don't spin out of control.
Although Microsoft Internet Information Services (IIS) 6 and IS 7 should eventually refresh the
application pool for such runaway threads, it's better to depend on your own good program-
ming practices to make sure long-running operations end reasonably nicely.

ASP.NET AJAX support provides a great infrastructure for managing partial-page updates
and for setting up other events such as regular timer ticks. The next section looks at the
ASP.NET AJAX extender controls.

Extender Controls

The UpdatePanel provides a way to update only a portion of the page. That's pretty amazing.
However, AJAX's compelling features have a very broad reach. One of the most useful
features is the extender control architecture.

Extender controls target existing controls to extend functionality in the target. Whereas
controls such as the ScriptManager and the Timer do a lot in terms of injecting script code
into the page as the page is rendered, the extender controls often manage the markup
(HTML) in the resulting page.

The following subsections discuss the ASP.NET AJAX extender controls. The first one is the
AutoComplete extender.

The AutoComplete Extender

The AutoComplete extender attaches to a standard ASP.NET TextBox. As the end user types
text in the TextBox, the AutoComplete extender calls a Web service to look up candidate
entries based on the results of the Web service call. The following example borrows a com-
ponent from Chapter 15, “Application Data Caching”"—the quotes collection containing a
number of famous quotes by various people.

Using the AutoComplete extender

1. Add a new page to AJAXORama. Because this page will host the AutoComplete
extender, name it UseAutocompleteExtender.

502

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

2.
3.

Add an instance of the ScriptManager control to the page you just added.

Borrow the QuotesCollection class from Chapter 15. Remember, the class derives from
System.Data.Table and holds a collection of famous quotes and their originators. You
can add the component to AJAXORama by right-clicking the project node, select-
ing Add Existing Item, and locating the QuotesCollection.cs file associated with the
UseDataCaching example in Chapter 15.

Add a method to retrieve the quotes based on the last name. The method should ac-
cept the last name of the originator as a string parameter. The System.Data.DataView
class you use for retrieving a specific quote is useful for performing queries on a table
in memory. The method should return the quotes as a list of strings. There might be
none, one, or many, depending on the selected quote author. You use this function
shortly.

using System;

using System.Data;

using System.Configuration;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.Htm1Controls;

using System.Collections.Generic;

/// <summary>
/// Summary description for QuotesCollection
/// </summary>
pubTlic class QuotesCollection : DataTable
{
public QuotesCollection()

{3

public void Synthesize()

{
this.TabTeName = “Quotations”;
DataRow dr;

Columns.Add(new DataColumn(“Quote”, typeof(string)));

Columns.Add(new DataColumn(“OriginatorLastName”, typeof(string)));

Columns.Add(new DataColumn(@”OriginatorFirstName”,
typeof(string)));

dr = this.NewRow();
dr[0] = “Imagination is more important than knowledge.”;
dr[1] = “Einstein”;

dr[2] = “Albert”;
Rows.Add(dr);

Chapter 23 AJAX 503

// Other quotes added here...
}

public string[]
GetQuotesByLastName(string strLastName)
{

List<string> list = new List<string>(Q);

DataView dvQuotes = new DataView(this);
string strFilter = String.Format(“OriginatorLastName = ‘{0}’”, strLastName);
dvQuotes.RowFilter = strFilter;

foreach (DataRowView drv in dvQuotes)

{
string strQuote =
drv[“Quote”].ToString(Q);

Tist.Add(strQuote);

return 1list.ToArray(Q);

}

5. Add a class named QuotesManager to the project. The class manages caching.
The caching example from which this code is borrowed stores and retrieves the
QuotesCollection during the Page_Load event. Because the QuotesCollection will be
used within a Web service, the caching has to happen elsewhere. To do this, add a
public static method named GetQuotesFromCache to retrieve the QuotesCollection
from the cache:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

/// <summary>
/// Summary description for QuotesManager
/// </summary>
public class QuotesManager
{
public QuotesManager()
{
}

pubTlic static QuotesCollection GetQuotesFromCache()
{

QuotesCollection quotes;

504

PartV

6.

Dynamic Data, XBAP, MVC, AJAX, and Silverlight

quotes =
(QuotesCollection)HttpContext.Current.Cache[“quotes”];

if (quotes == null)

{
quotes = new QuotesCollection();
quotes.Synthesize();

}

return quotes;

}

Add an XML Web Service to your application. Right-click the project and add an ASMX
file to your application. Name the service QuoteService. You can remove the WebService
and WebServiceBinding attributes, but be sure to adorn the XML Web Service class

with the [System.Web.Script.Services.ScriptService] attribute by uncommenting it (Visual
Studio put it in for you). That way, it is available to the AutoComplete extender later on.
The AutoCompleteExtender uses the XML Web Service to populate its drop-down list
box.

Add a method to get the last names of the quote originators—that’s the method

that populates the drop-down box. The method should take a string representing

the text already typed in as the first parameter, an integer representing the maxi-
mum number of strings to return. Grab the QuotesCollection from the cache using the
QuoteManager's static method GetQuotesFromCache. Use the QuotesCollection to get
the rows from the QuotesCollection. Finally, iterate through the rows and add the origi-
nator’s last name to the list of strings to be returned if it starts with the prefix passed in
as the parameter. The Common Language Runtime (CLR) String type includes a method
named StartsWith that's useful to figure out whether a string starts with a certain pre-
fix. Note that you also have to add using statements for generic collections and data as
shown:

using System;

using System.Ling;

using System.Web;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Services;

using System.Data;
[System.Web.Script.Services.ScriptService]

public class QuoteService : System.Web.Services.WebService

{

8.

9.

Chapter 23 AJAX 505

[WebMethod]
public string[]
GetQuoteOriginatorLastNames(string prefixText,

int count)
{
List<string> list = new List<string>(Q);
QuotesCollection quotes =
QuotesManager.GetQuotesFromCache();
prefixText = prefixText.ToLower();
foreach (DataRow dr in quotes.Rows)
{
string strName =
dr[“OriginatorLastName”].ToString(Q);
if (strName.ToLower().StartsWith(prefixText))
{
if (!Tist.Contains(strName))
{
Tist.Add(strName) ;
}
}
}
return list.GetRange(0,
System.Math.Min(count, Tist.Count)).ToArray(Q);
}

}

Now drop a TextBox on the UseAutocompleteExtender page to hold the originator's
last name to be looked up. Give the TextBox an ID of TextBoxOriginatorLastName.

Drag an AutoCompleteExtender from the AJAX Toolbox and add it to the

page. Set its ID to be AutoCompleteExtenderForOriginatorLastName. Point the
AutoComplete TargetControlID to the TextBox holding the originator's last name,
TextBoxOriginatorLastName. Make the MinimumPrefix length 1, the ServiceMethod
GetQuoteOriginatorLastNames, and the ServicePath quoteservice.asmx. This wires up
the AutoComplete extender so that it takes text from the
TextBoxOriginatorLastName TextBox and uses it to feed the XML Web Service
GetQuoteOriginatorLastNames method.

<ccl:AutoCompleteExtender
ID="AutoCompleteExtenderForOriginatorLastName”
TargetControlID="TextBoxOriginatorLastName”
MinimumPrefixLength="1"
ServiceMethod="GetQuoteOriginatorLastNames”
ServicePath="quoteservice.asmx”
runat="server”>

</ccl:AutoCompleteExtender>

506 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight
10. Add a TextBox to the page to hold the quotes. Name the TextBox TextBoxQuotes.

11. Update the Page_Load method. It should look up the quotes based on the name
in the text box by retrieving the QuotesCollection and calling the QuotesCollection
GetQuotesBylLastName method:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Text;

public partial class UseAutocompleteExtender :
System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
QuotesCollection quotes =
QuotesManager.GetQuotesFromCache();
string[] quotesArray =
quotes.GetQuotesByLastName(TextBoxOriginatorLastName.Text);

if (quotesArray != null && quotesArray.Length > 0)
{
StringBuilder str = new StringBuilder();
foreach (string s in quotesArray)
{
str.AppendFormat(“{0}\r\n”, s);

}

this.TextBoxQuotes.Text str.ToString(Q);

3

else

{

this.TextBoxQuotes.Text = “No quotes match your request.”;

}

3

12. To make the page updates more efficient, drop an UpdatePanel onto the page. Put the
TextBox for holding the quotes in the UpdatePanel. This causes only the TextBox show-
ing the quotes to be updated instead of performing a whole-page refresh. Add a but-
ton following the originator's last name TextBox with the ID ButtonFindQuotes.

13. Add two asynchPostBack triggers to the UpdatePanel. The first trigger should connect
the TextBoxOriginatorLastName TextBox to the TextChanged event. The second trigger
should connect the ButtonFindQuotes button to the button’s Click event.

Chapter 23 AJAX 507

The following graphic shows the layout of the page using the AutoCompleteExtender in
action:

:/ /localhost:17123/UseAutocompleteExtender.aspx - Windows Internet Explorer -1ol x|

[& hep:iflocaihost: 17123juUseAutocompletcEender aspx =] | B || #4)| % | [t2 5ng R

S1S

<y Favorites | 5 @ Sungested Sites @] Weh Sice Gallery

(& http:jflocalhost: 17123{UseAutocomplateE xtender. asp | | Zp - B -) s - Page~ Safetyr Tooks - (@ 7
. .
Test auto complete against the quotes service
Type in a quote author's Last MName: |Shakespeare | Find Quates |
Assume & virtue, if you have it not =l
=
|UseAutorompleteExtendsr. aspx [[|| | [€hmeemet]|Protected Mode: On |75 ~ [®100% ~ 2

14. Run the page. As you type originator names into the TextBox, you should see a drop-
down list appear containing candidate names based on the QuotesCollection’s contents.

The AutoComplete extender is an excellent example of the capabilities that ASP.NET AJAX
support includes. Internet Explorer has had an autocomplete feature built in for quite a while.
Internet Explorer remembers often-used names of HTML input text tags and recent values
that have been used for them. For example, when you go online to buy an airline ticket and
then go back to buy another one later, watch what happens as you type in the Web address.
The Internet Explorer autocomplete feature makes available a drop-down list below the ad-
dress bar that shows the last few addresses you've typed in that begin with the same text you
began typing in the text box.

The ASP.NET AutoComplete extender works very much like this. However, the major
difference is that the end user sees input candidates generated by the Web site rather than
simply a history of recent entries. Of course, the Web site could mimic this functionality by
tracking a user’s profile identity and store a history of what a particular user has typed in to
a specific input field on a page. The actual process of generating autocomplete candidates
is completely up to the Web server, giving a whole new level of power and flexibility in
programming user-friendly Web sites.

508

Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

A Modal Pop-up Dialog-Style Component

AJAX provides another interesting feature that makes Web applications appear more like
desktop applications: the ModalPopup extender. Historically, navigating a Web site involves
users walking down the hierarchy of a Web site and climbing back out. When users provide
inputs as they work with a page, the only means available to give feedback about the quality
of the input data has been the validation controls. In addition, standard Web pages have no
facility to focus users’ attention while they type in information.

Traditional desktop applications usually employ modal dialog boxes to focus user attention
when gathering important information from the end user. The model is very simple and ele-
gant: The end user is presented with a situation in which he or she must enter some data and
then click OK or Cancel before moving on. After dismissing the dialog box, the end user sees
exactly the same screen he or she saw right before the dialog box appeared. There's no am-
biguity and no involved process where the end user must walk up and down some arbitrary
page hierarchy.

This example shows how to use the pop-up dialog extender control. You create a page with
some standard content and then have a modal dialog-style pop-up window appear right
before the page is submitted.

Using a ModalPopup extender

1. Add a new page to AJAXORama to host the pop-up extender. Call it
UseModalPopupExtender.

2. As with all the other examples using AJAX controls, drag a ScriptManager from the
Toolbox onto the page.

3. Add a title to the page (the example here uses "ASP.NET Code of Content”). Give the
banner some prominence by surrounding it with <h1> and </h1> tags. You can simply
replace the existing <div> tag with the <h1> tag.

4. Drag a Panel from the Toolbox onto the page to hold the page’s normal content.

5. Add a Button to the Panel for submitting the content. Give the Button the ID
ButtonSubmit and the text Submit and create a button Click event handler. You need
this button later.

6. Place some content on the panel. The content in this sample application uses several
check boxes that the modal dialog pop-up examines before the page is submitted.

<h1l >ASP.NET Code Of Conduct </hl>

<asp:Panel ID="Panell” runat="server”
style="z-index: 1;Teft: 10px;top: 70px;
position: absolute;height: 213px;width: 724px;
margin-bottom: Opx;”>

Chapter 23 AJAX

<asp:Label ID="Labell” runat="server”
Text="Name of Developer:”></asp:Label>
 <asp:TextBox ID="TextBoxl”
runat="server”></asp:TextBox>

As an ASP.NET developer, I promise to

<input
<Tabel

<input
<Tabel

<input
<Tabel

<input
<Tabel

<input
<Tabel

<input
<Tabel

type="checkbox” name="Check” id="Checkbox1”/>
for="Checkl”>Use Forms Authentication</Tabel>

type="checkbox” name="Check” id="Checkbox2”/>
for="Check2”>Separate UI From Code</label>

type="checkbox” name="Check” id="Checkbox3”/>
for="Check3”>Take Advantage of Custom Controls</Tabel>

type="checkbox” name="Check” id="Checkbox4”/>
for="Check4”’>Use AJAX</label>

type="checkbox” name="Check” id="Checkbox5”/>
for="Check5”>Give MVC a try</label>

type="checkbox” name="Check” id="Checkbox6”/>
for="Check6”’>Give Silverlight a try</label>

<asp:Button ID="ButtonSubmit” runat="server” Text="Submit”

onclick="ButtonSubmit_Click” />

</asp:Panel>

509

7. Add another Panel to the page to represent the pop-up. Give this Panel a light yellow
background color so that you'll be able to see it when it comes up. It should also have
the ID PanelModalPopup.

Add some content to the new Panel that's going to serve as the modal pop-up. At the

very least, the pop-up should have OK and Cancel buttons. Give the OK and Cancel
buttons the ID values ButtonOK and ButtonCancel. You need them a bit later, too.

<asp:Panel

ID="PanelModalPopup” runat="server”

BorderColor="Black”
BorderStyle="Solid”
BackColor="LightYellow” Height="72px”
Width="403px”>

<asp:Label
Text="Are you sure these are the correct entries?”
runat="server”>

</asp:Label>

510 Part V. Dynamic Data, XBAP, MVC, AJAX, and Silverlight

<asp:Button ID="ButtonOK”
runat="server”
Text="0K" />

<asp:Button ID="ButtonCancel”
runat="server” Text="Cancel” />

</asp:Panel>

9. Add a script block to the ASPX file. You need to do this by hand. Write functions to
handle the OK and Cancel buttons. The example here examines check boxes to see
which ones have been selected and then displays an alert to show which features have
been chosen. The Cancel handler simply displays an alert indicating that the Cancel
button was clicked:

<script type="text/javascript”>

function onOk() {
var optionsChosen;
optionsChosen = “Options chosen: “;

if($get(‘Checkbox1’).checked)
{
optionsChosen =
optionsChosen.toString() +
“Use Forms Authentication “;

}

if($get(‘Checkbox2’).checked)
{
optionsChosen =
optionsChosen.toString() +

“Separate UI From Code “;
}

if($get(‘Checkbox3’).checked)
{
optionsChosen =
optionsChosen.toString() +
“Take Advantage of Custom Controls “;

if($get(‘Checkbox4’).checked)
{
optionsChosen =
optionsChosen.toString() +
“Give AJAX a try “;
}

alert(optionsChosen);

function onCancel() {
alert(“Cancel was pressed”);
}

</script>

Chapter 23 AJAX 511
10. Drag the ModalPopup extender from the Toolbox onto the page.

11. Add the following markup to the page to set various properties on the new
ModalPopup extenders.s This sets the OkControllD property to ButtonOK and
the CancelControllD property to ButtonCancel. It also sets the OnCancelScript
property to onCancel() (the client-side Cancel script handler you just wrote). Set
OnOkScript="onOk()" (the client-side OK script handler you just wrote). Finally, the
following markup sets the TargetControllD property to ButtonSubmit:

<ccl:ModalPopupExtender
ID="ModalPopupExtenderl”
runat="server”
OkControl1ID="ButtonOK”
CancelControlID="ButtonCancel”
OnCancelScript="onCancel()”
OnOkScript="on0k()”
TargetControlID="ButtonSubmit”
PopupControl1ID="PanelModalPopup”
runat="server”
DynamicServicePath="" Enabled="True”>

</ccl:ModalPopupExtenders>

This graphic shows the layout of the page using the ModalPopup extender in Visual
Studio 2010:

[~ AAxORama - Mcrosoft visvalstudi 1ol
File Edit View Project Buld Debug Team Data Format Table Tools Architecture Test Apalyze window Help
PGl G d B9 - - L P [eenug -/ [any crU =

i Mewinlinestyle) +| 2|y | [vone) | [(pefaukFort) +| [ipefaur -|| B 2 U A Z ==

UsetodalPopupExtender.aspx < [l

ScriptManager - ScriptManagerl
=4 Propertis

aspiFansk#Panel] =31 Referenc

ASPNET _ " Conduct o o

=] Default.a
4] Global.as
1] GroupChe

s an ASP IMET developer, I promise to
™ el otmestibasthestichiiororrect entries? M | el & quatesCt

- ULE Cod] QuoteSer
Eparate rom Code Errp. ,L,:'_I
= Taks Advantage of Cust 4 3

e Advantage of Custom Controls _I_r g
[Use ATAX -
™ Give MVC atry
I~ Give Silverlight a try o= ‘ =]

ubrmit ad)
Accessk

B E g

FHEEE

=

Froperties

<LABEL >

|

»
3 Design | O spli | & Sowrce | [4][<htmi|[<bodys || <Formatformi = | |<div || <aspiPanel#Pansll > <lsbsl> El

12. Run the page. When you click the Submit button, the Panel designated to be the modal
pop-up window is activated. (Remember, the Submit button is the TargetControlID of
the ModalPopup Extender.) When you dismiss the pop-up window by clicking OK or

512 Part V. Dynamic Data, X

BAP, MVC, AJAX, and Silverlight

Cancel, you should see the client-side scripts being executed. The following graphic
image shows the ModalPopup extender displaying the modal pop-up window:

/2 Untitled Page - Windows Internet Explorer

ol x|
e [& heep:iflocathost: 171 23/uUseModaPopupEcender asp=. =] || B[#4)| % | [t2 g R
<y Favorites | 5 @ Sungested Sites @] Weh Sice Gallery

@ Untitled Page | | Zp - B -) s - Page~ Safetyr Tooks - (@ 7
ASP.NET Code Of Conduct

Mame of Developer: |George

As an ASP NET developer, I promise to

I Use Forms Authentication

I Separate UL From Code

[T Take Advantage of Cust

P Use ATAX Jire your sure these are the correct entries? Ok Cancel

R Give MYVC atry —

W Give Silverlight a try

|€ mternet | Protscted Mode: On |75 ~ [®100% ~ 2

Chapter 23 Quick Reference

To
Enable a Web site for AJAX

Implement partial page updating in
your page

Assign arbitrary triggers to an
UpdatePanel (that is, trigger partial
page updates using controls and
events not related to the panel)

Implement regularly timed
automatic posts from your page

Use AJAX to apply special Ul
nuances to your Web page

Do This

Normal Web sites generated by Visual Studio 2010's template are AJAX-
enabled by default. However, you must add a ScriptManager to a page
before using any of the AJAX server-side controls.

From within an ASP.NET project, select an UpdatePanel from the toolbox.
Controls that you place in the UpdatePanel will trigger updates for only
that panel, leaving the rest of the page untouched.

Modify an UpdatePanel’s trigger collection to include the new events
and controls. Highlight the UpdatePanel from within the Visual Studio

designer. Select the Triggers property from within the property editor.
Assign triggers as appropriate.

Use the AJAX Timer control, which will cause a postback to the server at
regular intervals.

After installing Visual Studio 2008, you can create AJAX-enabled sites,
and use the new AJAX-specific server-side controls available in the AJAX
toolkit. Select the control you need. Most AJAX server-side controls may

be programmed completely from the server. However, some controls
require a bit of JavaScript on the client end.

Index

Symbols

404 errors, 378
<% and %> tags, 19, 31
<body> tag, 147
<Canvas>/</Canvas> tags, 448
[DataContract] attribute, 573
<deny users="*"> node, 204
<form>/</form> tags, 9-11
action attribute, 10
method attribute, 10-11
<Grid>/</Grid> tags, 448
<iframe> element, 442, 445
 tag, 128
<input type=image /> tag, 129
<object> tags, 524-525
[OperationContract] attribute, 573
<option> tag, 207
<Page>/</Page> tags, 448
[ScriptableMember] attribute, 534
[ScriptableType] attribute, 534
<select>and </select> tags, 9,
207
[ServiceContract] attribute, 573

A

ABC endpoints definition, 557
abortPostBack() method, 499
absolute expirations, for cached
data, 331-333
absolute positioning, 77, 150
AcceptVerbs attribute, 469, 471
access
managing, 181. See also security
speeds of, 321
access rules, 198
creating, 203-204
Accordion extenders, 482
AccountController, 457
action attribute, 10
ActionResult, 460, 469
Active Data Objects (ADO), 215
Active Server Pages (ASP), 18-21
code processing, 46
control state, loss of, 97
dynamic content support, 60, 61
execution model, 25
locked files in, 42

Response object, 32
script blocks, 31
ActiveViewIndex property, 137
ActiveX controls, for Web-based
GUIs, 62
Add Application Setting dialog
box, 178
add attribute, 406
Add Connection String dialog
box, 177
Add New Access Rule link, 203
Add New Item dialog box, 53
Add Reference dialog box, 398
Add Service Reference command,
547
Add Service Reference dialog
box, 568
Add Style Rule dialog box,
156-157
administrators, user access
control, 182
ADO (Active Data Objects), 215
ADO.NET, 215-221
database connection classes,
216
database provider factories,
216-217
database scalability and, 219
result set management,
218-221
ADO.NET objects, data-bound
controls, session state and,
299-305
AJAX (Asynchronous Java and
XML), 433, 474-475
AJAX-style programming
examples, 477
ASP.NET and, 475-478
async callbacks, 489-490
authentication support, 477
AutoComplete extender, 433,
501-507
base class library, 480
benefits of, 476-477
browser compatibility layer, 480
browser support, 477
client-side support, 480-484
core services layer, 480
vs. DHTML, 478

extender control architecture,
477, 501-512
ModalPopup extender, 433,
508-512
networking layer, 480
partial-page updates, 477,
484-489
personalization support, 477
progress updating, 497-501
in the real world, 477-478
RIAs, creating with, 473
server-side support, 478-480
style of programming, 474-475
Web service idiom use, 475
Web sites, enabling for, 512
for Web Uls, 62
AJAX Control Toolkit, 475,
480-481
building, 481
community-supported effort,
481
controls and extenders,
482-484
AJAX Library scripts, registering
with page, 479
AJAX script libraries, 480
Alexander, Christopher, 451
allowAnonymous attribute, 262,
266
allowCustomSqglDatabase setting,
311
AlternateRowStyle property, 228
AlternateText property, 130
AlwaysVisibleControl extenders,
482
Animation extenders, 482
animations
rendering, 448
in Silverlight, 535-542
Anonymous Authentication
mode, 183
anonymousldentification element,
262, 266
anonymous personalization, 262
anonymous profiles, 261
tracking, 266
AnonymousTemplate template,
200

588

anonymous users

anonymous users
denying access of, 198-199
personalization support for, 262
App_Code directory, adding to
projects, 210
App_Data directory, 53
AppDomain state, shared, 560
AppearancekditorPart, 271, 276
appearance of pages, output
caching and, 357
AppendCacheExtension, 351
Application_AuthenticateRequest
event, 391
Application_BeginRequest event,
391
Application_BeginRequest handler,
393
application configuration settings
accessing, 173-174
adding to web.config, 170-173
managing, 177-178
application data cache, 389-390
vs. application state, 389
application dictionary, 386
accessing, 404
indexing data in, 389
storing data in, 389
Application directive, 387
Application_End event, 390
Application_EndRequest handler,
393
Application_Error event, 390
application event handlers,
387-388
application object, 386
event handling abilities,
390-391
Application objects, 389
in Silverlight projects, 521
application performance. See also
performance
nesting controls and, 102
view state management and,
100
application pooling, 31
applications. See also Web
applications
access management, 181. See
also security
cache, 80
console application, 6, 567
debugging, 375-377, 383
Debug version, 580
distributable, 557
interactive applications, 10-11

isolation of, 31
Release version, 580
RIAs, 473-474
settings in web.config, 581
Silverlight applications, 517-524,
533-534, 551
virtual directories for, 13
WPF applications, 435
XBAPs, 438-441, 448, 513
Application_Start event, 388, 389,
390
application state, 385, 389-390
accessing, 49
vs. application data cache, 389
managing, 388-389
MVC model management of,
450
storing in modules, 400-403
application tracing, 370-374
enabling, 325, 383
application-wide cache, 49
application-wide data
repository for, 48. See
also HttpApplication objects
application-wide events, 385, 386,
391-392
exposing, 47
handling, 49, 387, 390-391
App_Themes directory
creating, 156
App.xaml.cs files, 439
App.xaml files, 439
ArrayList objects, adding to
controls, 97-98
ASCX files, applying OutputCache
directive, 354, 359
ASHX files, 417-419
ASP. See Active Server Pages (ASP)
ASPClassic handler, 18
ASP.DLL ISAPI DLL, 19
.asp extension, 19
ASP.NET
AJAX and, 475-480
browser capability information,
95
evolution of, 22-23
IIS compatibility, 35
object-oriented execution
model, 25
Page model, 64-66. See
also pages
precompiling, 577-578
request handling facility,
407-410

server-side control architecture,
59, 62
subdirectories in, 41
syntax, 25
technologies underlying, 3
Visual Studio and, 50-58
WCF and, 560-561
XBAP support, 438
ASP.NET 1.0, 22
custom control/user control
approach to Ul, 143-144
ASP.NET 1.x, configuration
management, 163, 168-169
ASP.NET 2.0, 22-23
configuration management, 169
ASP.NET 3.5, 23
ASP.NET 4, 23
ASP.NET applications. See
also applications; Web
applications
converting HTML files to, 29
aspnet_compiler utility, 578, 585
ASP.NET configuration, 163,
167-174. See also application
configuration settings;
configuration
configuring from IIS, 174-180
keywords, 166
schema for, 167-168
ASP.NET Configuration Settings
pane, 180
ASP.NET Configuration tab, 163,
174-180
aspnet_isapi.dll
mapping extensions to, 419
requests routed to, 38
ASP.NET MVC Site template, 456
ASP.NET pipeline, 46—49
accessing, 40, 48-50
HTTP modules and, 395-396
integrated version, 47
W(CF services access to, 561
aspnet_regsql.exe, 195, 288, 336
ASP.NET Server Control template,
82,100, 103
ASPNETStepByStepExamples, 52
ASPNETStepByStep Web site, 27
ASP.NET tags, /D attribute, 74
ASP.NET test sites, for Silverlight
content, 517-518
ASP.NET Web Forms, controls
collection in, 80
ASP.NET Web Site template, 53
ASP.NET worker process, 31
asp: prefix, 86

.aspx extension, 29
ASPX files
code-behind directives, 43-44
compiling, 41, 417
integrating with assemblies,
30-31
mapping virutal URLs to,
251-255
ASPX pages
breakpoints, inserting, 375
page tracing, setting, 364
assembilies. See also .NET
assemblies
binary composite controls as,
117
integrating with .aspx files,
30-31
pages compiled into, 41
precompiled, 44-45, 577
refreshing, 93
reverse compiling, 41
storage in temporary
directories, 41, 42
strong names for, 166
viewing, 41-42
AssociatedUpdatePanellD
property, 498
asterisks, in output caching
paramters, 357
AsyncFileUpload extender, 482
asynchPostBack triggers, 506
asynchronous background
processing, 474
Asynchronous Java and XML.
See AJAX (Asynchronous Java
and XML)
asynchronous postbacks, 489-490
canceling, 499-501
asynchronous proxy methods,
Visual Studio generated, 568
asynchronous service references,
568
attributes, of HTML tags, 9
Authenticate event, 200
Authenticate method, 190
authentication, 119, 189-194
AJAX support for, 477
definition of, 181
managing in configuration files,
168
manual, 190, 206
Passport authentication, 189
WCF services side-by-side mode
and, 560
Windows authentication, 189

Cache.NoAbsoluteExpiration policy

authentication cookies
installing, 190
invalidating, 206
setting manually, 192
value of, viewing, 188
verifying, 206
authentication keyword, 166
Authentication page (ASP.NET
Configuration Settings pane),
180
authorization, 119, 182, 184,
203-206
access rules, 198
definition of, 181
WOCEF services side-by-side mode
and, 560
AutoComplete extenders, 433,
482, 501-507
AutoDetect, 310
AutoEventWireup attribute, 145
automaticSaveEnabled attribute,
260
AutoPostBack property, 212
.axd extension, file mappings for,
409

background processing,
asynchronous, 474
BackgroundWorker component,
497
backing files, 334
banners on master pages,
153-154
base classes, building pages
based on, 144
base class library, 480
BeginRequest event, intercepting,
392-393
BehaviorEditorPart, 272
behaviors (WCF), 558-559
binary composite controls, 101,
103-110
advantages of, 117
default properties, 113
disadvantage of, 117
global assembly cache, adding
to, 117
mappings to file extensions, 36
Ul functionality, grouping in,
117
bindings (WCF endpoint), 558
bitmaps. See also images
clickable areas, defining, 130

589

BorderColor property, 134
BorderStyle property, 134
breakpoints, inserting, 375
breaks (
), 86
BrowseDisplayMode, 274
browser compatibility layer, 480
browser definition capability files,
165
Browser object, 95
browsers
AJAX support, 477
HTML interpreting capabilities,
95
HTTP requests from, 5-6, 29
jobs of, 7
modern features of, 475
pushing functionality to,
433-434
XAML plug-in, 448
variations in, 475
viewing HTML source in, 30
version-independent rendering
code, 100
built-in handlers, 407-410. See
also HTTP handlers
BulletedList control, 209
BunchOfControls page, 59, 60
control tree, 66
raw HTML, 65-66
source code for, 61, 63
Button_Click handlers, 440
buttons
adding graphics to, 129
adding to page, 73
Click handlers for, 115
event handlers for, 74-75

C

CacheControl property, 353
cached data. See also data caching
expirations, 331-333
flushing, 334
managing, 163, 346-354
SQL Server dependency,
336-338
varying on query string
parameters, 348-351
cache dependencies, 334-336. See
also data cache
CacheDependency objects, 341,
353
Cache.Insert method, 341
Cache.NoAbsoluteExpiration
policy, 335

590

Cache.NoSlidingExpiration policy

Cache.NoSlidingExpiration policy,
332,335
Cache objects
accessing, 321
Insert method, 327-328
CacheProfile attribute, 347
Cache property, 341, 359
CacheWithFileDependency
method, 336, 340
caching. See also data caching;
output caching
page content, 343-346
user controls, 359
caching profiles, 353-354
Calendar extenders, 482
callback delegates, 341
callbacks, 488. See also postbacks
aynchronous, 489-490
initiating, 338-340
Call Stack window, 377
Canvas, 435, 442-443, 528-529
adding, 448
adding content to, 448
Canvas.Left property, 444
Canvas.Right property, 448
Canvas.Top property, 448
CascadingDropDown extenders,
482
Cascading Style Sheets (CSS), 155
Cassini Web server, 12, 13
CatalogDisplayMode, 274
CatalogPart controls, 271
catalogs, adding Web Parts to,
284-285
CatalogZone, 277, 288
ccl: prefix, 86
ChangePassword control, 200
channels (WCF), 558
chat pages, creating, 491-497
CheckBoxList control, 209
child controls
adding, 102
of composite controls, 109
unique IDs for, 103
Choose Toolbox Items dialog
box, 83
ChtmlITextWriter class, 95
Class1 class, 396, 411
Classl.cs file, 396
classic ASP, 18-21. See also Active
Server Pages (ASP)
file inclusion method, 143
Classic mode (lIS), 37
ClassName attribute, 145
Click handlers, adding, 115

client authentication by IIS, 36.
See also authentication
ClientBin directory, 519
clients
infrastructure on, 62
JavaScript support, 125
sending output to, 49
client-side controls, 59
client-side scripting, 433
client-side validation, 125
closing tags (HTML), 9
CLR object dictionary, 321. See
also data cache
code behind, 43-44
code beside, 43-45
accessing controls with, 64
derivation of, 64
code blocks, server-side, 33-34
code execution, server-side, 31
Codefile directive, 45
collaboration sites, Web Parts
and, 268
CollapsiblePanel extenders, 482
collections
attaching to controls, 208,
210-215
binding to controls, 236
member variables, exposing,
211-212
rendering as tables, 98
representing as Ul elements,
207
representing with data binding,
208-210
representing without data
binding, 207-208
ColumnDefinitions property, 448,
545
CommandBuilder, 221
commands, database commands,
217-218
Common Gateway Interface (CGl),
11-12
Common Language Runtime
(CLR) classes, IHttpHandler
implementation, 25
communications API, fragmented,
556
CompareValidator controls, 120
adding to Web Forms, 127
compilation model, 35-42
CompilerOptions attribute, 145
compiler tracing, 374
Component Object Model (COM),
ActiveX support, 62

CompositeControl class, deriving
from, 103
composite controls, 79. See
also controls
ArrayList, adding, 107-108
building, 103-110
Button event handler, 104
categories of, 101
child members, 102
control tree, 109
CreateChildControls method
override, 105
event hookup, 105
fields, adding, 103
LiteralControl, 105
for login, 102
nesting, 102
RenderContents method,
removing, 103
vs. rendered controls, 101-102
rendering, 102
running, 108
StripNonAlphanumerics
method, 103-104
Table control, adding, 107-108
Text property, 103
utility of, 102
Composite pattern, 452
CompositeType class, 563
config.sys, editing, 414
configuration. See also application
configuration settings
browser definition capability
files, 165
configuration section handlers,
165
keywords, 166
machine.config comments, 165
managing in ASP.NET 1x,
168-169
managing in later versions of
ASP.NET, 169-174
of site maps, 242-243
configuration files, 163
authentication, managing in,
168
for deployment, 582
listing, 164
for .NET applications, 167
retrieving settings from, 180
for Web applicaitons, 167
ConfigurationManager.
AppSettings collection, 178
ConfigurationManager class, 173,
180

configuration section handlers,
165-166
configuration settings
for ASP.NET applications, 180
retrieving, 180
for subdirectories under virtual
directories, 180
using IS ASP.NET Configuration
tool, 180
using Web Site Administration
Tool, 180
ConfirmButton extenders, 482
ConnectDisplayMode, 274
connecting to databases, 215-217
connection strings, adding, 177
Console Application projects, 6,
567
content
dynamic content, 9-18
interactive content, 520
semidynamic content, 437
static content, generalized, 257
ContentPlaceholder controls,
145-147
Context.ClearError, 382
contracts (WCF endpoints), 558
Visual Studio—generated
placeholders for, 562
Control class. See System.Web.
Ul.Control class
control flow, with Forms
Authentication, 185
Controller class, 453
controllers, adding to MVC
projects, 460-461, 464, 472
controls, 77. See also composite
controls; user controls
adding to control tree, 64
adding to Toolbox, 100
adding with Visual Studio, 67-78
appearance properties,
managing, 159-160
custom, 3, 81-88, 100, 101
data-bound. See also data-
bound controls
declaring on page, 85
default event handlers, 78
event management for, 100
extender, 477, 501-512
identifying text, 85
layout options, 77, 78
naming, 121
nesting, 102
new instances of, 93
placing on pages, 84

populating with query results,
221-226
properties, changing, 78, 86,
100
rendering as tags, 59
run-time availability, 75
selecting, 85-86
selection handlers, 213
Silverlight controls, 516,
526-527
skins for, 159-160
state of, 62
tag prefix, mapping to, 85
view state management, 93,
97-100
ControlToAssociate property, 121
ControlToValidate property, 120
setting, 122-123
control trees
construction of, 80
control instances, adding, 64
controls in, 87, 88
viewing, 365
walking, 67-68
cookieName setting, 311
cookies
session identifier as, 310
session state, tracking with,
309-310
Set Auth cookie, 206
CookiesSupported method, 190
core services layer, 480
Create Application Settings link,
170
CreateChildControls method,
overriding, 105
Create Package command, 583
CreateUserWizard control, 201
CssClass property, 77
CurrentNode property, 240
Current property, 49-50, 387
custom attributes, for nodes in
web.sitemap, 248-250
custom cache providers, 358
CustomControlLib assembly,
composite controls in, 110
CustomControlLib directory, 83
CustomControlLib project, 82-88
custom controls, 3. See
also composite controls;
controls
creating, 81-88, 100
types of, 101
custom error pages, 378-381

data binding collections

customErrors section (web.config),
379
custom handlers. See also HTTP
handlers
creating, 419
mapping extensions to,
414-415
as separate assemblies, 419
session state and, 416
Trace handler, 407-409
writing, 411-415
custom providers for session
state, 311
CustomValidator controls, 120,
127-128

D

data access, 324
expense of, 323. See also data
caching
DataAdapter, 219-220
database access, expense of, 323
database lookups, 324
Database Markup Language
(DBML) source files, 458
database queries
configuring, 222-223
inline, 234-236
using a DataSet, 220
using data readers, 218
database query results
IDataReader, for iterating
through, 218-219
populating controls with,
221-226
databases
commanding, 217-218
connecting to, 215-217, 222
deployment/redeployment, 579
limits of connectivity, 219
managing result sets, 218-221
provider pattern and, 216
random access to, 221
SQL support, 217-218
Tables collection, 219
database tables, wrapper classes
for, 472
database technologies, ADO.NET
providers for, 216
DataBind, 208
data binding
collections, representing with,
208-210

591

data binding (continued)

data binding (continued)
simple method, 210-215
TreeView support of, 135
data-bound controls, 208
ADO.NET objects, session state,
and, 299-305
AutoPostBack property, 212
Datalist control, 210, 232-233
DataSourcelD property, 208
DataSource property, 208, 236
DetailsView control, 210,
230-232
FormView control, 209, 228-230
GridView control, 209, 226-228
ListControl base class, 209
Menu control, 209
Repeater control, 210
TreeView control, 209
value associated with, 212
data cache
accessing, 341
benefits of, 321-323
cache dependencies, 334-336
callback delegates, 341
clearing, 338-340
controlling cache entries, 327
deleting items from, 341
inserting items in, 341
inserting items with
dependencies, 341
inserting items with expiration
times, 341
managing, 327, 331-333
retrieving data from, 503-504
searching, 324
SQL Server dependency,
336-338
using, 324-325
data caching, 321-341, 386
backing files, 334
impact of, 325-327
output caching, 343-358
removal callbacks, 338-340
data collection, multistage,
312-320
DataContract attribute, 543
DataContractFormat attribute,
543
Datalist control, 210, 232-233,
236
DataMember attribute, 543
data members, storing, 535
data models, for MVC sites, 458
data providers, managing, 170
data readers, 218-221

holding, 328
DataSet class, 219-221
CommandBuilder, 221
DataSets, 328-331
Data Source Configuration dialog
box, 245
DataSource controls, 208, 221-226
attaching to data-bound
controls, 221
DataSourcelD property, 208
DataSourceMode property
setting, 223
DataSource property, 208, 236
data sources
attaching data-bound controls
to, 208
configuring, 224
DataSourceMode property, 223
for navigation controls, 256
DataTable arrays, 219
displaying, 236
DataTables, 302, 328-331
in-memory, 328-330
synthesizing programmatically,
328-329
DataTextFields, 236
DataValueFields, 236
DbProviderConfigurationHandler,
216
Debug Description attribute, 145
debugging, 374-377
page tracing, 363-370
preparing Web sites for, 383
starting, 375
Visual Studio support for, 374
Web applications, 383
Debug, Step Into command, 376
Debug, Step Over command, 376
DeclarativeCatalogPart, 271, 277,
278
declarative data binding, 208,
221. See also data binding
DetailsView support of, 210
FormView support of, 209
GridView support of, 209
Menu support of, 209
TreeView support of, 209
Decrypt method, 190
default.aspx.cs files, 53
default.aspx files, 53
for MVC applications, 455
default configuration settings, 167
defaultRedirect attribute, 378
delegates for event handlers, 105
DeleteProfile method, 260

dependencies
for cached items, 334-336
in output caching, 353
dependency properties, 535
deployment, 575-586
configuration files for, 582
precompiling for, 578
Visual Studio support for,
578-585
deployment packages, creating,
583
DesignDisplayMode, 274
Designer (Visual Studio)
controls, support for, 110
event handlers, wiring, 105
user controls, support for, 110,
111, 117
visual development in, 67
Design mode
placing controls in, 84
switching to, 78
Design Patterns: Elements of
Reusable Object-Oriented
Software (Gamma, Helm,
Johnson, Vlissides), 451
Design tab (Visual Studio), 54
Design view (Visual Studio), 68
inserting text in, 69
DetailsView control, 210, 230-232
device profiles, session state and,
311
DHTML (Dynamic HTML), 478
directories, for Web application
files, 26
discretionary access control lists
(DACLs), 182
display names, resolving to URLs,
237
Display property, 128
Dispose method, 397, 404
distributable applications,
indirection layer for, 557
distributed computing solutions,
fragmented nature of,
555-556
<div> tags, 69
attributes, setting, 69
DLLs, 14
ISAPI DLLs, 13-14, 19
DockPanel, 435
Document Object Model (DOM)
in Silverlight applications,
533-534, 551
Silverlight interaction with, 516,
533-534

DragPanel extenders, 482
DropDown extenders, 482
DropDownlList boxes, 9, 209
adding items to, 72-73
editing items in, 72-73
rendering, 207-208
DropShadow extenders, 482
Duration attribute, 344, 347
dynamic content, 9-18
rendering, 60, 448
Dynamic Data model,
DynamicValidator controls,
128
Dynamic HTML (DHTML), 478
DynamicPopulate extenders, 482

EditDisplayMode, 274
EditorZone, 276, 288
Empty Web site template, 146
Enabled key, 371
Enabled property, 240
EnableViewState Explicit attribute,
145
Encrypt method, 190
endpoints (WCF), 557-558
address, 558
bindings, 558
contracts, 558
loosely coupled, 557
wire encoding, 557
EndRequest event, intercepting,
392-393
environment variables, 164
Error events, handling, 380-382
ErrorMessage property, 125
setting, 122
error messages
management of, 124, 128
from validator controls, 120
error pages, 378-381
Errors window (Visual Studio), 57
event handlers
adding, 74
adding with text wizard,
104-105
creation of, 93
delegates for, 105
event handling, 390-393
events
AJAX Timer control, 490-497
application-wide, 385, 391-392
exposing, 92-94
firing, 92-93
handlers for, creating, 93

managing, 100
responding to, 94
Silverlight events, 526-527
Events button (Properties pane),
93
exceptions handling, 381-382
executable blocks, 21
executable code
adding as a script block, 34-35
adding inline, 32-33
compiling, 46
managing, 43-46
marking, 31, 179
ExecuteReader, 218
execution model, 33
compilation model, 35
object-oriented, 25
execution tags <% %>, 31
expirations
absolute, 331-332
on cached data, 331-333
sliding, 333-334
Expression Blend, 516, 527
extender controls, 477, 501-512
eXtensible Application Markup
Language. See XAML

F

fields, validating, 120-128
file mappings
for .axd extension, 409
for HTTP handlers, 419
for virtual directories, 17-18
file name extensions
.asp, 19
.aspx, 29
.axd, 409
mappings to binary
components, 36
mappings to ISAPI DLLs, 13
.master, 145
xaml, 448
xbap, 441
file system, loading Web
applications from, 12
File System Web sites, 50-51, 577,
585
creating, 58
precompiling, 578
FilteredTextBox extenders, 482
Flash, 514
Flex, 514
folders, adding to a project, 203
Forbidden handler, 409-410

global assemblies

<form> tags, runat attribute,
63-64
Forms Authentication, 36,
184-189
enabling, 196
target file, 188
using, 206
FormsAuthentication class, 188,
189, 190
methods of, 190
Set Auth cookie, 206
SignOut method, 206
FormsCookieName method, 190
FormsCookiePath method, 190
Forms keyword, 166
FormView control, 209, 228-230,
236
free-form layout, 209
FrontPage 2002 Server Extensions
for Web site development, 51
FTP Web sites, 51, 576, 585
creating, 58

G

Gamma, Erich, 451
GDI and GDI+ interfaces, 434, 436
Generic Handler template, 417,
419
GetAuthCookie method, 190
GetAveragelengthOfRequest
method, 401
GetElementByld, 551
get_isinAsyncPostBack method,
499
GetProductsCompletedEventArgs
argument, 548-549
GetPropertyValue method, 260
GetRedirectUrl method, 190
GET requests, 4, 10-11, 35
GetResponse method, 6-7
GetVaryByCustomString method,
351
global application class, adding,
338
Global Application Class template,
338,388
Global.asax.cs files, 338, 387
global event handlers, 390
Global.asax files, 387
vs. HTTP modules, 404
server-side script block, 387
global assemblies
sharing, 419
signing and deploying, 117

593

594

global assembly cache

global assembly cache, binary
composite controls in, 117
global configuration files, viewing,
180
global state
making thread safe, 389-390
storing in modules, 400-404
graphical user interfaces (GUIs).
See also Uls (user interfaces),
modular, 62
Graphics Device Interface, 434,
436
Grid.Column property, 448
Grid layout panel, 435, 528, 551
adding content to, 448
adding to Page, 448
Grid.Row property, 448
Grid ShowGridLines property, 528
GridView controls, 209, 226-228,
236
AlternateRowStyle property, 228
PagerSettings property, 228
PagerStyle property, 228
group element, 261
GUI components
packaging, 62, 63
server-side, 62

H

handler mappings, 23, 38-39
handlers. See also event handlers
for requests, 62
HashPasswordForStoring-
InConfigFile method, 190
header information, viewing, 5
HEAD requests, 4
HelloWorld2.aspx file, 32
output of, 33
HelloWorld3.aspx file, 34
HelloWorld4Code.cs file, 43
HelloWorld5Code.cs file, 44
HelloWorld.aspx.cs file, 56
HelloWorld.aspx file, 29, 30, 57
HelloWorld.htm file, 28
converting to ASP.NET
application, 29
HellowWorld Web application
building, 26-30
in Visual Studio, 52-58
Helm, Richard, 451
hideSkiplink style, 244
hierarchical data binding, 209
HomeController, 457
host pages, subscription to
events, 92

HotSpot Collection Editor, 130
HotSpotMode property, 130
hot spots
defining, 130
editing, 130-131
HotSpots property, 130
HoverMenu extenders, 482
HTML (Hypertext Markup
Language), 8-9
in ASP content, 60-62
changes between versions, 95
integrating Silverlight content
with, 533-534
over a disconnected protocol,
67
and page, layer of indirection
between, 62
rendering, 95
tables, rendering in, 96
test pages for Silverlight
content, 517-518
versions of, 8
XAML content, integrating,
442-447
Html32TextWriter class, 95
Html.BeginForm, 470
HtmlIDocument class, 533
GetElementByld, 533
GetElementByName, 533
AttachEvent method, 551
GetProperty method, 551
SetProperty method, 551
HTML files
converting to ASP.NET
applications, 29
creating, 28
HTML forms, 10-11
postbacks, 10
HTML markup, rendering, 105
HtmlPage class
Document property, 551
RegisterCreatableType, 551
RegisterScriptableObject, 551
HTML source, viewing, 30
HTML streams, renderings of, 8-9
HTML tags
attributes of, 9
<form>, 9
 tag, 128
<input type=image /> tag, 129
<option> tag, 207
<select>and </select>, 9, 207
sending to browser, 59
views, adding to, 472
HtmlTextWriter class, 80, 90, 95,
95-96

AddStyleAttribute, 96
RenderBeginTag, 96
tag-rendering methods, 100
using, 96
versions of, 95
HTTP 1.0, 4
HTTP 1.1, 4
HttpApplication, 38, 46—48, 386—
387,391-392
dictionary, 386
overriding, 387-393
HttpApplicationState, 80
Lock method, 389
HttpBrowserCapabilities object
SupportsRedirectWithCookie
property, 311
HttpCachePolicy class, 351-352
SetCacheability method,
352-353
HttpContext, 386
Cache property, 341
Current property, 387
Profile property, 259
RewritePath method, 251
User.ldentity.Name key, 261
for WCF applications, 561
HttpContext objects, 38, 46,
48-49, 291
properties in, 49
HTTP GET/POST idiom
drawbacks of, 473
improving, 473. See also AJAX
HttpHandler interface, 50
HTTP handlers, 50, 405-420. See
also custom handlers
add attribute, 406
built-in, 407-410
creating, 419
file mapping, 419
Forbidden handler, 409-410
generic handlers, 417-419
lifetime of, 48
request handlers, 405-407
session state and, 416
Trace handler, 407-409
type element, 406
validate attribute, 406
verbs, 406
httpHandler section (web.config
file), 419
HTTP (Hypertext Transfer
Protocol), 4
HttpModules, 46, 49
HTTP modules, 394-403
creating, 395
features handled by, 395

HTTP modules (continued)
vs. Global.asax, 404
implementing, 396-397
project-level references to, 398
storing state in, 400-403
viewing, 398-400
HTTP requests/responses, 4—7. See
also requests
from a browser, 5-6
endpoint of, 48
headers with, 95
handlers for, 17-18
header information, 5
inbound port for, 12
information about, 49
listening for, 12-13
managing, 48-50
MVC handling, 450. See
also MVC Framework
object representing, 80
payload of, 100
routing of, 35-42
_VIEWSTATE field, 100
without a browser, 6
HttpResponse objects,
CacheControl property, 353
HttpRuntime
AppDomainAppPath property,
566
Cache property, 573
http://schemas.microsoft.com/
winfx/2006/xaml namespace,
448
http://schemas.microsoft.com/
winfx/2006/xaml/presentation
namespace, 448, 523
HTTPS (Secure HTTP), inbound
port for, 12
HTTP.SYS, 39
HttpVerbs.Post enumeration, 468,
472
HTTP Web sites, 52, 576, 585
creating, 58
HttpWorkerRequest class, 46
HyperLink controls, 282
adding to master pages, 204
NavigationUrl method, 204
hyperlink Web Parts, creating,
281-288

ICollection interface, 208
IDataReader interface, 218-219
ID attribute, 74

Internet Information Services (11S) Manager

identity configuration elements,
311
|IEnumerable interface, 208
IHierarchicalDataSource interface,
238, 241
|HierarchicalEnumerable interface,
238, 241
IHttpHandler interface, 50, 406,
410-411, 419
implementation of, 25, 46, 48,
405
IHttpModule, 397, 404
IIS Content View, 14-15
IIS Features View, 14-16
11S (Internet Information Services),
12-13
Anonymous Authentication
mode, 183
application pooling, 31
ASP.NET, configuring from,
174-180
ASP.NET pipeline and, 46-47
ASP.NET, working with, 39, 40
Classic mode, 37
client authentication, 36
C++/native core server API, 16
custom handlers, configuring
for, 414-415
Default Web Site node, 26-27
directory space, 13
Handler Mappings page, 414
hosting Web sites in, 174
HTTP modules and, 395
Integrated mode, 37-38
loading Web applications with,
12
output caching, 36
port 80, listening on, 35
request handling, 36-42
resources, surfing to, 23
running, 14-18
securing, 183-184
security context of, 182, 183
security identity, viewing, 183
session state configuration
page, 307
Trace.axd request handling, 409
URL Rewrite Module, 255
virtual directories of, 13, 26
Windows authentication
support, 183
IIS management console
starting, 23
IListSource interface, 208
image-based controls, 128-132
ImageButton controls, 129

OnClientClick property, 129
PostBackUrl property, 129
Image controls, 128-130
ImageUrl property, 129, 230,
249
ImageMap controls, 129
adding to Web Forms, 130
AlternateText property, 130
HotSpotMode property, 130
ImageUrl property, 130
images
hot spots in, defining, 130
managing and organizing, 129
tooltips for, 130-131
ImageUrl property, 129, 130, 249
Impersonation property, 559
implicit properties, 211
ImportCatalogPart, 271
INamingContainer interface, 103
indexer notation, 341
indexers, for Session object, 293
Index method, 455, 460
index views, generating with,
464
Inherits attribute, 44, 145
InitializationComplete handler,
274-275
initialization files (.ini files), 164
Init method, 397, 404
InitOutputCache method, 352
in process, storing session state,
306
Insert method
Cache object, 327-328
overloads, 328, 338
installers, for Web applications,
585
Integrated mode (IIS)
handler mappings, 37-38
module mappings, 36, 37
interactive applications, 10-11
interactive content, 520
Internet Information Services.
See IS (Internet Information
Services)
Internet Information Services (l1S)
Manager
Application Settings pane,
177-178
ASP.NET Configuration Settings
pane, 180
Connections pane, 176
Connection Strings pane,
176-177
Features View pane, 176
opening, 176

595

596

Internet Services Application Programming Interface

Internet Services Application
Programming Interface,
13-14, 19, 32

inventory binding code, 322-323

ISAPI DLLs, 13-14, 19, 32

IsapiFilterModule module, 16

IsapiModule module, 16

IServicel.cs file, 562

IsReusable property, 410-411, 419

IsValid property, 125, 126

item changed event handlers,
223-224

ItemCommand handler, 301

Items collections, 207-208

[Validator interface, 125

J

Java applets, for GUI components
packaging, 62
JavaScript
client-side validation and, 125
managed code, accessing in,
551
Silverlight components,
accessing with, 533
JavaScript libraries
for AJAX client-side support,
480
Silverlight.createObjectEx helper
function, 526
Java Virtual Machine, Java applet
support, 62
Johnson, Ralph, 451

K

keywords for configuration, 166
keywords namespace, 448

L

<label> element, 121
labels
adorning, 70
ControlToAssociate property,
121
editing content, 71
for validator controls, 121
Language attribute, 63, 145
Language Disassembler (ILDASM),
41
viewing assemblies in, 41-42
Language Integrated Query
(LINQ), 215, 234-236

language syntax, choosing, 53-54
layout
Silverlight schemes, 528-533
options for controls, 77, 78
LayoutEditorPart, 272
layout panels, 435
Silverlight, 528-533
LayoutRoot, 545
lineage of pages, 56
line breaks, rendering, 105
LINQ (Language Integrated
Query), 215, 234-236
queries, constructing, 234-235
LingDataSource control, 208
LINQ To SQL template, 472
LINQ to SQL wrapper classes, 458
ListBox controls, 209
adding items to, 150-152
ListControl base class, 209, 215
Listltem Collection Editor dialog
box, 72
ListSearch extenders, 483
LiteralControl for line breaks, 105
literal text, rendering, 105
localhost, 27
local IIS Web sites, 50
creating, 53
localOnly key, 371
Locals window, 376-377
LocalSystem, access rights, 31
Location attribute, 347, 352-353,
359
location element, 168, 180
Lock method, 389
LoggedinTemplate template, 200
logical trees, in Windows-
based vs. browser-based
application, 435
login composite controls, 102
login controls, 119, 200-203
LoginName control, 200
login pages
basic page, 186-188
creating, 201
with Forms Authentication, 185
optional, 191-194
Visual Studio—created, 201
LoginStatus control, 200
LoginUrl method, 190
LoginView control, 200
LogOnUserControl, 457
long-running operations
canceling, 499-501
updating progress of, 497-501
look and feel, 143-144

master pages, 145-155
skins, 159-160
themes, 155-159
loopbacks, 308
loose XAML files, 436, 437, 438,
442,444

M

machine.config files, 165
provider keys in, 216-217
configuration section handlers,

165-166
default .NET configuration
settings, 167
location of, 166
updating, 167
machine.config.comments file,
165

Macromedia Flash, 448

MainPage class, 522, 528

MainPage constructor, Silverlight

visual tree in, 522-523

MainPage.xaml.cs file, 521

MainPage.xaml file, 521

Manage Access Rules link, 203

managed code, 16-18
accessing in JavaScript, 534, 551

ManageForm method, 412

ManageUl, 493, 496

mangled URLs, 261

marker interfaces, 416

MaskedEdit extenders, 483

Master attribute, 146

master configuration files,

394-395
.master extension, 145
MasterPage directives, attributes
of, 145-146
MasterPage.master file, 146
<body> tag, 147
master pages, 145-155
absolute positioning on, 150
adding content, 149-150
.aspx pages, similarities to, 147
automatic, 179
banners on, 153-154
content of, 145
menus, adding to, 152
ScriptManager control on, 479
SiteMapPath control, adding,
246

Visual Studio—generated code
for, 146-147, 149

Web Forms based on, 244

Master Page template, 146
master web.config file
HTTP handlers in, 406-407
httpModules section, 394-395
member variables, 74
accessing, 64
exposing, 211-212, 236
Menu controls, 209, 237-238, 241,
256
data source for, 245
MaximumDynamicDisplayLevels
property, 246
StaticDisplayLevels property,
246
menu items
adding, 152
NavigateUrl property, 238
menus
adding to master pages, 152
hideSkiplink style, 244
messages (WCF), 559
message traffic, MVC
management of, 450
method attribute, 10-11
method calls, HTTP requests as,
405-406
methods, stepping into and over,
376
Microsoft SharePoint, 268
Microsoft.SharePoint.
WebPartPages.WebPart, 267
Microsoft Silverlight. See
Silverlight
Microsoft Visual Basic Controls
(VBXs), 62
Microsoft Web platform, 12. See
also IIS (Internet Information
Services)
ModalPopup extenders, 433, 483,
508-512
configuring, 511
mode keyword, 166
Model-View-Controller (MVC)
software development
pattern, 449, 452. See
also MVC framework
ASP.NET and, 452-453
Modify Style dialog box, 70, 157
<div> tag settings, 69
module mappings, 23
viewing, 16-17
modules. See HTTP modules
mostRecent key, 371
multistage data collection,
312-320

MultiView controls, 136-138

ActiveViewIndex property, 137
adding Views to, 136

MutuallyExclusiveCheckBox

extenders, 483
MVC framework
application state management,
450
architecture, 449-452
controllers, adding, 472
message traffic management,
450
postback events handling, 453
postbacks processing, 468
request path, 455-456
testing and, 454
Ul management, 450
views, creating, 472
view templates, 453
Visual Studio wiring of, 455
vs. Web Forms, 453
MVC Site template, 456
MVC Web sites
creating, 456-462, 472
data model for, 458
delete views, 470-472
details views, 466
edit views, 469
index views, 466
links, adding, 465
navigation, 461
Site.css file, 457
Site.master file, 457
updating entries, 463-472
view code, 459

N

namespaces, XAML and, 523-524
NavigateUrl property, 238
navigation, 237-240. See also site
maps
security trimming and, 251
URL mapping and, 251-255
URL rewriting and, 255
navigation controls, 237-239
adding, 256
data source for, 256
pointing to site map, 243
using, 241-243
navigation requests
intercepting, 256
redirecting with URL mapping,
251-255

OnMenultemDataBound event

redirecting with URL rewriting,
255
navigation structure, in-memory
representation of, 239-240
NavigationUrl method, 204
navigation URLs, setting, 153
nesting of controls, 102
.NET assemblies. See
also assemblies
pages compiled into, 41
.NET configuration, machine.
config, 165
.NET configuration directory, 167
.NET Globalization page (ASP.
NET Configuration Settings
pane), 180
.NET run-time parameters, 165
.NET databases, 215-221
.NET developers, Silverlight and,
516
.NET Framework
configuration, 164-174
LINQ extensions, 234-235
WCF, 555
XML configuration files, 164
.NET Framework 3.5, implicit
properties, 211
.NET interfaces, [ServiceContract]
attribute, 573
networking layer, 480
NetworkService account, 31
New Data Source command, 245
New Project dialog box, 6
New Solution Configuration
dialog box, 580
New Style dialog box, 77
NextResult method, 219
NoBot extenders, 483
nonalphanumeric characters,
stripping out, 89, 90
nonexistent URLs, mapping to
ASPX files, 251-255
NoStore attribute, 347
NumericUpDown extenders, 483

(0

ObjectDataSource control, 208
object type arguments, 548
Observer pattern, 452
OnClientClick property, 129
One-Click Publish, 579
OnEndRequest handler, 401
OnMenultemDataBound event,
249-250

597

598

on/off attributes

on/off attributes, 378
opening tags (HTML), 9
OperationBehavior attribute, 559
OperationBehaviorAttribute
attribute, 573
operations, updating on progress
of, 497-501
<option> tags, 67
out-of-band request handling,
475, 478, 479
output cache
dependencies, 353
managing, 346-354
OutputCache directive
Duration attribute, 344
Location attribute, 352-353, 359
modifying, 346-351
parameters of, 347-348
placing on page, 343
Shared property, 354
syntax, 344
VaryByCustom parameter, 347
VaryByHeader attribute, 359
VaryByParam attribute, 344,
359
outputCacheProfile elements, 353,
359
OutputCacheProvider elements,
358
outputCacheSettings section, 353
output caching, 163, 343-358, 359
alternate providers for, 358
by IIS, 36
caching profiles, 353-354
effective strategies for, 357-358
locations for content, 352-353
page appearance and, 357
setting up, 343
of user controls, 354-357
output caching parameters,
asterisks in, 357

P

Package/Publish Settings, 583
__Page objects, 66
Pagel.xaml.cs files, 439
Pagel.xaml files, 439
PageCatalogPart, 271
Page class, 30. See System.Web.
Ul.Page class
contents of, 514
request handling, 405
server-side validation
management, 125
Trace property, 363-370

Ul processing, 405
Validate method, 126
page content
based on different browsers,
347
cached, locations of, 352-353
caching, 343-346
Page directive, 30, 63
adding, 29
page elements, themes for,
155-161
Page_Load events, handling, 63
Page_Load method
CacheWithFileDependency(),
336
calling, 323
updating properties in, 249
in Wizard controls, 317
page loads, costs of, 325. See
also data caching
pageOutput key, 371
page refreshes, 473
page-rendering process
bypassing, 343. See also output
caching
composite controls and, 102
PageRequestManager class, 499
abortPostBack() method, 499
get_isinAsyncPostBack method,
499
PagerSettings property, 228
PagerStyle property, 228
pages. See also Web Parts pages;
Web pages
absolute positioning on, 150
browsing to, 28-29
compiling into assemblies, 41
content placeholders, 145
controls, adding, 80
controls, declaring on, 85
controls, placing on, 84
control tree for, 64, 66—-67
events management, 100
initialization of, 80
IsValid property, 126
layout options, 77, 78
lineage of, 56
loading of, 80
master pages, 145-155
properties of, 69
Register directives, 144
rendering contents of, 80
state of, encoding, 97
styles, adding, 77
unloading of, 80
user controls, adding, 115

XAML files, declaring in, 448
Pages And Controls page (ASP.
NET Configuration Settings
pane), 180
page tracing, 66, 363-370
configuring, 370-371
enabling, 383
turning on, 364
page validation, 125-127
PageView controls, 136
PagingBulletedList extenders, 483
partial classes, 45
partial-page updates, 477,
484-489
implementing, 512
triggers for, 488
UpdatePanel support of, 479
Passport authentication, 189
PasswordRecovery control, 200
passwords, hard-coded, 191, 194
PasswordStrength extenders, 483
PATH environment variable, 164
A Pattern Language (Alexander),
451
Patterns movement, 451
performance
AJAX and, 476
application performance, 100,
102
data caching and, 321
improving, 433-434
nesting controls and, 102
output caching and, 345-346
precompiling for, 577-578
request processing chain,
plugging into and, 394
round-trips to database and,
323
view state management and,
100
per-request dictionary, 49
personal information
management, 257-258. See
also personalization; user
profiles
Personalizable property, 283
personalization, 257-266, 271
AJAX support for, 477
anonymous, 262
personalization providers,
258-259
user profiles, 258. See also user
profiles
using, 259-265
Web Parts and, 272
PersonalizationProvider class, 258

personalization providers,
258-259
physical directories, mappings to
URLs, 13
PopupControl extenders, 483
port 80, 26
monitoring, 12
requests on, 35
port 443, 12
port 42424, 308
portals, 268, 269
Web Parts and, 268
postback events, MVC handling
of, 453, 468, 469
postbacks, 10
from ASP.NET controls, 489-490
asynchronous, 490
canceling, 499-501
timed and automatic, 480, 490,
496-497, 512
PostBackUrl property, 129
postprocessing, 46
POST requests, 4, 10-11
posts, maintaining state between,
97-100
precompiled assemblies, 577
precompiling, 44, 577-578, 585
for deployment, 578
for performance, 577
preprocessing, 40, 46
PresentationCore reference, 444
PresentationFramework reference,
444
ProcessRequest method, 410-411,
419
ProcessRequest method
(IHttpHandler), 50
ProductsServiceClient class, 548
ProfileBase class, 260
profile information
saving, 260
using, 259-260
Profile property, 259
profile providers, 258
profiles
accessing properties of, 266
anonymous, 261
defining settings, 266
deleting, 260
grouping and nesting, 261
profile submission handler,
262-264
saving, 260, 264
using, 259-260
profile schemas, defining, 259
Program.cs file, 7

Progress control, 497
ProgressTemplate, 498
progress updating, 497-501
project templates

ASP.NET Web site, 53

Empty Web Site, 52

HTTP site, 52
Project Wizard (Visual Studio), 50
properties

implicit properties, 211

of validation controls, 128
Properties pane, 71

Events button, 93
PropertyGridEditorPart, 272, 286
protocol channels, 558
provider factories, 216-217
provider pattern, 216

personalization providers,

258-259
Provider property, 240
providers for output caching, 358
Providers property, 240
ProxyPartManager, 270
publishing Web applications, 583,
585

PUT requests, 4

Q

query string parameters, varying
cached content on, 348-351
query strings, 11

R

radio button controls, selection
handlers, 225

RadioButtonlList control, 209

RangeValidator controls, 120, 127

Rating extenders, 483

Read method, 219

Really Simple Syndication (RSS),
557

record sets, disconnected, 219

RedirectFromLoginPage method,
190

RedirectToAction method, 472

References node, 444

reflection for view code,
generating, 459

RefreshConversation, 495, 496

regenerateExpiredSessionld
setting, 311

RegisterCreatableType method,
534

requests

Register directive, 85
TagPrefix attribute, 86
Register directives, 144
RegisterScriptableObject method,
534
registry, editing, 164
Regular Expression Editor,
126-127
regular expressions, for validation,
126-127
RegularExpressionValidator
control, 120
adding to Web Forms, 126-127
remoteOnly attribute, 378
remote Web sites, 51
removal callbacks, setting up,
338-340
remove instruction, 168
RenderContents method, 80, 85,
100
HtmlITextWriter methods, using
in, 96
overriding, 83, 100, 102
removing, 103
rendered controls, 101. See
also controls
vs. composite controls, 101-102
rendering code, browser version
independent, 100
rendering controls, 79. See
also controls
Render method, 288
ReorderList extenders, 483
Repeater control, 210
request duration, tracking,
400-403
request handlers, 405-407
request handling facility, 407-410
requestLimit key, 371
request paths of MVC
applications, 455-456
request pipeline, 62-63
request processing, inserting
functionality in, 394-403
Request property (HttpContext
and Page), 95
request-response pattern for
WCF messages, 559
requests. See also HTTP requests/
responses
asynchronous handling of, 474.
See also AJAX
authenticating manually, 206
Authentication tickets for, 189
context information, viewing,
366

599

600

requests (continued)

requests (continued)
handlers for, 63
out-of-band handling, 475
routing tables for, 454
time stamping, 396-398
waiting for, 473-474
RequiredFieldValidator controls,
120
adding to Web Forms, 122
RequireSSL method, 190
ResizableControl extenders, 483
resources
associating with user roles, 203
DACLs of, 182
surfing to from IIS, 23
virtual directories for, 13
Response class HttpCachePolicy,
351
Response object, 21, 32, 75
Cache property, 359
responses, 5, 7. See HTTP
requests/responses
Authentication tickets for, 189
generating, 22
header information, 5
Response.Write, 75
result sets, managing, 218-236
reverse compiling, 41
RewritePath method, 251
Rich Internet Applications (RIAs),
473-474
Silverlight generation of, 513
RootNode property, 240
RootVisual property, 521, 551
RoundedCorners extenders, 483
round-trips to server, 474—475
client-side validation and, 125
reducing, 433-434
RoutedEventArg argument, 440
RoutedEventArgs parameter, 521
routed events, 526-527
RouteTable class, 455
routing policies, changing, 453
routing tables, 454
RowDefinitions property, 448, 545
runat=server attribute, 35, 63-64,
66
runaway threads, avoiding, 501
runtime, enabling session state,
416

S

scalability, application dictionary
size and, 389-390
ScriptableMember attribute, 551

ScriptableType attribute, 551
script blocks, executable, 34-35
scripting issues, 515
ScriptManager controls, 479
adding to page, 484-485, 512
ScriptManagerProxy controls, 479
<script> tags, 31
Seadragon extenders, 484
security
authentication services of ASP.
NET, 189-194
authorizing users, 203-206
configuring, 206
Forms Authentication, 184-189
IS, securing, 183-184
login controls, 200-203
of Web applications, 31
user access, managing, 194-199
Windows security, 182
security identity of IIS, 183
security trimming, 251
securityTrimmingEnabled
attribute, 251
<select> tags, 67
Select A Single Provider For All
Site Management Data link,
195
SelectedNodeChanged events, 135
SelectionChanged event handler,
546
selection controls, selected item
management, 97
selection handlers, adding, 213
semidynamic content, 437
ServerControll control, 82-84
servers
CGl support, 11-12
code execution on, 31
executable script blocks on,
34-35
GUI componentization on, 62
requests to, 6-9
server-side controls, 59
adding to page, 78
attaching collections to,
210-215
composite controls, 79
for layer of indirection, 62
for literal text and HTML
markup, 105
Items collections, 207-208
navigation controls, 237-239
rendering controls, 79
ScriptManager control, 479
ScriptManagerProxy control,
479

Silverlight control, 525-526
size, changing, 78
style template support, 159
Timer control, 480
UpdatePanel control, 479
UpdateProgress control, 480
validator controls, 120, 125
view state management, 97-100
vs. Web Parts, 267
server-side script blocks, 63
server-side validation, 125-126.
See also validation
Servicel.svc.cs file, 562
Servicel.svc file, 562
ServiceBehavior attribute, 559
ServiceBehaviorAttribute attribute,
573
Service class request handling,
405
ServiceContract attribute, 544
service contracts
behaviors, 558-559
creating, 564, 573
implementing, 564, 573
ServiceModel Metadata Utility
Tool, 573
service references
adding, 568
adding to Silverlight projects,
547
services. See also WCF services
contract and policy based, 557
explicit boundaries between,
557
Services control panel, 308
Session_End event, 391
session identifiers as cookies,
309-311
Session member, 260
Session objects, 291
indexer for, 293
inserting and retrieving data
from, 293, 296-297
objects stored in, 299
role of, 292
Session_Start event, 391
session state, 292, 386
accessing, 320
accessing specific values in, 320
adding objects to, 294
ADO.NET objects, data-bound
controls, and, 299-305
ASP.NET support of, 292-293
configuring, 306-308
custom handlers and, 416
custom providers for, 311

session state (continued)
device profiles and, 311
disabling, 306, 307, 320
enabling, 163
managing, 163, 180
retrieving data from, 492-493
storing in a database, 306, 308
storing in a SQL Server
database, 308, 311, 320
storing in a state server, 306,
307-308, 320
storing InProc, 306, 307, 320
timeouts, 311, 320
tracking with cookies, 309-310,
320
tracking with URLs, 310-311,
320
trying, 293-297
sessionState configuration
settings, 166
Session State management
feature (ASP.NET
Configuration Settings pane),
180
sessionString member variable,
295, 298
Set Auth cookie, 206
SetAuthCookie method, 192
SetCacheability method, 351-353
SetETag, 351
SetExpires, 351
SetLastModified, 351
SetMaxAge, 351
SetPropertyValue method, 260
SetRevalidation, 351
SetTargetProperty method, 540
SetValidUntilExpires, 351
SetVaryByCustom, 351
Shared attribute, 347
Shared property, 354
shopping carts, 299
shout boxes, 490
ShowContent method, 192
Showlineage methods, 34, 35, 56
ShowMessageBox property, 123
SidebarTemplate, 312
SignOut method, 190, 206
Silverlight, 448, 515-516
animations, 535-542
architecture, 521-522
dependency properties, 535
Expression Blend and, 527
features of, 515-516
integrating with HTML, 533-534
layout schemes, 528-533, 551
WCF services and, 542-551

XAML role in, 522
Silverlight 1.0, 515
Silverlight 2 and 3, 515
Silverlight applications, 517
compiling, 524
creating, 517-521
generating, 551
HTML Document Object Model
in, 551
RootVisual property, 521-522
visual tree, 522-523
Silverlight Application template,
551
Silverlight class members, 527
Silverlight content
adding to Web pages, 524-526
ASP.NET site for, 517-519
HTML test page for, 517-518
integrating with Web site,
542-550
interactive, 520
project node for, 518-519
Silverlight control, 525-526
Silverlight control events, 526-527
handling, 526
Silverlight controls, 526-527
Silverlight.createObjectEx helper
function, 526
Silverlight events, 526-527
Silverlight js file, 519
Silverlight.createObjectEx helper
function, 526
Silverlight keywords, 523
SilverlightSiteTestPage file, 519
singleton software pattern, 387
Site.css file, 457
SiteMap class, 239-240
events and properties of, 240
SiteMapDataSource
ShowStartingNode property,
246
StartFromCurrentNode
property, 246
site map data sources, 237, 238
SiteMapNode, 239, 240
methods and properties of, 240
site map nodes, 239
custom attributes, adding, 248
editing, 245
nesting, 246
SiteMapPath control, 237-238,
241-242, 256
adding to master pages, 246
site map providers, 237, 239
managing, 239
SiteMapResolve event, 240

Src attribute

SiteMapResolve event handler,
247-248, 256
site maps, 239. See also navigation
adding, 256
blank top-level node, 243
configuring, 242-243
creating, 243-247
custom attributes for nodes,
248-250
default, 239
updating, 239, 243
Site Map template, 244
Site.master files, 457
tabs, adding, 465
site nodes, custom attributes for,
248-250
Skin File template, 160
skins, 159-161
applying, 161
creating, 160
file storage, 159
Slider extenders, 484
SlideShow extenders, 484
SlidingExpiration method, 190
sliding expirations, for cached
items, 333
SOAP, 405, 557
SOA principles, 557
software design patterns, 451-452
Solution Explorer (Visual Studio),
54, 55
MVC folders, 457
Package/Publish Settings, 583
References node, 444
source code
compiling, 577
generated by Visual Studio,
74-75
precompiling, 577-578, 585
viewing, 55, 75, 410
Source code mode, switching
to, 78
Source tab (Visual Studio), 54
Source view (Visual Studio), 55, 69
Split tab (Visual Studio), 54
SqlCacheDependency class,
336-337
SqlDataAdapter, 220
SqlDataSource control,
configuring, 221-222
SqlDependency attribute, 347
SqlPersonalizationProvider class,
259
SQL Server dependencies,
336-338
Src attribute, 44, 146

601

602

StackPanel layout panels

StackPanel layout panels, 435,
439-440, 528, 532-533, 551

StartNavigationTemplate, 312

StartsWith method, 504

stateNetworkTimeout, 311

state service, turning on, 308

static helper methods, adding to
MVC applications, 468

static pages, 9

stepping into methods, 376

stepping over methods, 376

stepping through code, 376

Storyboard, 539

SetTarget method, 540

Strategy pattern, 452

Strict attribute, 145

String types, StartsWith method,
504

StripNonAlphanumerics method,
103, 112

strong names, 166

Structured Query Language (SQL),
217-218

style definitions, text-based,
155-159

styles, modifying, 157

style sheets, building, 156-157

Styles menu Add Style Rule
option, 156

subdirectories, configuration
settings for, 180

Substitution controls, 349

SupportsRedirectWithCookie
property, 311

System.Data.DataView class, 502

System.Diagnostics.Debug, 374

System.Diagnostics.Trace calls,
tracing, 374

System.Runtime.Serialization
namespace, 543

System.ServiceModel.Activation
namespace, 544

System.ServiceModel namespace,
543

[System.Web.Script.Services.
ScriptService] attribute, 504

System.Web.Services.WebService,
46

System.Web.SessionState.
IRequiresSessionState
interface, 416

System.Web.UI.Control class,
79-81

elements of, 80

System.Web.UI.Page class, 33, 46,
59,79
control collection of, 80
controls, iterating, 80
object-oriented approach, 63
properties, methods, and
events, 80
System.Web.Ul.Page handler, 405
System.Web.Ul.UserControl
user controls, 110
System.Web.UI.WebControls.
ContentPlaceHolder controls,
145
System.Web.UI.WebControls.
WebParts.WebPart class, 269
deriving classes from, 280-281
System.Web.UI.WebControl.
WebControl class, 83
System.Windows.Browser.
HtmIDocument class, 533
System.Windows.Browser.
HtmlPage class, 533
System.Windows.HtmlPage class,
534
RegisterCreatableType method,
534
RegisterScriptableObject
method, 534

T

tabbed panes, 136-138
tables
adding to user controls, 114
rendering in HTML 3.2 and
HTML 4.0, 96
Tables collection, 219
Tabs extenders, 484
TabStrip controls, 136
TagPrefix attribute (Register
directive), 86
TepTrace, 5
testing
against local version of IS, 50
application-specific features, 51
MVC applications, 454
text
editing, 69
inserting, 69
text boxes
TextMode property, 121
Text property, 91
TextBoxWatermark extenders, 484
Text File template, 448
TextMode property, 121

Text property
changing, 85
modifications, 106-107
setter for, 92, 106-107, 107, 114
setting, 87-88
TextTextField property, 236
text transfer, 4
TextValueField property, 236
Theme directive, 158
theme folders
creating, 156
skin files in, 159
themes, 155-159
applying, 159
creating and using, 156-159
predefined, 155
this keyword, 33
Threads window, 377
Tick events, 496
The Timeless Way of Building
(Alexander), 451
timeout configuration setting, 311
timeouts, session, 311, 320
Timer controls, 480, 490-497, 512
creating chat pages with,
491-497
default interval, 496
default settings for, 490
Tick event, 496
TimeSpan, 401
timing modules, 398
implementing, 396-398
ToggleButton extenders, 484
Toolbox
adding items to, 84, 91, 100
opening, 70
sorting items in, 84
user controls in, 110
Trace.axd handler, 411
Trace.axd resource, 407-408
TraceFinished event, 373-374
Trace handler, 407-409
traceMode key, 371
Trace objects, adding trace
statements to, 368—-369
Trace property, 363-370
trace statements, 367-370
Trace.Warn, 368
Trace.Write, 368
tracing, 188, 206
application tracing, 370-374
enabling, 383
enabling programmatically, 373
page tracing, 363-370
TraceFinished event, 373-374

tracing (continued)
turning on, 64-65, 78
tracing messages, managing, 374
tracing output
for application tracing, 372
context information, 366-367
control tree, 365
managing, 373-374
trace statements, 367-370
tracing information, adding,
368-370
transport channels, 558
trapping exceptions, 381-382
tree controls, 132. See
also TreeView controls
tree node events, handling,
134-135
tree nodes
building, 135
editing, 133-134
TreeView controls, 132-135, 209,
237-238, 241, 256
adding to Web Forms, 133
BorderColor property, 134
BorderStyle property, 134
data binding support, 135
formatting, 133
SelectedNodeChanged events,
135
TreeView Node Editor, 133-134
TreeView Tasks menu, 133
triggers
for partial-page updates, 488
for UpdatePanel, 512
Triggers collection, 489
Triggers property, 512
troubleshooting, 363. See
also debugging; exceptions
handling; tracing
type element, 406
types, scriptable, 551
type system extensions, 479

U

Uls (user interfaces)

AJAX support of, 476-477

consistency in, 143-144. See
also master pages; skins;
themes

MVC management of, 450

packaging as components,
62-67

processing, 405

progress updates, 497-501

refreshing, 493, 494
responsiveness, improving, 474.
See also AJAX
of user controls, 110
Ul programming, Windows-
based, 434
unit testing with MVC framework,
454
UpdatePanelAnimation extenders,
484
UpdatePanel controls, 479, 512
adding to page, 485, 496-497
Triggers collection, 488, 489,
512
using, 506
UpdateProgress controls, 480,
497-501
adding to page, 498
AssociatedUpdatePanellD
property, 498
ProgressTemplate, 498
URL mapping, 251-255, 256
MVC management of, 453
urlMappings element, 251
URL Rewrite Module, 255
URLs
mangled URLs, 261
resolving display names to, 237
tracking session state with, 310,
320
UseCustomControl.aspx, 84
markup, 86
UseDeviceProfile option, 311
user access management,
181, 194-199, 206. See
also authorization
user controls, 101, 110-117, 528
adding to pages, 115
advantage of, 117
Arraylist, 114
caching, 354-357, 359
default properties, lack of, 113
deployment of, 117
Designer support for, 111, 117
disadvantage of, 117
output of, 116-117
page trace of, 116
System.Web.Ul.UserControl
derivation, 110
Table, adding, 114
Text property, 113
Ul component, 110
Ul functionality, grouping in,
117

validation controls

using statement for System.
Collections, 114
User.ldentity.Name key, 261
user information management,
257-258. See
also personalization
user input
handling, 10
multistage data collection,
312-320
validating, 120-128
user input controls, 10
user interfaces. See Uls (user
interfaces)
user preferences, storing, 258
user profiles, 261
accessing properties of, 266
defining, 258, 266
deleting, 260
grouping and nesting, 261
profile submission handler, 262
saving, 260, 264
using, 259-260
user roles
associating with resources, 203
authorization based on,
203-205
creating, 196-197
security trimming and, 251
users
adding to Web site, 197
authenticating, 181, 198
authorizing, 181, 198-199,
203-206
WebPart controls, adding, 288
Web site customization, 267. See
also Web Parts
user state, associating with
session, 291

\'

validate attribute, 406
Validate method, 125, 126
validation, 119-128
client-side, 125
failure of, 126
server-side, 125-126
using regular expressions,
126-127
validation controls, 120-128
ControlToValidate property, 120
custom logic of, 125
Display property, 128
EnableClientScript property, 125

603

604

validation controls (continued)

validation controls (continued)
grouping, 128
properties of, 128
tags associated with, 125
ValidationGroup property, 128
validation expressions, selecting,
126
validation functions, 128
ValidationGroup property, 128
validation handlers, 125
validation script blocks, 128
ValidationSummary controls, 120
adding to Web Forms, 123
ShowMessageBox property, 123
ValidatorCallout extenders, 484
variables, displaying values of, 376
var type, 461
VaryByContentEncoding attribute,
347
VaryByCustom attribute, 348, 351
VaryByCustom parameter, 347
VaryByHeader attribute, 348, 351,
359
VaryByParam attribute, 344, 348,
351, 359
modifying, 351
verbs, 406
view code, 459
View Code button (Visual Studio),
55
View controls, 136-138
views
adding content to, 137
adding HTML tags to, 472
adding to MultiView controls,
136
adding to MVC projects, 459,
464, 467, 472
managing, 136
navigating between, 137
view state, 386
management of, 97-100
storing, 100
__VIEWSTATE field, 65
ViewState property (Page class),
93, 97-100
view templates, 453
virtual directories
adding, 27
Anonymous Authentication for,
183
creating, 23
definition of, 13
file mappings, 17
file type support, 23

for source code, 26
handler mappings, 23
module mappings, 16-17, 23
physical path for, 28
storing Web sites in, 50
viewing in IS, 15
virtual URLs, mapping to ASPX
files, 251-255
Visual Studio
Administrative mode, 52
and ASP.NET, 50-58
ASP.NET code generated by, 69
asynchronous proxy method
generation, 568
building a page in, 68-75. See
also pages
Call Stack window, 377
code generated by, 54
controls, adding with, 67-78
debugging support, 374-377
deployment support, 578-585
Design view, 68
FTP server connectivity, 51
Hello World application, 52-58
HTML files, creating, 28
layout of, 54
Locals window, 376-377
MVC wiring, 455
prebuilt login page, 199
Properties pane, 71
running as administrator, 175
Source view, 69
Threads window, 377
Toolbox, adding items to, 91
Watch window, 377
WCF contract placeholder files,
562
Web application configuration
files, 167-168
Web application development
in, 67-68
Web Control Library, default
code for, 82
Web site templates, 576-577
Visual Studio Web server, 50
visual trees, constructing, 522-52
Vlissides, John, 451

w

WarninglLevel attribute, 146
Watch window, 377
Wayback Machine, 514
WCF, 555

ASP.NET and, 560-561

behaviors, 558-559
channels, 558
compatibility mode, 561
elements of, 557-559
endpoints, 557-558
messages, 559
role of, 556-557
service contracts, 573
side-by-side mode, 560
Web sites enabled for, 573
WCF clients, building, 567-572,
573
WCF contracts, 558
Visual Studio—generated
placeholders, 562
WCEF proxies, Silverlight-enabled,
548
WCF Service Application
template, 562
WCF services
calling asynchronously, 570-571
exposing, 563, 573
service contracts for, 564
service references, 568
Silverlight and, 542-550, 551
writing, 561-567
WOCF Service template, 573
Web Application projects, 518
Web applications. See also
applications
building, 57
configuration files for, 167-168
debugging, 41
deploying, 578-586
developing, 3
evolution of, 514-515
executable code, adding, 32-33
global space for, 385-404
installers for, 585
loading, 12
loose XAML files in, 442
One-Click Publish, 579
precompiling, 577-578
publishing, 583, 585
running, 57
security of, 31
storage in temporary directory,
42
Web-based security, 182-189
WebBrowsable property, 283
Web browsers. See browsers
web.config file, 167-168
anonymous access setting, 262
application settings, adding,
170-173, 581

web.config file (continued)

application tracing settings, 325

authentication node, 184-185

authorization element, 199

authorization node, 184-185,
192-193

child files, 167

compiler tracing, 374

creating, 170

custom error attributes, 378

customErrors section, 379

debugger setting, 375

<deny users="*"> node, 204

forced authentication settings,
186

Forms Authentication,
implementing in, 184-189

handlers in, 406

httpHandlers section, 413, 419

httpModules section, 398

identity configuration element,
311

location element, 180

login URL specified, 201

managing with Web Site
Administration Tool, 170-172

outputCacheProfile elements,
359

outputCacheSettings section,
353

output caching configuration,
359

personalization properties,
defining in, 258-259

<profile> element, 261, 266

profile schemas, defining in, 259

sample, 165

securityTrimmingEnabled
attribute, 251

session state settings, 311-312

site map configuration settings,
242-243

top-level, 167

tracing, enabling in, 370-371

transform for configuration
changes, 581

transforming for deployment,

579 urlMappings element, 251

WOCEF service contracts, 573
Web Control Library, default code
for, 82
web.debug.config file, 167, 582
Web development, 3
issues of, 21-22
WebDisplayName property, 283

Web Forms, 449
adding to Web sites, 53
based on master pages, 148-
149, 244
vs. MVC framework, 453
sign-in forms, 121-124
user controls in, 110
Web packaging, 579
Web pages. See also pages
adding Silverlight content,
524-526
appearance of and output
caching, 357
building with Web Parts,
272-280
cachable, creating, 344-346
Cache property, 341
lifetime of, 296
partial page updating, 512
SharePoint based, 268
static pages, 9
storing multiple versions of, 359
timed automatic posts from,
512
visual style definition, 155-159
WebPart controls, enabling for,
288
WebPageTracelistener type, 374
WebPart controls
built-in, 271-280
dynamic additions of, 288
enabling Web pages for, 288
WebPartManager, 269, 270, 288
Web Parts, 267
adding to catalog, 284-285
application development, 269
architecture, 269-280
built-in, 271-272
connecting, 271
creating, 288
derivation of, 267
developing, 280-288
development scenarios, 269
display modes, 274
enabling sites for, 288
history of, 268
page development, 269
Render method, 288
vs. server-side controls, 267
server-side controls managed
by, 288
uses of, 268-269
using, 272-280
zones, 270, 270-271

Web sites

Web Parts pages, 269
CatalogZone, 288
editing capabilities, 288
EditorZone, 288
switching display modes,
275-276
WebZone, 288
WebPart Toolbox, 271-272
WebPartZone class, 270
settings for, 272
web.release.config file, 167, 582
WebRequest class, 6
GetResponse method, 6-7
Web servers. See IIS (Internet
Information Services); servers
WebService class, 405
Web service idiom, AJAX use of,
475
Web Service projects, creating,
543-550
Web Setup projects, 585
Web Site Administration Tool
(WSAT), 163, 169-172, 180,
206
Add New Access Rule link, 203
Application tab, 170-171
Create Application Settings link,
170
editing web.config with, 184
Manage Access Rules link, 203
Provider tab, 170, 195
Security tab, 170, 195, 197, 198
web.sitemap file, 239
site nodes, custom attributes
for, 248-250
Web site performance. See also
performance
view state management and,
100
Web site projects, 50-51
Web sites
adding items to, 53
adding WPF-style content to,
436-437, 442-447
AJAX AutoComplete extender
for, 507
asynchronous background
processing, 474
control flow with Forms
Authentication, 185
debugging, 383
dynamic content, 9-18
enabling for AJAX, 512
enabling for WCF, 573

605

606

Web Sites (continued)

Web Sites (continued)
File System Web sites, 50-51,
58, 577, 585
FTP Web sites, 51, 58, 576, 585
hosted by IIS, 174-175
HTTP Web sites, 52, 58, 576, 585
local, 50
look and feel of, 143-144. See
also master pages; skins;
themes
navigation support, 237-256
packaging for deployment,
579-586
personalization support for,
257-266
portal-type, 268-269
profile schema, defining, 259
remote, 51
security for, 181, 206. See
also security
testing application-specific
features, 51
testing locally, 50
user configuration of, 267. See
also Web Parts
Web Parts, enabling for, 288
XAML files, adding, 448
Web site templates, 576-577
Web.Staging.config file, 582-583
Web User Control template, 111
WebZone, 288
Win32 API, 434
Win32 Graphics Device Interface
(GDI), 434
Windows authentication, 189
IIS support for, 183
Windows-based user interface
programming, 434
WindowsBase reference, 444
Windows Communication
Foundation. See WCF
Windows configuration, 164
Windows Forms Controls, 62
Progress control, 497
Windows Internet Explorer
autocomplete feature, 507
Windows Live ID, 189
Windows operating system
environment variables, 164
initialization files (.ini files), 164

Windows Presentation
Foundation. See WPF
Windows security, 182
Windows Workflow Foundation,
555
wire encoding for WCF-based
endpoints, 557
Wizard controls, 138, 312-320
adding controls to steps, 314
adding steps to, 313
auto formatting, 312-313
Page_Load method, 317
SidebarTemplate, 312
StartNavigationTemplate, 312
StepType, 313
WizardStep Collection Editor
dialog box, 313
worker processes, in ASP.NET
pipeline, 47-48
WPF, 434-441, 555
features available through,
434-435
layout panels, 435
Silverlight and, 516
uses of, 433-434
WPF applications
creating, 435
logical tree, 435
WPF-based content
as loose XAML files, 437-438
presenting, 436-437
WPF Browser Application
template, 438, 448
WPF content
deploying with XBAPs, 438-441
rendering, 448
serving, 442-447
WPF layouts, top-level nodes, 442
WPF namespace, 448
WrapPanel layout panel, 435
wrapper classes
creating, 458
for database tables, 472
writeToDiagnosticsTrace key, 371
writeToDiagnosticsTrace option,
374
WriteXml method, 566

X

XAML, 522-524
namespaces and, 523-524
role in Silverlight, 522
visual trees, constructing,
522-523
in Web applications, 436
for WPF layouts, 435
XAML-based browser
applications. See XBAPs
(XAML-based browser
applications)
XAML content
adding, 442
HTML content, integrating,
442-447
xaml extension, 448
XAML files
adding to sites, 448
loose, 436, 437, 438, 442, 444
Pages, declaring in, 448
XAML plug-in, 448
XAP files, 524
xbap extension, 441
XBAPs (XAML-based browser
applications)
creating, 438-441, 448
drawbacks of, 513
xdt:Locator attribute, 583
xdt:Transform attribute, 583
XHTML document tags, 145
XhtmlITextWriter class, 95
XML
configuration files, 164
DataSet objects serialized as,
220
XmlDataSource control, 208
XMLHttpRequest objects, 490
XmlSiteMapProvider, 239, 242
XML site maps, 239. See also site
maps
“x” namespace, 523

y4

ZoneTemplate, 270

	Cover

	Copyright page
	Contents at a Glance
	Table of Contents

	Acknowledgments
	Introduction
	Who This Book Is For
	Getting Started
	Finding Your Best Starting Point in This Book

	Conventions and Features in This Book
	Conventions
	Other Features

	Prerelease Software
	Hardware and Software Requirements
	Code Samples
	Digital Content for Digital Book Readers
	Installing the C# Code Samples
	Using the Code Samples
	Uninstalling the Code Samples

	Support for This Book
	We Want to Hear from You

	Chapter 21:
ASP.NET and WPF Content
	Improving Perceived Performance by Reducing ­
Round-Trips
	What Is WPF?
	How Does WPF Relate to the Web?
	Loose XAML Files
	XBAP Applications

	WPF Content and Web Applications
	What About Silverlight?
	Chapter 21 Quick Reference

	Chapter 23:
AJAX
	Rich Internet Applications
	What Is AJAX?
	ASP.NET and AJAX
	Reasons to Use AJAX
	Real-World AJAX
	AJAX in Perspective

	ASP.NET Server-Side Support for AJAX
	ScriptManager Control
	ScriptManagerProxy Control
	UpdatePanel Control
	UpdateProgress Control
	Timer Control

	AJAX Client Support
	ASP.NET AJAX Control Toolkit
	AJAX Control Toolkit Potpourri

	Getting Familiar with AJAX
	The Timer
	Updating Progress
	Extender Controls
	The AutoComplete Extender
	A Modal Pop-up Dialog-Style Component

	Chapter 23 Quick Reference

	Index

