
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Praise for Speaking JavaScript

“A lot of people think JavaScript is simple and in many cases it is. But in its elegant simplicity
lies a deeper functionality that if leveraged properly, can produce amazing results. Axel’s
ability to distill this into an approachable reference will certainly help both aspiring and

experienced developers achieve a better understanding of the language.”
—Rey Bango

 Advocate for cross-browser development, proponent of the
open web, and lover of the JavaScript programming language

“Axel’s writing style is succinct, to the point, yet at the same time extremely detailed. The
many code examples make even the most complex topics in the book easy to understand.”

—Mathias Bynens
 Belgian web standards enthusiast who likes HTML, CSS,

JavaScript, Unicode, performance, and security

"Speaking JavaScript is a modern, up to date book perfectly aimed at the existing experienced
programmer ready to take a deep dive into JavaScript. Without wasting time on laborious
explanations, Dr. Rauschmayer quickly cuts to the core of JavaScript and its various concepts

and gets developers up to speed quickly with a language that seems intent on taking over
the developer world.”

—Peter Cooper
 Publisher, entrepreneur, and co-organizer of

Fluent Conference

“If you have enjoyed Axel’s blog, then you’ll love this book. His book is filled with tons of
bite-sized code snippets to aid in the learning process. If you want to dive deep and

understand the ins and outs of JavaScript, then I highly recommend this book.”
—Elijah Manor

 Christian, family man, and front end web developer for
Dave Ramsey; enjoys speaking, blogging, and tweeting

www.allitebooks.com

http://www.allitebooks.org

“This book opens the door into the modern JavaScript community with just enough
background and plenty of in-depth introduction to make it seem like you’ve been with the

community from the start.”
—Mitch Pronschinske

 DZone Editor

“After following Dr. Axel Rauschmayer’s work for a few years, I was delighted to learn that
he was writing a book to share his deep expertise of JavaScript with those getting started
with the language. I’ve read many JavaScript books, but none that show the attention to

detail and comprehensiveness of Speaking JS, without being boring or overwhelming. I’ll
be recommending this book for years to come.”

—Guillermo Rauch
 Speaker, creator of socket.io, mongoose, early Node.js

contributor, author of “Smashing Node.js”, founder of
LearnBoost/Cloudup (acq. by Wordpress in 2013), and

Open Academy mentor

www.allitebooks.com

http://www.allitebooks.org

Axel Rauschmayer

Speaking JavaScript

www.allitebooks.com

http://www.allitebooks.org

Speaking JavaScript
by Axel Rauschmayer

Copyright © 2014 Axel Rauschmayer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Amy Jollymore
Production Editor: Kara Ebrahim
Copyeditor: Rachel Monaghan
Proofreader: Charles Roumeliotis

Indexer: Ellen Troutman
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2014: First Edition

Revision History for the First Edition:

2014-02-20: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449365035 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Speaking JavaScript, the image of a Papuan Hornbill, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36503-5

[LSI]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449365035
http://www.allitebooks.org

Table of Contents

Preface. xi

Part I. JavaScript Quick Start

1. Basic JavaScript. 3
Background 3
Syntax 4
Variables and Assignment 6
Values 7
Booleans 12
Numbers 14
Operators 15
Strings 15
Statements 16
Functions 18
Exception Handling 21
Strict Mode 21
Variable Scoping and Closures 22
Objects and Constructors 24
Arrays 28
Regular Expressions 31
Math 31
Other Functionality of the Standard Library 32

Part II. Background

2. Why JavaScript?. 35
Is JavaScript Freely Available? 35
Is JavaScript Elegant? 35

iii

www.allitebooks.com

http://www.allitebooks.org

Is JavaScript Useful? 36
Does JavaScript Have Good Tools? 37
Is JavaScript Fast Enough? 37
Is JavaScript Widely Used? 37
Does JavaScript Have a Future? 38
Conclusion 38

3. The Nature of JavaScript. 39
Quirks and Unorthodox Features 40
Elegant Parts 40
Influences 41

4. How JavaScript Was Created. 43

5. Standardization: ECMAScript. 45

6. Historical JavaScript Milestones. 47

Part III. JavaScript in Depth

7. JavaScript’s Syntax. 53
An Overview of the Syntax 53
Comments 54
Expressions Versus Statements 54
Control Flow Statements and Blocks 57
Rules for Using Semicolons 57
Legal Identifiers 60
Invoking Methods on Number Literals 62
Strict Mode 62

8. Values. 67
JavaScript’s Type System 67
Primitive Values Versus Objects 69
Primitive Values 69
Objects 70
undefined and null 71
Wrapper Objects for Primitives 75
Type Coercion 77

9. Operators. 81
Operators and Objects 81
Assignment Operators 81
Equality Operators: === Versus == 83

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Ordering Operators 87
The Plus Operator (+) 88
Operators for Booleans and Numbers 89
Special Operators 89
Categorizing Values via typeof and instanceof 92
Object Operators 95

10. Booleans. 97
Converting to Boolean 97
Logical Operators 99
Equality Operators, Ordering Operators 102
The Function Boolean 102

11. Numbers. 103
Number Literals 103
Converting to Number 104
Special Number Values 106
The Internal Representation of Numbers 111
Handling Rounding Errors 112
Integers in JavaScript 114
Converting to Integer 117
Arithmetic Operators 122
Bitwise Operators 124
The Function Number 127
Number Constructor Properties 128
Number Prototype Methods 128
Functions for Numbers 131
Sources for This Chapter 132

12. Strings. 133
String Literals 133
Escaping in String Literals 134
Character Access 135
Converting to String 135
Comparing Strings 136
Concatenating Strings 137
The Function String 138
String Constructor Method 138
String Instance Property length 139
String Prototype Methods 139

13. Statements. 145
Declaring and Assigning Variables 145

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

The Bodies of Loops and Conditionals 145
Loops 146
Conditionals 150
The with Statement 153
The debugger Statement 155

14. Exception Handling. 157
What Is Exception Handling? 157
Exception Handling in JavaScript 158
Error Constructors 161
Stack Traces 162
Implementing Your Own Error Constructor 163

15. Functions. 165
The Three Roles of Functions in JavaScript 165
Terminology: “Parameter” Versus “Argument” 166
Defining Functions 166
Hoisting 168
The Name of a Function 169
Which Is Better: A Function Declaration or a Function Expression? 169
More Control over Function Calls: call(), apply(), and bind() 170
Handling Missing or Extra Parameters 171
Named Parameters 176

16. Variables: Scopes, Environments, and Closures. 179
Declaring a Variable 179
Background: Static Versus Dynamic 179
Background: The Scope of a Variable 180
Variables Are Function-Scoped 181
Variable Declarations Are Hoisted 182
Introducing a New Scope via an IIFE 183
Global Variables 186
The Global Object 187
Environments: Managing Variables 190
Closures: Functions Stay Connected to Their Birth Scopes 193

17. Objects and Inheritance. 197
Layer 1: Single Objects 197
Converting Any Value to an Object 203
this as an Implicit Parameter of Functions and Methods 204
Layer 2: The Prototype Relationship Between Objects 211
Iteration and Detection of Properties 217
Best Practices: Iterating over Own Properties 220

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Accessors (Getters and Setters) 221
Property Attributes and Property Descriptors 222
Protecting Objects 229
Layer 3: Constructors—Factories for Instances 231
Data in Prototype Properties 241
Keeping Data Private 244
Layer 4: Inheritance Between Constructors 251
Methods of All Objects 257
Generic Methods: Borrowing Methods from Prototypes 260
Pitfalls: Using an Object as a Map 266
Cheat Sheet: Working with Objects 270

18. Arrays. 273
Overview 273
Creating Arrays 274
Array Indices 276
length 279
Holes in Arrays 282
Array Constructor Method 285
Array Prototype Methods 286
Adding and Removing Elements (Destructive) 286
Sorting and Reversing Elements (Destructive) 287
Concatenating, Slicing, Joining (Nondestructive) 289
Searching for Values (Nondestructive) 290
Iteration (Nondestructive) 291
Pitfall: Array-Like Objects 295
Best Practices: Iterating over Arrays 295

19. Regular Expressions. 297
Regular Expression Syntax 297
Unicode and Regular Expressions 302
Creating a Regular Expression 302
RegExp.prototype.test: Is There a Match? 304
String.prototype.search: At What Index Is There a Match? 305
RegExp.prototype.exec: Capture Groups 305
String.prototype.match: Capture Groups or Return All Matching Substrings 307
String.prototype.replace: Search and Replace 307
Problems with the Flag /g 309
Tips and Tricks 311
Regular Expression Cheat Sheet 314

20. Dates. 317
The Date Constructor 317

Table of Contents | vii

Date Constructor Methods 318
Date Prototype Methods 319
Date Time Formats 322
Time Values: Dates as Milliseconds Since 1970-01-01 324

21. Math. 327
Math Properties 327
Numerical Functions 328
Trigonometric Functions 329
Other Functions 330

22. JSON. 333
Background 333
JSON.stringify(value, replacer?, space?) 337
JSON.parse(text, reviver?) 340
Transforming Data via Node Visitors 341

23. Standard Global Variables. 345
Constructors 345
Error Constructors 345
Nonconstructor Functions 346
Dynamically Evaluating JavaScript Code via eval() and new Function() 347
The Console API 351
Namespaces and Special Values 356

24. Unicode and JavaScript. 357
Unicode History 357
Important Unicode Concepts 357
Code Points 359
Unicode Encodings 359
JavaScript Source Code and Unicode 361
JavaScript Strings and Unicode 364
JavaScript Regular Expressions and Unicode 365

25. New in ECMAScript 5. 369
New Features 369
Syntactic Changes 370
New Functionality in the Standard Library 370
Tips for Working with Legacy Browsers 372

Part IV. Tips, Tools, and Libraries

26. A Meta Code Style Guide. 375
viii | Table of Contents

Existing Style Guides 375
General Tips 375
Commonly Accepted Best Practices 377
Controversial Rules 382
Conclusion 386

27. Language Mechanisms for Debugging. 387

28. Subclassing Built-ins. 389
Terminology 389
Obstacle 1: Instances with Internal Properties 389
Obstacle 2: A Constructor That Can’t Be Called as a Function 392
Another Solution: Delegation 393

29. JSDoc: Generating API Documentation. 395
The Basics of JSDoc 396
Basic Tags 397
Documenting Functions and Methods 399
Inline Type Information (“Inline Doc Comments”) 399
Documenting Variables, Parameters, and Instance Properties 400
Documenting Classes 401
Other Useful Tags 403

30. Libraries. 405
Shims Versus Polyfills 405
Four Language Libraries 406
The ECMAScript Internationalization API 406
Directories for JavaScript Resources 408

31. Module Systems and Package Managers. 411
Module Systems 411
Package Managers 412
Quick and Dirty Modules 412

32. More Tools. 415

33. What to Do Next. 417

Index. 419

Table of Contents | ix

Preface

Due to its prevalence on the Web and other factors, JavaScript has become hard to avoid.
That doesn’t mean that it is well liked, though. With this book, I’m hoping to convince
you that, while you do have to accept a fair amount of quirks when using it, JavaScript
is a decent language that makes you very productive and can be fun to program in.

Even though I have followed its development since its birth, it took me a long time to
warm up to JavaScript. However, when I finally did, it turned out that my prior expe‐
rience had already prepared me well, because I had worked with Scheme, Java (including
GWT), Python, Perl, and Self (all of which have influenced JavaScript).

In 2010, I became aware of Node.js, which gave me hope that I’d eventually be able to
use JavaScript on both server and client. As a consequence, I switched to JavaScript as
my primary programming language. While learning it, I started writing a book chron‐
icling my discoveries. This is the book you are currently reading. On my blog, I published
parts of the book and other material on JavaScript. That helped me in several ways: the
positive reaction encouraged me to keep going and made writing this book less lonely;
comments to blog posts gave me additional information and tips (as acknowledged
everywhere in this book); and it made people aware of my work, which eventually led
to O’Reilly publishing this book.

Therefore, this book has been over three years in the making. It has profited from this
long gestation period, during which I continually refined its contents. I’m glad that the
book is finally finished and hope that people will find it useful for learning JavaScript.
O’Reilly has agreed to make it available to be read online, for free, which should help
make it accessible to a broad audience.

What You Need to Know About This Book
Is this book for you? The following items can help you determine that:

xi

Who this book is for
This book has been written for programmers, by a programmer. So, in order to
understand it, you should already know object-oriented programming, for exam‐
ple, via a mainstream programming language such as Java, PHP, C++, Python, Ruby,
Objective-C, C#, or Perl.

Thus, the book’s target audience is programmers who want to learn JavaScript
quickly and properly, and JavaScript programmers who want to deepen their skills
and/or look up specific topics.

What’s not covered
This book focuses on the JavaScript language proper. For example, you won’t find
information on programming web browsers (DOM, asynchronous programming,
etc.). However, Chapter 33 points to relevant material.

How this book is organized
This book is divided into four parts, but the main two are:

• JavaScript Quick Start
• JavaScript in Depth

These parts are completely independent! You can treat them as if they were separate
books: the former is more like a guide, the latter is more like a reference. “The Four
Parts of This Book” on page xii tells you more about the structure of this book.

What JavaScript version this book uses
This book teaches ECMAScript 5, the current version of JavaScript that is supported
by all modern engines. If you have to work with, say, older web browsers, then
Chapter 25 explains what features are exclusive to ECMAScript 5.

Tips for Reading This Book
The most important tip for learning JavaScript is don’t get bogged down by the details.
Yes, there are many details when it comes to the language, and this book covers most
of them. But there is also a relatively simple and elegant “big picture” that I will point
out to you.

The Four Parts of This Book
This book is organized into four parts:
Part I, JavaScript Quick Start

This part teaches you “Basic JavaScript,” a subset of JavaScript that is as small as
possible while still enabling you to be productive. The part stands on its own; it
doesn’t depend on other parts and no other parts depend on it.

xii | Preface

Part II, Background
This part puts JavaScript in historical and technical context: When, why, and how
was it created? How is it related to other programming languages? What were the
important steps that got us to where we are today?

Part III, JavaScript in Depth
This part is more of a reference: look for a topic that you are interested in, jump in,
and explore. Many short examples should prevent things from becoming too dry.

Part IV, Tips, Tools, and Libraries
This part gives tips for using JavaScript: best practices, advanced techniques, and
learning resources. It also describes a few important tools and libraries.

JavaScript Command Lines
While reading this book, you may want to have a command line ready. That allows you
to try out code interactively. The most popular choices are:
Node.js

Node.js comes with an interactive command line. You start it by calling the shell
command node.

Browsers
All major browsers have consoles for entering JavaScript that is evaluated in the
context of the current page. Simply search online for the name of your browser and
“console.”

Notational Conventions
The following notational conventions are used throughout the book.

Describing syntax
Question marks (?) are used to mark optional parameters. For example:

parseInt(str, radix?)

French quotation marks (guillemets) denote metacode. You can think of such metacode
as blanks, to be filled in by actual code. For example:

try {
 «try_statements»
}

“White” square brackets mark optional syntactic elements. For example:

break ⟦«label»⟧

In JavaScript comments, I sometimes use backticks to distinguish JavaScript from
English:

Preface | xiii

http://nodejs.org

foo(x, y); // calling function `foo` with parameters `x` and `y`

Referring to methods
I refer to built-in methods via their full path:

«Constructor».prototype.«methodName»()

For example, Array.prototype.join() refers to the array method join(); that is, Java‐
Script stores the methods of Array instances in the object Array.prototype. The reason
for this is explained in “Layer 3: Constructors—Factories for Instances” on page 231.

Command-line interaction
Whenever I introduce a new concept, I often illustrate it via an interaction in a JavaScript
command line. This looks as follows:

> 3 + 4
7

The text after the greater-than character is the input, typed by a human. Everything else
is output by the JavaScript engine. Additionally, I use the method console.log() to
print data to the console, especially in (non–command-line) source code:

var x = 3;
x++;
console.log(x); // 4

Tips, notes, and warnings

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xiv | Preface

Quickly Finding Documentation
While you can obviously use this book as a reference, sometimes looking up information
online is quicker. One resource I recommend is the Mozilla Developer Network (MDN).
You can search the Web to find documentation on MDN. For example, the following
web search finds the documentation for the push() method of arrays:

mdn array push

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/speaking-js.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Preface | xv

https://developer.mozilla.org/en-US/
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/speaking-js
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank the following people, all of whom helped make this book possible.

Preparing for JavaScript
The following people laid the foundations for my understanding of JavaScript (in chro‐
nological order):

• Prof. François Bry, Sven Panne, and Tim Geisler (Scheme)
• Prof. Don Batory (technical writing, programming language design)
• Prof. Martin Wirsing, Alexander Knapp, Matthias Hölzl, Hubert Baumeister, and

various other former colleagues at the Institute for Informatics of the University of
Munich (formal methods, various software engineering topics)

Help with JavaScript
Participants of the es-discuss mailing list

Their answers helped me understand the design of JavaScript. I am deeply thankful
for their patience and tirelessness. Four people stood out: Brendan Eich, Allen
Wirfs-Brock, Mark Miller, and David Herman.

Readers of my blog 2ality
I published bits and pieces of this book on my blog and got an incredible amount
of useful feedback. A few names among many: Ben Alman, Brandon Benvie, Ma‐
thias Bynens, Andrea Giammarchi, Matthias Reuter, and Rick Waldron.

More sources are acknowledged in the chapters.

xvi | Preface

www.allitebooks.com

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.2ality.com
http://www.allitebooks.org

Reviewers
I am much obliged to the following people who reviewed this book. They provided
important feedback and corrections. In alphabetical order:

• Mathias Bynens
• Raymond Camden
• Cody Lindley
• Shelley Powers
• Andreas Schroeder
• Alex Stangl
• Béla Varga
• Edward Yue Shung Wong

Preface | xvii

PART I

JavaScript Quick Start

This part is a self-contained quick introduction to JavaScript. You can understand it
without reading anything else in this book, and no other part of the book depends on
its contents. However, the tips for how to read this book in “Tips for Reading This
Book” on page xii do apply.

CHAPTER 1

Basic JavaScript

This chapter is about “Basic JavaScript,” a name I chose for a subset of JavaScript that is
as concise as possible while still enabling you to be productive. When you are starting
to learn JavaScript, I recommend that you program in it for a while before moving on
to the rest of the language. That way, you don’t have to learn everything at once, which
can be confusing.

Background
This section gives a little background on JavaScript to help you understand why it is the
way it is.

JavaScript Versus ECMAScript
ECMAScript is the official name for JavaScript. A new name became necessary because
there is a trademark on Java (held originally by Sun, now by Oracle). At the moment,
Mozilla is one of the few companies allowed to officially use the name JavaScript because
it received a license long ago. For common usage, the following rules apply:

• JavaScript means the programming language.
• ECMAScript is the name used by the language specification. Therefore, whenever

referring to versions of the language, people say ECMAScript. The current version
of JavaScript is ECMAScript 5; ECMAScript 6 is currently being developed.

Influences and Nature of the Language
JavaScript’s creator, Brendan Eich, had no choice but to create the language very quickly
(or other, worse technologies would have been adopted by Netscape). He borrowed from
several programming languages: Java (syntax, primitive values versus objects), Scheme

3

and AWK (first-class functions), Self (prototypal inheritance), and Perl and Python
(strings, arrays, and regular expressions).

JavaScript did not have exception handling until ECMAScript 3, which explains why
the language so often automatically converts values and so often fails silently: it initially
couldn’t throw exceptions.

On one hand, JavaScript has quirks and is missing quite a bit of functionality (block-
scoped variables, modules, support for subclassing, etc.). On the other hand, it has
several powerful features that allow you to work around these problems. In other lan‐
guages, you learn language features. In JavaScript, you often learn patterns instead.

Given its influences, it is no surprise that JavaScript enables a programming style that
is a mixture of functional programming (higher-order functions; built-in map, reduce,
etc.) and object-oriented programming (objects, inheritance).

Syntax
This section explains basic syntactic principles of JavaScript.

An Overview of the Syntax
A few examples of syntax:

// Two slashes start single-line comments

var x; // declaring a variable

x = 3 + y; // assigning a value to the variable `x`

foo(x, y); // calling function `foo` with parameters `x` and `y`
obj.bar(3); // calling method `bar` of object `obj`

// A conditional statement
if (x === 0) { // Is `x` equal to zero?
 x = 123;
}

// Defining function `baz` with parameters `a` and `b`
function baz(a, b) {
 return a + b;
}

Note the two different uses of the equals sign:

• A single equals sign (=) is used to assign a value to a variable.
• A triple equals sign (===) is used to compare two values (see “Equality Operators”

on page 14).

4 | Chapter 1: Basic JavaScript

Statements Versus Expressions
To understand JavaScript’s syntax, you should know that it has two major syntactic
categories: statements and expressions:

• Statements “do things.” A program is a sequence of statements. Here is an example
of a statement, which declares (creates) a variable foo:

var foo;

• Expressions produce values. They are function arguments, the right side of an as‐
signment, etc. Here’s an example of an expression:

3 * 7

The distinction between statements and expressions is best illustrated by the fact that
JavaScript has two different ways to do if-then-else—either as a statement:

var x;
if (y >= 0) {
 x = y;
} else {
 x = -y;
}

or as an expression:

var x = y >= 0 ? y : -y;

You can use the latter as a function argument (but not the former):

myFunction(y >= 0 ? y : -y)

Finally, wherever JavaScript expects a statement, you can also use an expression; for
example:

foo(7, 1);

The whole line is a statement (a so-called expression statement), but the function call
foo(7, 1) is an expression.

Semicolons
Semicolons are optional in JavaScript. However, I recommend always including them,
because otherwise JavaScript can guess wrong about the end of a statement. The details
are explained in “Automatic Semicolon Insertion” on page 59.

Semicolons terminate statements, but not blocks. There is one case where you will see
a semicolon after a block: a function expression is an expression that ends with a
block. If such an expression comes last in a statement, it is followed by a semicolon:

Syntax | 5

// Pattern: var _ = ___;
var x = 3 * 7;
var f = function () { }; // function expr. inside var decl.

Comments
JavaScript has two kinds of comments: single-line comments and multiline comments.
Single-line comments start with // and are terminated by the end of the line:

x++; // single-line comment

Multiline comments are delimited by /* and */:

/* This is
 a multiline
 comment.
 */

Variables and Assignment
Variables in JavaScript are declared before they are used:

var foo; // declare variable `foo`

Assignment
You can declare a variable and assign a value at the same time:

var foo = 6;

You can also assign a value to an existing variable:

foo = 4; // change variable `foo`

Compound Assignment Operators
There are compound assignment operators such as +=. The following two assignments
are equivalent:

x += 1;
x = x + 1;

Identifiers and Variable Names
Identifiers are names that play various syntactic roles in JavaScript. For example, the
name of a variable is an identifier. Identifiers are case sensitive.

Roughly, the first character of an identifier can be any Unicode letter, a dollar sign ($),
or an underscore (_). Subsequent characters can additionally be any Unicode digit. Thus,
the following are all legal identifiers:

6 | Chapter 1: Basic JavaScript

arg0
_tmp
$elem
π

The following identifiers are reserved words—they are part of the syntax and can’t be
used as variable names (including function names and parameter names):

arguments break case catch

class const continue debugger

default delete do else

enum export extends false

finally for function if

implements import in instanceof

interface let new null

package private protected public

return static super switch

this throw true try

typeof var void while

The following three identifiers are not reserved words, but you should treat them as if
they were:

Infinity

NaN

undefined

Lastly, you should also stay away from the names of standard global variables (see
Chapter 23). You can use them for local variables without breaking anything, but your
code still becomes confusing.

Values
JavaScript has many values that we have come to expect from programming languages:
booleans, numbers, strings, arrays, and so on. All values in JavaScript have properties.
Each property has a key (or name) and a value. You can think of properties like fields
of a record. You use the dot (.) operator to read a property:

value.propKey

For example, the string 'abc' has the property length:

> var str = 'abc';
> str.length
3

Values | 7

The preceding can also be written as:

> 'abc'.length
3

The dot operator is also used to assign a value to a property:

> var obj = {}; // empty object
> obj.foo = 123; // create property `foo`, set it to 123
123
> obj.foo
123

And you can use it to invoke methods:

> 'hello'.toUpperCase()
'HELLO'

In the preceding example, we have invoked the method toUpperCase() on the value
'hello'.

Primitive Values Versus Objects
JavaScript makes a somewhat arbitrary distinction between values:

• The primitive values are booleans, numbers, strings, null, and undefined.
• All other values are objects.

A major difference between the two is how they are compared; each object has a unique
identity and is only (strictly) equal to itself:

> var obj1 = {}; // an empty object
> var obj2 = {}; // another empty object
> obj1 === obj2
false
> obj1 === obj1
true

In contrast, all primitive values encoding the same value are considered the same:

> var prim1 = 123;
> var prim2 = 123;
> prim1 === prim2
true

The next two sections explain primitive values and objects in more detail.

8 | Chapter 1: Basic JavaScript

www.allitebooks.com

http://www.allitebooks.org

Primitive Values
The following are all of the primitive values (or primitives for short):

• Booleans: true, false (see “Booleans” on page 12)
• Numbers: 1736, 1.351 (see “Numbers” on page 14)
• Strings: 'abc', "abc" (see “Strings” on page 15)
• Two “nonvalues”: undefined, null (see “undefined and null” on page 10)

Primitives have the following characteristics:
Compared by value

The “content” is compared:

> 3 === 3
true
> 'abc' === 'abc'
true

Always immutable
Properties can’t be changed, added, or removed:

> var str = 'abc';

> str.length = 1; // try to change property `length`
> str.length // ⇒ no effect
3

> str.foo = 3; // try to create property `foo`
> str.foo // ⇒ no effect, unknown property
undefined

(Reading an unknown property always returns undefined.)

Objects
All nonprimitive values are objects. The most common kinds of objects are:

• Plain objects, which can be created by object literals (see “Single Objects” on page 25):
{
 firstName: 'Jane',
 lastName: 'Doe'
}

The preceding object has two properties: the value of property firstName is 'Jane'
and the value of property lastName is 'Doe'.

• Arrays, which can be created by array literals (see “Arrays” on page 28):

Values | 9

['apple', 'banana', 'cherry']

The preceding array has three elements that can be accessed via numeric indices.
For example, the index of 'apple' is 0.

• Regular expressions, which can be created by regular expression literals (see “Regular
Expressions” on page 31):

/^a+b+$/

Objects have the following characteristics:
Compared by reference

Identities are compared; every value has its own identity:

> {} === {} // two different empty objects
false

> var obj1 = {};
> var obj2 = obj1;
> obj1 === obj2
true

Mutable by default
You can normally freely change, add, and remove properties (see “Single Objects”
on page 25):

> var obj = {};
> obj.foo = 123; // add property `foo`
> obj.foo
123

undefined and null
Most programming languages have values denoting missing information. JavaScript
has two such “nonvalues,” undefined and null:

• undefined means “no value.” Uninitialized variables are undefined:
> var foo;
> foo
undefined

Missing parameters are undefined:
> function f(x) { return x }
> f()
undefined

If you read a nonexistent property, you get undefined:
> var obj = {}; // empty object
> obj.foo
undefined

10 | Chapter 1: Basic JavaScript

• null means “no object.” It is used as a nonvalue whenever an object is expected
(parameters, last in a chain of objects, etc.).

undefined and null have no properties, not even standard meth‐
ods such as toString().

Checking for undefined or null

Functions normally allow you to indicate a missing value via either undefined or null.
You can do the same via an explicit check:

if (x === undefined || x === null) {
 ...
}

You can also exploit the fact that both undefined and null are considered false:

if (!x) {
 ...
}

false, 0, NaN, and '' are also considered false (see “Truthy and
Falsy” on page 13).

Categorizing Values Using typeof and instanceof
There are two operators for categorizing values: typeof is mainly used for primitive
values, while instanceof is used for objects.

typeof looks like this:

typeof value

It returns a string describing the “type” of value. Here are some examples:

> typeof true
'boolean'
> typeof 'abc'
'string'
> typeof {} // empty object literal
'object'
> typeof [] // empty array literal
'object'

Values | 11

The following table lists all results of typeof:

Operand Result

undefined 'undefined'

null 'object'

Boolean value 'boolean'

Number value 'number'

String value 'string'

Function 'function'

All other normal values 'object'

(Engine-created value) JavaScript engines are allowed to create values for which typeof returns arbitrary strings (different
from all results listed in this table).

typeof null returning 'object' is a bug that can’t be fixed, because it would break
existing code. It does not mean that null is an object.

instanceof looks like this:

value instanceof Constr

It returns true if value is an object that has been created by the constructor Constr (see
“Constructors: Factories for Objects” on page 28). Here are some examples:

> var b = new Bar(); // object created by constructor Bar
> b instanceof Bar
true

> {} instanceof Object
true
> [] instanceof Array
true
> [] instanceof Object // Array is a subconstructor of Object
true

> undefined instanceof Object
false
> null instanceof Object
false

Booleans
The primitive boolean type comprises the values true and false. The following oper‐
ators produce booleans:

• Binary logical operators: && (And), || (Or)
• Prefix logical operator: ! (Not)

12 | Chapter 1: Basic JavaScript

• Comparison operators:
— Equality operators: ===, !==, ==, !=
— Ordering operators (for strings and numbers): >, >=, <, <=

Truthy and Falsy
Whenever JavaScript expects a boolean value (e.g., for the condition of an if statement),
any value can be used. It will be interpreted as either true or false. The following values
are interpreted as false:

• undefined, null
• Boolean: false
• Number: -0, NaN
• String: ''

All other values (including all objects!) are considered true. Values interpreted as false
are called falsy, and values interpreted as true are called truthy. Boolean(), called as a
function, converts its parameter to a boolean. You can use it to test how a value is
interpreted:

> Boolean(undefined)
false
> Boolean(0)
false
> Boolean(3)
true
> Boolean({}) // empty object
true
> Boolean([]) // empty array
true

Binary Logical Operators
Binary logical operators in JavaScript are short-circuiting. That is, if the first operand
suffices for determining the result, the second operand is not evaluated. For example,
in the following expressions, the function foo() is never called:

false && foo()
true || foo()

Furthermore, binary logical operators return either one of their operands—which may
or may not be a boolean. A check for truthiness is used to determine which one:
And (&&)

If the first operand is falsy, return it. Otherwise, return the second operand:

Booleans | 13

> NaN && 'abc'
NaN
> 123 && 'abc'
'abc'

Or (||)
If the first operand is truthy, return it. Otherwise, return the second operand:

> 'abc' || 123
'abc'
> '' || 123
123

Equality Operators
JavaScript has two kinds of equality:

• Normal, or “lenient,” (in)equality: == and !=
• Strict (in)equality: === and !==

Normal equality considers (too) many values to be equal (the details are explained in
“Normal (Lenient) Equality (==, !=)” on page 84), which can hide bugs. Therefore, always
using strict equality is recommended.

Numbers
All numbers in JavaScript are floating-point:

> 1 === 1.0
true

Special numbers include the following:
NaN (“not a number”)

An error value:

> Number('xyz') // 'xyz' can’t be converted to a number
NaN

Infinity

Also mostly an error value:

> 3 / 0
Infinity
> Math.pow(2, 1024) // number too large
Infinity

Infinity is larger than any other number (except NaN). Similarly, -Infinity is
smaller than any other number (except NaN). That makes these numbers useful as
default values (e.g., when you are looking for a minimum or a maximum).

14 | Chapter 1: Basic JavaScript

Operators
JavaScript has the following arithmetic operators (see “Arithmetic Operators” on page
122):

• Addition: number1 + number2
• Subtraction: number1 - number2
• Multiplication: number1 * number2
• Division: number1 / number2
• Remainder: number1 % number2
• Increment: ++variable, variable++
• Decrement: --variable, variable--
• Negate: -value
• Convert to number: +value

The global object Math (see “Math” on page 31) provides more arithmetic operations, via
functions.

JavaScript also has operators for bitwise operations (e.g., bitwise And; see “Bitwise
Operators” on page 124).

Strings
Strings can be created directly via string literals. Those literals are delimited by single
or double quotes. The backslash (\) escapes characters and produces a few control
characters. Here are some examples:

'abc'
"abc"

'Did she say "Hello"?'
"Did she say \"Hello\"?"

'That\'s nice!'
"That's nice!"

'Line 1\nLine 2' // newline
'Backlash: \\'

Single characters are accessed via square brackets:

> var str = 'abc';
> str[1]
'b'

Operators | 15

The property length counts the number of characters in the string:

> 'abc'.length
3

Like all primitives, strings are immutable; you need to create a new string if you want
to change an existing one.

String Operators
Strings are concatenated via the plus (+) operator, which converts the other operand to
a string if one of the operands is a string:

> var messageCount = 3;
> 'You have ' + messageCount + ' messages'
'You have 3 messages'

To concatenate strings in multiple steps, use the += operator:

> var str = '';
> str += 'Multiple ';
> str += 'pieces ';
> str += 'are concatenated.';
> str
'Multiple pieces are concatenated.'

String Methods
Strings have many useful methods (see “String Prototype Methods” on page 139). Here
are some examples:

> 'abc'.slice(1) // copy a substring
'bc'
> 'abc'.slice(1, 2)
'b'

> '\t xyz '.trim() // trim whitespace
'xyz'

> 'mjölnir'.toUpperCase()
'MJÖLNIR'

> 'abc'.indexOf('b') // find a string
1
> 'abc'.indexOf('x')
-1

Statements
Conditionals and loops in JavaScript are introduced in the following sections.

16 | Chapter 1: Basic JavaScript

Conditionals
The if statement has a then clause and an optional else clause that are executed de‐
pending on a boolean condition:

if (myvar === 0) {
 // then
}

if (myvar === 0) {
 // then
} else {
 // else
}

if (myvar === 0) {
 // then
} else if (myvar === 1) {
 // else-if
} else if (myvar === 2) {
 // else-if
} else {
 // else
}

I recommend always using braces (they denote blocks of zero or more statements). But
you don’t have to do so if a clause is only a single statement (the same holds for the
control flow statements for and while):

if (x < 0) return -x;

The following is a switch statement. The value of fruit decides which case is executed:

switch (fruit) {
 case 'banana':
 // ...
 break;
 case 'apple':
 // ...
 break;
 default: // all other cases
 // ...
}

The “operand” after case can be any expression; it is compared via === with the pa‐
rameter of switch.

Loops
The for loop has the following format:

Statements | 17

for (⟦«init»⟧; ⟦«condition»⟧; ⟦«post_iteration»⟧)
 «statement»

init is executed at the beginning of the loop. condition is checked before each loop
iteration; if it becomes false, then the loop is terminated. post_iteration is executed
after each loop iteration.

This example prints all elements of the array arr on the console:

for (var i=0; i < arr.length; i++) {
 console.log(arr[i]);
}

The while loop continues looping over its body while its condition holds:

// Same as for loop above:
var i = 0;
while (i < arr.length) {
 console.log(arr[i]);
 i++;
}

The do-while loop continues looping over its body while its condition holds. As the
condition follows the body, the body is always executed at least once:

do {
 // ...
} while (condition);

In all loops:

• break leaves the loop.
• continue starts a new loop iteration.

Functions
One way of defining a function is via a function declaration:

function add(param1, param2) {
 return param1 + param2;
}

The preceding code defines a function, add, that has two parameters, param1 and
param2, and returns the sum of both parameters. This is how you call that function:

> add(6, 1)
7
> add('a', 'b')
'ab'

Another way of defining add() is by assigning a function expression to a variable add:

18 | Chapter 1: Basic JavaScript

www.allitebooks.com

http://www.allitebooks.org

var add = function (param1, param2) {
 return param1 + param2;
};

A function expression produces a value and can thus be used to directly pass functions
as arguments to other functions:

someOtherFunction(function (p1, p2) { ... });

Function Declarations Are Hoisted
Function declarations are hoisted—moved in their entirety to the beginning of the cur‐
rent scope. That allows you to refer to functions that are declared later:

function foo() {
 bar(); // OK, bar is hoisted
 function bar() {
 ...
 }
}

Note that while var declarations are also hoisted (see “Variables Are Hoisted” on page
23), assignments performed by them are not:

function foo() {
 bar(); // Not OK, bar is still undefined
 var bar = function () {
 // ...
 };
}

The Special Variable arguments
You can call any function in JavaScript with an arbitrary amount of arguments; the
language will never complain. It will, however, make all parameters available via the
special variable arguments. arguments looks like an array, but has none of the array
methods:

> function f() { return arguments }
> var args = f('a', 'b', 'c');
> args.length
3
> args[0] // read element at index 0
'a'

Too Many or Too Few Arguments
Let’s use the following function to explore how too many or too few parameters are
handled in JavaScript (the function toArray() is shown in “Converting arguments to
an Array” on page 21):

Functions | 19

function f(x, y) {
 console.log(x, y);
 return toArray(arguments);
}

Additional parameters will be ignored (except by arguments):

> f('a', 'b', 'c')
a b
['a', 'b', 'c']

Missing parameters will get the value undefined:

> f('a')
a undefined
['a']
> f()
undefined undefined
[]

Optional Parameters
The following is a common pattern for assigning default values to parameters:

function pair(x, y) {
 x = x || 0; // (1)
 y = y || 0;
 return [x, y];
}

In line (1), the || operator returns x if it is truthy (not null, undefined, etc.). Otherwise,
it returns the second operand:

> pair()
[0, 0]
> pair(3)
[3, 0]
> pair(3, 5)
[3, 5]

Enforcing an Arity
If you want to enforce an arity (a specific number of parameters), you can check
arguments.length:

function pair(x, y) {
 if (arguments.length !== 2) {
 throw new Error('Need exactly 2 arguments');
 }
 ...
}

20 | Chapter 1: Basic JavaScript

Converting arguments to an Array
arguments is not an array, it is only array-like (see “Array-Like Objects and Generic
Methods” on page 262). It has a property length, and you can access its elements via indices
in square brackets. You cannot, however, remove elements or invoke any of the array
methods on it. Thus, you sometimes need to convert arguments to an array, which is
what the following function does (it is explained in “Array-Like Objects and Generic
Methods” on page 262):

function toArray(arrayLikeObject) {
 return Array.prototype.slice.call(arrayLikeObject);
}

Exception Handling
The most common way to handle exceptions (see Chapter 14) is as follows:

function getPerson(id) {
 if (id < 0) {
 throw new Error('ID must not be negative: '+id);
 }
 return { id: id }; // normally: retrieved from database
}

function getPersons(ids) {
 var result = [];
 ids.forEach(function (id) {
 try {
 var person = getPerson(id);
 result.push(person);
 } catch (exception) {
 console.log(exception);
 }
 });
 return result;
}

The try clause surrounds critical code, and the catch clause is executed if an exception
is thrown inside the try clause. Using the preceding code:

> getPersons([2, -5, 137])
[Error: ID must not be negative: -5]
[{ id: 2 }, { id: 137 }]

Strict Mode
Strict mode (see “Strict Mode” on page 62) enables more warnings and makes JavaScript
a cleaner language (nonstrict mode is sometimes called “sloppy mode”). To switch it on,
type the following line first in a JavaScript file or a <script> tag:

Exception Handling | 21

'use strict';

You can also enable strict mode per function:

function functionInStrictMode() {
 'use strict';
}

Variable Scoping and Closures
In JavaScript, you declare variables via var before using them:

> var x;
> x = 3;
> y = 4;
ReferenceError: y is not defined

You can declare and initialize several variables with a single var statement:

var x = 1, y = 2, z = 3;

But I recommend using one statement per variable (the reason is explained in “Syn‐
tax” on page 382). Thus, I would rewrite the previous statement to:

var x = 1;
var y = 2;
var z = 3;

Because of hoisting (see “Variables Are Hoisted” on page 23), it is usually best to declare
variables at the beginning of a function.

Variables Are Function-Scoped
The scope of a variable is always the complete function (as opposed to the current
block). For example:

function foo() {
 var x = -512;
 if (x < 0) { // (1)
 var tmp = -x;
 ...
 }
 console.log(tmp); // 512
}

We can see that the variable tmp is not restricted to the block starting in line (1); it exists
until the end of the function.

22 | Chapter 1: Basic JavaScript

Variables Are Hoisted
Each variable declaration is hoisted: the declaration is moved to the beginning of the
function, but assignments that it makes stay put. As an example, consider the variable
declaration in line (1) in the following function:

function foo() {
 console.log(tmp); // undefined
 if (false) {
 var tmp = 3; // (1)
 }
}

Internally, the preceding function is executed like this:

function foo() {
 var tmp; // hoisted declaration
 console.log(tmp);
 if (false) {
 tmp = 3; // assignment stays put
 }
}

Closures
Each function stays connected to the variables of the functions that surround it, even
after it leaves the scope in which it was created. For example:

function createIncrementor(start) {
 return function () { // (1)
 start++;
 return start;
 }
}

The function starting in line (1) leaves the context in which it was created, but stays
connected to a live version of start:

> var inc = createIncrementor(5);
> inc()
6
> inc()
7
> inc()
8

A closure is a function plus the connection to the variables of its surrounding scopes.
Thus, what createIncrementor() returns is a closure.

Variable Scoping and Closures | 23

The IIFE Pattern: Introducing a New Scope
Sometimes you want to introduce a new variable scope—for example, to prevent a vari‐
able from becoming global. In JavaScript, you can’t use a block to do so; you must use
a function. But there is a pattern for using a function in a block-like manner. It is called
IIFE (immediately invoked function expression, pronounced “iffy”):

(function () { // open IIFE
 var tmp = ...; // not a global variable
}()); // close IIFE

Be sure to type the preceding example exactly as shown (apart from the comments). An
IIFE is a function expression that is called immediately after you define it. Inside the
function, a new scope exists, preventing tmp from becoming global. Consult “Intro‐
ducing a New Scope via an IIFE” on page 183 for details on IIFEs.

IIFE use case: inadvertent sharing via closures
Closures keep their connections to outer variables, which is sometimes not what you
want:

var result = [];
for (var i=0; i < 5; i++) {
 result.push(function () { return i }); // (1)
}
console.log(result[1]()); // 5 (not 1)
console.log(result[3]()); // 5 (not 3)

The value returned in line (1) is always the current value of i, not the value it had when
the function was created. After the loop is finished, i has the value 5, which is why all
functions in the array return that value. If you want the function in line (1) to receive a
snapshot of the current value of i, you can use an IIFE:

for (var i=0; i < 5; i++) {
 (function () {
 var i2 = i; // copy current i
 result.push(function () { return i2 });
 }());
}

Objects and Constructors
This section covers two basic object-oriented mechanisms of JavaScript: single objects
and constructors (which are factories for objects, similar to classes in other languages).

24 | Chapter 1: Basic JavaScript

http://bit.ly/i-ife

Single Objects
Like all values, objects have properties. You could, in fact, consider an object to be a set
of properties, where each property is a (key, value) pair. The key is a string, and the value
is any JavaScript value.

In JavaScript, you can directly create plain objects, via object literals:
'use strict';
var jane = {
 name: 'Jane',

 describe: function () {
 return 'Person named '+this.name;
 }
};

The preceding object has the properties name and describe. You can read (“get”) and
write (“set”) properties:

> jane.name // get
'Jane'
> jane.name = 'John'; // set
> jane.newProperty = 'abc'; // property created automatically

Function-valued properties such as describe are called methods. They use this to refer
to the object that was used to call them:

> jane.describe() // call method
'Person named John'
> jane.name = 'Jane';
> jane.describe()
'Person named Jane'

The in operator checks whether a property exists:

> 'newProperty' in jane
true
> 'foo' in jane
false

If you read a property that does not exist, you get the value undefined. Hence, the
previous two checks could also be performed like this:

> jane.newProperty !== undefined
true
> jane.foo !== undefined
false

The delete operator removes a property:

> delete jane.newProperty
true

Objects and Constructors | 25

> 'newProperty' in jane
false

Arbitrary Property Keys
A property key can be any string. So far, we have seen property keys in object literals
and after the dot operator. However, you can use them that way only if they are identifiers
(see “Identifiers and Variable Names” on page 6). If you want to use other strings as
keys, you have to quote them in an object literal and use square brackets to get and set
the property:

> var obj = { 'not an identifier': 123 };
> obj['not an identifier']
123
> obj['not an identifier'] = 456;

Square brackets also allow you to compute the key of a property:

> var obj = { hello: 'world' };
> var x = 'hello';

> obj[x]
'world'
> obj['hel'+'lo']
'world'

Extracting Methods
If you extract a method, it loses its connection with the object. On its own, the function
is not a method anymore, and this has the value undefined (in strict mode).

As an example, let’s go back to the earlier object jane:

'use strict';
var jane = {
 name: 'Jane',

 describe: function () {
 return 'Person named '+this.name;
 }
};

We want to extract the method describe from jane, put it into a variable func, and call
it. However, that doesn’t work:

> var func = jane.describe;
> func()
TypeError: Cannot read property 'name' of undefined

The solution is to use the method bind() that all functions have. It creates a new function
whose this always has the given value:

26 | Chapter 1: Basic JavaScript

> var func2 = jane.describe.bind(jane);
> func2()
'Person named Jane'

Functions Inside a Method
Every function has its own special variable this. This is inconvenient if you nest a
function inside a method, because you can’t access the method’s this from the function.
The following is an example where we call forEach with a function to iterate over an
array:

var jane = {
 name: 'Jane',
 friends: ['Tarzan', 'Cheeta'],
 logHiToFriends: function () {
 'use strict';
 this.friends.forEach(function (friend) {
 // `this` is undefined here
 console.log(this.name+' says hi to '+friend);
 });
 }
}

Calling logHiToFriends produces an error:

> jane.logHiToFriends()
TypeError: Cannot read property 'name' of undefined

Let’s look at two ways of fixing this. First, we could store this in a different variable:

logHiToFriends: function () {
 'use strict';
 var that = this;
 this.friends.forEach(function (friend) {
 console.log(that.name+' says hi to '+friend);
 });
}

Or, forEach has a second parameter that allows you to provide a value for this:

logHiToFriends: function () {
 'use strict';
 this.friends.forEach(function (friend) {
 console.log(this.name+' says hi to '+friend);
 }, this);
}

Function expressions are often used as arguments in function calls in JavaScript. Always
be careful when you refer to this from one of those function expressions.

Objects and Constructors | 27

Constructors: Factories for Objects
Until now, you may think that JavaScript objects are only maps from strings to values,
a notion suggested by JavaScript’s object literals, which look like the map/dictionary
literals of other languages. However, JavaScript objects also support a feature that is truly
object-oriented: inheritance. This section does not fully explain how JavaScript inher‐
itance works, but it shows you a simple pattern to get you started. Consult Chapter 17
if you want to know more.

In addition to being “real” functions and methods, functions play another role in Java‐
Script: they become constructors—factories for objects—if invoked via the new operator.
Constructors are thus a rough analog to classes in other languages. By convention, the
names of constructors start with capital letters. For example:

// Set up instance data
function Point(x, y) {
 this.x = x;
 this.y = y;
}
// Methods
Point.prototype.dist = function () {
 return Math.sqrt(this.x*this.x + this.y*this.y);
};

We can see that a constructor has two parts. First, the function Point sets up the instance
data. Second, the property Point.prototype contains an object with the methods. The
former data is specific to each instance, while the latter data is shared among all
instances.

To use Point, we invoke it via the new operator:

> var p = new Point(3, 5);
> p.x
3
> p.dist()
5.830951894845301

p is an instance of Point:

> p instanceof Point
true

Arrays
Arrays are sequences of elements that can be accessed via integer indices starting at zero.

Array Literals
Array literals are handy for creating arrays:

28 | Chapter 1: Basic JavaScript

www.allitebooks.com

http://www.allitebooks.org

> var arr = ['a', 'b', 'c'];

The preceding array has three elements: the strings 'a', 'b', and 'c'. You can access
them via integer indices:

> arr[0]
'a'
> arr[0] = 'x';
> arr
['x', 'b', 'c']

The length property indicates how many elements an array has. You can use it to append
elements and to remove elements:

> var arr = ['a', 'b'];
> arr.length
2

> arr[arr.length] = 'c';
> arr
['a', 'b', 'c']
> arr.length
3

> arr.length = 1;
> arr
['a']

The in operator works for arrays, too:

> var arr = ['a', 'b', 'c'];
> 1 in arr // is there an element at index 1?
true
> 5 in arr // is there an element at index 5?
false

Note that arrays are objects and can thus have object properties:

> var arr = [];
> arr.foo = 123;
> arr.foo
123

Array Methods
Arrays have many methods (see “Array Prototype Methods” on page 286). Here are a few
examples:

> var arr = ['a', 'b', 'c'];

> arr.slice(1, 2) // copy elements
['b']
> arr.slice(1)
['b', 'c']

Arrays | 29

> arr.push('x') // append an element
4
> arr
['a', 'b', 'c', 'x']

> arr.pop() // remove last element
'x'
> arr
['a', 'b', 'c']

> arr.shift() // remove first element
'a'
> arr
['b', 'c']

> arr.unshift('x') // prepend an element
3
> arr
['x', 'b', 'c']

> arr.indexOf('b') // find the index of an element
1
> arr.indexOf('y')
-1

> arr.join('-') // all elements in a single string
'x-b-c'
> arr.join('')
'xbc'
> arr.join()
'x,b,c'

Iterating over Arrays
There are several array methods for iterating over elements (see “Iteration (Nondes‐
tructive)” on page 291). The two most important ones are forEach and map.

forEach iterates over an array and hands the current element and its index to a function:

['a', 'b', 'c'].forEach(
 function (elem, index) { // (1)
 console.log(index + '. ' + elem);
 });

The preceding code produces the following output:

0. a
1. b
2. c

Note that the function in line (1) is free to ignore arguments. It could, for example, only
have the parameter elem.

30 | Chapter 1: Basic JavaScript

map creates a new array by applying a function to each element of an existing array:

> [1,2,3].map(function (x) { return x*x })
[1, 4, 9]

Regular Expressions
JavaScript has built-in support for regular expressions (Chapter 19 refers to tutorials
and explains in more detail how they work). They are delimited by slashes:

/^abc$/
/[A-Za-z0-9]+/

Method test(): Is There a Match?
> /^a+b+$/.test('aaab')
true
> /^a+b+$/.test('aaa')
false

Method exec(): Match and Capture Groups
> /a(b+)a/.exec('_abbba_aba_')
['abbba', 'bbb']

The returned array contains the complete match at index 0, the capture of the first group
at index 1, and so on. There is a way (discussed in “RegExp.prototype.exec: Capture
Groups” on page 305) to invoke this method repeatedly to get all matches.

Method replace(): Search and Replace
> '<a> <bbb>'.replace(/<(.*?)>/g, '[$1]')
'[a] [bbb]'

The first parameter of replace must be a regular expression with a /g flag; otherwise,
only the first occurrence is replaced. There is also a way (as discussed in “String.proto‐
type.replace: Search and Replace” on page 307) to use a function to compute the
replacement.

Math
Math (see Chapter 21) is an object with arithmetic functions. Here are some examples:

> Math.abs(-2)
2

> Math.pow(3, 2) // 3 to the power of 2
9

Regular Expressions | 31

> Math.max(2, -1, 5)
5

> Math.round(1.9)
2

> Math.PI // pre-defined constant for π
3.141592653589793

> Math.cos(Math.PI) // compute the cosine for 180°
-1

Other Functionality of the Standard Library
JavaScript’s standard library is relatively spartan, but there are more things you can use:
Date (Chapter 20)

A constructor for dates whose main functionality is parsing and creating date
strings and accessing the components of a date (year, hour, etc.).

JSON (Chapter 22)
An object with functions for parsing and generating JSON data.

console.* methods (see “The Console API” on page 351)
These browser-specific methods are not part of the language proper, but some of
them also work on Node.js.

32 | Chapter 1: Basic JavaScript

PART II

Background

This part explains the history and nature of JavaScript. It provides a broad first look at
the language and explains the context in which it exists (without going too much into
technical details).

This part is not required reading; you will be able to understand the rest of the book
without having read it.

CHAPTER 2

Why JavaScript?

There are many programming languages out there. Why should you use JavaScript?
This chapter looks at seven aspects that are important when you are choosing a pro‐
gramming language and argues that JavaScript does well overall:

1. Is it freely available?
2. Is it an elegant programming language?
3. Is it useful in practice?
4. Does it have good tools, especially good integrated development environments

(IDEs)?
5. Is it fast enough for what you want to do?
6. Is it widely used?
7. Does it have a future?

Is JavaScript Freely Available?
JavaScript is arguably the most open programming language there is: ECMA-262, its
specification, is an ISO standard. That specification is closely followed by many imple‐
mentations from independent parties. Some of those implementations are open source.
Furthermore, the evolution of the language is handled by TC39, a committee comprising
several companies, including all major browser vendors. Many of those companies are
normally competitors, but they work together for the benefit of the language.

Is JavaScript Elegant?
Yes and no. I’ve written fair amounts of code in several programming languages from
different paradigms. Therefore, I’m well aware that JavaScript isn’t the pinnacle of

35

elegance. However, it is a very flexible language, has a reasonably elegant core, and
enables you to use a mixture of object-oriented programming and functional
programming.

Language compatibility between JavaScript engines used to be a problem, but isn’t any‐
more, partly thanks to the test262 suite that checks engines for conformance to the
ECMAScript specification. In contrast, browser and DOM differences are still a chal‐
lenge. That’s why it is normally best to rely on frameworks for hiding those differences.

Is JavaScript Useful?
The most beautiful programming language in the world is useless unless it allows you
to write the program that you need.

Graphical User Interfaces
In the area of graphical user interfaces, JavaScript benefits from being part of HTML5.
In this section, I use the term HTML5 for “the browser platform” (HTML, CSS, and
browser JavaScript APIs). HTML5 is deployed widely and making constant progress. It
is slowly becoming a complete layer for writing full-featured, cross-platform applica‐
tions; similar to, say, the Java platform, it’s almost like an embedded operating system.
One of HTML5’s selling points is that it lets you write cross-platform graphical user
interfaces. Those are always a compromise: you give up some quality in exchange for
not being limited to a single operating system. In the past, “cross-platform” meant Win‐
dows, Mac OS, or Linux. But we now have two additional interactive platforms: web
and mobile. With HTML5, you can target all of these platforms via technologies such
as PhoneGap, Chrome Apps, and TideSDK.

Additionally, several platforms have web apps as native apps or let you install them
natively—for example, Chrome OS, Firefox OS, and Android.

Other Technologies Complementing JavaScript
There are more technologies than just HTML5 that complement JavaScript and make
the language more useful:
Libraries

JavaScript has an abundance of libraries, which enable you to complete tasks rang‐
ing from parsing JavaScript (via Esprima) to processing and displaying PDF files
(via PDF.js).

Node.js
The Node.js platform lets you write server-side code and shell scripts (build tools,
test runners, etc.).

36 | Chapter 2: Why JavaScript?

https://github.com/tc39/test262
http://phonegap.com
http://developer.chrome.com/apps/
http://www.tidesdk.org/
http://esprima.org
https://github.com/mozilla/pdf.js
http://nodejs.org

JSON (JavaScript Object Notation, covered in Chapter 22)
JSON is a data format rooted in JavaScript that has become popular for exchanging
data on the Web (e.g., the results of web services).

NoSQL databases (such as CouchDB and MongoDB)
These databases tightly integrate JSON and JavaScript.

Does JavaScript Have Good Tools?
JavaScript is getting better build tools (e.g., Grunt) and test tools (e.g., mocha). Node.js
makes it possible to run these kinds of tools via a shell (and not only in the browser).
One risk in this area is fragmentation, as we are progressively getting too many of these
tools.

The JavaScript IDE space is still nascent, but it’s quickly growing up. The complexity
and dynamism of web development make this space a fertile ground for innovation.
Two open source examples are Brackets and Light Table.

Additionally, browsers are becoming increasingly capable development environments.
Chrome, in particular, has made impressive progress recently. It will be interesting to
see how much more IDEs and browsers will be integrated in the future.

Is JavaScript Fast Enough?
JavaScript engines have made tremendous progress, evolving from slow interpreters to
fast just-in-time compilers. They are now fast enough for most applications. Further‐
more, new ideas are already in development to make JavaScript fast enough for the
remaining applications:

• asm.js is a (very static) subset of JavaScript that runs fast on current engines, ap‐
proximately 70% as fast as compiled C++. It can, for example, be used to implement
performance-critical algorithmic parts of web applications. It has also been used to
port C++-based games to the web platform.

• ParallelJS parallelizes JavaScript code that uses the new array methods mapPar,
filterPar, and reducePar (parallelizable versions of the existing array methods
map, filter, and reduce). In order for parallelization to work, callbacks must be
written in a special style; the main restriction is that you can’t mutate data that hasn’t
been created inside the callbacks.

Is JavaScript Widely Used?
A language that is widely used normally has two benefits. First, such a language is better
documented and supported. Second, more programmers know it, which is important

Does JavaScript Have Good Tools? | 37

http://couchdb.apache.org
http://www.mongodb.org
http://gruntjs.com
http://visionmedia.github.io/mocha/
http://brackets.io
http://www.lighttable.com
http://asmjs.org/
http://www.2ality.com/2013/12/paralleljs.html

whenever you need to hire someone or are looking for customers for a tool based on
the language.

JavaScript is widely used and reaps both of the aforementioned benefits:

• These days, documentation and support for JavaScript comes in all shapes and sizes:
books, podcasts, blog posts, email newsletters, forums, and more. Chapter 33 points
you toward important resources.

• JavaScript developers are in great demand, but their ranks are also constantly
increasing.

Does JavaScript Have a Future?
Several things indicate that JavaScript has a bright future:

• The language is evolving steadily; ECMAScript 6 looks good.
• There is much JavaScript-related innovation (e.g., the aforementioned asm.js and

ParallelJS, Microsoft’s TypeScript, etc.).
• The web platform of which JavaScript is an integral part is maturing rapidly.
• JavaScript is supported by a broad coalition of companies—no single person or

company controls it.

Conclusion
Considering the preceding list of what makes a language attractive, JavaScript is doing
remarkably well. It certainly is not perfect, but at the moment, it is hard to beat—and
things are only getting better.

38 | Chapter 2: Why JavaScript?

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

The Nature of JavaScript

JavaScript’s nature can be summarized as follows:
It’s dynamic

Many things can be changed. For example, you can freely add and remove proper‐
ties (fields) of objects after they have been created. And you can directly create
objects, without creating an object factory (e.g., a class) first.

It’s dynamically typed
Variables and object properties can always hold values of any type.

It’s functional and object-oriented
JavaScript supports two programming language paradigms: functional program‐
ming (first-class functions, closures, partial application via bind(), built-in map()
and reduce() for arrays, etc.) and object-oriented programming (mutable state,
objects, inheritance, etc.).

It fails silently
JavaScript did not have exception handling until ECMAScript 3. That explains why
the language so often fails silently and automatically converts the values of argu‐
ments and operands: it initially couldn’t throw exceptions.

It’s deployed as source code
JavaScript is always deployed as source code and compiled by JavaScript engines.
Source code has the benefits of being a flexible delivery format and of abstracting
the differences between the engines. Two techniques are used to keep file sizes small:
compression (mainly gzip) and minification (making source code smaller by re‐
naming variables, removing comments, etc.; see Chapter 32 for details).

It’s part of the web platform
JavaScript is such an essential part of the web platform (HTML5 APIs, DOM, etc.)
that it is easy to forget that the former can also be used without the latter. However,

39

1. Brendan Eich, “A Brief History of JavaScript,” July 21, 2010, http://bit.ly/1lKkI0M.

the more JavaScript is used in nonbrowser settings (such as Node.js), the more
obvious it becomes.

Quirks and Unorthodox Features
On one hand, JavaScript has several quirks and missing features (for example, it has no
block-scoped variables, no built-in modules, and no support for subclassing). There‐
fore, where you learn language features in other languages, you learn patterns and
workarounds in JavaScript. On the other hand, JavaScript includes unorthodox features
(such as prototypal inheritance and object properties). These, too, have to be learned,
but are more a feature than a bug.

Note that JavaScript engines have become quite smart and fix some of the quirks, under
the hood. For example:

• Specification-wise, JavaScript does not have integers, only floating-point numbers.
Internally, most engines use integers as much as possible.

• Arguably, arrays in JavaScript are too flexible: they are not indexed sequences of
elements, but maps from numbers to elements. Such maps can have holes: indices
“inside” the array that have no associated value. Again, engines help by using an
optimized representation if an array does not have holes.

Elegant Parts
But JavaScript also has many elegant parts. Brendan Eich’s favorites are:1

• First-class functions
• Closures
• Prototypes
• Object literals
• Array literals

The last two items, object literals and array literals, let you start with objects and intro‐
duce abstractions (such as constructors, JavaScript’s analog to classes) later. They also
enable JSON (see Chapter 22).

Note that the elegant parts help you work around the quirks. For example, they allow
you to implement block scoping, modules, and inheritance APIs—all within the
language.

40 | Chapter 3: The Nature of JavaScript

http://bit.ly/1lKkI0M

Influences
JavaScript was influenced by several programming languages (as shown in Figure 3-1):

• Java is the role model for JavaScript’s syntax. It also led to JavaScript’s partitioning
of values into primitives and objects and to the Date constructor (which is a port
of java.util.Date).

• AWK inspired JavaScript’s functions. In fact, the keyword function comes from
AWK.

• Scheme is the reason that JavaScript has first-class functions (they are treated like
values and can be passed as arguments to functions) and closures (see Chapter 16).

• Self is responsible for JavaScript’s unusual style of object orientation; it supports
prototypal inheritance between objects.

• Perl and Python influenced JavaScript’s handling of strings, arrays, and regular
expressions.

• Beyond the actual language, HyperTalk influenced how JavaScript was integrated
into web browsers. It led to HTML tags having event-handling attributes such as
onclick.

Figure 3-1. Programming languages that influenced JavaScript.

Influences | 41

1. Brendan Eich, “Popularity,” April 3, 2008, http://bit.ly/1lKl6fG.

2. Naomi Hamilton, “The A–Z of Programming Languages: JavaScript,” Computerworld, July 30, 2008, http://
bit.ly/1lKldIe.

CHAPTER 4

How JavaScript Was Created

Knowing why and how JavaScript was created helps us understand why it is the way
it is.

In 1993, NCSA’s Mosaic was the first widely popular web browser. In 1994, a company
called Netscape was founded to exploit the potential of the nascent World Wide Web.
Netscape created the proprietary web browser Netscape Navigator, which was dominant
throughout the 1990s. Many of the original Mosaic authors went on to work on Navi‐
gator, but the two intentionally shared no code.

Netscape quickly realized that the Web needed to become more dynamic. Even if you
simply wanted to check that users entered correct values in a form, you needed to send
the data to the server in order to give feedback. In 1995, Netscape hired Brendan Eich
with the promise of letting him implement Scheme (a Lisp dialect) in the browser.1

Before he could get started, Netscape collaborated with hardware and software company
Sun (since bought by Oracle) to include its more static programming language, Java, in
Navigator. As a consequence, a hotly debated question at Netscape was why the Web
needed two programming languages: Java and a scripting language. The proponents of
a scripting language offered the following explanation:2

We aimed to provide a “glue language” for the Web designers and part time programmers
who were building Web content from components such as images, plugins, and Java
applets. We saw Java as the “component language” used by higher-priced programmers,
where the glue programmers—the Web page designers—would assemble components
and automate their interactions using [a scripting language].

By then, Netscape management had decided that a scripting language had to have a
syntax similar to Java’s. That ruled out adopting existing languages such as Perl, Python,

43

http://bit.ly/1lKl6fG
http://bit.ly/1lKldIe
http://bit.ly/1lKldIe

3. Paul Krill, “JavaScript Creator Ponders Past, Future,” InfoWorld, June 23, 2008, http://bit.ly/1lKlpXO; Brendan
Eich, “A Brief History of JavaScript,” July 21, 2010, http://bit.ly/1lKkI0M.

TCL, or Scheme. To defend the idea of JavaScript against competing proposals, Netscape
needed a prototype. Eich wrote one in 10 days, in May 1995. JavaScript’s first code name
was Mocha, coined by Marc Andreesen. Netscape marketing later changed it to Live‐
Script, for trademark reasons and because the names of several products already had
the prefix “Live.” In late November 1995, Navigator 2.0B3 came out and included the
prototype, which continued its early existence without major changes. In early Decem‐
ber 1995, Java’s momentum had grown, and Sun licensed the trademark Java to Netscape.
The language was renamed again, to its final name, JavaScript.3

44 | Chapter 4: How JavaScript Was Created

http://bit.ly/1lKlpXO
http://bit.ly/1lKkI0M

CHAPTER 5

Standardization: ECMAScript

After JavaScript came out, Microsoft implemented the same language, under the dif‐
ferent name JScript, in Internet Explorer 3.0 (August 1996). Partially to keep Microsoft
in check, Netscape decided to standardize JavaScript and asked the standards organi‐
zation Ecma International to host the standard. Work on a specification called
ECMA-262 started in November 1996. Because Sun (now Oracle) had a trademark on
the word Java, the official name of the language to be standardized couldn’t be Java‐
Script. Hence, ECMAScript was chosen, derived from JavaScript and Ecma. However,
that name is used only to refer to versions of the language (where one refers to the
specification). Everyone still calls the language JavaScript.

ECMA-262 is managed and evolved by Ecma’s Technical Committee 39 (TC39). Its
members are companies such as Microsoft, Mozilla, and Google, which appoint em‐
ployees to participate in committee work; examples include Brendan Eich, Allen Wirfs-
Brock (editor of ECMA-262), and David Herman. To advance the design of ECMA‐
Script, TC39 hosts discussions on open channels (such as the mailing list es-discuss)
and holds regular meetings. The meetings are attended by TC39 members and invited
experts. In early 2013, attendee numbers ranged from 15 to 25.

The following is a list of ECMAScript versions (or editions of ECMA-262) and their key
features:
ECMAScript 1 (June 1997)

First edition

ECMAScript 2 (August 1998)
Editorial changes to align ECMA-262 with the standard ISO/IEC 16262

ECMAScript 3 (December 1999)
do-while, regular expressions, new string methods (concat, match, replace,
slice, split with a regular expression, etc.), exception handling, and more

45

http://en.wikipedia.org/wiki/Ecma
http://bit.ly/1oNTQiP
https://mail.mozilla.org/listinfo/es-discuss

ECMAScript 4 (abandoned July 2008)
ECMAScript 4 was developed as the next version of JavaScript, with a prototype
written in ML. However, TC39 could not agree on its feature set. To prevent an
impasse, the committee met at the end of July 2008 and came to an accord, sum‐
marized in four points:

1. Develop an incremental update of ECMAScript 3 (which became ECMA‐
Script 5).

2. Develop a major new version that does less than ECMAScript 4, but much more
than the incremental update of ECMAScript 3. The code name for the new
version is Harmony, due to the nature of the meeting in which it was conceived.
Harmony will be split into ECMAScript 6 and ECMAScript 7.

3. Features from ECMAScript 4 that would be dropped included packages, name‐
spaces, and early binding.

4. Other ideas were to be developed in consensus with all of TC39.

Thus, the ECMAScript 4 developers agreed to make Harmony less radical than
ECMAScript 4, and the rest of TC39 agreed to keep moving things forward.

ECMAScript 5 (December 2009)
Adds a strict mode, getters and setters, new array methods, support for JSON, and
more (see Chapter 25)

ECMAScript 5.1 (June 2011)
Editorial changes to align ECMA-262 with the third edition of the international
standard ISO/IEC 16262:2011

ECMAScript 6
Currently in development, it is estimated to be ratified by the end of 2014. Most
engines will probably support the most important ECMAScript 6 features at rati‐
fication. Complete support may take longer.

Reaching consensus and creating a standard is not always easy, but thanks to the col‐
laborative efforts of the aforementioned parties, JavaScript is a truly open language, with
implementations by multiple vendors that are remarkably compatible. That compati‐
bility is made possible by a very detailed yet concrete specification. For example, the
specification often uses pseudocode, and it is complemented by a test suite, test262, that
checks an ECMAScript implementation for compliance. It is interesting to note that
ECMAScript is not managed by the World Wide Web Consortium (W3C). TC39 and
the W3C collaborate wherever there is overlap between JavaScript and HTML5.

46 | Chapter 5: Standardization: ECMAScript

http://mzl.la/1oNTUiG
http://test262.ecmascript.org/

CHAPTER 6

Historical JavaScript Milestones

It took JavaScript a long time to make an impact. Many JavaScript-related technologies
existed for a while until they were discovered by the mainstream. This section describes
what happened from JavaScript’s creation until today. Throughout, only the most pop‐
ular projects are mentioned and many are ignored, even if they were first. For example,
the Dojo Toolkit is listed, but there is also the lesser-known qooxdoo, which was created
around the same time. And Node.js is listed, even though Jaxer existed before it:
1997—Dynamic HTML

Dynamic HTML allows you to dynamically change the content and appearance of
a web page. You achieve this by manipulating the Document Object Model
(DOM) of the page, a tree-shaped data structure. Things you can do include chang‐
ing content, changing style, and showing and hiding elements. Dynamic HTML
appeared first in Internet Explorer 4 and in Netscape Navigator 4.

1999—XMLHttpRequest
This API lets a client-side script send an HTTP or HTTPS request to a server and
get back data, usually in a text format (XML, HTML, JSON). It was introduced in
Internet Explorer 5.

2001—JSON, a JavaScript-based data exchange format
In 2001, Douglas Crockford named and documented JSON (JavaScript Object No‐
tation), whose main idea is to use JavaScript syntax to store data in text format.
JSON uses JavaScript literals for objects, arrays, strings, numbers, and booleans to
represent structured data. For example:

{
 "first": "Jane",
 "last": "Porter",
 "married": true,
 "born": 1890,
 "friends": ["Tarzan", "Cheeta"]
}

47

http://qooxdoo.org/
https://github.com/aptana/Jaxer
http://bit.ly/1oNVOzH
http://www.w3.org/TR/XMLHttpRequest/
http://json.org/

1. Ajax is a shorthand, but not an acronym, which is why it isn’t styled as AJAX.

Over the years, JSON has become a popular lightweight alternative to XML, espe‐
cially when structured data is to be represented and not markup. Naturally, JSON
is easy to consume via JavaScript (see Chapter 22).

2004—Dojo Toolkit, a framework for programming JavaScript in the large
The Dojo Toolkit facilitates programming in the large by providing the necessary
infrastructure: an inheritance library, a module system, an API for desktop-style
graphical widgets, and more.

2005—Ajax, browser-based desktop-class applications
Ajax is a collection of technologies that brings a level of interactivity to web pages
that rivals that of desktop applications. One impressive example of what can be
achieved via Ajax was introduced in February 2005: Google Maps. This application
allowed you to pan and zoom over a map of the world, but only the content that
was currently visible was downloaded to the browser. After Google Maps came out,
Jesse James Garrett noticed that it shared certain traits with other interactive web‐
sites. He called these traits Ajax, a shorthand for Asynchronous JavaScript and
XML.1 The two cornerstones of Ajax are loading content asynchronously in the
background (via XMLHttpRequest) and dynamically updating the current page with
the results (via dynamic HTML). That was a considerable usability improvement
from always performing complete page reloads.

Ajax marked the mainstream breakthrough of JavaScript and dynamic web appli‐
cations. It is interesting to note how long that took—at that point, the Ajax ingre‐
dients had been available for years. Since the inception of Ajax, other data formats
have become popular (JSON instead of XML), other protocols are used (e.g., Web
Sockets in addition to HTTP), and bidirectional communication is possible. But
the basic techniques are still the same. However, the term Ajax is used much less
these days and has mostly been replaced by the more comprehensive terms HTML5
and Web Platform (which both mean JavaScript plus browser APIs).

2005—Apache CouchDB, a JavaScript-centric database
Roughly, CouchDB is a JSON database: you feed it JSON objects, without the need
to specify a schema in advance. Additionally, you can define views and indexes via
JavaScript functions that perform map/reduce operations. Hence, CouchDB is a
very good fit for JavaScript because you can work directly with native data. Com‐
pared to a relational database, there is no mapping-related impedance mismatch.
Compared to an object database, you avoid many complications because only data
is stored, not behavior. CouchDB is just one of several similar NoSQL databases.
Most of them have excellent JavaScript support.

48 | Chapter 6: Historical JavaScript Milestones

www.allitebooks.com

http://dojotoolkit.org/
http://bit.ly/1oNW3Lf
http://couchdb.apache.org/
http://bit.ly/1oNYfCp
http://www.allitebooks.org

2006—jQuery, helping with DOM manipulation
The browser DOM is one of the most painful parts of client-side web development.
jQuery made DOM manipulation fun by abstracting over browser differences and
by providing a powerful fluent-style API for querying and modifying the DOM.

2007—WebKit, taking the mobile web mainstream
Based on prior work by KDE, WebKit is an HTML engine that was introduced by
Apple in 2003. It was open-sourced in 2005. With the introduction of the iPhone
in 2007, the mobile Web suddenly became mainstream and had little to no limita‐
tions compared to the nonmobile Web.

2008—V8, proving JavaScript can be fast
When Google introduced its Chrome web browser, one of its highlights was a fast
JavaScript engine called V8. It changed the perception of JavaScript as being slow
and led to a speed race with other browser vendors from which we are still profiting.
V8 is open source and can be used as a standalone component whenever you need
a fast embedded language that is widely known.

2009—Node.js, implementing JavaScript on the server
Node.js lets you implement servers that perform well under load. To do so, it uses
event-driven, nonblocking I/O and JavaScript (via V8). Node.js creator Ryan Dahl
mentions the following reasons for choosing JavaScript:

• “Because it’s bare and does not come with I/O APIs.” [Node.js can thus intro‐
duce its own nonblocking APIs.]

• “Web developers use it already.” [JavaScript is a widely known language, espe‐
cially in a web context.]

• “DOM API is event-based. Everyone is already used to running without threads
and on an event loop.” [Developers are used to an asynchronous coding style.]

Dahl was able to build on prior work on event-driven servers and server-side Java‐
Script (mainly the CommonJS project).

The appeal of Node.js for JavaScript programmers goes beyond being able to pro‐
gram in a familiar language; you get to use the same language on both client and
server. That means you can share more code (e.g., for validating data) and use
techniques such as isomorphic JavaScript. Isomorphic JavaScript is about assem‐
bling web pages on either client or server, with numerous benefits: pages can be
rendered on the server for faster initial display, SEO, and running on browsers that
either don’t support JavaScript or a version that is too old. But they can also be
updated on the client, resulting in a more responsive user interface.

2009—PhoneGap, writing native apps in HTML5
PhoneGap was created by a company called Nitobi that was later purchased by
Adobe. The open source foundation of PhoneGap is called Cordova. The initial

Historical JavaScript Milestones | 49

http://jquery.com/
https://www.webkit.org/
http://code.google.com/p/v8/
http://nodejs.org/
http://www.commonjs.org/
http://bit.ly/1gWhLIs
http://phonegap.com/

mission of PhoneGap was to make it possible to implement native mobile apps via
HTML5. Since then, support has expanded to nonmobile operating systems. Cur‐
rently supported platforms include Android, Bada, BlackBerry, Firefox OS, iOS,
Mac OS X, Tizen, Ubuntu, Windows (desktop), and Windows Phone. Apart from
HTML5 APIs, there are also PhoneGap-specific APIs for accessing native fea‐
tures such as the accelerometer, camera, and contacts.

2009—Chrome OS, making the browser the operating system
With Chrome OS, the web platform is the native platform. This approach has several
advantages:

• It is much easier to create an operating system, because all of the user interface
technology is already there.

• Many developers already (mostly) know how to write apps for the operating
system.

• Managing apps is simple. That helps public installations such as Internet cafes
and schools.

The introduction of the mobile operating system webOS (which originated at Palm
and is now owned by LG Electronics) predates the introduction of Chrome OS, but
the “browser as OS” idea is more apparent with the latter (which is why it was chosen
as a milestone). webOS is both less and more. Less, because it is very focused on
cell phones and tablets. More, because it has Node.js built in, to let you implement
services in JavaScript. A more recent entry in the web operating system category
is Mozilla’s Firefox OS, which targets cell phones and tablets. Mozilla’s wiki mentions
a benefit of web operating systems for the Web:

We also need a hill to take, in order to scope and focus our efforts. Recently we saw
the pdf.js project [which renders PDFs via HTML5, without plugins] expose small
gaps that needed filling in order for “HTML5” to be a superset of PDF. We want to
take a bigger step now, and find the gaps that keep web developers from being able
to build apps that are—in every way—the equals of native apps built for the iPhone,
Android, and WP7.

2011—Windows 8, first-class HTML5 apps
When Microsoft introduced Windows 8, it surprised everyone with the operating
system’s extensive integration of HTML5. HTML5 applications are first-class citi‐
zens in Windows 8, on par with those implemented via incumbent technologies
such as .NET and C++. To demonstrate that point, Microsoft wrote several impor‐
tant Windows 8 applications in HTML5 (plus calls to native APIs), including the
app store and the email app.

50 | Chapter 6: Historical JavaScript Milestones

http://bit.ly/1oO22Q9
http://bit.ly/1oO22Q9
http://bit.ly/1oO27U2
http://bit.ly/1oO2e1N
http://mzl.la/1oO2i1J
http://mzl.la/1oO2n5m
http://bit.ly/1oO2qhJ

PART III

JavaScript in Depth

This part is a comprehensive reference of the JavaScript language.

CHAPTER 7

JavaScript’s Syntax

JavaScript’s syntax is fairly straightforward. This chapter describes things to watch
out for.

An Overview of the Syntax
This section gives you a quick impression of what JavaScript’s syntax looks like.

The following are five fundamental kinds of values:

• Booleans:
true
false

• Numbers:
1023
7.851

• Strings:
'hello'
"hello"

• Plain objects:
{
 firstName: 'Jane',
 lastName: 'Doe'
}

• Arrays:
['apple', 'banana', 'cherry']

Here are a few examples of basic syntax:

53

// Two slashes start single-linecomments

var x; // declaring a variable

x = 3 + y; // assigning a value to the variable `x`

foo(x, y); // calling function `foo` with parameters `x` and `y`
obj.bar(3); // calling method `bar` of object `obj`

// A conditional statement
if (x === 0) { // Is `x` equal to zero?
 x = 123;
}

// Defining function `baz` with parameters `a` and `b`
function baz(a, b) {
 return a + b;
}

Note the two different uses of the equals sign:

• A single equals sign (=) is used to assign a value to a variable.
• A triple equals sign (===) is used to compare two values (see “Equality Operators”

on page 14).

Comments
There are two kinds of comments:

• Single-line comments via // extend to the rest of the line. Here’s an example:
var a = 0; // init

• Multiline comments via /* */ can extend over arbitrary ranges of text. They cannot
be nested. Here are two examples:

/* temporarily disabled
processNext(queue);
*/

function (a /* int */, b /* str */) {
}

Expressions Versus Statements
This section looks at an important syntactic distinction in JavaScript: the difference
between expressions and statements.

54 | Chapter 7: JavaScript’s Syntax

1. To keep things simple, I’m pretending that declarations are statements.

Expressions
An expression produces a value and can be written wherever a value is expected—for
example, as an argument in a function call or at the right side of an assignment. Each
of the following lines contains an expression:

myvar
3 + x
myfunc('a', 'b')

Statements
Roughly, a statement performs an action. Loops and if statements are examples of
statements. A program is basically a sequence of statements.1

Wherever JavaScript expects a statement, you can also write an expression. Such a
statement is called an expression statement. The reverse does not hold: you cannot write
a statement where JavaScript expects an expression. For example, an if statement can‐
not become the argument of a function.

Conditional statement versus conditional expressions
The difference between statements and expressions becomes clearer if we look at mem‐
bers of the two syntactic categories that are similar: the if statement and the conditional
operator (an expression).

The following is an example of an if statement:

var salutation;
if (male) {
 salutation = 'Mr.';
} else {
 salutation = 'Mrs.';
}

There is a similar kind of expression, the conditional operator. The preceding statements
are equivalent to the following code:

var salutation = (male ? 'Mr.' : 'Mrs.');

The code between the equals sign and the semicolon is an expression. The parentheses
are not necessary, but I find the conditional operator easier to read if I put it in parens.

Using ambiguous expressions as statements
Two kinds of expressions look like statements—they are ambiguous with regard to their
syntactic category:

Expressions Versus Statements | 55

• Object literals (expressions) look like blocks (statements):
{
 foo: bar(3, 5)
}

The preceding construct is either an object literal (details: “Object Literals” on page
198) or a block followed by the label foo:, followed by the function call bar(3, 5).

• Named function expressions look like function declarations (statements):
function foo() { }

The preceding construct is either a named function expression or a function dec‐
laration. The former produces a function, the latter creates a variable and assigns a
function to it (details on both kinds of function definition: “Defining Functions”
on page 166).

In order to prevent ambiguity during parsing, JavaScript does not let you use object
literals and function expressions as statements. That is, expression statements must not
start with:

• A curly brace
• The keyword function

If an expression starts with either of those tokens, it can only appear in an expression
context. You can comply with that requirement by, for example, putting parentheses
around the expression. Next, we’ll look at two examples where that is necessary.

Evaluating an object literal via eval()

eval parses its argument in statement context. You have to put parentheses around an
object literal if you want eval to return an object:

> eval('{ foo: 123 }')
123
> eval('({ foo: 123 })')
{ foo: 123 }

Immediately invoking a function expression
The following code is an immediately invoked function expression (IIFE), a function
whose body is executed right away (you’ll learn what IIFEs are used for in “Introducing
a New Scope via an IIFE” on page 183):

> (function () { return 'abc' }())
'abc'

If you omit the parentheses, you get a syntax error, because JavaScript sees a function
declaration, which can’t be anonymous:

56 | Chapter 7: JavaScript’s Syntax

> function () { return 'abc' }()
SyntaxError: function statement requires a name

If you add a name, you also get a syntax error, because function declarations can’t be
immediately invoked:

> function foo() { return 'abc' }()
SyntaxError: Unexpected token)

Whatever follows a function declaration must be a legal statement and () isn’t.

Control Flow Statements and Blocks
For control flow statements, the body is a single statement. Here are two examples:

if (obj !== null) obj.foo();

while (x > 0) x--;

However, any statement can always be replaced by a block, curly braces containing zero
or more statements. Thus, you can also write:

if (obj !== null) {
 obj.foo();
}

while (x > 0) {
 x--;
}

I prefer the latter form of control flow statement. Standardizing on it means that there
is no difference between single-statement bodies and multistatement bodies. As a con‐
sequence, your code looks more consistent, and alternating between one statement and
more than one statement is easier.

Rules for Using Semicolons
In this section, we examine how semicolons are used in JavaScript. The basic rules are:

• Normally, statements are terminated by semicolons.
• The exception is statements ending with blocks.

Semicolons are optional in JavaScript. Missing semicolons are added via so-called au‐
tomatic semicolon insertion (ASI; see “Automatic Semicolon Insertion” on page 59).
However, that feature doesn’t always work as expected, which is why you should always
include semicolons.

Control Flow Statements and Blocks | 57

No Semicolon After a Statement Ending with a Block
The following statements are not terminated by semicolons if they end with a block:

• Loops: for, while (but not do-while)
• Branching: if, switch, try
• Function declarations (but not function expressions)

Here’s an example of while versus do-while:

while (a > 0) {
 a--;
} // no semicolon

do {
 a--;
} while (a > 0);

And here’s an example of a function declaration versus a function expression. The latter
is followed by a semicolon, because it appears inside a var declaration (which is termi‐
nated by a semicolon):

function foo() {
 // ...
} // no semicolon

var foo = function () {
 // ...
};

If you do add a semicolon after a block, you do not get a syntax error,
because it is considered an empty statement (see the next section).

That’s most of what you need to know about semicolons. If you al‐
ways add semicolons, you can probably get by without reading the
remaining parts of this section.

The Empty Statement
A semicolon on its own is an empty statement and does nothing. Empty statements can
appear anywhere a statement is expected. They are useful in situations where a statement

58 | Chapter 7: JavaScript’s Syntax

is demanded, but not needed. In such situations, blocks are usually also allowed. For
example, the following two statements are equivalent:

while (processNextItem() > 0);
while (processNextItem() > 0) {}

The function processNextItem is assumed to return the number of remaining items.
The following program, consisting of three empty statements, is also syntactically
correct:

;;;

Automatic Semicolon Insertion
The goal of automatic semicolon insertion (ASI) is to make semicolons optional at the
end of a line. The image invoked by the term automatic semicolon insertion is that the
JavaScript parser inserts semicolons for you (internally, things are usually handled
differently).

Put another way, ASI helps the parser to determine when a statement ends. Normally,
it ends with a semicolon. ASI dictates that a statement also ends if:

• A line terminator (e.g., a newline) is followed by an illegal token.
• A closing brace is encountered.
• The end of the file has been reached.

Example: ASI via illegal token
The following code contains a line terminator followed by an illegal token:

if (a < 0) a = 0
console.log(a)

The token console is illegal after 0 and triggers ASI:

if (a < 0) a = 0;
console.log(a);

Example: ASI via closing brace
In the following code, the statement inside the braces is not terminated by a semicolon:

function add(a,b) { return a+b }

ASI creates a syntactically correct version of the preceding code:

function add(a,b) { return a+b; }

Rules for Using Semicolons | 59

Pitfall: ASI can unexpectedly break up statements

ASI is also triggered if there is a line terminator after the keyword return. For example:

// Don't do this
return
{
 name: 'John'
};

ASI turns the preceding into:

return;
{
 name: 'John'
};

That’s an empty return, followed by a block with the label name in front of the expression
statement 'John'. After the block, there is an empty statement.

Pitfall: ASI might unexpectedly not be triggered
Sometimes a statement in a new line starts with a token that is allowed as a continuation
of the previous statement. Then ASI is not triggered, even though it seems like it should
be. For example:

func()
['ul', 'ol'].foreach(function (t) { handleTag(t) })

The square brackets in the second line are interpreted as an index into the result returned
by func(). The comma inside the brackets is interpreted as the comma operator (which
returns 'ol' in this case; see “The Comma Operator” on page 90). Thus, JavaScript sees
the previous code as:

func()['ol'].foreach(function (t) { handleTag(t) });

Legal Identifiers
Identifiers are used for naming things and appear in various syntactic roles in JavaScript.
For example, the names of variables and unquoted property keys must be valid identi‐
fiers. Identifiers are case sensitive.

The first character of an identifier is one of:

• Any Unicode letter, including Latin letters such as D, Greek letters such as λ, and
Cyrillic letters such as Д

• Dollar sign ($)
• Underscore (_)

Subsequent characters are:

60 | Chapter 7: JavaScript’s Syntax

• Any legal first character
• Any Unicode digit in the Unicode category “Decimal number (Nd)”; this includes

European numerals such as 7 and Indic numerals such as ٣
• Various other Unicode marks and punctuations

Examples of legal identifiers:

var ε = 0.0001;
var строка = '';
var _tmp;
var $foo2;

Even though this enables you to use a variety of human languages in JavaScript code, I
recommend sticking with English, for both identifiers and comments. That ensures that
your code is understandable by the largest possible group of people, which is important,
given how much code can spread internationally these days.

The following identifiers are reserved words—they are part of the syntax and can’t be
used as variable names (including function names and parameter names):

arguments break case catch

class const continue debugger

default delete do else

enum export extends false

finally for function if

implements import in instanceof

interface let new null

package private protected public

return static super switch

this throw true try

typeof var void while

The following three identifiers are not reserved words, but you should treat them as if
they were:

Infinity

NaN

undefined

Lastly, you should also stay away from the names of standard global variables (see
Chapter 23). You can use them for local variables without breaking anything, but your
code still becomes confusing.

Legal Identifiers | 61

Note that you can use reserved words as unquoted property keys (as of ECMAScript 5):

> var obj = { function: 'abc' };
> obj.function
'abc'

You can look up the precise rules for identifiers in Mathias Bynens’s blog post “Valid
JavaScript variable names”.

Invoking Methods on Number Literals
With method invocations, it is important to distinguish between the floating-point dot
and the method invocation dot. Thus, you cannot write 1.toString(); you must use
one of the following alternatives:

1..toString()
1 .toString() // space before dot
(1).toString()
1.0.toString()

Strict Mode
ECMAScript 5 has a strict mode that results in cleaner JavaScript, with fewer unsafe
features, more warnings, and more logical behavior. The normal (nonstrict) mode is
sometimes called “sloppy mode.”

Switching on Strict Mode
You switch strict mode on by typing the following line first in your JavaScript file or
inside your <script> element:

'use strict';

Note that JavaScript engines that don’t support ECMAScript 5 will simply ignore the
preceding statement, as writing strings in this manner (as an expression statement; see
“Statements” on page 55) normally does nothing.

You can also switch on strict mode per function. To do so, write your function like this:

function foo() {
 'use strict';
 ...
}

This is handy when you are working with a legacy code base where switching on strict
mode everywhere may break things.

62 | Chapter 7: JavaScript’s Syntax

http://mathiasbynens.be/notes/javascript-identifiers
http://mathiasbynens.be/notes/javascript-identifiers

Strict Mode: Recommended, with Caveats
In general, the changes enabled by strict mode are all for the better. Thus, it is highly
recommended to use it for new code you write—simply switch it on at the beginning
of a file. There are, however, two caveats:
Enabling strict mode for existing code may break it

The code may rely on a feature that is not available anymore, or it may rely on
behavior that is different in sloppy mode than in strict mode. Don’t forget that you
have the option to add single strict mode functions to files that are in sloppy mode.

Package with care
When you concatenate and/or minify files, you have to be careful that strict mode
isn’t switched off where it should be switched on or vice versa. Both can break code.

The following sections explain the strict mode features in more detail. You normally
don’t need to know them, as you will mostly get more warnings for things that you
shouldn’t do anyway.

Variables Must Be Declared in Strict Mode
All variables must be explicitly declared in strict mode. This helps to prevent typos. In
sloppy mode, assigning to an undeclared variable creates a global variable:

function sloppyFunc() {
 sloppyVar = 123;
}
sloppyFunc(); // creates global variable `sloppyVar`
console.log(sloppyVar); // 123

In strict mode, assigning to an undeclared variable throws an exception:

function strictFunc() {
 'use strict';
 strictVar = 123;
}
strictFunc(); // ReferenceError: strictVar is not defined

Functions in Strict Mode
Strict mode limits function-related features.

Functions must be declared at the top level of a scope
In strict mode, all functions must be declared at the top level of a scope (global scope
or directly inside a function). That means that you can’t put a function declaration inside
a block. If you do, you get a descriptive SyntaxError. For example, V8 tells you: “In
strict mode code, functions can only be declared at top level or immediately within
another function”:

Strict Mode | 63

function strictFunc() {
 'use strict';
 {
 // SyntaxError:
 function nested() {
 }
 }
}

That is something that isn’t useful anyway, because the function is created in the scope
of the surrounding function, not “inside” the block.

If you want to work around this limitation, you can create a function inside a block via
a variable declaration and a function expression:

function strictFunc() {
 'use strict';
 {
 // OK:
 var nested = function () {
 };
 }
}

Stricter rules for function parameters
The rules for function parameters are less permissive: using the same parameter name
twice is forbidden, as are local variables that have the same name as a parameter.

The arguments objects has fewer properties

The arguments object is simpler in strict mode: the properties arguments.callee and
arguments.caller have been eliminated, you can’t assign to the variable arguments,
and arguments does not track changes to parameters (if a parameter changes, the cor‐
responding array element does not change with it). “Deprecated features of argu‐
ments” on page 172 explains the details.

this is undefined in nonmethod functions

In sloppy mode, the value of this in nonmethod functions is the global object (window
in browsers; see “The Global Object” on page 187):

function sloppyFunc() {
 console.log(this === window); // true
}

In strict mode, it is undefined:

function strictFunc() {
 'use strict';
 console.log(this === undefined); // true
}

64 | Chapter 7: JavaScript’s Syntax

This is useful for constructors. For example, the following constructor, Point, is in strict
mode:

function Point(x, y) {
 'use strict';
 this.x = x;
 this.y = y;
}

Due to strict mode, you get a warning when you accidentally forget new and call it as a
function:

> var pt = Point(3, 1);
TypeError: Cannot set property 'x' of undefined

In sloppy mode, you don’t get a warning, and global variables x and y are created. Consult
“Tips for Implementing Constructors” on page 239 for details.

Setting and Deleting Immutable Properties Fails with an Exception in
Strict Mode
Illegal manipulations of properties throw exceptions in strict mode. For example, at‐
tempting to set the value of a read-only property throws an exception, as does attempting
to delete a nonconfigurable property. Here is an example of the former:

var str = 'abc';
function sloppyFunc() {
 str.length = 7; // no effect, silent failure
 console.log(str.length); // 3
}
function strictFunc() {
 'use strict';
 str.length = 7; // TypeError: Cannot assign to
 // read-only property 'length'
}

Unqualified Identifiers Can’t Be Deleted in Strict Mode
In sloppy mode, you can delete a global variable foo like this:

delete foo

In strict mode, you get a syntax error whenever you try to delete unqualified identifiers.
You can still delete global variables like this:

delete window.foo; // browsers
delete global.foo; // Node.js
delete this.foo; // everywhere (in global scope)

Strict Mode | 65

eval() Is Cleaner in Strict Mode
In strict mode, the eval() function becomes less quirky: variables declared in the eval‐
uated string are not added to the scope surrounding eval() anymore. For details, con‐
sult “Evaluating Code Using eval()” on page 347.

Features That Are Forbidden in Strict Mode
Two more JavaScript features are forbidden in strict mode:

• The with statement is not allowed anymore (see “The with Statement” on page 153).
You get a syntax error at compile time (when loading the code).

• No more octal numbers: in sloppy mode, an integer with a leading zero is interpreted
as octal (base 8). For example:

> 010 === 8
true

In strict mode, you get a syntax error if you use this kind of literal:
> function f() { 'use strict'; return 010 }
SyntaxError: Octal literals are not allowed in strict mode.

66 | Chapter 7: JavaScript’s Syntax

1. Technically, primitive values do not have their own properties, they borrow them from wrapper constructors.
But that is something that goes on behind the scenes, so you don’t normally see it.

CHAPTER 8

Values

JavaScript has most of the values that we have come to expect from programming lan‐
guages: booleans, numbers, strings, arrays, and so on. All normal values in JavaScript
have properties.1 Each property has a key (or name) and a value. You can think of prop‐
erties like fields of a record. You use the dot (.) operator to access properties:

> var obj = {}; // create an empty object
> obj.foo = 123; // write property
123
> obj.foo // read property
123
> 'abc'.toUpperCase() // call method
'ABC'

JavaScript’s Type System
This chapter gives an overview of JavaScript’s type system.

JavaScript’s Types
JavaScript has only six types, according to Chapter 8 of the ECMAScript language
specification:

An ECMAScript language type corresponds to values that are directly manipulated by
an ECMAScript programmer using the ECMAScript language. The ECMAScript lan‐
guage types are:

• Undefined, Null

• Boolean, String, Number, and

67

http://www.ecma-international.org/ecma-262/5.1/#sec-8
http://www.ecma-international.org/ecma-262/5.1/#sec-8

• Object

Therefore, constructors technically don’t introduce new types, even though they are
said to have instances.

Static Versus Dynamic
In the context of language semantics and type systems, static usually means “at compile
time” or “without running a program,” while dynamic means “at runtime.”

Static Typing Versus Dynamic Typing
In a statically typed language, variables, parameters, and members of objects (JavaScript
calls them properties) have types that the compiler knows at compile time. The compiler
can use that information to perform type checks and to optimize the compiled code.

Even in statically typed languages, a variable also has a dynamic type, the type of the
variable’s value at a given point at runtime. The dynamic type can differ from the static
type. For example (Java):

Object foo = "abc";

The static type of foo is Object; its dynamic type is String.

JavaScript is dynamically typed; types of variables are generally not known at compile
time.

Static Type Checking Versus Dynamic Type Checking
If you have type information, you can check whether a value used in an operation (calling
a function, applying an operator, etc.) has the correct type. Statically type-checked lan‐
guages perform this kind of check at compile time, while dynamically type-checked
languages do so at runtime. A language can be both statically type-checked and dy‐
namically type-checked. If a check fails, you usually get some kind of error or exception.

JavaScript performs a very limited kind of dynamic type checking:

> var foo = null;
> foo.prop
TypeError: Cannot read property 'prop' of null

Mostly, however, things silently fail or work. For example, if you access a property that
does not exist, you get the value undefined:

> var bar = {};
> bar.prop
undefined

68 | Chapter 8: Values

Coercion
In JavaScript, the main way of dealing with a value whose type doesn’t fit is to coerce it
to the correct type. Coercion means implicit type conversion. Most operands coerce:

> '3' * '4'
12

JavaScript’s built-in conversion mechanisms support only the types Boolean, Number,
String, and Object. There is no standard way to convert an instance of one constructor
to an instance of another constructor.

The terms strongly typed and weakly typed do not have generally
meaningful definitions. They are used, but normally incorrectly. It
is better to instead use statically typed, statically type-checked, and
so on.

Primitive Values Versus Objects
JavaScript makes a somewhat arbitrary distinction between values:

• The primitive values are booleans, numbers, strings, null, and undefined.
• All other values are objects.

A major difference between the two is how they are compared; each object has a unique
identity and is only (strictly) equal to itself:

> var obj1 = {}; // an empty object
> var obj2 = {}; // another empty object
> obj1 === obj2
false

> var obj3 = obj1;
> obj3 === obj1
true

In contrast, all primitive values encoding the same value are considered the same:

> var prim1 = 123;
> var prim2 = 123;
> prim1 === prim2
true

The following two sections explain primitive values and objects in more detail.

Primitive Values
The following are all of the primitive values (primitives for short):

Primitive Values Versus Objects | 69

http://bit.ly/1oO7t1p
http://bit.ly/1oO7t1p

• Booleans: true, false (see Chapter 10)
• Numbers: 1736, 1.351 (see Chapter 11)
• Strings: 'abc', "abc" (see Chapter 12)
• Two “nonvalues”: undefined, null (see “undefined and null” on page 71)

Primitives have the following characteristics:
Compared by value

The “content” is compared:

> 3 === 3
true
> 'abc' === 'abc'
true

Always immutable
Properties can’t be changed, added, or removed:

> var str = 'abc';

> str.length = 1; // try to change property `length`
> str.length // ⇒ no effect
3

> str.foo = 3; // try to create property `foo`
> str.foo // ⇒ no effect, unknown property
undefined

(Reading an unknown property always returns undefined.)

A fixed set of types
You can’t define your own primitive types.

Objects
All nonprimitive values are objects. The most common kinds of objects are:

• Plain objects (constructor Object) can be created by object literals (see Chapter 17):
{
 firstName: 'Jane',
 lastName: 'Doe'
}

The preceding object has two properties: the value of property firstName is
'Jane', and the value of property lastName is 'Doe'.

• Arrays (constructor Array) can be created by array literals (see Chapter 18):
['apple', 'banana', 'cherry']

70 | Chapter 8: Values

The preceding array has three elements that can be accessed via numeric indices.
For example, the index of 'apple' is 0.

• Regular expressions (constructor RegExp) can be created by regular expression lit‐
erals (see Chapter 19):

/^a+b+$/

Objects have the following characteristics:
Compared by reference

Identities are compared; every object has its own identity:

> {} === {} // two different empty objects
false

> var obj1 = {};
> var obj2 = obj1;
> obj1 === obj2
true

Mutable by default
You can normally freely change, add, and remove properties (see “Dot Operator
(.): Accessing Properties via Fixed Keys” on page 199):

> var obj = {};
> obj.foo = 123; // add property `foo`
> obj.foo
123

User-extensible
Constructors (see “Layer 3: Constructors—Factories for Instances” on page 231) can
be seen as implementations of custom types (similar to classes in other languages).

undefined and null
JavaScript has two “nonvalues” that indicate missing information, undefined and null:

• undefined means “no value” (neither primitive nor object). Uninitialized variables,
missing parameters, and missing properties have that nonvalue. And functions
implicitly return it if nothing has been explicitly returned.

• null means “no object.” It is used as a nonvalue where an object is expected (as a
parameter, as a member in a chain of objects, etc.).

undefined and null are the only values for which any kind of property access results
in an exception:

> function returnFoo(x) { return x.foo }

undefined and null | 71

> returnFoo(true)
undefined
> returnFoo(0)
undefined

> returnFoo(null)
TypeError: Cannot read property 'foo' of null
> returnFoo(undefined)
TypeError: Cannot read property 'foo' of undefined

undefined is also sometimes used as more of a metavalue that indicates nonexistence.
In contrast, null indicates emptiness. For example, a JSON node visitor (see “Trans‐
forming Data via Node Visitors” on page 341) returns:

• undefined to remove an object property or array element
• null to set the property or element to null

Occurrences of undefined and null
Here we review the various scenarios where undefined and null occur.

Occurrences of undefined

Uninitialized variables are undefined:

> var foo;
> foo
undefined

Missing parameters are undefined:

> function f(x) { return x }
> f()
undefined

If you read a nonexistent property, you get undefined:

> var obj = {}; // empty object
> obj.foo
undefined

And functions implicitly return undefined if nothing has been explicitly returned:

> function f() {}
> f()
undefined

> function g() { return; }
> g()
undefined

72 | Chapter 8: Values

Occurrences of null

• null is the last element in the prototype chain (a chain of objects; see “Layer 2: The
Prototype Relationship Between Objects” on page 211):

> Object.getPrototypeOf(Object.prototype)
null

• null is returned by RegExp.prototype.exec() if there was no match for the regular
expression in the string:

> /x/.exec('aaa')
null

Checking for undefined or null
In the following sections we review how to check for undefined and null individually,
or to check if either exists.

Checking for null

You check for null via strict equality:

if (x === null) ...

Checking for undefined

Strict equality (===) is the canonical way of checking for undefined:

if (x === undefined) ...

You can also check for undefined via the typeof operator (“typeof: Categorizing Prim‐
itives” on page 92), but you should normally use the aforementioned approach.

Checking for either undefined or null

Most functions allow you to indicate a missing value via either undefined or null. One
way of checking for both of them is via an explicit comparison:

// Does x have a value?
if (x !== undefined && x !== null) {
 ...
}
// Is x a non-value?
if (x === undefined || x === null) {
 ...
}

Another way is to exploit the fact that both undefined and null are considered false
(see “Truthy and Falsy Values” on page 98):

undefined and null | 73

// Does x have a value (is it truthy)?
if (x) {
 ...
}
// Is x falsy?
if (!x) {
 ...
}

false, 0, NaN, and '' are also considered false.

The History of undefined and null
A single nonvalue could play the roles of both undefined and null. Why does JavaScript
have two such values? The reason is historical.

JavaScript adopted Java’s approach of partitioning values into primitives and objects. It
also used Java’s value for “not an object,” null. Following the precedent set by C (but
not Java), null becomes 0 if coerced to a number:

> Number(null)
0
> 5 + null
5

Remember that the first version of JavaScript did not have exception handling. There‐
fore, exceptional cases such as uninitialized variables and missing properties had to be
indicated via a value. null would have been a good choice, but Brendan Eich wanted to
avoid two things at the time:

• The value shouldn’t have the connotation of a reference, because it was about more
than just objects.

• The value shouldn’t coerce to 0, because that makes errors harder to spot.

As a result, Eich added undefined as an additional nonvalue to the language. It coerces
to NaN:

> Number(undefined)
NaN
> 5 + undefined
NaN

74 | Chapter 8: Values

Changing undefined
undefined is a property of the global object (and thus a global variable; see “The Global
Object” on page 187). Under ECMAScript 3, you had to take precautions when reading
undefined, because it was easy to accidentally change its value. Under ECMAScript 5,
that is not necessary, because undefined is read-only.

To protect against a changed undefined, two techniques were popular (they are still
relevant for older JavaScript engines):
Technique 1

Shadow the global undefined (which may have the wrong value):

(function (undefined) {
 if (x === undefined) ... // safe now
}()); // don’t hand in a parameter

In the preceding code, undefined is guaranteed to have the right value, because it
is a parameter whose value has not been provided by the function call.

Technique 2
Compare with void 0, which is always (the correct) undefined (see “The void
Operator” on page 90):

if (x === void 0) // always safe

Wrapper Objects for Primitives
The three primitive types boolean, number, and string have corresponding constructors:
Boolean, Number, String. Their instances (so-called wrapper objects) contain (wrap)
primitive values. The constructors can be used in two ways:

• As constructors, they create objects that are largely incompatible with the primitive
values that they wrap:

> typeof new String('abc')
'object'
> new String('abc') === 'abc'
false

• As functions, they convert values to the corresponding primitive types (see “Func‐
tions for Converting to Boolean, Number, String, and Object” on page 78). This is
the recommended method of conversion:

> String(123)
'123'

Wrapper Objects for Primitives | 75

http://bit.ly/1oO9pXM

It’s considered a best practice to avoid wrapper objects. You normal‐
ly don’t need them, as there is nothing that objects can do that prim‐
itives can’t (with the exception of being mutated). (This is different
from Java, from which JavaScript inherited the difference between
primitives and objects!)

Wrapper Objects Are Different from Primitives
Primitive values such as 'abc' are fundamentally different from wrapper instances such
as new String('abc'):

> typeof 'abc' // a primitive value
'string'
> typeof new String('abc') // an object
'object'
> 'abc' instanceof String // never true for primitives
false
> 'abc' === new String('abc')
false

Wrapper instances are objects, and there is no way of comparing objects in JavaScript,
not even via lenient equals == (see “Equality Operators: === Versus ==” on page 83):

> var a = new String('abc');
> var b = new String('abc');
> a == b
false

Wrapping and Unwrapping Primitives
There is one use case for wrapper objects: you want to add properties to a primitive
value. Then you wrap the primitive and add properties to the wrapper object. You need
to unwrap the value before you can work with it.

Wrap a primitive by invoking a wrapper constructor:

new Boolean(true)
new Number(123)
new String('abc')

Unwrap a primitive by invoking the method valueOf(). All objects have this method
(as discussed in “Conversion to Primitive” on page 258):

> new Boolean(true).valueOf()
true
> new Number(123).valueOf()
123
> new String('abc').valueOf()
'abc'

76 | Chapter 8: Values

Converting wrapper objects to primitives properly extracts numbers and strings, but
not booleans:

> Boolean(new Boolean(false)) // does not unwrap
true
> Number(new Number(123)) // unwraps
123
> String(new String('abc')) // unwraps
'abc'

The reason for this is explained in “Converting to Boolean” on page 97.

Primitives Borrow Their Methods from Wrappers
Primitives don’t have their own methods and borrow them from wrappers:

> 'abc'.charAt === String.prototype.charAt
true

Sloppy mode and strict mode handle this borrowing differently. In sloppy mode, prim‐
itives are converted to wrappers on the fly:

String.prototype.sloppyMethod = function () {
 console.log(typeof this); // object
 console.log(this instanceof String); // true
};
''.sloppyMethod(); // call the above method

In strict mode, methods from the wrapper prototype are used transparently:

String.prototype.strictMethod = function () {
 'use strict';
 console.log(typeof this); // string
 console.log(this instanceof String); // false
};
''.strictMethod(); // call the above method

Type Coercion
Type coercion means the implicit conversion of a value of one type to a value of another
type. Most of JavaScript’s operators, functions, and methods coerce operands and ar‐
guments to the types that they need. For example, the operands of the multiplication
operator (*) are coerced to numbers:

> '3' * '4'
12

As another example, if one of the operands is a string, the plus operator (+) converts
the other one to a string:

> 3 + ' times'
'3 times'

Type Coercion | 77

Type Coercion Can Hide Bugs
Therefore, JavaScript rarely complains about a value having the wrong type. For exam‐
ple, programs normally receive user input (from online forms or GUI widgets) as
strings, even if the user has entered a number. If you treat a number-as-string like a
number, you will not get a warning, just unexpected results. For example:

var formData = { width: '100' };

// You think formData.width is a number
// and get unexpected results
var w = formData.width;
var outer = w + 20;

// You expect outer to be 120, but it’s not
console.log(outer === 120); // false
console.log(outer === '10020'); // true

In cases such as the preceding one, you should convert to the appropriate type early on:

var w = Number(formData.width);

Functions for Converting to Boolean, Number, String, and Object
The following functions are the preferred way of converting a value to a boolean, num‐
ber, string, or object:
Boolean() (see “Converting to Boolean” on page 97)

Converts a value to a boolean. The following values are converted to false; they
are the so-called “falsy” values:

• undefined, null
• false

• 0, NaN
• ''

All other values are considered “truthy” and converted to true (including all
objects!).

Number() (see “Converting to Number” on page 104)
Converts a value to a number:

• undefined becomes NaN.
• null becomes 0.
• false becomes 0, true becomes 1.
• Strings are parsed.

78 | Chapter 8: Values

• Objects are first converted to primitives (discussed shortly), which are then
converted to numbers.

String() (see “Converting to String” on page 135)
Converts a value to a string. It has the obvious results for all primitives. For example:

> String(null)
'null'
> String(123.45)
'123.45'
> String(false)
'false'

Objects are first converted to primitives (discussed shortly), which are then con‐
verted to strings.

Object() (see “Converting Any Value to an Object” on page 203)
Converts objects to themselves, undefined and null to empty objects, and primi‐
tives to wrapped primitives. For example:

> var obj = { foo: 123 };
> Object(obj) === obj
true

> Object(undefined)
{}
> Object('abc') instanceof String
true

Note that Boolean(), Number(), String(), and Object() are called as functions. You
normally don’t use them as constructors. Then they create instances of themselves (see
“Wrapper Objects for Primitives” on page 75).

Algorithm: ToPrimitive()—Converting a Value to a Primitive
To convert a value to either a number or a string, it is first converted to an arbitrary
primitive value, which is then converted to the final type (as discussed in “Functions
for Converting to Boolean, Number, String, and Object” on page 78).

The ECMAScript specification has an internal function, ToPrimitive() (which is not
accessible from JavaScript), that performs this conversion. Understanding ToPrimi
tive() enables you to configure how objects are converted to numbers and strings. It
has the following signature:

ToPrimitive(input, PreferredType?)

The optional parameter PreferredType indicates the final type of the conversion: it is
either Number or String, depending on whether the result of ToPrimitive() will be
converted to a number or a string.

Type Coercion | 79

If PreferredType is Number, then you perform the following steps:

1. If input is primitive, return it (there is nothing more to do).
2. Otherwise, input is an object. Call input.valueOf(). If the result is primitive,

return it.
3. Otherwise, call input.toString(). If the result is primitive, return it.
4. Otherwise, throw a TypeError (indicating the failure to convert input to a

primitive).

If PreferredType is String, steps 2 and 3 are swapped. The PreferredType can also be
omitted; it is then considered to be String for dates and Number for all other values.
This is how the operators + and == call ToPrimitive().

Examples: ToPrimitive() in action

The default implementation of valueOf() returns this, while the default implementa‐
tion of toString() returns type information:

> var empty = {};
> empty.valueOf() === empty
true
> empty.toString()
'[object Object]'

Therefore, Number() skips valueOf() and converts the result of toString() to a num‐
ber; that is, it converts '[object Object]' to NaN:

> Number({})
NaN

The following object customizes valueOf(), which influences Number(), but doesn’t
change anything for String():

> var n = { valueOf: function () { return 123 } };
> Number(n)
123
> String(n)
'[object Object]'

The following object customizes toString(). Because the result can be converted to a
number, Number() can return a number:

> var s = { toString: function () { return '7'; } };
> String(s)
'7'
> Number(s)
7

80 | Chapter 8: Values

CHAPTER 9

Operators

This chapter gives an overview of operators.

Operators and Objects
All operators coerce (as discussed in “Type Coercion” on page 77) their operands to
appropriate types. Most operators only work with primitive values (e.g., arithmetic
operators and comparison operators). That means that objects are converted to prim‐
itives before anything is done with them. One example where that is unfortunate is the
plus operator, which many languages use for array concatenation. That’s not so with
JavaScript, however, where this operator converts arrays to strings and appends them:

> [1, 2] + [3]
'1,23'
> String([1, 2])
'1,2'
> String([3])
'3'

There is no way to overload or customize operators in JavaScript, not
even equality.

Assignment Operators
There are several ways to use the plain assignment operator:
x = value

Assigns to a variable x that has previously been declared

81

1. Strictly speaking, setting an array element is a special case of setting a property.

var x = value

Combines a variable declaration with an assignment

obj.propKey = value

Sets a property

obj['propKey'] = value

Sets a property

arr[index] = value

Sets an array element1

An assignment is an expression that evaluates to the assigned value. That allows you to
chain assignments. For example, the following statement assigns 0 to both y and x:

x = y = 0;

Compound Assignment Operators
A compound assignment operator is written as op=, where op is one of several binary
operators and = is the assignment operator. The following two expressions are
equivalent:

myvar op= value
myvar = myvar op value

In other words, a compound assignment operator op= applies op to both operands and
assigns the result to the first operand. Let’s look at an example of using the plus operator
(+) via compound assignment:

> var x = 2;
> x += 3
5
> x
5

The following are all compound assignment operators:

• Arithmetic operations (see “Arithmetic Operators” on page 122): *=, /=, %=, +=, -=
• Bitwise operations (see “Binary Bitwise Operators” on page 126): <<=, >>=, >>>=, &=,
^=, |=

• String concatenation (see “Concatenation: The Plus (+) Operator” on page 137): +=

82 | Chapter 9: Operators

Equality Operators: === Versus ==
JavaScript has two ways of determining whether two values are equal:

• Strict equality (===) and strict inequality (!==) consider only values that have the
same type to be equal.

• Normal (or “lenient”) equality (==) and inequality (!=) try to convert values of
different types before comparing them as with strict (in)equality.

Lenient equality is problematic in two regards. First, how it performs conversion is
confusing. Second, due to the operators being so forgiving, type errors can remain
hidden longer.

Always use strict equality and avoid lenient equality. You only need to learn about the
latter if you want to know why it should be avoided.

Equality is not customizable. Operators can’t be overloaded in JavaScript, and you can’t
customize how equality works. There are some operations where you often need to
influence comparison—for example, Array.prototype.sort() (see “Sorting and Re‐
versing Elements (Destructive)” on page 287). That method optionally accepts a callback
that performs all comparisons between array elements.

Strict Equality (===, !==)
Values with different types are never strictly equal. If both values have the same type,
then the following assertions hold:

• undefined === undefined

• null === null

• Two numbers:
x === x // unless x is NaN
+0 === -0
NaN !== NaN // read explanation that follows

• Two booleans, two strings: obvious results
• Two objects (including arrays and functions): x === y if and only if x and y are the

same object; that is, if you want to compare different objects, you have to implement
your own comparison algorithm:

> var b = {}, c = {};
> b === c
false
> b === b
true

Equality Operators: === Versus == | 83

• Everything else: not strictly equal.

Pitfall: NaN

The special number value NaN (see “NaN” on page 106) is not equal to itself:

> NaN === NaN
false

Thus, you need to use other means to check for it, which are described in “Pitfall:
checking whether a value is NaN” on page 107.

Strict inequality (!==)
A strict inequality comparison:

x !== y

is equivalent to the negation of a strict equality comparison:

!(x === y)

Normal (Lenient) Equality (==, !=)
The algorithm for comparing via normal equality works as follows. If both operands
have the same type (one of the six specification types—Undefined, Null, Boolean, Num‐
ber, String, and Object), then compare them via strict equality.

Otherwise, if the operands are:

1. undefined and null, then they are considered leniently equal:
> undefined == null
true

2. A string and a number, then convert the string to a number and compare both
operands via strict equality.

3. A boolean and a nonboolean, then convert the boolean to a number and compare
leniently (again).

4. An object and a number or a string, then try to convert the object to a primitive
(via the algorithm described in “Algorithm: ToPrimitive()—Converting a Value to
a Primitive” on page 79) and compare leniently (again).

Otherwise—if none of the aforementioned cases apply—the result of the lenient com‐
parison is false.

Lenient inequality (!=)
An inequality comparison:

84 | Chapter 9: Operators

x != y

is equivalent to the negation of an equality comparison:

!(x == y)

Pitfall: lenient equality is different from conversion to boolean
Step 3 means that equality and conversion to boolean (see “Converting to Boolean” on
page 97) work differently. If converted to boolean, numbers greater than 1 become true
(e.g., in if statements). But those numbers are not leniently equal to true. The com‐
ments explain how the results were computed:

> 2 == true // 2 === 1
false
> 2 == false // 2 === 0
false

> 1 == true // 1 === 1
true
> 0 == false // 0 === 0
true

Similarly, while the empty string is equal to false, not all nonempty strings are equal
to true:

> '' == false // 0 === 0
true
> '1' == true // 1 === 1
true
> '2' == true // 2 === 1
false
> 'abc' == true // NaN === 1
false

Pitfall: lenient equality and strings
Some of the leniency can be useful, depending on what you want:

> 'abc' == new String('abc') // 'abc' == 'abc'
true
> '123' == 123 // 123 === 123
true

Other cases are problematic, due to how JavaScript converts strings to numbers (see
“Converting to Number” on page 104):

> '\n\t123\r ' == 123 // usually not OK
true
> '' == 0 // 0 === 0
true

Equality Operators: === Versus == | 85

Pitfall: lenient equality and objects
If you compare an object to a nonobject, it is converted to a primitive, which leads to
strange results:

> {} == '[object Object]'
true
> ['123'] == 123
true
> [] == 0
true

However, two objects are only equal if they are they same object. That means that you
can’t really compare two wrapper objects:

> new Boolean(true) === new Boolean(true)
false
> new Number(123) === new Number(123)
false
> new String('abc') == new String('abc')
false

There Are No Valid Use Cases for ==
You sometimes read about valid use cases for lenient equality (==). This section lists
them and points out better alternatives.

Use case: checking for undefined or null

The following comparison ensures that x is neither undefined nor null:

if (x != null) ...

While this is a compact way of writing this check, it confuses beginners, and experts
can’t be sure whether it is a typo or not. Thus, if you want to check whether x has a value,
use the standard check for truthiness (covered in “Truthy and Falsy Values” on page 98):

if (x) ...

If you want to be more precise, you should perform an explicit check for both values:

if (x !== undefined && x !== null) ...

Use case: working with numbers in strings

If you are not sure whether a value x is a number or a number-as-a-string, you can use
checks such as the following:

if (x == 123) ...

The preceding checks whether x is either 123 or '123'. Again, this is very compact, and
again, it is better to be explicit:

86 | Chapter 9: Operators

if (Number(x) === 123) ...

Use case: comparing wrapper instances with primitives
Lenient equals lets you compare primitives with wrapped primitives:

> 'abc' == new String('abc')
true

There are three reasons against this approach. First, lenient equality does not work
between wrapped primitives:

> new String('abc') == new String('abc')
false

Second, you should avoid wrappers anyway. Third, if you do use them, it is better to be
explicit:

if (wrapped.valueOf() === 'abc') ...

Ordering Operators
JavaScript knows the following ordering operators:

• Less than (<)
• Less than or equal (<=)
• Greater than (>)
• Greater than or equal (>=)

These operators work for numbers and for strings:

> 7 >= 5
true
> 'apple' < 'orange'
true

For strings, they are not very useful, because they are case-sensitive and don’t handle
features such as accents well (for details, see “Comparing Strings” on page 136).

The Algorithm
You evaluate a comparison:

x < y

by taking the following steps:

Ordering Operators | 87

1. Ensure that both operands are primitives. Objects obj are converted to primitives
via the internal operation ToPrimitive(obj, Number) (refer to “Algorithm: ToP‐
rimitive()—Converting a Value to a Primitive” on page 79), which calls obj.val
ueOf() and, possibly, obj.toString() to do so.

2. If both operands are strings, then compare them by lexicographically comparing
the 16-bit code units (see Chapter 24) that represent the JavaScript characters of
the string.

3. Otherwise, convert both operands to numbers and compare them numerically.

The other ordering operators are handled similarly.

The Plus Operator (+)
Roughly, the plus operator examines its operands. If one of them is a string, the other
is also converted to a string and both are concatenated:

> 'foo' + 3
'foo3'
> 3 + 'foo'
'3foo'

> 'Colors: ' + ['red', 'green', 'blue']
'Colors: red,green,blue'

Otherwise, both operands are converted to numbers (see “Converting to Number” on
page 104) and added:

> 3 + 1
4
> 3 + true
4

That means that the order in which you evaluate matters:

> 'foo' + (1 + 2)
'foo3'
> ('foo' + 1) + 2
'foo12'

The Algorithm
You evaluate an addition:

value1 + value2

by taking the following steps:

88 | Chapter 9: Operators

1. Ensure that both operands are primitives. Objects obj are converted to primitives
via the internal operation ToPrimitive(obj) (refer to “Algorithm: ToPrimitive()—
Converting a Value to a Primitive” on page 79), which calls obj.valueOf() and,
possibly, obj.toString() to do so. For dates, obj.toString() is called first.

2. If either operand is a string, then convert both to strings and return the concate‐
nation of the results.

3. Otherwise, convert both operands to numbers and return the sum of the results.

Operators for Booleans and Numbers
The following operators only have operands of a single type and also produce results of
that type. They are covered elsewhere.

Boolean operators:

• Binary logical operators (see “Binary Logical Operators: And (&&) and Or (||)” on
page 99):

x && y, x || y

• Logical Not (see “Logical Not (!)” on page 101):
!x

Number operators:

• Arithmetic operators (see “Arithmetic Operators” on page 122):
x + y, x - y, x * y, x / y, x % y
++x, --x, x++, x--
-x, +x

• Bitwise operators (see “Bitwise Operators” on page 124):
~x
x & y, x | y, x ^ y
x << y, x >> y, x >>> y

Special Operators
Here we will review special operators, namely the conditional, comma, and void
operators.

The Conditional Operator (? :)
The conditional operator is an expression:

Operators for Booleans and Numbers | 89

«condition» ? «if_true» : «if_false»

If the condition is true, the result is if_true; otherwise, the result is if_false. For
example:

var x = (obj ? obj.prop : null);

The parentheses around the operator are not needed, but they make it easier to read.

The Comma Operator
«left» , «right»

The comma operator evaluates both operands and returns the result of right. Roughly,
it does for expressions what the semicolon does for statements.

This example demonstrates that the second operand becomes the result of the operator:

> 123, 'abc'
'abc'

This example demonstrates that both operands are evaluated:

> var x = 0;
> var y = (x++, 10);

> x
1
> y
10

The comma operator is confusing. It’s better to not be clever and to write two separate
statements whenever you can.

The void Operator
The syntax for the void operator is:

void «expr»

which evaluates expr and returns undefined. Here are some examples:

> void 0
undefined
> void (0)
undefined

> void 4+7 // same as (void 4)+7
NaN
> void (4+7)
undefined

> var x;
> x = 3

90 | Chapter 9: Operators

2. Thanks to Brandon Benvie (@benvie), who told me about using void for IIFEs.

3
> void (x = 5)
undefined
> x
5

Thus, if you implement void as a function, it looks as follows:

function myVoid(expr) {
 return undefined;
}

The void operator is associated closely with its operand, so use parentheses as necessary.
For example, void 4+7 binds as (void 4)+7.

What is void used for?

Under ECMAScript 5, void is rarely useful. Its main use cases are:
void 0 as a synonym for undefined

The latter can be changed, while the former will always have the correct value.
However, undefined is reasonably safe from being changed under ECMAScript 5,
which makes this use case less important (for details, see “Changing undefined” on
page 75).

Discarding the result of an expression
In some situations, it is important to return undefined as opposed to the result of
an expression. Then void can be used to discard that result. One such situation
involves javascript: URLs, which should be avoided for links, but are useful for
bookmarklets. When you visit one of those URLs, many browsers replace the cur‐
rent document with the result of evaluating the URL’s “content,” but only if the result
isn’t undefined. Hence, if you want to open a new window without changing the
currently displayed content, you can do the following:

javascript:void window.open("http://example.com/")

Prefixing an IIFE
An IIFE must be parsed as an expression. One of several ways to ensure that is by
prefixing it with void (see “IIFE Variation: Prefix Operators” on page 184).2

Why does JavaScript have a void operator?
According to JavaScript creator Brendan Eich, he added it to the language to help with
javascript: links (one of the aforementioned use cases):

Special Operators | 91

3. Source: http://en.wikipedia.org/wiki/Bookmarklet

I added the void operator to JS before Netscape 2 shipped to make it easy to discard any
non-undefined value in a javascript: URL.3

Categorizing Values via typeof and instanceof
If you want to categorize a value, you unfortunately have to distinguish between prim‐
itives and objects (refer back to Chapter 8) in JavaScript:

• The typeof operator distinguishes primitives from objects and determines the
types of primitives.

• The instanceof operator determines whether an object is an instance of a given
constructor. Consult Chapter 17 for more information on object-oriented pro‐
gramming in JavaScript.

typeof: Categorizing Primitives
The typeof operator:

typeof «value»

returns a string describing what kind of value value is. Here are some examples:

> typeof undefined
'undefined'
> typeof 'abc'
'string'
> typeof {}
'object'
> typeof []
'object'

typeof is used to distinguish primitives and objects and to categorize primitives (which
cannot be handled by instanceof). Unfortunately, the results of this operator are not
completely logical and only loosely correspond to the types of the ECMAScript speci‐
fication (which are explained in “JavaScript’s Types” on page 67):

Operand Result

undefined, undeclared variable 'undefined'

null 'object'

Boolean value 'boolean'

Number value 'number'

String value 'string'

92 | Chapter 9: Operators

http://en.wikipedia.org/wiki/Bookmarklet

4. Thanks to Tom Schuster (@evilpies) for pointing me to the source code of the first JavaScript engine.

Operand Result

Function 'function'

All other normal values 'object'

(Engine-created value) JavaScript engines are allowed to create values for whom typeof returns
arbitrary strings (different from all results listed in this table).

Pitfall: typeof null

Unfortunately, typeof null is 'object'. This is considered a bug (null is not a member
of the internal type Object), but it can’t be fixed, because doing so would break existing
code. You thus have to be wary of null. For example, the following function checks
whether value is an object:

function isObject(value) {
 return (value !== null
 && (typeof value === 'object'
 || typeof value === 'function'));
}

Trying it out:

> isObject(123)
false
> isObject(null)
false
> isObject({})
true

The history of typeof null
The first JavaScript engine represented JavaScript values as 32-bit words. The lowest 3
bits of such a word were used as a type tag, to indicate whether the value was an object,
an integer, a double, a string, or a boolean (as you can see, even this early engine already
stored numbers as integers if possible).

The type tag for objects was 000. In order to represent the value null, the engine used
the machine language NULL pointer, a word where all bits are zero. typeof checked the
type tag to determine the type of value, which is why it reported null to be an object.4

Checking whether a variable exists
The check:

typeof x === 'undefined'

has two use cases:

Categorizing Values via typeof and instanceof | 93

http://mzl.la/1oO9VF7

1. It determines whether x is undefined.
2. It determines whether the variable x exists.

Here are examples of both use cases:

> var foo;
> typeof foo === 'undefined'
true

> typeof undeclaredVariable === 'undefined'
true

For the first use case, comparing directly with undefined is usually a better choice.
However, it doesn’t work for the second use case:

> var foo;
> foo === undefined
true

> undeclaredVariable === undefined
ReferenceError: undeclaredVariable is not defined

instanceof: Checking Whether an Object Is an Instance of a Given
Constructor
The instanceof operator:

«value» instanceof «Constr»

determines whether value has been created by the constructor Constr or a subcon‐
structor. Here are some examples:

> {} instanceof Object
true
> [] instanceof Array // constructor of []
true
> [] instanceof Object // super-constructor of []
true

As expected, instanceof is false for the nonvalues undefined and null:

> undefined instanceof Object
false
> null instanceof Object
false

But it is also false for all other primitive values:

> 'abc' instanceof Object
false
> 123 instanceof Object
false

94 | Chapter 9: Operators

For details on instanceof, consult “The instanceof Operator” on page 237.

Object Operators
The following three operators work on objects. They are explained elsewhere:
new (see “Layer 3: Constructors—Factories for Instances” on page 231)

Invoke a constructor—for example, new Point(3, 5)

delete (see “Deleting properties” on page 200)
Delete a property—for example, delete obj.prop

in (see “Iteration and Detection of Properties” on page 217)
Check whether an object has a given property—for example, 'prop' in obj

Object Operators | 95

CHAPTER 10

Booleans

The primitive boolean type comprises the values true and false:

> typeof false
'boolean'
> typeof true
'boolean'

Converting to Boolean
Values are converted to booleans as follows:

Value Converted to boolean

undefined false

null false

A boolean Same as input (nothing to convert)

A number 0, NaN → false

other numbers → true

A string '' → false

other strings → true

An object true (always!)

Manually Converting to Boolean
There are three ways any value can be converted to a boolean:

Boolean(value) (Invoked as a function, not as a constructor)

value ? true : false

!!value A single “not” converts to negated boolean; use twice for the nonnegated conversion.

97

I prefer Boolean(), because it is more descriptive. Here are some examples:

> Boolean(undefined)
false
> Boolean(null)
false

> Boolean(0)
false
> Boolean(1)
true
> Boolean(2)
true

> Boolean('')
false
> Boolean('abc')
true
> Boolean('false')
true

Truthy and Falsy Values
Wherever JavaScript expects a boolean, you can provide any kind of value and it is
automatically converted to boolean. Thus, there are two sets of values in JavaScript: one
set is converted to false, while the other set is converted to true. These sets are called
falsy values and truthy values. Given the preceding table, the following are all falsy values:

• undefined, null
• Boolean: false
• Number: 0, NaN
• String: ''

All other values—including all objects, even empty objects, empty arrays, and new
Boolean(false)—are truthy. Because undefined and null are falsy, you can use the if
statement to check whether a variable x has a value:

if (x) {
 // x has a value
}

The caveat is that the preceding check interprets all falsy values as “does not have a
value,” not just undefined and null. But if you can live with that limitation, you get to
use a compact and established pattern.

98 | Chapter 10: Booleans

Pitfall: all objects are truthy
All objects are truthy:

> Boolean(new Boolean(false))
true
> Boolean([])
true
> Boolean({})
true

That is different from how objects are converted to a number or string, where you can
control the result by implementing the methods valueOf() and toString():

> Number({ valueOf: function () { return 123 } })
123
> String({ toString: function () { return 'abc' } })
'abc'

History: Why are objects always truthy?
The conversion to boolean is different for historic reasons. For ECMAScript 1, it was
decided to not enable objects to configure that conversion (e.g., via a toBoolean()
method). The rationale was that the boolean operators || and && preserve the values of
their operands. Therefore, if you chain those operators, the same value may be checked
multiple times for truthiness or falsiness. Such checks are cheap for primitives, but
would be costly for objects if they were able to configure their conversion to boolean.
ECMAScript 1 avoided that cost by making objects always truthy.

Logical Operators
In this section, we cover the basics of the And (&&), Or (||), and Not (!) logical operators.

Binary Logical Operators: And (&&) and Or (||)
Binary logical operators are:
Value-preserving

They always return either one of the operands, unchanged:

> 'abc' || 123
'abc'
> false || 123
123

Short-circuiting
The second operand is not evaluated if the first operand already determines the
result. For example (the result of console.log is undefined):

Logical Operators | 99

> true || console.log('Hello')
true
> false || console.log('Hello')
Hello
undefined

That is uncommon behavior for operators. Normally, all operands are evaluated
before an operator is invoked (just like for functions).

Logical And (&&)
If the first operand can be converted to false, return it. Otherwise, return the second
operand:

> true && false
false
> false && 'def'
false
> '' && 'def'
''
> 'abc' && 'def'
'def'

Logical Or (||)
If the first operand can be converted to true, return it. Otherwise, return the second
operand:

> true || false
true
> true || 'def'
true
> 'abc' || 'def'
'abc'
> '' || 'def'
'def'

Pattern: providing a default value
Sometimes there are situations where a value (a parameter, the result of a function, etc.)
can be either a nonvalue (undefined, null) or an actual value. If you want to provide a
default value for the former case, you can use the Or operator:

theValue || defaultValue

The preceding expression evaluates to theValue if it is truthy and to defaultValue
otherwise. The usual caveat applies: defaultValue will also be returned if theValue has
a falsy value other than undefined and null. Let’s look at three examples of using that
pattern.

100 | Chapter 10: Booleans

Example 1: a default for a parameter

The parameter text of the function saveText() is optional and should be the empty
string if it has been omitted:

function saveText(text) {
 text = text || '';
 ...
}

This is the most common use of || as a default operator. Consult “Optional Parame‐
ters” on page 173 for more on optional parameters.

Example 2: a default for a property

The object options may or may not have the property title. If it is missing, the value
'Untitled' should be used when setting the title:

setTitle(options.title || 'Untitled');

Example 3: a default for the result of a function

The function countOccurrences counts how often regex matches inside str:

function countOccurrences(regex, str) {
 // Omitted: check that /g is set for `regex`
 return (str.match(regex) || []).length;
}

The problem is that match() (see “String.prototype.match: Capture Groups or Return
All Matching Substrings” on page 307) either returns an array or null. Thanks to ||, a
default value is used in the latter case. Therefore, you can safely access the property
length in both cases.

Logical Not (!)
The logical not operator ! converts its operand to boolean and then negates it:

> !true
false
> !43
false
> !''
true
> !{}
false

Logical Operators | 101

Equality Operators, Ordering Operators
The following operators are covered elsewhere:

• Equality operators: ===, !==, ==, != (see “Equality Operators: === Versus ==” on
page 83)

• Ordering operators: >, >=, <, <= (see “Ordering Operators” on page 87)

The Function Boolean
The function Boolean can be invoked in two ways:
Boolean(value)

As a normal function, it converts value to a primitive boolean (see “Converting to
Boolean” on page 97):

> Boolean(0)
false
> typeof Boolean(false) // no change
'boolean'

new Boolean(bool)

As a constructor, it creates a new instance of Boolean (see “Wrapper Objects for
Primitives” on page 75), an object that wraps bool (after converting it to a boolean).
For example:

> typeof new Boolean(false)
'object'

The former invocation is the common one.

102 | Chapter 10: Booleans

CHAPTER 11

Numbers

JavaScript has a single type for all numbers: it treats all of them as floating-point num‐
bers. However, the dot is not displayed if there are no digits after the decimal point:

> 5.000
5

Internally, most JavaScript engines optimize and do distinguish between floating-point
numbers and integers (details: “Integers in JavaScript” on page 114). But that is something
that programmers don’t see.

JavaScript numbers are double (64-bit) values, based on the IEEE Standard for Floating-
Point Arithmetic (IEEE 754). That standard is used by many programming languages.

Number Literals
A number literal can be an integer, floating point, or (integer) hexadecimal:

> 35 // integer
35
> 3.141 // floating point
3.141
> 0xFF // hexadecimal
255

Exponent
An exponent, eX, is an abbreviation for “multiply with 10X”:

> 5e2
500
> 5e-2
0.05
> 0.5e2
50

103

1. Source: Brendan Eich, http://bit.ly/1lKzQeC.

Invoking Methods on Literals
With number literals, the dot for accessing a property must be distinguished from the
decimal dot. This leaves you with the following options if you want to invoke to
String() on the number literal 123:

123..toString()
123 .toString() // space before the dot
123.0.toString()
(123).toString()

Converting to Number
Values are converted to numbers as follows:

Value Result

undefined NaN

null 0

A boolean false → 0

true → 1

A number Same as input (nothing to convert)

A string Parse the number in the string (ignoring leading and trailing whitespace); the empty string is converted to 0.
Example: '3.141' → 3.141

An object Call ToPrimitive(value, Number) (see “Algorithm: ToPrimitive()—Converting a Value to a Primitive”
on page 79) and convert the resulting primitive.

When converting the empty string to a number, NaN would arguably be a better result.
The result 0 was chosen to help with empty numeric input fields, in line with what other
programming languages did in the mid-1990s.1

Manually Converting to Number
The two most common ways to convert any value to a number are:

Number(value) (Invoked as a function, not as a constructor)

+value

I prefer Number(), because it is more descriptive. Here are some examples:

> Number('')
0
> Number('123')
123

104 | Chapter 11: Numbers

http://bit.ly/1lKzQeC

> Number('\t\v\r12.34\n ') // ignores leading and trailing whitespace
12.34

> Number(false)
0
> Number(true)
1

parseFloat()
The global function parseFloat() provides another way to convert values to numbers.
However, Number() is usually a better choice, as we shall see in a moment. This code:

parseFloat(str)

converts str to string, trims leading whitespace, and then parses the longest prefix that
is a floating-point number. If no such prefix exists (e.g., in an empty string), NaN is
returned.

Comparing parseFloat() and Number():

• Applying parseFloat() to a nonstring is less efficient, because it coerces its argu‐
ment to a string before parsing it. As a consequence, many values that Number()
converts to actual numbers are converted to NaN by parseFloat():

> parseFloat(true) // same as parseFloat('true')
NaN
> Number(true)
1

> parseFloat(null) // same as parseFloat('null')
NaN
> Number(null)
0

• parseFloat() parses the empty string as NaN:
> parseFloat('')
NaN
> Number('')
0

• parseFloat() parses until the last legal character, meaning you get a result where
you may not want one:

> parseFloat('123.45#')
123.45
> Number('123.45#')
NaN

• parseFloat() ignores leading whitespace and stops before illegal characters (which
include whitespace):

Converting to Number | 105

> parseFloat('\t\v\r12.34\n ')
12.34

Number() ignores both leading and trailing whitespace (but other illegal characters
lead to NaN).

Special Number Values
JavaScript has several special number values:

• Two error values, NaN and Infinity.
• Two values for zero, +0 and -0. JavaScript has two zeros, a positive zero and a

negative zero, because the sign and the magnitude of a number are stored separately.
In most of this book, I pretend that there is only a single zero, and you almost never
see in JavaScript that there are two of them.

NaN
The error value NaN (an abbreviation for “not a number”) is, ironically, a number value:

> typeof NaN
'number'

It is produced by errors such as the following:

• A number could not be parsed:
> Number('xyz')
NaN
> Number(undefined)
NaN

• An operation failed:
> Math.acos(2)
NaN
> Math.log(-1)
NaN
> Math.sqrt(-1)
NaN

• One of the operands is NaN (this ensures that, if an error occurs during a longer
computation, you can see it in the final result):

> NaN + 3
NaN
> 25 / NaN
NaN

106 | Chapter 11: Numbers

2. Béla Varga (@netzzwerg) pointed out that IEEE 754 specifies NaN as not equal to itself.

Pitfall: checking whether a value is NaN

NaN is the only value that is not equal to itself:

> NaN === NaN
false

Strict equality (===) is also used by Array.prototype.indexOf. You therefore can’t
search for NaN in an array via that method:

> [NaN].indexOf(NaN)
-1

If you want to check whether a value is NaN, you have to use the global function isNaN():

> isNaN(NaN)
true
> isNaN(33)
false

However, isNaN does not work properly with nonnumbers, because it first converts
those to numbers. That conversion can produce NaN and then the function incorrectly
returns true:

> isNaN('xyz')
true

Thus, it is best to combine isNaN with a type check:

function myIsNaN(value) {
 return typeof value === 'number' && isNaN(value);
}

Alternatively, you can check whether the value is unequal to itself (as NaN is the only
value with this trait). But that is less self-explanatory:

function myIsNaN(value) {
 return value !== value;
}

Note that this behavior is dictated by IEEE 754. As noted in Section 7.11, “Details of
comparison predicates”:2

Every NaN shall compare unordered with everything, including itself.

Infinity
Infinity is an error value indicating one of two problems: a number can’t be represented
because its magnitude is too large, or a division by zero has happened.

Special Number Values | 107

Infinity is larger than any other number (except NaN). Similarly, -Infinity is smaller
than any other number (except NaN). That makes them useful as default values—for
example, when you are looking for a minimum or maximum.

Error: a number’s magnitude is too large
How large a number’s magnitude can become is determined by its internal representa‐
tion (as discussed in “The Internal Representation of Numbers” on page 111), which is
the arithmetic product of:

• A mantissa (a binary number 1.f1f2...)
• 2 to the power of an exponent

The exponent must be between (and excluding) −1023 and 1024. If the exponent is too
small, the number becomes 0. If the exponent is too large, it becomes Infinity. 21023

can still be represented, but 21024 can’t:

> Math.pow(2, 1023)
8.98846567431158e+307
> Math.pow(2, 1024)
Infinity

Error: division by zero

Dividing by zero produces Infinity as an error value:

> 3 / 0
Infinity
> 3 / -0
-Infinity

Computing with Infinity

You get the error result NaN if you try to “neutralize” one Infinity with another one:

> Infinity - Infinity
NaN
> Infinity / Infinity
NaN

If you try to go beyond Infinity, you still get Infinity:

> Infinity + Infinity
Infinity
> Infinity * Infinity
Infinity

Checking for Infinity

Strict and lenient equality work fine for Infinity:

108 | Chapter 11: Numbers

> var x = Infinity;
> x === Infinity
true

Additionally, the global function isFinite() allows you to check whether a value is an
actual number (neither infinite nor NaN):

> isFinite(5)
true
> isFinite(Infinity)
false
> isFinite(NaN)
false

Two Zeros
Because JavaScript’s numbers keep magnitude and sign separate, each nonnegative
number has a negative, including 0.

The rationale for this is that whenever you represent a number digitally, it can become
so small that it is indistinguishable from 0, because the encoding is not precise enough
to represent the difference. Then a signed zero allows you to record “from which di‐
rection” you approached zero; that is, what sign the number had before it was considered
zero. Wikipedia nicely sums up the pros and cons of signed zeros:

It is claimed that the inclusion of signed zero in IEEE 754 makes it much easier to achieve
numerical accuracy in some critical problems, in particular when computing with com‐
plex elementary functions. On the other hand, the concept of signed zero runs contrary
to the general assumption made in most mathematical fields (and in most mathematics
courses) that negative zero is the same thing as zero. Representations that allow negative
zero can be a source of errors in programs, as software developers do not realize (or may
forget) that, while the two zero representations behave as equal under numeric compar‐
isons, they are different bit patterns and yield different results in some operations.

Best practice: pretend there’s only one zero
JavaScript goes to great lengths to hide the fact that there are two zeros. Given that it
normally doesn’t matter that they are different, it is recommended that you play along
with the illusion of the single zero. Let’s examine how that illusion is maintained.

In JavaScript, you normally write 0, which means +0. But -0 is also displayed as simply
0. This is what you see when you use a browser command line or the Node.js REPL:

> -0
0

That is because the standard toString() method converts both zeros to the same '0':

> (-0).toString()
'0'

Special Number Values | 109

http://en.wikipedia.org/wiki/Signed_zero

> (+0).toString()
'0'

Equality doesn’t distinguish zeros, either. Not even ===:

> +0 === -0
true

Array.prototype.indexOf uses === to search for elements, maintaining the illusion:

> [-0, +0].indexOf(+0)
0
> [+0, -0].indexOf(-0)
0

The ordering operators also consider the zeros to be equal:

> -0 < +0
false
> +0 < -0
false

Distinguishing the two zeros
How can you actually observe that the two zeros are different? You can divide by zero
(-Infinity and +Infinity can be distinguished by ===):

> 3 / -0
-Infinity
> 3 / +0
Infinity

Another way to perform the division by zero is via Math.pow() (see “Numerical Func‐
tions” on page 328):

> Math.pow(-0, -1)
-Infinity
> Math.pow(+0, -1)
Infinity

Math.atan2() (see “Trigonometric Functions” on page 329) also reveals that the zeros are
different:

> Math.atan2(-0, -1)
-3.141592653589793
> Math.atan2(+0, -1)
3.141592653589793

The canonical way of telling the two zeros apart is the division by zero. Therefore, a
function for detecting negative zeros would look like this:

function isNegativeZero(x) {
 return x === 0 && (1/x < 0);
}

110 | Chapter 11: Numbers

Here is the function in use:

> isNegativeZero(0)
false
> isNegativeZero(-0)
true
> isNegativeZero(33)
false

The Internal Representation of Numbers
JavaScript numbers have 64-bit precision, which is also called double precision (type
double in some programming languages). The internal representation is based on the
IEEE 754 standard. The 64 bits are distributed between a number’s sign, exponent, and
fraction as follows:

Sign Exponent ∈ [−1023, 1024] Fraction

1 bit 11 bits 52 bits

Bit 63 Bits 62–52 Bits 51–0

The value of a number is computed by the following formula:

(–1)sign × %1.fraction × 2exponent

The prefixed percentage sign (%) means that the number in the middle is written in
binary notation: a 1, followed by a binary point, followed by a binary fraction—namely
the binary digits of the fraction (a natural number). Here are some examples of this
representation:

+0 (sign = 0, fraction = 0, exponent = −1023)

–0 (sign = 1, fraction = 0, exponent = −1023)

1 = (−1)0 × %1.0 × 20 (sign = 0, fraction = 0, exponent = 0)

2 = (−1)0 × %1.0 × 21

3 = (−1)0 × %1.1 × 21 (sign = 0, fraction = 251, exponent = 0)

0.5 = (−1)0 × %1.0 × 2−1

−1 = (−1)1 × %1.0 × 20

The Internal Representation of Numbers | 111

The encodings of +0, −0, and 3 can be explained as follows:

• ±0: Given that the fraction is always prefixed by a 1, it’s impossible to represent 0
with it. Hence, JavaScript encodes a zero via the fraction 0 and the special exponent
−1023. The sign can be either positive or negative, meaning that JavaScript has two
zeros (see “Two Zeros” on page 109).

• 3: Bit 51 is the most significant (highest) bit of the fraction. That bit is 1.

Special Exponents
The previously mentioned representation of numbers is called normalized. In that case,
the exponent e is in the range −1023 < e < 1024 (excluding lower and upper bounds).
−1023 and 1024 are special exponents:

• 1024 is used for error values such as NaN and Infinity.
• −1023 is used for:

— Zero (if the fraction is 0, as just explained)
— Small numbers close to zero (if the fraction is not 0).
To enable both applications, a different, so-called denormalized, representation is
used:

(–1)sign × %0.fraction × 2–1022

To compare, the smallest (as in “closest to zero”) numbers in normalized represen‐
tation are:

(–1)sign × %1.fraction × 2–1022

Denormalized numbers are smaller, because there is no leading digit 1.

Handling Rounding Errors
JavaScript’s numbers are usually entered as decimal floating-point numbers, but they
are internally represented as binary floating-point numbers. That leads to imprecision.
To understand why, let’s forget JavaScript’s internal storage format and take a general
look at what fractions can be well represented by decimal floating-point numbers and
by binary floating-point numbers. In the decimal system, all fractions are a mantissa m
divided by a power of 10:

m
10e

112 | Chapter 11: Numbers

So, in the denominator, there are only tens. That’s why 1
3 cannot be expressed precisely

as a decimal floating-point number—there is no way to get a 3 into the denominator.
Binary floating-point numbers only have twos in the denominator. Let’s examine which
decimal floating-point numbers can be represented well as binary and which can’t. If
there are only twos in the denominator, the decimal number can be represented:

• 0.5dec = 5
10 = 1

2 = 0.1bin

• 0.75dec = 75
100 = 3

4 = 0.11bin

• 0.125dec = 125
1000 = 1

8 = 0.001bin

Other fractions cannot be represented precisely, because they have numbers other than
2 in the denominator (after prime factorization):

• 0.1dec = 1
10 = 1

2 × 5

• 0.2dec = 2
10 = 1

5

You can’t normally see that JavaScript doesn’t store exactly 0.1 internally. But you can
make it visible by multiplying it with a high enough power of 10:

> 0.1 * Math.pow(10, 24)
1.0000000000000001e+23

And if you add two imprecisely represented numbers, the result is sometimes imprecise
enough that the imprecision becomes visible:

> 0.1 + 0.2
0.30000000000000004

Another example:

> 0.1 + 1 - 1
0.10000000000000009

Due to rounding errors, as a best practice you should not compare nonintegers directly.
Instead, take an upper bound for rounding errors into consideration. Such an upper
bound is called a machine epsilon. The standard epsilon value for double precision is 2−53:

var EPSILON = Math.pow(2, -53);
function epsEqu(x, y) {
 return Math.abs(x - y) < EPSILON;
}

epsEqu() ensures correct results where a normal comparison would be inadequate:

> 0.1 + 0.2 === 0.3
false
> epsEqu(0.1+0.2, 0.3)
true

Handling Rounding Errors | 113

http://en.wikipedia.org/wiki/Machine_epsilon

Integers in JavaScript
As mentioned before, JavaScript has only floating-point numbers. Integers appear in‐
ternally in two ways. First, most JavaScript engines store a small enough number without
a decimal fraction as an integer (with, for example, 31 bits) and maintain that repre‐
sentation as long as possible. They have to switch back to a floating-point representation
if a number’s magnitude grows too large or if a decimal fraction appears.

Second, the ECMAScript specification has integer operators: namely, all of the bitwise
operators. Those operators convert their operands to 32-bit integers and return 32-bit
integers. For the specification, integer only means that the numbers don’t have a decimal
fraction, and 32-bit means that they are within a certain range. For engines, 32-bit in‐
teger means that an actual integer (non-floating-point) representation can usually be
introduced or maintained.

Ranges of Integers
Internally, the following ranges of integers are important in JavaScript:

• Safe integers (see “Safe Integers” on page 116), the largest practically usable range of
integers that JavaScript supports:
— 53 bits plus a sign, range (−253, 253)

• Array indices (see “Array Indices” on page 276):
— 32 bits, unsigned
— Maximum length: 232−1
— Range of indices: [0, 232−1) (excluding the maximum length!)

• Bitwise operands (see “Bitwise Operators” on page 124):
— Unsigned right shift operator (>>>): 32 bits, unsigned, range [0, 232)
— All other bitwise operators: 32 bits, including a sign, range [−231, 231)

• “Char codes,” UTF-16 code units as numbers:
— Accepted by String.fromCharCode() (see “String Constructor Method” on

page 138)
— Returned by String.prototype.charCodeAt() (see “Extract Substrings” on

page 139)
— 16 bits, unsigned

114 | Chapter 11: Numbers

Representing Integers as Floating-Point Numbers
JavaScript can only handle integer values up to a magnitude of 53 bits (the 52 bits of the
fraction plus 1 indirect bit, via the exponent; see “The Internal Representation of Num‐
bers” on page 111 for details).

The following table explains how JavaScript represents 53-bit integers as floating-point
numbers:

Bits Range Encoding

1 bit 0 (See “The Internal Representation of Numbers” on page 111.)

1 bit 1 %1 × 20

2 bits 2–3 %1.f51 × 21

3 bits 4–7 = 22–(23−1) %1.f51f50 × 22

4 bits 23–(24−1) %1.f51f50f49 × 23

⋯ ⋯ ⋯
53 bits 252–(253−1) %1.f51⋯f0 × 252

There is no fixed sequence of bits that represents the integer. Instead, the mantissa %1.f
is shifted by the exponent, so that the leading digit 1 is in the right place. In a way, the
exponent counts the number of digits of the fraction that are in active use (the remaining
digits are 0). That means that for 2 bits, we use one digit of the fraction and for 53 bits,
we use all digits of the fraction. Additionally, we can represent 253 as %1.0 × 253, but we
get problems with higher numbers:

Bits Range Encoding

54 bits 253–(254−1) %1.f51⋯f00 × 253

55 bits 254–(255−1) %1.f51⋯f000 × 254

⋯

For 54 bits, the least significant digit is always 0, for 55 bits the two least significant digits
are always 0, and so on. That means that for 54 bits, we can only represent every second
number, for 55 bits only every fourth number, and so on. For example:

> Math.pow(2, 53) - 1 // OK
9007199254740991
> Math.pow(2, 53) // OK
9007199254740992
> Math.pow(2, 53) + 1 // can't be represented
9007199254740992
> Math.pow(2, 53) + 2 // OK
9007199254740994

Integers in JavaScript | 115

Best practice
If you work with integers of up to 53 bits magnitude, you are fine. Unfortunately, you’ll
often encounter 64-bit unsigned integers in programming (Twitter IDs, databases, etc.).
These must be stored in strings in JavaScript. If you want to perform arithmetic with
such integers, you need special libraries. There are plans to bring larger integers to
JavaScript, but that will take a while.

Safe Integers
JavaScript can only safely represent integers i in the range −253 < i < 253. This section
examines what that means and what the consequences are. It is based on an email by
Mark S. Miller to the es-discuss mailing list.

The idea of a safe integer centers on how mathematical integers are represented in
JavaScript. In the range (−253, 253) (excluding the lower and upper bounds), JavaScript
integers are safe: there is a one-to-one mapping between mathematical integers and
their representations in JavaScript.

Beyond this range, JavaScript integers are unsafe: two or more mathematical integers
are represented as the same JavaScript integer. For example, starting at 253, JavaScript
can represent only every second mathematical integer (the previous section explains
why). Therefore, a safe JavaScript integer is one that unambiguously represents a single
mathematical integer.

Definitions in ECMAScript 6
ECMAScript 6 will provide the following constants:

Number.MAX_SAFE_INTEGER = Math.pow(2, 53)-1;
Number.MIN_SAFE_INTEGER = -Number.MAX_SAFE_INTEGER;

It will also provide a function for determining whether an integer is safe:

Number.isSafeInteger = function (n) {
 return (typeof n === 'number' &&
 Math.round(n) === n &&
 Number.MIN_SAFE_INTEGER <= n &&
 n <= Number.MAX_SAFE_INTEGER);
}

For a given value n, this function first checks whether n is a number and an integer. If
both checks succeed, n is safe if it is greater than or equal to MIN_SAFE_INTEGER and less
than or equal to MAX_SAFE_INTEGER.

Safe results of arithmetic computations
How can we make sure that results of arithmetic computations are correct? For example,
the following result is clearly not correct:

116 | Chapter 11: Numbers

http://mzl.la/1oOaCOO
http://mzl.la/1oOaCOO

> 9007199254740990 + 3
9007199254740992

We have two safe operands, but an unsafe result:

> Number.isSafeInteger(9007199254740990)
true
> Number.isSafeInteger(3)
true
> Number.isSafeInteger(9007199254740992)
false

The following result is also incorrect:

> 9007199254740995 - 10
9007199254740986

This time, the result is safe, but one of the operands isn’t:

> Number.isSafeInteger(9007199254740995)
false
> Number.isSafeInteger(10)
true
> Number.isSafeInteger(9007199254740986)
true

Therefore, the result of applying an integer operator op is guaranteed to be correct only
if all operands and the result are safe. More formally:

isSafeInteger(a) && isSafeInteger(b) && isSafeInteger(a op b)

implies that a op b is a correct result.

Converting to Integer
In JavaScript, all numbers are floating point. Integers are floating-point numbers
without a fraction. Converting a number n to an integer means finding the integer that
is “closest” to n (where the meaning of “closest” depends on how you convert). You have
several options for performing this conversion:

1. The Math functions Math.floor(), Math.ceil(), and Math.round() (see “Integers
via Math.floor(), Math.ceil(), and Math.round()” on page 118)

2. The custom function ToInteger() (see “Integers via the Custom Function ToIn‐
teger()” on page 118)

3. Binary bitwise operators (see “32-bit Integers via Bitwise Operators” on page 119)
4. The global function parseInt() (see “Integers via parseInt()” on page 120)

Spoiler: #1 is usually the best choice, #2 and #3 have niche applications, and #4 is OK
for parsing strings, but not for converting numbers to integers.

Converting to Integer | 117

Integers via Math.floor(), Math.ceil(), and Math.round()
The following three functions are usually the best way of converting a number to an
integer:

• Math.floor() converts its argument to the closest lower integer:
> Math.floor(3.8)
3
> Math.floor(-3.8)
-4

• Math.ceil() converts its argument to the closest higher integer:
> Math.ceil(3.2)
4
> Math.ceil(-3.2)
-3

• Math.round() converts its argument to the closest integer:
> Math.round(3.2)
3
> Math.round(3.5)
4
> Math.round(3.8)
4

The result of rounding -3.5 may be surprising:
> Math.round(-3.2)
-3
> Math.round(-3.5)
-3
> Math.round(-3.8)
-4

Therefore, Math.round(x) is the same as:
Math.ceil(x + 0.5)

Integers via the Custom Function ToInteger()
Another good option for converting any value to an integer is the internal ECMAScript
operation ToInteger(), which removes the fraction of a floating-point number. If it
was accessible in JavaScript, it would work like this:

> ToInteger(3.2)
3
> ToInteger(3.5)
3
> ToInteger(3.8)
3

118 | Chapter 11: Numbers

> ToInteger(-3.2)
-3
> ToInteger(-3.5)
-3
> ToInteger(-3.8)
-3

The ECMAScript specification defines the result of ToInteger(number) as:

sign(number) × floor(abs(number))

For what it does, this formula is relatively complicated because floor seeks the closest
larger integer; if you want to remove the fraction of a negative integer, you have to seek
the closest smaller integer. The following code implements the operation in JavaScript.
We avoid the sign operation by using ceil if the number is negative:

function ToInteger(x) {
 x = Number(x);
 return x < 0 ? Math.ceil(x) : Math.floor(x);
}

32-bit Integers via Bitwise Operators
Binary bitwise operators (see “Binary Bitwise Operators” on page 126) convert (at least)
one of their operands to a 32-bit integer that is then manipulated to produce a result
that is also a 32-bit integer. Therefore, if you choose the other operand appropriately,
you get a fast way to convert an arbitrary number to a 32-bit integer (that is either signed
or unsigned).

Bitwise Or (|)
If the mask, the second operand, is 0, you don’t change any bits and the result is the first
operand, coerced to a signed 32-bit integer. This is the canonical way to execute this
kind of coercion and is used, for example, by asm.js (refer back to “Is JavaScript Fast
Enough?” on page 37):

// Convert x to a signed 32-bit integer
function ToInt32(x) {
 return x | 0;
}

ToInt32() removes the fraction and applies modulo 232:

> ToInt32(1.001)
1
> ToInt32(1.999)
1
> ToInt32(1)
1

Converting to Integer | 119

> ToInt32(-1)
-1
> ToInt32(Math.pow(2, 32)+1)
1
> ToInt32(Math.pow(2, 32)-1)
-1

Shift operators
The same trick that worked for bitwise Or also works for shift operators: if you shift by
zero bits, the result of a shift operation is the first operand, coerced to a 32-bit integer.
Here are some examples of implementing operations of the ECMAScript specification
via shift operators:

// Convert x to a signed 32-bit integer
function ToInt32(x) {
 return x << 0;
}

// Convert x to a signed 32-bit integer
function ToInt32(x) {
 return x >> 0;
}

// Convert x to an unsigned 32-bit integer
function ToUint32(x) {
 return x >>> 0;
}

Here is ToUint32() in action:

> ToUint32(-1)
4294967295
> ToUint32(Math.pow(2, 32)-1)
4294967295
> ToUint32(Math.pow(2, 32))
0

Should I use bitwise operators to coerce to integer?
You have to decide for yourself if the slight increase in efficiency is worth your code
being harder to understand. Also note that bitwise operators artificially limit themselves
to 32 bits, which is often neither necessary nor useful. Using one of the Math functions,
possibly in addition to Math.abs(), is a more self-explanatory and arguably better
choice.

Integers via parseInt()
The parseInt() function:

parseInt(str, radix?)

120 | Chapter 11: Numbers

parses the string str (nonstrings are coerced) as an integer. The function ignores leading
whitespace and considers as many consecutive legal digits as it can find.

The radix

The range of the radix is 2 ≤ radix ≤ 36. It determines the base of the number to be
parsed. If the radix is greater than 10, letters are used as digits (case-insensitively), in
addition to 0–9.

If radix is missing, then it is assumed to be 10, except if str begins with “0x” or “0X,”
in which case radix is set to 16 (hexadecimal):

> parseInt('0xA')
10

If radix is already 16, then the hexadecimal prefix is optional:

> parseInt('0xA', 16)
10
> parseInt('A', 16)
10

So far I have described the behavior of parseInt() according to the ECMAScript spec‐
ification. Additionally, some engines set the radix to 8 if str starts with a zero:

> parseInt('010')
8
> parseInt('0109') // ignores digits ≥ 8
8

Thus, it is best to always explicitly state the radix, to always call parseInt() with two
arguments.

Here are a few examples:

> parseInt('')
NaN
> parseInt('zz', 36)
1295
> parseInt(' 81', 10)
81

> parseInt('12**', 10)
12
> parseInt('12.34', 10)
12
> parseInt(12.34, 10)
12

Don’t use parseInt() to convert a number to an integer. The last example gives us hope
that we might be able to use parseInt() for converting numbers to integers. Alas, here
is an example where the conversion is incorrect:

Converting to Integer | 121

> parseInt(1000000000000000000000.5, 10)
1

Explanation
The argument is first converted to a string:

> String(1000000000000000000000.5)
'1e+21'

parseInt doesn’t consider “e” to be an integer digit and thus stops parsing after the 1.
Here’s another example:

> parseInt(0.0000008, 10)
8
> String(0.0000008)
'8e-7'

Summary

parseInt() shouldn’t be used to convert numbers to integers: coercion to string is an
unnecessary detour and even then, the result is not always correct.

parseInt() is useful for parsing strings, but you have to be aware that it stops at the
first illegal digit. Parsing strings via Number() (see “The Function Number” on page 127)
is less forgiving, but may produce nonintegers.

Arithmetic Operators
The following operators are available for numbers:
number1 + number2

Numerical addition, unless either of the operands is a string. Then both operands
are converted to strings and concatenated (see “The Plus Operator (+)” on page 88):

> 3.1 + 4.3
7.4
> 4 + ' messages'
'4 messages'

number1 - number2

Subtraction.

number1 * number2

Multiplication.

number1 / number2

Division.

number1 % number2

Remainder:

122 | Chapter 11: Numbers

> 9 % 7
2
> -9 % 7
-2

This operation is not modulo. It returns a value whose sign is
the same as the first operand (more details in a moment).

-number

Negates its argument.

+number

Leaves its argument as is; nonnumbers are converted to a number.

++variable, --variable
Returns the current value of the variable after incrementing (or decrementing) it
by 1:

> var x = 3;
> ++x
4
> x
4

variable++, variable--
Increments (or decrements) the value of the variable by 1 and returns it:

> var x = 3;
> x++
3
> x
4

Mnemonic: increment (++) and decrement (--) operators
The position of the operand can help you remember whether it is
returned before or after incrementing (or decrementing) it. If the
operand comes before the increment operator, it is returned before
incrementing it. If the operand comes after the operator, it is incre‐
mented and then returned. (The decrement operator works similarly.)

Arithmetic Operators | 123

Pitfall: The Remainder Operator (%) Is Not Modulo
The result of the remainder operator always has the sign of the first operand (for modulo,
it is the sign of the second operand):

> -5 % 2
-1

That means that the following function does not work:

// Wrong!
function isOdd(n) {
 return n % 2 === 1;
}
console.log(isOdd(-5)); // false
console.log(isOdd(-4)); // false

The correct version is:

function isOdd(n) {
 return Math.abs(n % 2) === 1;
}
console.log(isOdd(-5)); // true
console.log(isOdd(-4)); // false

Bitwise Operators
JavaScript has several bitwise operators that work with 32-bit integers. That is, they
convert their operands to 32-bit integers and produce a result that is a 32-bit integer.
Use cases for these operators include processing binary protocols, special algorithms,
etc.

Background Knowledge
This section explains a few concepts that will help you understand bitwise operators.

Binary complements
Two common ways of computing a binary complement (or inverse) of a binary number
are:
Ones’ complement

You compute the ones’ complement ~x of a number x by inverting each of the 32
digits. Let’s illustrate the ones’ complement via four-digit numbers. The ones’

124 | Chapter 11: Numbers

complement of 1100 is 0011. Adding a number to its ones’ complement results in
a number whose digits are all 1:

1 + ~1 = 0001 + 1110 = 1111

Twos’ complement
The twos’ complement -x of a number x is the ones’ complement plus one. Adding
a number to its twos’ complement results in 0 (ignoring overflow beyond the most
significant digit). Here’s an example using four-digit numbers:

1 + -1 = 0001 + 1111 = 0000

Signed 32-bit integers
32-bit integers don’t have an explicit sign, but you can still encode negative numbers.
For example, −1 can be encoded as the twos’ complement of 1: adding 1 to the result
yields 0 (within 32 bits). The boundary between positive and negative numbers is fluid;
4294967295 (232−1) and −1 are the same integer here. But you have to decide on a sign
when you convert such an integer from or to a JavaScript number, which has an explicit
sign as opposed to an implicit one. Therefore, signed 32-bit integers are partitioned into
two groups:

• Highest bit is 0: number is zero or positive.
• Highest bit is 1: number is negative.

The highest bit is often called the sign bit. Accordingly, 4294967295, interpreted as a
signed 32-bit integer, becomes −1 when converted to a JavaScript number:

> ToInt32(4294967295)
-1

ToInt32() is explained in “32-bit Integers via Bitwise Operators” on page 119.

Only the unsigned right shift operator (>>>) works with unsigned 32-
bit integers; all other bitwise operators work with signed 32-bit
integers.

Inputting and outputting binary numbers
In the following examples, we work with binary numbers via the following two
operations:

• parseInt(str, 2) (see “Integers via parseInt()” on page 120) parses a string str
in binary notation (base 2). For example:

Bitwise Operators | 125

> parseInt('110', 2)
6

• num.toString(2) (see “Number.prototype.toString(radix?)” on page 129) converts
the number num to a string in binary notation. For example:

> 6..toString(2)
'110'

Bitwise Not Operator
~number computes the ones’ complement of number:

> (~parseInt('11111111111111111111111111111111', 2)).toString(2)
'0'

Binary Bitwise Operators
JavaScript has three binary bitwise operators:

• number1 & number2 (bitwise And):
> (parseInt('11001010', 2) & parseInt('1111', 2)).toString(2)
'1010'

• number1 | number2 (bitwise Or):
> (parseInt('11001010', 2) | parseInt('1111', 2)).toString(2)
'11001111'

• number1 ^ number2 (bitwise Xor; eXclusive Or):
> (parseInt('11001010', 2) ^ parseInt('1111', 2)).toString(2)
'11000101'

There are two ways to intuitively understand binary bitwise operators:
One boolean operation per bit

In the following formulas, ni means bit i of number n interpreted as a boolean (0
is false, 1 is true). For example, 20 is false; 21 is true:

• And: resulti = number1i && number2i
• Or: resulti = number1i || number2i
• Xor: resulti = number1i ^^ number2i

The operator ^^ does not exist. If it did, it would work like this (the result is
true if exactly one of the operands is true):

x ^^ y === (x && !y) || (!x && y)

126 | Chapter 11: Numbers

Changing bits of number1 via number2
• And: Keeps only those bits of number1 that are set in number2. This operation

is also called masking, with number2 being the mask.
• Or: Sets all bits of number1 that are set in number2 and keeps all other bits

unchanged.
• Xor: Inverts all bits of number1 that are set in number2 and keeps all other bits

unchanged.

Bitwise Shift Operators
JavaScript has three bitwise shift operators:

• number << digitCount (left shift):
> (parseInt('1', 2) << 1).toString(2)
'10'

• number >> digitCount (signed right shift):
The 32-bit binary number is interpreted as signed (see the preceding section). When
shifting right, the sign is preserved:

> (parseInt('11111111111111111111111111111110', 2) >> 1).toString(2)
'-1'

We have right-shifted –2. The result, –1, is equivalent to a 32-bit integer whose digits
are all 1 (the twos’ complement of 1). In other words, a signed right shift by one
digit divides both negative and positive integers by two.

• number >>> digitCount` (unsigned right shift):
> (parseInt('11100', 2) >>> 1).toString(2)
'1110'

As you can see, this operator shifts in zeros from the left.

The Function Number
The function Number can be invoked in two ways:
Number(value)

As a normal function, it converts value to a primitive number (see “Converting to
Number” on page 104):

> Number('123')
123
> typeof Number(3) // no change
'number'

The Function Number | 127

new Number(num)

As a constructor, it creates a new instance of Number (see “Wrapper Objects for
Primitives” on page 75), an object that wraps num (after converting it to a number).
For example:

> typeof new Number(3)
'object'

The former invocation is the common one.

Number Constructor Properties
The object Number has the following properties:
Number.MAX_VALUE

The largest positive number that can be represented. Internally, all digits of its frac‐
tion are ones and the exponent is maximal, at 1023. If you try to increment the
exponent by multiplying it by two, the result is the error value Infinity (see “In‐
finity” on page 107):

> Number.MAX_VALUE
1.7976931348623157e+308
> Number.MAX_VALUE * 2
Infinity

Number.MIN_VALUE

The smallest representable positive number (greater than zero, a tiny fraction):

> Number.MIN_VALUE
5e-324

Number.NaN

The same value as the global NaN.

Number.NEGATIVE_INFINITY

The same value as -Infinity:

> Number.NEGATIVE_INFINITY === -Infinity
true

Number.POSITIVE_INFINITY

The same value as Infinity:

> Number.POSITIVE_INFINITY === Infinity
true

Number Prototype Methods
All methods of primitive numbers are stored in Number.prototype (see “Primitives
Borrow Their Methods from Wrappers” on page 77).

128 | Chapter 11: Numbers

Number.prototype.toFixed(fractionDigits?)
Number.prototype.toFixed(fractionDigits?) returns an exponent-free representa‐
tion of the number, rounded to fractionDigits digits. If the parameter is omitted, the
value 0 is used:

> 0.0000003.toFixed(10)
'0.0000003000'
> 0.0000003.toString()
'3e-7'

If the number is greater than or equal to 1021, then this method works the same as
toString(). You get a number in exponential notation:

> 1234567890123456789012..toFixed()
'1.2345678901234568e+21'
> 1234567890123456789012..toString()
'1.2345678901234568e+21'

Number.prototype.toPrecision(precision?)
Number.prototype.toPrecision(precision?) prunes the mantissa to precision dig‐
its before using a conversion algorithm similar to toString(). If no precision is given,
toString() is used directly:

> 1234..toPrecision(3)
'1.23e+3'

> 1234..toPrecision(4)
'1234'

> 1234..toPrecision(5)
'1234.0'

> 1.234.toPrecision(3)
'1.23'

You need the exponential notation to display 1234 with a precision of three digits.

Number.prototype.toString(radix?)
For Number.prototype.toString(radix?), the parameter radix indicates the base of
the system in which the number is to be displayed. The most common radices are 10
(decimal), 2 (binary), and 16 (hexadecimal):

> 15..toString(2)
'1111'
> 65535..toString(16)
'ffff'

Number Prototype Methods | 129

The radix must be at least 2 and at most 36. Any radix greater than 10 leads to alphabetical
characters being used as digits, which explains the maximum 36, as the Latin alphabet
has 26 characters:

> 1234567890..toString(36)
'kf12oi'

The global function parseInt (see “Integers via parseInt()” on page 120) allows you to
convert such notations back to a number:

> parseInt('kf12oi', 36)
1234567890

Decimal exponential notation

For the radix 10, toString() uses exponential notation (with a single digit before the
decimal point) in two cases. First, if there are more than 21 digits before the decimal
point of a number:

> 1234567890123456789012
1.2345678901234568e+21
> 123456789012345678901
123456789012345680000

Second, if a number starts with 0. followed by more than five zeros and a non-zero
digit:

> 0.0000003
3e-7
> 0.000003
0.000003

In all other cases, a fixed notation is used.

Number.prototype.toExponential(fractionDigits?)
Number.prototype.toExponential(fractionDigits?) forces a number to be ex‐
pressed in exponential notation. fractionDigits is a number between 0 and 20 that
determines how many digits should be shown after the decimal point. If it is omitted,
then as many significant digits are included as necessary to uniquely specify the number.

In this example, we force more precision when toString() would also use exponential
notation. Results are mixed, because we reach the limits of the precision that can be
achieved when converting binary numbers to a decimal notation:

> 1234567890123456789012..toString()
'1.2345678901234568e+21'

> 1234567890123456789012..toExponential(20)
'1.23456789012345677414e+21'

130 | Chapter 11: Numbers

In this example, the magnitude of the number is not large enough for an exponent being
displayed by toString(). However, toExponential() does display an exponent:

> 1234..toString()
'1234'

> 1234..toExponential(5)
'1.23400e+3'

> 1234..toExponential()
'1.234e+3'

In this example, we get exponential notation when the fraction is not small enough:

> 0.003.toString()
'0.003'

> 0.003.toExponential(4)
'3.0000e-3'

> 0.003.toExponential()
'3e-3'

Functions for Numbers
The following functions operate on numbers:
isFinite(number)

Checks whether number is an actual number (neither Infinity nor NaN). For details,
see “Checking for Infinity” on page 108.

isNaN(number)

Returns true if number is NaN. For details, see “Pitfall: checking whether a value is
NaN” on page 107.

parseFloat(str)

Turns str into a floating-point number. For details, see “parseFloat()” on page 105.

parseInt(str, radix?)

Parses str as an integer whose base is radix (2–36). For details, see “Integers via
parseInt()” on page 120.

Functions for Numbers | 131

Sources for This Chapter
I referred to the following sources while writing this chapter:

• “IEEE Standard 754 Floating Point Numbers” by Steve Hollasch
• “Data Types and Scaling (Fixed-Point Blockset)” in the MATLAB documentation
• “IEEE floating point” on Wikipedia

132 | Chapter 11: Numbers

http://bit.ly/1oOc43P
http://bit.ly/1oOc83t
http://en.wikipedia.org/wiki/IEEE_754

CHAPTER 12

Strings

Strings are immutable sequences of JavaScript characters. Each such character is a 16-
bit UTF-16 code unit. That means that a single Unicode character is represented by
either one or two JavaScript characters. You mainly need to worry about the two-
character case whenever you are counting characters or splitting strings (see Chap‐
ter 24).

String Literals
Both single and double quotes can be used to delimit string literals:

'He said: "Hello"'
"He said: \"Hello\""

'Everyone\'s a winner'
"Everyone's a winner"

Thus, you are free to use either kind of quote. There are several considerations, though:

• The most common style in the community is to use double quotes for HTML and
single quotes for JavaScript.

• On the other hand, double quotes are used exclusively for strings in some languages
(e.g., C and Java). Therefore, it may make sense to use them in a multilanguage code
base.

• For JSON (discussed in Chapter 22), you must use double quotes.

Your code will look cleaner if you quote consistently. But sometimes, a different quote
means that you don’t have to escape, which can justify your being less consistent (e.g.,
you may normally use single quotes, but temporarily switch to double quotes to write
the last one of the preceding examples).

133

Escaping in String Literals
Most characters in string literals simply represent themselves. The backslash is used for
escaping and enables several special features:
Line continuations

You can spread a string over multiple lines by escaping the end of the line (the line-
terminating character, the line terminator) with a backslash:

var str = 'written \
over \
multiple \
lines';
console.log(str === 'written over multiple lines'); // true

An alternative is to use the plus operator to concatenate:

var str = 'written ' +
 'over ' +
 'multiple ' +
 'lines';

Character escape sequences
These sequences start with a backslash:

• Control characters: \b is a backspace, \f is a form feed, \n is a line feed (new‐
line), \r is a carriage return, \t is a horizontal tab, and \v is a vertical tab.

• Escaped characters that represent themselves: \' is a single quote, \" is a double
quote, and \\ is a backslash. All characters except b f n r t v x u and decimal
digits represent themselves, too. Here are two examples:

> '\"'
'"'
> '\q'
'q'

NUL character (Unicode code point 0)
This character is represented by \0.

Hexadecimal escape sequences
\xHH (HH are two hexadecimal digits) specifies a character via an ASCII code. For
example:

> '\x4D'
'M'

Unicode escape sequences
\uHHHH (HHHH are four hexadecimal digits) specifies a UTF-16 code unit (see Chap‐
ter 24). Here are two examples:

134 | Chapter 12: Strings

1. Strictly speaking, a JavaScript string consists of a sequence of UTF-16 code units. That is, JavaScript characters
are Unicode code units (see Chapter 24).

> '\u004D'
'M'
> '\u03C0'
'π'

Character Access
There are two operations that return the nth character of a string.1 Note that JavaScript
does not have a special data type for characters; these operations return strings:

> 'abc'.charAt(1)
'b'
> 'abc'[1]
'b'

Some older browsers don’t support the array-like access to characters via square
brackets.

Converting to String
Values are converted to a string as follows:

Value Result

undefined 'undefined'

null 'null'

A boolean false → 'false'

true → 'true'

A number The number as a string (e.g., 3.141 → '3.141')

A string Same as input (nothing to convert)

An object Call ToPrimitive(value, String) (see “Algorithm: ToPrimitive()—Converting a Value
to a Primitive” on page 79) and convert the resulting primitive.

Manually Converting to String
The three most common ways to convert any value to a string are:

String(value) (Invoked as a function, not as a constructor)

''+value

value.toString() (Does not work for undefined and null!)

I prefer String(), because it is more descriptive. Here are some examples:

Character Access | 135

> String(false)
'false'
> String(7.35)
'7.35'
> String({ first: 'John', last: 'Doe' })
'[object Object]'
> String(['a', 'b', 'c'])
'a,b,c'

Note that for displaying data, JSON.stringify() (“JSON.stringify(value, replacer?,
space?)” on page 337) often works better than the canonical conversion to string:

> console.log(JSON.stringify({ first: 'John', last: 'Doe' }))
{"first":"John","last":"Doe"}
> console.log(JSON.stringify(['a', 'b', 'c']))
["a","b","c"]

Naturally, you have to be aware of the limitations of JSON.stringify()—it doesn’t
always show everything. For example, it hides properties whose values it can’t handle
(functions and more!). On the plus side, its output can be parsed by eval() and it can
display deeply nested data as nicely formatted trees.

Pitfall: conversion is not invertible
Given how often JavaScript automatically converts, it is a shame that the conversion
isn’t always invertible, especially with regard to booleans:

> String(false)
'false'
> Boolean('false')
true

For undefined and null, we face similar problems.

Comparing Strings
There are two ways of comparing strings. First, you can use the comparison operators:
<, >, ===, <=, >=. They have the following drawbacks:

• They’re case-sensitive:
> 'B' > 'A' // ok
true
> 'B' > 'a' // should be true
false

• They don’t handle umlauts and accents well:
> 'ä' < 'b' // should be true
false

136 | Chapter 12: Strings

> 'é' < 'f' // should be true
false

Second, you can use String.prototype.localeCompare(other), which tends to fare
better, but isn’t always supported (consult “Search and Compare” on page 141 for details).
The following is an interaction in Firefox’s console:

> 'B'.localeCompare('A')
2
> 'B'.localeCompare('a')
2

> 'ä'.localeCompare('b')
-2
> 'é'.localeCompare('f')
-2

A result less than zero means that the receiver is “smaller” than the argument. A result
greater than zero means that the receiver is “larger” than the argument.

Concatenating Strings
There are two main approaches for concatenating strings.

Concatenation: The Plus (+) Operator
The operator + does string concatenation as soon as one of its operands is a string. If
you want to collect string pieces in a variable, the compound assignment operator += is
useful:

> var str = '';
> str += 'Say hello ';
> str += 7;
> str += ' times fast!';
> str
'Say hello 7 times fast!'

Concatenation: Joining an Array of String Fragments
It may seem that the previous approach creates a new string whenever a piece is added
to str. Older JavaScript engines do it that way, which means that you can improve the
performance of string concatenation by collecting all the pieces in an array first and
joining them as a last step:

> var arr = [];

> arr.push('Say hello ');
> arr.push(7);
> arr.push(' times fast');

Concatenating Strings | 137

> arr.join('')
'Say hello 7 times fast'

However, newer engines optimize string concatenation via + and use a similar method
internally. Therefore, the plus operator is faster on those engines.

The Function String
The function String can be invoked in two ways:
String(value)

As a normal function, it converts value to a primitive string (see “Converting to
String” on page 135):

> String(123)
'123'
> typeof String('abc') // no change
'string'

new String(str)

As a constructor, it creates a new instance of String (see “Wrapper Objects for
Primitives” on page 75), an object that wraps str (nonstrings are coerced to string).
For example:

> typeof new String('abc')
'object'

The former invocation is the common one.

String Constructor Method
String.fromCharCode(codeUnit1, codeUnit2, ...) produces a string whose char‐
acters are the UTF-16 code units specified by the 16-bit unsigned integers codeUnit1,
codeUnit2, and so on. For example:

> String.fromCharCode(97, 98, 99)
'abc'

If you want to turn an array of numbers into a string, you can do so via apply() (see
“func.apply(thisValue, argArray)” on page 170):

> String.fromCharCode.apply(null, [97, 98, 99])
'abc'

The inverse of String.fromCharCode() is String.prototype.charCodeAt().

138 | Chapter 12: Strings

String Instance Property length
The length property indicates the number of JavaScript characters in the string and is
immutable:

> 'abc'.length
3

String Prototype Methods
All methods of primitive strings are stored in String.prototype (refer back to “Prim‐
itives Borrow Their Methods from Wrappers” on page 77). Next, I describe how they
work for primitive strings, not for instances of String.

Extract Substrings
The following methods extract substrings from the receiver:
String.prototype.charAt(pos)

Returns a string with the character at position pos. For example:

> 'abc'.charAt(1)
'b'

The following two expressions return the same result, but some older JavaScript
engines support only charAt() for accessing characters:

str.charAt(n)
str[n]

String.prototype.charCodeAt(pos)

Returns the code (a 16-bit unsigned integer) of the JavaScript character (a UTF-16
code unit; see Chapter 24) at position pos.

This is how you create an array of character codes:

> 'abc'.split('').map(function (x) { return x.charCodeAt(0) })
[97, 98, 99]

The inverse of charCodeAt() is String.fromCharCode().

String.prototype.slice(start, end?)

Returns the substring starting at position start up to and excluding position end.
Both of the two parameters can be negative, and then the length of the string is
added to them:

> 'abc'.slice(2)
'c'
> 'abc'.slice(1, 2)
'b'

String Instance Property length | 139

> 'abc'.slice(-2)
'bc'

String.prototype.substring(start, end?)

Should be avoided in favor of slice(), which is similar, but can handle negative
positions and is implemented more consistently across browsers.

String.prototype.split(separator?, limit?)

Extracts the substrings of the receiver that are delimited by separator and returns
them in an array. The method has two parameters:

• separator: Either a string or a regular expression. If missing, the complete
string is returned, wrapped in an array.

• limit: If given, the returned array contains at most limit elements.

Here are some examples:

> 'a, b,c, d'.split(',') // string
['a', ' b', 'c', ' d']
> 'a, b,c, d'.split(/,/) // simple regular expression
['a', ' b', 'c', ' d']
> 'a, b,c, d'.split(/, */) // more complex regular expression
['a', 'b', 'c', 'd']
> 'a, b,c, d'.split(/, */, 2) // setting a limit
['a', 'b']
> 'test'.split() // no separator provided
['test']

If there is a group, then the matches are also returned as array elements:

> 'a, b , '.split(/(,)/)
['a', ',', ' b ', ',', ' ']
> 'a, b , '.split(/ *(,) */)
['a', ',', 'b', ',', '']

Use '' (empty string) as a separator to produce an array with the characters of a
string:

> 'abc'.split('')
['a', 'b', 'c']

Transform
While the previous section was about extracting substrings, this section is about trans‐
forming a given string into a new one. These methods are typically used as follows:

var str = str.trim();

In other words, the original string is discarded after it has been (nondestructively)
transformed:

140 | Chapter 12: Strings

String.prototype.trim()

Removes all whitespace from the beginning and the end of the string:

> '\r\nabc \t'.trim()
'abc'

String.prototype.concat(str1?, str2?, ...)

Returns the concatenation of the receiver and str1, str2, etc.:

> 'hello'.concat(' ', 'world', '!')
'hello world!'

String.prototype.toLowerCase()

Creates a new string with all of the original string’s characters converted to
lowercase:

> 'MJÖLNIR'.toLowerCase()
'mjölnir'

String.prototype.toLocaleLowerCase()

Works the same as toLowerCase(), but respects the rules of the current locale.
According to the ECMAScript spec: “There will only be a difference in the few cases
(such as Turkish) where the rules for that language conflict with the regular Unicode
case mappings.”

String.prototype.toUpperCase()

Creates a new string with all of the original string’s characters converted to
uppercase:

> 'mjölnir'.toUpperCase()
'MJÖLNIR'

String.prototype.toLocaleUpperCase()

Works the same as toUpperCase(), but respects the rules of the current locale.

Search and Compare
The following methods are used for searching and comparing strings:
String.prototype.indexOf(searchString, position?)

Searches for searchString starting at position (the default is 0). It returns the
position where searchString has been found or –1 if it can’t be found:

> 'aXaX'.indexOf('X')
1
> 'aXaX'.indexOf('X', 2)
3

Note that when it comes to finding text inside a string, a regular expression works
just as well. For example, the following two expressions are equivalent:

String Prototype Methods | 141

str.indexOf('abc') >= 0
/abc/.test(str)

String.prototype.lastIndexOf(searchString, position?)

Searches for searchString, starting at position (the default is the end), back‐
ward. It returns the position where searchString has been found or –1 if it can’t
be found:

> 'aXaX'.lastIndexOf('X')
3
> 'aXaX'.lastIndexOf('X', 2)
1

String.prototype.localeCompare(other)

Performs a locale-sensitive comparison of the string with other. It returns a
number:

• < 0 if the string comes before other
• = 0 if the string is equivalent to other
• > 0 if the string comes after other

For example:

> 'apple'.localeCompare('banana')
-2
> 'apple'.localeCompare('apple')
0

Not all JavaScript engines implement this method properly.
Some just base it on the comparison operators. However, the
ECMAScript Internationalization API (see “The ECMAScript
Internationalization API” on page 406) does provide a Unicode-
aware implementation. That is, if that API is available in an
engine, localeCompare() will work.
If it is supported, localeCompare() is a better choice for com‐
paring strings than the comparison operators. Consult “Com‐
paring Strings” on page 136 for more information.

Test, Match, and Replace with Regular Expressions
The following methods work with regular expressions:
String.prototype.search(regexp) (more thoroughly explained in “String.proto‐
type.search: At What Index Is There a Match?” on page 305)

Returns the first index at which regexp matches in the receiver (or –1 if it doesn’t):

> '-yy-xxx-y-'.search(/x+/)
4

142 | Chapter 12: Strings

String.prototype.match(regexp) (more thoroughly explained in “String.proto‐
type.match: Capture Groups or Return All Matching Substrings” on page 307)

Matches the given regular expression against the receiver. It returns a match object
for the first match if the flag /g of regexp is not set:

> '-abb--aaab-'.match(/(a+)b/)
['ab',
 'a',
 index: 1,
 input: '-abb--aaab-']

If the flag /g is set, then all complete matches (group 0) are returned in an array:

> '-abb--aaab-'.match(/(a+)b/g)
['ab', 'aaab']

String.prototype.replace(search, replacement) (more thoroughly explained in
“String.prototype.replace: Search and Replace” on page 307)

Searches for search and replaces it with replacement. search can be a string or a
regular expression, and replacement can be a string or a function. Unless you use
a regular expression as search whose flag /g is set, only the first occurrence will be
replaced:

> 'iixxxixx'.replace('i', 'o')
'oixxxixx'
> 'iixxxixx'.replace(/i/, 'o')
'oixxxixx'
> 'iixxxixx'.replace(/i/g, 'o')
'ooxxxoxx'

A dollar sign ($) in a replacement string allows you to refer to the complete match
or a captured group:

> 'iixxxixx'.replace(/i+/g, '($&)') // complete match
'(ii)xxx(i)xx'
> 'iixxxixx'.replace(/(i+)/g, '($1)') // group 1
'(ii)xxx(i)xx'

You can also compute a replacement via a function:

> function repl(all) { return '('+all.toUpperCase()+')' }
> 'axbbyyxaa'.repl(/a+|b+/g, replacement)
'(A)x(BB)yyx(AA)'

String Prototype Methods | 143

CHAPTER 13

Statements

This chapter covers JavaScript’s statements: variable declarations, loops, conditionals,
and others.

Declaring and Assigning Variables
var is used to declare a variable, which creates the variable and enables you to work with
it. The equals operator (=) is used to assign a value to it:

var foo;
foo = 'abc';

var also lets you combine the preceding two statements into a single one:

var foo = 'abc';

Finally, you can also combine multiple var statements into one:

var x, y=123, z;

Read more about how variables work in Chapter 16.

The Bodies of Loops and Conditionals
Compound statements such as loops and conditionals have one or more “bodies” em‐
bedded—for example, the while loop:

while («condition»)
 «statement»

For the body «statement», you have a choice. You can either use a single statement:

while (x >= 0) x--;

or you can use a block (which counts as a single statement):

145

while (x > 0) {
 x--;
}

You need to use a block if you want the body to comprise multiple statements. Unless
the complete compound statement can be written in a single line, I recommend using
a block.

Loops
This section explores JavaScript’s loop statements.

Mechanisms to Be Used with Loops
The following mechanisms can be used with all loops:
break ⟦«label»⟧

Exit from a loop.

continue ⟦«label»⟧

Stop the current loop iteration, and immediately continue with the next one.

Labels
A label is an identifier followed by a colon. In front of a loop, a label allows you to
break or continue that loop even from a loop nested inside of it. In front of a block,
you can break out of that block. In both cases, the name of the label becomes an
argument of break or continue. Here’s an example of breaking out of a block:

function findEvenNumber(arr) {
 loop: { // label
 for (var i=0; i<arr.length; i++) {
 var elem = arr[i];
 if ((elem % 2) === 0) {
 console.log('Found: ' + elem);
 break loop;
 }
 }
 console.log('No even number found.');
 }
 console.log('DONE');
}

while
A while loop:

while («condition»)
 «statement»

146 | Chapter 13: Statements

executes statement as long as condition holds. If condition is always true, you get
an infinite loop:

while (true) { ... }

In the following example, we remove all elements of an array and log them to the console:

var arr = ['a', 'b', 'c'];
while (arr.length > 0) {
 console.log(arr.shift());
}

Here is the output:

a
b
c

do-while
A do-while loop:

do «statement»
while («condition»);

executes statement at least once and then as long as condition holds. For example:

var line;
do {
 line = prompt('Enter a number:');
} while (!/^[0-9]+$/.test(line));

for
In a for loop:

for (⟦«init»⟧; ⟦«condition»⟧; ⟦«post_iteration»⟧)
 «statement»

init is executed once before the loop, which continues as long as condition is true.
You can use var in init to declare variables, but the scope of those variables is always
the complete surrounding function. post_iteration is executed after each iteration of
the loop. Taking all of this into consideration, the preceding loop is equivalent to the
following while loop:

«init»;
while («condition») {
 «statement»
 «post_iteration»;
}

The following example is the traditional way of iterating over arrays (other possibilities
are described in “Best Practices: Iterating over Arrays” on page 295):

Loops | 147

var arr = ['a', 'b', 'c'];
for (var i=0; i<arr.length; i++) {
 console.log(arr[i]);
}

A for loop becomes infinite if you omit all parts of the head:

for (;;) {
 ...
}

for-in
A for-in loop:

for («variable» in «object»)
 «statement»

iterates over all property keys of object, including inherited ones. However, properties
that are marked as not enumerable are ignored (see “Property Attributes and Property
Descriptors” on page 222). The following rules apply to for-in loops:

• You can use var to declare variables, but the scope of those variables is always the
complete surrounding function.

• Properties can be deleted during iteration.

Best practice: don’t use for-in for arrays

Don’t use for-in to iterate over arrays. First, it iterates over indices, not over values:

> var arr = ['a', 'b', 'c'];
> for (var key in arr) { console.log(key); }
0
1
2

Second, it also iterates over all (nonindex) property keys. The following example illus‐
trates what happens when you add a property foo to an array:

> var arr = ['a', 'b', 'c'];
> arr.foo = true;
> for (var key in arr) { console.log(key); }
0
1
2
foo

Thus, you are better off with a normal for loop or the array method forEach() (see
“Best Practices: Iterating over Arrays” on page 295).

148 | Chapter 13: Statements

Best practice: be careful with for-in for objects

The for-in loop iterates over all (enumerable) properties, including inherited ones.
That may not be what you want. Let’s use the following constructor to illustrate the
problem:

function Person(name) {
 this.name = name;
}
Person.prototype.describe = function () {
 return 'Name: '+this.name;
};

Instances of Person inherit the property describe from Person.prototype, which is
seen by for-in:

var person = new Person('Jane');
for (var key in person) {
 console.log(key);
}

Here is the output:

name
describe

Normally, the best way to use for-in is to skip inherited properties via hasOwnProper
ty():

for (var key in person) {
 if (person.hasOwnProperty(key)) {
 console.log(key);
 }
}

And here is the output:

name

There is one last caveat: person may have a property hasOwnProperty, which would
prevent the check from working. To be safe, you have to refer to the generic method
(see “Generic Methods: Borrowing Methods from Prototypes” on page 260) Object.pro
totype.hasOwnProperty directly:

for (var key in person) {
 if (Object.prototype.hasOwnProperty.call(person, key)) {
 console.log(key);
 }
}

There are other, more comfortable, means for iterating over property keys, which are
described in “Best Practices: Iterating over Own Properties” on page 220.

Loops | 149

for each-in
This loop exists only on Firefox. Don’t use it.

Conditionals
This section covers JavaScript’s conditional statements.

if-then-else
In an if-then-else statement:

if («condition»)
 «then_branch»
⟦else
 «else_branch»⟧

then_branch and else_branch can be either single statements or blocks of statements
(see “The Bodies of Loops and Conditionals” on page 145).

Chaining if statements

You can chain several if statements:

if (s1 > s2) {
 return 1;
} else if (s1 < s2) {
 return -1;
} else {
 return 0;
}

Note that in the preceding example, all the else branches are single statements (if
statements). Programming languages that only allow blocks for else branches need
some kind of else-if branch for chaining.

Pitfall: dangling else

The else branch of the following example is called dangling, because it is not clear to
which of the two if statements it belongs:

if («cond1») if («cond2») «stmt1» else «stmt2»

Here’s a simple rule: use braces. The preceding snippet is equivalent to the following
code (where it is obvious who the else belongs to):

if («cond1») {
 if («cond2») {
 «stmt1»
 } else {
 «stmt2»

150 | Chapter 13: Statements

 }
}

switch
A switch statement:

switch («expression») {
 case «label1_1»:
 case «label1_2»:
 ...
 «statements1»
 ⟦break;⟧
 case «label2_1»:
 case «label2_2»:
 ...
 «statements2»
 ⟦break;⟧
 ...
 ⟦default:
 «statements_default»
 ⟦break;⟧⟧
}

evaluates expression and then jumps to the case clause whose label matches the re‐
sult. If no label matches, switch jumps to the default clause if it exists or does nothing
otherwise.

The “operand” after case can be any expression; it is compared via === with the pa‐
rameter of switch.

If you don’t finish a clause with a terminating statement, execution continues into the
next clause. The most frequently used terminating statement is break. But return and
throw also work, even though they normally leave more than just the switch statement.

The following example illustrates that you don’t need to break if you use throw or
return:

function divide(dividend, divisor) {
 switch (divisor) {
 case 0:
 throw 'Division by zero';
 default:
 return dividend / divisor;
 }
}

In this example, there is no default clause. Therefore, nothing happens if fruit matches
none of the case labels:

function useFruit(fruit) {
 switch (fruit) {

Conditionals | 151

 case 'apple':
 makeCider();
 break;
 case 'grape':
 makeWine();
 break;
 // neither apple nor grape: do nothing
 }
}

Here, there are multiple case labels in a row:

function categorizeColor(color) {
 var result;
 switch (color) {
 case 'red':
 case 'yellow':
 case 'blue':
 result = 'Primary color: '+color;
 break;
 case 'or':
 case 'green':
 case 'violet':
 result = 'Secondary color: '+color;
 break;
 case 'black':
 case 'white':
 result = 'Not a color';
 break;
 default:
 throw 'Illegal argument: '+color;
 }
 console.log(result);
}

This example demonstrates that the value after case can be an arbitrary expression:

function compare(x, y) {
 switch (true) {
 case x < y:
 return -1;
 case x === y:
 return 0;
 default:
 return 1;
 }
}

The preceding switch statement looks for a match for its parameter true by going
through the case clauses. If one of the case expressions evaluates to true, the corre‐
sponding case body is executed. Therefore, the preceding code is equivalent to the
following if statement:

152 | Chapter 13: Statements

function compare(x, y) {
 if (x < y) {
 return -1;
 } else if (x === y) {
 return 0;
 } else {
 return 1;
 }
}

You normally should prefer the latter solution; it is more self-explanatory.

The with Statement
This section explains how the with statement works in JavaScript and why its use is
discouraged.

Syntax and Semantics
The syntax of the with statement is as follows:

with («object»)
 «statement»

It turns the properties of object into local variables for statement. For example:

var obj = { first: 'John' };
with (obj) {
 console.log('Hello '+first); // Hello John
}

Its intended use is to avoid redundancy when accessing an object several times. The
following is an example of code with redundancies:

foo.bar.baz.bla = 123;
foo.bar.baz.yadda = 'abc';

with makes this shorter:

with (foo.bar.baz) {
 bla = 123;
 yadda = 'abc';
}

The with Statement Is Deprecated
The use of the with statement is generally discouraged (the next section explains why).
For example, it is forbidden in strict mode:

> function foo() { 'use strict'; with ({}); }
SyntaxError: strict mode code may not contain 'with' statements

The with Statement | 153

Techniques for avoiding the with statement
Avoid code like this:

// Don't do this:
with (foo.bar.baz) {
 console.log('Hello '+first+' '+last);
}

Instead, use a temporary variable with a short name:

var b = foo.bar.baz;
console.log('Hello '+b.first+' '+b.last);

If you don’t want to expose the temporary variable b to the current scope, you can use
an IIFE (see “Introducing a New Scope via an IIFE” on page 183):

(function () {
 var b = foo.bar.baz;
 console.log('Hello '+b.first+' '+b.last);
}());

You also have the option of making the object that you want to access a parameter of
the IIFE:

(function (b) {
 console.log('Hello '+b.first+' '+b.last);
}(foo.bar.baz));

The Rationale for the Deprecation
To understand why with is deprecated, look at the following example and notice how
the function’s argument completely changes how it works:

function logit(msg, opts) {
 with (opts) {
 console.log('msg: '+msg); // (1)
 }
}

If opts has a property msg, then the statement in line (1) doesn’t access the parameter
msg anymore. It accesses the property:

> logit('hello', {}) // parameter msg
msg: hello
> logit('hello', { msg: 'world' }) // property opts.msg
msg: world

There are three problems that the with statement causes:
Performance suffers

Variable lookup becomes slower, because an object is temporarily inserted into the
scope chain.

154 | Chapter 13: Statements

Code becomes less predictable
You cannot determine what an identifier refers to by looking at its syntactic sur‐
roundings (its lexical context). According to Brendan Eich, that was the actual rea‐
son why with was deprecated, not performance considerations:

with violates lexical scope, making program analysis (e.g. for security) hard to
infeasible.

Minifiers (described in Chapter 32) can’t shorten variable names
Inside a with statement, you can’t statically determine whether a name refers to a
variable or a property. Only variables can be renamed by minifiers.

Here is an example of with making code brittle:

function foo(someArray) {
 var values = ...; // (1)
 with (someArray) {
 values.someMethod(...); // (2)
 ...
 }
}
foo(myData); // (3)

You can prevent the function call in line (3) from working, even if you don’t have access
to the array myData.

How? By adding a property values to Array.prototype. For example:

Array.prototype.values = function () {
 ...
};

Now the code in line (2) calls someArray.values.someMethod() instead of values.some
Method(). The reason is that, inside the with statement, values now refers to someAr
ray.values and not the local variable from line (1) anymore.

This is not just a thought experiment: the array method values() was added to Firefox
and broke the TYPO3 content management system. Brandon Benvie figured out what
went wrong.

The debugger Statement
The syntax for the debugger statement is as follows:

debugger;

If a debugger is active, this statement functions as a breakpoint; if not, it has no ob‐
servable effect.

The debugger Statement | 155

http://bit.ly/1jCrTKj
http://mzl.la/1jCrXti
http://mzl.la/1jCrXti

CHAPTER 14

Exception Handling

This chapter describes how JavaScript’s exception handling works. It begins with a gen‐
eral explanation of what exception handling is.

What Is Exception Handling?
In exception handling, you often group statements that are tightly coupled. If, while you
are executing those statements, one of them causes an error, then it makes no sense to
continue with the remaining statements. Instead, you try to recover from the error as
gracefully as you can. This is loosely reminiscent of transactions (but without the
atomicity).

Let’s look at code without exception handling:

function processFiles() {
 var fileNames = collectFileNames();
 var entries = extractAllEntries(fileNames);
 processEntries(entries);
}
function extractAllEntries(fileNames) {
 var allEntries = new Entries();
 fileNames.forEach(function (fileName) {
 var entry = extractOneEntry(fileName);
 allEntries.add(entry); // (1)
 });
}
function extractOneEntry(fileName) {
 var file = openFile(fileName); // (2)
 ...
}
...

What is the best way to react to an error in openFile() at (2)? Clearly, the statement
(1) should not be executed anymore. But we wouldn’t want to abort extractAllEn

157

tries(), either. Instead, it is enough to skip the current file and continue with the next
one. To do that, we add exception handling to the previous code:

function extractAllEntries(fileNames) {
 var allEntries = new Entries();
 fileNames.forEach(function (fileName) {
 try {
 var entry = extractOneEntry(fileName);
 allEntries.add(entry);
 } catch (exception) { // (2)
 errorLog.log('Error in '+fileName, exception);
 }
 });
}
function extractOneEntry(fileName) {
 var file = openFile(fileName);
 ...
}
function openFile(fileName) {
 if (!exists(fileName)) {
 throw new Error('Could not find file '+fileName); // (1)
 }
 ...
}

There are two aspects to exception handling:

1. If there is a problem that can’t be handled meaningfully where it occurs, throw an
exception.

2. Find a place where errors can be handled: catch exceptions.

At (1), the following constructs are active:

 processFile()
 extractAllEntries(...)
 fileNames.forEach(...)
 function (fileName) { ... }
 try { ... } catch (exception) { ... }
 extractOneEntry(...)
 openFile(...)

The throw statement at (1) walks up that tree and leaves all constructs until it encounters
an active try statement. It then invokes that statement’s catch block and passes it the
exception value.

Exception Handling in JavaScript
Exception handling in JavaScript works like in most programming languages: a try
statement groups statements and lets you intercept exceptions in those statements.

158 | Chapter 14: Exception Handling

throw
The syntax of throw is as follows:

throw «value»;

Any JavaScript value can be thrown. For simplicity’s sake, many JavaScript programs
just throw strings:

// Don't do this
if (somethingBadHappened) {
 throw 'Something bad happened';
}

Don’t do this. JavaScript has special constructors for exception objects (see “Error Con‐
structors” on page 161). Use those or subclass them (see Chapter 28). Their advantage is
that JavaScript automatically adds a stack trace (on most engines) and that they have
room for additional context-specific properties. The simplest solution is to use the built-
in constructor Error():

if (somethingBadHappened) {
 throw new Error('Something bad happened');
}

try-catch-finally
The syntax of try-catch-finally looks as follows. try is mandatory, and at least one
of catch and finally must be there, too:

try {
 «try_statements»
}
⟦catch («exceptionVar») {
 «catch_statements»
}⟧
⟦finally {
 «finally_statements»
}⟧

Here’s how it works:

• catch catches any exception that is thrown in try_statements, whether directly
or in functions they invoke. Tip: If you want to distinguish between different kinds
of exceptions, you can use the constructor property to switch over the exceptions’
constructors (see “Use cases for the constructor property” on page 235).

• finally is always executed, no matter what happens in try_statements (or in
functions they invoke). Use it for clean-up operations that should always be per‐
formed, no matter what happens in try_statements:

Exception Handling in JavaScript | 159

var resource = allocateResource();
try {
 ...
} finally {
 resource.deallocate();
}

If one of the try_statements is a return, then the try block is executed afterward
(immediately before leaving the function or method; see the examples that follow).

Examples
Any value can be thrown:

function throwIt(exception) {
 try {
 throw exception;
 } catch (e) {
 console.log('Caught: '+e);
 }
}

Here is the interaction:

> throwIt(3);
Caught: 3
> throwIt('hello');
Caught: hello
> throwIt(new Error('An error happened'));
Caught: Error: An error happened

finally is always executed:

function throwsError() {
 throw new Error('Sorry...');
}
function cleansUp() {
 try {
 throwsError();
 } finally {
 console.log('Performing clean-up');
 }
}

Here is the interaction:

> cleansUp();
Performing clean-up
Error: Sorry...

finally is executed after a return statement:

160 | Chapter 14: Exception Handling

function idLog(x) {
 try {
 console.log(x);
 return 'result';
 } finally {
 console.log("FINALLY");
 }
}

Here is the interaction:

> idLog('arg')
arg
FINALLY
'result'

The return value is queued before executing finally:

var count = 0;
function countUp() {
 try {
 return count;
 } finally {
 count++; // (1)
 }
}

By the time statement (1) is executed, the value of count has already been queued for
returning:

> countUp()
0
> count
1

Error Constructors
ECMAScript standardizes the following error constructors. The descriptions are quoted
from the ECMAScript 5 specification:

• Error is a generic constructor for errors. All other error constructors mentioned
here are subconstructors.

• EvalError “is not currently used within this specification. This object remains for
compatibility with previous editions of this specification.”

• RangeError “indicates a numeric value has exceeded the allowable range.” For
example:

> new Array(-1)
RangeError: Invalid array length

Error Constructors | 161

• ReferenceError “indicates that an invalid reference value has been detected.” Usu‐
ally, this is an unknown variable. For example:

> unknownVariable
ReferenceError: unknownVariable is not defined

• SyntaxError “indicates that a parsing error has occurred”—for example, while
parsing code via eval():

> eval('3 +')
SyntaxError: Unexpected end of file

• TypeError “indicates the actual type of an operand is different than the expected
type.” For example:

> undefined.foo
TypeError: Cannot read property 'foo' of undefined

• URIError “indicates that one of the global URI handling functions was used in a
way that is incompatible with its definition.” For example:

> decodeURI('%2')
URIError: URI malformed

Here are the properties of errors:
message

The error message.

name

The name of the error.

stack

A stack trace. This is nonstandard, but is available on many platforms—for example,
Chrome, Node.js, and Firefox.

Stack Traces
The usual sources of errors are either external (wrong input, missing file, etc.) or internal
(a bug in the program). Especially in the latter case, you will get unexpected exceptions
and need to debug. Often you don’t have a debugger running. For “manual” debugging,
two pieces of information are helpful:

1. Data: What values do variables have?
2. Execution: In what line did the exception happen, and what function calls were

active?

You can put some of the first item (data) into either the message or the properties of an
exception object. The second item (execution) is supported on many JavaScript engines

162 | Chapter 14: Exception Handling

via stack traces, snapshots of the call stack when the exception objects were created. The
following example prints a stack trace:

function catchit() {
 try {
 throwit();
 } catch(e) {
 console.log(e.stack); // print stack trace
 }
}
function throwit() {
 throw new Error('');
}

Here’s the interaction:

> catchit()
Error
 at throwit (~/examples/throwcatch.js:9:11)
 at catchit (~/examples/throwcatch.js:3:9)
 at repl:1:5

Implementing Your Own Error Constructor
If you want stack traces, you need the services of the built-in error constructors. You
can use an existing constructor and attach your own data to it. Or you can create a
subconstructor, whose instances can be distinguished from those of other error con‐
structors via instanceof. Alas, doing so (for built-in constructors) is complicated; see
Chapter 28 to learn how to do it.

Implementing Your Own Error Constructor | 163

CHAPTER 15

Functions

Functions are values that can be called. One way of defining a function is called a function
declaration. For example, the following code defines the function id that has a single
parameter, x:

function id(x) {
 return x;
}

The return statement returns a value from id. You can call a function by mentioning
its name, followed by arguments in parentheses:

> id('hello')
'hello'

If you don’t return anything from a function, undefined is returned (implicitly):

> function f() { }
> f()
undefined

This section showed just one way of defining and one way of calling a function. Others
are described later.

The Three Roles of Functions in JavaScript
Once you have defined a function as just shown, it can play several roles:
Nonmethod function (“normal function”)

You can call a function directly. Then it works as a normal function. Here’s an
example invocation:

id('hello')

By convention, the names of normal functions start with lowercase letters.

165

Constructor
You can invoke a function via the new operator. Then it becomes a constructor, a
factory for objects. Here’s an example invocation:

new Date()

By convention, the names of constructors start with uppercase letters.

Method
You can store a function in a property of an object, which turns it into a method
that you can invoke via that object. Here’s an example invocation:

obj.method()

By convention, the names of methods start with lowercase letters.

Nonmethod functions are explained in this chapter; constructors and methods are ex‐
plained in Chapter 17.

Terminology: “Parameter” Versus “Argument”
The terms parameter and argument are often used interchangeably, because the context
usually makes it clear what the intended meaning is. The following is a rule of thumb
for distinguishing them.

• Parameters are used to define a function. They are also called formal parameters
and formal arguments. In the following example, param1 and param2 are
parameters:

function foo(param1, param2) {
 ...
}

• Arguments are used to invoke a function. They are also called actual parameters
and actual arguments. In the following example, 3 and 7 are arguments:

foo(3, 7);

Defining Functions
This section describes three ways to create a function:

• Via a function expression
• Via a function declaration
• Via the constructor Function()

All functions are objects, instances of Function:

166 | Chapter 15: Functions

function id(x) {
 return x;
}
console.log(id instanceof Function); // true

Therefore, functions get their methods from Function.prototype.

Function Expressions
A function expression produces a value—a function object. For example:

var add = function (x, y) { return x + y };
console.log(add(2, 3)); // 5

The preceding code assigned the result of a function expression to the variable add and
called it via that variable. The value produced by a function expression can be assigned
to a variable (as shown in the last example), passed as an argument to another function,
and more. Because normal function expressions don’t have a name, they are also called
anonymous function expressions.

Named function expressions
You can give a function expression a name. Named function expressions allow a function
expression to refer to itself, which is useful for self-recursion:

var fac = function me(n) {
 if (n > 0) {
 return n * me(n-1);
 } else {
 return 1;
 }
};
console.log(fac(3)); // 6

The name of a named function expression is only accessible inside
the function expression:

var repeat = function me(n, str) {
 return n > 0 ? str + me(n-1, str) : '';
};
console.log(repeat(3, 'Yeah')); // YeahYeahYeah
console.log(me); // ReferenceError: me is not defined

Function Declarations
The following is a function declaration:

function add(x, y) {
 return x + y;
}

Defining Functions | 167

The preceding looks like a function expression, but it is a statement (see “Expressions
Versus Statements” on page 54). It is roughly equivalent to the following code:

var add = function (x, y) {
 return x + y;
};

In other words, a function declaration declares a new variable, creates a function object,
and assigns it to the variable.

The Function Constructor
The constructor Function() evaluates JavaScript code stored in strings. For example,
the following code is equivalent to the previous example:

var add = new Function('x', 'y', 'return x + y');

However, this way of defining a function is slow and keeps code in strings (inaccessible
to tools). Therefore, it is much better to use a function expression or a function decla‐
ration if possible. “Evaluating Code Using new Function()” on page 349 explains Func
tion() in more detail; it works similarly to eval().

Hoisting
Hoisting means “moving to the beginning of a scope.” Function declarations are hoisted
completely, variable declarations only partially.

Function declarations are completely hoisted. That allows you to call a function before
it has been declared:

foo();
function foo() { // this function is hoisted
 ...
}

The reason the preceding code works is that JavaScript engines move the declaration of
foo to the beginning of the scope. They execute the code as if it looked like this:

function foo() {
 ...
}
foo();

var declarations are hoisted, too, but only the declarations, not assignments made with
them. Therefore, using a var declaration and a function expression similarly to the
previous example results in an error:

foo(); // TypeError: undefined is not a function
var foo = function foo() {
 ...
};

168 | Chapter 15: Functions

Only the variable declaration is hoisted. The engine executes the preceding code as:

var foo;
foo(); // TypeError: undefined is not a function
foo = function foo() {
 ...
};

The Name of a Function
Most JavaScript engines support the nonstandard property name for function objects.
Function declarations have it:

> function f1() {}
> f1.name
'f1'

The name of anonymous function expressions is the empty string:

> var f2 = function () {};
> f2.name
''

Named function expressions, however, do have a name:

> var f3 = function myName() {};
> f3.name
'myName'

The name of a function is useful for debugging. Some people always give their function
expressions names for that reason.

Which Is Better: A Function Declaration or a Function
Expression?
Should you prefer a function declaration like the following?

function id(x) {
 return x;
}

Or the equivalent combination of a var declaration plus a function expression?

var id = function (x) {
 return x;
};

They are basically the same, but function declarations have two advantages over func‐
tion expressions:

The Name of a Function | 169

• They are hoisted (see “Hoisting” on page 168), so you can call them before they
appear in the source code.

• They have a name (see “The Name of a Function” on page 169). However, JavaScript
engines are getting better at inferring the names of anonymous function
expressions.

More Control over Function Calls: call(), apply(), and
bind()
call(), apply(), and bind() are methods that all functions have (remember that func‐
tions are objects and therefore have methods). They can supply a value for this when
invoking a method and thus are mainly interesting in an object-oriented context (see
“Calling Functions While Setting this: call(), apply(), and bind()” on page 204). This sec‐
tion explains two use cases for nonmethods.

func.apply(thisValue, argArray)
This method uses the elements of argArray as arguments while calling the function
func; that is, the following two expressions are equivalent:

func(arg1, arg2, arg3)
func.apply(null, [arg1, arg2, arg3])

thisValue is the value that this has while executing func. It is not needed in a non-
object-oriented setting and is thus null here.

apply() is useful whenever a function accepts multiple arguments in an array-like
manner, but not an array.

Thanks to apply(), we can use Math.max() (see “Other Functions” on page 330) to de‐
termine the maximum element of an array:

> Math.max(17, 33, 2)
33
> Math.max.apply(null, [17, 33, 2])
33

func.bind(thisValue, arg1, ..., argN)
This performs partial function application—a new function is created that calls func
with this set to thisValue and the following arguments: first arg1 until argN, and then
the actual arguments of the new function. thisValue is not needed in the following
non-object-oriented setting, which is why it is null.

170 | Chapter 15: Functions

Here, we use bind() to create a new function plus1() that is like add(), but only requires
the parameter y, because x is always 1:

function add(x, y) {
 return x + y;
}
var plus1 = add.bind(null, 1);
console.log(plus1(5)); // 6

In other words, we have created a new function that is equivalent to the following code:

function plus1(y) {
 return add(1, y);
}

Handling Missing or Extra Parameters
JavaScript does not enforce a function’s arity: you can call it with any number of actual
parameters, independent of what formal parameters have been defined. Hence, the
number of actual parameters and formal parameters can differ in two ways:
More actual parameters than formal parameters

The extra parameters are ignored but can be retrieved via the special array-like
variable arguments (discussed momentarily).

Fewer actual parameters than formal parameters
The missing formal parameters all have the value undefined.

All Parameters by Index: The Special Variable arguments
The special variable arguments exists only inside functions (including methods). It is
an array-like object that holds all of the actual parameters of the current function call.
The following code uses it:

function logArgs() {
 for (var i=0; i<arguments.length; i++) {
 console.log(i+'. '+arguments[i]);
 }
}

And here is the interaction:

> logArgs('hello', 'world')
0. hello
1. world

arguments has the following characteristics:

• It is array-like, but not an array. On one hand, it has a property length, and indi‐
vidual parameters can be read and written by index.

Handling Missing or Extra Parameters | 171

On the other hand, arguments is not an array, it is only similar to one. It has none
of the array methods (slice(), forEach(), etc.). Thankfully, you can borrow array
methods or convert arguments to an array, as explained in “Array-Like Objects and
Generic Methods” on page 262.

• It is an object, so all object methods and operators are available. For example, you
can use the in operator (“Iteration and Detection of Properties” on page 217) to check
whether arguments “has” a given index:

> function f() { return 1 in arguments }
> f('a')
false
> f('a', 'b')
true

You can use hasOwnProperty() (“Iteration and Detection of Properties” on page 217)
in a similar manner:

> function g() { return arguments.hasOwnProperty(1) }
> g('a', 'b')
true

Deprecated features of arguments

Strict mode drops several of the more unusual features of arguments:

• arguments.callee refers to the current function. It is mainly used to do self-
recursion in anonymous functions, and is not allowed in strict mode. As a work‐
around, use a named function expression (see “Named function expressions” on
page 167), which can refer to itself via its name.

• In nonstrict mode, arguments stays up-to-date if you change a parameter:
function sloppyFunc(param) {
 param = 'changed';
 return arguments[0];
}
console.log(sloppyFunc('value')); // changed

But this kind of updating is not done in strict mode:
function strictFunc(param) {
 'use strict';
 param = 'changed';
 return arguments[0];
}
console.log(strictFunc('value')); // value

• Strict mode forbids assigning to the variable arguments (e.g., via arguments++).
Assigning to elements and properties is still allowed.

172 | Chapter 15: Functions

Mandatory Parameters, Enforcing a Minimum Arity
There are three ways to find out whether a parameter is missing. First, you can check if
it is undefined:

function foo(mandatory, optional) {
 if (mandatory === undefined) {
 throw new Error('Missing parameter: mandatory');
 }
}

Second, you can interpret the parameter as a boolean. Then undefined is considered
false. However, there is a caveat: several other values are also considered false (see
“Truthy and Falsy Values” on page 98), so the check cannot distinguish between, say, 0
and a missing parameter:

if (!mandatory) {
 throw new Error('Missing parameter: mandatory');
}

Third, you can also check the length of arguments to enforce a minimum arity:

if (arguments.length < 1) {
 throw new Error('You need to provide at least 1 argument');
}

The last approach differs from the other ones:

• The first two approaches don’t distinguish between foo() and foo(undefined). In
both cases, an exception is thrown.

• The third approach throws an exception for foo() and sets optional to unde
fined for foo(undefined).

Optional Parameters
If a parameter is optional, it means that you give it a default value if it is missing. Similarly
to mandatory parameters, there are four alternatives.

First, check for undefined:

function bar(arg1, arg2, optional) {
 if (optional === undefined) {
 optional = 'default value';
 }
}

Second, interpret optional as a boolean:

Handling Missing or Extra Parameters | 173

if (!optional) {
 optional = 'default value';
}

Third, you can use the Or operator || (see “Logical Or (||)” on page 100), which returns
the left operand, if it isn’t falsy. Otherwise, it returns the right operand:

// Or operator: use left operand if it isn't falsy
optional = optional || 'default value';

Fourth, you can check a function’s arity via arguments.length:

if (arguments.length < 3) {
 optional = 'default value';
}

Again, the last approach differs from the other ones:

• The first three approaches don’t distinguish between bar(1, 2) and bar(1, 2,
undefined). In both cases, optional is 'default value'.

• The fourth approach sets optional to 'default value' for bar(1, 2) and leaves
it undefined (i.e., unchanged) for bar(1, 2, undefined).

Another possibility is to hand in optional parameters as named parameters, as properties
of an object literal (see “Named Parameters” on page 176).

Simulating Pass-by-Reference Parameters
In JavaScript, you cannot pass parameters by reference; that is, if you pass a variable to
a function, its value is copied and handed to the function (pass by value). Therefore,
the function can’t change the variable. If you need to do so, you must wrap the value of
the variable in an array.

This example demonstates a function that increments a variable:

function incRef(numberRef) {
 numberRef[0]++;
}
var n = [7];
incRef(n);
console.log(n[0]); // 8

Pitfall: Unexpected Optional Parameters
If you hand a function c as a parameter to another function f, then you have to be aware
of two signatures:

• The signature that f expects its parameter to have. f might provide several param‐
eters, and c can decide how many (if any) of them to use.

174 | Chapter 15: Functions

• The actual signature of c. For example, it might support optional parameters.

If the two diverge, then you can get unexpected results: c could have optional parameters
that you don’t know about and that would interpret additional arguments provided by
f incorrectly.

As an example, consider the array method map() (see “Transformation Methods” on
page 293) whose parameter is normally a function with a single parameter:

> [1, 2, 3].map(function (x) { return x * x })
[1, 4, 9]

One function that you could pass as an argument is parseInt() (see “Integers via par‐
seInt()” on page 120):

> parseInt('1024')
1024

You may (incorrectly) think that map() provides only a single argument and that par
seInt() accepts only a single argument. Then you would be surprised by the following
result:

> ['1', '2', '3'].map(parseInt)
[1, NaN, NaN]

map() expects a function with the following signature:

function (element, index, array)

But parseInt() has the following signature:

parseInt(string, radix?)

Thus, map() not only fills in string (via element), but also radix (via index). That
means that the values of the preceding array are produced as follows:

> parseInt('1', 0)
1
> parseInt('2', 1)
NaN
> parseInt('3', 2)
NaN

To sum up, be careful with functions and methods whose signature you are not sure
about. If you use them, it often makes sense to be explicit about what parameters are
received and what parameters are passed on. That is achieved via a callback:

> ['1', '2', '3'].map(function (x) { return parseInt(x, 10) })
[1, 2, 3]

Handling Missing or Extra Parameters | 175

Named Parameters
When calling a function (or method) in a programming language, you must map the
actual parameters (specified by the caller) to the formal parameters (of a function def‐
inition). There are two common ways to do so:

• Positional parameters are mapped by position. The first actual parameter is mapped
to the first formal parameter, the second actual to the second formal, and so on.

• Named parameters use names (labels) to perform the mapping. Names are associ‐
ated with formal parameters in a function definition and label actual parameters in
a function call. It does not matter in which order named parameters appear, as long
as they are correctly labeled.

Named parameters have two main benefits: they provide descriptions for arguments in
function calls and they work well for optional parameters. I’ll first explain the benefits
and then show you how to simulate named parameters in JavaScript via object literals.

Named Parameters as Descriptions
As soon as a function has more than one parameter, you might get confused about what
each parameter is used for. For example, let’s say you have a function, selectEn
tries(), that returns entries from a database. Given the following function call:

selectEntries(3, 20, 2);

what do these two numbers mean? Python supports named parameters, and they make
it easy to figure out what is going on:

selectEntries(start=3, end=20, step=2) # Python syntax

Optional Named Parameters
Optional positional parameters work well only if they are omitted at the end. Anywhere
else, you have to insert placeholders such as null so that the remaining parameters have
correct positions. With optional named parameters, that is not an issue. You can easily
omit any of them. Here are some examples:

Python syntax
selectEntries(step=2)
selectEntries(end=20, start=3)
selectEntries()

Simulating Named Parameters in JavaScript
JavaScript does not have native support for named parameters like Python and many
other languages. But there is a reasonably elegant simulation: name parameters via an

176 | Chapter 15: Functions

object literal, passed as a single actual parameter. When you use this technique, an
invocation of selectEntries() looks like:

selectEntries({ start: 3, end: 20, step: 2 });

The function receives an object with the properties start, end, and step. You can omit
any of them:

selectEntries({ step: 2 });
selectEntries({ end: 20, start: 3 });
selectEntries();

You could implement selectEntries() as follows:

function selectEntries(options) {
 options = options || {};
 var start = options.start || 0;
 var end = options.end || getDbLength();
 var step = options.step || 1;
 ...
}

You can also combine positional parameters with named parameters. It is customary
for the latter to come last:

selectEntries(posArg1, posArg2, { namedArg1: 7, namedArg2: true });

In JavaScript, the pattern for named parameters shown here is some‐
times called options or option object (e.g., by the jQuery
documentation).

Named Parameters | 177

CHAPTER 16

Variables: Scopes, Environments,
and Closures

This chapter first explains how to use variables and then goes into detail on how they
work (environments, closures, etc.).

Declaring a Variable
In JavaScript, you declare a variable via a var statement before you use it:

var foo;
foo = 3; // OK, has been declared
bar = 5; // not OK, an undeclared variable

You can also combine a declaration with an assignment, to immediately initialize a
variable:

var foo = 3;

The value of an uninitialized variable is undefined:

> var x;
> x
undefined

Background: Static Versus Dynamic
There are two angles from which you can examine the workings of a program:
Statically (or lexically)

You examine the program as it exists in source code, without running it. Given the
following code, we can make the static assertion that function g is nested inside
function f:

179

function f() {
 function g() {
 }
}

The adjective lexical is used synonymously with static, because both pertain to the
lexicon (the words, the source) of the program.

Dynamically
You examine what happens while executing the program (“at runtime”). Given the
following code:

function g() {
}
function f() {
 g();
}

when we call f(), it calls g(). During runtime, g being called by f represents a
dynamic relationship.

Background: The Scope of a Variable
For the rest of this chapter, you should understand the following concepts:
The scope of a variable

The scope of a variable are the locations where it is accessible. For example:

function foo() {
 var x;
}

Here, the direct scope of x is the function foo().

Lexical scoping
Variables in JavaScript are lexically scoped, so the static structure of a program de‐
termines the scope of a variable (it is not influenced by, say, where a function is
called from).

Nested scopes
If scopes are nested within the direct scope of a variable, then the variable is acces‐
sible in all of those scopes:

function foo(arg) {
 function bar() {
 console.log('arg: '+arg);
 }
 bar();
}
console.log(foo('hello')); // arg: hello

180 | Chapter 16: Variables: Scopes, Environments, and Closures

The direct scope of arg is foo(), but it is also accessible in the nested scope
bar(). With regard to nesting, foo() is the outer scope and bar() is the inner scope.

Shadowing
If a scope declares a variable that has the same name as one in a surrounding scope,
access to the outer variable is blocked in the inner scope and all scopes nested inside
it. Changes to the inner variable do not affect the outer variable, which is accessible
again after the inner scope is left:

var x = "global";
function f() {
 var x = "local";
 console.log(x); // local
}
f();
console.log(x); // global

Inside the function f(), the global x is shadowed by a local x.

Variables Are Function-Scoped
Most mainstream languages are block-scoped: variables “live inside” the innermost sur‐
rounding code block. Here is an example from Java:

public static void main(String[] args) {
 { // block starts
 int foo = 4;
 } // block ends
 System.out.println(foo); // Error: cannot find symbol
}

In the preceding code, the variable foo is accessible only inside the block that directly
surrounds it. If we try to access it after the end of the block, we get a compilation error.

In contrast, JavaScript’s variables are function-scoped: only functions introduce new
scopes; blocks are ignored when it comes to scoping. For example:

function main() {
 { // block starts
 var foo = 4;
 } // block ends
 console.log(foo); // 4
}

Put another way, foo is accessible within all of main(), not just inside the block.

Variables Are Function-Scoped | 181

Variable Declarations Are Hoisted
JavaScript hoists all variable declarations, it moves them to the beginning of their direct
scopes. This makes it clear what happens if a variable is accessed before it has been
declared:

function f() {
 console.log(bar); // undefined
 var bar = 'abc';
 console.log(bar); // abc
}

We can see that the variable bar already exists in the first line of f(), but it does not
have a value yet; that is, the declaration has been hoisted, but not the assignment. Java‐
Script executes f() as if its code were:

function f() {
 var bar;
 console.log(bar); // undefined
 bar = 'abc';
 console.log(bar); // abc
}

If you declare a variable that has already been declared, nothing happens (the variable’s
value is unchanged):

> var x = 123;
> var x;
> x
123

Each function declaration is also hoisted, but in a slightly different manner. The com‐
plete function is hoisted, not just the creation of the variable in which it is stored (see
“Hoisting” on page 168).

182 | Chapter 16: Variables: Scopes, Environments, and Closures

Best practice: be aware of hoisting, but don’t be scared of it
Some JavaScript style guides recommend that you only put variable
declarations at the beginning of a function, in order to avoid being
tricked by hoisting. If your function is relatively small (which it should
be anyway), then you can afford to relax that rule a bit and declare
variables close to where they are used (e.g., inside a for loop). That
better encapsulates pieces of code. Obviously, you should be aware
that that encapsulation is only conceptual, because function-wide
hoisting still happens.

Pitfall: Assigning to an Undeclared Variable Makes It Global
In sloppy mode, assigning to a variable that hasn’t been declared via var creates a global
variable:

> function sloppyFunc() { x = 123 }
> sloppyFunc()
> x
123

Thankfully, strict mode throws an exception when that happens:

> function strictFunc() { 'use strict'; x = 123 }
> strictFunc()
ReferenceError: x is not defined

Introducing a New Scope via an IIFE
You typically introduce a new scope to restrict the lifetime of a variable. One example
where you may want to do so is the “then” part of an if statement: it is executed only if
the condition holds; and if it exclusively uses helper variables, we don’t want them to
“leak out” into the surrounding scope:

function f() {
 if (condition) {
 var tmp = ...;
 ...
 }
 // tmp still exists here
 // => not what we want
}

If you want to introduce a new scope for the then block, you can define a function and
immediately invoke it. This is a workaround, a simulation of block scoping:

function f() {
 if (condition) {

Introducing a New Scope via an IIFE | 183

 (function () { // open block
 var tmp = ...;
 ...
 }()); // close block
 }
}

This is a common pattern in JavaScript. Ben Alman suggested it be called immediately
invoked function expression (IIFE, pronounced “iffy”). In general, an IIFE looks like this:

(function () { // open IIFE
 // inside IIFE
}()); // close IIFE

Here are some things to note about an IIFE:
It is immediately invoked

The parentheses following the closing brace of the function immediately invoke it.
That means its body is executed right away.

It must be an expression
If a statement starts with the keyword function, the parser expects it to be a function
declaration (see “Expressions Versus Statements” on page 54). But a function dec‐
laration cannot be immediately invoked. Thus, we tell the parser that the keyword
function is the beginning of a function expression by starting the statement with
an open parenthesis. Inside parentheses, there can only be expressions.

The trailing semicolon is required
If you forget it between two IIFEs, then your code won’t work anymore:

(function () {
 ...
}()) // no semicolon
(function () {
 ...
}());

The preceding code is interpreted as a function call—the first IIFE (including the
parentheses) is the function to be called, and the second IIFE is the parameter.

An IIFE incurs costs (both cognitively and performance-wise), so it
rarely makes sense to use it inside an if statement. The preceding
example was chosen for didactic reasons.

IIFE Variation: Prefix Operators
You can also enforce the expression context via prefix operators. For example, you can
do so via the logical Not operator:

184 | Chapter 16: Variables: Scopes, Environments, and Closures

http://bit.ly/i-ife
http://bit.ly/i-ife

!function () { // open IIFE
 // inside IIFE
}(); // close IIFE

or via the void operator (see “The void Operator” on page 90):

void function () { // open IIFE
 // inside IIFE
}(); // close IIFE

The advantage of using prefix operators is that forgetting the terminating semicolon
does not cause trouble.

IIFE Variation: Already Inside Expression Context
Note that enforcing the expression context for an IIFE is not necessary, if you are already
in the expression context. Then you need no parentheses or prefix operators. For
example:

var File = function () { // open IIFE
 var UNTITLED = 'Untitled';
 function File(name) {
 this.name = name || UNTITLED;
 }
 return File;
}(); // close IIFE

In the preceding example, there are two different variables that have the name File. On
one hand, there is the function that is only directly accessible inside the IIFE. On the
other hand, there is the variable that is declared in the first line. It is assigned the value
that is returned in the IIFE.

IIFE Variation: An IIFE with Parameters
You can use parameters to define variables for the inside of the IIFE:

var x = 23;
(function (twice) {
 console.log(twice);
}(x * 2));

This is similar to:

var x = 23;
(function () {
 var twice = x * 2;
 console.log(twice);
}());

Introducing a New Scope via an IIFE | 185

IIFE Applications
An IIFE enables you to attach private data to a function. Then you don’t have to declare
a global variable and can tightly package the function with its state. You avoid polluting
the global namespace:

var setValue = function () {
 var prevValue;
 return function (value) { // define setValue
 if (value !== prevValue) {
 console.log('Changed: ' + value);
 prevValue = value;
 }
 };
}();

Other applications of IIFEs are mentioned elsewhere in this book:

• Avoiding global variables; hiding variables from global scope (see “Best Practice:
Avoid Creating Global Variables” on page 187)

• Creating fresh environments; avoiding sharing (see “Pitfall: Inadvertently Sharing
an Environment” on page 195)

• Keeping global data private to all of a constructor (see “Keeping global data private
to all of a constructor” on page 250)

• Attaching global data to a singleton object (see “Attaching private global data to a
singleton object” on page 249)

• Attaching global data to a method (see “Attaching global data to a method” on page
250)

Global Variables
The scope containing all of a program is called global scope or program scope. This is
the scope you are in when entering a script (be it a <script> tag in a web page or be it
a .js file). Inside the global scope, you can create a nested scope by defining a function.
Inside such a function, you can again nest scopes. Each scope has access to its own
variables and to the variables in the scopes that surround it. As the global scope sur‐
rounds all other scopes, its variables can be accessed everywhere:

// here we are in global scope
var globalVariable = 'xyz';
function f() {
 var localVariable = true;
 function g() {
 var anotherLocalVariable = 123;

186 | Chapter 16: Variables: Scopes, Environments, and Closures

 // All variables of surround scopes are accessible
 localVariable = false;
 globalVariable = 'abc';
 }
}
// here we are again in global scope

Best Practice: Avoid Creating Global Variables
Global variables have two disadvantages. First, pieces of software that rely on global
variables are subject to side effects; they are less robust, behave less predictably, and are
less reusable.

Second, all of the JavaScript on a web page shares the same global variables: your code,
built-ins, analytics code, social media buttons, and so on. That means that name clashes
can become a problem. That is why it is best to hide as many variables from the global
scope as possible. For example, don’t do this:

<!-- Don’t do this -->
<script>
 // Global scope
 var tmp = generateData();
 processData(tmp);
 persistData(tmp);
</script>

The variable tmp becomes global, because its declaration is executed in global scope. But
it is only used locally. Hence, we can use an IIFE (see “Introducing a New Scope via an
IIFE” on page 183) to hide it inside a nested scope:

<script>
 (function () { // open IIFE
 // Local scope
 var tmp = generateData();
 processData(tmp);
 persistData(tmp);
 }()); // close IIFE
</script>

Module Systems Lead to Fewer Globals
Thankfully, module systems (see “Module Systems” on page 411) mostly eliminate the
problem of global variables, because modules don’t interface via the global scope and
because each module has its own scope for module-global variables.

The Global Object
The ECMAScript specification uses the internal data structure environment to store
variables (see “Environments: Managing Variables” on page 190). The language has the

The Global Object | 187

somewhat unusual feature of making the environment for global variables accessible
via an object, the so-called global object. The global object can be used to create, read,
and change global variables. In global scope, this points to it:

> var foo = 'hello';
> this.foo // read global variable
'hello'

> this.bar = 'world'; // create global variable
> bar
'world'

Note that the global object has prototypes. If you want to list all of its (own and inherited)
properties, you need a function such as getAllPropertyNames() from “Listing All
Property Keys” on page 218:

> getAllPropertyNames(window).sort().slice(0, 5)
['AnalyserNode', 'Array', 'ArrayBuffer', 'Attr', 'Audio']

JavaScript creator Brendan Eich considers the global object one of his “biggest re‐
grets”. It affects performance negatively, makes the implementation of variable scoping
more complicated, and leads to less modular code.

Cross-Platform Considerations
Browsers and Node.js have global variables for referring to the global object. Unfortu‐
nately, they are different:

• Browsers include window, which is standardized as part of the Document Object
Model (DOM), not as part of ECMAScript 5. There is one global object per frame
or window.

• Node.js contains global, which is a Node.js-specific variable. Each module has its
own scope in which this points to an object with that scopes variables. Accordingly,
this and global are different inside modules.

On both platforms, this refers to the global object, but only when you are in global
scope. That is almost never the case on Node.js. If you want to access the global object
in a cross-platform manner, you can use a pattern such as the following:

(function (glob) {
 // glob points to global object
}(typeof window !== 'undefined' ? window : global));

From now on, I use window to refer to the global object, but in cross-platform code, you
should use the preceding pattern and glob instead.

188 | Chapter 16: Variables: Scopes, Environments, and Closures

http://mzl.la/1oOeCif
http://mzl.la/1oOeCif

Use Cases for window
This section describes use cases for accessing global variables via window. But the general
rule is: avoid doing that as much as you can.

Use case: marking global variables

The prefix window is a visual clue that code is referring to a global variable and not to a
local one:

var foo = 123;
(function () {
 console.log(window.foo); // 123
}());

However, this makes your code brittle. It ceases to work as soon as you move foo from
global scope to another surrounding scope:

(function () {
 var foo = 123;
 console.log(window.foo); // undefined
}());

Thus, it is better to refer to foo as a variable, not as a property of window. If you want
to make it obvious that foo is a global or global-like variable, you can add a name prefix
such as g_:

var g_foo = 123;
(function () {
 console.log(g_foo);
}());

Use case: built-ins

I prefer not to refer to built-in global variables via window. They are well-known names,
so you gain little from an indicator that they are global. And the prefixed window adds
clutter:

window.isNaN(...) // no
isNaN(...) // yes

Use case: style checkers

When you are working with a style checking tool such as JSLint and JSHint, using window
means that you don’t get an error when referring to a global variable that is not declared
in the current file. However, both tools provide ways to tell them about such variables
and prevent such errors (search for “global variable” in their documentation).

The Global Object | 189

Use case: checking whether a global variable exists
It’s not a frequent use case, but shims and polyfills especially (see “Shims Versus Poly‐
fills” on page 405) need to check whether a global variable someVariable exists. In that
case, window helps:

if (window.someVariable) { ... }

This is a safe way of performing this check. The following statement throws an exception
if someVariable has not been declared:

// Don’t do this
if (someVariable) { ... }

There are two additional ways in which you can check via window; they are roughly
equivalent, but a little more explicit:

if (window.someVariable !== undefined) { ... }
if ('someVariable' in window) { ... }

The general way of checking whether a variable exists (and has a value) is via typeof
(see “typeof: Categorizing Primitives” on page 92):

if (typeof someVariable !== 'undefined') { ... }

Use case: creating things in global scope

window lets you add things to the global scope (even if you are in a nested scope), and
it lets you do so conditionally:

if (!window.someApiFunction) {
 window.someApiFunction = ...;
}

It is normally best to add things to the global scope via var, while you are in the global
scope. However, window provides a clean way of making additions conditionally.

Environments: Managing Variables
Environments are an advanced topic. They are a detail of Java‐
Script’s internals. Read this section if you want to get a deeper un‐
derstanding of how variables work.

Variables come into existence when program execution enters their scope. Then they
need storage space. The data structure that provides that storage space is called an
environment in JavaScript. It maps variable names to values. Its structure is very similar

190 | Chapter 16: Variables: Scopes, Environments, and Closures

to that of JavaScript objects. Environments sometimes live on after you leave their scope.
Therefore, they are stored on a heap, not on a stack.

Variables are passed on in two ways. There are two dimensions to them, if you will:
Dynamic dimension: invoking functions

Every time a function is invoked, it needs new storage for its parameters and vari‐
ables. After it is finished, that storage can usually be reclaimed. As an example, take
the following implementation of the faculty function. It calls itself recursively sev‐
eral times and each time, it needs fresh storage for n:

function fac(n) {
 if (n <= 1) {
 return 1;
 }
 return n * fac(n - 1);
}

Lexical (static) dimension: staying connected to your surrounding scopes
No matter how often a function is called, it always needs access to both its own
(fresh) local variables and the variables of the surrounding scopes. For example, the
following function, doNTimes, has a helper function, doNTimesRec, inside it. When
doNTimesRec calls itself several times, a new environment is created each time.
However, doNTimesRec also stays connected to the single environment of doN
Times during those calls (similar to all functions sharing a single global environ‐
ment). doNTimesRec needs that connection to access action in line (1):

function doNTimes(n, action) {
 function doNTimesRec(x) {
 if (x >= 1) {
 action(); // (1)
 doNTimesRec(x-1);
 }
 }
 doNTimesRec(n);
}

These two dimensions are handled as follows:
Dynamic dimension: stack of execution contexts

Each time a function is invoked, a new environment is created to map identifiers
(of parameters and variables) to values. To handle recursion, execution contexts—
references to environments—are managed in a stack. That stack mirrors the call
stack.

Lexical dimension: chain of environments
To support this dimension, a function records the scope it was created in via the
internal property [[Scope]]. When a function is called, an environment is created
for the new scope that is entered. That environment has a field called outer that

Environments: Managing Variables | 191

points to the outer scope’s environment and is set up via [[Scope]]. Therefore,
there is always a chain of environments, starting with the currently active environ‐
ment, continuing with its outer environment, and so on. Every chain ends with the
global environment (the scope of all initially invoked functions). The field outer
of the global environment is null.

To resolve an identifier, the complete environment chain is traversed, starting with
the active environment.

Let’s look at an example:

function myFunction(myParam) {
 var myVar = 123;
 return myFloat;
}
var myFloat = 1.3;
// Step 1
myFunction('abc'); // Step 2

Figure 16-1. The dynamic dimension of variables is handled via a stack of execution
contexts, and the static dimension is handled by chaining environments. The active ex‐
ecution contexts, environments, and functions are highlighted. Step 1 shows those data
structures before the function call myFunction(abc). Step 2 shows them during the
function call.

Figure 16-1 illustrates what happens when the preceding code is executed:

192 | Chapter 16: Variables: Scopes, Environments, and Closures

1. myFunction and myFloat have been stored in the global environment (#0). Note
that the function object referred to by myFunction points to its scope (the global
scope) via the internal property [[Scope]].

2. For the execution of myFunction('abc'), a new environment (#1) is created that
holds the parameter and the local variable. It refers to its outer environment via
outer (which is initialized from myFunction.[[Scope]]). Thanks to the outer en‐
vironment, myFunction can access myFloat.

Closures: Functions Stay Connected to Their Birth Scopes
If a function leaves the scope in which it was created, it stays connected to the variables
of that scope (and of the surrounding scopes). For example:

function createInc(startValue) {
 return function (step) {
 startValue += step;
 return startValue;
 };
}

The function returned by createInc() does not lose its connection to startValue—
the variable provides the function with state that persists across function calls:

> var inc = createInc(5);
> inc(1)
6
> inc(2)
8

A closure is a function plus the connection to the scope in which the function was
created. The name stems from the fact that a closure “closes over” the free variables of
a function. A variable is free if it is not declared within the function—that is, if it comes
“from outside.”

Handling Closures via Environments

This is an advanced section that goes deeper into how closures work.
You should be familiar with environments (review “Environments:
Managing Variables” on page 190).

Closures: Functions Stay Connected to Their Birth Scopes | 193

A closure is an example of an environment surviving after execution has left its scope.
To illustrate how closures work, let’s examine the previous interaction with createInc()
and split it up into four steps (during each step, the active execution context and its
environment are highlighted; if a function is active, it is highlighted, too):

1. This step takes place before the interaction, and after the evaluation of the function
declaration of createInc. An entry for createInc has been added to the global
environment (#0) and points to a function object.

2. This step occurs during the execution of the function call createInc(5). A fresh
environment (#1) for createInc is created and pushed onto the stack. Its outer
environment is the global environment (the same as createInc.[[Scope]]). The
environment holds the parameter startValue.

3. This step happens after the assignment to inc. After we returned from createInc,
the execution context pointing to its environment was removed from the stack, but
the environment still exists on the heap, because inc.[[Scope]] refers to it. inc is
a closure (function plus birth environment).

4. This step takes place during the execution of inc(1). A new environment (#1) has
been created and an execution context pointing to it has been pushed onto the stack.

194 | Chapter 16: Variables: Scopes, Environments, and Closures

Its outer environment is the [[Scope]] of inc. The outer environment gives inc
access to startValue.

5. This step happens after the execution of inc(1). No reference (execution context,
outer field, or [[Scope]]) points to inc’s environment, anymore. It is therefore not
needed and can be removed from the heap.

Pitfall: Inadvertently Sharing an Environment
Sometimes the behavior of functions you create is influenced by a variable in the current
scope. In JavaScript, that can be problematic, because each function should work with
the value that the variable had when the function was created. However, due to functions
being closures, the function will always work with the current value of the variable. In
for loops, that can prevent things from working properly. An example will make things
clearer:

function f() {
 var result = [];
 for (var i=0; i<3; i++) {
 var func = function () {
 return i;
 };
 result.push(func);

Closures: Functions Stay Connected to Their Birth Scopes | 195

 }
 return result;
}
console.log(f()[1]()); // 3

f returns an array with three functions in it. All of these functions can still access the
environment of f and thus i. In fact, they share the same environment. Alas, after the
loop is finished, i has the value 3 in that environment. Therefore, all functions return 3.

This is not what we want. To fix things, we need to make a snapshot of the index i before
creating a function that uses it. In other words, we want to package each function with
the value that i had at the time of the function’s creation. We therefore take the following
steps:

1. Create a new environment for each function in the returned array.
2. Store (a copy of) the current value of i in that environment.

Only functions create environments, so we use an IIFE (see “Introducing a New Scope
via an IIFE” on page 183) to accomplish step 1:

function f() {
 var result = [];
 for (var i=0; i<3; i++) {
 (function () { // step 1: IIFE
 var pos = i; // step 2: copy
 var func = function () {
 return pos;
 };
 result.push(func);
 }());
 }
 return result;
}
console.log(f()[1]()); // 1

Note that the example has real-world relevance, because similar scenarios arise when
you add event handlers to DOM elements via loops.

196 | Chapter 16: Variables: Scopes, Environments, and Closures

CHAPTER 17

Objects and Inheritance

There are several layers to object-oriented programming (OOP) in JavaScript:

• Layer 1: Object-orientation with single objects (covered in “Layer 1: Single Ob‐
jects” on page 197)

• Layer 2: Prototype chains of objects (described in “Layer 2: The Prototype Rela‐
tionship Between Objects” on page 211)

• Layer 3: Constructors as factories for instances, similar to classes in other languages
(discussed in “Layer 3: Constructors—Factories for Instances” on page 231)

• Layer 4: Subclassing, creating new constructors by inheriting from existing ones
(covered in “Layer 4: Inheritance Between Constructors” on page 251)

Each new layer only depends on prior ones, enabling you to learn JavaScript OOP
incrementally. Layers 1 and 2 form a simple core that you can refer back to whenever
you are getting confused by the more complicated layers 3 and 4.

Layer 1: Single Objects
Roughly, all objects in JavaScript are maps (dictionaries) from strings to values. A (key,
value) entry in an object is called a property. The key of a property is always a text string.
The value of a property can be any JavaScript value, including a function. Methods are
properties whose values are functions.

Kinds of Properties
There are three kinds of properties:

197

Properties (or named data properties)
Normal properties in an object—that is, mappings from string keys to values.
Named data properties include methods. This is by far the most common kind of
property.

Accessors (or named accessor properties)
Special methods whose invocations look like reading or writing properties. Normal
properties are storage locations for property values; accessors allow you to compute
the values of properties. They are virtual properties, if you will. See “Accessors
(Getters and Setters)” on page 221 for details.

Internal properties
Exist only in the ECMAScript language specification. They are not directly acces‐
sible from JavaScript, but there might be indirect ways of accessing them. The
specification writes the keys of internal properties in brackets. For example, [[Pro
totype]] holds the prototype of an object and is readable via Object.getPrototy
peOf().

Object Literals
JavaScript’s object literals allow you to directly create plain objects (direct instances of
Object). The following code uses an object literal to assign an object to the variable
jane. The object has the two properties: name and describe. describe is a method:

var jane = {
 name: 'Jane',

 describe: function () {
 return 'Person named '+this.name; // (1)
 }, // (2)
};

1. Use this in methods to refer to the current object (also called the receiver of a
method invocation).

2. ECMAScript 5 allows a trailing comma (after the last property) in an object literal.
Alas, not all older browsers support it. A trailing comma is useful, because you can
rearrange properties without having to worry which property is last.

You may get the impression that objects are only maps from strings to values. But they
are more than that: they are real general-purpose objects. For example, you can use
inheritance between objects (see “Layer 2: The Prototype Relationship Between Ob‐
jects” on page 211), and you can protect objects from being changed. The ability to directly
create objects is one of JavaScript’s standout features: you can start with concrete objects
(no classes needed!) and introduce abstractions later. For example, constructors, which

198 | Chapter 17: Objects and Inheritance

are factories for objects (as discussed in “Layer 3: Constructors—Factories for Instan‐
ces” on page 231), are roughly similar to classes in other languages.

Dot Operator (.): Accessing Properties via Fixed Keys
The dot operator provides a compact syntax for accessing properties. The property keys
must be identifiers (consult “Legal Identifiers” on page 60). If you want to read or write
properties with arbitrary names, you need to use the bracket operator (see “Bracket
Operator ([]): Accessing Properties via Computed Keys” on page 202).

The examples in this section work with the following object:

var jane = {
 name: 'Jane',

 describe: function () {
 return 'Person named '+this.name;
 }
};

Getting properties
The dot operator lets you “get” a property (read its value). Here are some examples:

> jane.name // get property `name`
'Jane'
> jane.describe // get property `describe`
[Function]

Getting a property that doesn’t exist returns undefined:

> jane.unknownProperty
undefined

Calling methods
The dot operator is also used to call methods:

> jane.describe() // call method `describe`
'Person named Jane'

Setting properties

You can use the assignment operator (=) to set the value of a property referred to via the
dot notation. For example:

> jane.name = 'John'; // set property `name`
> jane.describe()
'Person named John'

If a property doesn’t exist yet, setting it automatically creates it. If a property already
exists, setting it changes its value.

Layer 1: Single Objects | 199

Deleting properties

The delete operator lets you completely remove a property (the whole key-value pair)
from an object. For example:

> var obj = { hello: 'world' };
> delete obj.hello
true
> obj.hello
undefined

If you merely set a property to undefined, the property still exists and the object still
contains its key:

> var obj = { foo: 'a', bar: 'b' };

> obj.foo = undefined;
> Object.keys(obj)
['foo', 'bar']

If you delete the property, its key is gone, too:

> delete obj.foo
true
> Object.keys(obj)
['bar']

delete affects only the direct (“own,” noninherited) properties of an object. Its proto‐
types are not touched (see “Deleting an inherited property” on page 217).

Use the delete operator sparingly. Most modern JavaScript engines
optimize the performance of instances created by constructors if their
“shape” doesn’t change (roughly: no properties are removed or add‐
ed). Deleting a property prevents that optimization.

The return value of delete

delete returns false if the property is an own property, but cannot be deleted. It returns
true in all other cases. Following are some examples.

As a preparation, we create one property that can be deleted and another one that can’t
be deleted (“Getting and Defining Properties via Descriptors” on page 224 explains
Object.defineProperty()):

var obj = {};
Object.defineProperty(obj, 'canBeDeleted', {
 value: 123,
 configurable: true
});
Object.defineProperty(obj, 'cannotBeDeleted', {
 value: 456,

200 | Chapter 17: Objects and Inheritance

 configurable: false
});

delete returns false for own properties that can’t be deleted:

> delete obj.cannotBeDeleted
false

delete returns true in all other cases:

> delete obj.doesNotExist
true
> delete obj.canBeDeleted
true

delete returns true even if it doesn’t change anything (inherited properties are never
removed):

> delete obj.toString
true
> obj.toString // still there
[Function: toString]

Unusual Property Keys
While you can’t use reserved words (such as var and function) as variable names, you
can use them as property keys:

> var obj = { var: 'a', function: 'b' };
> obj.var
'a'
> obj.function
'b'

Numbers can be used as property keys in object literals, but they are interpreted as
strings. The dot operator can only access properties whose keys are identifiers. There‐
fore, you need the bracket operator (shown in the following example) to access prop‐
erties whose keys are numbers:

> var obj = { 0.7: 'abc' };
> Object.keys(obj)
['0.7']
> obj['0.7']
'abc'

Object literals also allow you to use arbitrary strings (that are neither identifiers nor
numbers) as property keys, but you must quote them. Again, you need the bracket
operator to access the property values:

> var obj = { 'not an identifier': 123 };
> Object.keys(obj)
['not an identifier']

Layer 1: Single Objects | 201

> obj['not an identifier']
123

Bracket Operator ([]): Accessing Properties via Computed Keys
While the dot operator works with fixed property keys, the bracket operator allows you
to refer to a property via an expression.

Getting properties via the bracket operator
The bracket operator lets you compute the key of a property, via an expression:

> var obj = { someProperty: 'abc' };

> obj['some' + 'Property']
'abc'

> var propKey = 'someProperty';
> obj[propKey]
'abc'

That also allows you to access properties whose keys are not identifiers:

> var obj = { 'not an identifier': 123 };
> obj['not an identifier']
123

Note that the bracket operator coerces its interior to string. For example:

> var obj = { '6': 'bar' };
> obj[3+3] // key: the string '6'
'bar'

Calling methods via the bracket operator
Calling methods works as you would expect:

> var obj = { myMethod: function () { return true } };
> obj['myMethod']()
true

Setting properties via the bracket operator
Setting properties works analogously to the dot operator:

> var obj = {};
> obj['anotherProperty'] = 'def';
> obj.anotherProperty
'def'

Deleting properties via the bracket operator
Deleting properties also works similarly to the dot operator:

202 | Chapter 17: Objects and Inheritance

> var obj = { 'not an identifier': 1, prop: 2 };
> Object.keys(obj)
['not an identifier', 'prop']
> delete obj['not an identifier']
true
> Object.keys(obj)
['prop']

Converting Any Value to an Object
It’s not a frequent use case, but sometimes you need to convert an arbitrary value to an
object. Object(), used as a function (not as a constructor), provides that service. It
produces the following results:

Value Result

(Called with no parameters) {}

undefined {}

null {}

A boolean bool new Boolean(bool)

A number num new Number(num)

A string str new String(str)

An object obj obj (unchanged, nothing to convert)

Here are some examples:

> Object(null) instanceof Object
true

> Object(false) instanceof Boolean
true

> var obj = {};
> Object(obj) === obj
true

Tthe following function checks whether value is an object:

function isObject(value) {
 return value === Object(value);
}

Note that the preceding function creates an object if value isn’t an object. You can
implement the same function without doing that, via typeof (see “Pitfall: typeof null”
on page 93).

You can also invoke Object as a constructor, which produces the same results as calling
it as a function:

Converting Any Value to an Object | 203

> var obj = {};
> new Object(obj) === obj
true

> new Object(123) instanceof Number
true

Avoid the constructor; an empty object literal is almost always a bet‐
ter choice:

var obj = new Object(); // avoid
var obj = {}; // prefer

this as an Implicit Parameter of Functions and Methods
When you call a function, this is always an (implicit) parameter:
Normal functions in sloppy mode

Even though normal functions have no use for this, it still exists as a special variable
whose value is always the global object (window in browsers; see “The Global Ob‐
ject” on page 187):

> function returnThisSloppy() { return this }
> returnThisSloppy() === window
true

Normal functions in strict mode
this is always undefined:

> function returnThisStrict() { 'use strict'; return this }
> returnThisStrict() === undefined
true

Methods
this refers to the object on which the method has been invoked:

> var obj = { method: returnThisStrict };
> obj.method() === obj
true

In the case of methods, the value of this is called the receiver of the method call.

Calling Functions While Setting this: call(), apply(), and bind()
Remember that functions are also objects. Thus, each function has methods of its own.
Three of them are introduced in this section and help with calling functions. These three
methods are used in the following sections to work around some of the pitfalls of calling
functions. The upcoming examples all refer to the following object, jane:

204 | Chapter 17: Objects and Inheritance

var jane = {
 name: 'Jane',
 sayHelloTo: function (otherName) {
 'use strict';
 console.log(this.name+' says hello to '+otherName);
 }
};

Function.prototype.call(thisValue, arg1?, arg2?, ...)

The first parameter is the value that this will have inside the invoked function; the
remaining parameters are handed over as arguments to the invoked function. The fol‐
lowing three invocations are equivalent:

jane.sayHelloTo('Tarzan');

jane.sayHelloTo.call(jane, 'Tarzan');

var func = jane.sayHelloTo;
func.call(jane, 'Tarzan');

For the second invocation, you need to repeat jane, because call() doesn’t know how
you got the function that it is invoked on.

Function.prototype.apply(thisValue, argArray)

The first parameter is the value that this will have inside the invoked function; the
second parameter is an array that provides the arguments for the invocation. The fol‐
lowing three invocations are equivalent:

jane.sayHelloTo('Tarzan');

jane.sayHelloTo.apply(jane, ['Tarzan']);

var func = jane.sayHelloTo;
func.apply(jane, ['Tarzan']);

For the second invocation, you need to repeat jane, because apply() doesn’t know how
you got the function that it is invoked on.

“apply() for Constructors” on page 206 explains how to use apply() with constructors.

Function.prototype.bind(thisValue, arg1?, ..., argN?)
This method performs partial function application—meaning it creates a new function
that calls the receiver of bind() in the following manner: the value of this is thisVal
ue and the arguments start with arg1 until argN, followed by the arguments of the new
function. In other words, the new function appends its arguments to arg1, ...,
argN when it calls the original function. Let’s look at an example:

this as an Implicit Parameter of Functions and Methods | 205

function func() {
 console.log('this: '+this);
 console.log('arguments: '+Array.prototype.slice.call(arguments));
}
var bound = func.bind('abc', 1, 2);

The array method slice is used to convert arguments to an array, which is necessary
for logging it (this operation is explained in “Array-Like Objects and Generic Meth‐
ods” on page 262). bound is a new function. Here’s the interaction:

> bound(3)
this: abc
arguments: 1,2,3

The following three invocations of sayHelloTo are all equivalent:

jane.sayHelloTo('Tarzan');

var func1 = jane.sayHelloTo.bind(jane);
func1('Tarzan');

var func2 = jane.sayHelloTo.bind(jane, 'Tarzan');
func2();

apply() for Constructors
Let’s pretend that JavaScript has a triple dot operator (...) that turns arrays into actual
parameters. Such an operator would allow you to use Math.max() (see “Other Func‐
tions” on page 330) with arrays. In that case, the following two expressions would be
equivalent:

Math.max(...[13, 7, 30])
Math.max(13, 7, 30)

For functions, you can achieve the effect of the triple dot operator via apply():

> Math.max.apply(null, [13, 7, 30])
30

The triple dot operator would also make sense for constructors:

new Date(...[2011, 11, 24]) // Christmas Eve 2011

Alas, here apply() does not work, because it helps only with function or method calls,
not with constructor invocations.

Manually simulating an apply() for constructors

We can simulate apply() in two steps.
Step 1

Pass the arguments to Date via a method call (they are not in an array—yet):

206 | Chapter 17: Objects and Inheritance

new (Date.bind(null, 2011, 11, 24))

The preceding code uses bind() to create a constructor without parameters and
invokes it via new.

Step 2
Use apply() to hand an array to bind(). Because bind() is a method call, we can
use apply():

new (Function.prototype.bind.apply(
 Date, [null, 2011, 11, 24]))

The preceding array still has one element too many, null. We can use concat() to
prepend it:

var arr = [2011, 11, 24];
new (Function.prototype.bind.apply(
 Date, [null].concat(arr)))

A library method
The preceding manual workaround is inspired by a library method published by Mo‐
zilla. The following is a slightly edited version of it:

if (!Function.prototype.construct) {
 Function.prototype.construct = function(argArray) {
 if (! Array.isArray(argArray)) {
 throw new TypeError("Argument must be an array");
 }
 var constr = this;
 var nullaryFunc = Function.prototype.bind.apply(
 constr, [null].concat(argArray));
 return new nullaryFunc();
 };
}

Here is the method in use:

> Date.construct([2011, 11, 24])
Sat Dec 24 2011 00:00:00 GMT+0100 (CET)

An alternative approach

An alternative to the previous approach is to create an uninitialized instance via Ob
ject.create() and then call the constructor (as a function) via apply(). That means
that you are effectively reimplementing the new operator (some checks are omitted):

Function.prototype.construct = function(argArray) {
 var constr = this;
 var inst = Object.create(constr.prototype);
 var result = constr.apply(inst, argArray); // (1)

 // Check: did the constructor return an object

this as an Implicit Parameter of Functions and Methods | 207

http://mzl.la/1oOf7sK

 // and prevent `this` from being the result?
 return result ? result : inst;
};

The preceding code does not work for most built-in constructors,
which always produce new instances when called as functions. In
other words, the step in line (1) doesn’t set up inst as desired.

Pitfall: Losing this When Extracting a Method
If you extract a method from an object, it becomes a true function again. Its connection
with the object is severed, and it usually doesn’t work properly anymore. Take, for ex‐
ample, the following object, counter:

var counter = {
 count: 0,
 inc: function () {
 this.count++;
 }
}

Extracting inc and calling it (as a function!) fails:

> var func = counter.inc;
> func()
> counter.count // didn’t work
0

Here’s the explanation: we have called the value of counter.inc as a function. Hence,
this is the global object and we have performed window.count++. window.count does
not exist and is undefined. Applying the ++ operator to it sets it to NaN:

> count // global variable
NaN

How to get a warning

If method inc() is in strict mode, you get a warning:

> counter.inc = function () { 'use strict'; this.count++ };
> var func2 = counter.inc;
> func2()
TypeError: Cannot read property 'count' of undefined

The reason is that when we call the strict mode function func2, this is undefined,
resulting in an error.

208 | Chapter 17: Objects and Inheritance

How to properly extract a method

Thanks to bind(), we can make sure that inc doesn’t lose the connection with counter:

> var func3 = counter.inc.bind(counter);
> func3()
> counter.count // it worked!
1

Callbacks and extracted methods
In JavaScript, there are many functions and methods that accept callbacks. Examples in
browsers are setTimeout() and event handling. If we pass in counter.inc as a callback,
it is also invoked as a function, resulting in the same problem just described. To illustrate
this phenomenon, let’s use a simple callback-invoking function:

function callIt(callback) {
 callback();
}

Executing counter.count via callIt triggers a warning (due to strict mode):

> callIt(counter.inc)
TypeError: Cannot read property 'count' of undefined

As before, we fix things via bind():

> callIt(counter.inc.bind(counter))
> counter.count // one more than before
2

Each call to bind() creates a new function. That has consequences
when you’re registering and unregistering callbacks (e.g., for event
handling). You need to store the value you registered somewhere and
use it for unregistering, too.

Pitfall: Functions Inside Methods Shadow this
You often nest function definitions in JavaScript, because functions can be parameters
(e.g., callbacks) and because they can be created in place, via function expressions. This
poses a problem when a method contains a normal function and you want to access the
former’s this inside the latter, because the method’s this is shadowed by the normal
function’s this (which doesn’t even have any use for its own this). In the following
example, the function at (1) tries to access the method’s this at (2):

var obj = {
 name: 'Jane',
 friends: ['Tarzan', 'Cheeta'],
 loop: function () {
 'use strict';

this as an Implicit Parameter of Functions and Methods | 209

 this.friends.forEach(
 function (friend) { // (1)
 console.log(this.name+' knows '+friend); // (2)
 }
);
 }
};

Obviously, this fails, because the function at (1) has its own this, which is undefined
here:

> obj.loop();
TypeError: Cannot read property 'name' of undefined

There are three ways to work around this problem.

Workaround 1: that = this

We assign this to a variable that won’t be shadowed inside the nested function:

loop: function () {
 'use strict';
 var that = this;
 this.friends.forEach(function (friend) {
 console.log(that.name+' knows '+friend);
 });
}

Here’s the interaction:

> obj.loop();
Jane knows Tarzan
Jane knows Cheeta

Workaround 2: bind()

We can use bind() to give the callback a fixed value for this—namely, the method’s
this (line (1)):

loop: function () {
 'use strict';
 this.friends.forEach(function (friend) {
 console.log(this.name+' knows '+friend);
 }.bind(this)); // (1)
}

Workaround 3: a thisValue for forEach()

A workaround that is specific to forEach() (see “Examination Methods” on page 291) is
to provide a second parameter after the callback that becomes the this of the callback:

loop: function () {
 'use strict';
 this.friends.forEach(function (friend) {

210 | Chapter 17: Objects and Inheritance

 console.log(this.name+' knows '+friend);
 }, this);
}

Layer 2: The Prototype Relationship Between Objects
The prototype relationship between two objects is about inheritance: every object can
have another object as its prototype. Then the former object inherits all of its prototype’s
properties. An object specifies its prototype via the internal property [[Prototype]].
Every object has this property, but it can be null. The chain of objects connected by the
[[Prototype]] property is called the prototype chain (Figure 17-1).

Figure 17-1. A prototype chain.

To see how prototype-based (or prototypal) inheritance works, let’s look at an example
(with invented syntax for specifying the [[Prototype]] property):

var proto = {
 describe: function () {
 return 'name: '+this.name;
 }
};
var obj = {
 [[Prototype]]: proto,
 name: 'obj'
};

The object obj inherits the property describe from proto. It also has a so-called own
(noninherited, direct) property, name.

Layer 2: The Prototype Relationship Between Objects | 211

Inheritance
obj inherits the property describe; you can access it as if the object itself had that
property:

> obj.describe
[Function]

Whenever you access a property via obj, JavaScript starts the search for it in that object
and continues with its prototype, the prototype’s prototype, and so on. That’s why we
can access proto.describe via obj.describe. The prototype chain behaves as if it were
a single object. That illusion is maintained when you call a method: the value of this is
always the object where the search for the method began, not where the method was
found. That allows the method to access all of the properties of the prototype chain. For
example:

> obj.describe()
'name: obj'

Inside describe(), this is obj, which allows the method to access obj.name.

Overriding
In a prototype chain, a property in an object overrides a property with the same key in
a “later” object: the former property is found first. It hides the latter property, which
can’t be accessed anymore. As an example, let’s override the method proto.de
scribe() in obj:

> obj.describe = function () { return 'overridden' };
> obj.describe()
'overridden'

That is similar to how overriding of methods works in class-based languages.

Sharing Data Between Objects via a Prototype
Prototypes are great for sharing data between objects: several objects get the same pro‐
totype, which holds all shared properties. Let’s look at an example. The objects jane and
tarzan both contain the same method, describe(). That is something that we would
like to avoid by using sharing:

var jane = {
 name: 'Jane',
 describe: function () {
 return 'Person named '+this.name;
 }
};
var tarzan = {
 name: 'Tarzan',
 describe: function () {

212 | Chapter 17: Objects and Inheritance

 return 'Person named '+this.name;
 }
};

Both objects are persons. Their name property is different, but we could have them share
the method describe. We do that by creating a common prototype called PersonPro
to and putting describe into it (Figure 17-2).

Figure 17-2. The objects jane and tarzan share the prototype PersonProto and thus the
property describe.

The following code creates objects jane and tarzan that share the prototype Person
Proto:

var PersonProto = {
 describe: function () {
 return 'Person named '+this.name;
 }
};
var jane = {
 [[Prototype]]: PersonProto,
 name: 'Jane'
};
var tarzan = {
 [[Prototype]]: PersonProto,
 name: 'Tarzan'
};

And here is the interaction:

> jane.describe()
Person named Jane
> tarzan.describe()
Person named Tarzan

This is a common pattern: the data resides in the first object of a prototype chain, while
methods reside in later objects. JavaScript’s flavor of prototypal inheritance is designed
to support this pattern: setting a property affects only the first object in a prototype
chain, whereas getting a property considers the complete chain (see “Setting and De‐
leting Affects Only Own Properties” on page 216).

Layer 2: The Prototype Relationship Between Objects | 213

Getting and Setting the Prototype
So far, we have pretended that you can access the internal property [[Prototype]] from
JavaScript. But the language does not let you do that. Instead, there are functions for
reading the prototype and for creating a new object with a given prototype.

Creating a new object with a given prototype
This invocation:

Object.create(proto, propDescObj?)

creates an object whose prototype is proto. Optionally, properties can be added via
descriptors (which are explained in “Property Descriptors” on page 223). In the following
example, object jane gets the prototype PersonProto and a mutable property name
whose value is 'Jane' (as specified via a property descriptor):

var PersonProto = {
 describe: function () {
 return 'Person named '+this.name;
 }
};
var jane = Object.create(PersonProto, {
 name: { value: 'Jane', writable: true }
});

Here is the interaction:

> jane.describe()
'Person named Jane'

But you frequently just create an empty object and then manually add properties, be‐
cause descriptors are verbose:

var jane = Object.create(PersonProto);
jane.value = 'Jane';

Reading the prototype of an object
This method call:

Object.getPrototypeOf(obj)

returns the prototype of obj. Continuing the preceding example:

> Object.getPrototypeOf(jane) === PersonProto
true

Checking whether one object a prototype of another one
This syntax:

Object.prototype.isPrototypeOf(obj)

214 | Chapter 17: Objects and Inheritance

checks whether the receiver of the method is a (direct or indirect) prototype of obj. In
other words: are the receiver and obj in the same prototype chain, and does obj come
before the receiver? For example:

> var A = {};
> var B = Object.create(A);
> var C = Object.create(B);
> A.isPrototypeOf(C)
true
> C.isPrototypeOf(A)
false

Finding the object where a property is defined

The following function iterates over the property chain of an object obj. It returns the
first object that has an own property with the key propKey, or null if there is no such
object:

function getDefiningObject(obj, propKey) {
 obj = Object(obj); // make sure it’s an object
 while (obj && !{}.hasOwnProperty.call(obj, propKey)) {
 obj = Object.getPrototypeOf(obj);
 // obj is null if we have reached the end
 }
 return obj;
}

In the preceding code, we called the method Object.prototype.hasOwnProperty ge‐
nerically (see “Generic Methods: Borrowing Methods from Prototypes” on page 260).

The Special Property __proto__
Some JavaScript engines have a special property for getting and setting the prototype
of an object: __proto__. It brings direct access to [[Prototype]] to the language:

> var obj = {};

> obj.__proto__ === Object.prototype
true

> obj.__proto__ = Array.prototype
> Object.getPrototypeOf(obj) === Array.prototype
true

There are several things you need to know about __proto__:

• __proto__ is pronounced “dunder proto,” an abbreviation of “double underscore
proto.” That pronunciation has been borrowed from the Python programming lan‐
guage (as suggested by Ned Batchelder in 2006). Special variables with double un‐
derscores are quite frequent in Python.

Layer 2: The Prototype Relationship Between Objects | 215

http://bit.ly/1fwlzN8

• __proto__ is not part of the ECMAScript 5 standard. Therefore, you must not use
it if you want your code to conform to that standard and run reliably across current
JavaScript engines.

• However, more and more engines are adding support for __proto__ and it will be
part of ECMAScript 6.

• The following expression checks whether an engine supports __proto__ as a special
property:

Object.getPrototypeOf({ __proto__: null }) === null

Setting and Deleting Affects Only Own Properties
Only getting a property considers the complete prototype chain of an object. Setting
and deleting ignores inheritance and affects only own properties.

Setting a property
Setting a property creates an own property, even if there is an inherited property with
that key. For example, given the following source code:

var proto = { foo: 'a' };
var obj = Object.create(proto);

obj inherits foo from proto:

> obj.foo
'a'
> obj.hasOwnProperty('foo')
false

Setting foo has the desired result:

> obj.foo = 'b';
> obj.foo
'b'

However, we have created an own property and not changed proto.foo:

> obj.hasOwnProperty('foo')
true
> proto.foo
'a'

The rationale is that prototype properties are meant to be shared by several objects. This
approach allows us to nondestructively “change” them—only the current object is
affected.

216 | Chapter 17: Objects and Inheritance

Deleting an inherited property

You can only delete own properties. Let’s again set up an object, obj, with a prototype,
proto:

var proto = { foo: 'a' };
var obj = Object.create(proto);

Deleting the inherited property foo has no effect:

> delete obj.foo
true
> obj.foo
'a'

For more information on the delete operator, consult “Deleting properties” on page
200.

Changing properties anywhere in the prototype chain
If you want to change an inherited property, you first have to find the object that owns
it (see “Finding the object where a property is defined” on page 215) and then perform
the change on that object. For example, let’s delete the property foo from the previous
example:

> delete getDefiningObject(obj, 'foo').foo;
true
> obj.foo
undefined

Iteration and Detection of Properties
Operations for iterating over and detecting properties are influenced by:
Inheritance (own properties versus inherited properties)

An own property of an object is stored directly in that object. An inherited property
is stored in one of its prototypes.

Enumerability (enumerable properties versus nonenumerable properties)
The enumerability of a property is an attribute (see “Property Attributes and Prop‐
erty Descriptors” on page 222), a flag that can be true or false. Enumerability rarely
matters and can normally be ignored (see “Enumerability: Best Practices” on page
228).

You can list own property keys, list all enumerable property keys, and check whether a
property exists. The following subsections show how.

Listing Own Property Keys
You can either list all own property keys, or only enumerable ones:

Iteration and Detection of Properties | 217

• Object.getOwnPropertyNames(obj) returns the keys of all own properties of obj.
• Object.keys(obj) returns the keys of all enumerable own properties of obj.

Note that properties are normally enumerable (see “Enumerability: Best Practices” on
page 228), so you can use Object.keys(), especially for objects that you have created.

Listing All Property Keys
If you want to list all properties (both own and inherited ones) of an object, then you
have two options.

Option 1 is to use the loop:

for («variable» in «object»)
 «statement»

to iterate over the keys of all enumerable properties of object. See “for-in” on page 148
for a more thorough description.

Option 2 is to implement a function yourself that iterates over all properties (not just
enumerable ones). For example:

function getAllPropertyNames(obj) {
 var result = [];
 while (obj) {
 // Add the own property names of `obj` to `result`
 Array.prototype.push.apply(result, Object.getOwnPropertyNames(obj));
 obj = Object.getPrototypeOf(obj);
 }
 return result;
}

Checking Whether a Property Exists
You can check whether an object has a property, or whether a property exists directly
inside an object:
propKey in obj

Returns true if obj has a property whose key is propKey. Inherited properties are
included in this test.

Object.prototype.hasOwnProperty(propKey)

Returns true if the receiver (this) has an own (noninherited) property whose key
is propKey.

218 | Chapter 17: Objects and Inheritance

Avoid invoking hasOwnProperty() directly on an object, as it may
be overridden (e.g., by an own property whose key is hasOwnProper
ty):

> var obj = { hasOwnProperty: 1, foo: 2 };
> obj.hasOwnProperty('foo') // unsafe
TypeError: Property 'hasOwnProperty' is not a function

Instead, it is better to call it generically (see “Generic Methods: Bor‐
rowing Methods from Prototypes” on page 260):

> Object.prototype.hasOwnProperty.call(obj, 'foo') // safe
true
> {}.hasOwnProperty.call(obj, 'foo') // shorter
true

Examples
The following examples are based on these definitions:

var proto = Object.defineProperties({}, {
 protoEnumTrue: { value: 1, enumerable: true },
 protoEnumFalse: { value: 2, enumerable: false }
});
var obj = Object.create(proto, {
 objEnumTrue: { value: 1, enumerable: true },
 objEnumFalse: { value: 2, enumerable: false }
});

Object.defineProperties() is explained in “Getting and Defining Properties via De‐
scriptors” on page 224, but it should be fairly obvious how it works: proto has the own
properties protoEnumTrue and protoEnumFalse and obj has the own properties objE
numTrue and objEnumFalse (and inherits all of proto’s properties).

Note that objects (such as proto in the preceding example) normal‐
ly have at least the prototype Object.prototype (where standard
methods such as toString() and hasOwnProperty() are defined):

> Object.getPrototypeOf({}) === Object.prototype
true

The effects of enumerability

Among property-related operations, enumberability only influences the for-in loop
and Object.keys() (it also influences JSON.stringify(), see “JSON.stringify(value,
replacer?, space?)” on page 337).

The for-in loop iterates over the keys of all enumerable properties, including inherited
ones (note that none of the nonenumerable properties of Object.prototype show up):

Iteration and Detection of Properties | 219

> for (var x in obj) console.log(x);
objEnumTrue
protoEnumTrue

Object.keys() returns the keys of all own (noninherited) enumerable properties:

> Object.keys(obj)
['objEnumTrue']

If you want the keys of all own properties, you need to use Object.getOwnProperty
Names():

> Object.getOwnPropertyNames(obj)
['objEnumTrue', 'objEnumFalse']

The effects of inheritance

Only the for-in loop (see the previous example) and the in operator consider
inheritance:

> 'toString' in obj
true
> obj.hasOwnProperty('toString')
false
> obj.hasOwnProperty('objEnumFalse')
true

Computing the number of own properties of an object

Objects don’t have a method such as length or size, so you have to use the following
workaround:

Object.keys(obj).length

Best Practices: Iterating over Own Properties
To iterate over property keys:

• Combine for-in with hasOwnProperty(), in the manner described in “for-in” on
page 148. This works even on older JavaScript engines. For example:

for (var key in obj) {
 if (Object.prototype.hasOwnProperty.call(obj, key)) {
 console.log(key);
 }
}

• Combine Object.keys() or Object.getOwnPropertyNames() with forEach() ar‐
ray iteration:

var obj = { first: 'John', last: 'Doe' };
// Visit non-inherited enumerable keys
Object.keys(obj).forEach(function (key) {

220 | Chapter 17: Objects and Inheritance

 console.log(key);
});

To iterate over property values or over (key, value) pairs:

• Iterate over the keys, and use each key to retrieve the corresponding value. Other
languages make this simpler, but not JavaScript.

Accessors (Getters and Setters)
ECMAScript 5 lets you write methods whose invocations look like you are getting or
setting a property. That means that a property is virtual and not storage space. You could,
for example, forbid setting a property and always compute the value returned when
reading it.

Defining Accessors via an Object Literal
The following example uses an object literal to define a setter and a getter for property
foo:

var obj = {
 get foo() {
 return 'getter';
 },
 set foo(value) {
 console.log('setter: '+value);
 }
};

Here’s the interaction:

> obj.foo = 'bla';
setter: bla
> obj.foo
'getter'

Defining Accessors via Property Descriptors
An alternate way to specify getters and setters is via property descriptors (see “Property
Descriptors” on page 223). The following code defines the same object as the preceding
literal:

var obj = Object.create(
 Object.prototype, { // object with property descriptors
 foo: { // property descriptor
 get: function () {
 return 'getter';
 },

Accessors (Getters and Setters) | 221

 set: function (value) {
 console.log('setter: '+value);
 }
 }
 }
);

Accessors and Inheritance
Getters and setters are inherited from prototypes:

> var proto = { get foo() { return 'hello' } };
> var obj = Object.create(proto);

> obj.foo
'hello'

Property Attributes and Property Descriptors
Property attributes and property descriptors are an advanced topic.
You normally don’t need to know how they work.

In this section, we’ll look at the internal structure of properties:

• Property attributes are the atomic building blocks of properties.
• A property descriptor is a data structure for working programmatically with

attributes.

Property Attributes
All of a property’s state, both its data and its metadata, is stored in attributes. They are
fields that a property has, much like an object has properties. Attribute keys are often
written in double brackets. Attributes matter for normal properties and for accessors
(getters and setters).

The following attributes are specific to normal properties:

• [[Value]] holds the property’s value, its data.
• [[Writable]] holds a boolean indicating whether the value of a property can be

changed.

The following attributes are specific to accessors:

222 | Chapter 17: Objects and Inheritance

• [[Get]] holds the getter, a function that is called when a property is read. The
function computes the result of the read access.

• [[Set]] holds the setter, a function that is called when a property is set to a value.
The function receives that value as a parameter.

All properties have the following attributes:

• [[Enumerable]] holds a boolean. Making a property nonenumerable hides it from
some operations (see “Iteration and Detection of Properties” on page 217).

• [[Configurable]] holds a boolean. If it is false, you cannot delete a property,
change any of its attributes (except [[Value]]), or convert it from a data property
to an accessor property or vice versa. In other words, [[Configurable]] controls
the writability of a property’s metadata. There is one exception to this rule—Java‐
Script allows you to change an unconfigurable property from writable to read-only,
for historic reasons; the property length of arrays has always been writable and
unconfigurable. Without this exception, you wouldn’t be able to freeze (see “Freez‐
ing” on page 230) arrays.

Default values
If you don’t specify attributes, the following defaults are used:

Attribute key Default value

[[Value]] undefined

[[Get]] undefined

[[Set]] undefined

[[Writable]] false

[[Enumerable]] false

[[Configurable]] false

These defaults are important when you are creating properties via property descriptors
(see the following section).

Property Descriptors
A property descriptor is a data structure for working programmatically with attributes.
It is an object that encodes the attributes of a property. Each of a descriptor’s properties
corresponds to an attribute. For example, the following is the descriptor of a read-only
property whose value is 123:

{
 value: 123,

Property Attributes and Property Descriptors | 223

http://bit.ly/1fwlIQI

 writable: false,
 enumerable: true,
 configurable: false
}

You can achieve the same goal, immutability, via accessors. Then the descriptor looks
as follows:

{
 get: function () { return 123 },
 enumerable: true,
 configurable: false
}

Getting and Defining Properties via Descriptors
Property descriptors are used for two kinds of operations:
Getting a property

All attributes of a property are returned as a descriptor.

Defining a property
Defining a property means something different depending on whether a property
already exists:

• If a property does not exist, create a new property whose attributes are as
specified by the descriptor. If an attribute has no corresponding property in
the descriptor, then use the default value. The defaults are dictated by what the
attribute names mean. They are the opposite of the values that are used when
creating a property via assignment (then the property is writable, enumerable,
and configurable). For example:

> var obj = {};
> Object.defineProperty(obj, 'foo', { configurable: true });
> Object.getOwnPropertyDescriptor(obj, 'foo')
{ value: undefined,
 writable: false,
 enumerable: false,
 configurable: true }

I usually don’t rely on the defaults and explicitly state all attributes, to be com‐
pletely clear.

• If a property already exists, update the attributes of the property as specified
by the descriptor. If an attribute has no corresponding property in the descrip‐
tor, then don’t change it. Here is an example (continued from the previous one):

> Object.defineProperty(obj, 'foo', { writable: true });
> Object.getOwnPropertyDescriptor(obj, 'foo')
{ value: undefined,
 writable: true,

224 | Chapter 17: Objects and Inheritance

 enumerable: false,
 configurable: true }

The following operations allow you to get and set a property’s attributes via property
descriptors:
Object.getOwnPropertyDescriptor(obj, propKey)

Returns the descriptor of the own (noninherited) property of obj whose key is
propKey. If there is no such property, undefined is returned:

> Object.getOwnPropertyDescriptor(Object.prototype, 'toString')
{ value: [Function: toString],
 writable: true,
 enumerable: false,
 configurable: true }

> Object.getOwnPropertyDescriptor({}, 'toString')
undefined

Object.defineProperty(obj, propKey, propDesc)

Create or change a property of obj whose key is propKey and whose attributes are
specified via propDesc. Return the modified object. For example:

var obj = Object.defineProperty({}, 'foo', {
 value: 123,
 enumerable: true
 // writable: false (default value)
 // configurable: false (default value)
});

Object.defineProperties(obj, propDescObj)

The batch version of Object.defineProperty(). Each property of propDescObj
holds a property descriptor. The keys of the properties and their values tell Ob
ject.defineProperties what properties to create or change on obj. For example:

var obj = Object.defineProperties({}, {
 foo: { value: 123, enumerable: true },
 bar: { value: 'abc', enumerable: true }
});

Object.create(proto, propDescObj?)

First, create an object whose prototype is proto. Then, if the optional parameter
propDescObj has been specified, add properties to it—in the same manner as Ob
ject.defineProperties. Finally, return the result. For example, the following code
snippet produces the same result as the previous snippet:

var obj = Object.create(Object.prototype, {
 foo: { value: 123, enumerable: true },
 bar: { value: 'abc', enumerable: true }
});

Property Attributes and Property Descriptors | 225

Copying an Object
To create an identical copy of an object, you need to get two things right:

1. The copy must have the same prototype (see “Layer 2: The Prototype Relationship
Between Objects” on page 211) as the original.

2. The copy must have the same properties, with the same attributes as the original.

The following function performs such a copy:

function copyObject(orig) {
 // 1. copy has same prototype as orig
 var copy = Object.create(Object.getPrototypeOf(orig));

 // 2. copy has all of orig’s properties
 copyOwnPropertiesFrom(copy, orig);

 return copy;
}

The properties are copied from orig to copy via this function:

function copyOwnPropertiesFrom(target, source) {
 Object.getOwnPropertyNames(source) // (1)
 .forEach(function(propKey) { // (2)
 var desc = Object.getOwnPropertyDescriptor(source, propKey); // (3)
 Object.defineProperty(target, propKey, desc); // (4)
 });
 return target;
};

These are the steps involved:

1. Get an array with the keys of all own properties of source.
2. Iterate over those keys.
3. Retrieve a property descriptor.
4. Use that property descriptor to create an own property in target.

Note that this function is very similar to the function _.extend() in the Underscore.js
library.

Properties: Definition Versus Assignment
The following two operations are very similar:

• Defining a property via defineProperty() and defineProperties() (see “Getting
and Defining Properties via Descriptors” on page 224).

226 | Chapter 17: Objects and Inheritance

http://underscorejs.org/#extend

• Assigning to a property via =.

There are, however, a few subtle differences:

• Defining a property means creating a new own property or updating the attributes
of an existing own property. In both cases, the prototype chain is completely ig‐
nored.

• Assigning to a property prop means changing an existing property. The process is
as follows:
— If prop is a setter (own or inherited), call that setter.
— Otherwise, if prop is read-only (own or inherited), throw an exception (in strict

mode) or do nothing (in sloppy mode). The next section explains this (slightly
unexpected) phenomenon in more detail.

— Otherwise, if prop is own (and writable), change the value of that property.
— Otherwise, there either is no property prop, or it is inherited and writable. In

both cases, define an own property prop that is writable, configurable, and enu‐
merable. In the latter case, we have just overridden an inherited property (non‐
destructively changed it). In the former case, a missing property has been defined
automatically. This kind of autodefining is problematic, because typos in as‐
signments can be hard to detect.

Inherited Read-Only Properties Can’t Be Assigned To
If an object, obj, inherits a property, foo, from a prototype and foo is not writable, then
you can’t assign to obj.foo:

var proto = Object.defineProperty({}, 'foo', {
 value: 'a',
 writable: false
});
var obj = Object.create(proto);

obj inherits the read-only property foo from proto. In sloppy mode, setting the prop‐
erty has no effect:

> obj.foo = 'b';
> obj.foo
'a'

In strict mode, you get an exception:

> (function () { 'use strict'; obj.foo = 'b' }());
TypeError: Cannot assign to read-only property 'foo'

Property Attributes and Property Descriptors | 227

This fits with the idea that assignment changes inherited properties, but nondestruc‐
tively. If an inherited property is read-only, you want to forbid all changes, even non‐
destructive ones.

Note that you can circumvent this protection by defining an own property (see the
previous subsection for the difference between definition and assignment):

> Object.defineProperty(obj, 'foo', { value: 'b' });
> obj.foo
'b'

Enumerability: Best Practices
The general rule is that properties created by the system are nonenumerable, while
properties created by users are enumerable:

> Object.keys([])
[]
> Object.getOwnPropertyNames([])
['length']

> Object.keys(['a'])
['0']

This is especially true for the methods of the built-in instance prototypes:

> Object.keys(Object.prototype)
[]
> Object.getOwnPropertyNames(Object.prototype)
[hasOwnProperty',
 'valueOf',
 'constructor',
 'toLocaleString',
 'isPrototypeOf',
 'propertyIsEnumerable',
 'toString']

The main purpose of enumerability is to tell the for-in loop which properties it should
ignore. As we have seen just now when we looked at instances of built-in constructors,
everything not created by the user is hidden from for-in.

The only operations affected by enumerability are:

• The for-in loop
• Object.keys() (“Listing Own Property Keys” on page 217)
• JSON.stringify() (“JSON.stringify(value, replacer?, space?)” on page 337)

Here are some best practices to keep in mind:

228 | Chapter 17: Objects and Inheritance

• For your own code, you can usually ignore enumerability and should avoid the
for-in loop (“Best Practices: Iterating over Arrays” on page 295).

• You normally shouldn’t add properties to built-in prototypes and objects. But if you
do, you should make them nonenumerable to avoid breaking existing code.

Protecting Objects
There are three levels of protecting an object, listed here from weakest to strongest:

• Preventing extensions
• Sealing
• Freezing

Preventing Extensions
Preventing extensions via:

Object.preventExtensions(obj)

makes it impossible to add properties to obj. For example:

var obj = { foo: 'a' };
Object.preventExtensions(obj);

Now adding a property fails silently in sloppy mode:

> obj.bar = 'b';
> obj.bar
undefined

and throws an error in strict mode:

> (function () { 'use strict'; obj.bar = 'b' }());
TypeError: Can't add property bar, object is not extensible

You can still delete properties, though:

> delete obj.foo
true
> obj.foo
undefined

You check whether an object is extensible via:

Object.isExtensible(obj)

Protecting Objects | 229

Sealing
Sealing via:

Object.seal(obj)

prevents extensions and makes all properties “unconfigurable.” The latter means that
the attributes (see “Property Attributes and Property Descriptors” on page 222) of
properties can’t be changed anymore. For example, read-only properties stay read-only
forever.

The following example demonstrates that sealing makes all properties unconfigurable:

> var obj = { foo: 'a' };

> Object.getOwnPropertyDescriptor(obj, 'foo') // before sealing
{ value: 'a',
 writable: true,
 enumerable: true,
 configurable: true }

> Object.seal(obj)

> Object.getOwnPropertyDescriptor(obj, 'foo') // after sealing
{ value: 'a',
 writable: true,
 enumerable: true,
 configurable: false }

You can still change the property foo:

> obj.foo = 'b';
'b'
> obj.foo
'b'

but you can’t change its attributes:

> Object.defineProperty(obj, 'foo', { enumerable: false });
TypeError: Cannot redefine property: foo

You check whether an object is sealed via:

Object.isSealed(obj)

Freezing
Freezing is performed via:

Object.freeze(obj)

It makes all properties nonwritable and seals obj. In other words, obj is not extensible
and all properties are read-only, and there is no way to change that. Let’s look at an
example:

230 | Chapter 17: Objects and Inheritance

var point = { x: 17, y: -5 };
Object.freeze(point);

Once again, you get silent failures in sloppy mode:

> point.x = 2; // no effect, point.x is read-only
> point.x
17

> point.z = 123; // no effect, point is not extensible
> point
{ x: 17, y: -5 }

And you get errors in strict mode:

> (function () { 'use strict'; point.x = 2 }());
TypeError: Cannot assign to read-only property 'x'

> (function () { 'use strict'; point.z = 123 }());
TypeError: Can't add property z, object is not extensible

You check whether an object is frozen via:

Object.isFrozen(obj)

Pitfall: Protection Is Shallow
Protecting an object is shallow: it affects the own properties, but not the values of those
properties. For example, consider the following object:

var obj = {
 foo: 1,
 bar: ['a', 'b']
};
Object.freeze(obj);

Even though you have frozen obj, it is not completely immutable—you can change the
(mutable) value of property bar:

> obj.foo = 2; // no effect
> obj.bar.push('c'); // changes obj.bar

> obj
{ foo: 1, bar: ['a', 'b', 'c'] }

Additionally, obj has the prototype Object.prototype, which is also mutable.

Layer 3: Constructors—Factories for Instances
A constructor function (short: constructor) helps with producing objects that are similar
in some way. It is a normal function, but it is named, set up, and invoked differently.

Layer 3: Constructors—Factories for Instances | 231

This section explains how constructors work. They correspond to classes in other
languages.

We have already seen an example of two objects that are similar (in “Sharing Data
Between Objects via a Prototype” on page 212):

var PersonProto = {
 describe: function () {
 return 'Person named '+this.name;
 }
};
var jane = {
 [[Prototype]]: PersonProto,
 name: 'Jane'
};
var tarzan = {
 [[Prototype]]: PersonProto,
 name: 'Tarzan'
};

The objects jane and tarzan are both considered “persons” and share the prototype
object PersonProto. Let’s turn that prototype into a constructor Person that creates
objects like jane and tarzan. The objects a constructor creates are called its instances.
Such instances have the same structure as jane and tarzan, consisting of two parts:

1. Data is instance-specific and stored in the own properties of the instance objects
(jane and tarzan in the preceding example).

2. Behavior is shared by all instances—they have a common prototype object with
methods (PersonProto in the preceding example).

A constructor is a function that is invoked via the new operator. By convention, the
names of constructors start with uppercase letters, while the names of normal functions
and methods start with lowercase letters. The function itself sets up part 1:

function Person(name) {
 this.name = name;
}

The object in Person.prototype becomes the prototype of all instances of Person. It
contributes part 2:

Person.prototype.describe = function () {
 return 'Person named '+this.name;
};

Let’s create and use an instance of Person:

> var jane = new Person('Jane');
> jane.describe()
'Person named Jane'

232 | Chapter 17: Objects and Inheritance

We can see that Person is a normal function. It only becomes a constructor when it is
invoked via new. The new operator performs the following steps:

• First the behavior is set up: a new object is created whose prototype is Person.
prototype.

• Then the data is set up: Person receives that object as the implicit parameter this
and adds instance properties.

Figure 17-3 shows what the instance jane looks like. The property constructor of
Person.prototype points back to the constructor and is explained in “The constructor
Property of Instances” on page 234.

Figure 17-3. jane is an instance of the constructor Person; its prototype is the object
Person.prototype.

The instanceof operator allows us to check whether an object is an instance of a given
constructor:

> jane instanceof Person
true
> jane instanceof Date
false

The new Operator Implemented in JavaScript
If you were to manually implement the new operator, it would look roughly as follows:

function newOperator(Constr, args) {
 var thisValue = Object.create(Constr.prototype); // (1)
 var result = Constr.apply(thisValue, args);
 if (typeof result === 'object' && result !== null) {
 return result; // (2)
 }
 return thisValue;
}

Layer 3: Constructors—Factories for Instances | 233

In line (1), you can see that the prototype of an instance created by a constructor Constr
is Constr.prototype.

Line (2) reveals another feature of the new operator: you can return an arbitrary object
from a constructor and it becomes the result of the new operator. This is useful if you
want a constructor to return an instance of a subconstructor (an example is given in
“Returning arbitrary objects from a constructor” on page 240).

Terminology: The Two Prototypes
Unfortunately, the term prototype is used ambiguously in JavaScript:
Prototype 1: The prototype relationship

An object can be the prototype of another object:

> var proto = {};
> var obj = Object.create(proto);
> Object.getPrototypeOf(obj) === proto
true

In the preceding example, proto is the prototype of obj.

Prototype 2: The value of the property prototype
Each constructor C has a prototype property that refers to an object. That object
becomes the prototype of all instances of C:

> function C() {}
> Object.getPrototypeOf(new C()) === C.prototype
true

Usually the context makes it clear which of the two prototypes is meant. Should dis‐
ambiguation be necessary, then we are stuck with prototype to describe the relationship
between objects, because that name has made it into the standard library via getProto
typeOf and isPrototypeOf. We thus need to find a different name for the object ref‐
erenced by the prototype property. One possibility is constructor prototype, but that is
problematic because constructors have prototypes, too:

> function Foo() {}
> Object.getPrototypeOf(Foo) === Function.prototype
true

Thus, instance prototype is the best option.

The constructor Property of Instances
By default, each function C contains an instance prototype object C.prototype whose
property constructor points back to C:

234 | Chapter 17: Objects and Inheritance

> function C() {}
> C.prototype.constructor === C
true

Because the constructor property is inherited from the prototype by each instance,
you can use it to get the constructor of an instance:

> var o = new C();
> o.constructor
[Function: C]

Use cases for the constructor property
Switching over an object’s constructor

In the following catch clause, we take different actions, depending on the con‐
structor of the caught exception:

try {
 ...
} catch (e) {
 switch (e.constructor) {
 case SyntaxError:
 ...
 break;
 case CustomError:
 ...
 break;
 ...
 }
}

This approach detects only direct instances of a given construc‐
tor. In contrast, instanceof detects both direct instances and
instances of all subconstructors.

Determining the name of an object’s constructor
For example:

> function Foo() {}
> var f = new Foo();
> f.constructor.name
'Foo'

Not all JavaScript engines support the property name for
functions.

Layer 3: Constructors—Factories for Instances | 235

Creating similar objects
This is how you create a new object, y, that has the same constructor as an existing
object, x:

function Constr() {}
var x = new Constr();

var y = new x.constructor();
console.log(y instanceof Constr); // true

This trick is handy for a method that must work for instances of subconstructors
and wants to create a new instance that is similar to this. Then you can’t use a fixed
constructor:

SuperConstr.prototype.createCopy = function () {
 return new this.constructor(...);
};

Referring to a superconstructor
Some inheritance libraries assign the superprototype to a property of a subcon‐
structor. For example, the YUI framework provides subclassing via Y.extend:

function Super() {
}
function Sub() {
 Sub.superclass.constructor.call(this); // (1)
}
Y.extend(Sub, Super);

The call in line (1) works, because extend sets Sub.superclass to Super.proto
type. Thanks to the constructor property, you can call the superconstructor as a
method.

The instanceof operator (see “The instanceof Operator” on page 237)
does not rely on the property constructor.

Best practice

Make sure that for each constructor C, the following assertion holds:

C.prototype.constructor === C

By default, every function f already has a property prototype that is set up correctly:

> function f() {}
> f.prototype.constructor === f
true

236 | Chapter 17: Objects and Inheritance

http://yuilibrary.com/yui/docs/yui/yui-extend.html

You should thus avoid replacing this object and only add properties to it:

// Avoid:
C.prototype = {
 method1: function (...) { ... },
 ...
};

// Prefer:
C.prototype.method1 = function (...) { ... };
...

If you do replace it, you should manually assign the correct value to constructor:

C.prototype = {
 constructor: C,
 method1: function (...) { ... },
 ...
};

Note that nothing crucial in JavaScript depends on the constructor property; but it is
good style to set it up, because it enables the techniques mentioned in this section.

The instanceof Operator
The instanceof operator:

value instanceof Constr

determines whether value has been created by the constructor Constr or a subcon‐
structor. It does so by checking whether Constr.prototype is in the prototype chain of
value. Therefore, the following two expressions are equivalent:

value instanceof Constr
Constr.prototype.isPrototypeOf(value)

Here are some examples:

> {} instanceof Object
true

> [] instanceof Array // constructor of []
true
> [] instanceof Object // super-constructor of []
true

> new Date() instanceof Date
true
> new Date() instanceof Object
true

As expected, instanceof is always false for primitive values:

Layer 3: Constructors—Factories for Instances | 237

> 'abc' instanceof Object
false
> 123 instanceof Number
false

Finally, instanceof throws an exception if its right side isn’t a function:

> [] instanceof 123
TypeError: Expecting a function in instanceof check

Pitfall: objects that are not instances of Object

Almost all objects are instances of Object, because Object.prototype is in their pro‐
totype chain. But there are also objects where that is not the case. Here are two examples:

> Object.create(null) instanceof Object
false
> Object.prototype instanceof Object
false

The former object is explained in more detail in “The dict Pattern: Objects Without
Prototypes Are Better Maps” on page 269. The latter object is where most prototype chains
end (and they must end somewhere). Neither object has a prototype:

> Object.getPrototypeOf(Object.create(null))
null
> Object.getPrototypeOf(Object.prototype)
null

But typeof correctly classifies them as objects:

> typeof Object.create(null)
'object'
> typeof Object.prototype
'object'

This pitfall is not a deal-breaker for most use cases for instanceof, but you have to be
aware of it.

Pitfall: crossing realms (frames or windows)
In web browsers, each frame and window has its own realm with separate global vari‐
ables. That prevents instanceof from working for objects that cross realms. To see why,
look at the following code:

if (myvar instanceof Array) ... // Doesn’t always work

If myvar is an array from a different realm, then its prototype is the Array.prototype
from that realm. Therefore, instanceof will not find the Array.prototype of the cur‐
rent realm in the prototype chain of myvar and will return false. ECMAScript 5 has
the function Array.isArray(), which always works:

238 | Chapter 17: Objects and Inheritance

<head>
 <script>
 function test(arr) {
 var iframe = frames[0];

 console.log(arr instanceof Array); // false
 console.log(arr instanceof iframe.Array); // true
 console.log(Array.isArray(arr)); // true
 }
 </script>
</head>
<body>
 <iframe srcdoc="<script>window.parent.test([])</script>">
 </iframe>
</body>

Obviously, this is also an issue with non-built-in constructors.

Apart from using Array.isArray(), there are several things you can do to work around
this problem:

• Avoid objects crossing realms. Browsers have the postMessage() method, which
can copy an object to another realm instead of passing a reference.

• Check the name of the constructor of an instance (only works on engines that
support the property name for functions):

someValue.constructor.name === 'NameOfExpectedConstructor'

• Use a prototype property to mark instances as belonging to a type T. There are
several ways in which you can do so. The checks for whether value is an instance
of T look as follows:
— value.isT(): The prototype of T instances must return true from this method;

a common superconstructor should return the default value, false.
— 'T' in value: You must tag the prototype of T instances with a property whose

key is 'T' (or something more unique).
— value.TYPE_NAME === 'T': Every relevant prototype must have a TYPE_NAME

property with an appropriate value.

Tips for Implementing Constructors
This section gives a few tips for implementing constructors.

Layer 3: Constructors—Factories for Instances | 239

http://mzl.la/1fwmNrL

Protection against forgetting new: strict mode

If you forget new when you use a constructor, you are calling it as a function instead of
as a constructor. In sloppy mode, you don’t get an instance and global variables are
created. Unfortunately, all of this happens without a warning:

function SloppyColor(name) {
 this.name = name;
}
var c = SloppyColor('green'); // no warning!

// No instance is created:
console.log(c); // undefined
// A global variable is created:
console.log(name); // green

In strict mode, you get an exception:

function StrictColor(name) {
 'use strict';
 this.name = name;
}
var c = StrictColor('green');
// TypeError: Cannot set property 'name' of undefined

Returning arbitrary objects from a constructor
In many object-oriented languages, constructors can produce only direct instances. For
example, consider Java: let’s say you want to implement a class Expression that has the
subclasses Addition and Multiplication. Parsing produces direct instances of the lat‐
ter two classes. You can’t implement it as a constructor of Expression, because that
constructor can produce only direct instances of Expression. As a workaround, static
factory methods are used in Java:

class Expression {
 // Static factory method:
 public static Expression parse(String str) {
 if (...) {
 return new Addition(...);
 } else if (...) {
 return new Multiplication(...);
 } else {
 throw new ExpressionException(...);
 }
 }
}
...
Expression expr = Expression.parse(someStr);

In JavaScript, you can simply return whatever object you need from a constructor. Thus,
the JavaScript version of the preceding code would look like:

240 | Chapter 17: Objects and Inheritance

function Expression(str) {
 if (...) {
 return new Addition(..);
 } else if (...) {
 return new Multiplication(...);
 } else {
 throw new ExpressionException(...);
 }
}
...
var expr = new Expression(someStr);

That is good news: JavaScript constructors don’t lock you in, so you can always change
your mind as to whether a constructor should return a direct instance or something
else.

Data in Prototype Properties
This section explains that in most cases, you should not put data in prototype properties.
There are, however, a few exceptions to that rule.

Avoid Prototype Properties with Initial Values for Instance Properties
Prototypes contain properties that are shared by several objects. Hence, they work well
for methods. Additionally, with a technique that is described next, you can also use them
to provide initial values for instance properties. I’ll later explain why that is not
recommended.

A constructor usually sets instance properties to initial values. If one such value is a
default, then you don’t need to create an instance property. You only need a prototype
property with the same key whose value is the default. For example:

/**
 * Anti-pattern: don’t do this
 *
 * @param data an array with names
 */
function Names(data) {
 if (data) {
 // There is a parameter
 // => create instance property
 this.data = data;
 }
}
Names.prototype.data = [];

The parameter data is optional. If it is missing, the instance does not get a property
data, but inherits Names.prototype.data instead.

Data in Prototype Properties | 241

This approach mostly works: you can create an instance n of Names. Getting n.data
reads Names.prototype.data. Setting n.data creates a new own property in n and pre‐
serves the shared default value in the prototype. We only have a problem if we change
the default value (instead of replacing it with a new value):

> var n1 = new Names();
> var n2 = new Names();

> n1.data.push('jane'); // changes default value
> n1.data
['jane']

> n2.data
['jane']

In the preceding example, push() changed the array in Names.prototype.data. Since
that array is shared by all instances without an own property data, n2.data’s initial
value has changed, too.

Best practice: don’t share default values
Given what we’ve just discussed, it is better to not share default values and to always
create new ones:

function Names(data) {
 this.data = data || [];
}

Obviously, the problem of modifying a shared default value does not arise if that value
is immutable (as all primitives are; see “Primitive Values” on page 69). But for consis‐
tency’s sake, it’s best to stick to a single way of setting up properties. I also prefer to
maintain the usual separation of concerns (see “Layer 3: Constructors—Factories for
Instances” on page 231): the constructor sets up the instance properties, and the pro‐
totype contains the methods.

ECMAScript 6 will make this even more of a best practice, because constructor param‐
eters can have default values and you can define prototype methods via classes, but not
prototype properties with data.

Creating instance properties on demand
Occasionally, creating a property value is an expensive operation (computationally or
storage-wise). In that case, you can create an instance property on demand:

function Names(data) {
 if (data) this.data = data;
}
Names.prototype = {
 constructor: Names, // (1)
 get data() {

242 | Chapter 17: Objects and Inheritance

 // Define, don’t assign
 // => avoid calling the (nonexistent) setter
 Object.defineProperty(this, 'data', {
 value: [],
 enumerable: true,
 configurable: false,
 writable: false
 });
 return this.data;
 }
};

We can’t add the property data to the instance via assignment, because JavaScript would
complain about a missing setter (which it does when it only finds a getter). Therefore,
we add it via Object.defineProperty(). Consult “Properties: Definition Versus As‐
signment” on page 226 to review the differences between defining and assigning. In line
(1), we are ensuring that the property constructor is set up properly (see “The con‐
structor Property of Instances” on page 234).

Obviously, that is quite a bit of work, so you have to be sure it is worth it.

Avoid Nonpolymorphic Prototype Properties
If the same property (same key, same semantics, generally different values), exists in
several prototypes, it is called polymorphic. Then the result of reading the property via
an instance is dynamically determined via that instance’s prototype. Prototype proper‐
ties that are not used polymorphically can be replaced by variables (which better reflects
their nonpolymorphic nature).

For example, you can store a constant in a prototype property and access it via this:

function Foo() {}
Foo.prototype.FACTOR = 42;
Foo.prototype.compute = function (x) {
 return x * this.FACTOR;
};

This constant is not polymorphic. Therefore, you can just as well access it via a variable:

// This code should be inside an IIFE or a module
function Foo() {}
var FACTOR = 42;
Foo.prototype.compute = function (x) {
 return x * FACTOR;
};

Data in Prototype Properties | 243

Polymorphic Prototype Properties
Here is an example of polymorphic prototype properties with immutable data. Tagging
instances of a constructor via prototype properties enables you to tell them apart from
instances of a different constructor:

function ConstrA() { }
ConstrA.prototype.TYPE_NAME = 'ConstrA';

function ConstrB() { }
ConstrB.prototype.TYPE_NAME = 'ConstrB';

Thanks to the polymorphic “tag” TYPE_NAME, you can distinguish the instances of Con
strA and ConstrB even when they cross realms (then instanceof does not work; see
“Pitfall: crossing realms (frames or windows)” on page 238).

Keeping Data Private
JavaScript does not have dedicated means for managing private data for an object. This
section will describe three techniques for working around that limitation:

• Private data in the environment of a constructor
• Private data in properties with marked keys
• Private data in properties with reified keys

Additionally, I will explain how to keep global data private via IIFEs.

Private Data in the Environment of a Constructor (Crockford Privacy
Pattern)
When a constructor is invoked, two things are created: the constructor’s instance and
an environment (see “Environments: Managing Variables” on page 190). The instance
is to be initialized by the constructor. The environment holds the constructor’s param‐
eters and local variables. Every function (which includes methods) created inside the
constructor will retain a reference to the environment—the environment in which it
was created. Thanks to that reference, it will always have access to the environment,
even after the constructor is finished. This combination of function and environment
is called a closure (“Closures: Functions Stay Connected to Their Birth Scopes” on page
193). The constructor’s environment is thus data storage that is independent of the
instance and related to it only because the two are created at the same time. To properly
connect them, we must have functions that live in both worlds. Using Douglas Crock‐
ford’s terminology, an instance can have three kinds of values associated with it (see
Figure 17-4):

244 | Chapter 17: Objects and Inheritance

http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html

Public properties
Values stored in properties (either in the instance or in its prototype) are publicly
accessible.

Private values
Data and functions stored in the environment are private—only accessible to the
constructor and to the functions it created.

Privileged methods
Private functions can access public properties, but public methods in the prototype
can’t access private data. We thus need privileged methods—public methods in the
instance. Privileged methods are public and can be called by everyone, but they also
have access to private values, because they were created in the constructor.

Figure 17-4. When a constructor Constr is invoked, two data structures are created: an
environment for parameters and local variables and an instance to be initialized.

The following sections explain each kind of value in more detail.

Public properties

Remember that given a constructor Constr, there are two kinds of properties that are
public, accessible to everyone. First, prototype properties are stored in Constr.proto
type and shared by all instances. Prototype properties are usually methods:

Constr.prototype.publicMethod = ...;

Second, instance properties are unique to each instance. They are added in the con‐
structor and usually hold data (not methods):

function Constr(...) {
 this.publicData = ...;
 ...
}

Keeping Data Private | 245

Private values
The constructor’s environment consists of the parameters and local variables. They are
accessible only from inside the constructor and thus private to the instance:

function Constr(...) {
 ...
 var that = this; // make accessible to private functions

 var privateData = ...;

 function privateFunction(...) {
 // Access everything
 privateData = ...;

 that.publicData = ...;
 that.publicMethod(...);
 }
 ...
}

Privileged methods
Private data is so safe from outside access that prototype methods can’t access it. But
then how else would you use it after leaving the constructor? The answer is privileged
methods: functions created in the constructor are added as instance methods. That
means that, on one hand, they can access private data; on the other hand, they are public
and therefore seen by prototype methods. In other words, they serve as mediators be‐
tween private data and the public (including prototype methods):

function Constr(...) {
 ...
 this.privilegedMethod = function (...) {
 // Access everything
 privateData = ...;
 privateFunction(...);

 this.publicData = ...;
 this.publicMethod(...);
 };
}

An example

The following is an implementation of a StringBuilder, using the Crockford privacy
pattern:

function StringBuilder() {
 var buffer = [];
 this.add = function (str) {
 buffer.push(str);
 };

246 | Chapter 17: Objects and Inheritance

 this.toString = function () {
 return buffer.join('');
 };
}
// Can’t put methods in the prototype!

Here is the interaction:

> var sb = new StringBuilder();
> sb.add('Hello');
> sb.add(' world!');
> sb.toString()
’Hello world!’

The pros and cons of the Crockford privacy pattern
Here are some points to consider when you are using the Crockford privacy pattern:
It’s not very elegant

Mediating access to private data via privileged methods introduces an unnecessary
indirection. Privileged methods and private functions both destroy the separation
of concerns between the constructor (setting up instance data) and the instance
prototype (methods).

It’s completely secure
There is no way to access the environment’s data from outside, which makes this
solution secure if you need that (e.g., for security-critical code). On the other hand,
private data not being accessible to the outside can also be an inconvenience. Some‐
times you want to unit-test private functionality. And some temporary quick fixes
depend on the ability to access private data. This kind of quick fix cannot be pre‐
dicted, so no matter how good your design is, the need can arise.

It may be slower
Accessing properties in the prototype chain is highly optimized in current Java‐
Script engines. Accessing values in the closure may be slower. But these things
change constantly, so you’ll have to measure should this really matter for your code.

It consumes more memory
Keeping the environment around and putting privileged methods in instances costs
memory. Again, be sure it really matters for your code and measure.

Private Data in Properties with Marked Keys
For most non-security-critical applications, privacy is more like a hint to clients of an
API: “You don’t need to see this.” That’s the key benefit of encapsulation—hiding com‐
plexity. Even though more is going on under the hood, you only need to understand
the public part of an API. The idea of a naming convention is to let clients know about

Keeping Data Private | 247

privacy by marking the key of a property. A prefixed underscore is often used for this
purpose.

Let’s rewrite the previous StringBuilder example so that the buffer is kept in a property
_buffer, which is private, but by convention only:

function StringBuilder() {
 this._buffer = [];
}
StringBuilder.prototype = {
 constructor: StringBuilder,
 add: function (str) {
 this._buffer.push(str);
 },
 toString: function () {
 return this._buffer.join('');
 }
};

Here are some pros and cons of privacy via marked property keys:
It offers a more natural coding style

Being able to access private and public data in the same manner is more elegant
than using environments for privacy.

It pollutes the namespace of properties
Properties with marked keys can be seen everywhere. The more people use IDEs,
the more it will be a nuisance that they are shown alongside public properties, in
places where they should be hidden. IDEs could, in theory, adapt by recognizing
naming conventions and by hiding private properties where possible.

Private properties can be accessed from “outside”
That can be useful for unit tests and quick fixes. Additionally, subconstructors and
helper functions (so-called “friend functions”) can profit from easier access to pri‐
vate data. The environment approach doesn’t offer this kind of flexibility; private
data can be accessed only from within the constructor.

It can lead to key clashes
Keys of private properties can clash. This is already an issue for subconstructors,
but it is even more problematic if you work with multiple inheritance (as enabled
by some libraries). With the environment approach, there are never any clashes.

Private Data in Properties with Reified Keys
One problem with a naming convention for private properties is that keys might clash
(e.g., a key from a constructor with a key from a subconstructor, or a key from a mixin
with a key from a constructor). You can make such clashes less likely by using longer
keys, that, for example, include the name of the constructor. Then, in the previous case,

248 | Chapter 17: Objects and Inheritance

the private property _buffer would be called _StringBuilder_buffer. If such a key is
too long for your taste, you have the option of reifying it, of storing it in a variable:

var KEY_BUFFER = '_StringBuilder_buffer';

We now access the private data via this[KEY_BUFFER]:

var StringBuilder = function () {
 var KEY_BUFFER = '_StringBuilder_buffer';

 function StringBuilder() {
 this[KEY_BUFFER] = [];
 }
 StringBuilder.prototype = {
 constructor: StringBuilder,
 add: function (str) {
 this[KEY_BUFFER].push(str);
 },
 toString: function () {
 return this[KEY_BUFFER].join('');
 }
 };
 return StringBuilder;
}();

We have wrapped an IIFE around StringBuilder so that the constant KEY_BUFFER stays
local and doesn’t pollute the global namespace.

Reified property keys enable you to use UUIDs (universally unique identifiers) in keys.
For example, via Robert Kieffer’s node-uuid:

var KEY_BUFFER = '_StringBuilder_buffer_' + uuid.v4();

KEY_BUFFER has a different value each time the code runs. It may, for example, look like
this:

_StringBuilder_buffer_110ec58a-a0f2-4ac4-8393-c866d813b8d1

Long keys with UUIDs make key clashes virtually impossible.

Keeping Global Data Private via IIFEs
This subsection explains how to keep global data private to singleton objects, construc‐
tors, and methods, via IIFEs (see “Introducing a New Scope via an IIFE” on page 183).
Those IIFEs create new environments (refer back to “Environments: Managing Vari‐
ables” on page 190), which is where you put the private data.

Attaching private global data to a singleton object
You don’t need a constructor to associate an object with private data in an environment.
The following example shows how to use an IIFE for the same purpose, by wrapping it
around a singleton object:

Keeping Data Private | 249

https://github.com/broofa/node-uuid

var obj = function () { // open IIFE

 // public
 var self = {
 publicMethod: function (...) {
 privateData = ...;
 privateFunction(...);
 },
 publicData: ...
 };

 // private
 var privateData = ...;
 function privateFunction(...) {
 privateData = ...;
 self.publicData = ...;
 self.publicMethod(...);
 }

 return self;
}(); // close IIFE

Keeping global data private to all of a constructor
Some global data is relevant only for a constructor and the prototype methods. By
wrapping an IIFE around both, you can hide it from public view. “Private Data in Prop‐
erties with Reified Keys” on page 248 gave an example: the constructor StringBuild
er and its prototype methods use the constant KEY_BUFFER, which contains a property
key. That constant is stored in the environment of an IIFE:

var StringBuilder = function () { // open IIFE
 var KEY_BUFFER = '_StringBuilder_buffer_' + uuid.v4();

 function StringBuilder() {
 this[KEY_BUFFER] = [];
 }
 StringBuilder.prototype = {
 // Omitted: methods accessing this[KEY_BUFFER]
 };
 return StringBuilder;
}(); // close IIFE

Note that if you are using a module system (see Chapter 31), you can achieve the same
effect with cleaner code by putting the constructor plus methods in a module.

Attaching global data to a method
Sometimes you only need global data for a single method. You can keep it private by
putting it in the environment of an IIFE that you wrap around the method. For example:

var obj = {
 method: function () { // open IIFE

250 | Chapter 17: Objects and Inheritance

 // method-private data
 var invocCount = 0;

 return function () {
 invocCount++;
 console.log('Invocation #'+invocCount);
 return 'result';
 };
 }() // close IIFE
};

Here is the interaction:

> obj.method()
Invocation #1
'result'
> obj.method()
Invocation #2
'result'

Layer 4: Inheritance Between Constructors
In this section, we examine how constructors can be inherited from: given a constructor
Super, how can we write a new constructor, Sub, that has all the features of Super plus
some features of its own? Unfortunately, JavaScript does not have a built-in mechanism
for performing this task. Hence, we’ll have to do some manual work.

Figure 17-5 illustrates the idea: the subconstructor Sub should have all of the properties
of Super (both prototype properties and instance properties) in addition to its own.
Thus, we have a rough idea of what Sub should look like, but don’t know how to get
there. There are several things we need to figure out, which I’ll explain next:

• Inheriting instance properties.
• Inheriting prototype properties.
• Ensuring that instanceof works: if sub is an instance of Sub, we also want sub
instanceof Super to be true.

• Overriding a method to adapt one of Super’s methods in Sub.
• Making supercalls: if we have overridden one of Super’s methods, we may need to

call the original method from Sub.

Layer 4: Inheritance Between Constructors | 251

Figure 17-5. Sub should inherit from Super: it should have all of Super’s prototype
properties and all of Super’s instance properties in addition to its own. Note that meth‐
odB overrides Super’s methodB.

Inheriting Instance Properties
Instance properties are set up in the constructor itself, so inheriting the superconstruc‐
tor’s instance properties involves calling that constructor:

function Sub(prop1, prop2, prop3, prop4) {
 Super.call(this, prop1, prop2); // (1)
 this.prop3 = prop3; // (2)
 this.prop4 = prop4; // (3)
}

When Sub is invoked via new, its implicit parameter this refers to a fresh instance. It
first passes that instance on to Super (1), which adds its instance properties. Afterward,
Sub sets up its own instance properties (2,3). The trick is not to invoke Super via new,
because that would create a fresh superinstance. Instead, we call Super as a function and
hand in the current (sub)instance as the value of this.

Inheriting Prototype Properties
Shared properties such as methods are kept in the instance prototype. Thus, we need
to find a way for Sub.prototype to inherit all of Super.prototype’s properties. The
solution is to give Sub.prototype the prototype Super.prototype.

252 | Chapter 17: Objects and Inheritance

Confused by the two kinds of prototypes?
Yes, JavaScript terminology is confusing here. If you feel lost, con‐
sult “Terminology: The Two Prototypes” on page 234, which ex‐
plains how they differ.

This is the code that achieves that:

Sub.prototype = Object.create(Super.prototype);
Sub.prototype.constructor = Sub;
Sub.prototype.methodB = ...;
Sub.prototype.methodC = ...;

Object.create() produces a fresh object whose prototype is Super.prototype. Af‐
terward, we add Sub’s methods. As explained in “The constructor Property of Instan‐
ces” on page 234, we also need to set up the property constructor, because we have
replaced the original instance prototype where it had the correct value.

Figure 17-6 shows how Sub and Super are related now. Sub’s structure does resemble
what I have sketched in Figure 17-5. The diagram does not show the instance properties,
which are set up by the function call mentioned in the diagram.

Figure 17-6. The constructor Sub inherits the constructor Super by calling it and by
making Sub.prototype a prototypee of Super.prototype.

Ensuring That instanceof Works
“Ensuring that instanceof works” means that every instance of Sub must also be an
instance of Super. Figure 17-7 shows what the prototype chain of subInstance, an
instance of Sub, looks like: its first prototype is Sub.prototype, and its second prototype
is Super.prototype.

Layer 4: Inheritance Between Constructors | 253

Figure 17-7. subInstance has been created by the constructor Sub. It has the two proto‐
types Sub.prototype and Super.prototype.

Let’s start with an easier question: is subInstance an instance of Sub? Yes, it is, because
the following two assertions are equivalent (the latter can be considered the definition
of the former):

subInstance instanceof Sub
Sub.prototype.isPrototypeOf(subInstance)

As mentioned before, Sub.prototype is one of the prototypes of subInstance, so both
assertions are true. Similarly, subInstance is also an instance of Super, because the
following two assertions hold:

subInstance instanceof Super
Super.prototype.isPrototypeOf(subInstance)

Overriding a Method
We override a method in Super.prototype by adding a method with the same name
to Sub.prototype. methodB is an example and in Figure 17-7, we can see why it works:
the search for methodB begins in subInstance and finds Sub.prototype.methodB be‐
fore Super.prototype.methodB.

Making a Supercall
To understand supercalls, you need to know the term home object. The home object of
a method is the object that owns the property whose value is the method. For example,
the home object of Sub.prototype.methodB is Sub.prototype. Supercalling a method
foo involves three steps:

254 | Chapter 17: Objects and Inheritance

1. Start your search “after” (in the prototype of) the home object of the current
method.

2. Look for a method whose name is foo.
3. Invoke that method with the current this. The rationale is that the supermethod

must work with the same instance as the current method; it must be able to access
the same instance properties.

Therefore, the code of the submethod looks as follows. It supercalls itself, it calls the
method it has overridden:

Sub.prototype.methodB = function (x, y) {
 var superResult = Super.prototype.methodB.call(this, x, y); // (1)
 return this.prop3 + ' ' + superResult;
}

One way of reading the supercall at (1) is as follows: refer to the supermethod directly
and call it with the current this. However, if we split it into three parts, we find the
aforementioned steps:

1. Super.prototype: Start your search in Super.prototype, the prototype of Sub.pro
totype (the home object of the current method Sub.prototype.methodB).

2. methodB: Look for a method with the name methodB.
3. call(this, ...): Call the method found in the previous step, and maintain the

current this.

Avoiding Hardcoding the Name of the Superconstructor
Until now, we have always referred to supermethods and superconstructors by men‐
tioning the superconstructor name. This kind of hardcoding makes your code less flex‐
ible. You can avoid it by assigning the superprototype to a property of Sub:

Sub._super = Super.prototype;

Then calling the superconstructor and a supermethod looks as follows:

function Sub(prop1, prop2, prop3, prop4) {
 Sub._super.constructor.call(this, prop1, prop2);
 this.prop3 = prop3;
 this.prop4 = prop4;
}
Sub.prototype.methodB = function (x, y) {
 var superResult = Sub._super.methodB.call(this, x, y);
 return this.prop3 + ' ' + superResult;
}

Layer 4: Inheritance Between Constructors | 255

Setting up Sub._super is usually handled by a utility function that also connects the
subprototype to the superprototype. For example:

function subclasses(SubC, SuperC) {
 var subProto = Object.create(SuperC.prototype);
 // Save `constructor` and, possibly, other methods
 copyOwnPropertiesFrom(subProto, SubC.prototype);
 SubC.prototype = subProto;
 SubC._super = SuperC.prototype;
};

This code uses the helper function copyOwnPropertiesFrom(), which is shown and
explained in “Copying an Object” on page 226.

Read “subclasses” as a verb: SubC subclasses SuperC. Such a utility
function can take some of the pain out of creating a subconstructor:
there are fewer things to do manually, and the name of the super‐
constructor is never mentioned redundantly. The following example
demonstrates how it simplifies code.

Example: Constructor Inheritance in Use
As a concrete example, let’s assume that the constructor Person already exists:

function Person(name) {
 this.name = name;
}
Person.prototype.describe = function () {
 return 'Person called '+this.name;
};

We now want to create the constructor Employee as a subconstructor of Person. We do
so manually, which looks like this:

function Employee(name, title) {
 Person.call(this, name);
 this.title = title;
}
Employee.prototype = Object.create(Person.prototype);
Employee.prototype.constructor = Employee;
Employee.prototype.describe = function () {
 return Person.prototype.describe.call(this)+' ('+this.title+')';
};

Here is the interaction:

> var jane = new Employee('Jane', 'CTO');
> jane.describe()
Person called Jane (CTO)
> jane instanceof Employee
true

256 | Chapter 17: Objects and Inheritance

> jane instanceof Person
true

The utility function subclasses() from the previous section makes the code of Employ
ee slightly simpler and avoids hardcoding the superconstructor Person:

function Employee(name, title) {
 Employee._super.constructor.call(this, name);
 this.title = title;
}
Employee.prototype.describe = function () {
 return Employee._super.describe.call(this)+' ('+this.title+')';
};
subclasses(Employee, Person);

Example: The Inheritance Hierarchy of Built-in Constructors
Built-in constructors use the same subclassing approach described in this section. For
example, Array is a subconstructor of Object. Therefore, the prototype chain of an
instance of Array looks like this:

> var p = Object.getPrototypeOf

> p([]) === Array.prototype
true
> p(p([])) === Object.prototype
true
> p(p(p([]))) === null
true

Antipattern: The Prototype Is an Instance of the Superconstructor
Before ECMAScript 5 and Object.create(), an often-used solution was to create the
subprototype by invoking the superconstructor:

Sub.prototype = new Super(); // Don’t do this

This is not recommended under ECMAScript 5. The prototype will have all of Super’s
instance properties, which it has no use for. Therefore, it is better to use the aforemen‐
tioned pattern (involving Object.create()).

Methods of All Objects
Almost all objects have Object.prototype in their prototype chain:

> Object.prototype.isPrototypeOf({})
true
> Object.prototype.isPrototypeOf([])
true

Methods of All Objects | 257

> Object.prototype.isPrototypeOf(/xyz/)
true

The following subsections describe the methods that Object.prototype provides for
its prototypees.

Conversion to Primitive
The following two methods are used to convert an object to a primitive value:
Object.prototype.toString()

Returns a string representation of an object:

> ({ first: 'John', last: 'Doe' }.toString())
'[object Object]'
> ['a', 'b', 'c'].toString()
'a,b,c'

Object.prototype.valueOf()

This is the preferred way of converting an object to a number. The default imple‐
mentation returns this:

> var obj = {};
> obj.valueOf() === obj
true

valueOf is overridden by wrapper constructors to return the wrapped primitive:

> new Number(7).valueOf()
7

The conversion to number and string (whether implicit or explicit) builds on the con‐
version to primitive (for details, see “Algorithm: ToPrimitive()—Converting a Value to
a Primitive” on page 79). That is why you can use the aforementioned two methods to
configure those conversions. valueOf() is preferred by the conversion to number:

> 3 * { valueOf: function () { return 5 } }
15

toString() is preferred by the conversion to string:

> String({ toString: function () { return 'ME' } })
'Result: ME'

The conversion to boolean is not configurable; objects are always considered to be true
(see “Converting to Boolean” on page 97).

Object.prototype.toLocaleString()
This method returns a locale-specific string representation of an object. The default
implementation calls toString(). Most engines don’t go beyond this support for this
method. However, the ECMAScript Internationalization API (see “The ECMAScript

258 | Chapter 17: Objects and Inheritance

Internationalization API” on page 406), which is supported by many modern engines,
overrides it for several built-in constructors.

Prototypal Inheritance and Properties
The following methods help with prototypal inheritance and properties:
Object.prototype.isPrototypeOf(obj)

Returns true if the receiver is part of the prototype chain of obj:

> var proto = { };
> var obj = Object.create(proto);
> proto.isPrototypeOf(obj)
true
> obj.isPrototypeOf(obj)
false

Object.prototype.hasOwnProperty(key)

Returns true if this owns a property whose key is key. “Own” means that the
property exists in the object itself and not in one of its prototypes.

You normally should invoke this method generically (not di‐
rectly), especially on objects whose properties you don’t know
statically. Why and how is explained in “Iteration and Detec‐
tion of Properties” on page 217:

> var proto = { foo: 'abc' };
> var obj = Object.create(proto);
> obj.bar = 'def';

> Object.prototype.hasOwnProperty.call(obj, 'foo')
false
> Object.prototype.hasOwnProperty.call(obj, 'bar')
true

Object.prototype.propertyIsEnumerable(propKey)

Returns true if the receiver has a property with the key propKey that is enumerable
and false otherwise:

> var obj = { foo: 'abc' };
> obj.propertyIsEnumerable('foo')
true
> obj.propertyIsEnumerable('toString')
false
> obj.propertyIsEnumerable('unknown')
false

Methods of All Objects | 259

Generic Methods: Borrowing Methods from Prototypes
Sometimes instance prototypes have methods that are useful for more objects than those
that inherit from them. This section explains how to use the methods of a prototype
without inheriting from it. For example, the instance prototype Wine.prototype has
the method incAge():

function Wine(age) {
 this.age = age;
}
Wine.prototype.incAge = function (years) {
 this.age += years;
}

The interaction is as follows:

> var chablis = new Wine(3);
> chablis.incAge(1);
> chablis.age
4

The method incAge() works for any object that has the property age. How can we
invoke it on an object that is not an instance of Wine? Let’s look at the preceding method
call:

chablis.incAge(1)

There are actually two arguments:

1. chablis is the receiver of the method call, passed to incAge via this.
2. 1 is an argument, passed to incAge via years.

We can’t replace the former with an arbitrary object—the receiver must be an instance
of Wine. Otherwise, the method incAge is not found. But the preceding method call is
equivalent to (refer back to “Calling Functions While Setting this: call(), apply(), and
bind()” on page 204):

Wine.prototype.incAge.call(chablis, 1)

With the preceding pattern, we can make an object the receiver (first argument of
call) that is not an instance of Wine, because the receiver isn’t used to find the method
Wine.prototype.incAge. In the following example, we apply the method incAge() to
the object john:

> var john = { age: 51 };
> Wine.prototype.incAge.call(john, 3)
> john.age
54

260 | Chapter 17: Objects and Inheritance

A function that can be used in this manner is called a generic method; it must be prepared
for this not being an instance of “its” constructor. Thus, not all methods are generic;
the ECMAScript language specification explicitly states which ones are (see “A List of
All Generic Methods” on page 264).

Accessing Object.prototype and Array.prototype via Literals
Calling a method generically is quite verbose:

Object.prototype.hasOwnProperty.call(obj, 'propKey')

You can make this shorter by accessing hasOwnProperty via an instance of Object, as
created by an empty object literal {}:

{}.hasOwnProperty.call(obj, 'propKey')

Similarly, the following two expressions are equivalent:

Array.prototype.join.call(str, '-')
[].join.call(str, '-')

The advantage of this pattern is that it is less verbose. But it is also less self-explanatory.
Performance should not be an issue (at least long term), as engines can statically deter‐
mine that the literals should not create objects.

Examples of Calling Methods Generically
These are a few examples of generic methods in use:

• Use apply()(see “Function.prototype.apply(thisValue, argArray)” on page 205) to
push an array (instead of individual elements; see “Adding and Removing Elements
(Destructive)” on page 286):

> var arr1 = ['a', 'b'];
> var arr2 = ['c', 'd'];

> [].push.apply(arr1, arr2)
4
> arr1
['a', 'b', 'c', 'd']

This example is about turning an array into arguments, not about borrowing a
method from another constructor.

• Apply the array method join() to a string (which is not an array):
> Array.prototype.join.call('abc', '-')
'a-b-c'

Generic Methods: Borrowing Methods from Prototypes | 261

1. Using map() in this manner is a tip by Brandon Benvie (@benvie).

• Apply the array method map() to a string:1

> [].map.call('abc', function (x) { return x.toUpperCase() })
['A', 'B', 'C']

Using map() generically is more efficient than using split(''), which creates an
intermediate array:

> 'abc'.split('').map(function (x) { return x.toUpperCase() })
['A', 'B', 'C']

• Apply a string method to nonstrings. toUpperCase() converts the receiver to a
string and uppercases the result:

> String.prototype.toUpperCase.call(true)
'TRUE'
> String.prototype.toUpperCase.call(['a','b','c'])
'A,B,C'

Using generic array methods on plain objects gives you insight into how they work:

• Invoke an array method on a fake array:
> var fakeArray = { 0: 'a', 1: 'b', length: 2 };
> Array.prototype.join.call(fakeArray, '-')
'a-b'

• See how an array method transforms an object that it treats like an array:
> var obj = {};
> Array.prototype.push.call(obj, 'hello');
1
> obj
{ '0': 'hello', length: 1 }

Array-Like Objects and Generic Methods
There are some objects in JavaScript that feel like an array, but actually aren’t. That means
that while they have indexed access and a length property, they don’t have any of the
array methods (forEach(), push, concat(), etc.). This is unfortunate, but as we will see,
generic array methods enable a workaround. Examples of array-like objects include:

• The special variable arguments (see “All Parameters by Index: The Special Variable
arguments” on page 171), which is an important array-like object, because it is such
a fundamental part of JavaScript. arguments looks like an array:

> function args() { return arguments }
> var arrayLike = args('a', 'b');

262 | Chapter 17: Objects and Inheritance

> arrayLike[0]
'a'
> arrayLike.length
2

But none of the array methods are available:
> arrayLike.join('-')
TypeError: object has no method 'join'

That’s because arrayLike is not an instance of Array (and Array.prototype is not
in the prototype chain):

> arrayLike instanceof Array
false

• Browser DOM node lists, which are returned by document.getElementsBy*()
(e.g., getElementsByTagName()), document.forms, and so on:

> var elts = document.getElementsByTagName('h3');
> elts.length
3
> elts instanceof Array
false

• Strings, which are array-like, too:
> 'abc'[1]
'b'
> 'abc'.length
3

The term array-like can also be seen as a contract between generic array methods and
objects. The objects have to fulfill certain requirements; otherwise, the methods won’t
work on them. The requirements are:

• The elements of an array-like object must be accessible via square brackets and
integer indices starting at 0. All methods need read access, and some methods ad‐
ditionally need write access. Note that all objects support this kind of indexing: an
index in brackets is converted to a string and used as a key to look up a property
value:

> var obj = { '0': 'abc' };
> obj[0]
'abc'

• An array-like object must have a length property whose value is the number of its
elements. Some methods require length to be mutable (for example, reverse()).
Values whose lengths are immutable (for example, strings) cannot be used with
those methods.

Generic Methods: Borrowing Methods from Prototypes | 263

Patterns for working with array-like objects
The following patterns are useful for working with array-like objects:

• Turn an array-like object into an array:
var arr = Array.prototype.slice.call(arguments);

The method slice() (see “Concatenating, Slicing, Joining (Nondestructive)” on
page 289) without any arguments creates a copy of an array-like receiver:

var copy = ['a', 'b'].slice();

• To iterate over all elements of an array-like object, you can use a simple for loop:
function logArgs() {
 for (var i=0; i<arguments.length; i++) {
 console.log(i+'. '+arguments[i]);
 }
}

But you can also borrow Array.prototype.forEach():
function logArgs() {
 Array.prototype.forEach.call(arguments, function (elem, i) {
 console.log(i+'. '+elem);
 });
}

In both cases, the interaction looks as follows:
> logArgs('hello', 'world');
0. hello
1. world

A List of All Generic Methods
The following list includes all methods that are generic, as mentioned in the ECMA‐
Script language specification:

• Array.prototype (see “Array Prototype Methods” on page 286):
— concat

— every

— filter

— forEach

— indexOf

— join

— lastIndexOf

264 | Chapter 17: Objects and Inheritance

— map

— pop

— push

— reduce

— reduceRight

— reverse

— shift

— slice

— some

— sort

— splice

— toLocaleString

— toString

— unshift

• Date.prototype (see “Date Prototype Methods” on page 319)
— toJSON

• Object.prototype (see “Methods of All Objects” on page 257)
— (All Object methods are automatically generic—they have to work for all ob‐

jects.)
• String.prototype (see “String Prototype Methods” on page 139)

— charAt

— charCodeAt

— concat

— indexOf

— lastIndexOf

— localeCompare

— match

— replace

— search

— slice

— split

Generic Methods: Borrowing Methods from Prototypes | 265

— substring

— toLocaleLowerCase

— toLocaleUpperCase

— toLowerCase

— toUpperCase

— trim

Pitfalls: Using an Object as a Map
Since JavaScript has no built-in data structure for maps, objects are often used as maps
from strings to values. Alas, that is more error-prone than it seems. This section explains
three pitfalls that are involved in this task.

Pitfall 1: Inheritance Affects Reading Properties
The operations that read properties can be partitioned into two kinds:

• Some operations consider the whole prototype chain and see inherited properties.
• Other operations access only the own (noninherited) properties of an object.

You need to choose carefully between these kinds of operations when you read the
entries of an object-as-map. To see why, consider the following example:

var proto = { protoProp: 'a' };
var obj = Object.create(proto);
obj.ownProp = 'b';

obj is an object with one own property whose prototype is proto, which also has one
own property. proto has the prototype Object.prototype, like all objects that are cre‐
ated by object literals. Thus, obj inherits properties from both proto and Object.
prototype.

We want obj to be interpreted as a map with the single entry:

ownProp: 'b'

That is, we want to ignore inherited properties and only consider own properties. Let’s
see which read operations interpret obj in this manner and which don’t. Note that for
objects-as-maps, we normally want to use arbitrary property keys, stored in variables.
That rules out dot notation.

266 | Chapter 17: Objects and Inheritance

Checking whether a property exists

The in operator checks whether an object has a property with a given key, but it considers
inherited properties:

> 'ownProp' in obj // ok
true
> 'unknown' in obj // ok
false
> 'toString' in obj // wrong, inherited from Object.prototype
true
> 'protoProp' in obj // wrong, inherited from proto
true

We need the check to ignore inherited properties. hasOwnProperty() does what we
want:

> obj.hasOwnProperty('ownProp') // ok
true
> obj.hasOwnProperty('unknown') // ok
false
> obj.hasOwnProperty('toString') // ok
false
> obj.hasOwnProperty('protoProp') // ok
false

Collecting property keys

What operations can we use to find all of the keys of obj, while honoring our interpre‐
tation of it as a map? for-in looks like it might work. But, alas, it doesn’t:

> for (propKey in obj) console.log(propKey)
ownProp
protoProp

It considers inherited enumerable properties. The reason that no properties of Ob
ject.prototype show up here is that all of them are nonenumerable.

In contrast, Object.keys() lists only own properties:

> Object.keys(obj)
['ownProp']

This method returns only enumerable own properties; ownProp has been added via
assignment and is thus enumerable by default. If you want to list all own properties, you
need to use Object.getOwnPropertyNames().

Getting a property value
For reading the value of a property, we can only choose between the dot operator and
the bracket operator. We can’t use the former, because we have arbitrary keys, stored in
variables. That leaves us with the bracket operator, which considers inherited properties:

Pitfalls: Using an Object as a Map | 267

> obj['toString']
[Function: toString]

This is not what we want. There is no built-in operation for reading only own properties,
but you can easily implement one yourself:

function getOwnProperty(obj, propKey) {
 // Using hasOwnProperty() in this manner is problematic
 // (explained and fixed later)
 return (obj.hasOwnProperty(propKey)
 ? obj[propKey] : undefined);
}

With that function, the inherited property toString is ignored:

> getOwnProperty(obj, 'toString')
undefined

Pitfall 2: Overriding Affects Invoking Methods
The function getOwnProperty() invoked the method hasOwnProperty() on obj. Nor‐
mally, that is fine:

> getOwnProperty({ foo: 123 }, 'foo')
123

However, if you add a property to obj whose key is hasOwnProperty, then that property
overrides the method Object.prototype.hasOwnProperty() and getOwnProperty()
ceases to work:

> getOwnProperty({ hasOwnProperty: 123 }, 'foo')
TypeError: Property 'hasOwnProperty' is not a function

You can fix this problem by directly referring to hasOwnProperty(). This avoids going
through obj to find it:

function getOwnProperty(obj, propKey) {
 return (Object.prototype.hasOwnProperty.call(obj, propKey)
 ? obj[propKey] : undefined);
}

We have called hasOwnProperty() generically (see “Generic Methods: Borrowing
Methods from Prototypes” on page 260).

Pitfall 3: The Special Property __proto__
In many JavaScript engines, the property __proto__ (see “The Special Property __pro‐
to__” on page 215) is special: getting it retrieves the prototype of an object, and setting
it changes the prototype of an object. This is why the object can’t store map data in a
property whose key is '__proto__'. If you want to allow the map key '__proto__', you
must escape it before using it as a property key:

268 | Chapter 17: Objects and Inheritance

function get(obj, key) {
 return obj[escapeKey(key)];
}
function set(obj, key, value) {
 obj[escapeKey(key)] = value;
}
// Similar: checking if key exists, deleting an entry

function escapeKey(key) {
 if (key.indexOf('__proto__') === 0) { // (1)
 return key+'%';
 } else {
 return key;
 }
}

We also need to escape the escaped version of '__proto__' (etc.) to avoid clashes; that
is, if we escape the key '__proto__' as '__proto__%', then we also need to escape the
key '__proto__%' so that it doesn’t replace a '__proto__' entry. That’s what happens
in line (1).

Mark S. Miller mentions the real-world implications of this pitfall in an email:
Think this exercise is academic and doesn’t arise in real systems? As observed at a support
thread, until recently, on all non-IE browsers, if you typed “__proto__” at the beginning
of a new Google Doc, your Google Doc would hang. This was tracked down to such a
buggy use of an object as a string map.

The dict Pattern: Objects Without Prototypes Are Better Maps
You create an object without a prototype like this:

var dict = Object.create(null);

Such an object is a better map (dictionary) than a normal object, which is why this
pattern is sometimes called the dict pattern (dict for dictionary). Let’s first examine
normal objects and then find out why prototype-less objects are better maps.

Normal objects

Usually, each object you create in JavaScript has at least Object.prototype in its pro‐
totype chain. The prototype of Object.prototype is null, so that’s where most proto‐
type chains end:

> Object.getPrototypeOf({}) === Object.prototype
true
> Object.getPrototypeOf(Object.prototype)
null

Pitfalls: Using an Object as a Map | 269

http://mzl.la/1fwnd1l

Prototype-less objects
Prototype-less objects have two advantages as maps:

• Inherited properties (pitfall #1) are not an issue anymore, simply because there are
none. Therefore, you can now freely use the in operator to detect whether a property
exists and brackets to read properties.

• Soon, __proto__ will be disabled. In ECMAScript 6, the special property __pro
to__ will be disabled if Object.prototype is not in the prototype chain of an object.
You can expect JavaScript engines to slowly migrate to this behavior, but it is not
yet very common.

The only disadvantage is that you’ll lose the services provided by Object.prototype.
For example, a dict object can’t be automatically converted to a string anymore:

> console.log('Result: '+obj)
TypeError: Cannot convert object to primitive value

But that is not a real disadvantage, because it isn’t safe to directly invoke methods on a
dict object anyway.

Recommendation
Use the dict pattern for quick hacks and as a foundation for libraries. In (nonlibrary)
production code, a library is preferable, because you can be sure to avoid all pitfalls. The
next section lists a few such libraries.

Best Practices
There are many applications for using objects as maps. If all property keys are known
statically (at development time), then you just need to make sure that you ignore in‐
heritance and look only at own properties. If arbitrary keys can be used, you should
turn to a library to avoid the pitfalls mentioned in this section. Here are two examples:

• StringMap.js by Google’s es-lab
• stringmap.js by Olov Lassus

Cheat Sheet: Working with Objects
This section is a quick reference with pointers to more thorough explanations.

• Object literals (see “Object Literals” on page 198):
var jane = {
 name: 'Jane',

270 | Chapter 17: Objects and Inheritance

http://bit.ly/1fwnp0E
http://code.google.com/p/es-lab/
https://github.com/olov/stringmap

 'not an identifier': 123,

 describe: function () { // method
 return 'Person named '+this.name;
 },
};
// Call a method:
console.log(jane.describe()); // Person named Jane

• Dot operator (.) (see “Dot Operator (.): Accessing Properties via Fixed Keys” on
page 199):

obj.propKey
obj.propKey = value
delete obj.propKey

• Bracket operator ([]) (see “Bracket Operator ([]): Accessing Properties via Com‐
puted Keys” on page 202):

obj['propKey']
obj['propKey'] = value
delete obj['propKey']

• Getting and setting the prototype (see “Getting and Setting the Prototype” on page
214):

Object.create(proto, propDescObj?)
Object.getPrototypeOf(obj)

• Iteration and detection of properties (see “Iteration and Detection of Properties”
on page 217):

Object.keys(obj)
Object.getOwnPropertyNames(obj)

Object.prototype.hasOwnProperty.call(obj, propKey)
propKey in obj

• Getting and defining properties via descriptors (see “Getting and Defining Prop‐
erties via Descriptors” on page 224):

Object.defineProperty(obj, propKey, propDesc)
Object.defineProperties(obj, propDescObj)
Object.getOwnPropertyDescriptor(obj, propKey)
Object.create(proto, propDescObj?)

• Protecting objects (see “Protecting Objects” on page 229):
Object.preventExtensions(obj)
Object.isExtensible(obj)

Object.seal(obj)
Object.isSealed(obj)

Object.freeze(obj)
Object.isFrozen(obj)

Cheat Sheet: Working with Objects | 271

• Methods of all objects (see “Methods of All Objects” on page 257):
Object.prototype.toString()
Object.prototype.valueOf()

Object.prototype.toLocaleString()

Object.prototype.isPrototypeOf(obj)
Object.prototype.hasOwnProperty(key)
Object.prototype.propertyIsEnumerable(propKey)

272 | Chapter 17: Objects and Inheritance

CHAPTER 18

Arrays

An array is a map from indices (natural numbers, starting at zero) to arbitrary values.
The values (the range of the map) are called the array’s elements. The most convenient
way of creating an array is via an array literal. Such a literal enumerates the array ele‐
ments; an element’s position implicitly specifies its index.

In this chapter, I will first cover basic array mechanisms, such as indexed access and the
length property, and then go over array methods.

Overview
This section provides a quick overview of arrays. Details are explained later.

As a first example, we create an array arr via an array literal (see “Creating Arrays” on
page 274) and access elements (see “Array Indices” on page 276):

> var arr = ['a', 'b', 'c']; // array literal
> arr[0] // get element 0
'a'
> arr[0] = 'x'; // set element 0
> arr
['x', 'b', 'c']

We can use the array property length (see “length” on page 279) to remove and append
elements:

> var arr = ['a', 'b', 'c'];
> arr.length
3
> arr.length = 2; // remove an element
> arr
['a', 'b']
> arr[arr.length] = 'd'; // append an element

273

> arr
['a', 'b', 'd']

The array method push() provides another way of appending an element:

> var arr = ['a', 'b'];
> arr.push('d')
3
> arr
['a', 'b', 'd']

Arrays Are Maps, Not Tuples
The ECMAScript standard specifies arrays as maps (dictionaries) from indices to val‐
ues. In other words, arrays may not be contiguous and can have holes in them. For
example:

> var arr = [];
> arr[0] = 'a';
'a'
> arr[2] = 'b';
'b'
> arr
['a', , 'b']

The preceding array has a hole: there is no element at index 1. “Holes in Arrays” on page
282 explains holes in more detail.

Note that most JavaScript engines optimize arrays without holes internally and store
them contiguously.

Arrays Can Also Have Properties
Arrays are still objects and can have object properties. Those are not considered part of
the actual array; that is, they are not considered array elements:

> var arr = ['a', 'b'];
> arr.foo = 123;
> arr
['a', 'b']
> arr.foo
123

Creating Arrays
You create an array via an array literal:

var myArray = ['a', 'b', 'c'];

Trailing commas in arrays are ignored:

274 | Chapter 18: Arrays

> ['a', 'b'].length
2
> ['a', 'b',].length
2
> ['a', 'b', ,].length // hole + trailing comma
3

The Array Constructor
There are two ways to use the constructor Array: you can create an empty array with a
given length or an array whose elements are the given values. For this constructor, new
is optional: invoking it as a normal function (without new) does the same as invoking it
as a constructor.

Creating an empty array with a given length
An empty array with a given length has only holes in it! Thus, it rarely makes sense to
use this version of the constructor:

> var arr = new Array(2);
> arr.length
2
> arr // two holes plus trailing comma (ignored!)
[, ,]

Some engines may preallocate contiguous memory when you call Array() in this man‐
ner, which may slightly improve performance. However, be sure that the increased ver‐
bosity and redundancy is worth it!

Initializing an array with elements (avoid!)

This way of invoking Array is similar to an array literal:

// The same as ['a', 'b', 'c']:
var arr1 = new Array('a', 'b', 'c');

The problem is that you can’t create arrays with a single number in them, because that
is interpreted as creating an array whose length is the number:

> new Array(2) // alas, not [2]
[, ,]

> new Array(5.7) // alas, not [5.7]
RangeError: Invalid array length

> new Array('abc') // ok
['abc']

Creating Arrays | 275

Multidimensional Arrays
If you need multiple dimensions for elements, you must nest arrays. When you create
such nested arrays, the innermost arrays can grow as needed. But if you want direct
access to elements, you need to at least create the outer arrays. In the following example,
I create a three-by-three matrix for Tic-tac-toe. The matrix is completely filled with data
(as opposed to letting rows grow as needed):

// Create the Tic-tac-toe board
var rows = [];
for (var rowCount=0; rowCount < 3; rowCount++) {
 rows[rowCount] = [];
 for (var colCount=0; colCount < 3; colCount++) {
 rows[rowCount][colCount] = '.';
 }
}

// Set an X in the upper right corner
rows[0][2] = 'X'; // [row][column]

// Print the board
rows.forEach(function (row) {
 console.log(row.join(' '));
});

Here is the output:

. . X

. . .

. . .

I wanted the example to demonstrate the general case. Obviously, if a matrix is so small
and has fixed dimensions, you can set it up via an array literal:

var rows = [['.','.','.'], ['.','.','.'], ['.','.','.']];

Array Indices
When you are working with array indices, you must keep in mind the following limits:

• Indices are numbers i in the range 0 ≤ i < 232−1.
• The maximum length is 232−1.

Indices that are out of range are treated as normal property keys (strings!). They don’t
show up as array elements and they don’t influence the property length. For example:

> var arr = [];

> arr[-1] = 'a';
> arr

276 | Chapter 18: Arrays

[]
> arr['-1']
'a'

> arr[4294967296] = 'b';
> arr
[]
> arr['4294967296']
'b'

The in Operator and Indices
The in operator detects whether an object has a property with a given key. But it can
also be used to determine whether a given element index exists in an array. For example:

> var arr = ['a', , 'b'];
> 0 in arr
true
> 1 in arr
false
> 10 in arr
false

Deleting Array Elements
In addition to deleting properties, the delete operator also deletes array elements. De‐
leting elements creates holes (the length property is not updated):

> var arr = ['a', 'b'];
> arr.length
2
> delete arr[1] // does not update length
true
> arr
['a',]
> arr.length
2

You can also delete trailing array elements by decreasing an array’s length (see “length”
on page 279 for details). To remove elements without creating holes (i.e., the indices of
subsequent elements are decremented), you use Array.prototype.splice() (see
“Adding and Removing Elements (Destructive)” on page 286). In this example, we remove
two elements at index 1:

> var arr = ['a', 'b', 'c', 'd'];
> arr.splice(1, 2) // returns what has been removed
['b', 'c']
> arr
['a', 'd']

Array Indices | 277

Array Indices in Detail

This is an advanced section. You normally don’t need to know the
details explained here.

Array indices are not what they seem. Until now, I have pretended that array indices are
numbers. And that is how JavaScript engines implement arrays, internally. However,
the ECMAScript specification sees indices differently. Paraphrasing Section 15.4:

• A property key P (a string) is an array index if and only if ToString(ToUint32(P))
is equal to P and ToUint32(P) is not equal to 232−1. What this means is explained
momentarily.

• An array property whose key is an array index is called an element.

In other words, in the world of the spec all values in brackets are converted to strings
and interpreted as property keys, even numbers. The following interaction demon‐
strates this:

> var arr = ['a', 'b'];
> arr['0']
'a'
> arr[0]
'a'

To be an array index, a property key P (a string!) must be equal to the result of the
following computation:

1. Convert P to a number.
2. Convert the number to a 32-bit unsigned integer.
3. Convert the integer to a string.

That means that an array index must be a stringified integer i in the 32-bit range 0 ≤ i
< 232−1. The upper limit has been explicitly excluded in the spec (as quoted previously).
It is reserved for the maximum length. To see how this definition works, let’s use the
function ToUint32() from “32-bit Integers via Bitwise Operators” on page 119.

First, a string that doesn’t contain a number is always converted to 0, which, after
stringification, is not equal to the string:

> ToUint32('xyz')
0
> ToUint32('?@#!')
0

278 | Chapter 18: Arrays

http://bit.ly/1fwoCFg

Second, a stringified integer that is out of range is also converted to a completely different
integer, which is not equal to the string, after stringification:

> ToUint32('-1')
4294967295
> Math.pow(2, 32)
4294967296
> ToUint32('4294967296')
0

Third, stringified noninteger numbers are converted to integers, which are, again,
different:

> ToUint32('1.371')
1

Note that the specification also enforces that array indices don’t have exponents:

> ToUint32('1e3')
1000

And that they don’t have leading zeros:

> var arr = ['a', 'b'];
> arr['0'] // array index
'a'
> arr['00'] // normal property
undefined

length
The basic function of the length property is to track the highest index in an array:

> ['a', 'b'].length
2
> ['a', , 'b'].length
3

Thus, length does not count the number of elements, so you’d have to write your own
function for doing so. For example:

function countElements(arr) {
 var elemCount = 0;
 arr.forEach(function () {
 elemCount++;
 });
 return elemCount;
}

To count elements (nonholes), we have used the fact that forEach skips holes. Here is
the interaction:

> countElements(['a', 'b'])
2

length | 279

> countElements(['a', , 'b'])
2

Manually Increasing the Length of an Array
Manually increasing the length of an array has remarkably little effect on an array; it
only creates holes:

> var arr = ['a', 'b'];
> arr.length = 3;
> arr // one hole at the end
['a', 'b', ,]

The last result has two commas at the end, because a trailing comma is optional and
thus always ignored.

What we just did did not add any elements:

> countElements(arr)
2

However, the length property does act as a pointer indicating where to insert new
elements. For example:

> arr.push('c')
4
> arr
['a', 'b', , 'c']

Thus, setting the initial length of an array via the Array constructor creates an array that
is completely empty:

> var arr = new Array(2);
> arr.length
2
> countElements(arr)
0

Decreasing the Length of an Array
If you decrease the length of an array, all elements at the new length and above are
deleted:

> var arr = ['a', 'b', 'c'];
> 1 in arr
true
> arr[1]
'b'

> arr.length = 1;
> arr
['a']
> 1 in arr

280 | Chapter 18: Arrays

false
> arr[1]
undefined

Clearing an array
If you set an array’s length to 0, then it becomes empty. That allows you to clear an array
for someone else. For example:

function clearArray(arr) {
 arr.length = 0;
}

Here’s the interaction:

> var arr = ['a', 'b', 'c'];
> clearArray(arr)
> arr
[]

Note, however, that this approach can be slow, because each array element is explicitly
deleted. Ironically, creating a new empty array is often faster:

arr = [];

Clearing shared arrays
You need to be aware of the fact that setting an array’s length to zero affects everybody
who shares the array:

> var a1 = [1, 2, 3];
> var a2 = a1;
> a1.length = 0;

> a1
[]
> a2
[]

In contrast, assigning an empty array doesn’t:

> var a1 = [1, 2, 3];
> var a2 = a1;
> a1 = [];

> a1
[]
> a2
[1, 2, 3]

length | 281

The Maximum Length
The maximum array length is 232−1:

> var arr1 = new Array(Math.pow(2, 32)); // not ok
RangeError: Invalid array length

> var arr2 = new Array(Math.pow(2, 32)-1); // ok
> arr2.push('x');
RangeError: Invalid array length

Holes in Arrays
Arrays are maps from indices to values. That means that arrays can have holes, indices
smaller than the length that are missing in the array. Reading an element at one of those
indices returns undefined.

It is recommended that you avoid holes in arrays. JavaScript han‐
dles them inconsistently (i.e., some methods ignore them, other
don’t). Thankfully, you normally don’t need to know how holes are
handled: they are rarely useful and affect performance negatively.

Creating Holes
You can create holes by assigning to array indices:

> var arr = [];
> arr[0] = 'a';
> arr[2] = 'c';
> 1 in arr // hole at index 1
false

You can also create holes by omitting values in array literals:

> var arr = ['a',,'c'];
> 1 in arr // hole at index 1
false

You need two trailing commas to create a trailing hole, because the
last comma is always ignored:

> ['a',].length
1
> ['a', ,].length
2

282 | Chapter 18: Arrays

Sparse Arrays Versus Dense Arrays
This section examines the differences between a hole and undefined as an element.
Given that reading a hole returns undefined, both are very similar.

An array with holes is called sparse. An array without holes is called dense. Dense arrays
are contiguous and have an element at each index—starting at zero, and ending at length
− 1. Let’s compare the following two arrays, a sparse array and a dense array. The two
are very similar:

var sparse = [, , 'c'];
var dense = [undefined, undefined, 'c'];

A hole is almost like having the element undefined at the same index. Both arrays have
the same length:

> sparse.length
3
> dense.length
3

But the sparse array does not have an element at index 0:

> 0 in sparse
false
> 0 in dense
true

Iteration via for is the same for both arrays:

> for (var i=0; i<sparse.length; i++) console.log(sparse[i]);
undefined
undefined
c
> for (var i=0; i<dense.length; i++) console.log(dense[i]);
undefined
undefined
c

Iteration via forEach skips the holes, but not the undefined elements:

> sparse.forEach(function (x) { console.log(x) });
c
> dense.forEach(function (x) { console.log(x) });
undefined
undefined
c

Which Operations Ignore Holes, and Which Consider Them?
Some operations involving arrays ignore holes, while others consider them. This sec‐
tions explains the details.

Holes in Arrays | 283

Array iteration methods

forEach() skips holes:

> ['a',, 'b'].forEach(function (x,i) { console.log(i+'.'+x) })
0.a
2.b

every() also skips holes (similarly: some()):

> ['a',, 'b'].every(function (x) { return typeof x === 'string' })
true

map() skips, but preserves holes:

> ['a',, 'b'].map(function (x,i) { return i+'.'+x })
['0.a', , '2.b']

filter() eliminates holes:

> ['a',, 'b'].filter(function (x) { return true })
['a', 'b']

Other array methods

join() converts holes, undefineds, and nulls to empty strings:

> ['a',, 'b'].join('-')
'a--b'
> ['a', undefined, 'b'].join('-')
'a--b'

sort() preserves holes while sorting:

> ['a',, 'b'].sort() // length of result is 3
['a', 'b', ,]

The for-in loop

The for-in loop correctly lists property keys (which are a superset of array indices):

> for (var key in ['a',, 'b']) { console.log(key) }
0
2

Function.prototype.apply()

apply() turns each hole into an argument whose value is undefined. The following
interaction demonstrates this: function f() returns its arguments as an array. When we
pass apply() an array with three holes in order to invoke f(), the latter receives three
undefined arguments:

> function f() { return [].slice.call(arguments) }
> f.apply(null, [, , ,])
[undefined, undefined, undefined]

284 | Chapter 18: Arrays

That means that we can use apply() to create an array with undefineds:

> Array.apply(null, Array(3))
[undefined, undefined, undefined]

apply() translates holes to undefineds in empty arrays, but it can’t
be used to plug holes in arbitrary arrays (which may or may not
contain holes). Take, for example, the arbitrary array [2]:

> Array.apply(null, [2])
[, ,]

The array does not contain any holes, so apply() should return the
same array. Instead, it returns an empty array with length 2 (all it
contains are two holes). That is because Array() interprets single
numbers as array lengths, not as array elements.

Removing Holes from Arrays
As we have seen, filter() removes holes:

> ['a',, 'b'].filter(function (x) { return true })
['a', 'b']

Use a custom function to convert holes to undefineds in arbitrary arrays:

function convertHolesToUndefineds(arr) {
 var result = [];
 for (var i=0; i < arr.length; i++) {
 result[i] = arr[i];
 }
 return result;
}

Using the function:

> convertHolesToUndefineds(['a',, 'b'])
['a', undefined, 'b']

Array Constructor Method
Array.isArray(obj)

Returns true if obj is an array. It correctly handles objects that cross realms (win‐
dows or frames)—as opposed to instanceof (see “Pitfall: crossing realms (frames
or windows)” on page 238).

Array Constructor Method | 285

Array Prototype Methods
In the following sections, array prototype methods are grouped by functionality. For
each of the subsections, I mention whether the methods are destructive (they change
the arrays that they are invoked on) or nondestructive (they don’t modify their receivers;
such methods often return new arrays).

Adding and Removing Elements (Destructive)
All of the methods in this section are destructive:
Array.prototype.shift()

Removes the element at index 0 and returns it. The indices of subsequent elements
are decremented by 1:

> var arr = ['a', 'b'];
> arr.shift()
'a'
> arr
['b']

Array.prototype.unshift(elem1?, elem2?, ...)

Prepends the given elements to the array. It returns the new length:

> var arr = ['c', 'd'];
> arr.unshift('a', 'b')
4
> arr
['a', 'b', 'c', 'd']

Array.prototype.pop()

Removes the last element of the array and returns it:

> var arr = ['a', 'b'];
> arr.pop()
'b'
> arr
['a']

Array.prototype.push(elem1?, elem2?, ...)

Adds the given elements to the end of the array. It returns the new length:

> var arr = ['a', 'b'];
> arr.push('c', 'd')
4
> arr
['a', 'b', 'c', 'd']

apply() (see “Function.prototype.apply(thisValue, argArray)” on page 205) ena‐
bles you to destructively append an array arr2 to another array arr1:

286 | Chapter 18: Arrays

> var arr1 = ['a', 'b'];
> var arr2 = ['c', 'd'];

> Array.prototype.push.apply(arr1, arr2)
4
> arr1
['a', 'b', 'c', 'd']

Array.prototype.splice(start, deleteCount?, elem1?, elem2?, ...)

Starting at start, removes deleteCount elements and inserts the elements given.
In other words, you are replacing the deleteCount elements at position start with
elem1, elem2, and so on. The method returns the elements that have been removed:

> var arr = ['a', 'b', 'c', 'd'];
> arr.splice(1, 2, 'X');
['b', 'c']
> arr
['a', 'X', 'd']

Special parameter values:

• start can be negative, in which case it is added to the length to determine the
start index. Thus, -1 refers the last element, and so on.

• deleteCount is optional. If it is omitted (along with all subsequent arguments),
then all elements at and after index start are removed.

In this example, we remove all elements after and including the second-to-last
index:

> var arr = ['a', 'b', 'c', 'd'];
> arr.splice(-2)
['c', 'd']
> arr
['a', 'b']

Sorting and Reversing Elements (Destructive)
These methods are also destructive:
Array.prototype.reverse()

Reverses the order of the elements in the array and returns a reference to the original
(modified) array:

> var arr = ['a', 'b', 'c'];
> arr.reverse()
['c', 'b', 'a']
> arr // reversing happened in place
['c', 'b', 'a']

Sorting and Reversing Elements (Destructive) | 287

Array.prototype.sort(compareFunction?)

Sorts the array and returns it:

> var arr = ['banana', 'apple', 'pear', 'orange'];
> arr.sort()
['apple', 'banana', 'orange', 'pear']
> arr // sorting happened in place
['apple', 'banana', 'orange', 'pear']

Keep in mind that sorting compares values by converting them to strings, which
means that numbers are not sorted numerically:

> [-1, -20, 7, 50].sort()
[-1, -20, 50, 7]

You can fix this by providing the optional parameter compareFunction, which
controls how sorting is done. It has the following signature:

function compareFunction(a, b)

This function compares a and b and returns:

• An integer less than zero (e.g., -1) if a is less than b
• Zero if a is equal to b
• An integer greater than zero (e.g., 1) if a is greater than b

Comparing Numbers
For numbers, you can simply return a-b, but that can cause numeric overflow. To pre‐
vent that from happening, you need more verbose code:

function compareCanonically(a, b) {
 if (a < b) {
 return -1;
 } else if (a > b) {
 return 1;
 } else {
 return 0;
 }
}

I don’t like nested conditional operators. But in this case, the code is so much less verbose
that I’m tempted to recommend it:

function compareCanonically(a, b) {
 return return a < b ? -1 (a > b ? 1 : 0);
}

Using the function:

288 | Chapter 18: Arrays

> [-1, -20, 7, 50].sort(compareCanonically)
[-20, -1, 7, 50]

Comparing Strings
For strings, you can use String.prototype.localeCompare (see “Comparing
Strings” on page 136):

> ['c', 'a', 'b'].sort(function (a,b) { return a.localeCompare(b) })
['a', 'b', 'c']

Comparing Objects
The parameter compareFunction is also useful for sorting objects:

var arr = [
 { name: 'Tarzan' },
 { name: 'Cheeta' },
 { name: 'Jane' }];

function compareNames(a,b) {
 return a.name.localeCompare(b.name);
}

With compareNames as the compare function, arr is sorted by name:

> arr.sort(compareNames)
[{ name: 'Cheeta' },
 { name: 'Jane' },
 { name: 'Tarzan' }]

Concatenating, Slicing, Joining (Nondestructive)
The following methods perform various nondestructive operations on arrays:
Array.prototype.concat(arr1?, arr2?, ...)

Creates a new array that contains all the elements of the receiver, followed by all the
elements of the array arr1, and so on. If one of the parameters is not an array, then
it is added to the result as an element (for example, the first argument, 'c', here):

> var arr = ['a', 'b'];
> arr.concat('c', ['d', 'e'])
['a', 'b', 'c', 'd', 'e']

The array that concat() is invoked on is not changed:

> arr
['a', 'b']

Concatenating, Slicing, Joining (Nondestructive) | 289

Array.prototype.slice(begin?, end?)

Copies array elements into a new array, starting at begin, until and excluding the
element at end:

> ['a', 'b', 'c', 'd'].slice(1, 3)
['b', 'c']

If end is missing, the array length is used:

> ['a', 'b', 'c', 'd'].slice(1)
['b', 'c', 'd']

If both indices are missing, the array is copied:

> ['a', 'b', 'c', 'd'].slice()
['a', 'b', 'c', 'd']

If either of the indices is negative, the array length is added to it. Thus, -1 refers to
the last element, and so on:

> ['a', 'b', 'c', 'd'].slice(1, -1)
['b', 'c']
> ['a', 'b', 'c', 'd'].slice(-2)
['c', 'd']

Array.prototype.join(separator?)

Creates a string by applying toString() to all array elements and putting the string
in separator between the results. If separator is omitted, ',' is used:

> [3, 4, 5].join('-')
'3-4-5'
> [3, 4, 5].join()
'3,4,5'
> [3, 4, 5].join('')
'345'

join() converts undefined and null to empty strings:

> [undefined, null].join('#')
'#'

Holes in arrays are also converted to empty strings:

> ['a',, 'b'].join('-')
'a--b'

Searching for Values (Nondestructive)
The following methods search for values in arrays:

290 | Chapter 18: Arrays

Array.prototype.indexOf(searchValue, startIndex?)

Searches the array for searchValue, starting at startIndex. It returns the index of
the first occurrence or –1 if nothing is found. If startIndex is negative, the array
length is added to it; if it is missing, the whole array is searched:

> [3, 1, 17, 1, 4].indexOf(1)
1
> [3, 1, 17, 1, 4].indexOf(1, 2)
3

Strict equality (seev“Equality Operators: === Versus ==” on page 83) is used for
the search, which means that indexOf() can’t find NaN:

> [NaN].indexOf(NaN)
-1

Array.prototype.lastIndexOf(searchElement, startIndex?)

Searches the array for searchElement, starting at startIndex, backward. It returns
the index of the first occurrence or –1 if nothing is found. If startIndex is negative,
the array length is added to it; if it is missing, the whole array is searched. Strict
equality (see “Equality Operators: === Versus ==” on page 83) is used for the search:

> [3, 1, 17, 1, 4].lastIndexOf(1)
3
> [3, 1, 17, 1, 4].lastIndexOf(1, -3)
1

Iteration (Nondestructive)
Iteration methods use a function to iterate over an array. I distinguish three kinds of
iteration methods, all of which are nondestructive: examination methods mainly ob‐
serve the content of an array; transformation methods derive a new array from the re‐
ceiver; and reduction methods compute a result based on the receiver’s elements.

Examination Methods
Each method described in this section looks like this:

arr.examinationMethod(callback, thisValue?)

Such a method takes the following parameters:

• callback is its first parameter, a function that it calls. Depending on the examina‐
tion method, the callback returns a boolean or nothing. It has the following
signature:

function callback(element, index, array)

Iteration (Nondestructive) | 291

element is an array element for callback to process, index is the element’s index,
and array is the array that examinationMethod has been invoked on.

• thisValue allows you to configure the value of this inside callback.

And now for the examination methods whose signatures I have just described:
Array.prototype.forEach(callback, thisValue?)

Iterates over the elements of an array:

var arr = ['apple', 'pear', 'orange'];
arr.forEach(function (elem) {
 console.log(elem);
});

Array.prototype.every(callback, thisValue?)

Returns true if the callback returns true for every element. It stops iteration as
soon as the callback returns false. Note that not returning a value leads to an
implicit return of undefined, which every() interprets as false. every() works
like the universal quantifier (“for all”).

This example checks whether every number in the array is even:

> function isEven(x) { return x % 2 === 0 }
> [2, 4, 6].every(isEven)
true
> [2, 3, 4].every(isEven)
false

If the array is empty, the result is true (and callback is not called):

> [].every(function () { throw new Error() })
true

Array.prototype.some(callback, thisValue?)

Returns true if the callback returns true for at least one element. It stops iteration
as soon as the callback returns true. Note that not returning a value leads to an
implicit return of undefined, which some interprets as false. some() works like
the existential quantifier (“there exists”).

This example checks whether there is an even number in the array:

> function isEven(x) { return x % 2 === 0 }
> [1, 3, 5].some(isEven)
false
> [1, 2, 3].some(isEven)
true

If the array is empty, the result is false (and callback is not called):

> [].some(function () { throw new Error() })
false

292 | Chapter 18: Arrays

One potential pitfall of forEach() is that it does not support break or something similar
to prematurely abort the loop. If you need to do that, you can use some():

function breakAtEmptyString(strArr) {
 strArr.some(function (elem) {
 if (elem.length === 0) {
 return true; // break
 }
 console.log(elem);
 // implicit: return undefined (interpreted as false)
 });
}

some() returns true if a break happened, and false otherwise. This allows you to react
differently depending on whether iterating finished successfully (something that is
slightly tricky with for loops).

Transformation Methods
Transformation methods take an input array and produce an output array, while the
callback controls how the output is produced. The callback has the same signature as
for examination:

function callback(element, index, array)

There are two transformation methods:
Array.prototype.map(callback, thisValue?)

Each output array element is the result of applying callback to an input element.
For example:

> [1, 2, 3].map(function (x) { return 2 * x })
[2, 4, 6]

Array.prototype.filter(callback, thisValue?)

The output array contains only those input elements for which callback returns
true. For example:

> [1, 0, 3, 0].filter(function (x) { return x !== 0 })
[1, 3]

Reduction Methods
For reducing, the callback has a different signature:

function callback(previousValue, currentElement, currentIndex, array)

The parameter previousValue is the value previously returned by the callback. When
the callback is first called, there are two possibilities (the descriptions are for Array.pro
totype.reduce(); differences with reduceRight() are mentioned in parentheses):

Iteration (Nondestructive) | 293

• An explicit initialValue has been provided. Then previousValue is initialVal
ue, and currentElement is the first array element (reduceRight: the last array
element).

• No explicit initialValue has been provided. Then previousValue is the first array
element, and currentElement is the second array element (reduceRight: the last
array element and second-to-last array element).

There are two reduction methods:
Array.prototype.reduce(callback, initialValue?)

Iterates from left to right and invokes the callback as previously sketched. The result
of the method is the last value returned by the callback. This example computes the
sum of all array elements:

function add(prev, cur) {
 return prev + cur;
}
console.log([10, 3, -1].reduce(add)); // 12

If you invoke reduce on an array with a single element, that element is returned:

> [7].reduce(add)
7

If you invoke reduce on an empty array, you must specify initialValue, otherwise
you get an exception:

> [].reduce(add)
TypeError: Reduce of empty array with no initial value
> [].reduce(add, 123)
123

Array.prototype.reduceRight(callback, initialValue?)

Works the same as reduce(), but iterates from right to left.

In many functional programming languages, reduce is known as fold
or foldl (left fold) and reduceRight is known as foldr (right fold).

Another way to look at the reduce method is that it implements an n-ary operator OP:

OP1≤i≤n xi

via a series of applications of a binary operator op2:

(...(x1 op2 x2) op2 ...) op2 xn

294 | Chapter 18: Arrays

That’s what happened in the previous code example: we implemented an n-ary sum
operator for arrays via JavaScript’s binary plus operator.

As an example, let’s examine the two iteration directions via the following function:

function printArgs(prev, cur, i) {
 console.log('prev:'+prev+', cur:'+cur+', i:'+i);
 return prev + cur;
}

As expected, reduce() iterates from left to right:

> ['a', 'b', 'c'].reduce(printArgs)
prev:a, cur:b, i:1
prev:ab, cur:c, i:2
'abc'
> ['a', 'b', 'c'].reduce(printArgs, 'x')
prev:x, cur:a, i:0
prev:xa, cur:b, i:1
prev:xab, cur:c, i:2
'xabc'

And reduceRight() iterates from right to left:

> ['a', 'b', 'c'].reduceRight(printArgs)
prev:c, cur:b, i:1
prev:cb, cur:a, i:0
'cba'
> ['a', 'b', 'c'].reduceRight(printArgs, 'x')
prev:x, cur:c, i:2
prev:xc, cur:b, i:1
prev:xcb, cur:a, i:0
'xcba'

Pitfall: Array-Like Objects
Some objects in JavaScript look like an array, but they aren’t one. That usually means
that they have indexed access and a length property, but none of the array methods.
Examples include the special variable arguments, DOM node lists, and strings. “Array-
Like Objects and Generic Methods” on page 262 gives tips for working with array-like
objects.

Best Practices: Iterating over Arrays
To iterate over an array arr, you have two options:

• A simple for loop (see “for” on page 147):

Pitfall: Array-Like Objects | 295

for (var i=0; i<arr.length; i++) {
 console.log(arr[i]);
}

• One of the array iteration methods (see “Iteration (Nondestructive)” on page 291).
For example, forEach():

arr.forEach(function (elem) {
 console.log(elem);
});

Do not use the for-in loop (see “for-in” on page 148) to iterate over arrays. It iterates
over indices, not over values. And it includes the keys of normal properties while doing
so, including inherited ones.

296 | Chapter 18: Arrays

CHAPTER 19

Regular Expressions

This chapter gives an overview of the JavaScript API for regular expressions. It assumes
that you are roughly familiar with how they work. If you are not, there are many good
tutorials on the Web. Two examples are:

• Regular-Expressions.info by Jan Goyvaerts
• JavaScript Regular Expression Enlightenment by Cody Lindley

Regular Expression Syntax
The terms used here closely reflect the grammar in the ECMAScript specification. I
sometimes deviate to make things easier to understand.

Atoms: General
The syntax for general atoms is as follows:
Special characters

All of the following characters have special meaning:

\ ^ $. * + ? () [] { } |

You can escape them by prefixing a backslash. For example:

> /^(ab)$/.test('(ab)')
false
> /^\(ab\)$/.test('(ab)')
true

Additional special characters are:

• Inside a character class [...]:
-

297

http://www.regular-expressions.info/
http://bit.ly/1fwoQMs

• Inside a group that starts with a question mark (?...):
: = ! < >

The angle brackets are used only by the XRegExp library (see Chapter 30), to
name groups.

Pattern characters
All characters except the aforementioned special ones match themselves.

. (dot)
Matches any JavaScript character (UTF-16 code unit) except line terminators (new‐
line, carriage return, etc.). To really match any character, use [\s\S]. For example:

> /./.test('\n')
false
> /[\s\S]/.test('\n')
true

Character escapes (match single characters)
• Specific control characters include \f (form feed), \n (line feed, newline), \r

(carriage return), \t (horizontal tab), and \v (vertical tab).
• \0 matches the NUL character (\u0000).
• Any control character: \cA – \cZ.
• Unicode character escapes: \u0000 – \xFFFF (Unicode code units; see Chap‐

ter 24).
• Hexadecimal character escapes: \x00 – \xFF.

Character class escapes (match one of a set of characters)
• Digits: \d matches any digit (same as [0-9]); \D matches any nondigit (same

as [^0-9]).
• Alphanumeric characters: \w matches any Latin alphanumeric character plus

underscore (same as [A-Za-z0-9_]); \W matches all characters not matched by
\w.

• Whitespace: \s matches whitespace characters (space, tab, line feed, carriage
return, form feed, all Unicode spaces, etc.); \S matches all nonwhitespace
characters.

Atoms: Character Classes
The syntax for character classes is as follows:

• [«charSpecs»] matches any single character that matches at least one of the
charSpecs.

298 | Chapter 19: Regular Expressions

• [^«charSpecs»] matches any single character that does not match any of the
charSpecs.

The following constructs are all character specifications:

• Source characters match themselves. Most characters are source characters (even
many characters that are special elsewhere). Only three characters are not:

 \] -

As usual, you escape via a backslash. If you want to match a dash without escaping
it, it must be the first character after the opening bracket or the right side of a range,
as described shortly.

• Class escapes: Any of the character escapes and character class escapes listed pre‐
viously are allowed. There is one additional escape:
— Backspace (\b): Outside a character class, \b matches word boundaries. Inside

a character class, it matches the control character backspace.
• Ranges comprise a source character or a class escape, followed by a dash (-), fol‐

lowed by a source character or a class escape.

To demonstrate using character classes, this example parses a date formatted in the
ISO 8601 standard:

function parseIsoDate(str) {
 var match = /^([0-9]{4})-([0-9]{2})-([0-9]{2})$/.exec(str);

 // Other ways of writing the regular expression:
 // /^([0-9][0-9][0-9][0-9])-([0-9][0-9])-([0-9][0-9])$/
 // /^(\d\d\d\d)-(\d\d)-(\d\d)$/

 if (!match) {
 throw new Error('Not an ISO date: '+str);
 }
 console.log('Year: ' + match[1]);
 console.log('Month: ' + match[2]);
 console.log('Day: ' + match[3]);
}

And here is the interaction:

> parseIsoDate('2001-12-24')
Year: 2001
Month: 12
Day: 24

Atoms: Groups
The syntax for groups is as follows:

Regular Expression Syntax | 299

• («pattern») is a capturing group. Whatever is matched by pattern can be accessed
via backreferences or as the result of a match operation.

• (?:«pattern») is a noncapturing group. pattern is still matched against the input,
but not saved as a capture. Therefore, the group does not have a number you can
refer to (e.g., via a backreference).

\1, \2, and so on are known as backreferences; they refer back to a previously matched
group. The number after the backslash can be any integer greater than or equal to 1, but
the first digit must not be 0.

In this example, a backreference guarantees the same amount of a’s before and after the
dash:

> /^(a+)-\1$/.test('a-a')
true
> /^(a+)-\1$/.test('aaa-aaa')
true
> /^(a+)-\1$/.test('aa-a')
false

This example uses a backreference to match an HTML tag (obviously, you should nor‐
mally use a proper parser to process HTML):

> var tagName = /<([^>]+)>[^<]*<\/\1>/;
> tagName.exec('bold')[1]
'b'
> tagName.exec('text')[1]
'strong'
> tagName.exec('text</stron>')
null

Quantifiers
Any atom (including character classes and groups) can be followed by a quantifier:

• ? means match never or once.
• * means match zero or more times.
• + means match one or more times.
• {n} means match exactly n times.
• {n,} means match n or more times.
• {n,m} means match at least n, at most m, times.

By default, quantifiers are greedy; that is, they match as much as possible. You can get
reluctant matching (as little as possible) by suffixing any of the preceding quantifiers
(including the ranges in curly braces) with a question mark (?). For example:

300 | Chapter 19: Regular Expressions

> '<a> '.match(/^<(.*)>/)[1] // greedy
'a> <strong'
> '<a> '.match(/^<(.*?)>/)[1] // reluctant
'a'

Thus, .*? is a useful pattern for matching everything until the next occurrence of the
following atom. For example, the following is a more compact version of the regular
expression for HTML tags just shown (which used [^<]* instead of .*?):

/<(.+?)>.*?<\/\1>/

Assertions
Assertions, shown in the following list, are checks about the current position in the
input:

^ Matches only at the beginning of the input.

$ Matches only at the end of the input.

\b Matches only at a word boundary. Don’t confuse with [\b], which matches a backspace.

\B Matches only if not at a word boundary.

(?=«pattern») Positive lookahead: Matches only if pattern matches what comes next. pattern is used only to look
ahead, but otherwise ignored.

(?!«pattern») Negative lookahead: Matches only if pattern does not match what comes next. pattern is used only
to look ahead, but otherwise ignored.

This example matches a word boundary via \b:

> /\bell\b/.test('hello')
false
> /\bell\b/.test('ello')
false
> /\bell\b/.test('ell')
true

This example matches the inside of a word via \B:

> /\Bell\B/.test('ell')
false
> /\Bell\B/.test('hell')
false
> /\Bell\B/.test('hello')
true

Lookbehind is not supported. “Manually Implementing Lookbe‐
hind” on page 313 explains how to implement it manually.

Regular Expression Syntax | 301

Disjunction
A disjunction operator (|) separates two alternatives; either of the alternatives must
match for the disjunction to match. The alternatives are atoms (optionally including
quantifiers).

The operator binds very weakly, so you have to be careful that the alternatives don’t
extend too far. For example, the following regular expression matches all strings that
either start with aa or end with bb:

> /^aa|bb$/.test('aaxx')
true
> /^aa|bb$/.test('xxbb')
true

In other words, the disjunction binds more weakly than even ^ and $ and the two
alternatives are ^aa and bb$. If you want to match the two strings 'aa' and 'bb', you
need parentheses:

/^(aa|bb)$/

Similarly, if you want to match the strings 'aab' and 'abb':

/^a(a|b)b$/

Unicode and Regular Expressions
JavaScript’s regular expressions have only very limited support for Unicode. Especially
when it comes to code points in the astral planes, you have to be careful. Chapter 24
explains the details.

Creating a Regular Expression
You can create a regular expression via either a literal or a constructor and configure
how it works via flags.

Literal Versus Constructor
There are two ways to create a regular expression: you can use a literal or the constructor
RegExp:

Literal /xyz/i Compiled at load time

Constructor (second argument is optional) new RegExp('xyz', 'i') Compiled at runtime

A literal and a constructor differ in when they are compiled:

302 | Chapter 19: Regular Expressions

• The literal is compiled at load time. The following code will cause an exception
when it is evaluated:

function foo() {
 /[/;
}

• The constructor compiles the regular expression when it is called. The following
code will not cause an exception, but calling foo() will:

function foo() {
 new RegExp('[');
}

Thus, you should normally use literals, but you need the constructor if you want to
dynamically assemble a regular expression.

Flags
Flags are a suffix of regular expression literals and a parameter of regular expression
constructors; they modify the matching behavior of regular expressions. The following
flags exist:

Short name Long name Description

g global The given regular expression is matched multiple times. Influences several methods, especially
replace().

i ignoreCase Case is ignored when trying to match the given regular expression.

m multiline In multiline mode, the begin operator ^ and the end operator $ match each line, instead of the
complete input string.

The short name is used for literal prefixes and constructor parameters (see examples in
the next section). The long name is used for properties of a regular expression that
indicate what flags were set during its creation.

Instance Properties of Regular Expressions
Regular expressions have the following instance properties:

• Flags: boolean values indicating what flags are set:
— global: Is flag /g set?
— ignoreCase: Is flag /i set?
— multiline: Is flag /m set?

• Data for matching multiple times (flag /g is set):
— lastIndex is the index where to continue the search next time.

Creating a Regular Expression | 303

The following is an example of accessing the instance properties for flags:

> var regex = /abc/i;
> regex.ignoreCase
true
> regex.multiline
false

Examples of Creating Regular Expressions
In this example, we create the same regular expression first with a literal, then with a
constructor, and use the test() method to determine whether it matches a string:

> /abc/.test('ABC')
false
> new RegExp('abc').test('ABC')
false

In this example, we create a regular expression that ignores case (flag /i):

> /abc/i.test('ABC')
true
> new RegExp('abc', 'i').test('ABC')
true

RegExp.prototype.test: Is There a Match?
The test() method checks whether a regular expression, regex, matches a string, str:

regex.test(str)

test() operates differently depending on whether the flag /g is set or not.

If the flag /g is not set, then the method checks whether there is a match somewhere in
str. For example:

> var str = '_x_x';

> /x/.test(str)
true
> /a/.test(str)
false

If the flag /g is set, then the method returns true as many times as there are matches
for regex in str. The property regex.lastIndex contains the index after the last match:

> var regex = /x/g;
> regex.lastIndex
0

> regex.test(str)
true
> regex.lastIndex

304 | Chapter 19: Regular Expressions

2

> regex.test(str)
true
> regex.lastIndex
4

> regex.test(str)
false

String.prototype.search: At What Index Is There a Match?
The search() method looks for a match with regex within str:

str.search(regex)

If there is a match, the index where it was found is returned. Otherwise, the result is
-1. The properties global and lastIndex of regex are ignored as the search is per‐
formed (and lastIndex is not changed).

For example:

> 'abba'.search(/b/)
1
> 'abba'.search(/x/)
-1

If the argument of search() is not a regular expression, it is converted to one:

> 'aaab'.search('^a+b+$')
0

RegExp.prototype.exec: Capture Groups
The following method call captures groups while matching regex against str:

var matchData = regex.exec(str);

If there was no match, matchData is null. Otherwise, matchData is a match result, an
array with two additional properties:
Array elements

• Element 0 is the match for the complete regular expression (group 0, if you
will).

• Element n > 1 is the capture of group n.

Properties
• input is the complete input string.
• index is the index where the match was found.

String.prototype.search: At What Index Is There a Match? | 305

First Match (Flag /g Not Set)
If the flag /g is not set, only the first match is returned:

> var regex = /a(b+)/;
> regex.exec('_abbb_ab_')
['abbb',
 'bbb',
 index: 1,
 input: '_abbb_ab_']
> regex.lastIndex
0

All Matches (Flag /g Set)
If the flag /g is set, all matches are returned if you invoke exec() repeatedly. The return
value null signals that there are no more matches. The property lastIndex indicates
where matching will continue next time:

> var regex = /a(b+)/g;
> var str = '_abbb_ab_';

> regex.exec(str)
['abbb',
 'bbb',
 index: 1,
 input: '_abbb_ab_']
> regex.lastIndex
6

> regex.exec(str)
['ab',
 'b',
 index: 7,
 input: '_abbb_ab_']
> regex.lastIndex
10

> regex.exec(str)
null

Here we loop over matches:

var regex = /a(b+)/g;
var str = '_abbb_ab_';
var match;
while (match = regex.exec(str)) {
 console.log(match[1]);
}

and we get the following output:

306 | Chapter 19: Regular Expressions

bbb
b

String.prototype.match: Capture Groups or Return All
Matching Substrings
The following method call matches regex against str:

var matchData = str.match(regex);

If the flag /g of regex is not set, this method works like RegExp.prototype.exec():

> 'abba'.match(/a/)
['a', index: 0, input: 'abba']

If the flag is set, then the method returns an array with all matching substrings in str
(i.e., group 0 of every match) or null if there is no match:

> 'abba'.match(/a/g)
['a', 'a']
> 'abba'.match(/x/g)
null

String.prototype.replace: Search and Replace
The replace() method searches a string, str, for matches with search and replaces
them with replacement:

str.replace(search, replacement)

There are several ways in which the two parameters can be specified:
search

Either a string or a regular expression:

• String: To be found literally in the input string. Be warned that only the first
occurrence of a string is replaced. If you want to replace multiple occurrences,
you must use a regular expression with a /g flag. This is unexpected and a major
pitfall.

• Regular expression: To be matched against the input string. Warning: Use the
global flag, otherwise only one attempt is made to match the regular
expression.

replacement

Either a string or a function:

• String: Describes how to replace what has been found.

String.prototype.match: Capture Groups or Return All Matching Substrings | 307

• Function: Computes a replacement and is given matching information via
parameters.

Replacement Is a String
If replacement is a string, its content is used verbatim to replace the match. The only
exception is the special character dollar sign ($), which starts so-called replacement
directives:

• Groups: $n inserts group n from the match. n must be at least 1 ($0 has no special
meaning).

• The matching substring:
— $` (backtick) inserts the text before the match.
— $& inserts the complete match.
— $' (apostrophe) inserts the text after the match.

• $$ inserts a single $.

This example refers to the matching substring and its prefix and suffix:

> 'axb cxd'.replace(/x/g, "[$`,$&,$']")
'a[a,x,b cxd]b c[axb c,x,d]d'

This example refers to a group:

> '"foo" and "bar"'.replace(/"(.*?)"/g, '#$1#')
'#foo# and #bar#'

Replacement Is a Function
If replacement is a function, it computes the string that is to replace the match. This
function has the following signature:

function (completeMatch, group_1, ..., group_n, offset, inputStr)

completeMatch is the same as $& previously, offset indicates where the match was
found, and inputStr is what is being matched against. Thus, you can use the special
variable arguments to access groups (group 1 via arguments[1], and so on). For
example:

> function replaceFunc(match) { return 2 * match }
> '3 apples and 5 oranges'.replace(/[0-9]+/g, replaceFunc)
'6 apples and 10 oranges'

308 | Chapter 19: Regular Expressions

Problems with the Flag /g
Regular expressions whose /g flag is set are problematic if a method invoked on them
must be invoked multiple times to return all results. That’s the case for two methods:

• RegExp.prototype.test()

• RegExp.prototype.exec()

Then JavaScript abuses the regular expression as an iterator, as a pointer into the se‐
quence of results. That causes problems:
Problem 1: /g regular expressions can’t be inlined

For example:

// Don’t do that:
var count = 0;
while (/a/g.test('babaa')) count++;

The preceding loop is infinite, because a new regular expression is created for each
loop iteration, which restarts the iteration over the results. Therefore, the code must
be rewritten:

var count = 0;
var regex = /a/g;
while (regex.test('babaa')) count++;

Here is another example:

// Don’t do that:
function extractQuoted(str) {
 var match;
 var result = [];
 while ((match = /"(.*?)"/g.exec(str)) != null) {
 result.push(match[1]);
 }
 return result;
}

Calling the preceding function will again result in an infinite loop. The correct
version is (why lastIndex is set to 0 is explained shortly):

var QUOTE_REGEX = /"(.*?)"/g;
function extractQuoted(str) {
 QUOTE_REGEX.lastIndex = 0;
 var match;
 var result = [];
 while ((match = QUOTE_REGEX.exec(str)) != null) {
 result.push(match[1]);
 }
 return result;
}

Problems with the Flag /g | 309

Using the function:

> extractQuoted('"hello", "world"')
['hello', 'world']

It’s a best practice not to inline anyway (then you can give regular
expressions descriptive names). But you have to be aware that you
can’t do it, not even in quick hacks.

Problem 2: /g regular expressions as parameters
Code that wants to invoke test() and exec() multiple times must be careful with
a regular expression handed to it as a parameter. Its flag /g must active and, to be
safe, its lastIndex should be set to zero (an explanation is offered in the next
example).

Problem 3: Shared /g regular expressions (e.g., constants)
Whenever you are referring to a regular expression that has not been freshly created,
you should set its lastIndex property to zero, before using it as an iterator (an
explanation is offered in the next example). As iteration depends on lastIndex,
such a regular expression can’t be used in more than one iteration at the same time.

The following example illustrates problem 2. It is a naive implementation of a function
that counts how many matches there are for the regular expression regex in the string
str:

// Naive implementation
function countOccurrences(regex, str) {
 var count = 0;
 while (regex.test(str)) count++;
 return count;
}

Here’s an example of using this function:

> countOccurrences(/x/g, '_x_x')
2

The first problem is that this function goes into an infinite loop if the regular expres‐
sion’s /g flag is not set. For example:

countOccurrences(/x/, '_x_x') // never terminates

The second problem is that the function doesn’t work correctly if regex.lastIndex isn’t
0, because that property indicates where to start the search. For example:

> var regex = /x/g;
> regex.lastIndex = 2;

310 | Chapter 19: Regular Expressions

> countOccurrences(regex, '_x_x')
1

The following implementation fixes the two problems:

function countOccurrences(regex, str) {
 if (! regex.global) {
 throw new Error('Please set flag /g of regex');
 }
 var origLastIndex = regex.lastIndex; // store
 regex.lastIndex = 0;

 var count = 0;
 while (regex.test(str)) count++;

 regex.lastIndex = origLastIndex; // restore
 return count;
}

A simpler alternative is to use match():

function countOccurrences(regex, str) {
 if (! regex.global) {
 throw new Error('Please set flag /g of regex');
 }
 return (str.match(regex) || []).length;
}

There’s one possible pitfall: str.match() returns null if the /g flag is set and there are
no matches. We avoid that pitfall in the preceding code by using [] if the result of
match() isn’t truthy.

Tips and Tricks
This section gives a few tips and tricks for working with regular expressions in
JavaScript.

Quoting Text
Sometimes, when you assemble a regular expression manually, you want to use a given
string verbatim. That means that none of the special characters (e.g., *, [) should be
interpreted as such—all of them need to be escaped. JavaScript has no built-in means
for this kind of quoting, but you can program your own function, quoteText, that would
work as follows:

> console.log(quoteText('*All* (most?) aspects.'))
All \(most\?\) aspects\.

Tips and Tricks | 311

Such a function is especially handy if you need to do a search and replace with multiple
occurrences. Then the value to search for must be a regular expression with the global
flag set. With quoteText(), you can use arbitrary strings. The function looks like this:

function quoteText(text) {
 return text.replace(/[\\^$.*+?()[\]{}|=!<>:-]/g, '\\$&');
}

All special characters are escaped, because you may want to quote several characters
inside parentheses or square brackets.

Pitfall: Without an Assertion (e.g., ^, $), a Regular Expression Is
Found Anywhere
If you don’t use assertions such as ^ and $, most regular expression methods find a
pattern anywhere. For example:

> /aa/.test('xaay')
true
> /^aa$/.test('xaay')
false

Matching Everything or Nothing
It’s a rare use case, but sometimes you need a regular expression that matches everything
or nothing. For example, a function may have a parameter with a regular expression
that is used for filtering. If that parameter is missing, you give it a default value, a regular
expression that matches everything.

Matching everything

The empty regular expression matches everything. We can create an instance of RegExp
based on that regular expression like this:

> new RegExp('').test('dfadsfdsa')
true
> new RegExp('').test('')
true

However, the empty regular expression literal would be //, which is interpreted as a
comment by JavaScript. Therefore, the following is the closest you can get via a liter‐
al: /(?:)/ (empty noncapturing group). The group matches everything, while not cap‐
turing anything, which the group from influencing the result returned by exec(). Even
JavaScript itself uses the preceding representation when displaying an empty regular
expression:

> new RegExp('')
/(?:)/

312 | Chapter 19: Regular Expressions

Matching nothing
The empty regular expression has an inverse—the regular expression that matches
nothing:

> var never = /.^/;
> never.test('abc')
false
> never.test('')
false

Manually Implementing Lookbehind
Lookbehind is an assertion. Similar to lookahead, a pattern is used to check something
about the current position in the input, but otherwise ignored. In contrast to lookahead,
the match for the pattern has to end at the current position (not start at it).

The following function replaces each occurrence of the string 'NAME' with the value of
the parameter name, but only if the occurrence is not preceded by a quote. We handle
the quote by “manually” checking the character before the current match:

function insertName(str, name) {
 return str.replace(
 /NAME/g,
 function (completeMatch, offset) {
 if (offset === 0 ||
 (offset > 0 && str[offset-1] !== '"')) {
 return name;
 } else {
 return completeMatch;
 }
 }
);
}

> insertName('NAME "NAME"', 'Jane')
'Jane "NAME"'
> insertName('"NAME" NAME', 'Jane')
'"NAME" Jane'

An alternative is to include the characters that may escape in the regular expression.
Then you have to temporarily add a prefix to the string you are searching in; otherwise,
you’d miss matches at the beginning of that string:

function insertName(str, name) {
 var tmpPrefix = ' ';
 str = tmpPrefix + str;
 str = str.replace(
 /([^"])NAME/g,
 function (completeMatch, prefix) {
 return prefix + name;
 }

Tips and Tricks | 313

);
 return str.slice(tmpPrefix.length); // remove tmpPrefix
}

Regular Expression Cheat Sheet
Atoms (see “Atoms: General” on page 297):

• . (dot) matches everything except line terminators (e.g., newlines). Use [\s\S] to
really match everything.

• Character class escapes:
— \d matches digits ([0-9]); \D matches nondigits ([^0-9]).
— \w matches Latin alphanumeric characters plus underscore ([A-Za-z0-9_]); \W

matches all other characters.
— \s matches all whitespace characters (space, tab, line feed, etc.); \S matches all

nonwhitespace characters.
• Character class (set of characters): [...] and [^...]

— Source characters: [abc] (all characters except \] - match themselves)
— Character class escapes (see previous): [\d\w]
— Ranges: [A-Za-z0-9]

• Groups:
— Capturing group: (...); backreference: \1
— Noncapturing group: (?:...)

Quantifiers (see “Quantifiers” on page 300):

• Greedy:
— ? * +

— {n} {n,} {n,m}

• Reluctant: Put a ? after any of the greedy quantifiers.

Assertions (see “Assertions” on page 301):

• Beginning of input, end of input: ^ $
• At a word boundary, not at a word boundary: \b \B
• Positive lookahead: (?=...) (pattern must come next, but is otherwise ignored)

314 | Chapter 19: Regular Expressions

• Negative lookahead: (?!...) (pattern must not come next, but is otherwise
ignored)

Disjunction: |

Creating a regular expression (see “Creating a Regular Expression” on page 302):

• Literal: /xyz/i (compiled at load time)
• Constructor: new RegExp('xzy', 'i') (compiled at runtime)

Flags (see “Flags” on page 303):

• global: /g (influences several regular expression methods)
• ignoreCase: /i
• multiline: /m (^ and $ match per line, as opposed to the complete input)

Methods:

• regex.test(str): Is there a match (see “RegExp.prototype.test: Is There a
Match?” on page 304)?
— /g is not set: Is there a match somewhere?
— /g is set: Return true as many times as there are matches.

• str.search(regex): At what index is there a match (see “String.prototype.search:
At What Index Is There a Match?” on page 305)?

• regex.exec(str): Capture groups (see the section “RegExp.prototype.exec: Cap‐
ture Groups” on page 305)?
— /g is not set: Capture groups of first match only (invoked once)
— /g is set: Capture groups of all matches (invoked repeatedly; returns null if there

are no more matches)
• str.match(regex): Capture groups or return all matching substrings (see

“String.prototype.match: Capture Groups or Return All Matching Substrings” on
page 307)
— /g is not set: Capture groups
— /g is set: Return all matching substrings in an array

• str.replace(search, replacement): Search and replace (see “String.proto‐
type.replace: Search and Replace” on page 307)
— search: String or regular expression (use the latter, set /g!)

Regular Expression Cheat Sheet | 315

— replacement: String (with $1, etc.) or function (arguments[1] is group 1, etc.)
that returns a string

For tips on using the flag /g, see “Problems with the Flag /g” on page 309.

Acknowledgments
Mathias Bynens (@mathias) and Juan Ignacio Dopazo (@juandopa‐
zo) recommended using match() and test() for counting occur‐
rences, and Šime Vidas (@simevidas) warned me about being care‐
ful with match() if there are no matches. The pitfall of the global flag
causing infinite loops comes from a talk by Andrea Giammarchi
(@webreflection). Claude Pache told me to escape more characters in
quoteText().

316 | Chapter 19: Regular Expressions

http://bit.ly/1fwpdXv

CHAPTER 20

Dates

JavaScript’s Date constructor helps with parsing, managing, and displaying dates. This
chapter describes how it works.

The date API uses the term UTC (Coordinated Universal Time). For most purposes,
UTC is a synonym for GMT (Greenwich Mean Time) and roughly means the time zone
of London, UK.

The Date Constructor
There are four ways of invoking the constructor of Date:
new Date(year, month, date?, hours?, minutes?, seconds?, milliseconds?)

Constructs a new date from the given data. The time is interpreted relative to the
current time zone. Date.UTC() provides similar functionality, but relative to UTC.
The parameters have the following ranges:

• year: For 0 ≤ year ≤ 99, 1900 is added.
• month: 0–11 (0 is January, 1 is February, etc.)
• date: 1–31
• hours: 0–23
• minutes: 0–59
• seconds: 0–59
• milliseconds: 0–999

Here are some examples:

> new Date(2001, 1, 27, 14, 55)
Date {Tue Feb 27 2001 14:55:00 GMT+0100 (CET)}

317

> new Date(01, 1, 27, 14, 55)
Date {Wed Feb 27 1901 14:55:00 GMT+0100 (CET)}

As an aside, JavaScript has inherited the slightly weird convention of interpreting
0 as January, 1 as February, and so on, from Java.

new Date(dateTimeStr)

This is a date time string that is converted into a number, with which new Date(num
ber) is invoked. “Date Time Formats” on page 324 explains the date time formats. For
example:

> new Date('2004-08-29')
Date {Sun Aug 29 2004 02:00:00 GMT+0200 (CEST)}

Illegal date time strings lead to NaN being passed to new Date(number).

new Date(timeValue)

Creates a date as specified in the number of milliseconds since 1 January 1970
00:00:00 UTC. For example:

> new Date(0)
Date {Thu Jan 01 1970 01:00:00 GMT+0100 (CET)}

The inverse of this constructor is the getTime() method, which returns the milli‐
seconds:

> new Date(123).getTime()
123

You can use NaN as an argument, which produces a special instance of Date, an
“invalid date”:

> var d = new Date(NaN);
> d.toString()
'Invalid Date'
> d.toJSON()
null
> d.getTime()
NaN
> d.getYear()
NaN

new Date()

Creates an object for the current date and time; it works the same as new
Date(Date.now()).

Date Constructor Methods
The constructor Date has the following methods:

318 | Chapter 20: Dates

Date.now()

Returns the current date and time in milliseconds (since 1 January 1970, 00:00:00
UTC). It produces the same result as new Date().getTime().

Date.parse(dateTimeString)

Converts dateTimeString to milliseconds since 1 January 1970, 00:00:00 UTC.
“Date Time Formats” on page 324 explains the format of dateTimeString. The result
can be used to invoke new Date(number). Here are some examples:

> Date.parse('1970-01-01')
0
> Date.parse('1970-01-02')
86400000

If it can’t parse a string, this method returns NaN:

> Date.parse('abc')
NaN

Date.UTC(year, month, date?, hours?, minutes?, seconds?, milliseconds?)

Converts the given data to milliseconds since 1 January 1970 00:00:00 UTC. It differs
from the Date constructor with the same arguments in two ways:

• It returns a number, not a new date object.
• It interprets the arguments as UTC, rather than as local time.

Date Prototype Methods
This section covers the methods of Date.prototype.

Time Unit Getters and Setters
Time unit getters and setters are available with the following signatures:

• Local time:
— Date.prototype.get«Unit»() returns Unit, according to local time.
— Date.prototype.set«Unit»(number) sets Unit, according to local time.

• Universal time:
— Date.prototype.getUTC«Unit»() returns Unit, according to universal time.
— Date.prototype.setUTC«Unit»(number) sets Unit, according to universal

time.

Date Prototype Methods | 319

Unit is one of the following words:

• FullYear: Usually four digits
• Month: Month (0–11)
• Date: Day of the month (1–31)
• Day (getter only): Day of the week (0–6); 0 is Sunday
• Hours: Hour (0–23)
• Minutes: Minutes (0–59)
• Seconds: Seconds (0–59)
• Milliseconds: Milliseconds (0–999)

For example:

> var d = new Date('1968-11-25');
Date {Mon Nov 25 1968 01:00:00 GMT+0100 (CET)}
> d.getDate()
25
> d.getDay()
1

Various Getters and Setters
The following methods enable you to get and set the time in milliseconds since 1 January
1970 and more:

• Date.prototype.getTime() returns the milliseconds since 1 January 1970 00:00:00
UTC (see “Time Values: Dates as Milliseconds Since 1970-01-01” on page 324).

• Date.prototype.setTime(timeValue) sets the date as specified in milliseconds
since 1 January 1970 00:00:00 UTC (see “Time Values: Dates as Milliseconds Since
1970-01-01” on page 324).

• Date.prototype.valueOf() is the same as getTime(). This method is called when
a date is converted to a number.

• Date.prototype.getTimezoneOffset() returns the difference between local time
and UTC time in minutes.

The unit Year has been deprecated in favor of FullYear:

• Date.prototype.getYear() is deprecated; use getFullYear() instead.
• Date.prototype.setYear(number) is deprecated; use setFullYear() instead.

320 | Chapter 20: Dates

Convert a Date to a String
Note that conversion to a string is highly implementation-dependent. The following
date is used to compute the output in the following examples (in Firefox, which had the
most complete support when this book was written):

new Date(2001,9,30, 17,43,7, 856);

Time (human-readable)
• Date.prototype.toTimeString():

17:43:07 GMT+0100 (CET)

The time, in the current time zone.
• Date.prototype.toLocaleTimeString():

17:43:07

The time in a locale-specific format. This method is provided by the ECMA‐
Script Internationalization API (see “The ECMAScript Internationalization
API” on page 406) and does not make much sense without it.

Date (human-readable)
• Date.prototype.toDateString():

Tue Oct 30 2001

The date.
• Date.prototype.toLocaleDateString():

10/30/2001

The date, in a locale-specific format. This method is provided by the ECMA‐
Script Internationalization API (see “The ECMAScript Internationalization
API” on page 406) and does not make much sense without it.

Date and time (human-readable)
• Date.prototype.toString():

Tue Oct 30 2001 17:43:07 GMT+0100 (CET)

Date and time, in the current time zone. For any Date instance that has no
milliseconds (i.e., the second is full), the following expression is true:

Date.parse(d.toString()) === d.valueOf()

• Date.prototype.toLocaleString():
Tue Oct 30 17:43:07 2001

Date and time in a locale-specific format. This method is provided by the EC‐
MAScript Internationalization API (see “The ECMAScript Internationaliza‐
tion API” on page 406) and does not make much sense without it.

Date Prototype Methods | 321

• Date.prototype.toUTCString():
Tue, 30 Oct 2001 16:43:07 GMT

Date and time, in UTC.
• Date.prototype.toGMTString():

Deprecated; use toUTCString() instead.

Date and time (machine-readable)
• Date.prototype.toISOString():

2001-10-30T16:43:07.856Z

All internal properties show up in the returned string. The format is in ac‐
cordance with “Date Time Formats” on page 324; the time zone is always Z.

• Date.prototype.toJSON():
This method internally calls toISOString(). It is used by JSON.stringify()
(see “JSON.stringify(value, replacer?, space?)” on page 337) to convert date ob‐
jects to JSON strings.

Date Time Formats
This section describes formats for expressing points in time as strings. There are many
ways of doing so: indicating just the date, including a time of day, omitting the time
zone, specifying the time zone, and more. In its support for date time formats, ECMA‐
Script 5 closely follows the standard ISO 8601 Extended Format. JavaScript engines
implement the ECMAScript specification relatively completely, but there are still some
variations, so you have to be vigilant.

The longest date time format is:

YYYY-MM-DDTHH:mm:ss.sssZ

Each part stands for several decimal digits of date time data. For example, YYYY means
that the format starts with a four-digit year. The following subsections explain what each
part means. Formats are relevant for the following methods:

• Date.parse() can parse the formats.
• new Date() can parse the formats.
• Date.prototype.toISOString() creates a string in the aforementioned “full”

format:
> new Date().toISOString()
'2014-09-12T23:05:07.414Z'

322 | Chapter 20: Dates

Date Formats (No Time)
The following date formats are available:

YYYY-MM-DD
YYYY-MM
YYYY

They include the following parts:

• YYYY refers to year (Gregorian calendar).
• MM refers to month, from 01 to 12.
• DD refers to day, from 01 to 31.

For example:

> new Date('2001-02-22')
Date {Thu Feb 22 2001 01:00:00 GMT+0100 (CET)}

Time Formats (No Date)
The following time formats are available. As you can see, time zone information Z is
optional:

THH:mm:ss.sss
THH:mm:ss.sssZ

THH:mm:ss
THH:mm:ssZ

THH:mm
THH:mmZ

They include the following parts:

• T is the prefix of the time part of a format (a literal T, not a digit).
• HH refers to hour, from 00 to 23. You can use 24 as a value for HH (which refers to

hour 00 of the following day), but then all remaining parts must be 0.
• mm indicates the minute, from 00 to 59.
• ss indicates the second, from 00 to 59.
• sss indicates the millisecond, from 000 to 999.
• Z refers to time zone, either of the following two:

— “Z” for UTC
— “+” or “-” followed by a time “hh:mm”

Date Time Formats | 323

Some JavaScript engines allow you to specify only a time (others require a date):

> new Date('T13:17')
Date {Thu Jan 01 1970 13:17:00 GMT+0100 (CET)}

Date Time Formats
Date formats and time formats can also be combined. In date time formats, you can use
a date or a date and a time (or, in some engines, just the time). For example:

> new Date('2001-02-22T13:17')
Date {Thu Feb 22 2001 13:17:00 GMT+0100 (CET)}

Time Values: Dates as Milliseconds Since 1970-01-01
What the date API calls time is called a time value by the ECMAScript specification. It
is a primitive number that encodes a date as milliseconds since 1 January 1970 00:00:00
UTC. Each date object stores its state as a time value, in the internal property [[Primi
tiveValue]] (the same property that instances of the wrapper constructors Boolean,
Number, and String use to store their wrapped primitive values).

Leap seconds are ignored in time values.

The following methods work with time values:

• new Date(timeValue) uses a time value to create a date.
• Date.parse(dateTimeString) parses a string with a date time string and returns

a time value.
• Date.now() returns the current date time as a time value.
• Date.UTC(year, month, date?, hours?, minutes?, seconds?, millisec

onds?) interprets the parameters relative to UTC and returns a time value.
• Date.prototype.getTime() returns the time value stored in the receiver.
• Date.prototype.setTime(timeValue) changes the date as specified via a time

value.
• Date.prototype.valueOf() returns the time value stored in the receiver. This

method determines how dates are converted to primitives, as explained in the next
subsection.

324 | Chapter 20: Dates

The range of JavaScript integers (53 bits plus a sign) is large enough that a time span
can be represented that starts at approximately 285,616 years before 1970 and ends at
approximately 285,616 years after 1970.

Here are a few examples of converting dates to time values:

> new Date('1970-01-01').getTime()
0
> new Date('1970-01-02').getTime()
86400000
> new Date('1960-01-02').getTime()
-315532800000

The Date constructor enables you to convert times values to dates:

> new Date(0)
Date {Thu Jan 01 1970 01:00:00 GMT+0100 (CET)}
> new Date(24 * 60 * 60 * 1000) // 1 day in ms
Date {Fri Jan 02 1970 01:00:00 GMT+0100 (CET)}
> new Date(-315532800000)
Date {Sat Jan 02 1960 01:00:00 GMT+0100 (CET)}

Converting a Date to a Number
A date is converted to a number via Date.prototype.valueOf(), which returns a time
value. This allows you to compare dates:

> new Date('1980-05-21') > new Date('1980-05-20')
true

You can also perform arithmetic, but beware that leap seconds are ignored:

> new Date('1980-05-21') - new Date('1980-05-20')
86400000

Using the plus operator (+) to add a date to another date or a num‐
ber results in a string, because the default for the conversion to
primitive is to convert dates to strings (consult “The Plus Operator
(+)” on page 88 for an explanation of how the plus operator works):

> new Date('2024-10-03') + 86400000
'Thu Oct 03 2024 02:00:00 GMT+0200 (CEST)86400000'
> new Date(Number(new Date('2024-10-03')) + 86400000)
Fri Oct 04 2024 02:00:00 GMT+0200 (CEST)

Time Values: Dates as Milliseconds Since 1970-01-01 | 325

CHAPTER 21

Math

The Math object is used as a namespace for several math functions. This chapter provides
an overview.

Math Properties
The properties of Math are as follows:
Math.E

Euler’s constant (e)

Math.LN2

Natural logarithm of 2

Math.LN10

Natural logarithm of 10

Math.LOG2E

Base 2 logarithm of e

Math.LOG10E

Base 10 logarithm of e

Math.PI

The ratio of the circumference of a circle to its diameter (3.14159 ...), π

Math.SQRT1_2

The square root of one-half, 1
2

Math.SQRT2

The square root of two, 2

327

Numerical Functions
The numerical functions of Math include the following:
Math.abs(x)

Returns the absolute value of x.

Math.ceil(x)

Returns the smallest integer ≥ x:

> Math.ceil(3.999)
4
> Math.ceil(3.001)
4
> Math.ceil(-3.001)
-3
> Math.ceil(3.000)
3

For more on converting floating-point numbers to integers, see “Converting to
Integer” on page 117.

Math.exp(x)

Returns ex where e is Euler’s constant (Math.E). This is the inverse of Math.log().

Math.floor(x)

Returns the largest integer ≤ x:

> Math.floor(3.999)
3
> Math.floor(3.001)
3
> Math.floor(-3.001)
-4
> Math.floor(3.000)
3

For more on converting floating-point numbers to integers, see “Converting to
Integer” on page 117.

Math.log(x)

Returns the natural (base is Euler’s constant) logarithm ln(x) of x. This is the inverse
of Math.exp().

Math.pow(x, y)

Returns xy, x raised to the power of y:

> Math.pow(9, 2)
81
> Math.pow(36, 0.5)
6

328 | Chapter 21: Math

Math.round(x)

Returns x rounded to the nearest integer (the greater one if it is between two
integers):

> Math.round(3.999)
4
> Math.round(3.001)
3
> Math.round(3.5)
4
> Math.round(-3.5)
-3

For more on converting floating-point numbers to integers, see “Converting to
Integer” on page 117.

Math.sqrt(x)

Returns �, the square root of x:

> Math.sqrt(256)
16

Trigonometric Functions
The trigonometric methods accept and return angles as radians. The following func‐
tions show you how you could implement conversions, should you need to:

• From degrees to radians:
function toRadians(degrees) {
 return degrees / 180 * Math.PI;
}

Here is the interaction:
> toRadians(180)
3.141592653589793
> toRadians(90)
1.5707963267948966

• From radians to degrees:
function toDegrees(radians) {
 return radians / Math.PI * 180;
}

Here is the interaction:
> toDegrees(Math.PI * 2)
360
> toDegrees(Math.PI)
180

Trigonometric Functions | 329

The trigonometric methods are as follows:
Math.acos(x)

Returns the arc cosine of x.

Math.asin(x)

Returns the arc sine of x.

Math.atan(x)

Returns the arc tangent of x.

Math.atan2(y, x)

Returns the arc tangent of the quotient y
x .

Math.cos(x)

Returns the cosine of x.

Math.sin(x)

Returns the sine of x.

Math.tan(x)

Returns the tangent of x.

Other Functions
Following are the remaining Math functions:
min(x1?, x2?, ...)

Returns the smallest number among the parameters:

> Math.min()
Infinity
> Math.min(27)
27
> Math.min(27, -38)
-38
> Math.min(27, -38, -43)
-43

Use it on arrays via apply() (see “func.apply(thisValue, argArray)” on page 170):

> Math.min.apply(null, [27, -38, -43])
-43

max(x1?, x2?, ...)

Returns the largest number among the parameters:

> Math.max()
-Infinity
> Math.max(7)
7

330 | Chapter 21: Math

> Math.max(7, 10)
10
> Math.max(7, 10, -333)
10

Use it on arrays via apply() (see “func.apply(thisValue, argArray)” on page 170):

> Math.max.apply(null, [7, 10, -333])
10

Math.random()

Returns a pseudorandom number r, 0 ≤ r < 1. The following function uses
Math.random() to compute a random integer:

/**
 * Compute a random integer within the given range.
 *
 * @param [lower] Optional lower bound. Default: zero.
 * @returns A random integer i, lower ≤ i < upper
 */
function getRandomInteger(lower, upper) {
 if (arguments.length === 1) {
 upper = lower;
 lower = 0;
 }
 return Math.floor(Math.random() * (upper - lower)) + lower;
}

Other Functions | 331

CHAPTER 22

JSON

JSON (JavaScript Object Notation) is a plain-text format for data storage. It has become
quite popular as a data interchange format for web services, for configuration files, and
more. ECMAScript 5 has an API for converting from a string in JSON format to a
JavaScript value (parsing) and vice versa (stringifying).

Background
This section explains what JSON is and how it was created.

Data Format
JSON stores data as plain text. Its grammar is a subset of the grammar of JavaScript
expressions. For example:

{
 "first": "Jane",
 "last": "Porter",
 "married": true,
 "born": 1890,
 "friends": ["Tarzan", "Cheeta"]
}

JSON uses the following constructs from JavaScript expressions:
Compound

Objects of JSON data and arrays of JSON data

Atomic
Strings, numbers, booleans, and null

333

It adheres to these rules:

• Strings must always be double-quoted; string literals such as 'mystr' are illegal.
• Property keys must be double-quoted.

History
Douglas Crockford discovered JSON in 2001. He gave it a name and put up a specifi‐
cation at http://json.org:

I discovered JSON. I do not claim to have invented JSON, because it already existed in
nature. What I did was I found it, I named it, I described how it was useful. I don’t claim
to be the first person to have discovered it; I know that there are other people who dis‐
covered it at least a year before I did. The earliest occurrence I’ve found was, there was
someone at Netscape who was using JavaScript array literals for doing data communi‐
cation as early as 1996, which was at least five years before I stumbled onto the idea.

Initially, Crockford wanted JSON to have the name JavaScript Markup Language, but
the acronym JSML was already taken by the JSpeech Markup Language.

The JSON specification has been translated to many human languages, and there are
now libraries for many programming languages that support parsing and generating
JSON.

Grammar
Douglas Crockford created a JSON business card with a logo on the front (see
Figure 22-1) and the full grammar on the back (see Figure 22-2). That makes it visually
obvious how positively simple JSON is.

Figure 22-1. The front side of the JSON business card shows a logo (source: Eric
Miraglia).

334 | Chapter 22: JSON

http://json.org
http://www.w3.org/TR/jsml/
http://www.flickr.com/photos/equanimity/3762360637/
http://www.flickr.com/photos/equanimity/3762360637/

Figure 22-2. The back side of the JSON business card contains the complete grammar
(source: Eric Miraglia).

The grammar can be transcribed as follows:
object

{ }

{ members }

members
pair

Background | 335

http://www.flickr.com/photos/equanimity/3763158824/

pair , members

pair
string : value

array
[]

[elements]

elements
value

value , elements

value
string

number

object

array

true

false

null

string
""

" chars "

chars
char

char chars

char
any-Unicode-character-except-"-or-\-or-control-character

\" \\ \/ \b \f \n \r \t

\u four-hex-digits

number
int

int frac

int exp

336 | Chapter 22: JSON

int frac exp

int
digit

digit1-9 digits

- digit

- digit1-9 digits

frac
. digits

exp
e digits

digits
digit

digit digits

e
e e+ e-

E E+ E-

The global variable JSON serves as a namespace for functions that produce and parse
strings with JSON data.

JSON.stringify(value, replacer?, space?)
JSON.stringify(value, replacer?, space?) translates the JavaScript value value to
a string in JSON format. It has two optional arguments.

The optional parameter replacer is used to change the value before stringifying it. It
can be:

• A node visitor (see “Transforming Data via Node Visitors” on page 341) that trans‐
forms the tree of values before it is stringified. For example:

function replacer(key, value) {
 if (typeof value === 'number') {
 value = 2 * value;
 }
 return value;
}

Using the replacer:

JSON.stringify(value, replacer?, space?) | 337

> JSON.stringify({ a: 5, b: [2, 8] }, replacer)
'{"a":10,"b":[4,16]}'

• A whitelist of property keys that hides all properties (of nonarray objects) whose
keys are not in the list. For example:

> JSON.stringify({foo: 1, bar: {foo: 1, bar: 1}}, ['bar'])
'{"bar":{"bar":1}}'

The whitelist has no effect on arrays:
> JSON.stringify(['a', 'b'], ['0'])
'["a","b"]'

The optional parameter space influences the formatting of the output. Without this
parameter, the result of stringify is a single line of text:

> console.log(JSON.stringify({a: 0, b: ['\n']}))
{"a":0,"b":["\n"]}

With it, newlines are inserted and each level of nesting via arrays and objects increases
indentation. There are two ways to specify how to indent:
A number

Multiply the number by the level of indentation and indent the line by as many
spaces. Numbers smaller than 0 are interpreted as 0; numbers larger than 10 are
interpreted as 10:

> console.log(JSON.stringify({a: 0, b: ['\n']}, null, 2))
{
 "a": 0,
 "b": [
 "\n"
]
}

A string
To indent, repeat the given string once for each level of indentation. Only the first
10 characters of the string are used:

> console.log(JSON.stringify({a: 0, b: ['\n']}, null, '|--'))
{
|--"a": 0,
|--"b": [
|--|--"\n"
|--]
}

Therefore, the following invocation of JSON.stringify() prints an object as a nicely
formatted tree:

JSON.stringify(data, null, 4)

338 | Chapter 22: JSON

Data Ignored by JSON.stringify()
In objects, JSON.stringify() only considers enumerable own properties (see “Prop‐
erty Attributes and Property Descriptors” on page 222). The following example dem‐
onstrates the nonenumerable own property obj.foo being ignored:

> var obj = Object.defineProperty({}, 'foo', { enumerable: false, value: 7 });
> Object.getOwnPropertyNames(obj)
['foo']
> obj.foo
7
> JSON.stringify(obj)
'{}'

How JSON.stringify() handles values that are not supported by JSON (such as func‐
tions and undefined) depends on where it encounters them. An unsupported value
itself leads to stringify() returning undefined instead of a string:

> JSON.stringify(function () {})
undefined

Properties whose values are unsupported are simply ignored:

> JSON.stringify({ foo: function () {} })
'{}'

Unsupported values in arrays are stringified as nulls:

> JSON.stringify([function () {}])
'[null]'

The toJSON() Method
If JSON.stringify() encounters an object that has a toJSON method, it uses that method
to obtain a value to be stringified. For example:

> JSON.stringify({ toJSON: function () { return 'Cool' } })
'"Cool"'

Dates already have a toJSON method that produces an ISO 8601 date string:

> JSON.stringify(new Date('2011-07-29'))
'"2011-07-28T22:00:00.000Z"'

The full signature of a toJSON method is as follows:

function (key)

The key parameter allows you to stringify differently, depending on context. It is always
a string and indicates where your object was found in the parent object:
Root position

The empty string

JSON.stringify(value, replacer?, space?) | 339

Property value
The property key

Array element
The element’s index as a string

I’ll demonstrate toJSON() via the following object:

var obj = {
 toJSON: function (key) {
 // Use JSON.stringify for nicer-looking output
 console.log(JSON.stringify(key));
 return 0;
 }
};

If you use JSON.stringify(), each occurrence of obj is replaced with 0. The toJ
SON() method is notified that obj was encountered at the property key 'foo' and at the
array index 0:

> JSON.stringify({ foo: obj, bar: [obj]})
"foo"
"0"
'{"foo":0,"bar":[0]}'

The built-in toJSON() methods are as follows:

• Boolean.prototype.toJSON()

• Number.prototype.toJSON()

• String.prototype.toJSON()

• Date.prototype.toJSON()

JSON.parse(text, reviver?)
JSON.parse(text, reviver?) parses the JSON data in text and returns a JavaScript
value. Here are some examples:

> JSON.parse("'String'") // illegal quotes
SyntaxError: Unexpected token ILLEGAL
> JSON.parse('"String"')
'String'
> JSON.parse('123')
123
> JSON.parse('[1, 2, 3]')
[1, 2, 3]
> JSON.parse('{ "hello": 123, "world": 456 }')
{ hello: 123, world: 456 }

340 | Chapter 22: JSON

The optional parameter reviver is a node visitor (see “Transforming Data via Node
Visitors” on page 341) and can be used to transform the parsed data. In this example, we
are translating date strings to date objects:

function dateReviver(key, value) {
 if (typeof value === 'string') {
 var x = Date.parse(value);
 if (!isNaN(x)) { // valid date string?
 return new Date(x);
 }
 }
 return value;
}

And here is the interaction:

> var str = '{ "name": "John", "birth": "2011-07-28T22:00:00.000Z" }';
> JSON.parse(str, dateReviver)
{ name: 'John', birth: Thu, 28 Jul 2011 22:00:00 GMT }

Transforming Data via Node Visitors
Both JSON.stringify() and JSON.parse() let you transform JavaScript data by passing
in a function:

• JSON.stringify() lets you change the JavaScript data before turning it into JSON.
• JSON.parse() parses JSON and then lets you post-process the resulting JavaScript

data.

The JavaScript data is a tree whose compound nodes are arrays and objects and whose
leaves are primitive values (booleans, numbers, strings, null). Let’s use the name node
visitor for the transformation function that you pass in. The methods iterate over the
tree and call the visitor for each node. It then has the option to replace or delete the
node. The node visitor has the signature:

function nodeVisitor(key, value)

The parameters are:
this

The parent of the current node.

key

A key where the current node is located inside its parent. key is always a string.

value

The current node.

Transforming Data via Node Visitors | 341

The root node root has no parent. When root is visited, a pseudoparent is created for
it and the parameters have the following values:

• this is { '': root }.
• key is ''.
• value is root.

The node visitor has three options for returning a value:

• Return value as it is. Then no change is performed.
• Return a different value. Then the current node is replaced with it.
• Return undefined. Then the node is removed.

The following is an example of a node visitor. It logs what values have been passed to it.

function nodeVisitor(key, value) {
 console.log([
 // Use JSON.stringify for nicer-looking output
 JSON.stringify(this), // parent
 JSON.stringify(key),
 JSON.stringify(value)
].join(' # '));
 return value; // don't change node
}

Let’s use this function to examine how the JSON methods iterate over JavaScript data.

JSON.stringify()
The special root node comes first, in a prefix iteration (parent before children). The first
node that is visited is always the pseudoroot. The last line that is displayed after each
call is the string returned by stringify():

> JSON.stringify(['a','b'], nodeVisitor)
{"":["a","b"]} # "" # ["a","b"]
["a","b"] # "0" # "a"
["a","b"] # "1" # "b"
'["a","b"]'

> JSON.stringify({a:1, b:2}, nodeVisitor)
{"":{"a":1,"b":2}} # "" # {"a":1,"b":2}
{"a":1,"b":2} # "a" # 1
{"a":1,"b":2} # "b" # 2
'{"a":1,"b":2}'

> JSON.stringify('abc', nodeVisitor)
{"":"abc"} # "" # "abc"
'"abc"'

342 | Chapter 22: JSON

JSON.parse()
The leaves come first, in a postfix iteration (children before parent). The last node that
is visited is always the pseudoroot. The last line that is displayed after each call is the
JavaScript value returned by parse():

> JSON.parse('["a","b"]', nodeVisitor)
["a","b"] # "0" # "a"
["a","b"] # "1" # "b"
{"":["a","b"]} # "" # ["a","b"]
['a', 'b']

> JSON.parse('{"a":1, "b":2}', nodeVisitor)
{"a":1,"b":2} # "a" # 1
{"a":1,"b":2} # "b" # 2
{"":{"a":1,"b":2}} # "" # {"a":1,"b":2}
{ a: 1, b: 2 }

> JSON.parse('"hello"', nodeVisitor)
{"":"hello"} # "" # "hello"
'hello'

Transforming Data via Node Visitors | 343

CHAPTER 23

Standard Global Variables

This chapter is a reference for the global variables standardized by the ECMAScript
specification. Web browsers have more global variables, which are listed on MDN. All
global variables are (own or inherited) properties of the global object (window in brows‐
ers; see “The Global Object” on page 187).

Constructors
For details on the following constructors, see the sections indicated in parentheses:

• Array (“The Array Constructor” on page 275)
• Boolean (“Wrapper Objects for Primitives” on page 75)
• Date (“The Date Constructor” on page 317)
• Function (“Evaluating Code Using new Function()” on page 349)
• Number (“Wrapper Objects for Primitives” on page 75)
• Object (“Converting Any Value to an Object” on page 203)
• RegExp (“Creating a Regular Expression” on page 302)
• String (“Wrapper Objects for Primitives” on page 75)

Error Constructors
For details on these constructors, see “Error Constructors” on page 161:

• Error

• EvalError

345

https://developer.mozilla.org/en-US/docs/Web/API/Window

• RangeError

• ReferenceError

• SyntaxError

• TypeError

• URIError

Nonconstructor Functions
Several global functions are not constructors. They are listed in this section.

Encoding and Decoding Text
The following functions handle several ways of URI encoding and decoding:
encodeURI(uri)

Percent-encodes special characters in uri. Special characters are all Unicode char‐
acters except for the following ones:

URI characters: ; , / ? : @ & = + $ #

Not encoded either: a-z A-Z 0-9 - _ . ! ~ * ' ()

For example:

> encodeURI('http://example.com/Für Elise/')
'http://example.com/F%C3%BCr%20Elise/'

encodeURIComponent(uriComponent)

Percent-encodes all characters in uriComponent, except for:

Not encoded: a-z A-Z 0-9 - _ . ! ~ * ' ()

In contrast to encodeURI, characters that are significant in URLs and filenames are
encoded, too. You can thus use this function to turn any text into a legal filename
or URL path segment. For example:

> encodeURIComponent('http://example.com/Für Elise/')
'http%3A%2F%2Fexample.com%2FF%C3%BCr%20Elise%2F'

decodeURI(encodedURI)

Decodes a percent-encoded URI that has been produced by encodeURI:

> decodeURI('http://example.com/F%C3%BCr%20Elise/')
'http://example.com/Für Elise/'

encodeURI does not encode URI characters and decodeURI does not decode them,
even if they have been correctly encoded:

346 | Chapter 23: Standard Global Variables

> decodeURI('%2F')
'%2F'
> decodeURIComponent('%2F')
'/'

decodeURIComponent(encodedURIComponent)

Decodes a percent-encoded URI component that has been produced by encodeUR
IComponent. In contrast to decodeURI, all percent-encoded characters are decoded:

> decodeURIComponent('http%3A%2F%2Fexample.com%2FF%C3%BCr%20Elise%2F')
'http://example.com/Für Elise/'

The following are deprecated:

• escape(str) percent-encodes str. It is deprecated because it does not handle non-
ASCII characters properly. Use encodeURIComponent() instead.

• unescape(str) percent-decodes str. It is deprecated because it does not handle
non-ASCII characters properly. Use decodeURIComponent() instead.

Categorizing and Parsing Numbers
The following methods help with categorizing and parsing numbers:

• isFinite(number) (“Checking for Infinity” on page 108)
• isNaN(value) (“Pitfall: checking whether a value is NaN” on page 107)
• parseFloat(string) (“parseFloat()” on page 105)
• parseInt(string, radix) (“Integers via parseInt()” on page 120)

Dynamically Evaluating JavaScript Code via eval() and
new Function()
This section examines how one can dynamically evaluate code in JavaScript.

Evaluating Code Using eval()
The function call:

eval(str)

evaluates the JavaScript code in str. For example:

> var a = 12;
> eval('a + 5')
17

Dynamically Evaluating JavaScript Code via eval() and new Function() | 347

Note that eval() parses in statement context (see “Expressions Versus Statements” on
page 54):

> eval('{ foo: 123 }') // code block
123
> eval('({ foo: 123 })') // object literal
{ foo: 123 }

Use eval() in strict mode

For eval(), you really should use strict mode (see “Strict Mode” on page 62). In sloppy
mode, evaluated code can create local variables in the surrounding scope:

function sloppyFunc() {
 eval('var foo = 123'); // added to the scope of sloppyFunc
 console.log(foo); // 123
}

That can’t happen in strict mode:

function strictFunc() {
 'use strict';
 eval('var foo = 123');
 console.log(foo); // ReferenceError: foo is not defined
}

However, even in strict mode, evaluated code still has read and write access to variables
in surrounding scopes. To prevent such access, you need to call eval() indirectly.

Indirect eval() evaluates in global scope

There are two ways to invoke eval():

• Directly. Via a direct call to a function whose name is “eval.”
• Indirectly. In some other way (via call(), as a method of window, by storing it under

a different name and calling it there, etc.).

As we have already seen, direct eval() executes code in the current scope:

var x = 'global';

function directEval() {
 'use strict';
 var x = 'local';

 console.log(eval('x')); // local
}

Conversely, indirect eval() executes it in global scope:

var x = 'global';

348 | Chapter 23: Standard Global Variables

http://ecma-international.org/ecma-262/5.1/#sec-15.1.2.1.1

function indirectEval() {
 'use strict';
 var x = 'local';

 // Don’t call eval directly
 console.log(eval.call(null, 'x')); // global
 console.log(window.eval('x')); // global
 console.log((1, eval)('x')); // global (1)

 // Change the name of eval
 var xeval = eval;
 console.log(xeval('x')); // global

 // Turn eval into a method
 var obj = { eval: eval };
 console.log(obj.eval('x')); // global
}

Explanation of (1): When you refer to a variable via its name, the initial result is a so-
called reference, a data structure with two main fields:

• base points to the environment, the data structure in which the variable’s value is
stored.

• referencedName is the name of the variable.

During an eval() function call, the function call operator (the parentheses) encounters
a reference to eval and can determine the name of the function to be called. Therefore,
such a function call triggers a direct eval(). You can, however, force an indirect eval()
by not giving the call operator a reference. That is achieved by retrieving the value of
the reference before applying the operator. The comma operator does that for us in line
(1). This operator evaluates the first operand and returns the result of evaluating the
second operand. The evaluation always produces values, which means that references
are resolved and function names are lost.

Indirectly evaluated code is always sloppy. That is a consequence of the code being
evaluated independently of its current surroundings:

function strictFunc() {
 'use strict';

 var code = '(function () { return this }())';
 var result = eval.call(null, code);
 console.log(result !== undefined); // true, sloppy mode
}

Evaluating Code Using new Function()
The constructor Function() has the signature:

Dynamically Evaluating JavaScript Code via eval() and new Function() | 349

http://ecma-international.org/ecma-262/5.1/#sec-8.7

1. Mariusz Nowak (@medikoo) told me that code evaluated by Function is sloppy by default, everywhere.

new Function(param1, ..., paramN, funcBody)

It creates a function whose zero or more parameters have the names param1, parem2,
and so on, and whose body is funcBody; that is, the created function looks like this:

function («param1», ..., «paramN») {
 «funcBody»
}

Let’s use new Function() to create a function f that returns the sum of its parameters:

> var f = new Function('x', 'y', 'return x+y');
> f(3, 4)
7

Similar to indirect eval(), new Function() creates functions whose scope is global:1

var x = 'global';

function strictFunc() {
 'use strict';
 var x = 'local';

 var f = new Function('return x');
 console.log(f()); // global
}

Such functions are also sloppy by default:

function strictFunc() {
 'use strict';

 var sl = new Function('return this');
 console.log(sl() !== undefined); // true, sloppy mode

 var st = new Function('"use strict"; return this');
 console.log(st() === undefined); // true, strict mode
}

eval() Versus new Function()
Normally, it is better to use new Function() than eval() in order to evaluate code: the
function parameters provide a clear interface to the evaluated code and you don’t need
the slightly awkward syntax of indirect eval() to ensure that the evaluated code can
access only global variables (in addition to its own).

350 | Chapter 23: Standard Global Variables

Best Practices
You should avoid eval() and new Function(). Dynamically evaluating code is slow
and a potential security risk. It also prevents most tools (such as IDEs) that use static
analysis from considering the code.

Often, there are better alternatives. For example, Brendan Eich recently tweeted an
antipattern used by programmers who want to access a property whose name is stored
in a variable propName:

var value = eval('obj.'+propName);

The idea makes sense: the dot operator only supports fixed, statically provided property
keys. In this case, the property key is only known at runtime, which is why eval() is
needed in order to use that operator. Luckily, JavaScript also has the bracket operator,
which does accept dynamic property keys. Therefore, the following is a better version
of the preceding code:

var value = obj[propName];

You also shouldn’t use eval() or new Function() to parse JSON data. That is unsafe.
Either rely on ECMAScript 5’s built-in support for JSON (see Chapter 22) or use a
library.

Legitimate use cases

There are a few legitimate, albeit advanced, use cases for eval() and new Function():
configuration data with functions (which JSON does not allow), template libraries,
interpreters, command lines, and module systems.

Conclusion
This was a relatively high-level overview of dynamically evaluating code in JavaScript.
If you want to dig deeper, you can take a look at the article “Global eval. What are the
options?” by kangax.

The Console API
In most JavaScript engines, there is a global object, console, with methods for logging
and debugging. That object is not part of the language proper, but has become a de facto
standard. Since their main purpose is debugging, the console methods will most fre‐
quently be used during development and rarely in deployed code.

This section provides an overview of the console API. It documents the status quo as
of Chrome 32, Firebug 1.12, Firefox 25, Internet Explorer 11, Node.js 0.10.22, and
Safari 7.0.

The Console API | 351

http://bit.ly/1fwpWrB
http://perfectionkills.com/global-eval-what-are-the-options/
http://perfectionkills.com/global-eval-what-are-the-options/

How Standardized Is the Console API Across Engines?
The implementations of the console API vary greatly and are constantly changing. If
you want authoritative documentation, you have two options. First, you can look at
standard-like overviews of the API:

• Firebug first implemented the console API, and the documentation in its wiki is
the closest thing to a standard there currently is.

• Additionally, Brian Kardell and Paul Irish are working on a specification for the
API, which should lead to more consistent behavior.

Second, you can look at the documentation of various engines:

• Chrome
• Firebug
• Firefox
• Internet Explorer
• Node.js
• Safari

There is a bug in Internet Explorer 9. In that browser, the console
object exists only if the developer tools were open at least once. That
means that you get a ReferenceError if you refer to console and
the tools weren’t open before. As a workaround, you can check
whether console exists and create a dummy implementation if it
doesn’t.

Simple Logging
The console API includes the following logging methods:
console.clear()

Clear the console.

console.debug(object1, object2?, ...)

Prefer console.log(), which does the same as this method.

console.error(object1, object2?, ...)

Log the parameters to the console. In browsers, the logged content may be marked
by an “error” icon and/or include a stack trace or a link to the code.

console.exception(errorObject, object1?, ...]) [Firebug-only]
Log object1 etc. and show an interactive stack trace.

352 | Chapter 23: Standard Global Variables

http://bit.ly/1fwq1vk
http://bit.ly/1fwq7mX
https://developers.google.com/chrome-developer-tools/docs/console-api/
https://getfirebug.com/wiki/index.php/Console_API
https://developer.mozilla.org/en-US/docs/Web/API/console
http://msdn.microsoft.com/en-us/library/ie/hh772183.aspx
http://nodejs.org/api/stdio.html
http://bit.ly/1fwq9er

console.info(object1?, object2?, ...)

Log the parameters to the console. In browsers, the logged content may be marked
by an “info” icon and/or include a stack trace or a link to the code.

console.log(object1?, object2?, ...)

Log the parameters to the console. If the first parameter is a printf-style format
string, use it to print the remaining parameters. For example (Node.js REPL):

> console.log('%s', { foo: 'bar' })
[object Object]
> console.log('%j', { foo: 'bar' })
{"foo":"bar"}

The only dependable cross-platform formatting directive is %s. Node.js supports
%j to format data as JSON; browsers tend to support directives that log something
interactive to the console.

console.trace()

Logs a stack trace (which is interactive in many browsers).

console.warn(object1?, object2?, ...)

Log the parameters to the console. In browsers, the logged content may be marked
by a “warning” icon and/or include a stack trace or a link to the code.

Support on various platforms is indicated in the following table:

Chrome Firebug Firefox IE Node.js Safari

clear ✓ ✓ ✓ ✓
debug ✓ ✓ ✓ ✓ ✓
error ✓ ✓ ✓ ✓ ✓ ✓
exception ✓
info ✓ ✓ ✓ ✓ ✓ ✓
log ✓ ✓ ✓ ✓ ✓ ✓
trace ✓ ✓ ✓ ✓ ✓ ✓
warn ✓ ✓ ✓ ✓ ✓ ✓

exception has been typeset in italics, because it is supported only on a single platform.

Checking and Counting
The console API includes the following checking and counting methods:
console.assert(expr, obj?)

If expr is false, log obj to the console and throw an exception. If it is true, do
nothing.

The Console API | 353

console.count(label?)

Count how many times the line with this statement is executed with this label.

Support on various platforms is indicated in the following table:

Chrome Firebug Firefox IE Node.js Safari

assert ✓ ✓ ✓ ✓ ✓
count ✓ ✓ ✓ ✓

Formatted Logging
The console API includes the following methods for formatted logging:
console.dir(object)

Print a representation of the object to the console. In browsers, that representation
can be explored interactively.

console.dirxml(object)

Print the XML source tree of an HTML or XML element.

console.group(object1?, object2?, ...)

Log the objects to the console and open a nested block that contains all future logged
content. Close the block by calling console.groupEnd(). The block is initially ex‐
panded, but can be collapsed.

console.groupCollapsed(object1?, object2?, ...)

Works like console.group(), but the block is initially collapsed.

console.groupEnd()

Close a group that has been opened by console.group() or console.group
Collapsed().

console.table(data, columns?)

Print an array as a table, one element per row. The optional parameter columns
specifies which properties/array indices are shown in the columns. If that parameter
is missing, all property keys are used as table columns. Missing properties and array
elements show up as undefined in columns:

var persons = [
 { firstName: 'Jane', lastName: 'Bond' },
 { firstName: 'Lars', lastName: 'Croft', age: 72 }
];
// Equivalent:
console.table(persons);
console.table(persons, ['firstName', 'lastName', 'age']);

354 | Chapter 23: Standard Global Variables

The resulting table is as follows:

(index) firstName lastName age

0 “Jane” “Bond” undefined

1 “Lars” “Croft” 72

Support on various platforms is indicated in the following table:

Chrome Firebug Firefox IE Node.js Safari

dir ✓ ✓ ✓ ✓ ✓ ✓
dirxml ✓ ✓ ✓ ✓
group ✓ ✓ ✓ ✓ ✓
groupCollapsed ✓ ✓ ✓ ✓ ✓
groupEnd ✓ ✓ ✓ ✓ ✓
table ✓ ✓

Profiling and Timing
The console API includes the following methods for profiling and timing:
console.markTimeline(label) [Safari-only]

The same as console.timeStamp.

console.profile(title?)

Turn on profiling. The optional title is used for the profile report.

console.profileEnd()

Stop profiling and print the profile report.

console.time(label)

Start a timer whose label is label.

console.timeEnd(label)

Stop the timer whose label is label and print the time that has elapsed since
starting it.

console.timeStamp(label?)

Log a timestamp with the given label. May be logged to the console or a timeline.

Support on various platforms is indicated in the following table:

Chrome Firebug Firefox IE Node.js Safari

markTimeline ✓
profile ✓ ✓ (devtools) ✓ ✓
profileEnd ✓ ✓ (devtools) ✓ ✓

The Console API | 355

2. Thanks to Matthias Reuter (@gweax) and Philipp Kyeck (@pkyeck), who contributed to this section.

Chrome Firebug Firefox IE Node.js Safari

time ✓ ✓ ✓ ✓ ✓ ✓
timeEnd ✓ ✓ ✓ ✓ ✓ ✓
timeStamp ✓ ✓

markTimeline has been typeset in italics, because it is supported only on a single plat‐
form. The (devtools) designation means that the developer tools must be open in order
for the method to work.2

Namespaces and Special Values
The following global variables serve as namespaces for functions. For details, see the
material indicated in parentheses:
JSON

JSON API functionality (Chapter 22)

Math

Math API functionality (Chapter 21)

Object

Metaprogramming functionality (“Cheat Sheet: Working with Objects” on page
270)

The following global variables contain special values. For more on them, review the
material indicated in parentheses:
undefined

A value expressing that something does not exist (“undefined and null” on page 71):

> ({}.foo) === undefined
true

NaN

A value expressing that something is “not a number” (“NaN” on page 106):

> 1 / 'abc'
NaN

Infinity

A value denoting numeric infinity ∞ (“Infinity” on page 107):

> 1 / 0
Infinity

356 | Chapter 23: Standard Global Variables

CHAPTER 24

Unicode and JavaScript

This chapter is a brief introduction to Unicode and how it is handled in JavaScript.

Unicode History
Unicode was started in 1987, by Joe Becker (Xerox), Lee Collins (Apple), and Mark
Davis (Apple). The idea was to create a universal character set, as there were many
incompatible standards for encoding plain text at that time: numerous variations of 8-
bit ASCII, Big Five (Traditional Chinese), GB 2312 (Simplified Chinese), and more.
Before Unicode, no standard for multilingual plain text existed, but there were rich-text
systems (such as Apple’s WorldScript) that allowed you to combine multiple encodings.

The first Unicode draft proposal was published in 1988. Work continued afterward and
the working group expanded. The Unicode Consortium was incorporated on January 3,
1991:

The Unicode Consortium is a non-profit corporation devoted to developing, maintain‐
ing, and promoting software internationalization standards and data, particularly the
Unicode Standard [...]

The first volume of the Unicode 1.0 standard was published in October 1991, and the
second in June 1992.

Important Unicode Concepts
The idea of a character may seem a simple one, but there are many aspects to it. That’s
why Unicode is such a complex standard. The following are important basic concepts:
Characters and graphemes

These two terms mean something quite similar. Characters are digital entities, while
graphemes are atomic units of written languages (alphabetic letters, typographic
ligatures, Chinese characters, punctuation marks, etc.). Programmers think in

357

http://www.unicode.org/consortium/consort.html

characters, but users think in graphemes. Sometimes several characters are used to
represent a single grapheme. For example, we can produce the single grapheme ô
by combining the character o and the character ^ (the circumflex accent).

Glyph
This is a concrete way of displaying a grapheme. Sometimes, the same grapheme is
displayed differently, depending on its context or other factors. For example, the
graphemes f and i can be presented as a glyph f and a glyph i, connected by a ligature
glyph, or without a ligature.

Code points
Unicode represents the characters it supports via numbers called code points. The
hexadecimal range of code points is 0x0 to 0x10FFFF (17 times 16 bits).

Code units
To store or transmit code points, we encode them as code units, pieces of data with
a fixed length. The length is measured in bits and determined by an encoding
scheme, of which Unicode has several—for example, UTF-8 and UTF-16. The
number in the name indicates the length of the code unit, in bits. If a code point is
too large to fit into a single code unit, it must be broken up into multiple units; that
is, the number of code units needed to represent a single code point can vary.

BOM (byte order mark)
If a code unit is larger than a single byte, byte ordering matters. The BOM is a single
pseudocharacter (possibly encoded as multiple code units) at the beginning of a
text that indicates whether the code units are big endian (most significant bytes
come first) or little endian (least significant bytes come first). The default for texts
without a BOM is big endian. The BOM also indicates the encoding that is used; it
is different for UTF-8, UTF-16, and so on. Additionally, it serves as a marker for
Unicode if web browsers have no other information regarding the encoding of a
text. However, the BOM is not used very often, for several reasons:

• UTF-8 is by far the most popular Unicode encoding and does not need a BOM,
because there is only one way of ordering bytes.

• Several character encodings specify a fixed byte ordering. Then a BOM must
not be used. Examples include UTF-16BE (UTF-16 big endian), UTF-16LE,
UTF-32BE, and UTF-32LE. This is a safer way of handling byte ordering, be‐
cause metadata and data stay separate and can’t be mixed up.

Normalization
Sometimes the same grapheme can be represented in several ways. For example,
the grapheme ö can be represented as a single code point or as an o followed by a
combining character ¨ (diaeresis, double dot). Normalization is about translating
a text to a canonical representation; equivalent code points and sequences of code
points are all translated to the same code point (or sequence of code points). That

358 | Chapter 24: Unicode and JavaScript

is useful for text processing (e.g., to search for text). Unicode specifies several
normalizations.

Character properties
Each Unicode character is assigned several properties by the specification, some of
which are listed here:

• Name. An English name, composed of uppercase letters A–Z, digits 0–9, hy‐
phen (-), and <space>. Two examples:
— “λ” has the name “GREEK SMALL LETTER LAMBDA.”
— “!” has the name “EXCLAMATION MARK.”

• General category. Partitions characters into categories such as letter, uppercase
letter, number, and punctuation.

• Age. With what version of Unicode was the character introduced (1.0, 1.1., 2.0,
etc.)?

• Deprecated. Is the use of the character discouraged?
• And many more.

Code Points
The range of the code points was initially 16 bits. With Unicode version 2.0 (July 1996),
it was expanded: it is now divided into 17 planes, numbered from 0 to 16. Each plane
comprises 16 bits (in hexadecimal notation: 0x0000–0xFFFF). Thus, in the hexadecimal
ranges that follow, digits beyond the four bottom ones contain the number of the plane.

• Plane 0, Basic Multilingual Plane (BMP): 0x0000–0xFFFF
• Plane 1, Supplementary Multilingual Plane (SMP): 0x10000–0x1FFFF
• Plane 2, Supplementary Ideographic Plane (SIP): 0x20000–0x2FFFF
• Planes 3–13, Unassigned
• Plane 14, Supplementary Special-Purpose Plane (SSP): 0xE0000–0xEFFFF
• Planes 15–16, Supplementary Private Use Area (S PUA A/B): 0x0F0000–0x10FFFF

Planes 1–16 are called supplementary planes or astral planes.

Unicode Encodings
UTF-32 (Unicode Transformation Format 32) is a format with 32-bit code units. Any
code point can be encoded by a single code unit, making this the only fixed-length
encoding; for other encodings, the number of units needed to encode a point varies.

Code Points | 359

http://bit.ly/1fwsjL9

UTF-16 is a format with 16-bit code units that needs one to two units to represent a
code point. BMP code points can be represented by single code units. Higher code points
are 20 bit (16 times 16 bits), after 0x10000 (the range of the BMP) is subtracted. These
bits are encoded as two code units (a so-called surrogate pair):
Leading surrogate

Most significant 10 bits: stored in the range 0xD800–0xDBFF. Also called high-
surrogate code unit.

Trailing surrogate
Least significant 10 bits: stored in the range 0xDC00–0xDFFF. Also called low-
surrogate code unit.

The following table (adapted from Unicode Standard 6.2.0, Table 3-5) visualizes how
the bits are distributed:

Code point UTF-16 code unit(s)

xxxxxxxxxxxxxxxx (16 bits) xxxxxxxxxxxxxxxx

pppppxxxxxxyyyyyyyyyy (21 bits = 5+6+10 bits) 110110qqqqxxxxxx 110111yyyyyyyyyy (qqqq = ppppp − 1)

To enable this encoding scheme, the BMP has a hole with unused code points whose
range is 0xD800–0xDFFF. Therefore, the ranges of leading surrogates, trailing surro‐
gates, and BMP code points are disjoint, making decoding robust in the face of errors.
The following function encodes a code point as UTF-16 (later we’ll see an example of
using it):

function toUTF16(codePoint) {
 var TEN_BITS = parseInt('1111111111', 2);
 function u(codeUnit) {
 return '\\u'+codeUnit.toString(16).toUpperCase();
 }

 if (codePoint <= 0xFFFF) {
 return u(codePoint);
 }
 codePoint -= 0x10000;

 // Shift right to get to most significant 10 bits
 var leadingSurrogate = 0xD800 | (codePoint >> 10);

 // Mask to get least significant 10 bits
 var trailingSurrogate = 0xDC00 | (codePoint & TEN_BITS);

 return u(leadingSurrogate) + u(trailingSurrogate);
}

UCS-2, a deprecated format, uses 16-bit code units to represent (only!) the code points
of the BMP. When the range of Unicode code points expanded beyond 16 bits, UTF-16
replaced UCS-2.

360 | Chapter 24: Unicode and JavaScript

UTF-8 has 8-bit code units. It builds a bridge between the legacy ASCII encoding and
Unicode. ASCII has only 128 characters, whose numbers are the same as the first 128
Unicode code points. UTF-8 is backward compatible, because all ASCII codes are valid
code units. In other words, a single code unit in the range 0–127 encodes a single code
point in the same range. Such code units are marked by their highest bit being zero. If,
on the other hand, the highest bit is one, then more units will follow, to provide the
additional bits for the higher code points. That leads to the following encoding scheme:

• 0000–007F: 0xxxxxxx (7 bits, stored in 1 byte)
• 0080–07FF: 110xxxxx, 10xxxxxx (5+6 bits = 11 bits, stored in 2 bytes)
• 0800–FFFF: 1110xxxx, 10xxxxxx, 10xxxxxx (4+6+6 bits = 16 bits, stored in 3 bytes)
• 10000–1FFFFF: 11110xxx, 10xxxxxx, 10xxxxxx, 10xxxxxx (3+6+6+6 bits = 21 bits,

stored in 4 bytes). The highest code point is 10FFFF, so UTF-8 has some extra room.

If the highest bit is not 0, then the number of ones before the zero indicates how many
code units there are in a sequence. All code units after the initial one have the bit prefix
10. Therefore, the ranges of initial code units and subsequent code units are disjoint,
which helps with recovering from encoding errors.

UTF-8 has become the most popular Unicode format. Initially, its popularity was due
to its backward compatibility with ASCII. Later, it gained traction because of its broad
and consistent support across operating systems, programming environments, and
applications.

JavaScript Source Code and Unicode
There are two ways in which JavaScript handles Unicode source code: internally (during
parsing) and externally (while loading a file).

Source Code Internally
Internally, JavaScript source code is treated as a sequence of UTF-16 code units. Ac‐
cording to Section 6 of the EMCAScript specification:

ECMAScript source text is represented as a sequence of characters in the Unicode char‐
acter encoding, version 3.0 or later. [...] ECMAScript source text is assumed to be a se‐
quence of 16-bit code units for the purposes of this specification. [...] If an actual source
text is encoded in a form other than 16-bit code units, it must be processed as if it was
first converted to UTF-16.

In identifiers, string literals, and regular expression literals, any code unit can also be
expressed via a Unicode escape sequence \uHHHH, where HHHH are four hexadecimal
digits. For example:

JavaScript Source Code and Unicode | 361

http://ecma-international.org/ecma-262/5.1/#sec-6

> var f\u006F\u006F = 'abc';
> foo
'abc'

> var λ = 123;
> \u03BB
123

That means that you can use Unicode characters in literals and variable names, without
leaving the ASCII range in the source code.

In string literals, an additional kind of escape is available: hexadecimal escape sequen‐
ces with two-digit hexadecimal numbers that represent code units in the range 0x00–
0xFF. For example:

> '\xF6' === 'ö'
true
> '\xF6' === '\u00F6'
true

Source Code Externally
While UTF-16 is used internally, JavaScript source code is usually not stored in that
format. When a web browser loads a source file via a <script> tag, it determines the
encoding as follows:

• If the file starts with a BOM, the encoding is a UTF variant, depending on what
BOM is used.

• Otherwise, if the file is loaded via HTTP(S), then the Content-Type header can
specify an encoding, via the charset parameter. For example:

Content-Type: application/javascript; charset=utf-8

The correct media type (formerly known as MIME type) for
JavaScript files is application/javascript. However, older
browsers (e.g., Internet Explorer 8 and earlier) work most relia‐
bly with text/javascript. Unfortunately, the default value for
the attribute type of <script> tags is text/javascript. At least
you can omit that attribute for JavaScript; there is no benefit in
including it.

• Otherwise, if the <script> tag has the attribute charset, then that encoding is used.
Even though the attribute type holds a valid media type, that type must not have
the parameter charset (like in the aforementioned Content-Type header). That
ensures that the values of charset and type don’t clash.

362 | Chapter 24: Unicode and JavaScript

http://bit.ly/1fwstC9
http://bit.ly/1fwsvKe

• Otherwise, the encoding of the document is used, in which the <script> tag resides.
For example, this is the beginning of an HTML5 document, where a <meta> tag
declares that the document is encoded as UTF-8:

<!doctype html>
<html>
<head>
 <meta charset="UTF-8">
...

It is highly recommended that you always specify an encoding. If you don’t, a locale-
specific default encoding is used. In other words, people will see the file differently
in different countries. Only the lowest 7 bits are relatively stable across locales.

My recommendations can be summarized as follows:

• For your own application, you can use Unicode. But you must specify the encoding
of the app’s HTML page as UTF-8.

• For libraries, it’s safest to release code that is ASCII (7 bit).

Some minification tools can translate source with Unicode code points beyond 7 bit to
source that is “7-bit clean.” They do so by replacing non-ASCII characters with Unicode
escapes. For example, the following invocation of UglifyJS translates the file test.js:

uglifyjs -b beautify=false,ascii-only=true test.js

The file test.js looks like this:

var σ = 'Köln';

The output of UglifyJS looks like this:

var \u03c3="K\xf6ln";

Consider the following negative example. For a while, the library D3.js was published
in UTF-8. That caused an error when it was loaded from a page whose encoding was
not UTF-8, because the code contained statements such as:

var π = Math.PI, ε = 1e-6;

The identifiers π and ε were not decoded correctly and not recognized as valid variable
names. Additionally, some string literals with code points beyond 7 bit weren’t decoded
correctly either. As a workaround, you could load the code by adding the appropriate
charset attribute to the <script> tag:

<script charset="utf-8" src="d3.js"></script>

JavaScript Source Code and Unicode | 363

http://bit.ly/1oODGWp
https://github.com/mishoo/UglifyJS2
https://github.com/mbostock/d3/issues/1195

JavaScript Strings and Unicode
A JavaScript string is a sequence of UTF-16 code units. According to the ECMAScript
specification, Section 8.4:

When a String contains actual textual data, each element is considered to be a single
UTF-16 code unit.

Escape Sequences
As mentioned before, you can use Unicode escape sequences and hexadecimal escape
sequences in string literals. For example, you can produce the character ö by combining
an o with a diaeresis (code point 0x0308):

> console.log('o\u0308')
ö

This works in JavaScript command lines, such as web browser consoles and the Node.js
REPL. You can also insert this kind of string into the DOM of a web page.

Refering to Astral Plane Characters via Escapes
There are many nice Unicode symbol tables on the Web. Take a look at Tim Whitlock’s
“Emoji Unicode Tables” and be amazed by how many symbols there are in modern
Unicode fonts. None of the symbols in the table are images; they are all font glyphs. Let’s
assume you want to display a Unicode character via JavaScript that is in an astral plane
(obviously, there is a risk when doing so: not all fonts support all such characters). For
example, consider a cow, code point 0x1F404: .

You can copy the character and paste it directly into your Unicode-encoded JavaScript
source:

JavaScript engines will decode the source (which is most often in UTF-8) and create a
string with two UTF-16 code units. Alternatively, you can compute the two code units
yourself and use Unicode escape sequences. There are web apps that perform this com‐
putation, such as:

• UTF Converter
• “JavaScript escapes” by Mathias Bynens

The previously defined function toUTF16 performs it, too:

> toUTF16(0x1F404)
'\\uD83D\\uDC04'

The UTF-16 surrogate pair (0xD83D, 0xDC04) does indeed encode the cow:

364 | Chapter 24: Unicode and JavaScript

http://ecma-international.org/ecma-262/5.1/#sec-8.4
http://apps.timwhitlock.info/emoji/tables/unicode
http://macchiato.com/unicode/convert.html
http://mothereff.in/js-escapes

Counting Characters
If a string contains a surrogate pair (two code units encoding a single code point), then
the length property doesn’t count graphemes anymore. It counts code units:

This can be fixed via libraries, such as Mathias Bynens’s Punycode.js, which is bundled
with Node.js:

> var puny = require('punycode');
> puny.ucs2.decode(str).length
1

Unicode Normalization
If you want to search in strings or compare them, then you need to normalize—for
example, via the library unorm (by Bjarke Walling).

JavaScript Regular Expressions and Unicode
Support for Unicode in JavaScript’s regular expressions (see Chapter 19) is very limited.
For example, there is no way to match Unicode categories such as “uppercase letter.”

Line terminators influence matching. A line terminator is one of four characters, speci‐
fied in the following table:

Code unit Name Character escape sequence

\u000A Line feed \n

\u000D Carriage return \r

\u2028 Line separator

\u2029 Paragraph separator

The following regular expression constructs are based on Unicode:

• \s \S (whitespace, nonwhitespace) have Unicode-based definitions:
> /^\s$/.test('\uFEFF')
true

JavaScript Regular Expressions and Unicode | 365

https://github.com/bestiejs/punycode.js
https://github.com/walling/unorm

1. Strictly speaking, any Unicode scalar value.

• . (dot) matches all code units (not code points!) except line terminators. See the
next section to learn how to match any code point.

• Multiline mode /m: In multiline mode, the assertion ^ matches at the beginning of
the input and after line terminators. The assertion $ matches before line terminators
and at the end of the input. In nonmultiline mode, they match only at the beginning
or the end of the input, respectively.

Other important character classes have definitions that are based on ASCII, not on
Unicode:

• \d \D (digits, nondigits): A digit is equivalent to [0-9].
• \w \W (word characters, nonword characters): A word character is equivalent to
[A-Za-z0-9_].

• \b \B (at word breaks, inside words): Words are sequences of word characters ([A-
Za-z0-9_]). For example, in the string 'über', the character class escape \b sees
the character b as starting a word:

> /\bb/.test('über')
true

Matching Any Code Unit and Any Code Point
To match any code unit, you can use [\s\S]; see “Atoms: General” on page 297.

To match any code point, you need to use:1

([\0-\uD7FF\uE000-\uFFFF]|[\uD800-\uDBFF][\uDC00-\uDFFF])

The preceding pattern works like this:

([BMP code point]|[leading surrogate][trailing surrogate])

As all of these ranges are disjoint, the pattern will correctly match code points in well-
formed UTF-16 strings.

Libraries
A few libraries help with handling Unicode in JavaScript:

• Regenerate helps with generating ranges like the preceding one, for matching any
code unit. It is meant to be used as part of a build tool, but also works dynamically,
for trying out things.

366 | Chapter 24: Unicode and JavaScript

http://www.unicode.org/glossary/#unicode_scalar_value
https://github.com/mathiasbynens/regenerate

• XRegExp is a regular expression library that has an official add-on for matching
Unicode categories, scripts, blocks, and properties via one of the following three
constructs:

\p{...} \p{^...} \P{...}

For example, \p{Letter} matches letters in various alphabets while \p{^Letter}
and \P{Letter} both match all other code points. Chapter 30 contains a brief
overview of XRegExp.

• The ECMAScript Internationalization API (see “The ECMAScript Internationali‐
zation API” on page 406) provides Unicode-aware collation (sorting and searching of
strings) and more.

Recommended Reading and Chapter Sources
For more information on Unicode, see the following:

• Wikipedia has several good entries on Unicode and its terminology.
• Unicode.org, the official website of the Unicode Consortium, and its FAQ are also

good resources.
• Joel Spolsky’s introductory article “The Absolute Minimum Every Software Devel‐

oper Absolutely, Positively Must Know About Unicode and Character Sets (No
Excuses!)” is helpful.

For information on Unicode support in JavaScript, see:

• “JavaScript’s internal character encoding: UCS-2 or UTF-16?” by Mathias Bynens
• “JavaScript, Regex, and Unicode” by Steven Levithan

Acknowledgments
The following people contributed to this chapter: Mathias Bynens
(@mathias), Anne van Kesteren (@annevk), and Calvin Metcalf
(@CWMma).

JavaScript Regular Expressions and Unicode | 367

http://xregexp.com
http://xregexp.com/plugins/#unicode
http://en.wikipedia.org/wiki/Unicode
http://www.unicode.org/
http://www.unicode.org/faq/
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://mathiasbynens.be/notes/javascript-encoding
http://bit.ly/1oOE0oh

CHAPTER 25

New in ECMAScript 5

This chapter lists features that are available only in ECMAScript 5. Should you have to
work with older JavaScript engines, you should avoid these features or enable some of
them via a library (how is described later). Note that normally, this book assumes that
you are working with modern engines, which fully support ECMAScript 5.

The ECMAScript 5 specification contains the following description of its scope:
The fifth edition of ECMAScript (published as ECMA-262 5th edition)

• codifies de facto interpretations of the language specification that have become
common among browser implementations and

• adds support for new features that have emerged since the publication of the third
edition. Such features include
— accessor properties,

— reflective creation and inspection of objects,

— program control of property attributes,

— additional array manipulation functions,

— support for the JSON object encoding format, and

— a strict mode that provides enhanced error checking and program security.

New Features
The new features included in ECMAScript 5 are as follows:
Strict mode (see “Strict Mode” on page 62)

Putting the following line first in a file or a function switches on the so-called strict
mode that makes JavaScript a cleaner language by forbidding some features, per‐
forming more checks, and throwing more exceptions:

369

'use strict';

Accessors (see “Accessors (Getters and Setters)” on page 221)
Getters and setters allow you to implement the getting and setting of a property via
methods. For example, the following object obj contains a getter for the property
foo:

> var obj = { get foo() { return 'abc' } };
> obj.foo
'abc'

Syntactic Changes
ECMAScript 5 includes the following syntactic changes:
Reserved words as property keys

You can use reserved words (such as new and function) after the dot operator and
as unquoted property keys in object literals:

> var obj = { new: 'abc' };
> obj.new
'abc'

Legal trailing commas
Trailing commas in object literals and array literals are legal.

Multiline string literals
String literals can span multiple lines if you escape the end of the line via a backslash.

New Functionality in the Standard Library
ECMAScript 5 brought several additions to JavaScript’s standard library. This section
lists them by category.

Metaprogramming
Getting and setting prototypes (see “Getting and Setting the Prototype” on page 214):

• Object.create()

• Object.getPrototypeOf()

Managing property attributes via property descriptors (see “Property Descriptors” on
page 223):

• Object.defineProperty()

• Object.defineProperties()

370 | Chapter 25: New in ECMAScript 5

• Object.create()

• Object.getOwnPropertyDescriptor()

Listing properties (see “Iteration and Detection of Properties” on page 217):

• Object.keys()

• Object.getOwnPropertyNames()

Protecting objects (see “Protecting Objects” on page 229):

• Object.preventExtensions()

• Object.isExtensible()

• Object.seal()

• Object.isSealed()

• Object.freeze()

• Object.isFrozen()

New Function method (see “Function.prototype.bind(thisValue, arg1?, ..., argN?)” on
page 205):

• Function.prototype.bind()

New Methods
Strings (see Chapter 12):

• New method String.prototype.trim()
• Access characters via the bracket operator [...]

New Array methods (see “Array Prototype Methods” on page 286):

• Array.isArray()

• Array.prototype.every()

• Array.prototype.filter()

• Array.prototype.forEach()

• Array.prototype.indexOf()

• Array.prototype.lastIndexOf()

• Array.prototype.map()

New Functionality in the Standard Library | 371

• Array.prototype.reduce()

• Array.prototype.some()

New Date methods (see “Date Prototype Methods” on page 319):

• Date.now()

• Date.prototype.toISOString()

JSON
Support for JSON (see Chapter 22):

• JSON.parse() (see “JSON.parse(text, reviver?)” on page 340)
• JSON.stringify() (see “JSON.stringify(value, replacer?, space?)” on page 337)
• Some built-in objects have special toJSON() methods:

— Boolean.prototype.toJSON()

— Number.prototype.toJSON()

— String.prototype.toJSON()

— Date.prototype.toJSON()

Tips for Working with Legacy Browsers
The following resources will be useful if you need to work with legacy browsers:

• A compatibility table by Juriy Zaytsev (“kangax”) shows how much of ECMA‐
Script 5 is supported by various versions of various browsers.

• es5-shim brings most (but not all) of ECMAScript 5’s functionality to browsers that
support only ECMAScript 3.

372 | Chapter 25: New in ECMAScript 5

http://kangax.github.io/es5-compat-table/
https://github.com/kriskowal/es5-shim/

PART IV

Tips, Tools, and Libraries

This part gives tips for using JavaScript (best practices, advanced techniques, and learn‐
ing resources) and describes a few important tools and libraries.

CHAPTER 26

A Meta Code Style Guide

JavaScript has many great style guides. Thus, there is no need to write yet another one.
Instead, this chapter describes meta style rules and surveys existing style guides and
established best practices. It also mentions practices I like that are more controversial.
The idea is to complement existing style guides rather than to replace them.

Existing Style Guides
These are style guides that I like:

• Idiomatic.js: Principles of Writing Consistent, Idiomatic JavaScript
• Google JavaScript Style Guide
• jQuery JavaScript Style Guide
• Airbnb JavaScript Style Guide

Additionally, there are two style guides that go meta:

• Popular Conventions on GitHub analyzes GitHub code to find out which coding
conventions are most frequently used.

• JavaScript, the winning style examines what the majority of several popular style
guides recommend.

General Tips
This section will cover some general code writing tips.

375

https://github.com/rwaldron/idiomatic.js/
http://bit.ly/1oOEfQ7
http://contribute.jquery.org/style-guide/js/
https://github.com/airbnb/javascript
http://sideeffect.kr/popularconvention/
http://seravo.fi/2013/javascript-the-winning-style

Code Should Be Consistent
There are two important rules for writing consistent code. The first rule is that, if you
start a new project, you should come up with a style, document it, and follow it every‐
where. The larger the team, the more important it is to check for adherence to the style
automatically, via tools such as JSHint. When it comes to style, there are many decisions
to make. Most of them have generally agreed-upon answers. Others have to be defined
per project. For example:

• How much whitespace (after parentheses, between statements, etc.)
• Indentation (e.g., how many spaces per level of indentation)
• How and where to write var statements

The second rule is that, if you are joining an existing project, you should follow its rules
rigorously (even if you don’t agree with them).

Code Should Be Easy to Understand
Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you are as clever as you can be when you write it, how will you ever debug it?
—Brian Kernighan

For most code, the time used for reading it is much greater than the time used for writing
it. It is thus important to make the former as easy as possible. Here are some guidelines
for doing that:
Shorter isn’t always better

Sometimes writing more means that things are actually faster to read. Let’s consider
two examples. First, familiar things are easier to understand. That can mean that
using familiar, slightly more verbose, constructs can be preferable. Second, humans
read tokens, not characters. Therefore, redBalloon is easier to read than rdBlln.

Good code is like a textbook
Most code bases are filled with new ideas and concepts. That means that if you want
to work with a code base, you need to learn those ideas and concepts. In contrast
to textbooks, the added challenge with code is that people will not read it linearly.
They will jump in anywhere and should be able to roughly understand what is going
on. Three parts of a code base help:

• Code should explain what is happening; it should be self-explanatory. To write
such code, use descriptive identifiers and break up long functions (or methods)
into smaller subfunctions. If those functions are small enough and have mean‐
ingful names, you can often avoid comments.

• Comments should explain why things are happening. If you need to know a
concept to understand the code, you can either include the name of the concept

376 | Chapter 26: A Meta Code Style Guide

in an identifier or mention it in a comment. Someone reading the code can
then turn to the documentation to find out more about the concept.

• Documentation should fill in the blanks left by the code and the comments. It
should tell you how to get started with the code base and provide you with the
big picture. It should also contain a glossary for all important concepts.

Don’t be clever; don’t make me think
There is a lot of clever code out there that uses in-depth knowledge of the language
to achieve impressive terseness. Such code is usually like a puzzle and difficult to
figure out. You will encounter the opinion that if people don’t understand such code,
maybe they should really learn JavaScript first. But that’s not what this is about. No
matter how clever you are, entering other people’s mental universes is always chal‐
lenging. So simple code is not stupid, it’s code where most of the effort went into
making everything easy to understand. Note that “other people” includes your fu‐
ture selves. I often find that clever thoughts I had in the past don’t make sense to
my present self.

Avoid optimizing for speed or code size
Much cleverness is directed at these optimizations. However, you normally don’t
need them. On one hand, JavaScript engines are becoming increasingly smart and
automatically optimize the speed of code that follows established patterns. On the
other hand, minification tools (Chapter 32) rewrite your code so that it is as small
as possible. In both cases, tools are clever for you, so that you don’t have to be.

Sometimes you have no choice but to optimize the performance of your code. If
you do, be sure to measure and optimize the right pieces. In browsers, the problems
are often related to DOM and HTML and not the language proper.

Commonly Accepted Best Practices
A majority of JavaScript programmers agree on the following best practices:

• Use strict mode. It makes JavaScript a cleaner language (see “Strict Mode” on page
62).

• Always use semicolons. Avoid the pitfalls of automatic semicolon insertion (see
“Automatic Semicolon Insertion” on page 59).

• Always use strict equality (===) and strict inequality (!==). I recommend never
deviating from this rule. I even prefer the first of the following two conditions, even
though they are equivalent:

if (x !== undefined && x !== null) ... // my choice
if (x != null) ... // equivalent

• Either use only spaces or only tabs for indentation, but don’t mix them.

Commonly Accepted Best Practices | 377

• Quoting strings: You can write string literals with either single quotes or double
quotes in JavaScript. Single quotes are more common. They make it easier to work
with HTML code (which normally has attribute values in double quotes). Other
considerations are mentioned in “String Literals” on page 133.

• Avoid global variables (“Best Practice: Avoid Creating Global Variables” on page
187).

Brace Styles
In languages where braces delimit blocks of code, a brace style determines where you
put those braces. Two brace styles are most common in C-like languages (such as Java
and JavaScript): Allman style and 1TBS.

Allman style
If a statement contains a block, that block is considered as somewhat separate from the
head of the statement: its opening brace is in a line of its own, at the same indentation
level as the head. For example:

// Allman brace style
function foo(x, y, z)
{
 if (x)
 {
 a();
 }
 else
 {
 b();
 c();
 }
}

1TBS (One True Brace Style)
Here, a block is more closely associated with the header of its statement; it starts after
it, in the same line. The bodies of control flow statements are always put in braces, even
if there is only a single statement. For example:

// One True Brace Style
function foo(x, y, z) {
 if (x) {
 a();
 } else {
 b();
 c();
 }
}

378 | Chapter 26: A Meta Code Style Guide

1. Some people even say that they are synonyms, that 1TBS is a way to jokingly refer to K&R.

1TBS is a variant of the (older) K&R (Kernighan and Ritchie) style.1 In K&R style,
functions are written in Allman style and braces are omitted where they are not neces‐
sary—for example, around single-statement then cases:

// K&R brace style
function foo(x, y, z)
{
 if (x)
 a();
 else {
 b();
 c();
 }
}

JavaScript
The de facto standard in the JavaScript world is 1TBS. It has been inherited from Java
and most style guides recommend it. One reason for that is objective. If you return an
object literal, you must put the opening brace in the same line as the keyword return,
like this (otherwise, automatic semicolon insertion inserts a semicolon after return,
meaning that nothing is returned; see “Pitfall: ASI can unexpectedly break up state‐
ments” on page 60):

return {
 name: 'Jane'
};

Obviously, an object literal is not a code block, but things look more consistent and you
are less likely to make mistakes if both are formatted the same way.

My personal style and preference is:

• 1TBS (which implies that you use braces whenever possible).
• As an exception, I omit braces if a statement can be written in a single line. For

example:
if (x) return x;

Prefer Literals to Constructors
Several literals produce objects that can also be created by constructors. However, the
latter is normally the better choice:

var obj = new Object(); // no
var obj = {}; // yes

Commonly Accepted Best Practices | 379

var arr = new Array(); // no
var arr = []; // yes

var regex = new RegExp('abc'); // avoid if possible
var regex = /abc/; // yes

Don’t ever use the constructor Array to create an array with given elements. “Initializing
an array with elements (avoid!)” on page 275 explains why:

var arr = new Array('a', 'b', 'c'); // never ever
var arr = ['a', 'b', 'c']; // yes

Don’t Be Clever
This section collects examples of unrecommended cleverness.

Conditional operator
Don’t nest the conditional operator:

// Don’t:
return x === 0 ? 'red' : x === 1 ? 'green' : 'blue';

// Better:
if (x === 0) {
 return 'red';
} else if (x === 1) {
 return 'green';
} else {
 return 'blue';
}

// Best:
switch (x) {
 case 0:
 return 'red';
 case 1:
 return 'green';
 default:
 return 'blue';
}

Abbreviating if statements

Don’t abbreviate if statements via logical operators:

foo && bar(); // no
if (foo) bar(); // yes

foo || bar(); // no
if (!foo) bar(); // yes

380 | Chapter 26: A Meta Code Style Guide

Increment operator

If possible, use the increment operator (++) and the decrement operator (--) as state‐
ments; don’t use them as expressions. In the latter case, they return a value and while
there is a mnemonic, you still need to think to figure out what is going on:

// Unsure: what is happening?
return ++foo;

// Easy to understand
++foo;
return foo;

Checking for undefined
if (x === void 0) x = 0; // not necessary in ES5
if (x === undefined) x = 0; // preferable

Starting with ECMAScript 5, the second way of checking is better. “Changing unde‐
fined” on page 75 explains why.

Converting a number to an integer
return x >> 0; // no
return Math.round(x); // yes

The shift operator can be used to convert a number to an integer. However, it is usually
better to use a more explicit alternative such as Math.round(). “Converting to Inte‐
ger” on page 117 gives an overview of all ways of converting to integer.

Acceptable Cleverness
Sometimes you can be clever in JavaScript—if the cleverness has become an established
pattern.

Default values

Using the Or (||) operator to provide default values is a common pattern—for example,
for parameters:

function f(x) {
 x = x || 0;
 ...
}

For details and more examples, consult “Pattern: providing a default value” on page 100.

Generic methods

If you use methods generically, you can abbreviate Object.prototype as {}. The fol‐
lowing two expressions are equivalent:

Commonly Accepted Best Practices | 381

Object.prototype.hasOwnProperty.call(obj, propKey)
{}.hasOwnProperty.call(obj, propKey)

And Array.prototype can be abbreviated as []:

Array.prototype.slice.call(arguments)
[].slice.call(arguments)

I’m ambivalent about this one. It is a hack (you are accessing a prototype property via
an instance). But it reduces clutter, and I expect engines to eventually optimize this
pattern.

ECMAScript 5: trailing commas
Trailing commas in object literals are legal in ECMAScript 5:

var obj = {
 first: 'Jane',
 last: 'Doe', // legal: trailing comma
};

ECMAScript 5: reserved words

ECMAScript 5 also allows you to use reserved words (such as new) as property keys:

> var obj = { new: 'abc' };
> obj.new
'abc'

Controversial Rules
Let’s look at some conventions I like that are a bit more controversial.

Syntax
We’ll start with syntactic conventions:
Tight whitespace

I like relatively tight whitespace. The model is written English: there are no spaces
after an opening parenthesis and before a closing parenthesis. And there are spaces
after commas:

var result = foo('a', 'b');
var arr = [1, 2, 3];
if (flag) {
 ...
}

For anonymous functions, I follow Douglas Crockford’s rule of having a space after
the keyword function. The rationale is that this is what a named function expres‐
sion looks like if you remove the name:

382 | Chapter 26: A Meta Code Style Guide

function foo(arg) { ... } // named function expression
function (arg) { ... } // anonymous function expression

Four spaces per indentation level
Most code I am seeing uses spaces for indentation, because tabs are displayed so
differently between applications and operating systems. I prefer four spaces per
level of indentation, because that makes the indentation more visible.

Put the conditional operator in parentheses
This helps with reading, because it is easier to make out the scope of the operator:

return result ? result : theDefault; // no
return (result ? result : theDefault); // yes

Variables
Next, I’ll cover conventions for variables:
One variable declaration per line

I don’t declare multiple variables with a single declaration:

// no
var foo = 3,
 bar = 2,
 baz;

// yes
var foo = 3;
var bar = 2;
var baz;

The advantages of this approach are that deleting, inserting, and rearranging lines
is simpler and the lines are automatically indented correctly.

Keep variable declarations local
If your function isn’t too long (which it shouldn’t be, anyway), then you can afford
to be less careful with regard to hoisting and pretend that var declarations are block-
scoped. In other words, you can declare a variable in the context in which it is used
(inside a loop, inside a then block or an else block, etc.). This kind of local encap‐
sulation makes a code fragment easier to understand in isolation. It is also easier to
remove the code fragment or to move it somewhere else.

If you are inside a block, stay inside that block
As an addendum to the previous rule: don’t declare the same variable twice, in two
different blocks. For example:

// Don’t do this
if (v) {
 var x = v;
} else {
 var x = 10;

Controversial Rules | 383

}
doSomethingWith(x);

The preceding code has the same effect and intention as the following code, which
is why it should be written that way:

var x;
if (v) {
 x = v;
} else {
 x = 10;
}
doSomethingWith(x);

Object Orientation
Now we’ll cover conventions relating to object orientation.
Prefer constructors over other instance creation patterns

I recommend that you:

• Always use constructors.
• Always use new when creating an instance.

The main advantages of doing so are:

• Your code better fits into the JavaScript mainstream and is more likely to be
portable between frameworks.

• In modern engines, using instances of constructors is very fast (e.g., via hidden
classes).

• Classes, the default inheritance construct in the upcoming ECMAScript 6, will
be based on constructors.

For constructors, it is important to use strict mode, because it protects you against
forgetting the new operator for instantiation. And you should be aware that you can
return any object in a constructor. More tips for using constructors are mentioned
in “Tips for Implementing Constructors” on page 239.

Avoid closures for private data
If you want an object’s private data to be completely safe, you have to use closures.
Otherwise, you can use normal properties. One common practice is to prefix the
names of private properties with underscores. The problem with closures is that
code becomes more complicated (unless you put all methods in the instance, which
is unidiomatic and slow) and slower (accessing data in closures is currently slower
than accessing properties). “Keeping Data Private” on page 244 covers this topic in
more detail.

384 | Chapter 26: A Meta Code Style Guide

http://bit.ly/1oOEAlZ
http://bit.ly/1oOEAlZ

Write parens if a constructor has no arguments
I find that such a constructor invocation looks cleaner with parentheses:

var foo = new Foo; // no
var foo = new Foo(); // yes

Be careful about operator precedence
Use parens so that two operators don’t compete with each other—the result is not
always what you might expect:

> false && true || true
true
> false && (true || true)
false
> (false && true) || true
true

instanceof is especially tricky:

> ! {} instanceof Array
false
> (!{}) instanceof Array
false
> !({} instanceof Array)
true

However, I find method calls after a constructor unproblematic:

new Foo().bar().baz(); // ok
(new Foo()).bar().baz(); // not necessary

Miscellaneous
This section collects various tips:
Coercing

Coerce a value to a type via Boolean, Number, String(), Object() (used as functions
—never use those functions as constructors). The rationale is that this convention
is more descriptive:

> +'123' // no
123
> Number('123') // yes
123

> ''+true // no
'true'
> String(true) // yes
'true'

Controversial Rules | 385

Avoid this as an implicit parameter
this should refer only to the receiver of the current method invocation; it should
not be abused as an implicit parameter. The rationale is that such functions are
easier to call and understand. I also like to keep object-oriented and functional
mechanisms separate:

// Avoid:
function handler() {
 this.logError(...);
}

// Prefer:
function handler(context) {
 context.logError(...);
}

Check for the existence of a property via in and hasOwnProperty (see “Iteration and
Detection of Properties” on page 217)

This is more self-explanatory and safer than comparing with undefined or checking
for truthiness:

// All properties:
if (obj.foo) // no
if (obj.foo !== undefined) // no
if ('foo' in obj) ... // yes

// Own properties:
if (obj.hasOwnProperty('foo')) ... // risky for arbitrary objects
if (Object.prototype.hasOwnProperty.call(obj, 'foo')) ... // safe

Fail fast
If you can, it’s best to fail fast and to not fail silently. JavaScript is only so forgiving
(e.g., division by zero), because the first version of ECMAScript did not have ex‐
ceptions. For example, don’t coerce values; throw an exception. However, you have
to find ways to recover gracefully from failure when your code is in production.

Conclusion
Whenever you are considering a style question, ask yourself: what makes my code easier
to understand? Resist the temptation to be clever and leave most of the mechanical
cleverness to JavaScript engines and minifiers (see Chapter 32).

386 | Chapter 26: A Meta Code Style Guide

CHAPTER 27

Language Mechanisms for Debugging

The following three language constructs help with debugging. They should obviously
be complemented by a proper debugger:

• The debugger statement behaves like a breakpoint and launches the debugger.
• console.log(x) logs the value x to the console of the JavaScript engine.
• console.trace() prints a stack trace to the engine’s console.

The console API provides more debugging help and is documented in more detail in
“The Console API” on page 351. Exception handling is explained in Chapter 14.

387

CHAPTER 28

Subclassing Built-ins

JavaScript’s built-in constructors are difficult to subclass. This chapter explains why and
presents solutions.

Terminology
We use the phrase subclass a built-in and avoid the term extend, because it is taken in
JavaScript:
Subclassing a built-in A

Creating a subconstructor B of a given built-in constructor A. B’s instances are also
instances of A.

Extending an object obj
Copying one object’s properties to another one. Underscore.js uses this term, con‐
tinuing a tradition established by the Prototype framework.

There are two obstacles to subclassing a built-in: instances with internal properties and
a constructor that can’t be called as a function.

Obstacle 1: Instances with Internal Properties
Most built-in constructors have instances with so-called internal properties (see “Kinds
of Properties” on page 197), whose names are written in double square brackets, like
this: [[PrimitiveValue]]. Internal properties are managed by the JavaScript engine
and usually not directly accessible in JavaScript. The normal subclassing technique in
JavaScript is to call a superconstructor as a function with the this of the subconstructor
(see “Layer 4: Inheritance Between Constructors” on page 251):

function Super(x, y) {
 this.x = x; // (1)
 this.y = y; // (1)

389

http://underscorejs.org/#extend

}
function Sub(x, y, z) {
 // Add superproperties to subinstance
 Super.call(this, x, y); // (2)
 // Add subproperty
 this.z = z;
}

Most built-ins ignore the subinstance passed in as this (2), an obstacle that is described
in the next section. Furthermore, adding internal properties to an existing instance (1)
is in general impossible, because they tend to fundamentally change the instance’s na‐
ture. Hence, the call at (2) can’t be used to add internal properties. The following con‐
structors have instances with internal properties:
Wrapper constructors

Instances of Boolean, Number, and String wrap primitives. They all have the in‐
ternal property [[PrimitiveValue]] whose value is returned by valueOf();
String has two additional instance properties:

• Boolean: Internal instance property [[PrimitiveValue]].
• Number: Internal instance property [[PrimitiveValue]].
• String: Internal instance property [[PrimitiveValue]], custom internal in‐

stance method [[GetOwnProperty]], normal instance property length. [[Ge
tOwnProperty]] enables indexed access of characters by reading from the
wrapped string when an array index is used.

Array

The custom internal instance method [[DefineOwnProperty]] intercepts proper‐
ties being set. It ensures that the length property works correctly, by keeping length
up-to-date when array elements are added and by removing excess elements when
length is made smaller.

Date

The internal instance property [[PrimitiveValue]] stores the time represented
by a date instance (as the number of milliseconds since 1 January 1970 00:00:00
UTC).

Function

The internal instance property [[Call]] (the code to execute when an instance is
called) and possibly others.

RegExp

The internal instance property [[Match]], plus two noninternal instance proper‐
ties. From the ECMAScript specification:

390 | Chapter 28: Subclassing Built-ins

1. Inspired by a blog post by Ben Nadel.

The value of the [[Match]] internal property is an implementation dependent
representation of the Pattern of the RegExp object.

The only built-in constructors that don’t have internal properties are Error and Object.

Workaround for Obstacle 1
MyArray is a subclass of of Array. It has a getter size that returns the actual elements
in an array, ignoring holes (where length considers holes). The trick used to implement
MyArray is that it creates an array instance and copies its methods into it:1

function MyArray(/*arguments*/) {
 var arr = [];
 // Don’t use Array constructor to set up elements (doesn’t always work)
 Array.prototype.push.apply(arr, arguments); // (1)
 copyOwnPropertiesFrom(arr, MyArray.methods);
 return arr;
}
MyArray.methods = {
 get size() {
 var size = 0;
 for (var i=0; i < this.length; i++) {
 if (i in this) size++;
 }
 return size;
 }
}

This code uses the helper function copyOwnPropertiesFrom(), which is shown and
explained in “Copying an Object” on page 226.

We do not call the Array constructor in line (1), because of a quirk: if it is called with a
single parameter that is a number, the number does not become an element, but deter‐
mines the length of an empty array (see “Initializing an array with elements (avoid!)”
on page 275).

Here is the interaction:

> var a = new MyArray('a', 'b')
> a.length = 4;
> a.length
4
> a.size
2

Obstacle 1: Instances with Internal Properties | 391

http://bit.ly/1oOERFo

Caveats
Copying methods to an instance leads to redundancies that could be avoided with a
prototype (if we had the option to use one). Additionally, MyArray creates objects that
are not its instances:

> a instanceof MyArray
false
> a instanceof Array
true

Obstacle 2: A Constructor That Can’t Be Called as a
Function
Even though Error and subclasses don’t have instances with internal properties, you
still can’t subclass them easily, because the standard pattern for subclassing won’t work
(repeated from earlier):

function Super(x, y) {
 this.x = x;
 this.y = y;
}
function Sub(x, y, z) {
 // Add superproperties to subinstance
 Super.call(this, x, y); // (1)
 // Add subproperty
 this.z = z;
}

The problem is that Error always produces a new instance, even if called as a function
(1); that is, it ignores the parameter this handed to it via call():

> var e = {};
> Object.getOwnPropertyNames(Error.call(e)) // new instance
['stack', 'arguments', 'type']
> Object.getOwnPropertyNames(e) // unchanged
[]

In the preceding interaction, Error returns an instance with own properties, but it’s a
new instance, not e. The subclassing pattern would only work if Error added the own
properties to this (e, in the preceding case).

Workaround for Obstacle 2
Inside the subconstructor, create a new superinstance and copy its own properties to
the subinstance:

function MyError() {
 // Use Error as a function
 var superInstance = Error.apply(null, arguments);

392 | Chapter 28: Subclassing Built-ins

 copyOwnPropertiesFrom(this, superInstance);
}
MyError.prototype = Object.create(Error.prototype);
MyError.prototype.constructor = MyError;

The helper function copyOwnPropertiesFrom() is shown in “Copying an Object” on
page 226. Trying out MyError:

try {
 throw new MyError('Something happened');
} catch (e) {
 console.log('Properties: '+Object.getOwnPropertyNames(e));
}

here is the output on Node.js:

Properties: stack,arguments,message,type

The instanceof relationship is as it should be:

> new MyError() instanceof Error
true
> new MyError() instanceof MyError
true

Another Solution: Delegation
Delegation is a very clean alternative to subclassing. For example, to create your own
array constructor, you keep an array in a property:

function MyArray(/*arguments*/) {
 this.array = [];
 Array.prototype.push.apply(this.array, arguments);
}
Object.defineProperties(MyArray.prototype, {
 size: {
 get: function () {
 var size = 0;
 for (var i=0; i < this.array.length; i++) {
 if (i in this.array) size++;
 }
 return size;
 }
 },
 length: {
 get: function () {
 return this.array.length;
 },
 set: function (value) {
 return this.array.length = value;
 }
 }
});

Another Solution: Delegation | 393

The obvious limitation is that you can’t access elements of MyArray via square brackets;
you must use methods to do so:

MyArray.prototype.get = function (index) {
 return this.array[index];
}
MyArray.prototype.set = function (index, value) {
 return this.array[index] = value;
}

Normal methods of Array.prototype can be transferred via the following bit of
metaprogramming:

['toString', 'push', 'pop'].forEach(function (key) {
 MyArray.prototype[key] = function () {
 return Array.prototype[key].apply(this.array, arguments);
 }
});

We derive MyArray methods from Array methods by invoking them on the array
this.array that is stored in instances of MyArray.

Using MyArray:

> var a = new MyArray('a', 'b');
> a.length = 4;
> a.push('c')
5
> a.length
5
> a.size
3
> a.set(0, 'x');
> a.toString()
'x,b,,,c'

394 | Chapter 28: Subclassing Built-ins

1. The JSDoc website is the main source of this chapter; some examples are borrowed from it.

CHAPTER 29

JSDoc: Generating API Documentation

It is a common development problem: you have written JavaScript code that is to be
used by others and need a nice-looking HTML documentation of its API. The de facto
standard tool in the JavaScript world for generating API documentation is JSDoc.1 It is
modeled after its Java analog, JavaDoc.

JSDoc takes JavaScript code with /** */ comments (normal block comments that start
with an asterisk) and produces HTML documentation for it. For example, given the
following code:

/** @namespace */
var util = {
 /**
 * Repeat <tt>str</tt> several times.
 * @param {string} str The string to repeat.
 * @param {number} [times=1] How many times to repeat the string.
 * @returns {string}
 */
 repeat: function(str, times) {
 if (times === undefined || times < 1) {
 times = 1;
 }
 return new Array(times+1).join(str);
 }
};

the generated HTML looks as shown in Figure 29-1 in a web browser.

395

http://usejsdoc.org

Figure 29-1. HTML output produced by JSDoc.

The Readme on the JSDoc website explains how to install and call this tool.

The Basics of JSDoc
JSDoc is all about documenting entities (functions, methods, constructors, etc.). That
is achieved via comments that precede the entities and start with /**.

Syntax
Let’s review the comment shown at the beginning:

/**
 * Repeat <tt>str</tt> several times.
 * @param {string} str The string to repeat.
 * @param {number} [times=1] How many times to repeat the string.
 * @returns {string}
 */

This demonstrates some of the JSDoc syntax, which consists of the following pieces:

396 | Chapter 29: JSDoc: Generating API Documentation

http://usejsdoc.org/about-jsdoc3.html

JSDoc comment
This is a JavaScript block comment whose first character is an asterisk. This creates
the illusion that the token /** starts such a comment.

Tags
You structure comments by starting lines with tags, keywords that are prefixed with
an @ symbol. @param is an example in the preceding code.

HTML
You can freely use HTML in JSDoc comments. For example, <tt> displays a word
in a monospaced font.

Type annotations
You can document the type of an entity via a type name in braces. Variations include:

• Single type: @param {string} name
• Multiple types: @param {string|number} idCode
• Arrays of a type: @param {string[]} names

Namepaths
Inside JSDoc comments, so-called namepaths are used to refer to entities. The syn‐
tax of such paths is as follows:

myFunction
MyClass
MyClass.staticMember
MyClass#instanceMember

Classes are usually (implemented by) constructors. Static members are, for example,
properties of constructors. JSDoc has a broad definition of instance member. It
means everything that can be accessed via an instance. Therefore, instance members
include instance properties and prototype properties.

Naming Types
The types of entities are either primitive types or classes. The names of the former always
start with lowercase letters; the names of the latter always start with uppercase letters.
In other words, the type names of primitives are boolean, number, and string, just like
the results returned by the typeof operator. That way, you cannot confuse strings
(primitives) with instances of the constructor String (objects).

Basic Tags
Following are the basic metadata tags:

Basic Tags | 397

@fileOverview description

Marks a JSDoc comment that describes the whole file. For example:

/**
 * @fileOverview Various tool functions.
 * @author John Doe
 * @version 3.1.2
 */

@author

Refers to who has written the entity being documented.

@deprecated

Indicates that the entity is not supported anymore. It is a good practice to document
what to use instead.

@example

Contains a code example illustrating how the given entity should be used:

/**
 * @example
 * var str = 'abc';
 * console.log(repeat(str, 3)); // abcabcabc
 */

Basic tags for linking are as follows:
@see

Points to a related resource:

/**
 * @see MyConstructor#myMethod
 * @see The Example Project.
 */

{@link ...}

Works like @see, but can be used inside other tags.

@requires resourceDescription

Indicates a resource that the documented entity needs. The resource description is
either a namepath or a natural language description.

Versioning tags include the following:
@version versionNumber

Indicates the version of the documented entity. For example:

@version 10.3.1

398 | Chapter 29: JSDoc: Generating API Documentation

@since versionNumber

Indicates since which version the documented entity has been available. For
example:

@since 10.2.0

Documenting Functions and Methods
For functions and methods, you can document parameters, return values, and excep‐
tions they may throw:
@param {paramType} paramName description

Describes the parameter whose name is paramName. Type and description are op‐
tional. Here are some examples:

@param str The string to repeat.
@param {string} str
@param {string} str The string to repeat.

Advanced features:

• Optional parameter:
@param {number} [times] The number of times is optional.

• Optional parameter with default value:
@param {number} [times=1] The number of times is optional.

@returns {returnType} description

Describes the return value of the function or method. Either type or description
can be omitted.

@throws {exceptionType} description

Describes an exception that might be thrown during the execution of the function
or method. Either type or description can be omitted.

Inline Type Information (“Inline Doc Comments”)
There are two ways of providing type information for parameters and return values.
First, you can add type annotations to @param and @returns:

/**
 * @param {String} name
 * @returns {Object}
 */
function getPerson(name) {
}

Documenting Functions and Methods | 399

Second, you can inline the type information:

function getPerson(/**String*/ name) /**Object*/ {
}

Documenting Variables, Parameters, and Instance
Properties
The following tags are used for documenting variables, parameters, and instance
properties:
@type {typeName}

What type does the documented variable have? For example:

/** @type {number} */
var carCounter = 0;

This tag can also be used to document the return type of functions, but @returns
is preferable in this case.

@constant

A flag that indicates that the documented variable has a constant value.

/** @constant */
var FORD = 'Ford';

@property {propType} propKey description

Document an instance property in the constructor comment. For example:

/**
 * @constructor
 * @property {string} name The name of the person.
 */
function Person(name) {
 this.name = name;
}

Alternatively, instance properties can be documented as follows:

/**
 * @class
 */
function Person(name) {
 /**
 * The name of the person.
 * @type {string}
 */
 this.name = name;
}

Which one of those styles to use is a matter of personal preference.

400 | Chapter 29: JSDoc: Generating API Documentation

@default defaultValue

What is the default value of a parameter or instance property? For example:

/** @constructor */
function Page(title) {
 /**
 * @default 'Untitled'
 */
 this.title = title || 'Untitled';
}

Documenting Classes
JSDoc distinguishes between classes and constructors. The former concept is more like
a type, while a constructor is one way of implementing a class. JavaScript’s built-in means
for defining classes are limited, which is why there are many APIs that help with this
task. These APIs differ, often radically, so you have to help JSDoc with figuring out what
is going on. The following tags let you do that:
@constructor

Marks a function as a constructor.

@class

Marks a variable or a function as a class. In the latter case, @class is a synonym for
@constructor.

@constructs

Records that a method sets up the instance data. If such a method exists, the class
is documented there.

@lends namePath

Specifies to which class the following object literal contributes. There are two ways
of contributing.

• @lends Person#: The object literal contributes instance members to Person.
• @lends Person: The object literal contributes static members to Person.

@memberof parentNamePath

The documented entity is a member of the specified object. @lends MyClass#,
applied to an object literal, has the same effect as marking each property of that
literal with @memberof MyClass#.

The most common ways of defining a class are: via a constructor function, via an object
literal, and via an object literal that has an @constructs method.

Documenting Classes | 401

Defining a Class via a Constructor Function
To define a class via a constructor function, you must mark the constructor function;
otherwise, it will not be documented as a class. Capitalization alone does not mark a
function as a constructor:

/**
 * A class for managing persons.
 * @constructor
 */
function Person(name) {
}

Defining a Class via an Object Literal
To define a class via an object literal, you need two markers. First, you need to tell JSDoc
that a given variable holds a class. Second, you need to mark an object literal as defining
a class. You do the latter via the @lends tag:

/**
 * A class for managing persons.
 * @class
 */
var Person = makeClass(
 /** @lends Person# */
 {
 say: function(message) {
 return 'This person says: ' + message;
 }
 }
);

Defining a Class via an Object Literal with an @constructs Method
If an object literal has an @constructs method, you need to tell JSDoc about it, so that
it can find the documentation for the instance properties. The documentation of the
class moves to that method:

var Person = makeClass(
 /** @lends Person# */
 {
 /**
 * A class for managing persons.
 * @constructs
 */
 initialize: function(name) {
 this.name = name;
 },
 say: function(message) {
 return this.name + ' says: ' + message;
 }

402 | Chapter 29: JSDoc: Generating API Documentation

 }
);

If you omit the @lends, you must specify which class the methods belong to:

var Person = makeClass({
 /**
 * A class for managing persons.
 * @constructs Person
 */
 initialize: function(name) {
 this.name = name;
 },
 /** @memberof Person# */
 say: function(message) {
 return this.name + ' says: ' + message;
 }
 }
);

Subclassing
JavaScript has no built-in support for subclassing. When you subclass in your code (be
it manually, be it via a library), you have to tell JSDoc what is going on:
@extends namePath

Indicates that the documented class is the subclass of another one. For example:

/**
 * @constructor
 * @extends Person
 */
function Programmer(name) {
 Person.call(this, name);
 ...
}
// Remaining code for subclassing omitted

Other Useful Tags
All of these tags are documented at the JSDoc website:

• Modularity: @module, @exports, @namespace
• Custom types (for virtual entities such as callbacks, whose signature you can docu‐

ment): @typedef, @callback
• Legal matters: @copyright, @license
• Various kinds of objects: @mixin, @enum

Other Useful Tags | 403

http://usejsdoc.org/

CHAPTER 30

Libraries

This chapter covers JavaScript libraries. It first explains what shims and polyfills are,
two special kinds of libraries. Then it lists a few core libraries. Lastly, it points to addi‐
tional library-related resources.

Shims Versus Polyfills
Shims and polyfills are libraries that retrofit newer functionality on older JavaScript
engines:

• A shim is a library that brings a new API to an older environment, using only the
means of that environment.

• A polyfill is a shim for a browser API. It typically checks if a browser supports an
API. If it doesn’t, the polyfill installs its own implementation. That allows you to
use the API in either case. The term polyfill comes from a home improvement
product; according to Remy Sharp:

Polyfilla is a UK product known as Spackling Paste in the US. With that in mind:
think of the browsers as a wall with cracks in it. These [polyfills] help smooth out
the cracks and give us a nice smooth wall of browsers to work with.

Examples include:

• “HTML5 Cross Browser Polyfills”: A list compiled by Paul Irish.
• es5-shim is a (nonpolyfill) shim that retrofits ECMAScript 5 features on ECMA‐

Script 3 engines. It is purely language-related and makes just as much sense on
Node.js as it does on browsers.

405

http://bit.ly/MmZZmZ
http://bit.ly/1oOGuTE
http://bit.ly/1oOGxi4

Four Language Libraries
The following libraries are quite established and close to the language. It is useful to be
aware of them:

• The ECMAScript Internationalization API helps with tasks related to internation‐
alization: collation (sorting and searching strings), number formatting, and date
and time formatting. The next section explains this API in more detail.

• Underscore.js complements JavaScript’s relatively sparse standard library with tool
functions for arrays, objects, functions, and more. As Underscore predates EC‐
MAScript 5, there is some overlap with the standard library. That is, however, a
feature: on older browsers, you get functionality that is normally ECMAScript-5-
only; on ECMAScript 5, the relevant functions simply forward to the standard
library.

• Lo-Dash is an alternative implementation of the Underscore.js API, with a few
additional features. Check out the website to find out if it suits you better than
Underscore.js.

• XRegExp is a regular expression library with several advanced features such as
named captures and free-spacing (which allows you to spread out a regular ex‐
pression across multiple lines and document per line). Behind the scenes, enhanced
regular expressions are translated to normal regular expressions, meaning that you
don’t pay a performance penalty for using XRegExp.

The ECMAScript Internationalization API
The ECMAScript Internationalization API is a standard JavaScript API that helps with
tasks related to internationalization: collation (sorting and searching strings), number
formatting, and date and time formatting. This section gives a brief overview and points
you to more reading material.

The ECMAScript Internationalization API, Edition 1
The first edition of the API provides the following services:

• Collation supports two scenarios: sorting a set of strings and searching within a set
of strings. Collation is parameterized by locale and aware of Unicode.

• Number formatting. Parameters include:
— Style of formatting: decimal, currency (which one and how to refer to it is de‐

termined by other parameters), percent
— Locale (directly specified or best fit, searched for via a matcher object)

406 | Chapter 30: Libraries

http://underscorejs.org
http://lodash.com
http://xregexp.com

— Numbering system (Western digits, Arabic digits, Thai digits, etc.)
— Precision: number of integer digits, fraction digits, significant digits
— Grouping separators on or off

• Date and time formatting. Parameters include:
— What information to format and in which style (short, long, numeric, etc.)
— A locale
— A time zone

Most of the functionality is accessed via an object in the global variable Intl, but the
API also augments the following methods:

• String.prototype.localeCompare

• Number.prototype.toLocaleString

• Date.prototype.toLocaleString

• Date.prototype.toLocaleDateString

• Date.prototype.toLocaleTimeString

What Kind of Standard Is It?
The number of the standard “ECMAScript Internationalization API” (EIA) is
ECMA-402. It is hosted by Ecma International, the association that also hosts
EMCA-262, the ECMAScript language specification. Both standards are maintained by
TC39. Therefore, EIA is as close to the language as you can get without being part of
ECMA-262. The API has been designed to work with both ECMAScript 5 and ECMA‐
Script 6. A set of conformance tests complements the standard and ensures that the
various implementations of the API are compatible (ECMA-262 has a similar test suite).

When Can I Use It?
Most modern browsers already support it or are in the process of supporting it. David
Storey has created a detailed compatibility table (indicating which browsers support
which locales and more).

The ECMAScript Internationalization API | 407

http://bit.ly/1oOGIdo

Further Reading
The specification of the ECMAScript Internationalization API is edited by Norbert
Lindenberg. It is available in PDF, HTML, and EPUB format. Additionally, there are
several comprehensive introductory articles:

• “The ECMAScript Internationalization API” by Norbert Lindenberg
• “ECMAScript Internationalization API” by David Storey
• “Using the JavaScript Internationalization API” by Marcos Caceres

Directories for JavaScript Resources
This section describes sites that collect information on JavaScript resources. There are
several kinds of such directories.

Following is a list of general directories for JavaScript:

• “JavaScriptOO: Every JavaScript project you should be looking into”
• JSDB: A collection of the best JavaScript libraries
• JSter: A catalog of JavaScript libraries and tools for development
• “Master List of HTML5, JavaScript, and CSS Resources”

Specialized directories include:

• “Microjs: Fantastic Micro-Frameworks and Micro-libraries for Fun and Profit”
• “Unheap: A tidy repository of jQuery plugins”

Obviously, you can always directly browse the registries of package managers:

• npm (Node Packaged Modules)
• Bower

408 | Chapter 30: Libraries

http://bit.ly/1oOGQth
http://bit.ly/1oOGT8C
http://bit.ly/1oOGYcc
http://bit.ly/1oOH2sz
http://www.javascriptoo.com/
http://www.jsdb.io/
http://jster.net/
http://bit.ly/1oOH7MW
http://microjs.com/
http://www.unheap.com/
https://npmjs.org/
http://bower.io/

Directories for CDNs (content delivery networks) and CDN content include:

• jsDelivr: Free CDNs for JavaScript libraries, jQuery plug-ins, CSS frameworks,
fonts, and more

• “cdnjs: The missing CDN for JavaScript and CSS” (hosts less popular libraries)

Acknowledgments
The following people contributed to this section: Kyle Simpson (@ge‐
tify), Gildas Lormeau (@check_ca), Fredrik Sogaard (@fredrik_so‐
gaard), Gene Loparco (@gloparco), Manuel Strehl (@m_strehl), and
Elijah Manor (@elijahmanor).

Directories for JavaScript Resources | 409

http://www.jsdelivr.com/
http://cdnjs.com/

CHAPTER 31

Module Systems and Package Managers

JavaScript does not have built-in support for modules, but the community has created
impressive workarounds. To manage modules, you can use so-called package manag‐
ers, which handle discovery, installation, dependency management, and more.

Module Systems
The two most important (and unfortunately incompatible) standards for JavaScript
modules are:
CommonJS Modules (CJS)

The dominant incarnation of this standard is Node.js modules (Node.js modules
have a few features that go beyond CJS). Its characteristics include:

• Compact syntax
• Designed for synchronous loading
• Main use: server

Asynchronous Module Definition (AMD)
The most popular implementation of this standard is RequireJS. Its characteristics
include:

• Slightly more complicated syntax, enabling AMD to work without eval() or
a static compilation step

• Designed for asynchronous loading
• Main use: browsers

411

http://nodejs.org/api/modules.html
http://requirejs.org/

Package Managers
When it comes to package managers, npm (Node Packaged Modules) is the canonical
choice for Node.js. For browsers, two options are popular (among others):

• Bower is a package manager for the Web that supports both AMD and CJS.
• Browserify is a tool based on npm that compiles npm packages to something you

can use in a browser.

Quick and Dirty Modules
For normal web development, you should use a module system such as RequireJS or
Browserify. However, sometimes you just want to put together a quick hack. Then the
following simple module pattern can help:

var moduleName = function () {
 function privateFunction () { ... }
 function publicFunction(...) {
 privateFunction();
 otherModule.doSomething(); // implicit import
 }
 return { // exports
 publicFunction: publicFunction
 };
}();

The preceding is a module that is stored in the global variable moduleName. It does the
following:

• Implicitly imports a dependency (the module otherModule)
• Has a private function, privateFunction
• Exports publicFunction

To use the module on a web page, simply load its file and the files of its dependencies
via <script> tags:

<script src="modules/otherModule.js"></script>
<script src="modules/moduleName.js"></script>
<script type="text/javascript">
 moduleName.publicFunction(...);
</script>

If no other module is accessed while a module is loaded (which is the case for module
Name), then the order in which modules are loaded does not matter.

Here are my comments and recommendations:

412 | Chapter 31: Module Systems and Package Managers

https://npmjs.org
http://bower.io
http://browserify.org

• I’ve used this module pattern for a while, until I found out that I hadn’t invented it
and that it had an official name. Christian Heilmann popularized it and called it
the “revealing module pattern”.

• If you use this pattern, keep it simple. Feel free to pollute the global scope with
module names, but do try to find unique names. It’s only for hacks, so there is no
need to get fancy (nested namespaces, modules split across multiple files, etc.).

Quick and Dirty Modules | 413

http://bit.ly/1c1InUg

CHAPTER 32

More Tools

Module systems and package managers are covered in Chapter 31. But there are addi‐
tional important categories of tools:
Linting

Lint tools analyze source code and report potential problems and style violations.
Three popular ones are:

• JSLint by Douglas Crockford
• JSHint by Anton Kovalyov
• ESLint by Nicholas Zakas

Unit testing
Ideally, a unit test framework runs on both of the two large JavaScript platforms—
the browser and Node.js. Two important frameworks that do are:

• Jasmine
• mocha

Minification
JavaScript source code usually wastes space—variable names are longer than need
be, there are comments, extra whitespace, and so on. A minification tool removes
the waste and compiles code to smaller code. Some parts of the removal process are
relatively complex (e.g., the renaming of variables to short names). Three popular
minification tools are:

• UglifyJS
• YUI Compressor
• Closure Compiler

415

http://www.jslint.com
http://www.jshint.com
https://github.com/nzakas/eslint
http://pivotal.github.io/jasmine/
http://visionmedia.github.io/mocha/
https://github.com/mishoo/UglifyJS2/
https://github.com/yui/yuicompressor
https://developers.google.com/closure/compiler/

Building
For most projects, there are many operations that you need to apply to their artifacts:
lint the code, compile code (compilation happens even in web projects—for exam‐
ple, to compile a CSS language such as LESS or Sass to plain CSS), minify code, and
more. Build tools help you do that. Two classic examples are make for Unix and
Ant for Java. Two popular build tools for JavaScript are Grunt and Gulp. One of
their most intriguing features is that you can stay in JavaScript while working with
them; they are both based on Node.js.

Scaffolding
A scaffolding tool sets up an empty project, preconfigures build files, and more. Yo
is one such tool. It is part of the Yeoman suite of tools for web development, which
bundles yo, Bower, and Grunt.

416 | Chapter 32: More Tools

http://gruntjs.com
http://gulpjs.com/
https://github.com/yeoman/yo
http://yeoman.io

CHAPTER 33

What to Do Next

Now that you know the JavaScript language, how do you proceed? What is the best way
to get to know the whole ecosystem? Here are some suggestions:

• Frontend Rescue is a site with tips to get you started with browser development.
• JSbooks links to a variety of free books on JavaScript and related technologies.
• Twitter is a good tool for staying up-to-date with web development. Start with

famous JavaScript people you know (e.g., the creator of your framework of choice)
and continue from there; sooner or later, you will get plenty of ideas for who to
follow next.

• JSMentors is a forum dedicated to “helping developers become better JavaScript
coders in a professional & non-confrontational environment.”

• Apart from Twitter, there are many other interesting news sources to explore. The
following are a few examples:
— Echo JS is a community-driven news site focused on JavaScript and HTML5.
— Cooper Press publishes several web-development-related email newsletters

(disclaimer: I’m editor of the “JavaScript Weekly” newsletter).
— Open Web Platform Daily Digest contains daily lists of newsworthy links.
— Best of JavaScript, HTML & CSS is a weekly list of links.

• JavaScript user groups are a fun and educational way of meeting like-minded peo‐
ple. Most of them assemble regularly, with talks and more.

• JavaScript conferences are another good source of information. Many of them
publish freely accessible videos of their talks online.

Finally, you can also take a look at the book’s companion website, SpeakingJS.com, where
I’ll occasionally publish material related to this book.

417

http://uptodate.frontendrescue.org
http://jsbooks.revolunet.com
https://groups.google.com/forum/#!forum/jsmentors
http://www.echojs.com
https://cooperpress.com
http://webplatformdaily.org/
http://flippinawesome.org/category/news/best-of/
http://communityjs.org
http://lanyrd.com/topics/javascript/
http://speakingjs.com/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! (exclamation mark)

!= (inequality) operator, 14, 83, 84
!== (strict inequality) operator, 14, 83, 84,

377
checking for NaN, 107

logical NOT operator, 89, 101
" " (quotation marks, double)

best practice in JavaScript, 378
for string literals, 15, 133

$ (dollar sign)
in a replacement string, 143

% (percent sign)
%= compound assignment operator, 82
remainder operator, 15, 122, 124

& (ampersand)
& (bitwise AND) operator, 89, 126
&& (logical AND) operator, 13, 89, 99, 100
&= (bitwise AND and assignment) operator,

82
' ' (quotation marks, single)

best practice in JavaScript, 378
for string literals, 15, 133

* (asterisk)
*= compound assignment operator, 82
multiplication operator, 15, 122

+ (plus sign)
++ (increment) operator, 15, 123, 381
+= compound assignment operator, 6

+= operator, concatenating strings, 16
addition operator, 15, 122
string concatenation operator, 16, 134, 137

performance of, 138
, (comma) operator, 90
- (minus sign)

-- (decrement operator), 381
-- (decrement) operator, 15, 123
-= compound assignment operator, 82
negation operator, 15, 123
subtraction operator, 15, 122

. (comma), trailing commas in object literals
and array literals, 370

. (dot operator), 8
calling methods with, 199
using to access properties, 67, 199
working with objects, 271

/ (slash)
/* and */ delimiting multiline comments, 6
// delimiting single-line comments, 6
/= compound assignment operator, 82
division operator, 15, 122

0 (zero), positive and negative, 109–111
1TBS (One True Brace Style), 378
32-bit integers, 114

signed, 125
via bitwise operators, 119

64-bit precision, JavaScript numbers, 111

419

; (semicolon)
always using, best practice, 377
in JavaScript code, 5, 57–60
terminating semicolon for IIFEs, 184

< (less than)
< (less than) operator, 87, 136
<< (bitwise left shift) operator, 89, 120, 127
<<= (bitwise left shift and assignment opera‐

tor), 82
<= (less than or equal to) operator, 87, 136

= (equals sign)
== (equality) operator, 14, 83, 84

no valid use cases for, 86
pitfalls of, 85

=== (strict equality) operator, 14, 83, 291,
377
checking for undefined or null values, 73
checking if value is NaN, 107
object vs. primitive value comparisons, 8

assignment (=) versus equality comparison
(===), 4, 54

assignment operator, 81
setting object properties, 199

> (greater than)
> (greater than) operator, 87, 136
>= (greater than or equal to) operator, 87,

136
>> (bitwise right shift) operator, 89, 120, 127
>>= (bitwise right shift and assignment op‐

erator), 82
>>> (bitwise right shift with zero fill) opera‐

tor, 89, 120, 127
>>>= (bitwise right shift with zero fill and

assignment operator), 82
? (question mark)

? : (conditional) operator, 55, 89, 288
enclosing in parentheses, 383
nesting, 380

[] (square brackets)
accessing array elements, 21
accessing characters in strings, 135
accessing single character in strings, 15
bracket operator, 201, 202, 271
computing a property key, 26
creating arrays and accessing array elements,

28
getting and setting a property, 26

\ (backslash)
beginning character escape sequences, 134

escaping characters in strings, 15, 134
{ } (curly braces)

enclosing blocks, 57
in conditional and control flow statements,

17
styles for, 378
using to prevent dangling else in if state‐

ments, 150
| (vertical bar)

bitwise OR operator, 89, 126
converting numbers to integers, 119

|= (bitwise OR and assignment) operator, 82
|| (logical OR) operator, 14, 89, 99, 100, 174

pattern, providing a default value, 100,
381

~ (tilde)
bitwise NOT operator, 126

“single-line comments”), 4
‸ (bitwise XOR) operator, 89

A
accessors, 198

and inheritance, 222
defining via an object literal, 221
defining via property descriptors, 221
in ECMAScript 5, 370
property attributes specific to, 222

Ajax, 48
Allman style (braces), 378
AMD (Asynchronous Module Definition), 411
angles, conversions to and from radians, 329
anonymous function expressions, 167

empty string as name of, 169
Apache CouchDB, 48
apply() method, 170, 285

(see also Function.prototype.apply() meth‐
od)

for constructors, 206
manually simulating, 206

arguments object, 19, 171
characteristics of, 171
converting to an array, 21
defined, 166
deprecated features, 172
fewer properties in strict mode, 64
hasOwnProperty() method, 172
length, checking, 20

arguments, too many or too few, 19
arithmetic operators, 15, 89, 122–124

420 | Index

arity, enforcing, 20, 173
array literals, 40

trailing commas in, 370
Array() constructor, 275

preferring literals to, 380
array-like objects, 295

and generic methods, 262
patterns for working with, 264

Array.isArray() method, 238, 285
Array.prototype, abbreviation in generic meth‐

ods, 382
Array.prototype.concat() method, 289
Array.prototype.every() method, 292
Array.prototype.filter() method, 284, 293
Array.prototype.forEach() method, 284, 291,

292
iterating over array elements, 30
iteration via, skipping holes, 283
thisValue for, 210

Array.prototype.indexOf() method, 291
Array.prototype.join() method, 290
Array.prototype.lastIndexOf() method, 291
Array.prototype.map() method, 293
Array.prototype.pop() method, 286
Array.prototype.push() method, 286
Array.prototype.reduce() method, 294
Array.prototype.reduceRight() method, 294
Array.prototype.reverse() method, 287
Array.prototype.shift() method, 286
Array.prototype.slice() method, 290
Array.prototype.some() method, 292
Array.prototype.sort() method, 288
Array.prototype.splice() method, 287
Array.prototype.unshift() method, 286
arrays, 9, 28–31, 53, 70, 273–296

adding and removing elements, 286
are maps, not tuples, 274
array literals, 28
best practice, avoiding Array() constructor,

380
calling array methods generically, 261
concatenating, slicing, and joining, 289
concatenattion, joining an array of string

fragments, 137
converting arguments to, 21
creating array of character codes, 139
holes in, 282–285

creating, 282

operations ignoring or considering them,
283

removing, 285
sparse versus dense arrays, 283

indices, 276
deleting array elements, 277
in detail, 278
in operator and, 277

iterating over, 30
best practices, 295
not using for-in loop, 148
using for loop, 147

iteration methods, 291–295
length, 279

clearing an array, 281
clearing shared arrays, 281
decreasing length of array, 280
increasing length of array, 280
maximum length, 282

methods, 29
multidimensional, 276
overview, 273
properties, 274
prototype methods, 286

new in ECMAScript 5, 371
searching for values, 290
sorting and reversing elements, 287
splitting string into array of substrings, 140
too flexible in JavaScript, 40
turning into arguments with hypothetical

triple dot operator (...), example, 206
using Array() constructor, 275

avoiding initializing array with elements,
275

creating empty array with given length,
275

ASI (automatic semicolon insertion), 59
example, ASI via closing brace, 59
example, ASI via illegal token, 59
pitfall, ASI unexpectedly not triggered, 60
pitfall, unexpectedly breaking up statements,

60
assertions in regular expressions, 301, 314

lookbehind, implementing manually, 313
regular expressions without assertions, 312

assignment, 6
assigning to a property, 227

inherited, read-only properties, 227
compound assignment operators, 6

Index | 421

value to properties using dot operator, 8
assignment operator (=), 4, 54, 81
assignment operators, compound, 82
Asynchronous Module Definition (AMD), 411
attributes (property), 217, 222

common to all properties, 223
default values, 223
getting and setting via property descriptors,

225
managing via property descriptors, 370
sealing to prevent change in, 230

automatic semicolon insertion (see ASI)

B
backreferences in regular expressions, 300
best practices (coding style), 377
binary logical operators, 13, 99
binary numbers, inputting and outputting, 125
binary representation of numbers, 111
bind() method, 26, 170

creating constructor via, 207
preventing shadowing of this, 210

bitwise operators, 89, 114, 124
binary, 126
bitwise shift operators, 127
converting numbers to integers, 119–120

block scoping, 181
simulating via IIFEs, 183

blocks
replacing statements with, 57
semicolon (;) terminating, 5
statements ending in, no semicolon, 58
using for bodies of loops, 145

BOM (byte order mark), 358
Boolean() function, 78, 97
booleans, 12, 53, 69, 97–102

conversions to, and lenient equality, 85
converting values to, 78, 97, 97
invoking Boolean() as constructor, 98
logical NOT (!) operator, 101
operators for, 89
truthy and falsy values, 98
wrapper object for, 75

unwrapping, 77
Bower (package manager), 412
brace styles, 378
bracket operator ([]), 201, 271

accessing properties via, 202
calling methods via, 202

deleting properties via, 202
setting properties via, 202

break statements in loops, 18, 146
browser as operating system, 50
Browserify, 412
browsers

consoles for entering JavaScript, xiii
global object, window, 188
javascript: URLs and, 91
legacy, tips for working with, 372
package managers for, 412

build tools, 416
byte order mark (BOM), 358

C
call() method (see Function.prototype.call()

method)
callbacks and extracted methods, 209
case

converting strings to lowercase, 141
converting strings to uppercase, 141

case clause in switch statements, 17, 151
catch clause

in try-catch statement, 21, 235
in try-catch-finally statement, 159

character class escapes in regular expressions,
298

character classes in regular expressions, 298
character escape sequences, 134
character escapes in regular expressions, 298
character properties, 359
characters

accessing in strings, 135
and graphemes, 357

Chrome OS, 50
CJS (CommonJS Modules), 411
clases, documenting (JSDoc)

subclassing, 403
classes, documenting (JSDoc), 397, 401

defining a class via constructor function, 402
defining a class via object literal, 402
defining a class via object literal with @con‐

structs method
object literal with @constructs method,

402
Closure Compiler, 415
closures, 23, 193

avoiding for private data, 384
defined, 193

422 | Index

handling via environments, 193
inadvertently sharing an environment, 195

code points, 358, 359
matching any with regular expressions, 366

code style guide, 375–386
acceptable cleverness, 381
brace styles, 378
commonly accepted best practices, 377
example of unrecommended cleverness, 380
existing style guides, 375
general tips, 375

easy-to-read code, 376
writing consistent code, 376

miscellaneous tips, 385
preferring literals to constructors, 379
syntax, 382

tight whitespace, 382
using variables, 383

code units, 358
matching any with regular expressions, 366

coercion, 69, 77
(see also type coercion)
tips on, 385

comma operator, 60, 90
command lines, xiii

interaction with, xiv
commas, trailing, in object and array literals,

370
comments, 4, 53, 376

JSDoc, 395, 396
single-line and multiline, syntax, 6, 54

CommonJS Modules (CJS), 411
comparison operators, 87

comparing strings, 136
compound assignment operators, 82
compression of source code, 39
concatenating arrays, 289
concatenating strings, 16, 137

String.prototype.concat() method, 141
conditional operator (? :), 55, 89, 288

nesting, 380
putting in parentheses, 383

conditional statements, 4, 17, 53
bodies of, 145
chaining if statements, 150
if-then-else, 150

console API, 351
checking and counting methods, 353
debugging help, 387

logging methods, 352
profiling and timing methods, 355
standardization across engines, 352

constructor functions, 232
constructor property of instances, 234

best practices, 236
use cases for, 235

constructors, 28, 166, 232–251, 345
apply() method for, 206

manually simulating, 206
built-in, subclassing, 389–394
classes versus, in JSDoc, 401
data in prototype properties, 241
in strict mode, 65
inheritance between, 251–272

avoiding hardcoding of superconstructor
name, 255

cheat sheet for working with objects, 270
ensuring that instanceof works, 253
example, constructor inheritance in use,

256
example, inheritance hierarchy of built-

in constructors, 257
generic methods, 260
instance properties, 252
making a supercall, 254
methods of all objects, 257
overriding a method, 254
pitfalls, using object as a map, 266
prototypal inheritance and properties,

methods for, 259
prototype properties, 252
prototype via instance of supreconstruc‐

tor, 257
invoking Boolean() as, 98
invoking with new operator, 95, 233
keeping data private, 244–251
literals versus, 379
new operator, implemented in JavaScript,

233
protection against forgetting new operator,

240
returning arbitrary objects from, 240
style guide for, 384
terminology, prototypes, 234
wrapper objects for primitives, 75

continue statements in loops, 18
control flow statements, 57
CouchDB, 48

Index | 423

Crockford privacy pattern, 244, 246
pros and cons, 247

cross-platform applications, 36
cross-realm instanceof, 238
current scope, 195

D
datatypes, 67

coercion, 69, 77–80
naming in JSDoc, 397
static versus dynamic type checking, 68
static versus dynamic typing, 68
TypeError, 162

Date() function, 317
Date.parse() method, 319
Date.UTC() method, 319
dates, 317–325

constructor methods, 318
constructors, 317
converting to a number, 325
date time formats, 322

combined, 324
date formats (no time), 323
time formats (no date), 323

prototype methods
converting date to string, 321
new in ECMAScript 5, 372
time unit getters and setters, 319
various getters and setters, 320

toJSON() method, 339
translating date strings to date objects, 341

debugger statement, 155, 387
debugging, language mechanisms for, 387
default value

for optional parameters, 173
for property attributes, 223
providing using || operator, 100, 381

defining a property, 227
delegation, 393
delete operator, 25, 95, 200

deleting array elements, 277
return value, 200

denormalized representation of numbers, 112
dense arrays, 283
destructive and nondestructive array methods,

286
dictionary pattern, 269, 274
directories for JavaScript resources, 408

division by zero, 108
distinguishing between signed zeros, 110

do-while loop, 18, 147
documentation

finding documentation in JavaScript, xv
generating API documentation with JSDoc,

395–403
tips for writing documentation, 377

Dojo Toolkit, 48
DOM (Document Object Model), 47

jQuery for DOM manipulation, 49
dot operator (.), 8
double precision (floating-point numbers), 111
dynamic dimension (variables), 191
dynamic HTML, 47
dynamic semantics, 179
dynamic typing, 68

E
ECMAScript, 3, 45

Internationalization API, 406, 406
types, 67
versions and key features, 45

ECMAScript 6, 46
ECMAScript 5, xii, 369–372

new features, 369
new functionality in standard library, 370
reserved words as property keys, 382
syntactic changes, 370
trailing commas, 382

ECMAScript 6
safe integers, 116

Eich, Brendan, 43
elegant parts of JavaScript, 40
else clause, dangling else, 150
empty statement, 58
empty strings, converting to numbers, 104
enumerability of a property, 217

best practices, 228
effects of, 219

environments, 187, 190
handling closures via, 193
inadvertent sharing of, 195

epsilon value for double precision, 113
equality comparisons

objects versus primitive values, 8
equality operators, 14, 83–87

=== (strict equality) operator, 4, 54, 291
string comparisons, 136

424 | Index

checking for Infinity, 108
distinguishing between two zeros, 110
normal equality (==) and normal inequality

(!=) operators, 83, 84–87
strict equality (===) and strict inequality (!

==) operators, 83, 377
checking for NaN, 107
comparing values with different types, 83
NaN and strict equality, 84
strict inequality (!==) comparison, 84

error objects
constructors for, 161, 345

implementing your own, 163
properties of, 162

errors, producing NaN, 106
escape sequences, 364
escaping in string literals, 134
ESLint (style checker), 415
eval() function

best practices, 351
cleaner in strict mode, 66
evaluating an object literal, 56
evaluating code via, 347
indirect eval() evaluates in global scope, 348
using in strict mode, 348
versus new Function(), 350

EvalError constructor, 161
evaluating JavaScript code via eval() and new

Function(), 347
best practices, 351
eval() versus new Function(), 350
indirect eval() evaluates in global scope, 348
legitimate use cases, 351
using eval(), 347
using new Function(), 349

every() method, iterating arrays, 284
exception handling, 4, 21, 157–163

defined, 157
error constructors, 161
example, any value can be thrown, 160
implementing your own error constructor,

163
in JavaScript, 158
stack traces, 162
throw statement, 159
try-catch-finally statement, 159

exception objects, 159, 162
execution contexts, 191
exponential notation, 130

exponents, 103, 111
special, 112

expression statements, 5, 55
expressions

conditional statement versus conditional ex‐
pressions, 55

defined, 55
discarding results of, 91
IIFE (immediately invoked function expres‐

sion), 184
statements versus, 5
using ambiguous expressions as statements,

55
extensions of objects, preventing, 229

F
failing fast, 386
finally clause (try-finally), 159, 160
Firebug, 352
Firefox OS, 50
flags in regular expressions, 303, 315

problems with flag /g, 309
floating-point numbers, 103

representing integers as, 115
for each-in loop, 150
for loop, 17, 147

array iteration via, 283
for-in loop, 148, 284

caution with for-in for objects, 149
enumerability of properties, effects of, 219
not using to iterate over arrays, 148

forEach() method (see Array.prototype.forE‐
ach() method)

freezing objects, 230
function declarations, 165

defining a function, 167
hoisting, 19, 168
versus function expressions, 169

function expressions, 27, 167
ambiguous expressions used as statements,

56
defining functions with, 18
function declarations versus, 169
IIFE (immediately invoked function expres‐

sion), 24, 56
(see also IIFE)

named, 167
names of, 169

Function() constructor, 168, 349

Index | 425

function-scoped variables, 181
Function.prototype.apply() method, 205, 205

destructively appending array to another ar‐
ray, 286

holes in arrays, converting to undefined ele‐
ments, 285

Function.prototype.call() method, 170, 205
functions, 165–177

calling, 4
calling while setting this, 204
closures, 23
constructors, 28
defining, 4, 53, 166

using function declarations, 167
using function expressions, 167
using Function() constructor, 168

defining and calling, 165
documenting (JSDoc), 399
enabling strict mode per function, 22
function declarations versus function ex‐

pressions, 169
handling missing or extra parameters, 171

arguments variable, 171
hoisting, 168
implicitly returning undefined values, 72
in strict mode, 63
inside a method, 27
mandatory parameters, enforcing minimum

arity, 173
more control over function calls, 170

apply() method, 170
bind() method, 170

name of, 169
named parameters, 176–177

simulating in JavaScript, 176
optional parameters, 173
parameters versus arguments, 166
passing as parameter to another function,

174
roles in JavaScript, 165
simulating pass-by-reference parameters,

174
this as implicit parameter, 204
too many or too few arguments, 19

G
generic methods, 260, 381

accessing Object.prototype and Array.proto‐
type via literals, 261

array-like objects and, 262
examples of, 261
list of, 264

getters and setters (see accessors)
global data, keeping private, 249

attaching global data to singleton object with
IIFE, 249

attaching to method via IIFE, 250
keeping private to all of a constructor, 250

global object, 188
cross-platform considerations, 188
use cases for window, 189

global scope, 186
creating things in, using window, 190
nonconstructor functions in, 346

categorizing and parsing numbers, 347
encoding and decoding text, 346

other variables in, 356
global variables, 7, 186, 345–356

avoiding creation of, 187
checking for existence of, 190
creating by assigning to undeclared variable,

183
eliminating by using modules, 187
style checkers and, 189

glyphs, 358
graphemes, 357
greedy matching (regular expressions), 300
groups in regular expressions, 299

capturing groups or returning all matching
substrings, 307

capturing groups while matching, 305
Grunt, 416
Gulp, 416

H
hexadecimal escape sequences (string literals),

134, 362
hexadecimal number literals, 103
high-surrogate code, 360
hoisting, 168

function declarations, 19, 169
variable declarations, 19, 22, 23, 182

holes in arrays, 277, 282–285
creating, 282
operations that ignore or consider them, 283
removing, 285
sparse versus dense arrays, 283

home object, 254

426 | Index

HTML, 397
dynamic HTML, 47

HTML5, 36
integration into Windows 8, 50

I
identifiers, 6

property keys, 26, 199
reserved words, 7, 61
rules for naming, 60

IEEE 754 Standard for Floating-Point Arithmet‐
ic, 103

if statements, 55
chaining, 150
dangling else clause, 150
example of, 53
not abbreviating via logical operators, 380

if-then-else statements, 17
if-then-else, as statement or expression, 5
IIFE (immediately invoked function expres‐

sion), 24, 56
already inside expression context, 185
applications of IIFEs, 186
attaching global data to method via, 250
attaching global data to singleton object, 249
avoiding inadvertent sharing via closures, 24
IIFE with parameters, 185
introducing new scope via, 183
prefix operators, 184
using to avoid with statement, 154

implicit type conversion, 69
in operator, 25, 95

and array indices, 277
checking if object has a property, 218, 386
effects of inheritance, 220
using with arguments object, 172
using with arrays, 29

indentation of code, 377, 383
inequality operators, 83, 84

(see also equality operators)
infinity, 14, 107, 356

checking for, 108
computing with, 108
error, a number’s magnitude is too large, 108
error, division by zero, 108
negative and positive, 110
Number.NEGATIVE_INFINITY property,

128

Number.POSITIVE_INFINITY property,
128

inheritance
between constructors, 251–272

prototypal inheritance and properties,
methods for, 259

prototype-based, 211–232
best practices, iterating over own proper‐

ties, 220
iterating and detecting properties, 217
overriding properties, 212
setting and deleting affects only own

properties, 216
inner and outer scope, 181
instance properties, 245

creating on demand, 242
documenting (JSDoc), 400
inheritance from superconstructor, 252
of regular expressions, 303

instance prototype, 234
instanceof operator, 11, 237, 253

checking if object is instance of a given con‐
structor, 94

crossing realms, 238
pitfall, objects not instances of Object, 238

integers, 103, 114
conversions to

using parseInt(), 120
converting numbers to, 117

using bitwise operators, 119
using Math.ceil(), 118
using Math.floor(), 118
using Math.round(), 118
using ToInteger() custom function, 118

ranges of, 114
representing as floating-point numbers, 115
safe integers in JavaScript, 116
safe results of arithmetic computations, 116
signed 32-bit integers, 125
stringified integer as array index, 278
working with in JavaScript, best practice, 116

internal properties, 198
isFinite() function, 109, 131
isNaN() function, 107, 131
isNegativeZero() function, 110
isObject() function, 203
isomorphic JavaScript, 49
isSafeInteger() function, 116

Index | 427

iteration methods, arrays, 291
examination methods, 291
ignorning holes in arrays, 284
reduction methods, 293
transformation methods, 293

J
Jasmine (unit test frameworks), 415
Java, 43
JavaScript

command lines, xiii
getting to know the whole ecosystem, 417
historical milestones, 47–50
how and why it was created, 43
nature of, 39–41

elegant parts, 40
influences from other programming lan‐

guages, 41
quirks and unorthodox features, 40

reasons for choosing, 35
bright future of JavaScript, 38
elegance of JavaScript, 35
free availability, 35
graphical user interfaces, 36
other technologies complementing Java‐

Script, 36
speed of JavaScript, 37
tools, 37
wide use of JavaScript, 37

standardization, ECMAScript, 45
syntax, 4, 53–66

control flow statements and blocks, 57
examples of basic syntax, 4, 53
identifiers, 60
identifiers and variable names, 6
invoking methods on number literals, 62
semicolons, 5
semicolons in code, 57–60
statements versus expressions, 5, 54–57
strict mode, 62–66
values, fundamental types of, 53

JavaScript Object Notation (see JSON)
javascript: URLs, 91
join() method, converts holes in arrays to empty

strings, 284
jQuery, 49
JSDoc, generating API documentation, 395–403

basic tags, 397

documenting classes, 401–403
defining a class via constructor function,

402
defining a class via object literal, 402
defining a class via object literal with

@constructs method, 402
subclassing, 403

documenting functions and methods, 399
documenting variables, parameters, and in‐

stance properties, 400
inline type information, 399
naming types, 397
other useful tags, 403
syntax, 396

JSHint (style checker), 415
JSLint (style checker), 415
JSON (JavaScript Object Notation), 37, 47, 333–

343
data format, 333
grammar, 334
history, 334
support in ECMAScript 5, 372
toJSON() method, 339
transforming data via node visitors, 341

JSON.parse(), 340
iteration over JavaScript data, 343

JSON.stringify(), 136, 337
iteration over JavaScript data, 342
properties ignored by, 339

L
length property

arguments object, 171, 173
arrays, 29, 273, 279–282
strings, 16, 139

lexical (static) dimension (variables), 191
lexical scoping, 180
lexical semantics, 180
libraries, 36, 406–409

directories for JavaScript resources, 408
ECMAScript Internationalization API, 406
handling Unicode in JavaScript, 366
shims versus polyfills, 405

line continuations for strings, 134
line terminators, 365
lint tools, 415
literals, preferring over constructors, 379
Lo-Dash library, 406
logging methods, console API, 352

428 | Index

logical operators, 89, 99
abbreviating if statements, 380
logical NOT (!), 101

lookbehind, manually implementing, 313
loops, 17, 146–150

bodies of, 145
do-while loop, 147
for each-in loop, 150
for loop, 147
for-in loop, 148
mechanisms to be used with, 146

exiting loops, 146
while loop, 146, 146

low-surrogate code unit, 360

M
machine epsilon, 113
map() method

creating new array from existing array, 31
parseInt() function passed as argument to,

175
maps

arrays as, 274
using objects as, pitfalls in, 266

marked property keys, 247
Math object, 327–331

arithmetic functions, 31
numerical functions, 328
other functions, 330
properties, 327
trigonometric functions, 329

Math.abs() function, 328
Math.acos() function, 330
Math.asin() function, 330
Math.atan() function, 330
Math.atan2() function, 110, 330
Math.ceil() function, 118, 328
Math.cos() function, 330
Math.exp() function, 328
Math.floor() function, 118, 328
Math.log() function, 328
Math.max() function, 330
Math.min() function, 330
Math.pow() function, 110, 328
Math.random() function, 331
Math.round() function, 118, 329
Math.sin() function, 330
Math.sqrt() function, 329
MDN (Mozilla Developer Network), xv

media type for JavaScript files, 362
metadata tags in JSDoc, 397
methods, 25, 166, 198

attaching global data via IIFE, 250
calling, 4
calling using bracket operator, 202
calling using dot operator, 199
common to all objects, 257, 272
documenting (JSDoc), 399
extracting, 26

callbacks and, 209
losing this, 208

functions inside, 27
shadowing this, 209

generic (see generic methods)
invoking on number literals, 62, 104
invoking with dot operator, 8
new, in ECMAScript 5, 371
overriding, 254
privileged, 245, 246
supercalling, 254
this as implicit parameter, 204

minification, 39
tools for, 363, 415

mocha (unit test frameworks), 415
module systems, 411

keeping global data private, 250
leading to fewer globals, 187
quick and dirty modules, 412

Mozilla Developer Network (MDN), xv
multidimensional arrays, 276
multiline comments, 6, 54

N
named accessor properties, 198
named data properties, 198
named function expressions, 167, 169
named parameters, 176–177

as descriptions, 176
optional, 176
optional parameters as, 174
simulating in JavaScript, 176

NaN (not a number), 14, 106, 356
comparing via strict equality, 84
isNaN() function, 131
pitfall, checking whether a value is NaN, 107

Netscape, 43

Index | 429

new operator, 28, 166, 233, 233
protection against forgetting when using a

constructor, 240
Node Packaged Modules (NPM), 412
node visitors

transforming data via, 341
node visitors (JSON), 341
Node.js, xiii, 36

global object and, 188
implementing JavaScript on the server, 49

nondestructive array methods, 286
nonmethod functions, 165
normal (or lenient) equality, 14
normalization (Unicode), 358, 365
normalized representation of numbers, 112
null, 10, 69, 71

checking for, 73, 86
checking for either undefined or null, 73
history of, 74
occurrences of, 73

Number() function, 78, 127
manually converting to number, 104

Number.MAX_VALUE property, 128
Number.MIN_VALUE property, 128
Number.NEGATIVE_INFINITY property, 128
Number.POSITIVE_INFINITY property, 128
Number.prototype methods, 128
Number.prototype.toExponential() method, 130
Number.prototype.toFixed() method, 129
Number.prototype.toPrecision() method, 129
Number.prototype.toString() method, 126, 129
numbers in JavaScript, 14, 53, 69, 103–132

arithmetic operators for, 89, 122–124
bitwise operators, 124
categorizing and parsing, functions for, 347
comparing in arrays, 288
converting a date to a number, 325
converting objects to, 99
converting to integers, 381
converting values to number, 78, 104

manual conversions, 104
functions for, 131
handling rounding errors, 112
integers, 114
internal representation of, 111

special exponents, 112
invoking methods on number literals, 62
number literals, 103

exponent, 103

invoking methods on, 104
ordering operators, 87
prototype methods, 128
special number values, 106

Infinity, 107
NaN, 106

two zeros, 109–111
wrapper objects for, 75

O
object literals, 9, 40, 198, 270

accessing Object.prototype via an empty ob‐
ject literal, 261

ambiguous expression or statement, 56
better choice than Object() constructor, 204
defining a class via (JSDoc), 402
defining accessors via, 221
evaluating with eval(), 56
trailing commas in, 370

Object() function, 79
converting values to objects, 203
invoking as constructor, 203

Object, global variable as namespace for meta‐
programming functionality, 356

object-oriented programming (OOP) in Java‐
Script, 197–272
layer 1, single objects, 197–211
layer 2, prototype relationship between ob‐

jects, 211–232
layer 3, constructors, factories for instances,

232–251
layer 4, inheritance between constructors,

251–272
style guide, 384

Object.create() method, 214
Object.defineProperties() method, 219, 225
Object.defineProperty() method, 224
Object.freeze() method, 230
Object.getOwnPropertyDescriptor() method,

224
Object.getOwnPropertyNames() method, 217
Object.getPrototypeOf() method, 214, 234
Object.keys() method, 218, 219
Object.preventExtensions() method, 229
Object.prototype, abbreviation for generic

methods, 381
Object.prototype.hasOwnProperty() method,

215, 218, 259
checking existence of properties, 386

430 | Index

Object.prototype.isPrototypeOf() method, 214,
257, 259

Object.prototype.propertyIsEnumerable()
method, 259

Object.prototype.toLocaleString() method, 258
Object.prototype.toString() method, 258
Object.prototype.valueOf() method, 258
Object.seal() method, 230
objects, 9, 24–28, 53, 70, 197–272

accessors, 221
and inheritance, 222
defining accessors via object literal, 221
defining accessors via property descrip‐

tors, 221
arrays, 9, 70
best practices, iterating over own properties,

220
characteristics of, 10, 71
cheat sheet for working with, 270
comparing in array sorting, 289
comparing via lenient equality (==), 86
comparing via strict equality (===), 83
constructors, 28
conversion to booleans

all objects are truthy, 99
converting to numbers, 104
converting to strings, 79
converting values to, 203
copying using property descriptors, 226
extracting methods from, 26
instanceof operator, 94
iterating and detecting properties, 217

checking whether property exists, 218
effects of enumerability, 219
effects of inheritance, 220
examples, 219
listing all enumerable property keys, 218
listing own property keys, 217
number of own properties of object, 220

iterating over all properties with for-in loop,
148
caution with, 149

methods, 166
methods common to all, 257, 272
more than maps, 198
objects thar are not instances of Object, 238
operators and, 81
operators for, 95
primitive values versus, 8, 69

property attributes and property descriptors,
222

protecting, 229, 271, 371
pitfall, protection is shallow, 231

sharing data via prototype, 212
single, 25, 197
using as maps

advantages of prototypeless objects, 270
best practices, 270
dict pattern, objects without prototypes,

269
pitfalls in, 266

versus primitive values, 8
wrapper objects for primitives, 75–77

ones’ complement, 126
operators, 81–95

+ (plus) operator, 88
, (comma) operator, 90
? : (conditional) operator, 89
and objects, 81
arithmetic operators, 15
assignment operator, 81
binary logical operators, 13, 89, 99
coercion of operands to type needed, 77
compound assignment operators, 82
equality operators, 14, 83–87
for booleans and numbers, 89
for objects, 95
for strings, 16
instanceof, 11, 92–95
ordering operators, 87
precedence, 385
producing booleans, 12
typeof, 11, 92–95
void operator, 90

optional parameters, 173
named, 176
unexpected, 174

ordering operators, 87
evaluating a comparison, 87

outer scope, 181
overriding

methods, 254

P
package managers, 411, 412
parameters

defined, 166
documenting (JSDoc), 399, 401

Index | 431

enforcing specific number of, 20, 173
IIFE with, 185
missing or extra, handling, 171
missing or undefined, 72
named, 176–177
optional, 20, 173
pass by reference, simulating, 174
positional, 176
providing a default value for, 101
stricter rules for, in strict mode, 64
this as implicit parameter of functions and

methods, 204
parseFloat() function, 105, 131
parseInt() function, 120, 130, 131

incorrect conversion of number to integer,
121

parsing string in binary notation, 125
passing as argument to map(), 175
radix, 121

partial function application, 170, 205
pattern characters in regular expressions, 298
PhoneGap, 49
plain objects, 198
planes (Unicode), 359
polyfills, 405
polymorphic prototype properties, 244
positional parameters, 176

combining with named parameters, 177
prefix operators, 184
primitive values

characteristics of, 9, 70
comparing wrapper instances with, using le‐

nient equality (==), 87
conversion to, 258
converting values to, using ToPrimitive()

function, 79
functions for conversion of other values to,

78
operators working with, 81
types of, 9
versus objects, 8, 69
wrapper objects for, 75–77

difference between wrapper objects and
primitives, 76

wrapping and unwrapping, 76
private data for objects, 244–251

Crockford privacy pattern, 246
in constructor environment, 244
in properties with marked keys, 247

in properties with reified keys, 248
keeping global data private via IIFEs, 249

private values (Crockford privacy pattern), 245,
246

privileged methods (Crockford privacy pattern),
245, 246

program scope, 186
programming languages influencing JavaScript,

41
properties

accessing via dot operator, 199
arbitrary property keys, 26
array, 29, 274
checking existence of, 386
definition versus assignment, 226
deleting, 200
enumerability, 217
getting via bracket operator, 202
illegal manipulation of, in strict mode, 65
iteration and detection of, 271
kinds of, 198
legal property keys, 201
listing, new functionality in ECMAScript 5,

371
nonexistent or undefined, 72
object used as map, 266

checking if property exists, 267
collecting property keys, 267
getting a property value, 267
inheritance and reading properties, 266

of objects, 9, 25, 70
mutability of, 10

of primitive values, 9, 70
of values, 7, 67
properties as entries in objects, 197
reserved words as property keys, 370
setting, 199
with marked keys, private data in, 247
with reified keys, private data in, 248

property attributes (see attributes)
property descriptors, 222, 223

defining accessors via, 221
functions for, 224
getting and defining properties via, 271
managing property attributes via, 370
using to copy an object, 226

proto property, 215, 268
prototype properties, 245

data in, 241

432 | Index

inheriting, 252
nonpolymorphic, avoiding, 243
polymorphic, 244
with initial values for instance properties,

avoiding, 241
prototype property, 28

versus the prototype relationship, 234
prototype relationship between objects, 211–232

changing properties anywhere in prototype
chain, 217

checking if object is prototype of another,
214

creating new object with given prototype,
214

deleting inherited property, 217
finding object where a property is defined,

215
getting and setting the prototype, 214
inheritance of properties, 212
overriding properties, 212
reading the prototype, 214
setting a property, 216
setting and deleting affects only own proper‐

ties, 216
special property proto, 215

prototypes versus prototype property, 234
public properties (Crockford privacy pattern),

245

Q
quantifiers in regular expressions, 300, 314
quotation marks for string literals, 15, 133

best practice, 378
quoteText() function, 311

R
radix

Number.prototype.toString(), 130
parseInt()) function, 121

random numbers, 331
RangeError constructor, 161
ranges of integers, 114
realms, 238
receiver of a method call, 204
receiver of method invocation, 198
reduction methods, 293
ReferenceError constructor, 162
RegExp() constructor, 303

RegExp.prototype.exec() method, 305
RegExp.prototype.text() method, 304
regular expressions, 10, 31, 71, 297–316

capturing groups or returning all matching
substrings, 307

capturing groups while matching against
string, 305

checking if regular expression matches a
string, 304

creating, 302
examples, 304
flags, 303
using a literals or the constructor, 302

exec() method, matching and capturing
groups, 31

finding text in strings, 141
index where match is found, 305
instance properties, 303
JavaScript, Unicode and, 365

libraries helping with, 366
matching any code unit and any code

point, 366
manually implementing lookbehind, 313
matching everything or nothing, 312
problems with the flag /g, 309
quick reference, 314
quoting text, 311
replace() method, search and replace with,

31
search and replace, 307

replacement is a function, 308
replacement is a string, 308

syntax, 297
asseertions, 301
character classes, 298
disjunction, 302
general atoms, 297
groups, 299
quantifiers, 300

test() method, 31
testing, matching, and replacing text in

strings, 142
Unicode and, 302
without assertions, finding a pattern every‐

where, 312
reified property keys, 248
reluctant matching (regular expressions), 300
RequireJS, 412

Index | 433

reserved words, 7
as property keys, 201, 370
identifiers, 61

return statements, 151
in function declarations, 165

rounding numbers
handling rounding errors, 112
Math.ceil() function, 328
Math.floor() function, 328
Math.round() function, 118, 329

S
scaffolding tools, 416
scoping

closures, functions staying connected to
birth scopes, 193

current scope, 195
functions in strict mode, 63
global object, 188
global variables, 186
introducing new scope via IIFE, 183
managing variables in environments, 190
scope and chain of environments, 191
scope of a variable, 180

sealing of objects, 230
searching and comparing strings, 141
setters (see accessors)
shadowing variables, 181
shift operators

bitwise shift operators, 127
converting numbers to integers, 120

shims, 405
short-circuiting (binary logical operators), 13,

99
sign (international representation of numbers),

111
signed 32-bit integers, 125
signed zeros, 109–111
single-line comments, 6, 54
source code, JavaScript deployment as, 39
sparse arrays, 283
special characters in regular expressions, 297,

311
stack traces, 162
standard library, 32

new functionality in ECMAScript 5, 370
statements, 145–155

bodies of loops and conditionals, 145

conditional, 17
chaining if statements, 150
if-then-else, 150

conditional statement versus conditional ex‐
pressions, 55

debugger, 155
declaring and assigning variables, 145
defined, 55
empty, 58
expressions versus, 5
loops, 17, 146

(see also loops)
mechanisms to be used with, 146

switch, 151–153
throw, 159
try-catch-finally, 159
using ambiguous expressions as, 55
with, 153–155

static dimension (variables), 191
static semantics, 179
static typing, 68
strict equality, 14
strict mode, 21, 62–66, 377

arguments variable in, 172
eval() function in, 66, 348
explicit variable declaration, requirement in,

63
functions in, 63
illegal manipulations of properties, 65
in ECMAScript 5, 369
inability to delete unqualified identifiers in,

65
protection against forgetting to use new with

constructors, 240
switching on, 62
warnings about use of, 63

string literals
escaping in, 134
multiline, in ECMAScript 5, 370
quoting of, 133

String() function, 138
String.fromCharCode() method, 138
String.prototype.charAt() method, 139
String.prototype.charCodeAt() method, 138,

139
String.prototype.concat() method, 141
String.prototype.lastIndexOf() method, 142
String.prototype.localeCompare() method, 137,

142, 289

434 | Index

String.prototype.match() method, 143, 307
String.prototype.replace() method, 143, 307
String.prototype.search() method, 305
String.prototype.slice() method, 139
String.prototype.split() method, 140
String.prototype.substring() method, 140
String.prototype.toLocaleLowerCase() method,

141
String.prototype.toLocaleUpperCase() method,

141
String.prototype.toLowerCase() method, 141
String.prototype.toUpperCase() method, 141
String.prototype.trim() method, 141
strings, 15, 53, 69, 133–143

character access, 135
comparing, 136
comparing when sorting arrays, 289
comparisons of, 88
concatenating, 137

joining an array of string fragments, 137
conversion to booleans, lenient equality and,

85
converting dates to, 321
converting objects to, 99
converting to integers, 120
converting to numbers, 104

using parseFloat(), 105
converting values to, 79, 135

pitfall, conversion is not invertible, 136
JavaScript strings and Unicode, 364

counting characters, 365
escape sequences, 364
referring to astral plane characters via es‐

capes, 364
Unicode normalization, 365

JSON, 334
length property, 139
lenient equality and, 85
methods, 16
numbers in, lenient equality comparisons

and, 86
operators for, 16
prototype methods, 139

extracting substrings, 139
matching and replacing text in strings,

142
searching and comparing strings, 141
transforming existing strings, 140

string literals, 133
escaping in, 134

String() function, 138
toString() method, 258
wrapper object for, 75

style guides, 375
subclassing built-ins, 389–394

delegation as alternative to, 393
obstacle 1, instances with internal properties,

389
obstacle 2, constructor can’t be called as

function, 392
subclassing in JSDoc, 403
supercalls, 254
superconstructor, referring to, 236
surrogate pair, 360, 365
switch statement, 17, 151–153
SyntaxError constructor, 162

T
tags (JSDoc), 397, 397
this variable, 25

and functions in strict mode, 64
and functions nested in methods, 27
avoiding as implicit parameter, 386
calling functions while setting this, 204
extracted methods and, 26
implicit parameter of functions and meth‐

ods, 204
losing when extracting a method, 208
pointing to global object, 188
shadowing by functions in methods, 209
using in methods to refer to current object,

198
throw statements, 151, 159
time, 318

(see also dates)
human-readable, 321
time formats, 323
time unit getters and setters, 319
UTC (Coordinated Universal Time), 317,

319
ToInt32() function, 119
ToInteger() custom function, 118
toJSON() method, 339

built-in toJSON() methods, 340
toLocaleString() method, 258
tools, 415

Index | 435

ToPrimitive() function, 79
examples of use, 80

toString() method, 135, 258
two zeros and, 109

ToUint32() function, 120, 278
transformation methods, arrays, 293
truthy and falsy values, 98

pitfall, all objects are truthy, 99
try-catch-finally statements, 21, 159
twos’ complement, 125
type annotations (JSDoc), 397
type coercion, 69, 77–80

functions for converting to primitive, 78
TypeError constructor, 162
typeof operator, 11, 92

bug, typeof null returning object, 12, 93
checking for undefined values, 73
checking if variable exists, 93, 190
history of typeof null, 93
using with isNaN(), 107

types (see datatypes)

U
UCS-2, 360
UglifyJS (minification tool), 363, 415
undefined, 10, 69, 71

changing, 75
checking for, 86
checking for either undefined or null, 73
history of, 74
missing function parameters, 20
occurrences of, 72
setting object property to, 200
void 0 as synonym for, 91

undefined values, 356
checking for, 381
missing function parameters, 173
unitialized variables, 179

Underscore.js library, 406
Unicode, 357–367

and regular expressions, 302
BOM (byte order mark), 358
character properties, 359
characters and graphemes, 357
code points, 358, 359
code units, 358
encodings, 359
escape sequences, 134
glyphs, 358

history of, 357
important concepts, 357
JavaScript regular expressions and, 365

libraries, 366
matching any code unit and any code

point, 366
JavaScript source code and, 361

source code externally, 362
source code internally, 361

JavaScript strings and, 364
counting characters, 365
escape sequences, 364
referring to astral plane characters via es‐

capes, 364
Unicode normalization, 365

normalization, 358
recommended reading, 367

Unicode escape sequences (source code), 361
unit testing tools, 415
unwrapping primitives, 76
URIError constructor, 162
URIs

encoding and decoding, 346
UTC (Coordinated Universal Time), 317, 319
UTF-16, 138, 139, 360

JavaScript source code internally treated as,
361

translating JavaScript code into, 364
UTF-32, 359
UTF-8, 358, 361

V
V8 (JavaScript engine), 49
valueOf() method, 258

unwrapping primitives, 76
values, 7–12, 67–80

categorizing using typeof and instanceof, 11,
92–95

converting to objects, 203
fundamental types of, 53
JavaScript type system, 67
objects, 9, 70
primitive values, 9, 69
primitive values versus objects, 8, 69
properties, 67
type coercion, 77–80
undefined and null, 10, 71–75

changing undefined values, 75
checking for either undefined or null, 73

436 | Index

checking for null, 73
checking for undefined, 73
checking for undefined or null, 11
history of, 74
occurrences of null, 73
occurrences of undefined, 72

wrapper objects for primitives, 75–77
variables

assigning value to, 53
assigning values to, 4, 6
checking for existence of, 93
declaring, 6, 53
declaring and assigning, 145
documenting, 400
hoisting of variable declarations, 19, 168
introducing new scope with IIFE pattern, 24
names of, 7
required explicit declaration in strict mode,

63
scoping and closures, 22, 179–196

closures, 23, 193
environments, 190
function scope, 22
function-scoped variables, 181
global object, 188
global variables, 186
hoisted variable declarations, 23, 182
IIFE applications, 186
IIFE variation, prefix operators, 184
IIFE with parameters, 185
introducing new scope via IIFE, 183
scope, 180
static versus dynamic (semantics), 179
undeclared variables become global in

sloppy mode, 183
style guide, 383
uninitialized, 72

void operator, 90
reason for its existence, 91

use cases, 91

W
web platform

as native platform, 50
JavaScript as part of, 39

WebKit, 49
WebOS, 50
while loop, 18
whitespace in code, 382
window object, 188

checking if global variable exists, 190
creating things in global scope, 190
not referring to built-in globals via window,

189
use cases for window, 189

Windows 8, 50
with statement, 153–155

deprecated, 153
rationale for deprecation, 154
techniques for avoiding use of, 154

wrapper objects for primitives, 75–77
differences between wrapper objects and

primitives, 76
lenient equality (==) not working for, 87

X
XMLHttprequest, 47
XRegExp library, 406

Y
Yeoman suite of tools, 416
YUI Compressor (minification tool), 415

Z
zero (0), positive and negative, 109–111

Index | 437

About the Author
Dr. Axel Rauschmayer specializes in JavaScript and web development. He blogs at
2ality.com, is a trainer for Ecmanauten, edits JavaScript Weekly, and organizes the Mu‐
nichJS user group. He also frequently holds talks and workshops at conferences.

Axel has been programming since 1985 and developing web applications since 1995. In
1999, he was technical manager at a German Internet startup that later expanded in‐
ternationally. In 2006, he held his first talk on Ajax.

Axel has done extensive research into programming language design and has followed
the state and future of JavaScript since its creation.

Colophon
The animal on the cover of Speaking JavaScript is a Papuan Hornbill (Rhyticeros plica‐
tus), a large bird inhabiting the forest canopy in Eastern Indonesia and New Guinea.
This species is also known as Blyth’s hornbill after Edward Blyth (1810–1873), an English
zoologist and Curator of the Museum of the Asiatic Society of Bengal.

The male hornbill is quite unusual in appearance due to its reddish-orange or golden-
yellow plumage that surrounds the head and neck. Females differ by having a black head
and neck. Both sexes have a largely black body, except for the contrasting short, white
tail, and the bare, bluish-white skin around the eyes and throat. Hornbills also have red
eyes, although those of the male are far brighter.

The variety of honking and grunting calls of the Papuan hornbill are believed to have
led to reports of this bird laughing. In flight, the sound of its wings is loud and distinctive,
a rushing noise that has been compared to the sound of steam escaping from a steam
locomotive. Unsurprisingly, considering its rather large size and striking appearance,
the Papuan hornbill is said to be a conspicuous bird, which can be seen flying high over
the forest, frequently emitting its distinctive call.

These impressive birds are hunted on their native islands for food and as a trophy, and
their skulls are sometimes worn as ornaments. Like other hornbills, its diet consists
mainly of fruits—especially figs—occasionally supplemented with insects and other
small animals.

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	What You Need to Know About This Book
	Tips for Reading This Book
	The Four Parts of This Book
	JavaScript Command Lines
	Notational Conventions
	Quickly Finding Documentation

	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Preparing for JavaScript
	Help with JavaScript
	Reviewers

	Part I. JavaScript Quick Start
	Chapter 1. Basic JavaScript
	Background
	JavaScript Versus ECMAScript
	Influences and Nature of the Language

	Syntax
	An Overview of the Syntax
	Statements Versus Expressions
	Semicolons
	Comments

	Variables and Assignment
	Assignment
	Compound Assignment Operators
	Identifiers and Variable Names

	Values
	Primitive Values Versus Objects
	Primitive Values
	Objects
	undefined and null
	Categorizing Values Using typeof and instanceof

	Booleans
	Truthy and Falsy
	Binary Logical Operators
	Equality Operators

	Numbers
	Operators
	Strings
	String Operators
	String Methods

	Statements
	Conditionals
	Loops

	Functions
	Function Declarations Are Hoisted
	The Special Variable arguments
	Too Many or Too Few Arguments
	Optional Parameters
	Enforcing an Arity
	Converting arguments to an Array

	Exception Handling
	Strict Mode
	Variable Scoping and Closures
	Variables Are Function-Scoped
	Variables Are Hoisted
	Closures
	The IIFE Pattern: Introducing a New Scope

	Objects and Constructors
	Single Objects
	Arbitrary Property Keys
	Extracting Methods
	Functions Inside a Method
	Constructors: Factories for Objects

	Arrays
	Array Literals
	Array Methods
	Iterating over Arrays

	Regular Expressions
	Method test(): Is There a Match?
	Method exec(): Match and Capture Groups
	Method replace(): Search and Replace

	Math
	Other Functionality of the Standard Library

	Part II. Background
	Chapter 2. Why JavaScript?
	Is JavaScript Freely Available?
	Is JavaScript Elegant?
	Is JavaScript Useful?
	Graphical User Interfaces
	Other Technologies Complementing JavaScript

	Does JavaScript Have Good Tools?
	Is JavaScript Fast Enough?
	Is JavaScript Widely Used?
	Does JavaScript Have a Future?
	Conclusion

	Chapter 3. The Nature of JavaScript
	Quirks and Unorthodox Features
	Elegant Parts
	Influences

	Chapter 4. How JavaScript Was Created
	Chapter 5. Standardization: ECMAScript
	Chapter 6. Historical JavaScript Milestones

	Part III. JavaScript in Depth
	Chapter 7. JavaScript’s Syntax
	An Overview of the Syntax
	Comments
	Expressions Versus Statements
	Expressions
	Statements

	Control Flow Statements and Blocks
	Rules for Using Semicolons
	No Semicolon After a Statement Ending with a Block
	The Empty Statement
	Automatic Semicolon Insertion

	Legal Identifiers
	Invoking Methods on Number Literals
	Strict Mode
	Switching on Strict Mode
	Strict Mode: Recommended, with Caveats
	Variables Must Be Declared in Strict Mode
	Functions in Strict Mode
	Setting and Deleting Immutable Properties Fails with an Exception in Strict Mode
	Unqualified Identifiers Can’t Be Deleted in Strict Mode
	eval() Is Cleaner in Strict Mode
	Features That Are Forbidden in Strict Mode

	Chapter 8. Values
	JavaScript’s Type System
	JavaScript’s Types
	Static Versus Dynamic
	Static Typing Versus Dynamic Typing
	Static Type Checking Versus Dynamic Type Checking
	Coercion

	Primitive Values Versus Objects
	Primitive Values
	Objects
	undefined and null
	Occurrences of undefined and null
	Checking for undefined or null
	The History of undefined and null
	Changing undefined

	Wrapper Objects for Primitives
	Wrapper Objects Are Different from Primitives
	Wrapping and Unwrapping Primitives
	Primitives Borrow Their Methods from Wrappers

	Type Coercion
	Type Coercion Can Hide Bugs
	Functions for Converting to Boolean, Number, String, and Object
	Algorithm: ToPrimitive()—Converting a Value to a Primitive

	Chapter 9. Operators
	Operators and Objects
	Assignment Operators
	Compound Assignment Operators

	Equality Operators: === Versus ==
	Strict Equality (===, !==)
	Normal (Lenient) Equality (==, !=)
	There Are No Valid Use Cases for ==

	Ordering Operators
	The Algorithm

	The Plus Operator (+)
	The Algorithm

	Operators for Booleans and Numbers
	Special Operators
	The Conditional Operator (? :)
	The Comma Operator
	The void Operator

	Categorizing Values via typeof and instanceof
	typeof: Categorizing Primitives
	instanceof: Checking Whether an Object Is an Instance of a Given Constructor

	Object Operators

	Chapter 10. Booleans
	Converting to Boolean
	Manually Converting to Boolean
	Truthy and Falsy Values

	Logical Operators
	Binary Logical Operators: And (&&) and Or (||)
	Logical And (&&)
	Logical Or (||)
	Logical Not (!)

	Equality Operators, Ordering Operators
	The Function Boolean

	Chapter 11. Numbers
	Number Literals
	Exponent
	Invoking Methods on Literals

	Converting to Number
	Manually Converting to Number
	parseFloat()

	Special Number Values
	NaN
	Infinity
	Two Zeros

	The Internal Representation of Numbers
	Special Exponents

	Handling Rounding Errors
	Integers in JavaScript
	Ranges of Integers
	Representing Integers as Floating-Point Numbers
	Safe Integers

	Converting to Integer
	Integers via Math.floor(), Math.ceil(), and Math.round()
	Integers via the Custom Function ToInteger()
	32-bit Integers via Bitwise Operators
	Integers via parseInt()

	Arithmetic Operators
	Bitwise Operators
	Background Knowledge
	Bitwise Not Operator
	Binary Bitwise Operators
	Bitwise Shift Operators

	The Function Number
	Number Constructor Properties
	Number Prototype Methods
	Number.prototype.toFixed(fractionDigits?)
	Number.prototype.toPrecision(precision?)
	Number.prototype.toString(radix?)
	Number.prototype.toExponential(fractionDigits?)

	Functions for Numbers
	Sources for This Chapter

	Chapter 12. Strings
	String Literals
	Escaping in String Literals
	Character Access
	Converting to String
	Manually Converting to String

	Comparing Strings
	Concatenating Strings
	Concatenation: The Plus (+) Operator
	Concatenation: Joining an Array of String Fragments

	The Function String
	String Constructor Method
	String Instance Property length
	String Prototype Methods
	Extract Substrings
	Transform
	Search and Compare
	Test, Match, and Replace with Regular Expressions

	Chapter 13. Statements
	Declaring and Assigning Variables
	The Bodies of Loops and Conditionals
	Loops
	Mechanisms to Be Used with Loops
	while
	do-while
	for
	for-in
	for each-in

	Conditionals
	if-then-else
	switch

	The with Statement
	Syntax and Semantics
	The with Statement Is Deprecated
	The Rationale for the Deprecation

	The debugger Statement

	Chapter 14. Exception Handling
	What Is Exception Handling?
	Exception Handling in JavaScript
	throw
	try-catch-finally
	Examples

	Error Constructors
	Stack Traces
	Implementing Your Own Error Constructor

	Chapter 15. Functions
	The Three Roles of Functions in JavaScript
	Terminology: “Parameter” Versus “Argument”
	Defining Functions
	Function Expressions
	Function Declarations
	The Function Constructor

	Hoisting
	The Name of a Function
	Which Is Better: A Function Declaration or a Function Expression?
	More Control over Function Calls: call(), apply(), and bind()
	func.apply(thisValue, argArray)
	func.bind(thisValue, arg1, ..., argN)

	Handling Missing or Extra Parameters
	All Parameters by Index: The Special Variable arguments
	Mandatory Parameters, Enforcing a Minimum Arity
	Optional Parameters
	Simulating Pass-by-Reference Parameters
	Pitfall: Unexpected Optional Parameters

	Named Parameters
	Named Parameters as Descriptions
	Optional Named Parameters
	Simulating Named Parameters in JavaScript

	Chapter 16. Variables: Scopes, Environments, and Closures
	Declaring a Variable
	Background: Static Versus Dynamic
	Background: The Scope of a Variable
	Variables Are Function-Scoped
	Variable Declarations Are Hoisted
	Introducing a New Scope via an IIFE
	IIFE Variation: Prefix Operators
	IIFE Variation: Already Inside Expression Context
	IIFE Variation: An IIFE with Parameters
	IIFE Applications

	Global Variables
	Best Practice: Avoid Creating Global Variables
	Module Systems Lead to Fewer Globals

	The Global Object
	Cross-Platform Considerations
	Use Cases for window

	Environments: Managing Variables
	Closures: Functions Stay Connected to Their Birth Scopes
	Handling Closures via Environments
	Pitfall: Inadvertently Sharing an Environment

	Chapter 17. Objects and Inheritance
	Layer 1: Single Objects
	Kinds of Properties
	Object Literals
	Dot Operator (.): Accessing Properties via Fixed Keys
	Unusual Property Keys
	Bracket Operator ([]): Accessing Properties via Computed Keys

	Converting Any Value to an Object
	this as an Implicit Parameter of Functions and Methods
	Calling Functions While Setting this: call(), apply(), and bind()
	apply() for Constructors
	Pitfall: Losing this When Extracting a Method
	Pitfall: Functions Inside Methods Shadow this

	Layer 2: The Prototype Relationship Between Objects
	Inheritance
	Overriding
	Sharing Data Between Objects via a Prototype
	Getting and Setting the Prototype
	The Special Property __proto__
	Setting and Deleting Affects Only Own Properties

	Iteration and Detection of Properties
	Listing Own Property Keys
	Listing All Property Keys
	Checking Whether a Property Exists
	Examples

	Best Practices: Iterating over Own Properties
	Accessors (Getters and Setters)
	Defining Accessors via an Object Literal
	Defining Accessors via Property Descriptors
	Accessors and Inheritance

	Property Attributes and Property Descriptors
	Property Attributes
	Property Descriptors
	Getting and Defining Properties via Descriptors
	Copying an Object
	Properties: Definition Versus Assignment
	Inherited Read-Only Properties Can’t Be Assigned To
	Enumerability: Best Practices

	Protecting Objects
	Preventing Extensions
	Sealing
	Freezing
	Pitfall: Protection Is Shallow

	Layer 3: Constructors—Factories for Instances
	The new Operator Implemented in JavaScript
	Terminology: The Two Prototypes
	The constructor Property of Instances
	The instanceof Operator
	Tips for Implementing Constructors

	Data in Prototype Properties
	Avoid Prototype Properties with Initial Values for Instance Properties
	Avoid Nonpolymorphic Prototype Properties
	Polymorphic Prototype Properties

	Keeping Data Private
	Private Data in the Environment of a Constructor (Crockford Privacy Pattern)
	Private Data in Properties with Marked Keys
	Private Data in Properties with Reified Keys
	Keeping Global Data Private via IIFEs

	Layer 4: Inheritance Between Constructors
	Inheriting Instance Properties
	Inheriting Prototype Properties
	Ensuring That instanceof Works
	Overriding a Method
	Making a Supercall
	Avoiding Hardcoding the Name of the Superconstructor
	Example: Constructor Inheritance in Use
	Example: The Inheritance Hierarchy of Built-in Constructors
	Antipattern: The Prototype Is an Instance of the Superconstructor

	Methods of All Objects
	Conversion to Primitive
	Object.prototype.toLocaleString()
	Prototypal Inheritance and Properties

	Generic Methods: Borrowing Methods from Prototypes
	Accessing Object.prototype and Array.prototype via Literals
	Examples of Calling Methods Generically
	Array-Like Objects and Generic Methods
	A List of All Generic Methods

	Pitfalls: Using an Object as a Map
	Pitfall 1: Inheritance Affects Reading Properties
	Pitfall 2: Overriding Affects Invoking Methods
	Pitfall 3: The Special Property __proto__
	The dict Pattern: Objects Without Prototypes Are Better Maps
	Best Practices

	Cheat Sheet: Working with Objects

	Chapter 18. Arrays
	Overview
	Arrays Are Maps, Not Tuples
	Arrays Can Also Have Properties

	Creating Arrays
	The Array Constructor
	Multidimensional Arrays

	Array Indices
	The in Operator and Indices
	Deleting Array Elements
	Array Indices in Detail

	length
	Manually Increasing the Length of an Array
	Decreasing the Length of an Array
	The Maximum Length

	Holes in Arrays
	Creating Holes
	Sparse Arrays Versus Dense Arrays
	Which Operations Ignore Holes, and Which Consider Them?
	Removing Holes from Arrays

	Array Constructor Method
	Array Prototype Methods
	Adding and Removing Elements (Destructive)
	Sorting and Reversing Elements (Destructive)
	Comparing Numbers
	Comparing Strings
	Comparing Objects

	Concatenating, Slicing, Joining (Nondestructive)
	Searching for Values (Nondestructive)
	Iteration (Nondestructive)
	Examination Methods
	Transformation Methods
	Reduction Methods

	Pitfall: Array-Like Objects
	Best Practices: Iterating over Arrays

	Chapter 19. Regular Expressions
	Regular Expression Syntax
	Atoms: General
	Atoms: Character Classes
	Atoms: Groups
	Quantifiers
	Assertions
	Disjunction

	Unicode and Regular Expressions
	Creating a Regular Expression
	Literal Versus Constructor
	Flags
	Instance Properties of Regular Expressions
	Examples of Creating Regular Expressions

	RegExp.prototype.test: Is There a Match?
	String.prototype.search: At What Index Is There a Match?
	RegExp.prototype.exec: Capture Groups
	First Match (Flag /g Not Set)
	All Matches (Flag /g Set)

	String.prototype.match: Capture Groups or Return All Matching Substrings
	String.prototype.replace: Search and Replace
	Replacement Is a String
	Replacement Is a Function

	Problems with the Flag /g
	Tips and Tricks
	Quoting Text
	Pitfall: Without an Assertion (e.g., ^, $), a Regular Expression Is Found Anywhere
	Matching Everything or Nothing
	Manually Implementing Lookbehind

	Regular Expression Cheat Sheet

	Chapter 20. Dates
	The Date Constructor
	Date Constructor Methods
	Date Prototype Methods
	Time Unit Getters and Setters
	Various Getters and Setters
	Convert a Date to a String

	Date Time Formats
	Date Formats (No Time)
	Time Formats (No Date)
	Date Time Formats

	Time Values: Dates as Milliseconds Since 1970-01-01
	Converting a Date to a Number

	Chapter 21. Math
	Math Properties
	Numerical Functions
	Trigonometric Functions
	Other Functions

	Chapter 22. JSON
	Background
	Data Format
	History
	Grammar

	JSON.stringify(value, replacer?, space?)
	Data Ignored by JSON.stringify()
	The toJSON() Method

	JSON.parse(text, reviver?)
	Transforming Data via Node Visitors
	JSON.stringify()
	JSON.parse()

	Chapter 23. Standard Global Variables
	Constructors
	Error Constructors
	Nonconstructor Functions
	Encoding and Decoding Text
	Categorizing and Parsing Numbers

	Dynamically Evaluating JavaScript Code via eval() and new Function()
	Evaluating Code Using eval()
	Evaluating Code Using new Function()
	eval() Versus new Function()
	Best Practices
	Conclusion

	The Console API
	How Standardized Is the Console API Across Engines?
	Simple Logging
	Checking and Counting
	Formatted Logging
	Profiling and Timing

	Namespaces and Special Values

	Chapter 24. Unicode and JavaScript
	Unicode History
	Important Unicode Concepts
	Code Points
	Unicode Encodings
	JavaScript Source Code and Unicode
	Source Code Internally
	Source Code Externally

	JavaScript Strings and Unicode
	Escape Sequences
	Refering to Astral Plane Characters via Escapes
	Counting Characters
	Unicode Normalization

	JavaScript Regular Expressions and Unicode
	Matching Any Code Unit and Any Code Point
	Libraries
	Recommended Reading and Chapter Sources

	Chapter 25. New in ECMAScript 5
	New Features
	Syntactic Changes
	New Functionality in the Standard Library
	Metaprogramming
	New Methods
	JSON

	Tips for Working with Legacy Browsers

	Part IV. Tips, Tools, and Libraries
	Chapter 26. A Meta Code Style Guide
	Existing Style Guides
	General Tips
	Code Should Be Consistent
	Code Should Be Easy to Understand

	Commonly Accepted Best Practices
	Brace Styles
	Prefer Literals to Constructors
	Don’t Be Clever
	Acceptable Cleverness

	Controversial Rules
	Syntax
	Variables
	Object Orientation
	Miscellaneous

	Conclusion

	Chapter 27. Language Mechanisms for Debugging
	Chapter 28. Subclassing Built-ins
	Terminology
	Obstacle 1: Instances with Internal Properties
	Workaround for Obstacle 1
	Caveats

	Obstacle 2: A Constructor That Can’t Be Called as a Function
	Workaround for Obstacle 2

	Another Solution: Delegation

	Chapter 29. JSDoc: Generating API Documentation
	The Basics of JSDoc
	Syntax
	Naming Types

	Basic Tags
	Documenting Functions and Methods
	Inline Type Information (“Inline Doc Comments”)
	Documenting Variables, Parameters, and Instance Properties
	Documenting Classes
	Defining a Class via a Constructor Function
	Defining a Class via an Object Literal
	Defining a Class via an Object Literal with an @constructs Method
	Subclassing

	Other Useful Tags

	Chapter 30. Libraries
	Shims Versus Polyfills
	Four Language Libraries
	The ECMAScript Internationalization API
	The ECMAScript Internationalization API, Edition 1
	What Kind of Standard Is It?
	When Can I Use It?
	Further Reading

	Directories for JavaScript Resources

	Chapter 31. Module Systems and Package Managers
	Module Systems
	Package Managers
	Quick and Dirty Modules

	Chapter 32. More Tools
	Chapter 33. What to Do Next

	Index
	About the Author

