PHP 7: Real World
Application
Development

Use new features of PHP 7 to solve practical, real-world
problems faced by PHP developers like yourself every day

ne -

PHP 7: Real World
Application Development

Use new features of PHP 7 to solve practical, real-
world problems faced by PHP developers like
yourself every day.

A course in three modules

BIRMINGHAM - MUMBAI

PHP 7: Real World Application Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course

is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: Month 2011

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-900-9

www . packtpub.com

Credits

Authors Content Development Editor
Doug Bierer Onkar Wani

Altaf Hussain

Branko Ajzele Graphics
Abhinash Sahu

Reviewers
Salvatore Pappalardo Production Coordinator
Vincenzo Provenza Shraddha Falebhai

Raul Mesa Ros

Tomislav Sudmak

Preface

PHP 7 has taken the open source community by storm, breaking records for speed,
which is, metaphorically, causing heads to turn. In its most fundamental sense,

the core engineering team has effected a major rewrite of the language but has

still managed to maintain backward compatibility to a high degree. PHP is a great
language for developing web applications. It is essentially a server-side scripting
language that is also used for general-purpose programming. PHP 7 is the latest
version, providing major backward-compatibility breaks and focusing on improved
performance and speed. This means you can maintain high traffic on your websites
with low-cost hardware and servers through a multithreading web server.

What this learning path covers

Module 1, PHP 7 Programming Cookbook, This module demonstrates intermediate

to advanced PHP techniques with a focus on PHP 7. Each recipe is designed to

solve practical, real-world problems faced by PHP developers like yourself every
day. It also cover new ways of writing PHP code made possible only in version

7. In addition, we discuss backward-compatibility breaks and give you plenty of
guidance on when and where PHP 5 code needs to be changed to produce the correct
results when running under PHP 7. This module also incorporates the latest PHP

7.x features.By the end of the module, you will be equipped with the tools and skills
required to deliver efficient applications for your websites and enterprises

[il

Preface

Module 2, Learning PHP 7 High Performance, This module is fast-paced introduction
to PHP 7 will improve your productivity and coding skills. The concepts covered
will allow you, as a PHP programmer, to improve the performance standards of
your applications. We will introduce you to the new features in PHP 7 and then will
run through the concepts of object-oriented programming (OOP) in PHP 7. Next,
we will shed some light on how to improve your PHP 7 applications” performance
and database performance. Through this module, you will be able to improve the
performance of your programs using the various benchmarking tools discussed in
the module. At the end,module discusses some best practices in PHP programming
to help you improve the quality of your code

Module 3, Modular Programming with PHP 7, This module will introduce you to
modular design technique which will help you build readable, manageable, reusable,
and more efficient codes. PHP 7, which is a popular open source scripting language,
is used to build modular functions for your software. With this module, you will
gain a deep insight into the modular programming paradigm and how to achieve
modularity in your PHP code.

This module will start with a brief introduction to the new features of PHP 7, some
of which open a door to new concepts used in modular development. With design
patterns being at the heart of all modular PHP code, you will learn about the GoF
design patterns and how to apply them. You will see how to write code that is easy
to maintain and extend over time with the help of the SOLID design principles.
Throughout the rest of the module, you will build different working modules of a
modern web shop application using the Symfony framework, which will give you a
deep understanding of modular application development using PHP 7.

What you need for this learning path

Module 1:

All you need, to successfully implement the recipes presented in this module

will be a computer, 100MB of extra disk space, and a text or code editor (not a

word processor!). The first chapter will cover how to set up a PHP 7 development
environment. Having a web server is optional as PHP 7 includes a development web
server. An Internet connection is not required, but it might be useful to download
code (such as the set of PSR-7 interfaces), and review PHP 7.x documentation.

Lii]

Preface

Module 2:

Any hardware specification that is compliant to run the latest versions of the
following software should be enough to get through this module:

* Operating systems: Debian or Ubuntu
* Software: NGINX, PHP 7, MySQL, PerconaDB, Redis, Memcached, Xdebug,

Apache JMeter, ApacheBench, Siege, and Git
Module 3:

In order to successfully run all the examples provided in this book, you will need
either your own web server or a third-party web-hosting solution. The high-level
technology stack includes PHP 7.0 or greater, Apache/Nginx, and MySQL.

The Symfony framework itself comes with a detailed list of system requirements that
can be found at http://symfony.com/doc/current /reference/
requirements.html. This book assumes that the reader is familiar with setting up the
complete development environment.

Who this learning path is for

If you are an aspiring web developer, mobile developer, or back-end programmer,
who has basic experience in PHP programming and wants to develop performance-
critical applications, then this course is for you. It will take your PHP programming
skills to next level

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this course —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the course’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a course, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

[iii]

Preface

Downloading the example code

You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the course in the Search box.

Select the course for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this course from.
Click on Code Download.

NSOk

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/PHP-7-Real-World-Application-Development We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

[iv]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses —maybe a mistake in the text
or the code —we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http: //www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[v]

Module 1: PHP 7 Programming Cookbook

Chapter 1: Building a Foundation 3
Introduction 3
PHP 7 installation considerations 3
Using the built-in PHP web server 8
Defining a test MySQL database 9
Installing PHPUnit 10
Implementing class autoloading 11
Hoovering a website 14
Building a deep web scanner 17
Creating a PHP 5 to PHP 7 code converter 20

Chapter 2: Using PHP 7 High Performance Features 27
Introduction 27
Understanding the abstract syntax tree 28
Understanding differences in parsing 32
Understanding differences in foreach() handling 34
Improving performance using PHP 7 enhancements 38
Iterating through a massive file 43
Uploading a spreadsheet into a database 46
Recursive directory iterator 49

Chapter 3: Working with PHP Functions 55
Introduction 55
Developing functions 56
Hinting at data types 61
Using return value data typing 65
Using iterators 69
Writing your own iterator using generators 77

Table of Contents

Chapter 4: Working with PHP Object-Oriented Programming 83
Introduction 83
Developing classes 84
Extending classes 20
Using static properties and methods 98
Using namespaces 102
Defining visibility 107
Using interfaces 111
Using traits 117
Implementing anonymous classes 124

Chapter 5: Interacting with a Database 131
Introduction 131
Using PDO to connect to a database 132
Building an OOP SQL query builder 145
Handling pagination 148
Defining entities to match database tables 152
Tying entity classes to RDBMS queries 157
Embedding secondary lookups into query results 166
Implementing jQuery DataTables PHP lookups 170

Chapter 6: Building Scalable Websites 175
Introduction 175
Creating a generic form element generator 176
Creating an HTML radio element generator 183
Creating an HTML select element generator 187
Implementing a form factory 192
Chaining $_POST filters 198
Chaining $_POST validators 212
Tying validation to a form 217

Chapter 7: Accessing Web Services 225
Introduction 225
Converting between PHP and XML 225
Creating a simple REST client 229
Creating a simple REST server 239
Creating a simple SOAP client 249
Creating a simple SOAP server 252

Chapter 8: Working with Date/Time and International Aspects 259
Introduction 259
Using emoticons or emaji in a view script 260
Converting complex characters 262

Table of Contents

Getting the locale from browser data 265
Formatting numbers by locale 268
Handling currency by locale 272
Formatting date/time by locale 278
Creating an HTML international calendar generator 282
Building a recurring events generator 291
Handling translation without gettext 299
Chapter 9: Developing Middleware 309
Introduction 309
Authenticating with middleware 310
Using middleware to implement access control 316
Improving performance using the cache 325
Implementing routing 338
Making inter-framework system calls 344
Using middleware to cross languages 352
Chapter 10: Looking at Advanced Algorithms 357
Introduction 357
Using getters and setters 358
Implementing a linked list 364
Building a bubble sort 370
Implementing a stack 373
Building a binary search class 375
Implementing a search engine 379
Displaying a multi-dimensional array and accumulating totals 386
Chapter 11: Implementing Software Design Patterns 393
Introduction 393
Creating an array to object hydrator 394
Building an object to array hydrator 397
Implementing a strategy pattern 399
Defining a mapper 409
Implementing object-relational mapping 420
Implementing the Pub/Sub design pattern 431
Chapter 12: Improving Web Security 437
Introduction 437
Filtering $_POST data 438
Validating $_POST data 442
Safeguarding the PHP session 445
Securing forms with a token 451
Building a secure password generator 457

Table of Contents

Safeguarding forms with a CAPTCHA 463
Encrypting/decrypting without mcrypt a77
Chapter 13: Best Practices, Testing, and Debugging 485
Introduction 485
Using Traits and Interfaces 486
Universal exception handler 491
Universal error handler 495
Writing a simple test 499
Writing a test suite 517
Generating fake test data 520
Customizing sessions using session_start parameters 533
Chapter 14: Defining PSR-7 Classes 539
Introduction 539
Implementing PSR-7 value object classes 539
Developing a PSR-7 Request class 559
Defining a PSR-7 Response class 574
Module 2: Learning PHP 7 High Performance
Chapter 1. Setting Up the Environment 583
Setting up Windows 584
Setting up Debian or Ubuntu 586
Setting up Cent0S 591
Setting up Vagrant 595
Summary 597
Chapter 2: New Features in PHP 7 599
OOP features 600
New operators 615
Uniform variable syntax 619
Miscellaneous features and changes 620
Summary 622
Chapter 3: Improving PHP 7 Application Performance 623
NGINX and Apache 623
HTTP server optimization 625
HTTP persistent connection 626
Content Delivery Network (CDN) 634
CSS and JavaScript optimization 636
Full page caching 644

Table of Contents

Varnish 645
The infrastructure 648
Summary 654
Chapter 4: Improving Database Performance 655
The MySQL database 655
Storage engines 657
The Percona Server - a fork of MySQL 660
MySQL performance monitoring tools 661
Percona XtraDB Cluster (PXC) 669
Redis - the key-value cache store 671
Memcached key-value cache store 677
Summary 678
Chapter 5: Debugging and Profiling 679
Xdebug 679
Profiling with Xdebug 688
PHP DebugBar 689
Summary 694
Chapter 6: Stress/Load Testing PHP Applications 695
Apache JMeter 696
ApacheBench (ab) 702
Siege 704
Load testing real-world applications 706
Summary 710
Chapter 7: Best Practices in PHP Programming 711
Coding styles 712
Test-driven development (TDD) 715
Design patterns 718
Service-oriented architecture (SOA) 719
Being object-oriented and reusable always 719
PHP frameworks 720
Version control system (VCS) and Git 720
Deployment and Continuous Integration (Cl) 720
Summary 722
Chapter 8: Tools to Make Life Easy 723
Composer - A dependency manager
for PHP 723
Git - A version control system 726
Grunt watch 733
Summary 736

(v -

Table of Contents

Chapter 9: MVC and Frameworks 737
The MVC design pattern 738
Laravel 740
Lumen 751
Apigility 751
Summary 758

Module 3: Modular Programming with PHP 7

Chapter 1: Ecosystem Overview 761
Getting ready for PHP 7 762
Summary 799

Chapter 2: GoF Design Patterns 801
Creational patterns 802
Structural patterns 809
Behavioral patterns 820
Summary 838

Chapter 3: SOLID Design Principles 839
Single responsibility principle 840
Open/closed principle 843
Liskov substitution principle 846
Interface Segregation Principle 849
Dependency inversion principle 850
Summary 851

Chapter 4: Requirement Specification for a Modular Web Shop App 853
Defining application requirements 854
Wireframing 855
Defining a technology stack 867
Summary 870

Chapter 5: Symfony at a Glance 871
Installing Symfony 871
Creating a blank project 873
Using Symfony console 875
Controller 881
Routing 882
Templates 884
Forms 887
Configuring Symfony 890

Table of Contents

The bundle system 892
Databases and Doctrine 895
Testing 897
Validation 899
Summary 9201
Chapter 6: Building the Core Module 903
Requirements 903
Dependencies 904
Implementation 904
Unit testing 920
Functional testing 920
Summary 924
Chapter 7: Building the Catalog Module 925
Requirements 925
Dependencies 926
Implementation 926
Unit testing 945
Functional testing 946
Summary 948
Chapter 8: Building the Customer Module 949
Requirements 949
Dependencies 950
Implementation 950
Unit testing 969
Functional testing 971
Summary 974
Chapter 9: Building the Payment Module 975
Requirements 975
Dependencies 976
Implementation 977
Unit testing 985
Functional testing 988
Summary 991
Chapter 10: Building the Shipment Module 993
Requirements 993
Dependencies 994
Implementation 995
Unit testing 1001

Table of Contents

Functional testing 1005
Summary 1007
Chapter 11: Building the Sales Module 1009
Requirements 1009
Dependencies 1011
Implementation 1011
Unit testing 1051
Functional testing 1052
Summary 1055
Chapter 12: Integrating and Distributing Modules 1057
Understanding Git 1057
Understanding GitHub 1058
Understanding Composer 1061
Understanding Packagist 1062
Summary 1067
Bibliography 1069

Module 1

PHP 7 Programming Cookbook

Ower 80 recipes that will take your PHP 7 web development skills to the next level!

Building a Foundation

In this chapter, we will cover the following topics:

» PHP 7 installation considerations

v

Using the built-in PHP web server
» Defining a test MySQL database
» Installing PHPUnit

» Implementing class autoloading
» Hoovering a website

» Building a deep web scanner

» Creating a PHP 5 to PHP 7 code converter

Introduction

This chapter is designed as a quick start that will get you up and running on PHP 7 so that you
can start implementing the recipes right away. The underlying assumption for this book is that
you already have a good knowledge of PHP and programming. Although this book will not go
into detail about the actual installation of PHP, given that PHP 7 is relatively new, we will do
our best to point out the quirks and gotchas you might encounter during a PHP 7 installation.

PHP 7 installation considerations

There are three primary means of acquiring PHP 7:

» Downloading and installing directly from the source code
» Installing pre-compiled binaries
» Installing a *AMP package (that is, XAMPP, WAMP, LAMP, MAMP, and so on)

(3 |-

Building a Foundation

How to do it...

The three methods are listed in order of difficulty. However, the first approach, although
tedious, will give you the most finite control over extensions and options.

Installing directly from source

In order to utilize this approach, you will need to have a C compiler available. If you are
running Windows, MinGW is a free compiler that has proven popular. It is based on the GNU
Compiler Collection (GCC) compiler provided by the GNU project. Non-free compilers include
the classic Turbo C compiler from Borland, and, of course, the compiler that is preferred

by Windows developers is Visual Studio. The latter, however, is designed mainly for C++
development, so when you compile PHP, you will need to specify C mode.

When working on an Apple Mac, the best solution is to install the Apple Developer Tools.
You can use the Xcode IDE to compile PHP 7, or run gcc from a terminal window. In a Linux
environment, from a terminal window, run gcc.

When compiling from a terminal window or command line, the normal procedure is as follows:

» configure

» make

» make test

» make install

For information on configuration options (that is, when running configure), use the help
option:

configure --help

Errors you might encounter during the configuration stage are mentioned in the following
table:

Error Fix

configure: error: xml2- You just need to install 1ibxm12. For this error,
config not found. Please please refer to the following link:

?heck you? Llibxml2 http://superuser.com/
installation

questions/740399/how-to-fix-php-
installation-when-xml2-config-is-
missing

configure: error: Please Install libreadline-dev
reinstall readline - I
cannot find readline.h

—4a1]

Chapter 1

Error Fix

configure: WARNING: Not a big deal. These options are defaults and don't

unrecognized options: need to be included. For more details, please refer to

--enable-spl, --enable- the following link:

reflection, --with-libxml http://jcutrer.com/howto/linux/how-
to-compile-php7-on-ubuntu-14-04

Installing PHP 7 from pre-compiled binaries

As the title implies, pre-compiled binaries are a set of binary files that somebody else has
kindly compiled from PHP 7 source code and has made available.

In the case of Windows, go to http://windows.php.net/. You will find a good set of tips
in the left column that pertain to which version to choose, thread safe versus non-read safe,
and so forth. You can then click on Downloads and look for the ZIP file that applies to your
environment. Once the ZIP file has been downloaded, extract the files into the folder of your
choice, add php . exe to your path, and configure PHP 7 using the php . ini file.

To install the pre-compiled binaries on a Mac OS X system, it is best to involve a package
management system. The ones recommended for PHP include the following:

» MacPorts

» Liip

» Fink

» Homebrew
In the case of Linux, the packaging system used depends on which Linux distribution you are

using. The following table, organized by Linux distribution, summarizes where to look for the
PHP 7 package.

Distribution | Where to find PHP 7 Notes
Debian packages.debian.org/stable/php Use this command:

sudo apt-get install
php7

Alternatively, you can

use a graphical package
management tool such as
Synaptic.

repos-source. zend.com/zend-
server/early-access/php7/php-
7*DEB*

Make sure you select php7
(and not php5).

Building a Foundation

Distribution

Where to find PHP 7

Notes

Ubuntu

packages.ubuntu.com

Use this command:

sudo apt-get install
php7

Be sure to choose the right
version of Ubuntu.

repos-source.zend.com/zend-
server/early-access/php7/php-
7*DEB*

Alternatively, you can
use a graphical package
management tool such as

Synaptic.
Fedora / Red | admin. fedoraproject.org/pkgdb/ Make sure you are the root
Hat packages user:

su

repos-source.zend.com/zend-
server/early-access/php7/php-
7*RHEL*

Use this command:

dnf install php7
Alternatively, you can
use a graphical package
management tool such
as the GNOME Package
Manager.

OpenSUSE software.opensuse.org/package/ Use this command:

php7 yast -i php7

Alternatively, you can run
zypper, or use YaST as a
graphical tool.

Installing a *AMP package

AMP refers to Apache, MySQL, and PHP (also Perl and Python). The * refers to Linux,
Windows, Mac, and so on (that is, LAMP, WAMP, and MAMP). This approach is often the
easiest, but gives you less control over the initial PHP installation. On the other hand, you can
always modify the php . ini file and install additional extensions to customize your installation
as needed. The following table summarizes a number of popular *AMP packages:

Package Where is it found Free? Supports*

XAMPP www .apachefriends.org/download. Y WML
html

AMPPS www . ampps . com/downloads Y WML

MAMP www.mamp . info/en Y WM

WampServer sourceforge.net/projects/ Y W
wampserver

—e1

Chapter 1

Package Where is it found Free? Supports*

EasyPHP www . easyphp.org Y W

Zend Server | www.zend.com/en/products/zend N WML
server

In the preceding table, we've enlisted the *AMP packages where * is replaced by W for
Windows, M for Mac OS X, and L for Linux.

When you install a pre-compiled binary from a package, only core extensions are installed.
Non-core PHP extensions must be installed separately.

It's worth noting that PHP 7 installation on cloud computing platforms will often follow the
installation procedure outlined for pre-compiled binaries. Find out if your cloud environment
uses Linux, Mac, or Windows virtual machines, and then follow the appropriate procedure as
mentioned in this recipe.

It's possible that PHP 7 hasn't yet reached your favorite repository for pre-compiled binaries.
You can always install from source, or consider installing one of the *AMP packages (see the
next section). An alternative for Linux-based systems is to use the Personal Package Archive
(PPA) approach. Because PPAs have not undergone a rigorous screening process, however,
security could be a concern. A good discussion on security considerations for PPAs is found
athttp://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-
system-and-what-are-some-red-flags-to-watch-out-fo.

General installation considerations, as well as instructions for each of the three major OS
platforms (Windows, Mac OS X, and Linux), can be found at http://php.net/manual/en/
install.general.php.

The website for MinGW is http://www.mingw.org/.

Instructions on how to compile a C program using Visual Studio can be found at
https://msdn.microsoft.com/en-us/library/bb384838.

Another possible way to test PHP 7 is by using a virtual machine. Here are a couple of tools
with their links, which might prove useful:

» Vagrant: https://github.com/rlerdorf/php7dev (php7dev is a Debian 8
Vagrant image that is preconfigured for testing PHP apps and developing extensions
across many versions of PHP)

» Docker: https://hub.docker.com/r/coderstephen/php7/ (it contains a
PHP7 Docker container)

(7 -

Building a Foundation

Using the built-in PHP web server

Aside from unit testing and running PHP directly from the command line, the obvious way to
test your applications is to use a web server. For long-term projects, it would be beneficial to
develop a virtual host definition for a web server that most closely mirrors the one used by
your customer. Creating such definitions for the various web servers (that is, Apache, NGINX,
and so on) is beyond the scope of this book. Another quick and easy-to-use alternative (which
we have room to discuss here) is to use the built-in PHP 7 web server.

How to do it...

1. To activate the PHP web server, first change to the directory that will serve as the
base for your code.

2. You then need to supply the hostname or IP address and, optionally, a port. Here is
an example you can use to run the recipes supplied with this book:

cd /path/to/recipes
php -S localhost:8080

You will see output on your screen that looks something like this:

@@ aed@aed: ~/Repos/php7 _recipes/source/chapter02

aed@aed:~/Repos/php7_recipes/source/chapter02$ php -S localhost:8080
PHP 7.0.0 Development Server started at Sat Jan 23 16:13:10 2016
Listening on http://localhost:8080

Document root is /home/aed/Repos/php7_recipes/source/chapter2

Press Ctrl-C to quit.

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54840 [200]: /

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54841 [200]: /css/bootstrap.css
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54842 [200]: /js/jquery.min.js
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54843 [200]: /js/move-top.js

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54844 [200]: /js/easing.js

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54845 [200]: /css/style.css

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54846 [200]: /js/responsiveslides.
min.js

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54849 [200]: /css/owl.carousel.css
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54850 [200]: /js/owl.carousel.js
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54851 [200]: /css/popuo-box.css
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54852 [200]: /js/jquery.magnific-p
opup.js

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54853 [200]: /images/logo.png

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54854 [200]: /images/nav-icon.png
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54855 [200]: /images/slide.jpg
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54856 [200]: /images/divice-in-han
d.png

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54857 [200]: ;Mmagesidivice.png
[Sat Jan 23 16:13:26 2016] 127.0.0.1:54858 [200]: /images/team-member4.
ipg

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54859 [200]: /images/team-memberl.
1pPg

[Sat Jan 23 16:13:26 2016] 127.0.0.1:54860 [200]: /images/team-member2.
JPg

Chapter 1

3. As the built-in web server continues to service requests, you will also see access
information, HTTP status codes, and request information.

4. |If you need to set the web server document root to a directory other than the current
one, you can use the -t flag. The flag must then be followed by a valid directory path.
The built-in web server will treat this directory as if it were the web document root,
which is useful for security reasons. For security reasons, some frameworks, such as
Zend Framework, require that the web document root is different from where your
actual source code resides.

Here is an example using the -t flag:

php -S localhost:8080 -t source/chapter0l

Here is an example of the output:

@ @® aed@aed: ~/Repos/php7 _recipes

php
[Sat
[Sat

[Sat

[Sat
[Sat

[Sat

[Sat

[Sat
[Sat
[Sat

[Sat

Jan
Jan

Jan

Jan
Jan

Jan

Jan

Jan

Jan

Jan

Jan

23
23

23

23
23

23

23

23

23

23

23

16:19:52

153

1539

16:
133

133

153

133
133
133

16:

19:

19:

19:
19:

19:

19:

19:

19:

19:

19:

52

aed@aed:~/Repos/php7_recipes$ php -5 localhost:8080 -t source/chapterfl

PHP 7.0.0 Development Server started at Sat Jan 23 16:17:57 2016
Listening on http://localhost:8080

Document root is /home/aed/Repos/php7 recipes/source/chapter@l
Press Ctrl-C to quit.
[Sat Jan 23 16:19:52

2016] 127.0.0.1:54929 [200]: /chap 01 deep scan w
2016] 127.0.0.1:54932 Invalid request (Unexpected EOF)
2016]

2016]

2016]
2016]

2016]

2016]

2016]
2016]
2016]

2016]

Defining a test MySQL database

For test purposes, along with the source code for the book, we've provided an SQL file with
sample data at https://github.com/dbierer/php7cookbook. The name of the
database used in the recipes for this book is php7cookbook.

Building a Foundation

How to do it...

1. Define a MySQL database, php7cookbook. Also assign rights to the new database
to a user called cook with the password book. The following table summarizes these

settings:
Item Notes
Database name php7cookbook
Database user cook
Database user password book

2. Here is an example of SQL needed to create the database:
CREATE DATABASE IF NOT EXISTS dbname DEFAULT CHARACTER SET utfs8
COLLATE utf8 general ci;
CREATE USER 'user'@'$%' IDENTIFIED WITH mysgl native password;
SET PASSWORD FOR 'user'@'$%' = PASSWORD ('userPassword') ;
GRANT ALL PRIVILEGES ON dbname.* to 'user'@'$';
GRANT ALL PRIVILEGES ON dbname.* to 'user'@'localhost';
FLUSH PRIVILEGES;

3. Import the sample values into the new database. The import file, php7cookbook .
sql, is located at https://github.com/dbierer/php7cookbook/blob/
master/php7cookbook. sgl.

Installing PHPUnit

Unit testing is arguably the most popular means of testing PHP code. Most developers will
agree that a solid suite of tests is a requirement for any properly developed project. Few
developers actually write these tests. A lucky few have an independent testing group that
writes the tests for them! After months of skirmishing with the testing group, however, the
remains of the lucky few tend to grumble and complain. In any event, any book on PHP would
not be complete without at least a nod and a wink towards testing.

The place to find the latest version of PHPUnit is https://phpunit.de/. PHPUnit5.1
and above support PHP 7. Click on the link for the desired version, and you will download
a phpunit.phar file. You can then execute commands using the archive, as follows:

php phpunit.phar <command>

M The phar command stands for PHP Archive. The technology is based on

Q tar, which itself was used in UNIX. A phar file is a collection of PHP files
that are packed together into a single file for convenience.

Chapter 1

Implementing class autoloading

When developing PHP using an object-oriented programming (OOP) approach, the
recommendation is to place each class in its own file. The advantage of following this
recommendation is the ease of long-term maintenance and improved readability. The
disadvantage is that each class definition file must be included (that is, using include or its
variants). To address this issue, there is a mechanism built into the PHP language that will
autoload any class that has not already been specifically included.

Getting ready

The minimum requirement for PHP autoloading is to define a global __autoload () function.
This is a magic function called automatically by the PHP engine when a class is requested

but where said class has not been included. The name of the requested class will appear as
a parameter when __ autoload () is invoked (assuming that you have defined it!). If you are
using PHP namespaces, the full namespaced name of the class will be passed. Because
autoload () is a function, it must be in the global namespace; however, there are limitations
on its use. Accordingly, in this recipe, we will make use of the spl _autoload register()
function, which gives us more flexibility.

How to do it...

1. The class we will cover in this recipe is Application\Autoload\Loader. In order
to take advantage of the relationship between PHP namespaces and autoloading,
we name the file Loader . php and place it in the /path/to/cookbook/files/
Application/Autoload folder.

2. The first method we will present simply loads a file. We use file exists() to
check before running require once (). The reason for this is that if the file is not
found, require_once () will generate a fatal error that cannot be caught using PHP
7's new error handling capabilities:

protected static function loadFile($file)
{
if (file exists($file)) {
require_once $file;
return TRUE;

}

return FALSE;

}

3. We can then test the return value of 1oadFile () in the calling program and loop
through a list of alternate directories before throwing an Exception if it's ultimately
unable to load the file.

s

Building a Foundation

M You will notice that the methods and properties in this class are
Q static. This gives us greater flexibility when registering the autoloading
method, and also lets us treat the Loader class like a Singleton.

Next, we define the method that calls 1oadFile () and actually performs the logic
to locate the file based on the namespaced classname. This method derives a
filename by converting the PHP namespace separator \ into the directory separator
appropriate for this server and appending . php:

public static function autoLoad($class)
{
Ssuccess = FALSE;
$fn = str_replace('\\', DIRECTORY_ SEPARATOR, $class)
'.php';
foreach (self::$dirs as $start)
$file = $start . DIRECTORY SEPARATOR . $fn;
if (self::loadFile($file))
Ssuccess = TRUE;
break;

}
if (!$success) {
if (!self::loadFile(_ DIR__
. DIRECTORY_ SEPARATOR . $fn)) {
throw new \Exception (
self::UNABLE TO LOAD . ' ' . s$class);

}

return $success;

}

Next, the method loops through an array of directories we call self: :$dirs, using

each directory as a starting point for the derived filename. If not successful, as a last
resort, the method attempts to load the file from the current directory. If even that is

not successful, an Exception is thrown.

Next, we need a method that can add more directories to our list of directories to test.
Notice that if the value provided is an array, array merge () is used. Otherwise, we
simply add the directory string to the self: :$dirs array:

public static function addDirs ($dirs)

{

if (is_array($dirs))
self::8dirs = array merge(self::$dirs, $dirs);
} else {

Chapter 1

self::8dirs([] = S$dirs;

}

7. Then, we come to the most important part; we need to register our autoload ()
method as a Standard PHP Library (SPL) autoloader. This is accomplished using
spl_autoload register () with the init () method:

public static function init ($dirs = array())
{
if ($dirs) {
self::addDirs ($dirs) ;
}
if (self::$registered == 0) {
spl autoload register(CLASS . '::autoload');
self::Sregistered++;

}

8. Atthis point, we can define _construct (), which calls self::init ($dirs).
This allows us to also create an instance of Loader if desired:

public function __ construct ($dirs = array())

{

self::init ($dirs) ;

}

In order to use the autoloader class that we just defined, you will need to require Loader.
php. If your namespace files are located in a directory other than the current one, you should
also run Loader: : init () and supply additional directory paths.

In order to make sure the autoloader works, we'll also need a test class. Here is a definition of
/path/to/cookbook/files/Application/Test/TestClass.php:

<?php
namespace Application\Test;
class TestClass

{

public function getTest ()

{

return _ METHOD__ ;

[}

Building a Foundation

Now create a sample chap 01 autoload test.php code file to test the autoloader:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

Next, get an instance of a class that has not already been loaded:

Stest = new Application\Test\TestClass() ;
echo Stest->getTest () ;

Finally, try to get a fake class that does not exist. Note that this will throw an error:

$fake = new Application\Test\FakeClass/() ;
echo sfake->getTest () ;

Hoovering a website

Very frequently, it is of interest to scan a website and extract information from specific tags.
This basic mechanism can be used to trawl the web in search of useful bits of information. At
other times you need to get a list of tags and the SRC attribute, or <A> tags and the
corresponding HREF attribute. The possibilities are endless.

How to do it...

1. First of all, we need to grab the contents of the target website. At first glance it seems
that we should make a cURL request, or simply use file get contents().
The problem with these approaches is that we will end up having to do a massive
amount of string manipulation, most likely having to make inordinate use of the
dreaded regular expression. In order to avoid all of this, we'll simply take advantage
of an already existing PHP 7 class DOMDocument. So we create a DOMDocument
instance, setting it to UTF-8. We don't care about whitespace, and use the handy
loadHTMLFile () method to load the contents of the website into the object:

public function getContent (Surl)

{

if (!$this->content) ({

if (stripos($url, 'http') !== 0) {
$url = 'http://' . Surl;
}
Sthis->content = new DOMDocument ('1.0', 'utf-8');

Sthis->content->preserveWhiteSpace = FALSE;
// @ used to suppress warnings generated from
// improperly configured web pages
@Sthis->content->loadHTMLFile (Surl) ;

Chapter 1

return Sthis->content;

Note that we precede the call to the 1loadHTMLFile () method with an @.
M This is not done to obscure bad coding (!) as was often the case in PHP 5!
Q Rather, the @ suppresses notices generated when the parser encounters
poorly written HTML. Presumably, we could capture the notices and log
them, possibly giving our Hoover class a diagnostic capability as well.

2. Next, we need to extract the tags which are of interest. We use the
getElementsByTagName () method for this purpose. If we wish to extract
all tags, we can supply * as an argument:

public function getTags (Surl, stag)

{

Scount = 0;
Sresult = array () ;
Selements = $this->getContent (Surl)

->getElementsByTagName ($Stag) ;
foreach ($elements as $node) ({

Sresult [Scount] ['value'] = trim(
preg_replace('/\s+/', ' ', snode-s>nodeValue)) ;
if ($node->hasAttributes()) {

foreach ($node->attributes as Sname => Sattr)
{
Sresult [Scount] ['attributes'] [Sname] =
Sattr->value;

}

Scount++;

}

return Sresult;

}

3. It might also be of interest to extract certain attributes rather than tags. Accordingly,
we define another method for this purpose. In this case, we need to parse through all
tags and use getAttribute (). You'll notice that there is a parameter for the DNS
domain. We've added this in order to keep the scan within the same domain (if you're
building a web tree, for example):

public function getAttribute (Surl, Sattr, Sdomain = NULL)
{
Sresult = array();
Selements = $this->getContent (Surl)
->getElementsByTagName ('*') ;
foreach ($elements as $node) ({

]

Building a Foundation

if ($node->hasAttribute($attr))

$value = $node->getAttribute ($Sattr);

if ($domain)
if (stripos($value, $domain) !== FALSE)

Sresult[] = trim(Svalue) ;

}

} else {
Sresult[] = trim(Svalue) ;

}

return Sresult;

In order to use the new Hoover class, initialize the autoloader (described previously) and
create an instance of the Hoover class. You can then run the Hoover: :getTags () method
to produce an array of tags from the URL you specify as an argument.

Here is a block of code from chap 01 vacuuming website.php that uses the Hoover
class to scan the O'Reilly website for <A> tags:

<?php

// modify as needed

define ('DEFAULT URL', 'http://oreilly.com/');

define ('DEFAULT TAG', 'a');

require _ DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

// get "vacuum" class
$vac = new Application\Web\Hoover () ;

// NOTE: the PHP 7 null coalesce operator is used
Surl = strip tags($ GET['url'] ?? DEFAULT URL);
$tag = strip tags($ GET['tag']l ?? DEFAULT TAG);

echo 'Dump of Tags: ' . PHP_EOL;
var dump ($vac->getTags (Surl, stag));

The output will look something like this:

@@ aed@aed: ~/Repos/php7 _recipes
Dump of Tags:
array(144) {
[0] ==
array(2) {
'value' =>
string(@) ""
'attributes’' ==
array(l) {
'href' =>
string(22) "http://www.oreilly.com"

b
[1] =>
array(2) {
'value' =>
string(12) "Your Account”
'attributes' =>
array(2) {
'href' =>
string(26) "http://members.oreilly.com”
'class’' =>
string(12) "signInLinkmy"

1
[2] ==
array(2) {
'value' => k
string(13) "Shopping Cart”
'attributes’' =>
array(l) {

Chapter 1

For more information on DOM, see the PHP reference page at http://php.net/manual/

en/class.domdocument . php.

Building a deep web scanner

Sometimes you need to scan a website, but go one level deeper. For example, you want to
build a web tree diagram of a website. This can be accomplished by looking for all <A> tags
and following the HREF attributes to the next web page. Once you have acquired the child

pages, you can then continue scanning in order to complete the tree.

Building a Foundation

How to do it...

1. A core component of a deep web scanner is a basic Hoover class, as described
previously. The basic procedure presented in this recipe is to scan the target website
and hoover up all the HREF attributes. For this purpose, we define a Application\
Web\Deep class. We add a property that represents the DNS domain:

namespace Application\Web;
class Deep

{

protected S$domain;

2. Next, we define a method that will hoover the tags for each website represented in
the scan list. In order to prevent the scanner from trawling the entire World Wide
Web (WWW), we've limited the scan to the target domain. The reason why yield
from has been added is because we need to yield the entire array produced by
Hoover: :getTags (). The yield from syntax allows us to treat the array as a
sub-generator:

public function scan(Surl, S$tag)
{
sSvac = new Hoover () ;
Sscan = $vac->getAttribute (Surl, 'href',
Sthis->getDomain (Surl)) ;
Sresult = array();
foreach ($scan as $subSite)
yield from $vac->getTags ($subSite, $tag);

}

return count ($scan) ;

The use of yield fromturnsthe scan () method intoa PHP 7
delegating generator. Normally, you would be inclined to store the results
: of the scan into an array. The problem, in this case, is that the amount
% of information retrieved could potentially be massive. Thus, it's better to
’ immediately yield the results in order to conserve memory and to produce
immediate results. Otherwise, there would be a lengthy wait, which would
probably be followed by an out of memory error.

3. In order to keep within the same domain, we need a method that will return the
domain from the URL. We use the convenient parse url () function for this
purpose:

public function getDomain (Surl)

{

if (!$this->domain)

]

Chapter 1

$this->domain = parse url($url, PHP_URL HOST) ;

}

return Sthis->domain;

}

First of all, go ahead and define the Application\Web\Deep class defined previously,
as well as the Application\Web\Hoover class defined in the previous recipe.

Next, define a block of code from chap 01 deep scan_ website.php that sets up
autoloading (as described earlier in this chapter):

<?php

// modify as needed

define ('DEFAULT URL', 'unlikelysource.com') ;

define ('DEFAULT TAG', ' img') ;

require _DIR_ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(_ DIR . '/../..");

Next, get an instance of our new class:
$deep = new Application\Web\Deep() ;

At this point, you can retrieve URL and tag information from URL parameters. The PHP 7 null
coalesce operator is useful for establishing fallback values:

Surl = strip tags($ GET['url'] ?? DEFAULT URL);
$tag = strip tags($ GET['tag']l ?? DEFAULT TAG);

Some simple HTML will display results:

foreach ($deep-s>scan($url, $tag) as $item)
Ssrc = Sitem['attributes'] ['src'] ?? NULL;
if ($src && (stripos($src, 'png') || stripos($src, 'jpg'))) {
printf ('
', $src);

}

For more information on generators and yield from, please see the article at
http://php.net/manual/en/language.generators.syntax.php.

Building a Foundation

Creating a PHP 5 to PHP 7 code converter

For the most part, PHP 5.x code can run unchanged on PHP 7. There are a few changes,
however, that are classified as backwards incompatible. What this means is that if your PHP
5 code is written in a certain way, or uses functions that have been removed, your code will
break, and you'll have a nasty error on your hands.

Getting ready

The PHP 5 to PHP 7 Code Converter does two things:

» Scans your code file and converts PHP 5 functionality that has been removed to its
equivalent in PHP 7

» Adds comments with // WARNING where changes in language usage have occurred,
but where a re-write is not possible

i Please note that after running the converter, your code is not guaranteed
% to work in PHP 7. You will still have to review the // WARNING tags added.
s At the least, this recipe will give you a good head start converting your PHP
5 code to work in PHP 7.

The core of this recipe is the new PHP 7 preg_replace_callback_array () function.
What this amazing function allows you to do is to present an array of regular expressions
as keys, with the value representing an independent callback. You can then pass the string
through a series of transformations. Not only that, the subject of the array of callbacks can
itself be an array.

How to do it...

1. Inanew class Application\Parse\Convert, we begin with a scan () method,
which accepts a filename as an argument. It checks to see if the file exists. If so, it
calls the PHP £ile () function, which loads the file into an array, with each array
element representing one line:

public function scan($filename)
{
if (!file exists($filename)) ({
throw new Exception (
self: :EXCEPTION_FILE_NOT_EXISTS) ;
}
Scontents = file($filename) ;
echo 'Processing: ' . $filename . PHP EOL;

Sresult = preg replace callback array([

Chapter 1

Next, we start passing a series of key/value pairs. The key is a regular expression,
which is processed against the string. Any matches are passed to the callback, which
is represented as the value part of the key/value pair. We check for opening and
closing tags that have been removed from PHP 7:

// replace no-longer-supported opening tags

IN\<\s(\n|)1 =>
function ($match)
return '<?php' . S$match[1];

b

// replace no-longer-supported opening tags

IM\<\%=(\n|) ! =>
function ($match)
return '<?php echo ' . $match[1l];

b

// replace no-longer-supported closing tag
TINS\>! ' =>
function ($match)
return '?>';

b

Next is a series of warnings when certain operations are detected and there is a
potential code-break between how they're handled in PHP 5 versus PHP 7. In all these
cases, the code is not re-written. Instead, an inline comment with the word WARNING
is added:
// changes in how $$xxx interpretation is handled
L) \S\SL =>
function ($match)
return '// WARNING: variable interpolation
' now occurs left-to-right' . PHP EOL
'"// see: http://php.net/manual/en/'
'// migration70.incompatible.php'
Smatch[0];

b

// changes in how the list() operator is handled
E(L*?)1ist (\s*?) 2\ (1" =>
function ($match)
return '// WARNING: changes have been made '

'in list () operator handling.'
'See: http://php.net/manual/en/"’
'migration70.incompatible.php’
Smatch[0] ;

Building a Foundation

b

// instances of \u{
) \\N\u\ {1 =
function ($match)
return '// WARNING: \\u{xxx} is now considered '
'unicode escape syntax' . PHP_ EOL
'// see: http://php.net/manual/en/'
'migration70.new-features.php'
'#migration70.new-features.unicode-"
'codepoint-escape-syntax' . PHP_ EOL
Smatch[0] ;

b

// relying upon set error handler ()
"1 (.*?)set_error handler (\s*?)?2.*\ (!' =>
function ($match)
return '// WARNING: might not '

'catch all errors'
'// see: http://php.net/manual/en/'
'// language.errors.php7.php'
Smatch[0] ;

b

// session_set save handler (xxx)
"1 (.*?)session set save handler (\s*?)?\ ((.*?)\)!' =>
function ($match)
if (isset($match([3]))
return '// WARNING: a bug introduced in'
'"PHP 5.4 which '
'affects the handler assigned by '
'session_ set save handler () and '
'where ignore user abort() is TRUE
'has been fixed in PHP 7.°'
'This could potentially break '
'yvour code under '
'certain circumstances.' . PHP_EOL
'See: http://php.net/manual/en/"’
'migration70.incompatible.php’
Smatch[0] ;
} else {
return Smatch[O0];

=

Chapter 1

4. Any attempts to use << or >> with a negative operator, or beyond 64, is wrapped in a
{ xxx } catch() { xxx } block, looking for an ArithmeticError to be
thrown:

try

5. Next, the converter rewrites any usage of call user method* (), which has

// wraps bit shift operations in try /

catch

VINx2) (\d+\s* (\<\<|[\>\>) \s*-2\d+) (.*?)S!' =>

function ($match)

return '// WARNING: negative and '

'out-of-range bitwise

'shift operations will now

'throw an ArithmeticError' . PHP_EOL
'See: http://php.net/manual/en/"’
'migration70.incompatible.php’

'try {' . PHP_EOL

"\t" . S$match[0] . PHP_ EOL

'} catch (\\ArithmeticError S$e) {'
"\t" . 'error log("File:"
Se->getFile()

" Message:" . $e->getMessage());'
'}' . PHP EOL;

b

PHP 7 has changed how errors are handled. In some cases, errors are
moved into a similar classification as exceptions, and can be caught!
Both the Error and the Exception class implement the Throwable
interface. If you want to catch either an Exrror or an Exception, catch

Throwable.

been removed in PHP 7. These are replaced with the equivalent using call user
func* ():

// replaces "call user method()" with
// "call user func()"
'1call user method\ ((.*?), (.*?) (,.*?)\
function ($match)
Sparams = Smatch[3] ?? '';

) \b|;)!" =>

return '// WARNING: call user method() has '
'been removed from PHP 7' . PHP EOL

'call user func(['.

trim(Smatch[1])

b

// replaces "call user method array()"
// with "call user func_ array()"
'1call user method array\ ((.*?), (.*?),

trim(Smatch[2])

'17'" . $params . ');"';

(.*2)\) (\b|;) 1" =>

s

Building a Foundation

function ($match)
return '// WARNING: call user method array()'

'has been removed from PHP 7'
PHP EOL
'call user func array(['
trim(Smatch[2]) . ',"
trim(Smatch[1]) . '], '
Smatch([3] . ');';

b

6. Finally, any attempt to use preg_replace () with the /e modifier is rewritten using
apreg replace callback():

17 (.*?)preg_replace.*?/e(.*?)$!"' =>
function ($match)
S$last = strrchr(Smatch([2], ',"'");

$arg2 = substr($match([2], 2, -1 * (strlen(s$last)));
Sargl = substr(Smatch[0],

strlen(Smatch[1]) + 12,

-1 * (strlen($arg2) + strlen($last)));
Sargl = trim(Sargl, '(');

$argl = str replace('/e', '/', S$argl);

$arg3 = '// WARNING: preg replace() "/e" modifier
'has been removed from PHP 7'
PHP_EOL
Smatch[1]

'preg replace callback('
Sargl
'function ($m) { return '
str replace('$1l','$m', S$match[1])
trim($arg2, '"\'') . '; }, '
trim($Slast, ',');
return str replace('$1l', 'sm', $arg3);

b

// end array
1,

// this is the target of the transformations
Scontents

)

// return the result as a string

return implode('', S$Sresult);

=

Chapter 1

To use the converter, run the following code from the command line. You'll need to supply the
filename of the PHP 5 code to be scanned as an argument.

This block of code, chap 01 php5 to php7 code converter.php, run from the
command line, calls the converter:

<?php
// get filename to scan from command line
$filename = $argv[l] ?? '';
if (!$filename)
echo 'No filename provided' . PHP EOL;
echo 'Usage: ' . PHP EOL;
echo FILE . ' <filename>' . PHP EOL;
exit;

// setup class autoloading
require DIR_ . '/../Application/Autoload/Loader.php';

// add current directory to the path
Application\Autoload\Loader::init(DIR . '/..');

// get "deep scan" class

$convert = new Application\Parse\Convert () ;
echo Sconvert->scan($filename) ;

echo PHP_ EOL;

See also

For more information on backwards incompatible changes, please refer to http://php.
net/manual/en/migration70.incompatible.php.

=]

Using PHP 7 High
Performance Features

In this chapter we will discuss and understand the syntax differences between PHP 5 and
PHP 7, featuring the following recipes:

» Understanding the abstract syntax tree

» Understanding differences in parsing

» Understanding differences in foreach () handling

» Improving performance using PHP 7 enhancements

» Iterating through a massive file

» Uploading a spreadsheet into a database

» Recursive directory iterator

Introduction

In this chapter we will move directly into PHP 7, presenting recipes that take advantage of
new high performance features. First, however, we will present a series of smaller recipes
that serve to illustrate the differences in how PHP 7 handles parameter parsing, syntax, a
foreach () loop, and other enhancements. Before we go into depth in this chapter, let's
discuss some basic differences between PHP 5 and PHP 7.

PHP 7 introduced a new layer referred to as the Abstract Syntax Tree (AST), which effectively
decouples the parsing process from the pseudo-compile process. Although the new layer has
little or no impact on performance, it gives the language a new uniformity of syntax, which was
not possible previously.

e

Using PHP 7 High Performance Features

Another benefit of AST is the process of dereferencing. Dereferencing, simply put, refers to
the ability to immediately acquire a property from, or run a method of, an object, immediately
access an array element, and immediately execute a callback. In PHP 5 such support was
inconsistent and incomplete. To execute a callback, for example, often you would first need
to assign the callback or anonymous function to a variable, and then execute it. In PHP 7 you
can execute it immediately.

Understanding the abstract syntax tree

As a developer, it might be of interest for you to be free from certain syntax restrictions
imposed in PHP 5 and earlier. Aside from the uniformity of the syntax mentioned previously,
where you'll see the most improvement in syntax is the ability to call any return value, which
is callable by simply appending an extra set of parentheses. Also, you'll be able to directly
access any array element when the return value is an array.

How to do it...

1. Any function or method that returns a callback can be immediately executed by
simply appending parentheses () (with or without parameters). An element can
be immediately dereferenced from any function or method that returns an array by
simply indicating the element using square brackets [1 ;. In the short (but trivial)
example shown next, the function test () returns an array. The array contains six
anonymous functions. $a has a value of $t. $$a is interpreted as $test:

function test()

{

return [
1 => function () { return [
1 => function ($a) { return 'Level 1/1:' . ++$a; },
2 => function ($a) { return 'Level 1/2:' . ++$a; },
1i},
2 => function () { return [
1 => function ($a) { return 'Level 2/1:' . ++$a; },
2 => function ($a) { return 'Level 2/2:' . ++$a; },
1:}
1;
}
$a = 't';
St = 'test';

echo $$%a() [1] () [2] (100) ;

=]

Chapter 2
2. AST allows us to issue the echo $sa () [1] () [2] (100) command. This is parsed
left-to-right, which executes as follows:
o $3al() interprets as test (), which returns an array
o [1] dereferences array element 1, which returns a callback
o () executes this callback, which returns an array of two elements
o [2] dereferences array element 2, which returns a callback

o (100) executes this callback, supplying a value of 100, which returns
Level 1/2:101

1
~ Such a statement is not possible in PHP 5: a parse error
would be returned.

3. The following is a more substantive example that takes advantage of AST syntax to
define a data filtering and validating class. First of all, we define the Application\
Web\Securityclass. In the constructor, we build and define two arrays. The first
array consists of filter callbacks. The second array has validation callbacks:

public function __ construct ()

{

Sthis->filter = [

'striptags' => function ($a) { return strip tags($a); },
'digits' => function ($a) { return preg replace
v/1%0-91/1, v, sa);),

'alpha' => function ($a) { return preg replace

Y MA-Z] /i, v, $a);)

1;
Sthis->validate = [
'alnum' => function ($a) { return ctype alnum(S$a); },
'digits' => function ($a) { return ctype digit(S$a); },
'alpha' => function ($a) { return ctype alpha($a); }
1;
}

4. We want to be able to call this functionality in a developer-friendly manner. Thus,
if we want to filter digits, then it would be ideal to run a command such as this:

$security->filterDigits ($item)) ;

5. To accomplish this we define the magic method _ call (), which gives us access to
non-existent methods:

public function _ call ($method, S$params)

{

Using PHP 7 High Performance Features

preg match('/”* (filter|validate) (.*?)$/i', $method, $matches) ;
Sprefix = Smatches[1] ?? '';
Sfunction = strtolower (Smatches[2] ?? '');
if ($prefix && $function)
return $this->$prefix[$function] ($params[0]) ;

}

return Svalue;

}

We use preg match () to match the Smethod param against filter or validate. The
second sub-match will then be converted into an array key in either Sthis->filter or
$this->validate. If both sub-patterns produce a sub-match, we assign the first sub-match
to Sprefix, and the second sub-match $function. These end up as variable parameters
when executing the appropriate callback.

Don't go too crazy with this stuff!

AST, be sure to keep in mind that the code you end up writing could, in
the long run, be extremely cryptic. This will ultimately cause long-term
maintenance problems.

First of all, we create a sample file, chap 02 web filtering ast example.php, to
take advantage of the autoloading class defined in Chapter 1, Building the Foundation, to
obtain an instance of Application\Web\Security:

.\'Q As you revel in your new found freedom of expression, made possible by

require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');
$security = new Application\Web\Security () ;

Next, we define a block of test data:

Sdata = [
'<lis>Lots<lis>ofTags",
12345,

'This is a string',
'String with number 12345',

1;

Finally, we call each filter and validator for each item of test data:

foreach ($data as $item)
echo 'ORIGINAL: ' . $item . PHP_EOL;
echo 'FILTERING' . PHP_ EOL;

NED

printf ('%12s : %s' . PHP_EOL, 'Strip Tags',
$Ssecurity->filterStripTags ($Sitem)) ;

printf ('%12s : %s' . PHP_EOL, 'Digits’',
$security->filterDigits ($item)) ;

printf ('%12s : %s' . PHP_EOL, 'Alpha',
$security->filterAlpha($Sitem)) ;

echo 'VALIDATORS' . PHP_EOL;

printf ('%12s : %s' . PHP_EOL, 'Alnum',
($security->validateAlnum($item)) ? 'T' : 'F');
printf ('%12s : %s' . PHP_EOL, 'Digits’',
($security->validateDigits($item)) ? 'T' : 'F');
printf ('%12s : %s' . PHP_EOL, 'Alpha',
($security->validateAlpha($item)) ? 'T' : 'F');

}

Here is the output of some input strings:

ORIGINAL: <ul=><lizlLots<lizofTags
FILTERING
Strip Tags : LotsofTags
Digits :
Alpha : ulliLotsliliofliliTagsliul
VALIDATORS
Alnum : F
Digits : F
Alpha : F
ORIGINAL: 12345
FILTERING
Strip Tags : 12345
Digits : 12345

Alpha
VALIDATORS
Alnum : T
Digits : T
Alpha : F
ORIGINAL: This is a string
FILTERING
Strip Tags : This is a string
Digits :
Alpha : Thisisastring
VALIDATORS
Alnum : F
Digits : F
Alpha : F
ORIGINAL: String with number 12345
FILTERING

Strip Tags : String with number 12345
Digits : 12345
Alpha : Stringwithnumber

VALIDATORS
Alnum : F
Digits : F
Alpha : F

aed@aed:~/Repos/php7 recipes/source/chapter@2$

Chapter 2

Es

Using PHP 7 High Performance Features

See also

For more information on AST, please consult the RFC that addresses the Abstract Syntax
Tree, which can be viewed at https://wiki.php.net/rfc/abstract syntax tree.

Understanding differences in parsing

In PHP 5, expressions on the right side of an assignment operation were parsed right-to-left.
In PHP 7, parsing is consistently left-to-right.

How to do it...

1. Avariable-variable is a way of indirectly referencing a value. In the following example,
first $$foo is interpreted as ${$bar}. The final return value is thus the value of
$bar instead of the direct value of $f£oo (which would be bar):

sfoo = 'bar';
Sbar = 'baz';

echo $$foo; // returns ‘'baz';

2. Inthe next example we have a variable-variable $$foo, which references a multi-
dimensional array with a bar key and abaz sub-key:

sfoo = 'bar';

Sbar = ['bar' => ['baz' => 'bat']];
// returns 'bat'

echo $sfoo['bar'] ['baz'];

3. In PHP 5, parsing occurs right-to-left, which means the PHP engine would be looking
for an $foo array, with a bar key and a baz. sub-key The return value of the
element would then be interpreted to obtain the final value ${$foo ['bar']
['baz']}.

4. In PHP 7, however, parsing is consistently left-to-right, which means that $foo is
interpreted first ($$foo) ['bar'] ['baz'].

5. Inthe next example you can see that Sfoo->3Sbar['bada'] is interpreted quite
differently in PHP 5, compared with PHP 7. In the following example, PHP 5 would
first interpret $bar ['bada'], and reference this return value against a $foo
object instance.In PHP 7, on the other hand, parsing is consistently left-to-
right, which means that $foo->3$bar is interpreted first, and expects an array with
abada element. You will also note, incidentally, that this example uses the PHP 7
anonymous class feature:

// PHP 5: $foo->{$bar['bada'l]}
// PHP 7: ($foo->$bar) ['bada']
Sbar = 'baz';

// $foo = new class

Chapter 2

{
}i

// returns 'boom'
echo $foo->S$bar['bada'l;

public S$baz = ['bada' => 'boom'];

6. The last example is the same as the one immediately above, except that the return
value is expected to be a callback, which is then immediately executed as follows:

// PHP 5: $foo->{$bar['bada'l} ()

// PHP 7: ($foo->$bar) ['bada'] ()

Sbar = 'baz';

// NOTE: this example uses the new PHP 7 anonymous class feature
s$foo = new class

{

public function __ construct ()

{

$this->baz = ['bada' => function () { return 'boom'; }];

Vi
// returns 'boom'’
echo $foo->$bar['bada'l () ;

Place the code examples illustrated in 1 and 2 into a single PHP file that you can call
chap 02 understanding diffs in parsing.php. Execute the script first using
PHP 5, and you will notice that a series of errors will result, as follows:

x ed@ed: ~/Desktop/Repos/php7_recipes/sourcefchapter02

ed@ed: ~/Desktop/Repos/php7_recipes/source/chaptere2$ php5 chap_082_understanding_|
diffs_1in_parsing.php

baz

PHP Warning: 1Illegal string offset 'bar' in /home/ed/Desktop/Repos/php7_recipes
/source/chaptere2/chap_02_understanding_diffs_in_parsing.php on line 24

Warning: Illegal string offset 'bar' in /home/ed/Desktop/Repos/php7_recipes/sour
ce/chapter02/chap_02_understanding_diffs_in_parsing.php on line 24

PHP Warning: 1Illegal string offset 'baz' in /home/ed/Desktop/Repos/php7_recipes
/source/chapter®2/chap_02_understanding_diffs_in_parsing.php on line 24

Warning: Illegal string offset 'baz' in /home/fed/Desktop/Repos/php7_recipes/sour
ce/chapter®2/chap 02 understanding diffs_in_parsing.php on line 24

PHP Notice: Undefined variable: b in fhome/ed/Desktop/Repos/php7_recipes/source
Jchapter@2/chap_02_understanding_diffs_in_parsing.php on line 24

Notice: Undefined variable: b in /home/ed/Desktop/Repos/php7_recipes/source/chap
ter@2/chap_02_understanding_diffs_in_parsing.php on line 24

ed@ed:~/Desktop/Repos/php7_recipes/source/chapterezs

s

Using PHP 7 High Performance Features

The reason for the errors is that PHP 5 parses inconsistently, and arrives at the wrong
conclusion regarding the state of the variable variables requested (as previously mentioned).
Now you can go ahead and add the remaining examples, as shown in steps 5 and 6. If you
then run this script in PHP 7, the results described will appear, as shown here:

®) ed@ed: ~/Desktop/Repos/php7_recipes/sourcefchapter02
ed@ed:~/Desktop/Repos/php7_recipes/source/chapter®2$ php7 chap_82_understanding_|
diffs_in_parsing.php
baz
bat
boom
boom
ed@ed:~/Desktop/Repos/php7_recipes/source/chapterez2s

For more information on parsing, please consult the RFC, which addresses Uniform Variable
Syntax, and can be viewed at https://wiki.php.net/rfc/uniform variable
syntax.

Understanding differences in foreach()

handling

In certain relatively obscure circumstances, the behavior of code inside a foreach ()

loop will vary between PHP 5 and PHP 7. First of all, there have been massive internal
improvements, which means that in terms of sheer speed, processing inside the foreach ()
loop will be much faster running under PHP 7, compared with PHP 5. Problems that are
noticed in PHP 5 include the use of current (), and unset () on the array inside the
foreach () loop. Other problems have to do with passing values by reference while
manipulating the array itself.

How to do it...

1. Consider the following block of code:
$a = [1, 2, 31;
foreach ($a as $v) {
printf ("$2d\n", $v);
unset (Sa[1]) ;

}

S E

In both PHP 5 and 7, the output would appear as follows:

If you add an assignment before the loop, however, the behavior changes:

$a = [1, 2, 3];
$b = &$a;
foreach ($a as $v) {

printf ("$2d\n",
unset (sall]) ;

Sv)

}
Compare the output of PHP 5 and 7:

PHP 5 PHP 7
1 1
3 2

3

Working with functions that reference the internal array pointer also caused

inconsistent behavior in PHP 5. Take the following code example:

$a [1,2,31;

foreach($a as &$v)
printf ("%$2d - %2d\n",

SV,

current ($a)) ;

}

Q

Notice that the output running in PHP 7 is normalized and consistent:

Every array has an internal pointer to its current element starting
from 1, current () returns the current element in an array.

PHP 5 PHP 7
1-2 1-1
2-3 2-1
3-0 3-1

Chapter 2

s

Using PHP 7 High Performance Features

7. Adding a new element inside the foreach () loop, once the array iteration by
reference is complete, is also problematic in PHP 5. This behavior has been made
consistent in PHP 7. The following code example demonstrates this:

Sa = [1];

foreach($a as &$v)
printf ("%$2d -\n", s$v);
Sall]l=2;

}

8. We will observe the following output:

PHP 5 PHP 7
1- 1-
2.

9. Another example of bad PHP 5 behavior addressed in PHP 7, during array iteration
by reference, is the use of functions that modify the array, such as array push (),
array pop (), array shift (), and array unshift ().

Have a look at this example:

Sa=1[1,2,3,4]1;
foreach($a as &$v) {
echo "$v\n";

array pop($a) ;

}

10. You will observe the following output:

PHP 5 PHP 7
1 1

2 2

1

1

11. Finally, we have a case where you are iterating through an array by reference, with a
nested foreach () loop, which itself iterates on the same array by reference. In PHP
5 this construct simply did not work. In PHP 7 this has been fixed. The following block
of code demonstrates this behavior:

$a = [0, 1, 2, 31;
foreach ($a as &$x)
foreach ($a as &$y)
echo "$x - Sy\n";
if ($x == 0 && $y == 1) {
unset (Sal1l]l) ;

unset (Sal2]) ;

}
}
}
12. And here is the output:

PHP 5 PHP 7

0-0 0-0

0-1 0-1

0-3 0-3
3-0
3-3

Chapter 2

Add these code examples to a single PHP file, chap 02 foreach.php. Run the script under

PHP 5 from the command line. The expected output is as follows:

& ed@ed: ~/Desktop/Repos/php7_recipes/sourcefchaptero2

PHP VERSION: 5.6.22

unset() in foreach()

1

2

3

unset() in foreach() after assignment by reference
1

3

current() in foreach()

1- 2

2 - 3

3 - 8

adding new element in foreach()
1_

array_pop() in foreach()

1

2

1

1

reference in foreach()

0 -0

o -1

e - 3
ed@ed:~/Desktop/Repos/php7_recipes/source/chaptere2s

Eis

Using PHP 7 High Performance Features

Run the same script under PHP 7 and notice the difference:

") ed@ed: ~/Desktop/Repos/php7_recipes/source/chaptero2

PHP VERSION: 7.0.7

unset() in foreach()

1

2

3

unset() in foreach() after assignment by reference
1

2

£

current() in foreach()

1- 1

2 - 1

3 - 1

adding new element in foreach()
1 -

2 -

array_pop() in foreach()

1

2
reference in foreach()
0 -0

0 -1

0 - 3

3 -0

3 -3

ed@ed: ~/Desktop/Repos/php7_recipes/source/chapter®2s

See also

For more information, consult the RFC addressing this issue, which was accepted. A write-up
on this RFC can be found at: https://wiki.php.net/rfc/php7 foreach.

Improving performance using PHP 7

enhancements

One trend that developers are taking advantage of is the use of anonymous functions. One
classic problem, when dealing with anonymous functions, is to write them in such a way that
any object can be bound to $this and the function will still work. The approach used in
PHP 5 code is to use bindTo (). In PHP 7, a new method, call (), was added, which offers
similar functionality, but vastly improved performance.

How to do it...

To take advantage of call (), execute an anonymous function in a lengthy loop. In this
example, we will demonstrate an anonymous function, that scans through a log file, identifying
IP addresses sorted by how frequently they appear:

NED

Chapter 2

1. First, we define a Application\Web\Access class. Inthe constructor,
we accept a filename as an argument. The log file is opened as an SplFileObject
and assigned to $this->log:

Namespace Application\Web;

use Exception;
use SplFileObject;
class Access
{
const ERROR _UNABLE = 'ERROR: unable to open file';
protected $log;
public S$frequency = array();
public function __ construct ($filename)

{

if (!file exists($filename)) {
Smessage = _ METHOD . ' : ' . self::ERROR UNABLE . PHP_ EOL;
Smessage .= strip tags($filename) . PHP_ EOL;

throw new Exception($message) ;
}
Sthis->log = new SplFileObject ($filename, 'r');

}

2. Next, we define a generator that iterates through the file, line by line:

public function fileIteratorByLine ()
{
Scount = 0;
while (!$this->log->eof()) {
yield $this->log->fgets();
Scount++;

}

return S$count;

}

3. Finally, we define a method that looks for, and extracts as a sub-match, an IP
address:

public function getIp($line)

{
preg match('/(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{z,3})/",
$line, S$match) ;
return Smatch[l] ?2? '';

}

s

Using PHP 7 High Performance Features

First of all, we define a calling program, chap 02 performance using php7
enchancement call.php, that takes advantage of the autoloading class defined in
Chapter 1, Building a Foundation, to obtain an instance of Application\Web\Access:

define ('LOG_FILES', '/var/log/apache2/*access*.log') ;
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

Next we define the anonymous function, which processes one line in the log file. If an IP
address is detected, it becomes a key in the $frequency array, and the current value for
this key is incremented:

// define functions
$freq = function ($line) {
$ip = $this->getIp($line);
if ($ip) {
echo '.';
Sthis->frequency[$ip] =
(isset ($this->frequency[$ipl)) ? S$this->frequency[$ip] + 1 : 1;
}
}i

We then loop through the iteration of lines in each log file found, processing IP addresses:

foreach (glob(LOG_FILES) as $filename)
echo PHP_EOL . $filename . PHP EOL;
// access class
Saccess = new Application\Web\Access ($filename) ;
foreach ($access->filelteratorByLine() as $line) ({
Sfreg->call ($Saccess, $line);

Chapter 2

You can actually do the same thing in PHP 5. Two lines of code are
required, however:

Sfunc = $freqg->bindTo (Saccess) ;
Sfunc ($Sline) ;

Performance is 20% to 50% slower than using call () in PHP 7.

Finally, we reverse-sort the array, but maintain the keys. The output is produced in a simple
foreach () loop:

arsort (Saccess->frequency) ;
foreach ($access->frequency as $key => $value)
printf ('%$1l6s : %6d' . PHP EOL, S$key, s$value);

}

The output will vary depending on which access.log you process. Here is a sample:

@@ aed@aed: ~/Repos/php7_recipes/source/chapter02

208.115.220.141 : 302
207.236.68.2 : 51
75.108.135.28 : 45
65.170.41.5 : 45
108.89.210.232 : 45
208.115.113.89 : 24
209.236.161.254 : 23
71.72.21.154 : 16
199.21.99.114 : 16
66.249.74.187 : 11
157.55.35.87 : 11

208.115.111.73 :
188.92.76.167 :
184.22.188.40 :
124.115.1.7 :
119.147.75.140 :
82.165.136.86 :
183.62.115.227 :
85.102.158.186 :
178.77.126.55 :
66.249.74.29 :
178.170.123.135 :
157.56.93.222 :
178.255.215.78 :
173.199.114.219 :
41.107.33.187 :
69.30.238.26 :
217.69.133.67 :
97.74.144.110 :
64.246.161.42 :

MMNMMNMNMNNMNMNBRERERBRUULULULWL WY

Using PHP 7 High Performance Features

There's more...

Many of the PHP 7 performance improvements have nothing to do with new features and
functions. Rather, they take the form of internal improvements, which are invisible until you
start running your programs. Here is a short list of improvements that fall into this category:

Feature

More info:

Notes

Fast
parameter
parsing

https://wiki.php.net/rfc/fast zpp

In PHP 5, parameters
provided to functions have
to be parsed for every
single function call. The
parameters were passed
in as a string, and parsed
in @ manner similar to

the scanf () function.

In PHP 7 this process

has been optimized

and made much more
efficient, resulting in a
significant performance
improvement. The
improvement is difficult to
measure, but seems to be
in the region of 6%.

PHP NG

https://wiki.php.net/rfc/phpng

The PHP NG (Next
Generation) initiative
represents a rewrite

of most of the PHP
language. It retains
existing functionality, but
involves any and all time-
savings and efficiency
measures imaginable.
Data structures have been
compacted, and memory
is used more efficiently.
Just one change, which
affects array handling, for
example, has resulted in
a significant performance
increase, while at the
same time greatly
reducing memory usage.

Chapter 2

Feature More info: Notes

Removing https://wiki.php.net/rfc/removal of There were approximately
dead dead sapis_and exts two dozen extensions
weight that fell into one of these

categories: deprecated,
no longer maintained,
unmaintained
dependencies, or not
ported to PHP 7. A vote
by the group of core
developers determined
to remove about 2/3 or
the extensions on the
"short list". This results
in reduced overhead
and faster overall future
development of the PHP
language.

Iterating through a massive file

Functions such as file get contents () and £ile () are quick and easy to use however,
owing to memory limitations, they quickly cause problems when dealing with massive files.
The default setting for the php . ini memory limit settingis 128 megabytes. Accordingly,
any file larger than this will not be loaded.

Another consideration when parsing through massive files is how quickly does your function
or class method produce output? When producing user output, for example, although it might
at first glance seem better to accumulate output in an array. You would then output it all at
once for improved efficiency. Unfortunately, this might have an adverse impact on the user
experience. It might be better to create a generator, and use the yield keyword to produce
immediate results.

How to do it...

As mentioned before, the £ile* functions (thatis, file get contents()), are not
suitable for large files. The simple reason is that these functions, at one point, have the entire
contents of the file represented in memory. Accordingly, the focus of this recipe will be on the
£* functions (that is, fopen ()).

Using PHP 7 High Performance Features

In a slight twist, however, instead of using the £* functions directly, instead we will use the
SplFileObject class, which is included in the SPL (Standard PHP Library):

1.

First, we define a Application\Iterator\LargeFile class with the appropriate
properties and constants:

namespace Application\Iterator;

use Exception;

use InvalidArgumentException;
use SplFileObject;

use NoRewindIterator;

class LargeFile
const ERROR _UNABLE '"ERROR: Unable to open file';
const ERROR TYPE = 'ERROR: Type must be "ByLength",
"ByLine" or "Csv"';

protected s$file;
protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

We then definea _ construct () method that accepts a filename as an argument
and populates the $file property with an SplFileObject instance. This is also a
good place to throw an exception if the file does not exist:

public function _ construct ($filename, $mode = 'r')
{
if (!file exists($filename)) {
Smessage = _ METHOD . ' : ' . self::ERROR_UNABLE . PHP_ EOL;
Smessage .= strip tags($filename) . PHP_ EOL;

throw new Exception($message) ;

}

Sthis->file = new SplFileObject ($filename, $mode) ;

}

Next we define a method fileIteratorByLine () method which uses fgets ()
to read one line of the file at a time. It's not a bad idea to create a complimentary
fileIteratorByLength () method that does the same thing but uses fread ()
instead. The method that uses fgets () would be suitable for text files that include
linefeeds. The other method could be used if parsing a large binary file:

protected function fileIteratorByLine ()
{
Scount = 0;
while (!$this->file->eof()) {
yield $this->file->fgets();
Scount++;

Chapter 2

}

return Scount;

protected function filelteratorByLength ($numBytes = 1024)
{
Scount = 0;
while (!$this->file->eof()) {
yield $Sthis->file->fread ($numBytes) ;
Scount++;

}

return Scount;

}

4. Finally, we define a getIterator () method that returns a NoRewindIterator ()
instance. This method accepts as arguments either ByLine or ByLength,
which refer to the two methods defined in the previous step. This method also
needs to accept SnumBytes in case ByLength is called. The reason we need a
NoRewindIterator () instance is to enforce the fact that we're reading through the
file only in one direction in this example:

public function getIterator ($type = 'ByLine', S$SnumBytes = NULL)
{
if (!in_array ($type, $this->allowedTypes)) {
$message = _ METHOD . ' : ' . self::ERROR_TYPE . PHP EOL;
throw new InvalidArgumentException ($Smessage) ;
}
Siterator = 'fileIterator' . S$type;
return new NoRewindIterator ($Sthis->$iterator ($SnumBytes)) ;

First of all, we take advantage of the autoloading class defined in Chapter 1, Building a
Foundation, to obtain an instance of Application\Iterator\LargeFile in a calling
program, chap 02 iterating through a massive file.php:

define ('MASSIVE FILE', '/../data/files/war and peace.txt');
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

=]

Using PHP 7 High Performance Features

Next, insidea try {...} catch () {...} block, we get an instance of a ByLine iterator:

try {

$largeFile = new Application\Iterator\LargeFile(_ DIR__ . MASSIVE_
FILE) ;

Siterator = $largeFile->getIterator ('ByLine');

We then provide an example of something useful to do, in this case, defining an average of
words per line:

S$words = 0;

foreach ($iterator as $line)
echo $line;
$words += str word count ($line);

}

echo str_repeat('-', 52) . PHP_ EOL;

printf ("%$-40s : %$8d\n", 'Total Words', S$words);
printf ("%$-40s : %8d\n", 'Average Words Per Line',
(Swords / $iterator->getReturn()));

echo str_repeat('-', 52) . PHP EOL;

We then end the catch block:

} catch (Throwable $e)
echo S$Se->getMessage() ;

}

The expected output (too large to show here!) shows us that there are 566,095 words in the
project Gutenberg version of War and Peace. Also, we find the average number of words per
line is eight.

Uploading a spreadsheet into a database

Although PHP does not have any direct capability to read a specific spreadsheet format (that
is, XLSX, ODS, and so on), it does have the ability to read (CSV Comma Separated Values)
files. Accordingly, in order to process customer spreadsheets, you will need to either ask them
to furnish their files in CSV format, or you will need to perform the conversion yourself.

Getting ready...

When uploading a spreadsheet (that is, a CSV file) into a database, there are three major
considerations:

» Iterating through a (potentially) massive file
» Extracting each spreadsheet row into a PHP array
» Inserting the PHP array into the database

=)

Chapter 2

Massive file iteration will be handled using the preceding recipe. We will use the fgetcsv ()
function to convert a CSV row into a PHP array. Finally, we will use the (PDO PHP Data
Objects) class to make a database connection and perform the insert.

How to do it...

1. First, we define a Application\Database\Connection class that creates a PDO
instance based on a set of parameters supplied to the constructor:

<?php
namespace Application\Database;

use Exception;
use PDO;

class Connection

const ERROR_UNABLE = 'ERROR: Unable to create database
connection';
public $pdo;

public function _ construct (array $config)

{

if (!isset (Sconfig['driver']l)) {
Smessage = _ METHOD . ' : ' . self::ERROR UNABLE
PHP EOL;

throw new Exception($message) ;

}

Sdsn = Sconfig['driver']

':host=' . S$config['host']
' ;dbname=' . S$config['dbname'] ;
try {

Sthis->pdo = new PDO ($dsn,

Sconfig['user'],

Sconfig['password'],

[PDO: :ATTR_ERRMODE => sconfig['errmode']]) ;
} catch (PDOException $e)

error_ log ($e->getMessage()) ;

Using PHP 7 High Performance Features

2. We then incorporate an instance of Application\Iterator\LargeFile. We add
a new method to this class that is designed to iterate through CSV files:

protected function filelIteratorCsv ()
{
Scount = 0;
while (!$this->file->eof()) {
yield $this->file->fgetcsv() ;
Scount++;

}

return S$count;

}
3. We also need to add Csv to the list of allowed iterator methods:

const ERROR_UNABLE = 'ERROR: Unable to open file';
const ERROR TYPE = 'ERROR: Type must be "ByLength",
"ByLine" or "Csv"';

protected s$file;
protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

First we define a config file,/path/to/source/config/db.config.php, that contains
database connection parameters:

<?php

return [
'driver' => 'mysqgl',
'host!' => 'localhost',
'dbname'’ => 'php7cookbook"',
'user!' => 'cook',

'password' => 'book',
'errmode'’ => PDO: :ERRMODE_ EXCEPTION,
1;

Next, we take advantage of the autoloading class defined in Chapter 1, Building a Foundation,
to obtain an instance of Application\Database\Connection and Application\
Iterator\LargeFile, defining a calling program, chap 02 uploading csv_to
database.php:

define ('DB_CONFIG FILE', '/../data/config/db.config.php');
define('CSV_FILE', '/../data/files/prospects.csv');

require _DIR_ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

=

Chapter 2

After that, wesetupatry {...} catch () {...} block, which catches Throwable.
This allows us to catch both exceptions and errors:

try {
// code goes here

} catch (Throwable $e)
echo S$Se->getMessage() ;

}

Insidethe try {...} catch () {...} block we get an instance of the connection and
large file iterator classes:

$connection = new Application\Database\Connection (

include _ DIR__ . DB CONFIG_FILE);

S$iterator = (new Application\Iterator\LargeFile(_ DIR . CSV_FILE))
->getIterator('Csv');

We then take advantage of the PDO prepare/execute functionality. The SQL for the prepared
statement uses ? to represent values that are supplied in a loop:

$sgl = 'INSERT INTO ~“prospects™ '
' (7idY, “first_name”, “last name”, “address”, “city”, “state_
province™, '
' “postal_code”, “phone”, “country”, “email”, “status”, “budget ",
“last _updated™)
' VALUES (?,?,?,?,?,?2,?,?2,?,?2,?,?2,?)"';

$statement = $connection-s>pdo->prepare($sql) ;

We then use foreach () to loop through the file iterator. Each yield statement produces

an array of values that represents a row in the database. We can then use these values with
PDOStatement: :execute () to execute the prepared statement, inserting the row of values
into the database:

foreach ($iterator as $row) {
echo implode(',', $row) . PHP_EOL;
$statement->execute ($row) ;

}

You can then examine the database to verify that the data was successfully inserted.

Recursive directory iterator

Getting a list of files in a directory is extremely easy. Traditionally, developers have used the
glob () function for this purpose. To recursively get a list of all files and directories from

a specific point in a directory tree is more problematic. This recipe takes advantage of an
(SPL Standard PHP Library) class RecursiveDirectoryIterator, which will serve this
purpose admirably.

@]

Using PHP 7 High Performance Features

What this class does is to parse the directory tree, finding the first child, then it follows the
branches, until there are no more children, and then it stops! Unfortunately this is not what
we want. Somehow we need to get the RecursiveDirectoryIterator to continue
parsing every tree and branch, from a given starting point, until there are no more files or
directories. It so happens there is a marvelous class, RecursivelteratorIterator,

that does exactly that. By wrapping RecursiveDirectoryIterator inside
RecursivelteratorIterator, we accomplish a complete traversal of any directory tree.

. Warning!

)

~ Be very careful where you start the filesystem traversal. If you start at
the root directory, you could end up crashing your server as the recursion
process will not stop until all files and directories have been located!

How to do it...

1. First, we define a Application\Iterator\Directory class that defines the
appropriate properties and constants and uses external classes:

namespace Application\Iterator;

use Exception;

use RecursiveDirectoryIterator;
use RecursivelteratorIterator;
use RecursiveRegexIterator;

use RegexIterator;

class Directory

{

const ERROR_UNABLE = 'ERROR: Unable to read directory';

protected $path;
protected $rdi;
// recursive directory iterator

2. The constructor creates a RecursiveDirectoryIterator instance inside
RecursivelteratorIterator based on a directory path:

public function __ construct ($path)

{

try {
Sthis->rdi = new RecursivelteratorIterator (

new RecursiveDirectoryIterator ($path),

Chapter 2

RecursivelteratorIterator::SELF FIRST) ;
} catch (\Throwable $e) {
$message = _ METHOD _ . ' : ' . self::ERROR_UNABLE . PHP EOL;
S$message .= strip tags($path) . PHP_EOL;
echo Smessage;
exit;

}

Next, we decide what to do with the iteration. One possibility is to mimic the output of
the Linux1s -1 -Rcommand. Notice that we use the yield keyword, effectively
making this method into a Generator, which can then be called from the outside.
Each object produced by the directory iteration is an SPL FileInfo object, which
can give us useful information on the file. Here is how this method might look:

public function ls($pattern = NULL)

{

SouterIterator = ($Spattern)
? Sthis->regex($this->rdi, S$pattern)
Sthis->rdi;

foreach ($outerIterator as $obj) {
if ($obj->isDir()) {

if ($obj->getFileName() == '..') {
continue;
}
$line = $obj->getPath() . PHP_ EOL;
} else {
$line = sprintf ('%4s %1d %4s %4s %10d %12s %-40s' . PHP EOL,
substr (sprintf ('%o', S$obj->getPerms()), -4),
($obj->getType() == 'file') ? 1 : 2,

(
Sobj->getOwner (),
$Sobj->getGroup (),
$Sobj->getSize(),
date('M d Y H:i', $obj->getATime()),
$obj->getFileName ()) ;

}

yield $line;

}

Using PHP 7 High Performance Features

4. You may have noticed that the method call includes a file pattern. We need a way
of filtering the recursion to only include files that match. There is another iterator
available from the SPL that perfectly suits this need: the RegexIterator class:

protected function regex($iterator, $pattern)

{

A

Spattern = '!7.' . str replace('.', '\\.', $pattern) . 'S!';
return new RegexIterator ($iterator, $pattern);

!
5. Finally, here is another method, but this time we will mimic the dir /s command:

public function dir ($pattern = NULL)

{

SouterIterator = ($pattern)
? Sthis->regex($this->rdi, $pattern)
Sthis->rdi;

foreach ($outerIterator as $name => $obj) {
yield $name . PHP_EOL;

}
}

First of all, we take advantage of the autoloading class defined in Chapter 1, Building a
Foundation, to obtain an instance of Application\Iterator\Directory, defininga
calling program, chap 02 recursive directory iterator.php:

define ('EXAMPLE PATH', realpath(DIR . '/../"));
require _ DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

$directory = new Application\Iterator\Directory (EXAMPLE PATH) ;

Then,inatry {...} catch () {...} block, we make a call to our two methods, using
an example directory path:
try {
echo 'Mimics "ls -1 -R" ' . PHP EOL;

foreach ($directory->ls('*.php') as $info)
echo $info;

echo 'Mimics "dir /s" ' . PHP_EOL;
foreach ($directory->dir('*.php') as $info)
echo $info;

=

} catch (Throwable $e)
echo S$Se->getMessage() ;

}

The output for 1s () will look something like this:

Chapter 2

aed@aed: ~/Repos/php7 -recipes/source/chapter02

Mimics "1s -1 -R"

0664 1 1000 1000 20 Dec 31 2015 22:59 info.php

0664 1 1000 1000 438308 Jan 17 2016 16:40 js.php

0664 1 1000 1000 438308 Jan 17 2016 16:39 js.php

0664 1 1000 1000 1334 Jan 16 2016 22:30 City.php

0664 1 1000 1000 671 Jan 16 2016 22:30 Dispatch.php
0664 1 1000 1000 264 Jan 18 2016 23:24 Tree.php

0664 1 1000 1000 154 Jan 18 2016 23:27 Node.php

0664 1 1000 1000 577 Jan 17 2016 16:40 Manager.php
0664 1 1000 1000 117 Jan 17 2016 15:20 Listener.php
0664 1 1000 1000 156 Jan 11 2016 06:01 TestClass.php
0664 1 1000 1000 189 Jan 11 2016 06:01 Class.php
0664 1 1000 1000 2687 Jan 23 2016 20:20 Directory.php
0664 1 1000 1000 1799 Jan 23 2016 03:31 LargeFile.php
0664 1 1000 1000 215 Jan 10 2016 15:19 XmlPath.php
0664 1 1000 1000 4124 Jan 11 2016 06:01 Tree.php

0664 1 1000 1000 8837 Jan 22 2016 20:11 Convert.php
0664 1 1000 1000 6003 Jan 10 2016 15:56 WebTree.php

The output for dir () will appear as follows:

@@ aed@aed: ~/Repos/php7 _recipes/source/chapter02
Mimics "dir /s"
/home/aed/Repos/php7_recipes/info.php
/home/aed/Repos/php7 recipes/reference/PHP rfc uniform variable syntax files/js.php
/home/aed/Repos/php7_recipes/reference/PHP_rfc_abstract_syntax_tree_files/js.php
/home/aed/Repos/php7 recipes/Application/Mvc/City.php
/home/aed/Repos/php7_recipes/Application/Mvc/Dispatch.php
/home/aed/Repos/php7_recipes/Application/Generic/Tree.php
/home/aed/Repos/php7_recipes/Application/Generic/Node.php
/home/aed/Repos/php7_recipes/Application/Event/Manager.php
/home/aed/Repos/php7_recipes/Application/Event/Listener.php
/home/aed/Repos/php7_recipes/Application/Test/TestClass.php
/home/aed/Repos/php7_recipes/Application/Test/Class.php
/home/aed/Repos/php7_recipes/Application/Iterator/Directory.php
/home/aed/Repos/php7 recipes/Application/Iterator/LargeFile.php
/home/aed/Repos/php7_recipes/Application/Parse/XmlPath.php
/home/aed/Repos/php7 recipes/Application/Parse/Tree.php
/home/aed/Repos/php7_recipes/Application/Parse/Convert.php 3
/home/aed/Repos/php7 recipes/Application/Parse/WebTree.php

-

Working with PHP
Functions

In this chapter we will cover the following topics:

» Developing functions

» Hinting at data types

» Using return value data typing
» Using iterators

» Writing your own iterator using generators

Introduction

In this chapter we will consider recipes that take advantage of PHP's functional programming
capabilities. Functional, or procedural, programming is the traditional way PHP code was written
prior to the introduction of the first implementation of object-oriented programming (OOP)

in PHP version 4. Functional programming is a programming paradigm—a style of building the
structure and elements of computer programs—that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable data. This file can then be
included in any future scripts, allowing the functions that are defined to be called at will.

Working with PHP Functions

Developing functions

The most difficult aspect is deciding how to break up programming logic into functions. The
mechanics of developing a function in PHP, on the other hand, are quite easy. Just use the
function keyword, give it a name, and follow it with parentheses.

How to do it...

1. The code itself goes inside curly braces as follows:

function someName ($parameter)
{
Sresult = 'INIT';
// one or more statements which do something
// to affect S$result
Sresult .= ' and also ' . S$Sparameter;
return Sresult;

}

2. You can define one or more parameters. To make one of them optional, simply assign
a default value. If you are not sure what default value to assign, use NULL:

function someOtherName ($requiredParam, $optionalParam = NULL)

{
Sresult = 0;
Sresult += S$requiredParam;
Sresult += S$SoptionalParam ?? O0;
return Sresult;

You cannot redefine functions. The only exception is when duplicate functions
are defined in separate namespaces. This definition would generate an error:
function someTest ()

{

return 'TEST';
i }

function someTest (Sa)

{

return 'TEST:' . Sa;

5]

Chapter 3

3.

If you don't know how many parameters will be supplied to your function, or if you
want to allow for an infinite number of parameters, use . . . followed by a variable
name. All parameters supplied will appear as an array in the variable:

function someInfinite(...$params)
// any params passed go into an array S$params
return var export ($params, TRUE) ;

}

A function can call itself. This is referred to as recursion. The following function
performs a recursive directory scan:

function someDirScan ($dir)
{
// uses "static" to retain value of $list
static $list = array();
// get a list of files and directories for this path
$list = glob($dir . DIRECTORY SEPARATOR . '*');
// loop through
foreach ($list as $item) ({
if (is_dir(Sitem)) {
$list = array merge($list, someDirScan($item)) ;

}

return $Slist;

Usage of the static keyword inside functions has been in the language
for more than 12 years. What static does is to initialize the variable once
(that is, at the time static is declared), and then retain the value between
L function calls within the same request.

If you need to retain the value of a variable between HTTP requests, make
sure the PHP session has been started and store the value in $_SESSION.

Functions are constrained when defined within a PHP namespace. This characteristic
can be used to your advantage to provide additional logical separation between
libraries of functions. In order to anchor the namespace, you need to add the use
keyword. The following examples are placed in separate namespaces. Notice that
even though the function name is the same, there is no conflict as they are not visible
to each other.

Working with PHP Functions

6. We define someFunction () in namespace Alpha. We save this to a separate PHP
file, chap 03 developing functions namespace alpha.php:

<?php
namespace Alpha;

function someFunction ()

{

echo NAMESPACE . ':' . _ FUNCTION _ . PHP EOL;

}

7. We then define someFunction () in namespace Beta. We save this to a separate
PHP file, chap 03 developing functions namespace beta.php:

<?php
namespace Beta;

function someFunction ()

{

echo NAMESPACE . ':' . _ FUNCTION _ . PHP EOL;

}

8. We can then call someFunction () by prefixing the function name with the
namespace name:

include (_ DIR__ . DIRECTORY SEPARATOR
'chap 03_developing functions namespace_alpha.php') ;
include (_ DIR__ . DIRECTORY SEPARATOR

'chap 03_developing functions namespace_beta.php');
echo Alpha\someFunction/() ;
echo Betal\someFunction() ;

Best practice

It is considered best practice to place function libraries (and classes
too!) into separate files: one file per namespace, and one class or
function library per file.

It is possible to define many classes or function libraries in a single
namespace. The only reason you would develop into a separate
namespace is if you want to foster logical separation of functionality.

Chapter 3

It is considered best practice to place all logically related functions into a separate PHP file.
Create afile called chap 03 developing functions library.php and place these
functions (described previously) inside:

» someName ()

» someOtherName ()

» gsomeInfinite()

» someDirScan ()

» someTypeHint ()

This file is then included in the code that uses these functions.

include (_ DIR . DIRECTORY SEPARATOR . 'chap 03 developing
functions library.php');

To call the someName () function, use the name and supply the parameter.
echo someName ('TEST') ; // returns "INIT and also TEST"
You can call the someOtherName () function using one or two parameters, as shown here:

echo someOtherName (1) ; // returns 1
echo someOtherName (1, 1); // returns 2

The someInfinite () function accepts an infinite (or variable) number of parameters.
Here are a couple of examples calling this function:

echo someInfinite (1, 2, 3);
echo PHP EOL;
echo someInfinite(22.22, 'A', ['a' => 1, 'b' => 2]);

s

Working with PHP Functions

The output looks like this:

@@ acd@aed: ~/Repos/php7_re:

OUTPUT FROM: someName()

array (
0 =>1,
1=>2,
2 =>3,

1=>"A",

OUTPUT FROM: someOtherName()

OUTPUT FROM: someInfinite()

0 => 22.219999999999999,

We can call somelnfinite() as follows:

foreach (someDirScan(DIR

echo Sitem

PHP_EOL;

The output looks like this:

OUTPUT FROM: someDirScan()

/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapterf3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.
/home/aed/Repos/php7_recipes/source/chapter@3/.

DIRECTORY SEPARATOR . '..') as $item)

./Application

./Application/Autoload
./Application/Autoload/Loader.php
./Application/Database
./Application/Database/BasicOps.php
./Application/Database/Connection.php
./Application/Entity
./Application/Entity/Customer.php
./Application/Event
./Application/Event/Listener.php
./Application/Event/Manager.php
./Application/Generic
./Application/Generic/Node.php
./Application/Generic/Tree.php
./Application/Iterator
./Application/Iterator/Directory.php
./Application/Iterator/LargeFile.php
./Application/Mvc
./Application/Mvc/City.php
./Application/Mvc/Dispatch.php
./Application/Parse
./Application/Parse/Convert.php
./Application/Parse/Tree.php
./Application/Parse/WebTree.php
./Application/Parse/XmlPath.php

{

&)

Chapter 3

Hinting at data types

In many cases when developing functions, you might reuse the same library of functions in
other projects. Also, if you work with a team, your code might be used by other developers. In
order to control the use of your code, it might be appropriate to make use of a type hint. This
involves specifying the data type your function expects for that particular parameter.

How to do it...

1. Parameters in functions can be prefixed by a type hint. The following type hints are
available in both PHP 5 and PHP 7:

o Array
o Class
o Callable

2. If acall to the function is made, and the wrong parameter type is passed, a
TypeError is thrown. The following example requires an array, an instance of
DateTime, and an anonymous function:

function someTypeHint (Array $a, DateTime $t, Callable sc)

{

Smessage = '';

$message .= 'Array Count: ' . count($a) . PHP_ EOL;
$message .= 'Date: ' . $t->format('Y-m-d') . PHP EOL;
$message .= 'Callable Return: ' . $c() . PHP_EOL;

return Smessage;

You don't have to provide a type hint for every single parameter. Use this
M technique only where supplying a different data type would have a negative
Q effect on the processing of your function. As an example, if your function
uses a foreach () loop, if you do not supply an array, or something which
implements Traversable, an error will be generated.

3. InPHP 7, presuming the appropriate declare () directive is made, scalar (that
is, integer, float, boolean, and string) type hints are allowed. Another function
demonstrates how this is accomplished. At the top of the code library file which
contains the function in which you wish to use scalar type hinting, add this
declare () directive just after the opening PHP tag:

declare (strict types=1) ;

[ei-

Working with PHP Functions

4. Now you can define a function that includes scalar type hints:

function someScalarHint (bool $b, int $i, float $f, string $s)

{
return sprintf ("\n%20s : %$5s\n%20s : %$5d\n%20s "
": %5.2f\n%20s : %20s\n\n",

'Boolean', ($b ? 'TRUE' : 'FALSE'),
'Integer', $i,

'Float', SE,

'String', $s);

}

5. In PHP 7, assuming strict type hinting has been declared, boolean type hinting
works a bit differently from the other three scalar types (that is, integer, float, and
string). You can supply any scalar as an argument and no TypeError will be thrown!
However, the incoming value will automatically be converted to the boolean data
type once passed into the function. If you pass any data type other than scalar (that
is, array or object) a TypeError will be thrown. Here is an example of a function
that defines a boolean data type. Note that the return value will be automatically
converted to a boolean:

function someBoolHint (bool $b)

{

return S$b;

}

First of all, you can place the three functions, someTypeHint (), someScalarHint (), and
someBoolHint (), into a separate file to be included. For this example, we will name the
file chap 03 developing functions type hints library.php. Don't forget to add
declare (strict_types=1) atthe top!

In our calling code, you would then include the file:

include (_ DIR__ . DIRECTORY_SEPARATOR . 'chap_03_developing_
functions_type hints library.php');

To test someTypeHint (), call the function twice, once with the correct data types, and the
second time with incorrect types. This will throw a TypeError, however, so you will need to
wrap the functioncallsinatry { ... } catch () { ...} block:

try {
$callable = function () { return 'Callback Return'; };

echo someTypeHint ([1,2,3], new DateTime (), $callable);
echo someTypeHint ('A', 'B', 'C');

Chapter 3

} catch (TypeError $e)

}

echo S$Se->getMessage() ;
echo PHP_ EOL;

As you can see from the output shown at the end of this sub-section, when passing the correct
data types there is no problem. When passing the incorrect types, a TypeError is thrown.

In PHP 7, certain errors have been converted into an Exrror class, which
is processed in a somewhat similar manner to an Exception. This
means you can catch an Error. TypeError is a specific descendant of
Error that is thrown when incorrect data types are passed to functions.

All PHP 7 Error classes implement the Throwable interface, as does
the Exception class. If you are not sure if you need to catch an Exrror
or an Exception, you can add a block which catches Throwable.

Next you can test someScalarHint (), calling it twice with correct and incorrect values,

wrapping the callsina try {

try {

echo someScalarHint (TRUE, 11,
echo someScalarHint ('A', 'B',

} catch (TypeError $e)

}

echo $e->getMessage() ;

} catch () { ...} block:

22.22, 'This is a string');
ICII IDI);

As expected, the first call to the function works, and the second throws a TypeError.

When type hinting for boolean values, any scalar value passed will not cause a TypeError
to be thrown! Instead, the value will be interpreted into its boolean equivalent. If you
subsequently return this value, the data type will be changed to boolean.

To test this, call the someBoolHint () function defined previously, and pass any scalar value
in as an argument. The var_dump () method reveals that the data type is always boolean:

try {

// positive results
Sb = someBooleanHint (TRUE) ;
$1 = someBooleanHint (11) ;
$f = someBooleanHint (

Ss = someBooleanHint ('X') ;
var_dump ($b, $i, $f, $s);
// negative results

Sb = someBooleanHint (FALSE) ;

$1 = someBooleanHint (0) ;

22.22);

Working with PHP Functions

Sf = someBooleanHint (0.0) ;

$s = someBooleanHint ('');

var dump ($b, $i, $f, $s);
} catch (TypeError $e)

echo S$Se->getMessage() ;

}

If you now try the same function call, but pass in a non-scalar data type, a TypeError

is thrown:

try {
Sa = someBoolHint ([1,2,3]);
var_dump (Sa) ;

} catch (TypeError $e)
echo S$Se->getMessage() ;

}

try {
So = someBoolHint (new stdClass()) ;
var_dump (So) ;

} catch (TypeError $e)
echo S$Se->getMessage() ;

}

Here is the overall output:

O Terminal

lArgument 2 passed to someScalarHint() must be of the type integer, string given,
called in /home/ed/Desktop/Repos/php7_recipes/source/chapter83/chap_03_developi
ng_functions_with_hints.php on line 25

someBoolHint() using scalars

bool(true)

bool(true)

bool(true)

bool(true)

bool(false)
bool(false)
bool(false)
bool(false)

someBoolHint() using array

lArgument 1 passed to someBoolHint() must be of the type boolean, array given, ca
lled in /home/ed/Desktop/Repos/php7_recipes/source/chaptere3/chap_03_developing_
functions_with_hints.php on line 56

someBoolHint() using object

IArgument 1 passed to someBoolHint() must be of the type boolean, object given, c
alled in fhome/ed/Desktop/Repos/php7_recipes/source/chapter®3/chap_83_developing
| functions_with_hints.php on line &7

(program exited with code: @)
Press return to continue k

=

Chapter 3

See also

PHP 7.1 introduced a new type hint iterable which allows arrays, Iterators or
Generators as arguments. See this for more information:

» https://wiki.php.net/rfc/iterable

For a background discussion on the rationale behind the implementation of scalar type
hinting, have a look at this article:

» https://wiki.php.net/rfc/scalar_type hints v5

Using return value data typing

PHP 7 allows you to specify a data type for the return value of a function. Unlike scalar type
hinting, however, you don't need to add any special declarations.

How to do it...

1. This example shows you how to assign a data type to a function return value. To
assign a return data type, first define the function as you would normally. After the
closing parenthesis, add a space, followed by the data type and a colon:

function returnsString(DateTime $date, S$format) : string

{

return S$Sdate->format ($Sformat) ;

}

All you need to do is to change string to ?string. This allows the

4 PHP 7.1 introduced a variation on return data typing called nullable types.
! I function to return either string or NULL.

2. Anything returned by the function, regardless of its data type inside the function, will
be converted to the declared data type as a return value. Notice, in this example,
the values of $a, $b, and $c are added together to produce a single sum, which is
returned. Normally you would expect the return value to be a numeric data type.

In this case, however, the return data type is declared as string, which overrides
PHP's type-juggling process:

function convertsToString(Sa, Sb, S$c) : string

return $Sa + Sb + Sc;

}

]

Working with PHP Functions

3. You can also assign classes as a return data type. In this example, we assign a return
type of DateTime, part of the PHP DateTime extension:

function makesDateTime ($year, $month, $day) : DateTime
{

$date = new DateTime() ;

Sdate->setDate ($year, S$month, $day);

return $date;

The makesDateTime () function would be a potential candidate for
scalar type hinting. If Syear, Smonth, or $day are not integers, a
Warning is generated when setDate () is called. If you use scalar type
%»\ hinting, and the wrong data types are passed, a TypeError is thrown.
g Although it really doesn't matter whether a warning is generated or a
TypeError is thrown, at least the TypeError will cause the errant
developer who is misusing your code to sit up and take notice!

4. |If a function has a return data type, and you return the wrong data type in your
function code, a TypeError will be thrown at runtime. This function assigns a return
type of DateTime, but returns a string instead. A TypeError will be thrown, but not
until runtime, when the PHP engine detects the discrepancy:

function wrongDateTime ($year, Smonth, S$day) : DateTime

{

return date($year . '-' . Smonth . '-' . S$day);

}

If the return data type class is not one of the built-in PHP classes (that is,
a class that is part of the SPL), you will need to make sure the class has
e been auto-loaded, or included.

First, place the functions mentioned previously into a library file called

chap 03 developing functions return types library.php. This file needs to be
included in the chap 03 developing functions return types.php script that calls
these functions:

include (__DIR__ . '/chap 03 developing functions return types
library.php') ;

(&)

Chapter 3

Now you can call returnsString (), supplying a DateTime instance and a format string:

Sdate = new DateTime () ;
$format = '1l, d M Y';
Snow = returnsString($date, S$format) ;

echo $now . PHP_EOL;
var_dump ($now) ;

As expected, the output is a string:

@ ® aed@aed: ~/Repos/php7_recipes/source/chapter03
aed@aed:~/Repos/php7 recipes/source/chapter03$ php chap 03 developing functions with hints.php

returnsString()

Sunday, 31 Jan 2016

string(19) "Sunday, 31 Jan 2016"

aed@aed:~/Repos/php7 _recipes/source/chapter@3s k

Now you can call convertsToString () and supply three integers as arguments.
Notice that the return type is string:

echo "\nconvertsToString()\n";
var_dump (convertsToString (2, 3, 4));

@® aed@aed: ~/Repos/php7_recipes/source/chapter03
aed@aed:~/Repos/php7_recipes/source/chapter@3$ php chap_03_developing_functions_with_hints.php

convertsToString()
string(l) "9"
aed@aed:~/Repos/php7_recipes/source/chapter03s k

To demonstrate that, you can assign a class as a return value, call makesDateTime () with
three integer parameters:

echo "\nmakesDateTime ()\n";
sd = makesDateTime (2015, 11, 21);
var_dump ($d) ;

@@ aed@aed: ~/Repos/php7_recipes/source/chapter03
aed@aed:~/Repos/php7 recipes/source/chapter3s php chap 03 developing functions with hints.php

makesDateTime()
class DateTime#l (3) {
public $date =>
string(26) "2015-11-21 18:32:25.000000"
public $timezone_type =>
int(3) k
public $timezone =>
string(13) "Europe/London"

}
aed@aed:~/Repos/php7_recipes/source/chapter@3s

&7}

Working with PHP Functions
Finally, call wrongDateTime () with three integer parameters:

try {
$e = wrongDateTime (2015, 11, 21);
var_ dump ($e) ;

} catch (TypeError Se) ({
echo S$e->getMessage() ;

}

Notice that a TypeError is thrown at runtime:

@ @® aed@aed: ~/Repos/php7_rec fsource/chapterO3 \
aed@aed:~/Repos/php7_recipes/source/chapter®3$ php chap_03 developing_functions_with_hints.php

wrongDateTime()

PHP TypeError: Return value of wrongDateTime() must be an instance of DateTime, string returne
d in /home/aed/Repos/php7_recipes/source/chapter®3/chap_ 03 developing_ functions_return_types_1i
brary.php on line 33

PHP Stack trace:

PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapter83/chap_03_developing_functions_wi
th_hints.php:0@

PHP 2. wrongDateTime() /home/aed/Repos/php7_recipes/source/chapter@3/chap_03_developing_funct
ions with hints.php:30

TypeError: Return value of wrongDateTime() must be an instance of DateTime, string returned in
/home/aed/Repos/php7 recipes/source/chapter03/chap 03 developing functions return types library
.php on line 33

Call Stack:

0.0003 360880 1. {main}() /home/aed/Repos/php7_recipes/source/chapter@3/chap_03_devel
oping_functions _with_hints.php:0

0.0004 365616 2. wrongDateTime() /home/aed/Repos/php7_recipes/source/chapter®3/chap_0

3 _developing functions_with_hints.php:30

Return value of wrongDateTime() must be an instance of DateTime, string returnedaed@aed:~/Repos
/php7_recipes/source/chapter03$

PHP 7.1 adds a new return value type, void. This is used when you do not wish to return any
value from the function. For more information, please refer to https://wiki.php.net/
rfc/void_return type.

See also

For more information on return type declarations, see the following articles:

» http://php.net/manual/en/functions.arguments.php#functions.
arguments.type-declaration.strict

» https://wiki.php.net/rfc/return types

&)

Chapter 3

For information on nullable types, please refer to this article:

» https://wiki.php.net/rfc/nullable types

Using iterators

An iterator is a special type of class that allows you to traverse a container or list. The
keyword here is traverse. What this means is that the iterator provides the means to go
through a list, but it does not perform the traversal itself.

The SPL provides a rich assortment of generic and specialized iterators designed for different
contexts. The ArrayIterator, for example, is designed to allow object-oriented traversal of
arrays. The DirectoryIterator is designed for filesystem scanning.

Certain SPL iterators are designed to work with others, and add value. Examples include
FilterIterator and LimitIterator. The former gives you the ability to remove unwanted
values from the parent iterator. The latter provides a pagination capability whereby you can
designate how many items to traverse along with an offset that determines where to start.

Finally, there are a series of recursive iterators, which allow you to repeatedly call the parent
iterator. An example would be RecursiveDirectoryIterator which scans a directory tree
all the way from a starting point to the last possible subdirectory.

How to do it...

1. We first examine the ArrayIterator class. It's extremely easy to use. All you need
to do is to supply an array as an argument to the constructor. After that you can use
any of the methods that are standard to all SPL-based iterators, such as current (),
next (), and so on.

Siterator = new Arraylterator (Sarray) ;

Using ArrayIterator converts a standard PHP array into an
iterator. In a certain sense, this provides a bridge between procedural
’ programming and OOP.

As an example of a practical use for the iterator, have a look at this example. It takes
an iterator and produces a series of HTML and <11 > tags:

function htmlList (Siterator)

{

Soutput = '<uls>';
while ($value = $iterator-scurrent()) {
Soutput .= '' . $value . '</1li>';

$iterator-s>next () ;

[}

Working with PHP Functions

3.

1
Soutput .= '</uls>"';
return S$output;

}

Alternatively, you can simply wrap the ArrayIterator instance into a simple
foreach () loop:

function htmlList (Siterator)

{

Soutput = '<uls>';
foreach ($iterator as $value)
Soutput .= '<1li>' . $value . '</1li>';
}
Soutput .= '</uls>"';

return S$output;

}

CallbackFilterIterator is a great way to add value to any existing iterator you
might be using. It allows you to wrap any existing iterator and screen the output. In
this example we'll define fetchCountryName (), which iterates through a database
query which produces a list of country names. First, we define an ArrayIterator
instance from a query that uses the Application\Database\Connection class
defined in Chapter 1, Building a Foundation:

function fetchCountryName (sgl, Sconnection)
{
Siterator = new ArrayIlterator();
$stmt = $connection->pdo->query($sqgl) ;
while ($Srow = $stmt->fetch (PDO::FETCH ASSOC)) {
Siterator->append(Srow['name']) ;

}

return Siterator;

}

Next, we define a filter method, nameFilterIterator (), which accepts a partial
country name as an argument along with the ArrayIterator instance:

function nameFilterIterator ($SinnerIterator, S$Sname)
{
if (!$name) return SinnerIterator;
Sname = trim(Sname) ;
Siterator = new CallbackFilterIterator (SinnerIterator,
function ($current, $key, $iterator) use ($name)
$pattern = '/' . Sname . '/i';

[

Chapter 3

6.

7.

8.

9.

return (bool) preg match($pattern, S$current);
}
) ;
return Siterator;

}

LimitIterator adds a basic pagination aspect to your applications. To use

this iterator, you only need to supply the parent iterator, an offset, and a limit.
LimitIterator will then only produce a subset of the entire data set starting at the
offset. Taking the same example mentioned in step 2, we'll paginate the results coming
from our database query. We can do this quite simply by wrapping the iterator produced
by the fetchCountryName () method inside a LimitIterator instance:

Spagination = new LimitIterator (fetchCountryName (
$sgl, Sconnection), $offset, $limit);

Be careful when using LimitIterator. It needs to have the entire data

set in memory in order to effect a limit. Accordingly, this would not be a

good tool to use when iterating through large data sets.

Iterators can be stacked. In this simple example, an ArrayIterator is processed
bya FilterIterator, whichinturnis limited by a LimitIterator. First we set
up an instance of ArrayIterator:

$i = new Arraylterator(Sa);

Next, we plug the ArrayIterator into a FilterIterator instance. Note that

we are using the new PHP 7 anonymous class feature. In this case the anonymous
class extends FilterIterator and overrides the accept () method, allowing only
letters with even-numbered ASCII codes:

$f = new class ($1i) extends FilterIterator {
public function accept ()

{

Scurrent = Sthis->current () ;
return ! (ord($Scurrent) & 1);

}
bi

Finally, we supply the FilterIterator instance as an argumentto LimitIterator,
and provide an offset (2 in this example) and a limit (6 in this example):

$1 = new LimitIterator(s$f, 2, 6);

7}

Working with PHP Functions
10.

11.

We could then define a simple function to display output, and call each iterator in turn
to see the results on a simple array produced by range ('A', 'Z'):

function showElements ($Siterator)
foreach($iterator as $item) echo $item . ' ';
echo PHP_EOL;

}

Sa range ('A', 'Z');
$i = new Arraylterator($a);
showElements ($1i) ;

Here is a variation that produces every other letter by stackinga FilterIterator
on top of an ArrayIterator:

$f = new class ($i) extends FilterIterator ({
public function accept ()
{
Scurrent = $this->current() ;
return ! (ord($Scurrent) & 1);
}
Vi

showElements ($f) ;

12. And here's yet another variation that only produces ¥ H J L N P, which

demonstrates a LimitIterator that consumes a FilterIterator, which in turn
consumes an ArrayIterator. The output of these three examples is as follows:

$1 = new LimitIterator($f, 2, 6);
showElements ($1) ;

@@ Terminal

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Arraylterator + FilterIterator
BDFHJLNPRTVXZ

Arraylterator + FilterIterator + LimitIterator
FHJILNP

(program exited with code: ©)
Press return to continue

13.

14.

15.

16.

17.

Chapter 3

Returning to our example that produces a list of country names, suppose, instead
of only the country name, we wished to iterate through a multi-dimensional array
consisting of country names and ISO codes. The simple iterators mentioned so far
would not be sufficient. Instead, we will use what are known as recursive iterators.

First of all, we need to define a method that uses the database connection class
mentioned previously to pull all columns from the database. As before, we return an
ArrayIterator instance populated with data from the query:

function fetchAllAssoc(sgl, SSconnection)
{
Siterator = new ArrayIterator();
$stmt = $connection->pdo->query($sql) ;
while ($row = $stmt->fetch(PDO::FETCH ASSOC)) {
Siterator-sappend (Srow) ;

}

return S$iterator;

}

At first glance one would be tempted to simply wrap a standard ArrayIterator
instance inside RecursiveArrayIterator. Unfortunately, this approach only
performs a shallow iteration, and doesn't give us what we want: an iteration through
all elements of the multi-dimensional array that is returned from a database query:

Siterator = fetchAllAssoc($sqgl, $connection) ;
$shallow = new RecursiveArraylterator($iterator) ;

Although this returns an iteration where each item represents a row from the
database query, in this case we wish to provide an iteration that will iterate through
all columns of all rows returned by the query. In order to accomplish this, we'll need to
roll out the big brass by way of a RecursivelteratorIterator.

Monty Python fans will revel in the rich irony of this class name as it brings back fond
memories of the The Department of Redundancy Department. Fittingly, this class
causes our old friend the RecursiveArrayIterator class to work overtime and
perform a deep iteration through all levels of the array:

Sdeep = new RecursivelteratorIterator ($shallow) ;

As a practical example, you can develop a test script which implements filtering and
pagination using iterators. For this illustration, you could call the chap 03 developing
functions filtered and paginated.php test code file.

First of all, following best practices, place the functions described above into an include file
called chap 03 developing functions iterators library.php. In the test script,
be sure to include this file.

(75}

Working with PHP Functions

The data source is a table called iso_country codes, which contains ISO2, ISO3, and
country names. The database connection could be in a config/db.config.php file. You
could also include the Application\Database\Connection class discussed in the
previous chapter:

define ('DB_CONFIG FILE', '/../config/db.config.php');

define ('ITEMS PER_PAGE', [5, 10, 15, 20]);

include (_ DIR__ . '/chap_03_developing functions_ iterators_library.
php') ;

include (_DIR__ . '/../Rpplication/Database/Connection.php') ;

In PHP 7 you can define constants as arrays. In this example,
% ITEMS PER PAGE was defined as an array, and used to generate
g an HTML SELECT element.

Next, you can process input parameters for the country name and the number of items
per page. The current page number will start at 0 and can be incremented (next page) or
decremented (previous page):

$name = strip tags($_GET['name'] ?? '');

$limit = (int) ($_GET['limit'] ?»? 10);
$page = (int) ($_GETI['page'l ?2? 0);

Soffset = $Spage * $limit;

Sprev = ($page > 0) ? S$Spage - 1 : 0;

Snext = Spage + 1;

Now you're ready to fire up the database connection and run a simple SELECT query. This
should be placed ina try {} catch {} block. You can then place the iterators to be
stacked inside the try {} block:

try {
$connection = new Application\Database\Connection (
include _ DIR__ . DB CONFIG_FILE) ;
$sql = 'SELECT * FROM iso_country codes';
SarrayIterator = fetchCountryName (sgl, Sconnection);
SfilteredIterator = nameFilterIterator ($arrayIterator, $name);
SlimitIterator = pagination(

SfilteredIterator, Soffset, $limit);
} catch (Throwable $e) ({
echo S$Se->getMessage() ;

}

Now we're ready for the HTML. In this simple example we present a form that lets the user
select the number of items per page and the country name:

<form>
Country Name:

7

Chapter 3

<input type="text" name="name"
value="<?= htmlspecialchars ($name) ?>">
Items Per Page:
<select name="limit">
<?php foreach (ITEMS PER PAGE as S$item) : ?>
<option<?= ($item == $limit) ? ' selected' : '' ?>>
<?= Sitem ?></options>
<?php endforeach; ?>
</select>
<input type="submit" />
</form>
<a href="?name=<?= $name ?>&limit=<?= $limit °?>
&page=<?= $prev ?>">
<< PREV
<a href="?name=<?= $name ?>&limit=<?= $limit °?>
&page=<?= $next ?>">
NEXT >>
<?= htmlList($limitIterator); ?>

The output will look something like this:

PHP 7 Cookbook ® | 4

€ c

Filtered and Paginated Results

Country Name: stan Items Per Page: |5 ~ | | Submit Query
<< PREV | NEXT >=>

+ Afghanistan

» Kazakhstan

* Kyrgyzstan

e Pakistan

e Saint Helena, Ascension and Tristan da Cunha

Finally, in order to test the recursive iteration of the country database lookup, you will need
to include the iterator's library file, as well as the Application\Database\Connection
class:

define ('DB_CONFIG FILE', '/../config/db.config.php');

include (__DIR__ . '/chap 03 developing functions_ iterators library.
php') ;
include (_DIR__ . '/../Application/Database/Connection.php');

(7]

Working with PHP Functions

As before, you should wrap your database queryina try {} catch {} block. You can then
place the code to test the recursive iteration inside the try {} block:

try {
$connection = new Application\Database\Connection (
include _ DIR__ . DB CONFIG_FILE) ;
$sql = 'SELECT * FROM iso_country codes';
Siterator = fetchAllAssoc($sqgl, $connection) ;
$shallow = new RecursiveArraylterator($iterator) ;

foreach ($shallow as $item) var_ dump(Sitem) ;

Sdeep = new RecursivelteratorIterator ($shallow) ;
foreach ($deep as $item) var dump ($item) ;

} catch (Throwable S$e) ({

echo $e->getMessage() ;
!

Here is what you can expect to see in terms of output from RecursiveArrayIterator:

@@ aed@aed: ~/Repos/php7 _recipes/sourcefchapter03

RecursiveArraylterator

array(5) {
'name’ ==
string(11l) "Afghanistan"
'isp2' =>
string(2) "AF"
'iso3' =>

string(3) "AFG"

'iso numeric' =>

string(1l) "4"

'iso 3166' =>

string(13) "ISO 3166-2:AF"

By

array(5) {
'name’ ==
string(7) "Albania"
'isp2' =>
string(2) "AL"
'iso3' =>

string(3) "ALB"

'iso numeric' =>

string(1) "8"

'iso_3166"' =>

string(13) "ISO 3166-2:AL"

Chapter 3

Here is the output after using RecursivelteratorIterator:

@® aed@aed: ~/Repos/php7 _recipes/source/chapter03

RecursivelteratorIterator
string(11) "Afghanistan"
string(2) "AF"

string(3) "AFG"

string(1l) "4"

string(13) "ISO 3166-2:AF"
string(7) "Albania"
string(2) "AL"

string(3) "ALB"

string(l) "8"

string(13) "ISO 3166-2:AL"
string(10) "Antarctica"
string(2) "AQ"

string(3) "ATA"

string(2) "1e"

string(13) "ISO 3166-2:AQ"
string(7) "Algeria"
string(2) "DZ"

string(3) "DZA"

string(2) "12"

string(13) "ISO 3166-2:DZ"
string(14) "American Samoa"
string(2) "AS"

string(3) "ASM"

string(2) "16"

Writing your own iterator using generators

In the preceding set of recipes we demonstrated the use of iterators provided in the PHP 7
SPL. But what if this set doesn't provide you with what is needed for a given project? One
solution would be to develop a function that, instead of building an array that is then returned,
uses the yield keyword to return values progressively by way of iteration. Such a function

is referred to as a generator. In fact, in the background, the PHP engine will automatically
convert your function into a special built-in class called Generator.

There are several advantages to this approach. The main benefit is seen when you have
a large container to traverse (that is, parsing a massive file). The traditional approach has
been to build up an array, and then return that array. The problem with this is that you are
effectively doubling the amount of memory required! Also, performance is affected in
that results are only achieved once the final array has been returned.

(77}

Working with PHP Functions

How to do it...

1.

3.

In this example we build on the library of iterator-based functions, adding a
generator of our own design. In this case we will duplicate the functionality
described in the section above on iterators where we stacked an ArrayIterator,
FilterIterator,and LimitIterator

Because we need access to the source array, the desired filter, page number, and
number of items per page, we include the appropriate parameters into a single
filteredResultsGenerator () function. We then calculate the offset based

on the page number and limit (that is, number of items per page). Next, we loop
through the array, apply the filter, and continue the loop if the offset has not yet been
reached, or break if the limit has been reached:

function filteredResultsGenerator (array S$array, S$filter,
$limit = 10, $page = 0)
{
Smax = count ($array) ;
Soffset = Spage * $limit;
foreach ($array as $key => $value) (

if (!stripos($value, $filter) !== FALSE) continue;
if (--Soffset >= 0) continue;
if (--$limit <= 0) break;

yield S$value;
}
}

You'll notice the primary difference between this function and others is the yield
keyword. The effect of this keyword is to signal the PHP engine to produce a
Generator instance and encapsulate the code.

To demonstrate the use of the filteredResultsGenerator () function we'll have you
implement a web application that scans a web page and produces a filtered and paginated list
of URLs hoovered from HREF attributes.

First you need to add the code for the filteredResultsGenerator () function to the
library file used in the previous recipe, then place the functions described previously into an
include file, chap 03 developing functions iterators library.php.

Next, define a test script, chap 03 developing functions using generator.php,
that includes both the function library as well as the file that defines Application\Web\
Hoover, described in Chapter 1, Building a Foundation:

@

Chapter 3

include (_ DIR . DIRECTORY SEPARATOR . 'chap 03 developing
functions iterators library.php') ;
include (_DIR__ . '/../Application/Web/Hoover.php') ;

You will then need to gather input from the user regarding which URL to scan, what string to
use as a filter, how many items per page, and the current page number.

The null coalesce operator (? ?) is ideal for getting input from the Web.
%@‘\ It does not generate any notices if not defined. If the parameter is not
’ received from user input, you can supply a default.

Surl = trim(strip tags($ GET['url'] 2?2 ''));
$filter = trim(strip tags($_GET['filter'] 2?2 ''));
$limit = (int) ($_GET['limit'] ?»? 10);
$Spage = (int) ($_GET['page'l ?? 0);
Best practice
Al

~ Web security should always be a priority consideration. In this example you
canuse strip_ tags () and also force the data type to integer (int) as
measures to sanitize user input.

You are then in a position to define variables used in links for previous and next pages in
the paginated list. Note that you could also apply a sanity check to make sure the next page
doesn't go off the end of the result set. For the sake of brevity, such a sanity check was not
applied in this example:

Snext = Spage + 1;

$prev = Spage - 1;

Sbase = '?url=' . htmlspecialchars ($url)
'gfilter=' . htmlspecialchars($filter)
'&limit=" . $limit
'&page=";

We then need to create an Application\Web\Hoover instance and grab HREF attributes
from the target URL:

Svac = new Application\Web\Hoover () ;
Slist = $vac->getAttribute (Surl, 'href');

(7]

Working with PHP Functions

Finally, we define HTML output that renders an input form and runs our generator through the
htmlList () function described previously:

<form>
<table>
<tr>
<th>URL</th>
<td>
<input type="text" name="url"
value="<?= htmlspecialchars($url) ?2>"/>
</td>
</tr>
<tr>
<ths>Filter</th>
<td>
<input type="text" name="filter"
value="<?= htmlspecialchars($filter) ?>"/></td>
</tr>
<tr>
<ths>Limit</th>
<td><input type="text" name="limit" value="<?= $limit ?>"/></td>
</tr>
<tr>
<th> </th><td><input type="submit" /></td>
</tr>
<tr>
<td> </td>
<td>
<a href="<?= Sbase . S$Sprev ?>"><-- PREV |
<a href="<?= $base . S$next ?>"SNEXT --></td>
</tr>
</table>
</form>
<hr>
<?= htmlList (filteredResultsGenerator (
$list, $filter, $limit, S$page)); ?>

Here is an example of the output:

| PHP 7 Cookbook x ﬂl. PHP: Limitlterator - ... X ¢

€ localhost c

Filtered Results Using Generator

URL |oreilly.com
Filter oreilly
Limit 10
Submit Query
<-- PREV | NEXT -->

o http://www.oreilly.com/jobs/

o http://shop.oreilly.com/category/new.do

e http://shop.oreilly.com/product/0636920047766.do
e http://shop.oreilly.com/product/0636920047766.do
e http://shop.oreilly.com/product/0636920046691.do
® http://shop.oreilly.com/product/0636920046691.do
s http://shop.oreilly.com/product/9781785282720.do
s http://shop.oreilly.com/product/9781785282720.do
» http://shop.oreilly.com/product/9781785888878.do

Chapter 3

s

Working with PHP
Object-Oriented
Programming

In this chapter we will cover:

» Developing classes

» Extending classes

» Using static properties and methods
» Using namespaces

» Defining visibility

» Using interfaces

» Using traits

» Implementing anonymous classes

Introduction

In this chapter, we will consider recipes that take advantage of the object-oriented
programming (OOP) capabilities available in PHP 7.0, 7.1, and above. Most of the OOP
functionality available in PHP 7.x is also available in PHP 5.6. A new feature introduced in
PHP 7 is support for anonymous classes. In PHP 7.1, you can modify the visibility of class
constants.

Working with PHP Object-Oriented Programming

Another radically new feature is the ability to catch certain types of error.
% This is discussed in greater detail in Chapter 13, Best Practices, Testing,
"~ and Debugging.

Developing classes

The traditional development approach is to place the class into its own file. Typically, classes
contain logic that implements a single purpose. Classes are further broken down into
self-contained functions which are referred to as methods. Variables defined inside classes
are referred to as properties. It is recommended to develop a test class at the same time, a
topic discussed in more detail in Chapter 13, Best Practices, Testing, and Debugging.

How to do it...

1. Create a file to contain the class definition. For the purposes of autoloading it is
recommended that the filename match the classname. At the top of the file, before
the keyword class, add a DocBlock. You can then define properties and methods.
In this example, we define a class Test. It has a property $test, and a method
getTest ():
<?php
declare (strict_ types=1) ;

/**
* This is a demonstration class.
*
* The purpose of this class is to get and set
* a protected property S$test
*
*/
class Test

{

protected S$Stest = 'TEST';

/**
* This method returns the current value of Stest
*

* @return string Stest
*/
public function getTest () : string

{

return Sthis->test;

}

=

Chapter 4

/**
* This method sets the value of Stest
*
* @param string S$test
* @return Test S$Sthis
*/
public function setTest (string S$test)
{
Sthis->test = Stest;
return Sthis;

Best practice

It is considered best practice to name the file after the class. Although class
names in PHP are not case sensitive, it is further considered best practice
. tousean uppercase letter for the first name of a class. You should not put
& executable code in a class definition file.

e

Each class should contain a DocBlock before the keyword class. In the
DocBlock you should include a short description of the purpose of the class.
Skip a line, and then include a more detailed description. You can also
include @ tags such as @author, @license and so on. Each method should
likewise be preceded by a DocBlock that identifies the purpose of the method,
as well as its incoming parameters and return value.

It's possible to define more than one class per file, but is not considered best
practice. In this example we create a file, NameAddress . php, which defines two
classes, Name and Address:

<?php
declare (strict types=1) ;
class Name

{

protected S$Sname = '';

public function getName () : string

{

return Sthis->name;

public function setName (string S$name)

{

Working with PHP Object-Oriented Programming

~[ee]

Sthis->name = S$name;

return Sthis;

class Address

{

protected S$Saddress = '';

public function getAddress() : string

{

return Sthis->address;

public function setAddress (string Saddress)
{

Sthis->address = $address;

return Sthis;

. Although you can define more than one class in a single file, as shown
in the preceding code snippet, it is not considered best practice.
' Not only does this negate the logical purity of the file, but it makes
autoloading more difficult.

Class names are case-insensitive. Duplications will be flagged as errors. In this
example, in a file TwoClass . php, we define two classes, TwoClass and twoclass:
<?php

class TwoClass

{

public function showOne ()

{

return 'ONE';

// a fatal error will occur when the second class definition is
parsed

class twoclass

{

Chapter 4

public function showTwo ()

{

return 'TWO';

}
}

4. PHP 7.1 has addressed inconsistent behavior in the use of the keyword $this.
Although permitted in PHP 7.0 and PHP 5.x, any of the following uses of $this will
now generate an error as of PHP 7.1, if $this is used as:

a A parameter
o Astaticvariable
o Aglobal variable
o Avariable used in try..catch blocks
o Avariable used in foreach ()
a Asanargumentto unset ()
o Asavariable (thatis, Sa = 'this'; echo $$a)
o Indirectly via reference
5. If you need to create an object instance but don't care to define a discreet class,
you can use the generic stdClass which is built into PHP. stdClass allows you

to define properties on the fly without having to define a discreet class that extends
stdClass:

$obj = new stdClass() ;

6. This facility is used in a number of different places in PHP. As an example, when
you use PHP Data Objects (PDO) to do a database query, one of the fetch modes is
PDO: : FETCH_OBJ. This mode returns instances of stdClass where the properties
represent database table columns:

$stmt = $connection->pdo->query($sqgl) ;
Srow = $stmt->fetch(PDO::FETCH OBJ) ;

Take the example for the Test class shown in the preceding code snippet, and place the code
in a file named Test . php. Create another file called chap 04 oop defining class_
test .php. Add the following code:

require @ DIR . '/Test.php';
Stest = new Test () ;

echo Stest->getTest () ;
echo PHP_ EOL;

Working with PHP Object-Oriented Programming

Stest->setTest ('ABC') ;
echo Stest->getTest () ;
echo PHP EOL;

The output will show the initial value of the $test property, followed by the new value
modified by calling setTest ():

TEST
ABC

(program exited with code: 0)
Press return to continue

The next example has you define two classes, Name and Address in a single file
NameAddress . php. You can call and use these two classes with the following code:

require DIR__ . '/NameAddress.php';

$name = new Name () ;

Sname->gsetName ('TEST') ;

Saddr = new Address() ;
Saddr->setAddress ('123 Main Street');

echo S$name->getName() . ' lives at ' . Saddr->getAddress() ;

. Although no errors are generated by the PHP interpreter, by defining
% multiple classes, the logical purity of the file is compromised. Also, the
L filename doesn't match the classname, which could impact the ability to
autoload.

Chapter 4

The output from this example is shown next:

@@ Terminal

TEST lives at 123 Main Street

(program exited with code: 0)
Press return to continue

Step 3 also shows two class definitions in one file. In this case, however, the objective is
to demonstrate that classnames in PHP are case-insensitive. Place the code into a file,
TwoClass.php. When you try to include the file, an error is generated:

@@ Terminal

PHP Fatal error: Cannot declare class twoclass, because the name is already in
use in /home/aed/Repos/php7_recipes/source/chapter@4/TwoClass.php on line 25

PHP Stack trace:

PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapter@4/chap_04_ oop_clas
ses_case_insensitive.php:0

PHP 2. require() /home/aed/Repos/php7_recipes/source/chapter@4/chap_04 oop_cla
sses_case_insensitive.php:6

Fatal error: Cannot declare class twoclass, because the name is already in use i
n /home/aed/Repos/php7_recipes/source/chapter®4/TwoClass.php on line 25

Call Stack:

0.0002 357952 1. {main}() /home/aed/Repos/php7_recipes/source/chapter®
4/chap_04_ocop_classes_case_insensitive.php:0

0.0003 360752 2. require('/home/aed/Repos/php7_recipes/source/chapter@

4/TwoClass.php') /home/aed/Repos/php7_recipes/source/chapter@4/chap_04 oop_class
es_case_insensitive.php:6

(program exited with code: 255)
Press return to continue

To demonstrate the direct use of stdClass, create an instance, assign a value to a property,
and use var_dump () to display the results. To see how stdClass is used internally, use
var_dump () to display the results of a PDO query where the fetch mode is set to FETCH_OBJ.

]

Working with PHP Object-Oriented Programming
Enter the following code:

Sobj = new stdClass() ;
Sobj->test = 'TEST';
echo Sobj->test;

echo PHP_EOL;

include (_DIR__ . '/../Application/Database/Connection.php') ;
$connection = new Application\Database\Connection (
include _ DIR__ . DB CONFIG_FILE);

$sql 'SELECT * FROM iso country codes';
$stmt = $connection->pdo->query($sql) ;
Srow = $stmt->fetch(PDO::FETCH OBJ) ;
var_dump ($row) ;

Here is the output:

TEST

class stdClass#5 (5) {
public $name =>
string(11) "Afghanistan"
public $iso2 =>
string(2) "AF"
public $iso3 =>
string(3) "AFG"
public $iso numeric =>
string(1l) "4"
public $iso_3166 =>
string(13) "ISO 3166-2:AF"

(program exited with code: 0) r
Press return to continue

For more information on refinements in PHP 7.1 on the keyword $this, please see
https://wiki.php.net/rfc/this var

Extending classes

One of the primary reasons developers use OOP is because of its ability to re-use existing
code, yet, at the same time, add or override functionality. In PHP, the keyword extends is
used to establish a parent/child relationship between classes.

5]

Chapter 4

How to do it...

1. Inthe child class, use the keyword extends to set up inheritance. In the example
that follows, the Customer class extends the Base class. Any instance of Customer
will inherit visible methods and properties, in this case, $id, getId () and setId():
class Base
{

protected $id;
public function getId()
{

return $this->id;

}

public function setId($id)

{

Sthis->id = $id;

class Customer extends Base
protected $name;
public function getName ()

{

return $this->name;

}
public function setName ($name)

{

Sthis->name = $name;

}

2. You can force any developer using your class to define a method by marking it
abstract. In this example, the Base class defines as abstract the validate ()
method. The reason why it must be abstract is because it would be impossible to
determine exactly how a child class would be validated from the perspective of the
parent Base class:

abstract class Base

{
protected $id;
public function getId()

{

return $this->id;

Working with PHP Object-Oriented Programming

public function setId($id)

{
$this->id = $id;
}

public function validate() ;

}

If a class contains an abstract method, the class itself must be declared as
L abstract.

3. PHP only supports a single line of inheritance. The next example shows a class,
Member, which inherits from Customer. Customer, in turn, inherits from Base:
class Base
{

protected $id;
public function getId()

{
return $this->id;
}

public function setId($id)

{

$this->id = $id;

class Customer extends Base
protected $name;
public function getName ()

{

return $this->name;

}
public function setName ($name)
{

Sthis->name = $name;

class Member extends Customer
{
protected Smembership;
public function getMembership ()

{
[

Chapter 4

return $this->membership;
}
public function setMembership (SmemberId)

{

Sthis->membership = $memberId;

}

4. To satisfy a type-hint, any child of the target class can be used. The test () function,
shown in the following code snippet, requires an instance of the Base class as an
argument. Any class within the line of inheritance can be accepted as an argument.
Anything else passed to test () throws a TypeError:

function test (Base S$Sobject)
{
return $object->getId() ;

}

In the first bullet point, a Base class and a Customer class were defined. For the sake of
demonstration, place these two class definitions in a single file, chap 04 ocop extends.
php, and add the following code:

Scustomer = new Customer() ;
Scustomer->setId(100) ;
Scustomer->setName ('Fred') ;
var_ dump ($customer) ;

Note that the $id property and the getId () and setId () methods are inherited from the
parent Base class into the child Customer class:

class Customer#l (2) {
protected $name =>
string(4) "Fred"
protected $id =>
int(100)

(program exited with code: 0)
Press return to continue

55}

Working with PHP Object-Oriented Programming

To illustrate the use of an abstract method, imagine that you wish to add some sort of
validation capability to any class that extends Base. The problem is that there is no way to
know what might be validated in the inherited classes. The only thing that is certain is that
you must have a validation capability.

Take the same Base class mentioned in the preceding explanation and add a new method,
validate (). Label the method as abstract, and do not define any code. Notice what
happens when the child Customer class extends Base.

@® Terminal

PHP Fatal error: Class Base contains 1 abstract method and must therefore be de
clared abstract or implement the remaining methods (Base::validate) in /home/aed
/Repos/php7 recipes/source/chapter@4/chap 04 oop abstract.php on line 16

Fatal error: Class Base contains 1 abstract method and must therefore be declare
d abstract or implement the remaining methods (Base::validate) in /home/aed/Repo
s/php7 recipes/source/chapter@4/chap 04 oop abstract.php on line 16

(program exited with code: 255)
Press return to continue

If you then label the Base class as abstract, but fail to define a validate () method
in the child class, the same error will be generated. Finally, go ahead and implement the
validate () method in a child Customer class:

class Customer extends Base

{

protected S$Sname;
public function getName ()

{
return Sthis->name;
}
public function setName ($name)
{
Sthis->name = S$name;
}
public function validate ()
{
Svalid = 0;
Scount = count (get object vars($this)) ;

=

Chapter 4

if (!empty($this->id) &&is_int (Sthis->id)) s$valid++;
if (!empty(Sthis->name)
&&preg match('/[a-z0-9 1/i', $this-sname)) $valid++;
return (Svalid == Scount) ;
1
!

You can then add the following procedural code to test the results:

Scustomer = new Customer() ;

Scustomer->setId(100) ;
Scustomer->setName ('Fred') ;
echo "Customer [id]: {S$Scustomer->getName() }"
"[{$customer->getId() }1\n";
echo ($Scustomer->validate()) ? 'VALID' : 'NOT VALID';
Scustomer->setId ('XXX') ;
Scustomer->setName ('SS£&* () ') ;
echo "Customer [id]: {S$Scustomer->getName() }"
" [{$customer->getId () }1\n";
echo ($Scustomer->validate()) ? 'VALID' : 'NOT VALID';

Here is the output:

Customer [id]: Fred [100]
VALID

Customer [id]: $%£&*() [XXX]
NOT VALID

(program exited with code: @)
Press return to continue

To show a single line of inheritance, add a new Member class to the first example of Base and
Customer shown in the preceding step 1:

class Member extends Customer

{

protected Smembership;
public function getMembership ()

[55]-

Working with PHP Object-Oriented Programming

{
}

public function setMembership (SmemberId)

{

}
}

Create an instance of Member, and notice, in the following code, that all properties and
methods are available from every inherited class, even if not directly inherited:

return $this->membership;

Sthis->membership = $memberId;

Smember = new Member () ;
Smember->setId(100) ;
Smember->setName ('Fred') ;
Smember->setMembership ('A299F322") ;
var_dump ($member) ;

Here is the output:

@® Terminal

class Member#l (3) {
protected $membership =>
string(8) "A299F322"
protected $name =>
string(4) "Fred"
protected $id =>
int(1008)

(program exited with code: 0)
Press return to continue

Now define a function, test (), which takes an instance of Base as an argument:

function test (Base $object)

{

return $object->getId() ;

}
Notice that instances of Base, Customer, and Member are all acceptable as arguments:

$base = new Base();
$base->setId (100) ;

5]

Chapter 4

Scustomer = new Customer() ;
Scustomer->setId(101) ;

$member = new Member () ;
Smember->setId(102) ;

// all 3 classes work in test ()

echo test (Sbase) . PHP_EOL;
echo test ($customer) . PHP_EOL;
echo test (Smember) . PHP_EOL;

Here is the output:

100
le1
102

(program exited with code: 0)
Press return to continue

However, if you try to run test () with an object instance that is not in the line of inheritance,
a TypeError is thrown:

class Orphan
{
protected $id;
public function getId()

{
return Sthis->id;
}
public function setId(s$id)
{
Sthis->id = $id;
}
}
try {

o7}

Working with PHP Object-Oriented Programming

Sorphan = new Orphan() ;
Sorphan->setId(103) ;
echo test ($orphan) . PHP_EOL;

} catch (TypeError $e)
echo 'Does not work!' . PHP EOL;
echo S$Se->getMessage() ;

}

We can observe this in the following image:

@@ Terminal

100
101
102

PHP TypeError: Argument 1 passed to test() must be an instance of Base, instanc
e of Orphan given, called in /home/aed/Repos/php7_recipes/source/chapter@4/chap_
04 oop type hint.php on line 80 in /home/aed/Repos/php7 recipes/source/chapter@4
/chap_04_oop_type_hint.php on line 56

PHP Stack trace:

PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapter®4/chap_04_ oop_type
| hint.php:@

PHP 2. test() /home/aed/Repos/php7_recipes/source/chapter®4/chap_084_oop_type_h
int.php:860

TypeError: Argument 1 passed to test() must be an instance of Base, instance of
Orphan given, called in /home/aed/Repos/php7 recipes/source/chapter@4/chap 04 oo
p_type_hint.php on line 8@ in /home/aed/Repos/php7_recipes/source/chapter@4/chap
| 04 oop type hint.php on line 56

3
Call Stack:
0.0012 370176 1. {main}() /home/aed/Repos/php7_recipes/source/chapter@®
4/chap_04 oop_type hint.php:@
0.0015 370496 2. test() /home/aed/Repos/php7 recipes/source/chapter@4/

Using static properties and methods

PHP lets you access properties or methods without having to create an instance of the class.
The keyword used for this purpose is static.

How to do it...

1. Atits simplest, simply add the static keyword after stating the visibility level when
declaring an ordinary property or method. Use the self keyword to reference the
property internally:

class Test

{
public static Stest = 'TEST';
public static function getTest ()
{

5]

Chapter 4

return self::Stest;

}
}

2. The self keyword will bind early, which will cause problems when accessing static
information in child classes. If you absolutely need to access information from the
child class, use the static keyword in place of self. This process is referred to as
Late Static Binding.

3. Inthe following example, if you echo Child: :getEarlyTest (), the output will be
TEST. If, on the other hand, you run Child: :getLateTest (), the output will be
CHILD. The reason is that PHP will bind to the earliest definition when using self,
whereas the latest binding is used for the static keyword:

class Test2

{

public static Stest = 'TEST2';
public static function getEarlyTest ()

{

return self::Stest;

}

public static function getLateTest ()

{

return static::Stest;

}
}

class Child extends Test2

{

public static $Stest = 'CHILD';

}

4. In many cases, the Factory design pattern is used in conjunction with static methods
to produce instances of objects given different parameters. In this example, a static
method factory () is defined which returns a PDO connection:

public static function factory(
$driver, $dbname, Shost, Suser, $pwd, array S$Soptions = [])
{
$dsn = sprintf ('%s:dbname=%s;host=%s"',
Sdriver, S$dbname, S$host) ;
try {
return new PDO($dsn, Suser, S$pwd, Soptions);
} catch (PDOException $e) {
error_ log($e->getMessage) ;

s

Working with PHP Object-Oriented Programming

You can reference static properties and methods using the class resolution operator ": : .
Given the Test class shown previously, if you run this code:

echo Test::S$Stest;
echo PHP_ EOL;

echo Test::getTest () ;
echo PHP_ EOL;

You will see this output:

TEST
TEST

(program exited with code: 0)
Press return to continue

To illustrate Late Static Binding, based on the classes Test2 and Child shown previously, try
this code:

echo Test2::Stest;
echo Child::Stest;
echo Child::getEarlyTest () ;
echo Child::getLateTest () ;

The output illustrates the difference between self and static:

100

TEST2
CHILD
ITEST2
CHILD

(program exited with code: ©)
Press return to continue

Finally, to test the factory () method shown previously, save the code into the
Application\Database\Connection class in a Connection.php file in the
Application\Database folder. You can then try this:

include _ DIR . '/../Application/Database/Connection.php';
use Application\Database\Connection;

Sconnection = Connection::factory(

'mysgl', 'php7cookbook', 'localhost', 'test', 'password');

Chapter 4

$stmt = $Sconnection->query ('SELECT name FROM iso country codes');

while ($country = $stmt->fetch(PDO::FETCH COLUMN))
echo S$country . '';

You will see a list of countries pulled from the sample database:

@@ Terminal \
Afghanistan Albania Antarctica Algeria American Samoa Andorra Angola Antigua and
Barbuda Azerbaijan Argentina Australia Austria Bahamas Bahrain Bangladesh Armen
ia Barbados Belgium Bermuda Bhutan Bolivia, Plurinational State of Bosnia and He
rzegovina Botswana Bouvet Island Brazil Belize British Indian Ocean Territory So
lomon Islands Virgin Islands, British Brunei Darussalam Bulgaria Myanmar Burundi
Belarus Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Repu
blic Sri Lanka Chad Chile China Taiwan, Province of China Christmas Island Cocos
(Keeling) Islands Colombia Comoros Mayotte Congo Congo, the Democratic Republic
of the Cook Islands Costa Rica Croatia Cuba Cyprus Czech Republic Benin Denmark
Dominica Dominican Republic Ecuador El Salvador Equatorial Guinea Ethiopia Erit
rea Estonia Faroe Islands Falkland Islands (Malvinas) South Georgia and the Sout
h Sandwich Islands Fiji Finland Aland Islands France French Guiana French Polyne
sia French Southern Territories Djibouti Gabon Georgia Gambia Palestine, State o
f Germany Ghana Gibraltar Kiribati Greece Greenland Grenada Guadeloupe Guam Guat
emala Guinea Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican Ci
ty State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Repub
lic of Iraq Ireland Israel Italy Cdte d'Ivoire Jamaica Japan Kazakhstan Jordan K
enya Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan
Lao People's Democratic Republic Lebanon Lesotho Latvia Liberia Libya Liechtens
tein Lithuania Luxembourg Macao Madagascar Malawi Malaysia Maldives Mali Malta M
artinique Mauritania Mauritius Mexico Monaco Mongolia Moldova, Republic of Monte
negro Montserrat Morocco Mozambique Oman Namibia Nauru Nepal Netherlands Curagao
Aruba Sint Maarten (Dutch part) Bonaire, Sint Eustatius and Saba New Caledonia
Vanuatu New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Northern

Working with PHP Object-Oriented Programming

See also

For more information on Late Static Binding, see this explanation in the PHP documentation:

http://php.net/manual/en/language.oop5.late-static-bindings.php

Using nhamespaces

An aspect that is critical to advanced PHP development is the use of namespaces. The
arbitrarily defined namespace becomes a prefix to the class name, thereby avoiding

the problem of accidental class duplication, and allowing you extraordinary freedom of
development. Another benefit to the use of a namespace, assuming it matches the directory
structure, is that it facilitates autoloading, as discussed in Chapter 1, Building a Foundation.

How to do it...

1. To define a class within a namespace, simply add the keyword namespace at the top
of the code file:

namespace Application\Entity;

Best practice

As with the recommendation to have only one class per file, likewise you
should have only one namespace per file.

Lo

2. The only PHP code that should precede the keyword namespace would be a
comment and/or the keyword declare:
<?php
declare (strict_ types=1) ;
namespace Application\Entity;
/**
* Address
*
*/
class Address

{

// some code

}

102

Chapter 4

In PHP 5, if you needed to access a class in an external namespace you could
prepend a use statement containing only the namespace. You would need to then
prefix any class reference within this namespace with the last component of the
namespace:

use Application\Entity;

$name = new Entity\Name () ;
$addr = new Entity\Address() ;
$Sprof = new Entity\Profile();

Alternatively, you could distinctly specify all three classes:

use Application\Entity\Name;
use Application\Entity\Address;
use Application\Entity\Profile;
Sname = new Name () ;

$addr = new Address() ;

Sprof = new Profile();

PHP 7 has introduced a syntactical improvement referred to as group use which
greatly improves code readability:

use Application\Entity\
Name,
Address,
Profile
Vi
$name = new Name () ;
$addr = new Address() ;
Sprof = new Profile();

As mentioned in Chapter 1, Building a Foundation, namespaces form an integral
part of the autoloading process. This example shows a demonstration autoloader
which echoes the argument passed, and then attempts to include a file based on the
namespace and class name. This assumes that the directory structure matches the
namespace:

function _ autoload(sclass)
{
echo "Argument Passed to Autoloader = $class\n";
include _DIR_ . '/../' . str_replace(
"\\', DIRECTORY SEPARATOR, S$class) . '.php';

Working with PHP Object-Oriented Programming

For illustration purposes, define a directory structure that matches the Application*
namespace. Create a base folder Application, and a sub-folder Entity. You can also
include any sub-folders as desired, such as Database and Generic, used in other chapters:

Name.php
Address.ph
Profile.ph|

etc.

Next, create three ent ity classes, each in their own file, under the Application/Entity
folder: Name . php, Address .php, and Profile.php. We only show Application\
Entity\Name here. Application\Entity\Address and Application\Entity\
Profile will be the same, except that Address has an $address property, and Profile
has a sprofile property, each with an appropriate get and set method:

<?php

declare (strict types=1) ;
namespace Application\Entity;
/**

* Name

*

*/
class Name

{

protected S$name = '';

/**
* This method returns the current value of $name
*

* @return string $name
*/
public function getName() : string

{
}
/**

return $this-s>name;

104

Chapter 4

This method sets the value of S$name

*

*

* @param string S$name
* @return name S$this
*

/
public function setName (string S$name)
{

Sthis->name = S$name;

return Sthis;

}
}

You can then either use the autoloader defined in Chapter 1, Building a Foundation, or use
the simple autoloader mentioned previously. Place the commands to set up autoloading in

a file, chap 04 oop namespace example 1.php. In this file, you can then specify a use
statement which only references the namespace, not the class names. Create instances of
the three entity classes Name, Address and Profile, by prefixing the class name with the
last part of the namespace, Entity:

use Application\Entity;

$name = new Entity\Name () ;
$addr = new Entity\Address() ;
$Sprof = new Entity\Profile();

var_dump ($name) ;
var_dump ($addr) ;
var_dump ($prof) ;

Here is the output:

@® Terminal

Argument Passed to Autoloader = Application\Entity\Name
Argument Passed to Autoloader = Application\Entity\Address
Argument Passed to Autoloader = Application\Entity\Profile
class Application\Entity\Name#l (1) {

protected $name =>

string(@) ""

}

class Application\Entity\Address#2 (1) {
protected $address =>
string(0) ""

}

class Application\Entity\Profile#3 (1) {
protected $profile =>
string(0) ""

(program exited with code: 0)
Press return to continue

Working with PHP Object-Oriented Programming

Next, use Save as to copy the file to a new one named chap 04 oop namespace
example 2.php. Change the use statement to the following:

use Application\Entity\Name;
use Application\Entity\Address;
use Application\Entity\Profile;

You can now create class instances using only the class name:

Sname = new Name () ;
Saddr = new Address() ;
Sprof = new Profile();

When you run this script, here is the output:

@@ Terminal

Argument Passed to Autoloader = Application\Entity\Name
Argument Passed to Autoloader = Application\Entity\Address
Argument Passed to Autoloader = Application\Entity\Profile
class Application\Entity\Name#l (1) {

protected $name =>

string(@) ""

}

class Application\Entity\Address#2 (1) {
protected saddress =>
string(@) ""

}

class Application\Entity\Profile#3 (1) {
protected $profile =>
string(@) ""

(program exited with code: @)
Press return to continue

Finally, again run Save as and create a new file, chap 04 oop namespace example 3.
php. You can now test the group use feature introduced in PHP 7:

use Application\Entity\
Name,
Address,
Profile
Vi
$name = new Name () ;
Saddr = new Address() ;
Sprof = new Profile();

106

Chapter 4

Again, when you run this block of code, the output will be the same as the preceding output:

@@ Terminal

Argument Passed to Autoloader = Application\Entity\Name
Argument Passed to Autoloader = Application\Entity\Address
Argument Passed to Autoloader = Application\Entity\Profile
class Application\Entity\Name#l (1) {

protected $name ==

string(@) ""

}
class Application\Entity\Address#2 (1) {
protected $address =>
string(@) ""
}
class Application\Entity\Profile#3 (1) {
protected $profile =>
string(@) ""

(program exited with code: 0)
Press return to continue

Defining visibility

Deceptively, the word visibility has nothing to do with application security! Instead it is simply a
mechanism to control the use of your code. It can be used to steer an inexperienced developer
away from the public use of methods that should only be called inside the class definition.

How to do it...

1. Indicate the visibility level by prepending the public, protected, or private
keyword in front of any property or method definition. You can label properties
as protected or private to enforce access only through public getters and
setters.

2. Inthis example, a Base class is defined with a protected property $id. In order to
access this property, the getId () and setId () public methods are defined. The
protected method generateRandId () can be used internally, and is inherited in
the Customer child class. This method cannot be called directly outside of class
definitions. Note the use of the new PHP 7 random bytes () function to create a
random ID.

class Base

{
protected $id;
private skey = 12345;

Working with PHP Object-Oriented Programming

108

public function getId()

{

return Sthis->id;

}

public function setId()

{

$this->id = $this->generateRandId() ;

}

protected function generateRandId ()

{

return unpack ('H*', random bytes(8)) [1];

}

class Customer extends Base
protected S$name;
public function getName ()

{

return Sthis->name;

}

public function setName ($name)

{

Sthis->name = S$name;

Best practice
Mark properties as protected, and define the

public getNameOfProperty() and setNameOfProperty() methods to control
access to the property. Such methods are referred to as getters and
setters.

Mark a property or method as private to prevent it from being inherited or visible
from outside the class definition. This is a good way to create a class as a singleton.

The next code example shows a class Registry, of which there can only be one
instance. Because the constructor is marked as private, the only way an instance
can be created is through the static method get Instance ():

class Registry
protected static $instance = NULL;
protected Sregistry = array();
private function _ construct ()

}

public static function getInstance ()

{

}

if (!self::$instance)

self::$instance = new self();

}

return self::S$instance;

public function _ get (skey)

{
}

return $this->registryl[$key] ?? NULL;

public function __ set($Skey, $value)

{

Sthis->registry[$Skey]l = $value;

// nobody can create an instance of this class

Chapter 4

You can mark a method as final to prevent it from being overridden. Mark a

class as final to prevent it from being extended.

Normally, class constants are considered to have a visibility level of public. As
of PHP 7.1, you can declare class constants to be protected or private. In the
following example, the TEST WHOLE_WORLD class constant behaves exactly as in
PHP 5. The next two constants, TEST INHERITED and TEST LOCAL, follow the
same rules as any protected or private property or method:

class Test

{

public const TEST WHOLE WORLD = 'visible

// NOTE: only works in PHP 7.1 and above

protected const TEST INHERITED =

// NOTE: only works in PHP 7.1 and above
private const TEST LOCAL= 'local.to.class

public static function getTestInherited()

{

return static::TEST_INHERITED;

.everywhere';

.Test.only"';

'visible.in.child.classes';

Working with PHP Object-Oriented Programming

}

public static function getTestLocal ()

{

return static::TEST LOCAL;

}
}

Create a file chap 04 basic visibility.php and define two classes: Base and
Customer. Next, write code to create instances of each:

Sbase
Scustomer = new Customer () ;

new Base() ;

Notice that the following code works OK, and is in fact considered the best practice:

Scustomer->setId() ;

Scustomer->setName ('Test') ;

echo 'Welcome ' . S$customer->getName() . PHP EOL;

echo 'Your new ID number is: ' . $customer->getId() . PHP_EOL;

Even though $id is protected, the corresponding methods, getId () and setId (), are
both public, and therefore accessible from outside the class definition. Here is the output:

Welcome Test

Your new ID number is: 5aa62a9399387487

(program exited with code: 0)
Press return to continue

Chapter 4

The following lines of code will not work, however, as private and protected properties
are not accessible from outside the class definition:

echo 'Key (does not work): ' . S$base-skey;

echo 'Key (does not work): ' . $Scustomer-skey;

echo 'Name (does not work): ' . Scustomer->name;

echo 'Random ID (does not work): ' . Scustomer->generateRandId() ;

The following output shows the expected errors:

@@ Terminal

Welcome Test
Your new ID number is: 38d038476157732d

PHP Error: Cannot access private property Base::$key in /home/aed/Repos/php7_re
cipes/source/chapter@4/chap_04 ocop basic_visibility.php on line 52
PHP Stack trace:
PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapter®4/chap_04 oop_basi
c¢_visibility.php:0@
PHP Fatal error: Uncaught Error: Cannot access private property Base::$key in /
home/aed/Repos/php7 recipes/source/chapter®@4/chap 84 oop basic visibility.php:52
Stack trace:
#0 {main}

thrown in /home/aed/Repos/php7 recipes/source/chapter@4/chap 04 oop basic visi
bility.php on line 52

(program exited with code: 255)
Press return to continue

For more information on getters and setters, see the recipe in this chapter entitled Using
getters and setters. For more information on PHP 7.1 class constant visibility settings, please
see https://wiki.php.net/rfc/class const visibility.

Using interfaces

Interfaces are useful tools for systems architects and are often used to prototype an
Application Programming Interface (API). Interfaces don't contain actual code, but can
contain names of methods as well as method signatures.

%“ All methods identified in the Interface have a visibility level of public.

Y

Working with PHP Object-Oriented Programming

How to do it...

1. Methods identified by the interface cannot contain actual code implementations. You
can, however, specify the data types of method arguments.

2. Inthis example, ConnectionAwareInterface identifies a method
setConnection (), which requires an instance of Connection as an argument:

interface ConnectionAwarelnterface

public function setConnection (Connection $connection) ;

}

3. To use the interface, add the keyword implements after the open line that defines
the class. We have defined two classes, CountryList and CustomerList,
both of which require access to the Connection class via a method,
setConnection (). In order to identify this dependency, both classes implement
ConnectionAwareInterface

class CountryList implements ConnectionAwareInterface

{

protected S$connection;

public function setConnection (Connection $connection)

{

Sthis->connection = S$connection;

}
public function list ()
{
$list = [];
$stmt = S$this->connection-s>pdo->query (

'SELECT iso3, name FROM iso country codes') ;
while ($country = $stmt->fetch(PDO::FETCH ASSOC)) {
$list[Scountry['iso3']] = Scountry['name'l];

}

return S$list;

}

class CustomerList implements ConnectionAwarelInterface

{

protected S$Sconnection;

public function setConnection (Connection $connection)

{

Sthis->connection = S$connection;

}

public function list ()

{

}

Chapter 4

$list [1;

$stmt = $this->connection-s>pdo->query (
'SELECT id, name FROM customer') ;

while ($customer = $stmt->fetch(PDO::FETCH ASSOC)) {
$list [Scustomer['id']] = S$customer['name'];

}

return S$list;

Interfaces can be used to satisfy a type hint. The following class, ListFactory,
contains a factory () method, which initializes any class that implements
ConnectionAwareInterface. The interface is a guarantee that the
setConnection () method is defined. Setting the type hint to the interface instead
of a specific class instance makes the factory method more generically useful:

namespace Application\Generic;

use
use
use
use

PDO;

Exception;

Application\Database\Connection;
Application\Database\ConnectionAwareInterface;

class ListFactory

{

const ERROR_AWARE = 'Class must be Connection Aware';
public static function factory(

ConnectionAwareInterface S$Sclass, S$SdbParams)

if ($class instanceof ConnectionAwarelnterface) {
Sclass->setConnection (new Connection (SdbParams)) ;
return Sclass;

} else {
throw new Exception(self::ERROR_AWARE) ;

}

return FALSE;

Working with PHP Object-Oriented Programming

11

5.

If a class implements multiple interfaces, a naming collision occurs if method
signatures do not match. In this example, there are two interfaces, DateAware and
TimeAware. In addition to defining the setDate () and setTime () methods, they
both define setBoth (). Having duplicate method names is not an issue, although
it is not considered best practice. The problem lies in the fact that the method
signatures differ:

interface DateAware
{
public function setDate ($date) ;
public function setBoth(DateTime S$dateTime) ;

}

interface TimeAware
public function setTime ($time) ;
public function setBoth($date, Stime);

}

class DateTimeHandler implements DateAware, TimeAware
{
protected s$date;
protected Stime;
public function setDate ($date)
{
Sthis->date = $date;
}
public function setTime ($Stime)
{
Sthis->time = Stime;
}
public function setBoth(DateTime $dateTime)

{

Sthis->date = $date;

Chapter 4

6. As the code block stands, a fatal error will be generated (which cannot be caught!).
To resolve the problem, the preferred approach would be to remove the definition
of setBoth () from one or the other interface. Alternatively, you could adjust the
method signatures to match.

Best practice
' Do not define interfaces with duplicate or overlapping method definitions.

In the Application/Database folder, create a file, ConnectionAwareInterface.php.
Insert the code discussed in the preceding step 2.

Next, in the Application/Generic folder, create two files, CountryList .php and
CustomerList .php. Insert the code discussed in step 3.

Next, in a directory parallel to the Application directory, create a source code file,
chap 04 oop simple interfaces_example.php, which initializes the autoloader and
includes the database parameters:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php') ;
require _DIR . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');
$params = include @ DIR . DB CONFIG FILE;

The database parameters in this example are assumed to be in a database configuration file
indicated by the DB_ CONFIG FILE constant.

You are now in a position to use ListFactory: : factory () to generate
CountryList and CustomerList objects. Note that if these classes did not implement
ConnectionAwareInterface, an error would be thrown:

$list = Application\Generic\ListFactory::factory/(
new Application\Generic\CountryList (), S$Sparams);
foreach ($list->1list() as $item) echo $item . '';

7

Working with PHP Object-Oriented Programming

Here is the output for country list:

@@ Terminal

L3

Afghanistan Albania Antarctica Algeria American Samoa Andorra Angola Antigua and
Barbuda Azerbaijan Argentina Australia Austria Bahamas Bahrain Bangladesh Armen
ia Barbados Belgium Bermuda Bhutan Bolivia, Plurinational State of Bosnia and He
rzegovina Botswana Bouvet Island Brazil Belize British Indian Ocean Territory So
lomon Islands Virgin Islands, British Brunei Darussalam Bulgaria Myanmar Burundi
Belarus Cambodia Camercon Canada Cape Verde Cayman Islands Central African Repu
blic Sri Lanka Chad Chile China Taiwan, Province of China Christmas Island Cocos

(Keeling) Islands Colombia Comoros Mayotte Congo Congo, the Democratic Republic
of the Cook Islands Costa Rica Croatia Cuba Cyprus Czech Republic Benin Denmark
Dominica Dominican Republic Ecuador El Salvador Equatorial Guinea Ethiopia Erit
rea Estonia Faroe Islands Falkland Islands (Malvinas) South Georgia and the Sout
h Sandwich Islands Fiji Finland Aland Islands France French Guiana French Polyne
sia French Southern Territories Djibouti Gabon Georgia Gambia Palestine, State o
f Germany Ghana Gibraltar Kiribati Greece Greenland Grenada Guadeloupe Guam Guat
emala Guinea Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican Ci
ty State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Repub
lic of Iraq Ireland Israel Italy Cote d'Ivoire Jamaica Japan Kazakhstan Jordan K
enya Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan
Lao People's Democratic Republic Lebanon Lesotho Latvia Liberia Libya Liechtens
tein Lithuania Luxembourg Macao Madagascar Malawi Malaysia Maldives Mali Malta M

You can also use the factory method to generate a CustomerList object and use it:

$list = Application\Generic\ListFactory::factory(
new Application\Generic\CustomerList (), $params) ;
foreach ($list->1list() as $item) echo $Sitem . '';

Here is the output for CustomerList:

@@ Terminal

Conrad Perry Lonnie Knapp Darrel Roman Morgan Avila Lee Mccray Spencer Sanford T
homas Kirby Brian Crawford Armando Barlow Jess Rocha Felix Blevins Jose Carter 0
rlando Fulton Mitchell Roth Eduardo Wright Marc Ellis Joaquin Moses Morris Varga
s Gene Cruz Samuel Harding Lauri Grimes Coleen Walker Tabitha Foster Cecelia Ca
se Rhonda Kinney Elvia Giles Flossie Dyer Gabriela Davis Dolly Wong Krista Corte
z Leta Solomon Matilda Barrera Tommie Porter Helene Gillespie Camille Perez Grac
iela Joyner Penelope Molina Celeste Justice Lena Conway Katrina Freeman Jeff Val
dez Leonardo Parrish Roland Chang Raymond Sanford Wilfredo Taylor Dominick Cline
Alonzo Sullivan Edmond Shepherd Omar Anthony Lonnie Eaton Peter Pugh Jesus Brig
ht Ramiro Bentley Derrick Hendricks Hans Page Garrett Campos Todd Lindsey Denis

Snider Stan Rocha Dollie Hernandez Aileen Duncan Essie Short Jami Ruiz Isabel Ro
driguez Ingrid Santos Jaime Noel Geneva Case Lucille Bradford Josefina Hampton F
annie Moore Socorro Jimenez Elba Mccall Louella Allen Jeannette Merritt Lana Bur
ns Karyn Francis Blanca Le Renee Decker Obama C.T. Russell admin Leonard Nimoy

(program exited with code: 0)
Press return to continue k

Chapter 4

If you want to examine what happens when multiple interfaces are implemented, but where
the method signature differs, enter the code shown in the preceding step 4 into a file,

chap 04 oop interfaces collisions.php. When you try to run the file, an error is
generated, as shown here:

@@® Terminal

PHP Fatal error: Declaration of DateTimeHandler::setBoth($dateTime) must be com
patible with DateAware::setBoth(DateTime $dateTime) in /home/aed/Repos/php7_reci
pes/source/chapter@4/chap 04 oop interfaces_collisions.php on line 19

PHP Stack trace:

PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapter@4/chap_04 oop_inte
rfaces collisions.php:0@

Fatal error: Declaration of DateTimeHandler::setBoth($dateTime) must be compatib
le with DateAware::setBoth(DateTime $dateTime) in /home/aed/Repos/php7 recipes/s
ource/chapter@4/chap_04 oop_interfaces_collisions.php on line 19

Call Stack:
0.0002 363024 1. {main}() /home/aed/Repos/php7_recipes/source/chapter@
4/chap 04 oop interfaces collisions.php:0

(program exited with code: 255) A
Press return to continue

If you make the following adjustment in the TimeAware interface, no errors will result:

interface TimeAware
{
public function setTime (Stime) ;
// this will cause a problem
public function setBoth(DateTime S$dateTime) ;

}

If you have ever done any C programming, you are perhaps familiar with macros. A macro is
a predefined block of code that expands at the line indicated. In a similar manner, traits can
contain blocks of code that are copied and pasted into a class at the line indicated by the
PHP interpreter.

Working with PHP Object-Oriented Programming

How to do it...

1. Traits are identified with the keyword trait, and can contain properties and/or
methods. You may have noticed duplication of code when examining the previous
recipe featuring the CountryList and CustomerList classes. In this example, we
will re-factor the two classes, and move the functionality of the 1ist () method into a
Trait. Notice that the 1ist () method is the same in both classes.

2. Traits are used in situations where there is duplication of code between classes.
Please note, however, that the conventional approach to creating an abstract class
and extending it might have certain advantages over using traits. Traits cannot be
used to identify a line of inheritance, whereas abstract parent classes can be used
for this purpose.

3. We will now copy 1ist () into a trait called ListTrait:

trait ListTrait

{

public function list ()

{

$list [1;

$sgl = sprintf ('SELECT %s, %s FROM %s',
Sthis->key, $this->value, Sthis->table);

$stmt = $this->connection->pdo->query($sql) ;

while ($item = $stmt->fetch(PDO::FETCH ASSOC)) {
$list[Sitem[$this->key]] =
Sitem[$Sthis->valuel] ;

}

return S$list;

}

4. We can then insert the code from ListTrait into a new class,
CountryListUsingTrait, as shown in the following code snippet. The entire
list () method can now be removed from this class:

class CountryListUsingTrait implements ConnectionAwareInterface

{

use ListTrait;

protected S$Sconnection;
protected Skey = 'iso3';

protected S$Svalue = 'name';
protected Stable

'iso _country codes';

public function setConnection (Connection $connection)

Chapter 4

Sthis->connection = S$connection;

Any time you have duplication of code, a potential problem arises when
you need to make a change. You might find yourself having to do too many
global search and replace operations, or cutting and pasting of code, often
with disastrous results. Traits are a great way to avoid this maintenance
nightmare.

Traits are affected by namespaces. In the example shown in step 1, if our new
CountryListUsingTrait class is placed into a namespace, Application\
Generic, we will also need to move ListTrait into that namespace as well:

namespace Application\Generic;
use PDO;

trait ListTrait

{

public function list ()

{
// code as shown above
}
}

Methods in traits override inherited methods.

In the following example, you will notice that the return value for the setId ()
method differs between the Base parent class and the Test trait. The Customer
class inherits from Base, but also uses Test. In this case, the method defined in the
trait will override the method defined in the Base parent class:

trait Test

{

public function setId(sid)

{

$obj = new stdClass() ;
Sobj->id = $id;
Sthis->id = $obj;

class Base

Working with PHP Object-Oriented Programming

{
protected $id;
public function getId()
{

return Sthis->id;

}

public function setId($id)

{

$this->id = $id;

class Customer extends Base
use Test;
protected S$name;
public function getName ()

{

return Sthis->name;

}

public function setName ($name)

{

Sthis->name = S$name;

4 In PHP 5, traits could also override properties. In PHP 7, if the property in a
trait is initialized to a different value than in the parent class, a fatal error is
’ generated.

8. Methods directly defined in the class that use the trait override duplicate methods
defined in the trait.

9. Inthis example, the Test trait defines a property $id along with the getId ()
methods and setId (). The trait also defines setName (), which conflicts with the
same method defined in the Customer class. In this case, the directly defined
setName () method from Customer will override the setName () defined in the trait:
trait Test
{

protected $id;
public function getId()

{

return Sthis->id;

120

Chapter 4

public function setId($id)

{
Sthis->id = $id;
}
public function setName ($name)
{

$obj = new stdClass() ;
Sobj->name = $name;
Sthis->name = $obj;

class Customer
use Test;
protected S$name;
public function getName ()

{

return Sthis->name;

}

public function setName ($name)

{

Sthis->name = S$name;

}

10. Use the insteadof keywords to resolve method name conflicts when using multiple
traits. In conjunction, use the as keyword to alias method names.

11. In this example, there are two traits, IdTrait and NameTrait. Both traits define a
setKey () method, but express the key in different ways. The Test class uses both
traits. Note the insteadof keyword, which allows us to distinguish between the
conflicting methods. Thus, when setKey () is called from the Test class, the source
will be drawn from NameTrait. In addition, setKey () from IdTrait will still be
available, but under an alias, setKeyDate ():

trait IdTrait
{
protected $id;
public Skey;
public function setId(s$id)
{
Sthis->id = $id;
}
public function setKey ()

{

Working with PHP Object-Oriented Programming

Sthis->key = date('YmdHis')
sprintf ('%04d', rand(0,9999)) ;
}
}

trait NameTrait

{

protected S$name;
public Skey;
public function setName ($name)

{

Sthis->name = $Sname;

}

public function setKey ()

{
$this->key = unpack('H*', random bytes(18)) [1];
}
}

class Test

{

use IdTrait, NameTrait
NameTrait::setKeyinsteadofIdTrait;
IdTrait::setKey as setKeyDate;

}
}

From step 1, you learned that traits are used in situations where there is duplication of
code. You need to gauge whether or not you could simply define a base class and extend it,
or whether using a trait better serves your purposes. Traits are especially useful where the
duplication of code is seen in logically unrelated classes.

To illustrate how trait methods override inherited methods, copy the block of code mentioned
in step 7 into a separate file, chap 04 oop traits override inherited.php.Add
these lines of code:

Scustomer = new Customer() ;
Scustomer->setId(100) ;
Scustomer->setName ('Fred') ;
var_ dump ($customer) ;

As you can see from the output (shown next), the property $id is stored as an instance of
stdClass (), which is the behavior defined in the trait:

122

©@@®& Terminal

class Customer#l (2) {
protected $name =>
string(4) "Fred"
protected $id =>
class stdClass#2 (1) {
public $id ==
int(100)

(program exited with code: 0)
Press return to continue

Chapter 4

To illustrate how directly defined class methods override trait methods, copy the block of
code mentioned in step 9 into a separate file, chap 04 oop trait methods_do not

override class_methods.php. Add these lines of code:

Scustomer = new Customer () ;

Scustomer->setId(100) ;

Scustomer->setName ('Fred') ;

var_dump ($customer) ;

As you can see from the following output, the $id property is stored as an integer, as defined

in the Customer class, whereas the trait defines $id as an instance of stdClass:

@@ Terminal

class Customer#l (2) {
protected $name =>
string(4) "Fred"
public $id =>
int(160)

(program exited with code: ©)
Press return to continue

Working with PHP Object-Oriented Programming

In step 10, you learned how to resolve duplicate method name conflicts when using multiple
traits. Copy the block of code shown in step 11 into a separate file, chap 04 oop trait
multiple.php. Add the following code:

Sa = new Test () ;
$a->setId(100) ;
Sa->setName ('Fred') ;
Sa->setKey () ;
var_dump ($a) ;

$a->setKeyDate () ;
var_dump ($a) ;

Notice in the following output that setKey () yields the output produced from the new PHP 7
function, random_bytes () (defined in NameTrait), whereas setKeyDate () produces a
key using the date () and rand () functions (defined in IdTrait):

class Test#1 (3) {
protected $id =>
int(100)
public $key ==
string(36) "823b46fbl0071cb4baa373ad4cdb8181cbd9c”
protected $name ==
string(4) "Fred"”
}
class Test#1 (3) {
protected $id =>
int(100)
public $key =>
string(18) "201602180643172034"
protected $name =>
string(4) "Fred"

(program exited with code: 0)
Press return to continue

Implementing anonymous classes

PHP 7 introduced a new feature, anonymous classes. Much like anonymous functions,
anonymous classes can be defined as part of an expression, creating a class that has no
name. Anonymous classes are used in situations where you need to create an object on the
fly, which is used and then discarded.

124

Chapter 4

How to do it...

1. An alternative to stdClass is to define an anonymous class.

In the definition, you can define any properties and methods (including magic
methods). In this example, we define an anonymous class with two properties and a
magic method, construct ():

$a = new class (123.45, 'TEST') {
public S$total = 0;
public S$test = '';
public function _ construct ($total, Stest)
{
Sthis->total = S$total;
Sthis->test Stest;

}

}i
2. Ananonymous class can extend any class.

In this example, an anonymous class extends FilterIterator, and overrides
both the ~ construct () and accept () methods. As an argument, it accepts
ArrayIterator $b, which represents an array of 10 to 100 in increments of 10.
The second argument serves as a limit on the output:

$b = new ArrayIterator (range(10,100,10)) ;

$f = new class ($b, 50) extends FilterIterator ({
public $limit = 0;
public function _ construct ($iterator, $limit)

{
Sthis->limit = $limit;
parent:: construct($iterator);

}

public function accept ()

{

return (Sthis->current() <= $this->limit);

}
}i

3. An anonymous class can implement an interface.

In this example, an anonymous class is used to generate an HTML color code chart.
The class implements the built-in PHP Countable interface. A count () method

is defined, which is called when this class is used with a method or function that
requires Countable:

define ('MAX COLORS', 256 ** 3);

$d = new class () implements Countable {

Working with PHP Object-Oriented Programming

public Scurrent = 0;

public $maxRows = 16;

public $maxCols = 64;

public function cycle()

{
Srow = '';
Smax = S$Sthis->maxRows * $this->maxCols;
for ($x = 0; $x < $this->maxRows; $x++) {

Srow .= '<tr>';
for ($y = 0; $y < $this-s>maxCols; Sy++) {
Srow .= sprintf (

'<td style="background-color: #%06X;"',
Sthis->current) ;

Srow .= sprintf (
'title="#%06X"> </td>",
Sthis->current) ;

Sthis->current++;

$this->current = ($this->current >MAX COLORS) ? 0

Sthis->current;
}
Srow .= '</tr>';
}

return Srow;

}

public function count ()

{

return MAX COLORS;

}
}i

4. Anonymous classes can use traits.

5. This last example is a modification from the preceding one defined immediately.
Instead of defining a class Test, we define an anonymous class instead:

$a = new class() {
use IdTrait, NameTrait (
NameTrait::setKeyinsteadofIdTrait;
IdTrait::setKey as setKeyDate;

126

Chapter 4

In an anonymous class you can define any properties or methods. Using the preceding
example, you could define an anonymous class that accepts constructor arguments, and
where you can access properties. Place the code described in step 2 into a test script
chap 04 oop_ anonymous_class.php. Add these echo statements:

echo "\nAnonymous Class\n";
echo $a->total .PHP EOL;
echo $a->test . PHP EOL;

Here is the output from the anonymous class:

@@ Terminal

Anonymous Class
123.45
TEST

(program exited with code: 0)
Press return to continue

In order to use FilterIterator you must override the accept () method. In this method,
you define criteria for which elements of the iteration are to be included as output. Go ahead
now and add the code shown in step 4 to the test script. You can then add these echo
statements to test the anonymous class:

echo "\nAnonymous Class Extends FilterIterator\n";
foreach ($f as S$item) echo Sitem . '';
echo PHP EOL;

Working with PHP Object-Oriented Programming

In this example, a limit of 50 is established. The original ArrayIterator contains an array
of values, 10 to 100, in increments of 10, as seen in the following output:

@@ Terminal

lAnonymous Class Extends FilterIterator
10 20 30 40 50

(program exited with code: @)
Press return to continue

To have a look at an anonymous class that implements an interface, consider the example
shown in steps 5 and 6. Place this code in a file, chap 04 oop anonymous_class_
interfaces.php.

Next, add code that lets you paginate through the HTML color chart:

$d->current = $ GET['current'] ?? 0;
Sd->current = hexdec ($d->current) ;

Sfactor = (Sd->maxRows * $d->maxCols) ;

$next = Sd->current + S$Sfactor;

Sprev = $d->current - sSfactor;

Snext = ($next <MAX COLORS) ? $next : MAX COLORS - $factor;
Sprev = (Sprev>= 0) ? Sprev : 0;

Snext = sprintf ('%06X', $next);
Sprev = sprintf ('%06X', S$Sprev);
?>

Finally, go ahead and present the HTML color chart as a web page:

<hl>Total Possible Color Combinations: <?= count($d); ?></hls>
<hr>

<table>

<?= $d->cycle(); ?>

</table>

<a href="?current=<?= S$prev ?>"><<PREV

<a href="?current=<?= $next ?>">NEXT >>

128

Notice that you can take advantage of the Countable interface by passing the instance
the anonymous class into the count () function (shown between <H1> tags). Here is the
output shown in a browser window:

_f-PHP 7 Cookbook x-\-l-

Chapter 4

of

(€)@ localhost:8080/chap_04_oop_anonymous_class_interfaces.php?current=FF888 S ‘ ‘Q Search ‘ w8

Total Possible Color Combinations: 16777216

<< PREV NEXT >>

Lastly, to illustrate the use of traits in anonymous classes, copy the chap 04 oop_ trait
multiple.php file mentioned in the previous recipe to a new file, chap 04 oop trait
anonymous_class.php. Remove the definition of the Test class, and replace it with an

anonymous class:

$a = new class() {
use IdTrait, NameTrait (
NameTrait::setKeyinsteadofIdTrait;
IdTrait::setKey as setKeyDate;

}
}i

Remove this line:

Sa = new Test () ;

Working with PHP Object-Oriented Programming

When you run the code, you will see exactly the same output as shown in the preceding
screenshot, except that the class reference will be anonymous:

@® Terminal

class class@anonymous#l (3) {
protected $id ==
int(100)
public $key ==
string(36) "6d809645b8a7d904620788f7a9757a20b821"
protected $name =>
string(4) "Fred"
H
class class@anonymous#l (3) {
protected $id ==
int(100)
public $key ==
string(18) "201602180650100429"
protected $name =>
string(4) "Fred"

(program exited with code: 0)
Press return to continue

130

Interacting with
a Database

In this chapter, we will cover the following topics:

» Using PDO to connect to a database

» Building an OOP SQL query builder

» Handling pagination

» Defining entities to match database tables

» Tying entity classes to RDBMS queries

» Embedding secondary lookups into query results

» Implementing jQuery DataTables PHP lookups

Introduction

In this chapter, we will cover a series of database connectivity recipes that take advantage of
the PHP Data Objects (PDO) extension. Common programming problems such as Structured
Query Language (SQL) generation, pagination, and tying objects to database tables, will be
addressed. Finally, at the end, we will present code that processes secondary lookups in the
form of embedded anonymous functions, and using jQuery DataTables to make AJAX requests.

Interacting with a Database

Using PDO to connect to a database

PDO is a highly performant and actively maintained database extension that has a unique
advantage over vendor-specific extensions. It has a common Application Programming
Interface (API) that is compatible with almost a dozen different Relational Database
Management Systems (RDBMS). Learning how to use this extension will save you hours
of time trying to master the command subsets of the equivalent individual vendor-specific
database extensions.

PDO is subdivided into four main classes, as summarized in the following table:

Class Functionality

PDO Maintains the actual connection to the database, and also
handles low-level functionality such as transaction support

PDOStatement Processes results

PDOException Database-specific exceptions

PDODriver Communicates with the actual vendor-specific database

How to do it...

1. Set up the database connection by creating a PDO instance.

2. You need to construct a Data Source Name (DSN). The information contained in the
DSN varies according to the database driver used. As an example, here is a DSN used
to connect to a MySQL database:

Sparams = [
'host' => 'localhost',
'user' => 'test',
'pwd' => 'password',
'db! => 'php7cookbook’
1:
try {
$dsn = sprintf ('mysqgl:host=%s;dbname=%s"',
$params['host'], $params['db']);
$Spdo = new PDO($dsn, S$Sparams/['user'], S$params['pwd'l]l);

} catch (PDOException $e) {
echo S$Se->getMessage() ;

} catch (Throwable $e)
echo S$Se->getMessage() ;

132

Chapter 5

3. Onthe other hand, SQlite, a simpler extension, only requires the following command:

5.

Sparams = [

'db' => DIR . '/../data/db/php7cookbook.db.sglite’
1;
$dsn = sprintf('sglite:' . $params['db']);

PostgreSQL, on the other hand, includes the username and password directly in the
DSN:

Sparams = [
'host' => 'localhost',
'user' => 'test',
'pwd' => 'password',
'db' => 'php7cookbook’
1
$dsn = sprintf ('pgsqgl:host=%s;dbname=%s;user=%s;password=%s',
Sparams ['host'],
Sparams['db'],
Sparams ['user'],
Sparams ['pwd']) ;

The DSN could also include server-specific directives, such as unix socket, as
shown in the following example:

Sparams = [
'host' => 'localhost',
'user' => 'test',
'pwd' => 'password',
'db' => 'php7cookbook"',
'sock' => '/var/run/mysqgld/mysqgld.sock'
1;
try {
$dsn = sprintf('mysgl:host=%s;dbname=%s;unix socket=%s',
Sparams['host'], S$params['db'], $params['sock']);
Sopts = [PDO: :ATTR_ERRMODE => PDO: :ERRMODE_EXCEPTION] ;
Spdo = new PDO(dsn, SSparams|['user'], S$params['pwd'], S$Sopts);

} catch (PDOException $e) {
echo S$e->getMessage() ;

} catch (Throwable $e)
echo S$e->getMessage() ;

Interacting with a Database

Best practice

Wrap the statement that creates the PDO instance ina try {} catch

{ } block. Catch a PDOException for database-specific information in
case of failure. Catch Throwable for errors or any other exceptions. Set
the PDO error mode to PDO: : ERRMODE_EXCEPTION for best results. See
step 8 for more details about error modes.

In PHP 5, if the PDO object cannot be constructed (for example, when
invalid parameters are used), the instance is assigned a value of NULL. In
PHP 7, an Exception is thrown. If you wrap the construction of the PDO
objectina try {} catch {} block, andthe PDO: :ATTR ERRMODE is
set to PDO: : ERRMODE_EXCEPTION, you can catch and log such errors
without having to test for NULL.

6. Sendan SQL command using PDO: :query (). A PDOStatement instance is
returned, against which you can fetch results. In this example, we are looking for the
first 20 customers sorted by ID:

7.

Sstmt
'SELE

= $pdo->query (
CT * FROM customer ORDER BY id LIMIT 20');

PDO also provides a convenience method, PDO: : exec (), which does
not return a result iteration, just the number of rows affected. This method
is best used for administrative operations such as ALTER TABLE, DROP
TABLE, and so on.

Iterate through the PDOStatement instance to process results. Set the fetch mode
to either PDO: : FETCH NUM or PDO: : FETCH_ASSOC to return results in the form of
a numeric or associative array. In this example we use a while () loop to process
results. When the last result has been fetched, the result is a boolean FALSE, ending
the loop:

while

($row = $stmt->fetch(PDO::FETCH ASSOC)) ({

printf ('%4d | %20s | %5s' . PHP EOL, $row['id'],
Srow['name'], Srow['level']);

PDO fetch operations involve a cursor that defines the direction

(that is, forward or reverse) of the iteration. The second argument to
PDOStatement: : fetch () can be any of the PDO: : FETCH_ORI_*
constants. Cursor orientations include prior, first, last, absolute, and
relative. The default cursor orientation is PDO: : FETCH_ORI_NEXT.

Chapter 5

10.

11.

Set the fetch mode to PDO: : FETCH_OBJ to return results as a stdClass instance.
Here you will note that the while () loop takes advantage of the fetch mode,

PDO: : FETCH OBJ. Notice that the printf () statement refers to object properties,
in contrast with the preceding example, which references array elements:

while ($row = $stmt->fetch(PDO::FETCH OBJ)) {
printf ('%4d | %20s | %5s' . PHP_EOL,
$row->id, $row->name, S$row->level);

}

If you want to create an instance of a specific class while processing a query, set
the fetch mode to PDO: : FETCH CLASS. You must also have the class definition
available, and PDO: : query () should set the class name. As you can see in the
following code snippet, we have defined a class called Customer, with public
properties $id, $name, and $1level. Properties need to be public for the fetch
injection to work properly:

class Customer

{
public $id;
public $name;
public S$level;

}
$stmt = $pdo->query ($sqgl, PDO::FETCH CLASS, 'Customer');

When fetching objects, a simpler alternative to the technique shown in step 5 is to
use PDOStatement : : fetchObject ():

while ($row = $stmt->fetchObject('Customer'))
printf ('%4d | %20s | %5s' . PHP_EOL,
Srow->id, S$row->name, Srow->level) ;

}

You could also use PDO: : FETCH_INTO, which is essentially the same as
PDO: : FETCH_CLASS, but you need an active object instance instead of a class
reference. Each iteration through the loop re-populates the same object instance with
the current information set. This example assumes the same class Customer as in
step 5, with the same database parameters and PDO connections as defined in step
1:
Scust = new Customer () ;
while ($stmt->fetch(PDO::FETCH INTO))

printf ('%4d | %20s | %5s' . PHP_EOL,

$cust->id, $cust->name, $cust->level) ;

Interacting with a Database

12.

13.

14.

15.

16.

17.

If you do not specify an error mode, the default PDO error mode is PDO : : ERRMODE _
SILENT. You can set the error mode using the PDO: : ATTR ERRMODE key, and either
the PDO: : ERRMODE_WARNING or the PDO: : ERRMODE EXCEPTION value. The error
mode can be specified as the fourth argument to the PDO constructor in the form

of an associative array. Alternatively, you can use PDO: : setAttribute () onan
existing instance.

Let us assume you have the following DSN and SQL (before you start thinking that
this is a new form of SQL, please be assured: this SQL statement will not work!):

Sparams = [
'host' => 'localhost',
'user' => 'test',
'pwd' => 'password',
'db' => 'php7cookbook’
1:
$dsn = sprintf ('mysgl:host=%s;dbname=%s', $params['host'],
Sparams['db']) ;
$sgl = 'THIS SQL STATEMENT WILL NOT WORK';

If you then formulate your PDO connection using the default error mode, the only clue
that something is wrong is that instead of producing a PDOStatement instance, the
PDO: :query () will return a boolean FALSE:

Spdol = new PDO(dsn, Sparams['user'], S$params['pwd']);
$Sstmt = $pdol->query ($sql) ;
Srow = ($stmt) ? S$stmt->fetch(PDO::FETCH ASSOC) : 'No Good';

The next example shows setting the error mode to WARNING using the constructor
approach:

Spdo2 = new PDO(
$dsn,
Sparams ['user'],
Sparams['pwd'],
[PDO::ATTR_ERRMODE => PDO::ERRMODE_WARNING]);

If you need full separation of the prepare and execute phases, use

PDO: :prepare () and PDOStatement: : execute () instead. The statement
is then sent to the database server to be pre-compiled. You can then execute the
statement as many times as is warranted, most likely in a loop.

The first argument to PDO: :prepare () can be an SQL statement with

placeholders in place of actual values. An array of values can then be supplied to
PDOStatement : :execute (). PDO automatically provides database quoting, which
helps safeguard against SQL Injection.

136

Chapter 5

Best practice

Any application in which external input (that is, from a form posting) is
combined with an SQL statement is subject to an SQL injection attack.

%%‘ All external input must first be properly filtered, validated, and otherwise
sanitized. Do not put external input directly into the SQL statement.
Instead, use placeholders, and provide the actual (sanitized) values
during the execution phase.

18. To iterate through the results in reverse, you can change the orientation of the

19.

20.

scrollable cursor. Alternatively, and probably more easily, just reverse the ORDER BY
from ASC to DESC. This line of code sets up a PDOStatement object requesting a
scrollable cursor:

Sdsn = sprintf ('pgsqgl:charset=UTF8;host=%s;dbname=%s"',
Sparams['host'], S$params['db']);

Sopts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

Spdo = new PDO($dsn, Sparams|['user'], S$params['pwd'], S$Sopts);
$sgl = 'SELECT * FROM customer '

'WHERE balance > :min AND balance < :max '
'ORDER BY id LIMIT 20°';
$stmt = $pdo->prepare($sql, [PDO::ATTR CURSOR =>
PDO: : CURSOR_SCROLL]) ;

You also need to specify cursor instructions during the fetch operation. This example
gets the last row in the result set, and then scrolls backwards:
Sstmt->execute(['min' => S$Smin, 'max' => Smax]);
$row = $stmt->fetch(PDO::FETCH_ASSOC, PDO::FETCH ORI LAST) ;
do {
printf ('%4d | %20s | %5s | %8.2f' . PHP EOL,
Srow['id'],

Srow['name'],
Srow['level'],
$row['balance']) ;

} while ($row = $stmt->fetch(PDO::FETCH ASSOC,
PDO: : FETCH ORI PRIOR)) ;

Neither MySQL nor SQLite support scrollable cursors! To achieve the same results, try
the following modifications to the preceding code:

$dsn = sprintf ('mysqgl:charset=UTF8;host=%s;dbname=%s"',
Sparams['host'], S$params['db']);

Sopts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];

Spdo = new PDO($dsn, Sparams/['user'], S$params['pwd'], S$Sopts);

$sgql = 'SELECT * FROM customer '

'WHERE balance > :min AND balance < :max '

Interacting with a Database

21.

22.

138

'ORDER BY id DESC
'LIMIT 20°';
$stmt = $pdo-s>prepare ($sql) ;
r

while ($row = $stmt->fetch(PDO::FETCH ASSOC)) ;
printf('%4d | %20s | %5s | %8.2f' . PHP EOL,
Srow(['id'],

Srow(['name'],
Srow['level'],
Srow|['balance']) ;

}

PDO provides support for transactions. Borrowing the code from step 9, we can wrap
the INSERT series of commands into a transactional block:

try {
$Spdo-s>beginTransaction() ;

$sgl = "INSERT INTO customer ('"
implode("','", $fields) . "') VALUES (?,?,%?,?2,2,2)";
$stmt = $pdo-s>prepare ($sql) ;
foreach (Sdata as Srow) S$Sstmt->execute (Srow) ;
$pdo->commit () ;
} catch (PDOException $e) {
error_ log($e->getMessage()) ;
$pdo->rollBack() ;

}

Finally, to keep everything modular and re-usable, we can wrap the PDO connection
into a separate class Application\Database\Connection. Here, we build

a connection through the constructor. Alternatively, there is a static factory ()
method that lets us generate a series of PDO instances:

namespace Application\Database;
use Exception;
use PDO;
class Connection
{
const ERROR_UNABLE = 'ERROR: no database connection';
public S$pdo;
public function __ construct (array $config)
{
if (!isset ($configl'driver'])) {
$message = METHOD . ' : '
self::ERROR_UNABLE . PHP EOL;
throw new Exception ($Smessage) ;

}

$dsn = Sthis->makeDsn ($config) ;

Chapter 5

try {
Sthis->pdo = new PDO (
Sdsn,
$config['user'],
Sconfig['password'],
[PDO: : ATTR_ERRMODE => $config['errmode'l]]);
return TRUE;
} catch (PDOException $e) {
error log($e->getMessage()) ;
return FALSE;

public static function factory(
Sdriver, S$dbname, Shost, Suser,
Spwd, array $options = array())

$dsn = Sthis->makeDsn ($config) ;

try {

return new PDO($dsn, Suser, S$pwd, Soptions);
} catch (PDOException $e) {

error log($e->getMessage) ;

}

23. An important component of this Connection class is a generic method that can be
used to construct a DSN. All we need for this to work is to establish the PDODriver
as a prefix, followed by ": ". After that, we simply append key/value pairs from our
configuration array. Each key/value pair is separated by a semi-colon. We also need
to strip off the trailing semi-colon, using substr () with a negative limit for that
purpose:

public function makeDsn ($config)
{
$dsn = Sconfig['driver'l] . ':';
unset (Sconfig['driver']) ;
foreach ($config as $key => $value)
$dsn .= $key . '=' . $value . ';';
}

return substr(Sdsn, 0, -1);

Interacting with a Database

First of all, you can copy the initial connection code from step 1 into a chap 05 pdo_
connect_mysql . php file. For the purposes of this illustration, we will assume you have
created a MySQL database called php7cookbook, with a username of cook and a password
of book. Next, we send a simple SQL statement to the database using the PDO: : query ()
method. Finally, we use the resulting statement object to fetch results in the form of an
associative array. Don't forget to wrap your code ina try {} catch {} block:

<?php
Sparams = [
'host' => 'localhost',
'user' => 'test',
'pwd' => 'password',
'db' => 'php7cookbook!
1;
try {
$dsn = sprintf ('mysqgl:charset=UTF8;host=%s;dbname=%s"',

Sparams['host'], S$Sparams['db']);
$Spdo = new PDO($dsn, S$Sparams/['user']l, S$params['pwd'l);
$stmt = $pdo->query (

'SELECT * FROM customer ORDER BY id LIMIT 20');

printf('%4s | %20s | %5s | %7s' . PHP EOL,
'ID', 'NAME', 'LEVEL', 'BALANCE');
printf('%4s | %20s | %5s | %7s' . PHP EOL,
'----', str repeat('-', 20), '----- i ')
while ($row = $stmt->fetch(PDO::FETCH ASSOC)) ({
printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,

Srow(['id'], Srow['name'], Srow['level']l, Srowl['balance'l);

}

} catch (PDOException $e) {
error log($e->getMessage()) ;
} catch (Throwable $e)
error log($e->getMessage()) ;

140

Chapter 5

Here is the resulting output:

0 | NAME | LEVEL | BALANCE
R | - | --eee-
1| Conrad Perry | INT | 440.80
2| Lonnie Knapp | | 555.55
3 | Darrel Roman | INT | 444.44
4 | Morgan Avila | ADV | 888.88
5 | Lee Mccray | | 539.35
6 | spencer Sanford | INT | 99.99
7| Thomas Kirby | | 412.45
8 | Brian Crawford | ADV | 125.58
9 | Armando Barlow | BEG | 6524.00
10 | Jess Rocha | ADV | 6405.00
11 | Felix Blevins | BEG | 130.57
12 | Jose Carter | INT | 56.22
13 | oOrlando Fulton | | 222.22
14 | Mitchell Roth | INT | 591.87
15 | Eduardo Wright | BEG | 156.36
16 | Marc Ellis | ADV | 69.04
17 | Joaquin Moses | INT | 936.64
18 | Morris Vargas | | 486.60
19 | Gene Cruz | ADV | 683.55
20 | Samuel Harding | ADV | -11.56

Add the option to the PDO constructor, which sets the error mode to EXCEPTION. Now alter
the SQL statement and observe the resulting error message:

Sopts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
Spdo = new PDO($dsn, Sparams|['user'], Sparams|['pwd'], Sopts);
$stmt = $pdo->query ('THIS SQL STATEMENT WILL NOT WORK') ;

You will observe something like this:

(< Terminal

SQLSTATE[42008]: Syntax error or access violation: 1864 You have an error in you|
r SQL syntax; check the manual that corresponds to your MySQL server version for
the right syntax to use near 'THIS SQL STATEMENT WILL NOT WORK' at line 1

(program exited with code: 8)
Press return to continue

Placeholders can be named or positional. Named placeholders are preceded by a colon (:)
in the prepared SQL statement, and are references as keys in an associative array provided to
execute (). Positional placeholders are represented as question marks (?) in the prepared
SQL statement.

Interacting with a Database

In the following example, named placeholders are used to represent values in a WHERE
clause:

try {
$dsn = sprintf ('mysqgl:host=%s;dbname=%s"',
Sparams['host'], S$Sparams['db']);
$Spdo = new PDO($dsn,
Sparams ['user'],
Sparams['pwd'],
[PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);
$sgql = 'SELECT * FROM customer '

'WHERE balance < :val AND level = :level '
'ORDER BY id LIMIT 20'; echo $sqgl . PHP_ EOL;
$Sstmt = $pdo->prepare ($sql) ;

Sstmt->execute(['val' => 100, 'level' => 'BEG']);
while ($row = $stmt->fetch (PDO::FETCH ASSOC)) {
printf ('%4d | %20s | %5s | %5.2f' . PHP EOL,

Srow['id'], S$row['mame']l, Srow['level'], Srow['balance'l);
}
} catch (PDOException $e) {
echo S$e->getMessage() ;
} catch (Throwable $e)
echo S$e->getMessage() ;

}

This example shows using positional placeholders in an INSERT operation. Notice that the
data to be inserted as the fourth customer includes a potential SQL injection attack. You will
also notice that some awareness of the SQL syntax for the database being used is required. In
this case, MySQL column names are quoted using back-ticks ('):

$fields = ['name', 'balance',K 'email',
'password', 'status', 'level'l;
Sdata = [
['Saleen', 0, 'saleen@test.com', 'password',0,'BEG'],
'Lada',55.55, 'lada@test.com', 'password',0, 'INT'],
p

[
['Tonsoi',999.99, 'tongsoi@test.com', 'password',1l, 'ADV'],
['SQL Injection',0.00, 'bad', 'bad', 1,

'BEG\';DELETE FROM customer;--'],
1;
try {
$dsn = sprintf ('mysqgl:host=%s;dbname=%s"',
Sparams['host'], S$Sparams['db']);
$Spdo = new PDO($dsn,

Sparams['user'],

142

Chapter 5

Sparams['pwd'],
[PDO: : ATTR_ERRMODE => PDO::ERRMODE EXCEPTION]) ;
$sgl = "INSERT INTO customer ('"
implode("','", sfields)
"') VALUES (?,2,2,2,2,2)";
$stmt = $pdo-s>prepare ($sql) ;
foreach (Sdata as Srow) S$Sstmt->execute (Srow) ;
} catch (PDOException $e) {
echo S$Se->getMessage() ;
} catch (Throwable $e)
echo S$Se->getMessage() ;

}

To test the use of a prepared statement with named parameters, modify the SQL statement
to add a WHERE clause that checks for customers with a balance less than a certain amount,
and a level equal to either BEG, INT, or ADV (that is, beginning, intermediate, or advanced).
Instead of using PDO: :query (), use PDO: :prepare (). Before fetching results, you must
then perform PDOStatement : : execute (), supplying the values for balance and level:

'SELECT * FROM customer '

'WHERE balance < :val AND level = :level '
. 'ORDER BY id LIMIT 20°';

$stmt = $pdo-s>prepare ($sql) ;
Sstmt->execute(['val' => 100, 'level' => 'BEG']);

$sql

Here is the resulting output:

1D | NAME | LEVEL | BALANCE
e | ----- | ----e--
25 | Rhonda Kinney | BEG | 46.61
45 | Wilfredo Taylor | BEG | 25.11
57 | Garrett Campos | BEG | 9.47
88 | Obama | BEG | 0.00
92 | C.T. Russell | BEG | 0.00

(program exited with code: 8)
Press return to continue

Instead of providing parameters when calling PDOStatement : : execute (), you could
alternatively bind parameters. This allows you to assign variables to placeholders. At the time
of execution, the current value of the variable is used.

Interacting with a Database

In this example, we bind the variables $min, $max, and $1level to the prepared statement:

Smin = 0;
Smax = 0;
Slevel = '';
try {
$dsn = sprintf ('mysgl:host=%s;dbname=%s', $params['host'],
Sparams['db']) ;
Sopts = [PDO: :ATTR_ERRMODE => PDO: :ERRMODE_EXCEPTION] ;
Spdo = new PDO(dsn, Sparams|['user'], S$params['pwd'], $opts);
$sgql = 'SELECT * FROM customer '
'WHERE balance > :min '
'AND balance < :max AND level = :level '

'"ORDER BY id LIMIT 20';
$stmt = $pdo-s>prepare ($sql) ;
$stmt->bindParam('min', $min) ;
$stmt->bindParam('max’', $max) ;
$stmt->bindParam('level', $level);

Smin = 5000;
Smax = 10000;
Slevel = 'ADV';

$stmt->execute () ;
showResults ($stmt, min, SSmax, S$level);

Smin = 0;
Smax = 100;
Slevel = 'BEG';

$stmt->execute () ;
showResults ($stmt, min, SSmax, S$level);

} catch (PDOException $e) {
echo S$Se->getMessage () ;

} catch (Throwable $e)
echo S$Se->getMessage() ;

}
When the values of these variables change, the next execution will reflect the modified
criteria.

Best practice

PDO: :prepare () and PDOStatement: :execute () when you
need to process the same statement multiple times but using different
values.

.\'Q Use PDO: :query () for one-time database commands. Use

Chapter 5

For information on the syntax and unique behavior associated with different vendor-specific
PDO drivers, have a look this article:

» http://php.net/manual/en/pdo.drivers.php

For a summary of PDO predefined constants, including fetch modes, cursor orientation, and
attributes, see the following article:

» http://php.net/manual/en/pdo.constants.php

Building an OOP SQL query builder

PHP 7 implements something called a context sensitive lexer. What this means is that words
that are normally reserved can be used if the context allows. Thus, when building an object-
oriented SQL builder, we can get away with using methods named and, or, not, and so on.

How to do it...

1. We define a Application\Database\Finder class. In the class, we define
methods that match our favorite SQL operations:

namespace Application\Database;
class Finder

{

public static $sqgl '

public static $instance = NULL;
public static S$Sprefix = ',
public static S$Swhere = array () ;

public static $control (v, 115

// $a == name of table

// $cols = column names

public static function select(a, Scols = NULL)

{

self::$instance = new Finder() ;
if ($cols) {
self::$prefix = 'SELECT ' . $cols . ' FROM ' . Sa;
} else {
self::$prefix = 'SELECT * FROM ' . $a;

}

return self::$instance;

Interacting with a Database

public static function where ($a = NULL)

{
self::Swhere[0] = ' WHERE ' . $a;
return self::S$instance;

public static function like($a, $b)

{

self::Swhere[] = trim($a . ' LIKE ' . $b);

return self::S$instance;

public static function and($a = NULL)

{
self::Swhere[] = trim('AND ' . S$a);
return self::S$instance;

public static function or($a = NULL)

{
self::Swhere[] = trim('OR ' . $a);
return self::S$instance;

public static function in(array $a)

{
self::$where[] = '"IN (' . implode(',"',
return self::S$instance;

public static function not ($a = NULL)

{
self::Swhere[] = trim('NOT ' . S$a);
return self::S$instance;

public static function limit($limit)

{
self::Scontrol[0] = 'LIMIT ' . $limit;
return self::S$instance;

public static function offset (Soffset)

{

146

$a)

Chapter 5

self::Scontrol[1] = 'OFFSET ' . Soffset;
return self::S$instance;

public static function getSqgl ()
{
self::$sql = self::$prefix
implode (' ', self::Swhere)

self::Scontrol[0]
self::Scontrol[1];
preg_replace('/ /', ' ', self::$sql);
return trim(self::$sql);
}
}

2. Each function used to generate an SQL fragment returns the same property,
$instance. This allows us to represent the code using a fluent interface, such as this:

$sgl = Finder::select('project')->where('priority > 9') .. etc.

Copy the code defined precedingly into a Finder.php file in the Application\Database
folder. You can then create a chap 05 oop query builder.php calling program, which
initializes the autoloader defined in Chapter 1, Building a Foundation. You can then run
Finder: :select () to generate an object from which the SQL string can be rendered:

<?php
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Finder;

$sgl = Finder::select('project')
->where ()
->like('name', '%secret%')
->and ('priority > 9')
->or('code')->in(['4"', '5', '7'])
->and () ->not ('created _at"')
->1limit (10)
->offset (20) ;

echo Finder::getSql () ;

Interacting with a Database

Here is the result of the precding code:

X Terminal

SELECT * FROM project WHERE name LIKE %secret% AND priority > 9 OR code IN (4,
5,7) AND NOT created_at LIMIT 10 OFFSET 20

(program exited with code: 8)
Press return to continue

For more information on the context-sensitive lexer, have a look at this article:

https://wiki.php.net/rfc/context sensitive lexer

Handling pagination

Pagination involves providing a limited subset of the results of a database query. This is
usually done for display purposes, but could easily apply to other situations. At first glance,

it would seem the LimitIterator class is ideally suited for the purposes of pagination.

In cases where the potential result set could be massive; however, LimitIterator is not
such an ideal candidate, as you would need to supply the entire result set as an inner iterator,
which would most likely exceed memory limitations. The second and third arguments to

the LimitIterator class constructor are offset and count. This suggests the pagination
solution we will adopt, which is native to SQL: adding LIMIT and OFFSET clauses to a given
SQL statement.

How to do it...

1. First, we create a class called Application\Database\Paginate to hold the
pagination logic. We add properties to represent values associated with pagination,
$sql, Spage, and $linesPerPage:

namespace Application\Database;

class Paginate

{

const DEFAULT LIMIT
const DEFAULT_ OFFSET

20;

1]
o

148

Chapter 5

protected $sqgl;
protected S$page;
protected $linesPerPage;

}

Next, we define a _ construct () method that accepts a base SQL statement, the
current page number, and the number of lines per page as arguments. We then need
to refactor the SQL string modifying or adding the LIMIT and OFFSET clauses.

In the constructor, we need to calculate the offset using the current page number and
the number of lines per page. We also need to check to see if LIMIT and OFFSET are
already present in the SQL statement. Finally, we need to revise the statement using
lines per page as our LIMIT with the recalculated OFFSET:

public function __ construct (sql, Spage, $linesPerPage)
{
Soffset = Spage * $linesPerPage;
switch (TRUE) {
case (stripos($sgl, 'LIMIT') && strpos($sgl, 'OFFSET'))
// no action needed

break;

case (stripos($sqgl, 'LIMIT'))
$sql .= ' LIMIT ' . self::DEFAULT LIMIT;
break;

case (stripos($sqgl, 'OFFSET'))
$sql .= ' OFFSET ' . self::DEFAULT OFFSET;
break;

default
$sql .= ' LIMIT ' . self::DEFAULT LIMIT;
$sql .= ' OFFSET ' . self::DEFAULT OFFSET;
break;

1

$this->sql = preg replace('/LIMIT \d+.*OFFSET \d+/Ui',
'LIMIT ' . $linesPerPage . ' OFFSET ' . Soffset,
$sql) ;

}

We are now ready to execute the query using the Application\Database\
Connection class discussed in the first recipe.

In our new pagination class, we add a paginate () method, which takes a
Connection instance as an argument. We also need the PDO fetch mode, and
optional prepared statement parameters:

use PDOException;
public function paginate(
Connection $connection,

Interacting with a Database

sfetchMode,
Sparams = array())
{
try {
$stmt = $connection->pdo-s>prepare ($Sthis->sqgl);

if (!$stmt) return FALSE;
if ($params) {
$stmt->execute (Sparams) ;
} else {
Sstmt->execute () ;
}
while (Sresult = $stmt->fetch($fetchMode)) yield Sresult;
} catch (PDOException $e) {
error log($e->getMessage()) ;
return FALSE;
} catch (Throwable $e)
error log($e->getMessage()) ;
return FALSE;

}

6. It might not be a bad idea to provide support for the query builder class mentioned in
the previous recipe. This will make updating LIMIT and OFFSET much easier. All we
need to do to provide support for Application\Database\Finder is to use the
class and modify the construct () method to check to see if the incoming SQL is
an instance of this class:

if ($sgl instanceof Finder)
$sgl->1limit ($linesPerPage) ;
$sgl->offset (Soffset) ;
Sthis->sgl = $sqgl::getSqgl();
} elseif (is_string($sql)) {
switch (TRUE) {
case (stripos($sqgl, 'LIMIT')
&& strpos($sgl, 'OFFSET'))
// remaining code as shown in bullet #3 above

}

7. Now all that remains to be done is to add a getSqgl () method in case we need to
confirm that the SQL statement was correctly formed:

public function getSqgl ()

{

return $this->sql;

}

150

Chapter 5

Copy the preceding code into a Paginate.php file inthe Application/Database folder.
You can then create a chap 05 pagination.php calling program, which initializes the
autoloader defined in Chapter 1, Building a Foundation:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
define ('LINES PER PAGE', 10);

define ('DEFAULT BALANCE', 1000);

require DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

Next, use the Application\Database\Finder, Connection, and Paginate classes,
create an instance of Application\Database\Connection, and use Finder to generate
SQL:

use Application\Database\ { Finder, Connection, Paginate};
$conn = new Connection(include @ DIR . DB CONFIG FILE) ;
$sgl = Finder::select('customer') ->where('balance < :bal');

We can now get the page number and balance from $ GET parameters, and create the
Paginate object, ending the PHP block:

$page = (int) ($_GET['page']l 2?2 0);

$bal = (float) ($_GET['balance'] ?? DEFAULT BALANCE) ;

$paginate = new Paginate ($sgl::getSql(), $page, LINES PER PAGE) ;
?>

In the output portion of the script, we simply iterate through the pagination using a simple
foreach () loop:

<h3><?= $paginate->getSqgl(); ?></h3>

<hr>

<pre>

<?php

printf('%4s | %20s | %5s | %7s' . PHP EOL,
'ID', 'NAME', 'LEVEL', 'BALANCE');

printf('%4s | %20s | %5s | %7s' . PHP EOL,

'----', str repeat('-', 20), '----- i ')
foreach ($paginate->paginate($conn, PDO::FETCH ASSOC,
['bal' => $ball) as $row)
printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,
Srow(['id'],Srow['name'],Srow['level'], Srow['balance']) ;

}

printf ('%4s | %20s | %5s | %7s' . PHP EOL,

Interacting with a Database

'----', str repeat('-', 20), '----- i ')
?>
<a href="?page=<?= $page - 1; ?>&balance=<?= $bal ?>">
<< Prev é
<a href="?page=<?= $page + 1; ?>&balance=<?= $bal ?>">
Next >>
</pre>

Here is page 3 of the output, where the balance is less than 1,000:

€ localhost c

SELECT * FROM customer WHERE balance < :bal LIMIT 10 OFFSET 30

0 | NAME | LEVEL | BALANCE
R B D [| --eee--
35 | Camille Perez | | 961.92
36 | Graciela Joyner | | 714.39
37 | Penelope Molina | BEG | 916.72
38 | Celeste Justice | | 478.90
39 | Lena Conway | ADV | 757.22
48 | Katrina Freeman | BEG | 952.12
a1 | Jeff valdez | ADV | 796.50
42 | Leonardo Parrish | | 166.63
43 | Roland Chang | INT | 514.16
44 | Raymond Sanford | ADV | 1081.41
R [[
=< Prev Next ==

See also

For more information on the LimitIterator class, refer to this article:

» http://php.net/manual/en/class.limititerator.php

Defining entities to match database tables

A very common practice among PHP developers is to create classes that represent database
tables. Such classes are often referred to as entity classes, and form the core of the domain
model software design pattern.

How to do it...

1. First of all, we will establish some common features of a series of entity classes.
These might include common properties and common methods. We will put these
into a Application\Entity\Base class. All future entity classes will then extend
Base.

152

Chapter 5

2. Forthe purposes of this illustration, let's assume all entities will have two properties
in common: Smapping (discussed later), and $id (with its corresponding getter and
setter):

namespace Application\Entity;

class Base

{

protected $id = 0;
protected S$mapping = ['id' => 'id'];

public function getId() : int

{

return S$this->id;

public function setId(s$id)
{
Sthis->id = (int) $id;
}
}

3. It's not a bad idea to define a arrayToEntity () method, which converts an array to
an instance of the entity class, and vice versa (entityToArray ()). These methods
implement a process often referred to as hydration. As these methods should be
generic, they are best placed in the Base class.

4. In the following methods, the Smapping property is used to translate between
database column names and object property names. arrayToEntity () populates
values of this object instance from an array. We can define this method as static in
case we need to call it outside of an active instance:

public static function arrayToEntity($data, Base $instance)
{
if ($data && is_array($data))
foreach ($instance-s>mapping as $dbColumn => $propertyName) {
Smethod = 'set' . ucfirst ($SpropertyName) ;
$instance->$method($data [$dbColumn]) ;
}

return S$instance;

}

return FALSE;

Interacting with a Database

5.

The entityToArray () produces an array from current instance property values:

public function entityToArray ()
{
$data = array();
foreach ($this-s>mapping as $dbColumn => $propertyName) {
Smethod = 'get' . ucfirst ($SpropertyName) ;
S$data[sdbColumn] = S$this->$method() ?7? NULL;

}

return $data;

}

To build the specific entity, you need to have the structure of the database table you
plan to model at hand. Create properties that map to the database columns. The
initial values assigned should reflect the ultimate data-type of the database column.

In this example we'll use the customer table. Here is the CREATE statement from a
MySQL data dump, which illustrates its data structure:

CREATE TABLE 'customer' (
'id' int(11) NOT NULL AUTO_INCREMENT,
'name' varchar (256) CHARACTER SET latinl COLLATE
latinl_general_cs NOT NULL,
'balance' decimal(10,2) NOT NULL,
'email' varchar (250) NOT NULL,
'password' char(16) NOT NULL,
'status' int (10) unsigned NOT NULL DEFAULT '0',
'security question' varchar (250) DEFAULT NULL,
'confirm code' varchar (32) DEFAULT NULL,
'profile_id' int (11) DEFAULT NULL,
'level' char(3) NOT NULL,
PRIMARY KEY ('id'),
UNIQUE KEY 'UNIQ 81398EO09E7927C74' ('email')
)

We are now in a position to flesh out the class properties. This is also a good place
to identify the corresponding table. In this case, we will use a TABLE NAME class
constant:

namespace Application\Entity;

class Customer extends Base

{
const TABLE NAME = 'customer';
protected S$name = '';
protected $balance = 0.0;
protected S$Semail = '';
protected S$password = '';

Chapter 5

protected $status = '';
protected $securityQuestion = '';
protected $confirmCode = '';
protected S$SprofileId = 0;
protected $level = '';

}

9. Itis considered a best practice to define the properties as protected. In order to
access these properties, you will need to design public methods that get and set
the properties. Here is a good place to put to use the PHP 7 ability to data-type to the
return value.

10. In the following block of code, we have defined getters and setters for $name and
$balance. You can imagine how the remainder of these methods will be defined:

public function getName () : string

{

return Sthis->name;

}

public function setName ($name)

{

Sthis->name = S$name;

}

public function getBalance() : float

{

return Sthis->balance;

}

public function setBalance ($balance)

{

Sthis->balance = (float) S$balance;

M It is not a good idea to data type check the incoming values on the
Q setters. The reason is that the return values from a RDBMS database
query will all be a string data type.

11. If the property names do not exactly match the corresponding database column, you
should consider creating a mapping property, an array of key/value pairs where the
key represents the database column name and the value the property name.

Interacting with a Database

12. You will note that three properties, $securityQuestion, $confirmCode, and
S$profileId, do not correspond to their equivalent column names, security
question, confirm code, and profile id. The Smapping property will ensure
that the appropriate translation takes place:

protected S$mapping = [

rid! => 'id’',

'name' => 'name',

'balance'’ => 'balance',

'email' => 'email',

'password’ => 'password',
'status' => 'status',

'security question' => 'securityQuestion',
'confirm code' => 'confirmCode',
'profile id' => 'profileId',
'level! => 'level'

Copy the code from steps 2, 4, and 5 into a Base . php file in the Application/
Entity folder. Copy the code from steps 8 through 12 into a Customer . php file,

also in the Application/Entity folder. You will then need to create getters and
setters for the remaining properties not shown in step 10: email, password, status,
securityQuestion, confirmCode, profileId, and level.

You can then create a chap 05 matching entity to table.php calling program,
which initializes the autoloader defined in Chapter 1, Building a Foundation, uses the
Application\Database\Connection, and the newly created Application\Entity\
Customer classes:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;
use Application\Entity\Customer;

Next, get a database connection, and use the connection to acquire an associative array of
data for one customer at random:

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;
$id = rand(1,79);
$stmt = $conn-s>pdo->prepare (

'SELECT * FROM customer WHERE id = :id');
Sstmt->execute(['id' => $id]);
Sresult = $stmt->fetch(PDO::FETCH ASSOC) ;

156

Chapter 5

Finally, you can create a new Customer entity instance from the array and use var_dump ()
to view the result:

Scust = Customer::arrayToEntity($result, new Customer()) ;
var_dump (Scust) ;

Here is the output of the preceding code:

object(Application\Entity\Customer)#4 (12) {
["name":protected]=>
string(15) "Edmond Shepherd"
["balance":protected]=>
float(135.29)
["email":protected]=>
string(30) "edmond.shepherd@southmedia.com”
["password":protected]=>
string(13) "tobacco6334he”
["status":protected]=>
int(1)
["securityQuestion":protected]=>
string(@) ""
["confirmCode":protected]=>
string(@) ""
["profileId":protected]=>
int(48)
["level":protected]=>
string(3) "ADV"
["purchases":protected]=>
array(e) {
}

["mapping":protected]=>
array(1e) {

There are many good works that describe the domain model. Probably the most influential

is Patterns of Enterprise Application Architecture by Martin Fowler (see http://
martinfowler.com/books/eaa.html). There is also a nice study, also available as a free
download, entitled Domain Driven Design Quickly by InfoQ (see http://www.infoqg.com/
minibooks/domain-driven-design-quickly).

Tying entity classes to RDBMS queries

Most commercially viable RDBMS systems evolved at a time when procedural programming
was at the fore. Imagine the RDBMS world as two dimensional, square, and procedurally
oriented. In contrast, entities could be thought of as round, three dimensional, and object
oriented. This gives you a picture of what we want to accomplish by tying the results of an
RDBMS query into an iteration of entity instances.

Interacting with a Database

i The relational model, upon which modern RDBMS systems are based,
& was first described by the mathematician Edgar F. Codd in 1969. The first
s commercially viable systems evolved in the mid-to-late 1970s. So, in other
words, RDBMS technology is over 40 years old!

How to do it...

1. First of all, we need to design a class which will house our query logic. If you are
following the Domain Model, this class might be called a repository. Alternatively, to
keep things simple and generic, we could simply call the new class Application\
Database\CustomerService. The class will accept an Application\
Database\Connection instance as an argument:

namespace Application\Database;
use Application\Entity\Customer;

class CustomerService

{

protected Sconnection;

public function __ construct (Connection $connection)

{

Sthis->connection = $connection;

}

2. Now we will define a fetchById () method, which takes a customer ID as an
argument, and returns a single Application\Entity\Customer instance or
boolean FALSE on failure. At first glance, it would seem a no-brainer to simply use
PDOStatement: : fetchObject () and specify the entity class as an argument:

public function fetchById(s$id)

{

$stmt = $this->connection->pdo
->prepare (Finder: :select ('customer')
->where('id = :id') ::getSql()) ;
Sstmt->execute (['id' => (int) $id]);

return S$stmt->fetchObject ('Application\Entity\Customer') ;

158

Chapter 5

The danger here, however, is that fetchObject () actually populates
the properties (even if they are protected) before the constructor is called!
a Accordingly, there is a danger that the constructor could accidentally
s overwrite values. If you don't define a constructor, or if you can live with
this danger, we're done. Otherwise, it starts to get tougher to properly
implement the tie between RDBMS query and OOP results.

Another approach for the fetchById () method is to create the object instance first,
thereby running its constructor, and setting the fetch mode to PDO: : FETCH_INTO,
as shown in the following example:

public function fetchById(s$id)

{
$stmt = $this->connection->pdo
->prepare (Finder: :select ('customer')
->where('id = :id') ::getSql()) ;
$stmt->execute(['id' => (int) $id]);
$stmt->setFetchMode (PDO: : FETCH_INTO, new Customer()) ;
return S$stmt->fetch() ;

}

Here again, however, we encounter a problem: fetch (), unlike fetchObject (), is
not able to overwrite protected properties; the following error message is generated if
it tries. This means we will either have to define all properties as public, or consider
another approach.

Fatal error: Uncaught Error: Cannot access protected property Application\Entity
\Customer::5id in fhome/ed/Desktop/Repos/php7_recipes/source/Application/Databas
e /CustomerService.php:28

Stack trace:

#0 /home/ed/Desktop/Repos/php7_recipes/source/Application/Database/CustomerServi
ce.php(28): PDOStatement->fetch()

#1 /home/ed/Desktop/Repos/php7_recipes/source/chapter@5/chap_65_entity_to_query_
fetch_by_1id.php(19): Application\Database\CustomerService->fetchById(19)

#2 {main}

Next Error: Cannot access protected property Application\Entity\Customer::S$name
in /home/ed/Desktop/Repos/php7_recipes/sourcefApplication/Database/CustomersServi
ce.php:28

Stack trace:

#0 /home/ed/Desktop/Repos/php7_recipes/source/Application/Database/CustomerServi
ce.php(28): PDOStatement->fetch()

#1 /home/ed/Desktop/Repos/php7_recipes/source/chapter@5/chap_65_entity_to_query_
fetch_by_1id.php(19): Application\Database\CustomerService->fetchById(19)

#2 {main}

Next Error: Cannot access protected property Application\Entity\Customer::S$balan|
ce in fhome/ed/Deskt in /fhome/ed/Desktop/Repos/php7_recipes/source/Application/D|
atabase/CustomerService.php on line 28

Interacting with a Database

5.

160

The last approach we will consider will be to fetch the results in the form of an array,
and manually hydrate the entity. Even though this approach is slightly more costly in
terms of performance, it allows any potential entity constructor to run properly, and
keeps properties safely defined as private or protected:

public function fetchById($id)
{
$stmt = $this->connection->pdo
->prepare (Finder: :select ('customer')
->where('id = :id') ::getSqgl()) ;
Sstmt->execute(['id' => (int) $id]);
return Customer::arrayToEntity (
$stmt->fetch (PDO: : FETCH_ASSOC)) ;

}

To process a query that produces multiple results, all we need to do is to

produce an iteration of populated entity objects. In this example, we implement a
fetchByLevel () method that returns all customers for a given level, in the form of
Application\Entity\Customer instances:

public function fetchByLevel ($level)
{
$stmt = S$this->connection->pdo->prepare (
Finder: :select ('customer')
->where('level = :level')::getSqgl());
Sstmt->execute(['level' => S$levell);
while ($row = $stmt->fetch (PDO::FETCH ASSOC)) {
yield Customer::arrayToEntity ($row, new Customer()) ;

}
}

The next method we wish to implement is save (). Before we can proceed, however,
some thought must be given to what value will be returned if an INSERT takes place.

Normally, we would return the newly completed entity class after an INSERT. There
is a convenient PDO: : lastInsertId () method which, at first glance, would seem
to do the trick. Further reading of the documentation reveals, however, that not all
database extensions support this feature, and the ones that do are not consistent in
their implementation. Accordingly, it would be a good idea to have a unique column
other than $id that can be used to uniquely identify the new customer.

In this example we have chosen the email column, and thus need to implement a
fetchByEmail () service method:

public function fetchByEmail ($Semail)

$stmt = S$this->connection-s>pdo->prepare (
Finder: :select ('customer')

Chapter 5

10.

11.

12.

->where('email = :email')::getSqgl());
Sstmt->execute(['email' => Semaill]) ;
return Customer::arrayToEntity (
$stmt->fetch (PDO: : FETCH _ASSOC), new Customer()) ;

}

Now we are ready to define the save () method. Rather than distinguish between
INSERT and UPDATE, we will architect this method to update if the ID already exists,
and otherwise do an insert.

First, we define a basic save () method, which accepts a Customer entity as an
argument, and uses fetchById () to determine if this entry already exists. If it
exists, we call an doUpdate () update method; otherwise, we call a doInsert ()
insert method:

public function save (Customer S$Scust)

{

// check to see if customer ID > 0 and exists

if ($cust->getId() && $this->fetchById($cust->getId()))
return $this->doUpdate ($cust) ;
} else {

return Sthis->doInsert (Scust) ;

}

Next, we define doUpdate (), which pulls Customer entity object properties into an
array, builds an initial SQL statement, and calls a £1ush () method, which pushes
data to the database. We do not want the ID field updated, as it's the primary key.
Also we need to specify which row to update, which means appending a WHERE
clause:

protected function doUpdate ($cust)

{

// get properties in the form of an array

Svalues = Scust-s>entityToArray () ;

// build the SQL statement

Supdate = 'UPDATE ' . S$Scust::TABLE NAME;
Swhere = ' WHERE id = ' . Scust->getId();

// unset ID as we want do not want this to be updated
unset ($values['id']) ;
return $this->flush(Supdate, $values, S$where);

Interacting with a Database

13. The doInsert () method is similar, except that the initial SQL needs to start with
INSERT INTO ... andthe id array element needs to be unset. The reason for the
latter is that we want this property to be auto-generated by the database. If this is
successful, we use our newly defined fetchByEmail () method to look up the new
customer and return a completed instance:

protected function doInsert ($Scust)

{

Svalues = Scust->entityToArray () ;

Semail = Scust->getEmail();
unset (Svalues['id']) ;
Sinsert = 'INSERT INTO ' . $cust::TABLE_NAME Yy

if ($this->flush($insert, S$Svalues)) {
return $this->fetchByEmail ($Semail) ;
} else {
return FALSE;

!
14. Finally, we are in a position to define £1ush (), which does the actual preparation
and execution:

protected function flush(sgl, Svalues, Swhere = '')

{

$sgql .= ' SET ';
foreach ($values as $column => $value)
$sgql .= $column . ' = :' . S$column . ',';

}

// get rid of trailing ','

$sqgl = substr($sgl, 0, -1) . S$Swhere;
Ssuccess = FALSE;
try {

$Sstmt = S$this->connection-s>pdo->prepare($sql) ;
$Sstmt->execute ($values) ;
Ssuccess = TRUE;
} catch (PDOException $e) {
error_log(_ METHOD _ . ':' . _ LINE__ . ':'
Se->getMessage ()) ;
Ssuccess = FALSE;
} catch (Throwable $e) ({
error_log(_ METHOD _ . ':' . _ LINE__ . ':'
Se->getMessage ()) ;
Ssuccess = FALSE;

}

return $success;

162

Chapter 5

15. To round off the discussion, we need to define a remove () method, which deletes a
customer from the database. Again, as with the save () method defined previously,
we use fetchById () to ensure the operation was successful:

public function remove (Customer $cust)

{
$sgl = 'DELETE FROM ' . $Cust::TABLE_NAME . ' WHERE id = :id';
$Sstmt = S$this->connection-s>pdo->prepare($sqgl) ;
$stmt->execute(['id' => $cust->getId()]);
return ($this->fetchById($Scust->getId())) ? FALSE : TRUE;

Copy the code described in steps 1 to 5 into a CustomerService.php file in the
Application/Database folder. Define a chap 05 entity to_ query.php calling
program. Have the calling program initialize the autoloader, using the appropriate classes:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;
use Application\Database\CustomerService;

You can now create an instance of the service, and fetch a single customer at random. The
service will then return a customer entity as a result:

// get service instance
Sservice = new CustomerService (new Connection (
include _ DIR . DB CONFIG_FILE)) ;

echo "\nSingle Result\n";
var dump ($service->fetchById(rand(1,79)));

Interacting with a Database

Here is the output:

Single Result
object(Application\Entity\Customer)#6 (12) {
["name":protected]=>
string(16) "Leonardo Parrish"
["balance":protected]=>
float(166.63)
["emaill":protected]=>
string(28) "leonardo.parrish@eastnet.net"
["password":protected]=>
string(9) "19898bend”
["status":protected]=>
int(1)
["securityQuestion":protected]=>
string(e) ""
["confirmCode":protected]=>
string(e) ""
["profileld":protected]=>
int(42)
["level":protected]=>
string(e) ""
["purchases":protected]=>
array(e) {
1

Now copy the code shown in steps 6 to 15 into the service class. Add the data to insert to the
chap 05 entity to query.php calling program. We then generate a Customer entity
instance using this data:

// sample data

Sdata = [
'name' => 'Doug Bierer',
'balance'’ => 326.33,
'email! => 'doug' rand (0, 999) '@test.com',
'password’ => 'password',
'status' => 1,
'security question' => 'Who\'s on first?',
'confirm code' => 12345,
'level! => 'ADV'

1;

// create new Customer

Scust = Customer::arrayTo

We can then examine the ID before and after the call to save ():

Entity($data,

new Customer()) ;

echo "\nCustomer ID BEFORE Insert: {$cust->getId()}\n";

Scust = S$service-s>save(S$Sc

echo "Customer ID AFTER I

164

ust) ;
nsert:

{$cust->getId () }\n";

Chapter 5
Finally, we modify the balance, and again call save (), viewing the results:

echo "Customer Balance BEFORE Update: {$cust->getBalance()}\n";
Scust->setBalance (999.99) ;

$service->save (Scust) ;

echo "Customer Balance AFTER Update: {S$cust->getBalance() }\n";
var_dump (Scust) ;

Here is the output from the calling program:

Customer ID BEFORE Insert: O
Customer ID AFTER Insert: 111
Customer Balance BEFORE Update: 326.33
Customer Balance AFTER Update: 999.99
object(Application\Entity\Customer)#7 (12) {
["name":protected]=>
string(11) "Doug Bierer"
["balance":protected]=>
float(999.99)
["email":protected]=>
string(26) "dougl76@unlikelysource.com"”
["password":protected]==>
string(8) "password"
["status":protected]=>
int(1)
["securityQuestion":protected]=>
string(15) "Who's on first?"
["confirmCode":protected]=>
string(5) "12345"
["profileld":protected]=>
int(0)
["level":protected]=>
string(3) "ADV"

There's more...

For more information on the relational model, please refer to https://en.wikipedia.
org/wiki/Relational model. For more information on RDBMS, please refer to
https://en.wikipedia.org/wiki/Relational database management system.
For information on how PDOStatement : : fetchObject () inserts property values even
before the constructor, have a look at the comment by "rasmus at mindplay dot dk" in the
php.net documentation reference on fetchObject () (http://php.net/manual/en/
pdostatement . fetchobject .php).

Interacting with a Database

Embedding secondary lookups into query

results

On the road towards implementing relationships between entity classes, let us first take a look
at how we can embed the code needed to perform a secondary lookup. An example of such

a lookup is when displaying information on a customer, have the view logic perform a second
lookup that gets a list of purchases for that customer.

The advantage of this approach is that processing is deferred until
_ the actual view logic is executed. This will ultimately smooth the
performance curve, with the workload distributed more evenly
S between the initial query for customer information, and the later query
for purchase information. Another benefit is that a massive JOIN is
avoided with its inherent redundant data.

How to do it...

1. First of all, define a function that finds a customer based on their ID. For the purposes
of this illustration, we will simply fetch an array using the fetch mode PDO: : FETCH
ASsocC. We will also continue to use the Application\Database\Connection
class discussed in Chapter 1, Building a Foundation:

function findCustomerById($id, Connection S$conn)
$stmt = S$conn->pdo->query (
'SELECT * FROM customer WHERE id = ' . (int) $id);
Sresults = $stmt->fetch(PDO: :FETCH ASSOC) ;
return Sresults;

}

2. Next, we analyze the purchases table to see how the customer and product tables
are linked. As you can see from the CREATE statement for this table, the customer
id and product_id foreign keys form the relationships:

CREATE TABLE 'purchases' (
'id' int (11) NOT NULL AUTO_ INCREMENT,
'transaction' wvarchar(8) NOT NULL,
'date' datetime NOT NULL,
'quantity' int (10) unsigned NOT NULL,
'sale price' decimal (8,2) NOT NULL,
'customer id' int(11) DEFAULT NULL,
'product_id' int (11) DEFAULT NULL,
PRIMARY KEY ('id'),

166

Chapter 5

KEY 'IDX C3F3' ('customer id'),

KEY 'IDX 665A' ('product_id'),

CONSTRAINT 'FK 665A' FOREIGN KEY ('product id')
REFERENCES 'products' ('id'),

CONSTRAINT 'FK C3F3' FOREIGN KEY ('customer id')
REFERENCES 'customer' ('id')

)i

We now expand the original findCustomerById () function, defining the secondary
lookup in the form of an anonymous function, which can then be executed in a view
script. The anonymous function is assigned to the Sresults['purchases']
element:

function findCustomerById($id, Connection S$conn)
{
$stmt = $conn-s>pdo->query (
'SELECT * FROM customer WHERE id = ' . (int) $id);
Sresults = $stmt->fetch(PDO: :FETCH ASSOC) ;
if ($results)
Sresults['purchases'] =
// define secondary lookup
function ($id, $conn) {
$sql 'SELECT * FROM purchases AS u '
'"JOIN products AS r '
'ON u.product id = r.id '
'WHERE u.customer id = :id '
. '"ORDER BY u.date';
$stmt = $conn->pdo->prepare($sql);
$stmt->execute(['id' => $id]);
while ($row = $stmt->fetch(PDO::FETCH ASSOC)) {
yield S$row;

}
};
}

return Sresults;

}

4. Assuming we have successfully retrieved customer information into a Sresults

array, in the view logic, all we need to do is to loop through the return value of the
anonymous function. In this example, we retrieve customer information at random:

Sresult = findCustomerById(rand(1l,79), S$conn);

Interacting with a Database

5. Inthe view logic, we loop through the results returned by the secondary lookup.
The call to the embedded anonymous function is highlighted in the following code:

<table>
<tr>
<th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th>
</tr>
<?php
foreach ($result['purchases'] ($result['id'], $conn) as S$purchase)
?>
<tr>
<td><?= S$purchase['transaction'] ?></td>
<td><?= $purchase['date'] ?></td>
<td><?= $purchase['quantity'] ?></td>
<td><?= S$purchase['sale price'l ?></td>
<td><?= Spurchase['title'] ?></td>
</tr>
<?php endforeach; ?>
</table>

Create a chap 05 secondary lookups.php calling program and insert the code needed
to create an instance of Application\Database\Connection

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
include _ DIR . '/../Application/Database/Connection.php';
use Application\Database\Connection;

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;

Next, add the findCustomerById () function shown in step 3. You can then pull information
for a random customer, ending the PHP part of the calling program:

function findCustomerById($id, Connection S$conn)

{

// code shown in bullet #3 above

}
Sresult = findCustomerById(rand(1l,79), $conn);

?>

168

Chapter 5

For the view logic, you can display core customer information as shown in several of the
preceding recipes:

<hl><?=

Sresult['name'] ?></hls>

<div class="row">
<div class="left">Balance</div>
<div class="right"><?= S$result['balance']; ?></div>

</div>

<!l-- etc.1l -->

You can display information on purchases like so:

<table>

<tr><th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th></tr>

<?php

foreach ($result['purchases'] ($result['id'], $conn)

<tr>

as $purchase) : ?>

<td><?= S$Spurchase['transaction'] ?></td>
<td><?= $purchase['date'] ?></td>
<td><?= S$purchase['quantity'] ?></td>
<td><?= $purchase['sale price'l ?></td>
<td><?= Spurchase['title'] ?></td>

</tr>

<?php endforeach; ?>

</table>

The critical piece is that the secondary lookup is performed as part of the view logic by
calling the embedded anonymous function, $Sresult ['purchases'] ($Sresult['id'],
$conn) . Here is the output:

€ localhost

Leonardo Parrish

Balance 166.63
Emall leonardo parrish@eastnet. net
Status 1
Level

Transaction Date |Gty || Price Product
LHNOS14 1994-10-22 16:43:14 |16 |[s8.80 Pop Tarls
WMN21B6 1935-01-02 12:59:19 Is 28.50 MNapoleon
XAWBO0G1 1995-01-25 19:23:36 13 4810 (Coconut Custard Ple
IEKK 3841 1995.05-24 09:42:32 9 48.60 Eanana Bread
PUL9552 1995.08-29 02:10:16 12 7580 (Chocolate Scufflé
UZXTT16 1985-09-26 00:53:59 16 (2240 Mapolaon
ODZs892 1996-05-07 11:11:48 18 |[61.20 Chocolate Toaster Tarts
WED3542 1996-07-14 14:58:59 :13 15.60 Chocolale Toasler Tarls
MOCA370 1996-08-04 09:20:02 4 11.20 Mint Chocolate Milk Shake
IUC0ES0 1957-01-04 12:33:24 12 |57.60 (Chocolate Fondue
EAJS532 1997-01-18 04:57.20 = 32,00 Oreo Cookies
HTRE003 1937-01-18 06:08:03 1 59.40 Pacan Praline lce Cream
HTRG003 1957-01-18 06:08:03 11 [5.50 Devils Food Cake

Interacting with a Database

Implementing jQuery DataTables PHP

lookups

Another approach to secondary lookups is to have the frontend generate the request. In this
recipe, we will make a slight modification to the secondary lookup code presented in the
preceding recipe, Embedding secondary lookups into QueryResults. In the previous recipe,
even though the view logic is performing the lookup, all processing is still done on the server.
When using jQuery DataTables, however, the secondary lookup is actually performed directly
by the client, in the form of an Asynchronous JavaScript and XML (AJAX) request issued by
the browser.

How to do it...

1. First we need to spin-off the secondary lookup logic (discussed in the recipe above)
into a separate PHP file. The purpose of this new script is to perform the secondary
lookup and return a JSON array.

2. The new script we will call chap_ 05 jquery datatables php lookups ajax.
php. It looks for a $_GET parameter, 1d. Notice that the SELECT statement is very
specific as to which columns are delivered. You will also note that the fetch mode has
been changed to PDO: : FETCH_NUM. You might also notice that the last line takes
the results and assigns it to a data key in a JSON-encoded array.

M It is extremely important when dealing with zero configuration jQuery
Q DataTables to only return the exact number of columns matching the
header.
$id = $ GET['id'] 2? 0;
sgql = 'SELECT u.transaction,u.date,

u.quantity,u.sale price,r.title '
'FROM purchases AS u '
'"JOIN products AS r !
'ON u.product id = r.id '

'WHERE u.customer id = :id';
$stmt = $conn->pdo->prepare ($sqgl) ;
Sstmt->execute (['id' => (int) $id]l);
S$results = array();
while ($row = $stmt->fetch (PDO::FETCH NUM)) {
Sresults[] = Srow;
}
echo json encode(['data' => S$results]);

170

Chapter 5

3. Next, we need to modify the function that retrieves customer information by ID,

removing the secondary lookup embedded in the previous recipe:

function findCustomerById($id, Connection S$conn)
{
$stmt = $conn-s>pdo->query (
'SELECT * FROM customer WHERE id = ' . (int) $id);
Sresults = $stmt->fetch(PDO: :FETCH ASSOC) ;
return S$results;

}

After that, in the view logic, we import the minimum jQuery, DataTables, and
stylesheets for a zero configuration implementation. At a minimum, you will need
jQuery itself (in this example jquery-1.12.0.min. js)and DataTables (jquery.
dataTables.js). We've also added a convenient stylesheet associated with
DataTables, jgquery.dataTables.css:

<!DOCTYPE html>
<head>
<script src="https://code.jquery.com/jquery-1.12.0.min.js">
</scripts>
<script type="text/javascript"
charset="utfg"
src="//cdn.datatables.net/1.10.11/js/jquery.dataTables.js">
</scripts>
<link rel="stylesheet"
type="text/css"
href="//cdn.datatables.net/1.10.11/css/jquery.dataTables.css">
</head>

We then define a jQuery document ready function, which associates a table with
DataTables. In this case, we assign an id attribute of customerTable to the table
element that will be assigned to DataTables. You'll also notice that we specify the
AJAX data source as the script defined in step 1, chap 05 jquery datatables
php lookups ajax.php. As we have the $id available, this is appended to the
data source URL:

<scripts>
$ (document) .ready (function () {
$ ('#customerTable') .DataTable (
{ "ajax": '/chap 05 jquery datatables php lookups ajax.
php?id=<?= $id ?>'
3N
)i

</scripts>

Interacting with a Database

6. Inthe body of the view logic, we define the table, making sure the id attribute
matches the one specified in the preceding code. We also need to define headers
that will match the data presented in response to the AJAX request:
<table id="customerTable" class="display" cellspacing="0"
width="100%">

<theads>
<tr>
<th>Transaction</th>
<thsDate</th>
<th>Qty</th>
<th>Price</th>
<th>Product</th>
</tr>
</thead>
</table>

7. Now, all that remains to do is to load the page, choose the customer ID (in this case,
at random), and let jQuery make the request for the secondary lookup.

Create a chap 05 jquery datatables php lookups ajax.php script, which wil
respond to an AJAX request. Inside, place the code to initialize auto-loading and create a
Connection instance. You can then append the code shown in step 2 of the preceding
recipe:

<?php
define ('DB_CONFIG FILE', '/../config/db.config.php');
include _ DIR . '/../Application/Database/Connection.php’;

use Application\Database\Connection;
Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;

Next, create a chap 05 jquery datatables php lookups.php calling program that
will pull information on a random customer. Add the function described in step 3 of the
preceding code:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
include =~ DIR . '/../Application/Database/Connection.php’;
use Application\Database\Connection;

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;

// add function findCustomerById() here

sid = random_int (1,79);

Sresult = findCustomerById($id, $conn) ;

?>

172

Chapter 5

The calling program will also contain the view logic that imports the minimum JavaScript to
implement jQuery DataTables. You can add the code shown in step 3 of the preceding code.
Then, add the document ready function and the display logic shown in steps 5 and 6.

Here is the output:

PHP 7 Cookbook x

€ localhost <
Wilfredo Taylor
Balance 25.11
Email wilfredo taylor@telecom.net
Status 1
Level BEG
Show |10 *| entries Search:
Transaction ~ Date Qty Price Product
APJB650 2003-04-17 00:15:27 3 11.10 Ice Cream Cake
AQF8375 2006-07-20 03:12:51 14 30.80 Ambrosia Salad
BGO6079 1994-11-10 17:49:11 3 16.20 Oatmeal Raisin Cookies
BHR1274 2004-03-20 08:24:13 17 76.50 Banana Split
BMC1921 2013-02-22 19:39:15 7 12.60 Apple Turmnover
BME5477 2011-06-27 01:18:51 6 12.60 Tapioca Pudding
BUV4627 2014-05-06 01:07:04 15 30.00 Glazed Doughnut
CJH3811 1997-12-09 01:19:36 15 78.00 Devils Food Cake
CPN1308 2008-11-1401:47:20 5 7.00 Peanut Butter Cookies
CPV1728 2000-05-22 23:50:23 8 48.00 Mint Chocolate Milk Shake
Showing 1 to 10 of 88 entries Previous ‘T‘ 2 3 4 5 9 Next

There's more...

For more information on jQuery, please visit their website at https://jquery.

com/. To read about the DataTables plugin to jQuery, refer to this article at https://
www.datatables.net /. Zero configuration data tables are discussed at https://
datatables.net/examples/basic_init/zero configuration.html. For more
information on AJAX sourced data, have a look at https://datatables.net/examples/
data_sources/ajax.html.

Building Scalable
Websites

In this chapter, we will cover the following topics:

» Creating a generic form element generator
» Creating an HTML radio element generator
» Creating an HTML select element generator
» Implementing a form factory

» Chaining s_POST filters

» Chaining $_POST validators

» Tying validation to a form

Introduction

In this chapter, we will show you how to build classes that generate HTML form elements. The
generic element generator can be used for text, text areas, passwords, and similar HTML input
types. After that, we will show variations that allow you to pre-configure the element with an
array of values. The form factory recipe will bring all these generators together, allowing you

to render an entire form using a single configuration array. Finally, we introduce recipes that
allow filtering and the validation of incoming $_POST data.

Building Scalable Websites

Creating a generic form element generator

It's pretty easy to create a function that simply outputs a form input tag such as <input
type="text" name="whatever" >.In orderto make a form generator generically useful,
however, we need to think about the bigger picture. Here are some other considerations over
and above the basic input tag:

» The form input tag and its associated HTML attributes

» Alabel that tells the user what information they are entering

» The ability to display entry errors following validation (more on that later!)

» Some sort of wrapper, such as a <div> tag, or an HTML table <td> tag

How to do it...

1. First, we define a Application\Form\Generic class. This will also later serve as
a base class for specialized form elements:

namespace Application\Form;

class Generic

{

// some code

}

2. Next, we define some class constants, which will be generally useful in form element
generation.

3. The first three will become keys associated with the major components of a single
form element. We then define supported input types and defaults:

const ROW = 'row';

const FORM = 'form';

const INPUT = 'input';

const LABEL = 'label';

const ERRORS = 'errors';

const TYPE FORM = 'form';

const TYPE TEXT = 'text';

const TYPE EMAIL = 'email';

const TYPE_RADIO = 'radio';

const TYPE SUBMIT = 'submit!';
const TYPE SELECT = 'select';
const TYPE PASSWORD = 'password';
const TYPE CHECKBOX = 'checkbox';
const DEFAULT TYPE = self::TYPE TEXT;
const DEFAULT WRAPPER = rdiv';

176

Next, we can define properties and a constructor that sets them.

Chapter 6

In this example, we require two properties, $name and $type, as we cannot
effectively use the element without these attributes. The other constructor arguments
are optional. Furthermore, in order to base one form element on another, we include
a provision whereby the second argument, $type, can alternatively be an instance of
Application\Form\Generic, in which case we simply run the getters (discussed

later) to populate properties:

protected $name;

protected Stype = self::DEFAULT TYPE;

protected $label = 'y

protected Serrors = array();

protected S$Swrappers;
protected $attributes;

// HTML form attribute

=]

protected S$Spattern = '<input type="%s" name="%s"

public function __ construct ($name,

stype,
Slabel =

1
’

array S$wrappers = array(),

array S$Sattributes = array(),

array $errors = array())

Sthis->name = $name;

if ($type instanceof Generic)

Sthis->type =
Sthis->label =
Sthis->errors =
Sthis->wrappers =
Sthis->attributes =
} else {
Sthis->type =
Sthis->label =
Sthis->errors =
Sthis-s>attributes
if ($wrappers)
Sthis->wrappers
} else {

Sthis->wrappers[self::INPUT] ['type']

Stype->getType () ;
Stype->getLabelValue ()

Stype->getErrorsArray () ;

Stype->getWrappers () ;
Stype->getAttributes ()

I

I

$type ?? self::DEFAULT TYPE;

Slabel;
Serrors;
Sattributes;

= Swrappers;

self: :DEFAULT WRAPPER;

Sthis->wrappers([self::LABEL] ['type']

self: :DEFAULT WRAPPER;
Sthis->wrappers([self::ERRORS] ['type']
self: :DEFAULT WRAPPER;

Building Scalable Websites

}

Sthis->attributes['id'] = S$name;

Note that Swrappers has three primary subkeys: INPUT, LABEL, and

ERRORS. This allows us to define separate wrappers for labels, the input

tag, and errors.

6. Before defining the core methods that will produce HTML for the label, input tag, and
errors, we should define a getWrapperPattern () method, which will produce the
appropriate wrapping tags for the label, input, and error display.

7. If, for example, the wrapper is defined as <div>, and its attributes include ['class’

=>

'label'], this method will return a sprintf () format pattern that looks like

this: <div class="label">%s</div>. The final HTML produced for the label, for
example, would then replace %s.

8. Hereis how the getWrapperPattern () method might look:

public function getWrapperPattern (Stype)

{

}

$pattern = '<' . $this->wrappers[Stypel ['type']l;
foreach ($this-s>wrappers[$type]l as $key => $value) (
if (Skey != 'type') {
Spattern .= ' ' . Skey . '="' .| $value . '"';
}
}
Spattern .= '>%s</' . Sthis->wrappers[stypel ['type']l . '>';

return S$pattern;

9. We are now ready to define the getLabel () method. All this method needs to do is
to plug the label into the wrapper using sprintf ():

public function getLabel ()

{

}

return sprintf ($this->getWrapperPattern(self::LABEL),
Sthis->label) ;

10. In order to produce the core input tag, we need a way to assemble the attributes.
Fortunately, this is easily accomplished as long as they are supplied to the
constructor in the form of an associative array. All we need to do, in this case, is to
define a getAttribs () method that produces a string of key-value pairs separated
by a space. We return the final value using trim () to remove excess spaces.

178

Chapter 6

11. If the element includes either the value or href attribute, for security reasons we
should escape the values on the assumption that they are, or could be, user-supplied
(and therefore suspect). Accordingly, we need to add an if statement that checks
and then uses htmlspecialchars () orurlencode ():

public function getAttribs/()
{
foreach ($this-sattributes as $key => $value)
Skey = strtolower (Skey) ;
if ($value) {
if ($key == 'value') {
if (is_array($value))
foreach ($value as $k => $i)
Svalue [$k] = htmlspecialchars($i);
} else {
$value = htmlspecialchars ($value) ;
}
} elseif ($key == 'href') {
$value = urlencode ($value) ;

}

Sattribs .= $key . '="' . Svalue . '" ';
} else {
Sattribs .= Skey . ' ';

}
}

return trim(Sattribs) ;

}

12. For the core input tag, we split the logic into two separate methods. The primary
method, get InputOnly (), produces only the HTML input tag. The second method,
getInputWithWrapper (), produces the input embedded in a wrapper. The reason
for the split is that when creating spin-off classes, such as a class to generate radio
buttons, we will not need the wrapper:

public function getInputOnly ()

{

return sprintf ($this->pattern, $this->type, S$this->name,
$this->getAttribs()) ;

public function getInputWithWrapper ()

{

return sprintf ($this->getWrapperPattern(self::INPUT),
$this->getInputOnly()) ;

Building Scalable Websites
13.

14.

15.

We now define a method that displays element validation errors. We will assume
that the errors will be supplied in the form of an array. If there are no errors, we
return an empty string. Otherwise, errors are rendered as error 1</
li><liserror 2and soon:

public function getErrors ()

{

if (!$this-serrors || count ($this-serrors == 0)) return '';
Shtml = '';

Spattern = '%s"';

Shtml .= '';

foreach ($this->errors as S$Serror)

Shtml .= sprintf ($pattern, S$error);

Shtml .= '</uls>';

return sprintf ($this->getWrapperPattern(self::ERRORS), $html);

}

For certain attributes, we might need more finite control over various aspects of the
property. As an example, we might need to add a single error to the already existing
array of errors. Also, it might be useful to set a single attribute:

public function setSingleAttribute (Skey, S$value)

{

Sthis-s>attributes[$key] = S$Svalue;

}

public function addSingleError ($error)

{

Sthis->errors[] = S$error;

}

Finally, we define getters and setters that allow us to retrieve or set the values of
properties. For example, you might have noticed that the default value for $pattern
is <input type="%s" name="%s" %s>. For certain tags (for example, select
and form tags), we will need to set this property to a different value:

public function setPattern($pattern)

{

Sthis->pattern = $pattern;

}

public function setType (Stype)

{

Sthis->type = S$Stype;

}

public function getType ()

{

180

Chapter 6

return $this->type;

}

public function addSingleError (Serror)

{
}

// define similar get and set methods
// for name, label, wrappers, errors and attributes

Sthis->errors[] = Serror;

16. We also need to add methods that will give the label value (not the HTML), as well as
the errors array:

public function getLabelValue ()

{

return Sthis->label;

}

public function getErrorsArray ()

{

return Sthis->errors;

}

Be sure to copy all the preceding code into a single Application\Form\Generic class.
You can then define a chap 06 form element generator.php calling script that sets up
autoloading and anchors the new class:

<?php
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Form\Generic;

Next, define the wrappers. For illustration, we'll use HTML table data and header tags. Note
that the label uses TH, whereas input and errors use TD:

Swrappers = [
Generic::INPUT => ['type' => 'td', 'class' => 'content'],
Generic::LABEL => ['type' => 'th', 'class' => 'label'],
Generic::ERRORS => ['type' => 'td', 'class' => 'error']

1;
You can now define an email element by passing parameters to the constructor:

S$email = new Generic('email', Generic::TYPE EMAIL, 'Email',6 S$wrappers,
["id' => 'email',
'maxLength' => 128,
'title' => 'Enter address’',
'required' => '']);

Building Scalable Websites
Alternatively, define the password element using setters:

Spassword = new Generic('password',6 S$email) ;
$password->setType (Generic: : TYPE PASSWORD) ;
Spassword->setLabel ('Password') ;
Spassword->setAttributes (['id' => 'password',
'title' => 'Enter your password',
'required' => '']);

Lastly, be sure to define a submit button:

$Ssubmit = new Generic('submit',
Generic::TYPE SUBMIT,
'Login',
Swrappers,
['id' => 'submit', 'title' => 'Click to login', 'value' =>
'Click Here'l);

The actual display logic might look like this:

<div class="container">
<!-- Login Form -->
<hls>Login</hl>
<form name="login" method="post">
<table id="login" class="display"
cellspacing="0" width="100%">

<tr><?= Semail->render(); ?></tr>
<tr><?= $password->render(); ?></tr>
<tr><?= $submit-s>render(); ?></tr>
<tr>

<td colspan=2>

<?php var_dump ($_POST); ?>
</td>
</tr>
</table>
</form>

</div>

182

Chapter 6

Here is the actual output:

PHP T Cookbook - Mozilla Firefox

PHP 7 Cookbook

€ localhost »

Login

El'l'lﬂi doug@unlikelysource.com
Password

Login| Click Here

Enter your pas

array(3) { ["email"]== string{23)
“doug@unlikelysource.com" ["password"|=>
string(4) "test” ["submit"]=> string(10) "Click
Here" }

Creating an HTML radio element generator

A radio button element generator will share similarities with the generic HTML form element
generator. As with any generic element, a set of radio buttons needs the ability to display an
overall label and errors. There are two major differences, however:

» Typically, you will want two or more radio buttons
» Each button needs to have its own label

How to do it...

1. First of all, create a new Application\Form\Element\Radio class that extends
Application\Form\Generic

namespace Application\Form\Element;
use Application\Form\Generic;
class Radio extends Generic

// code

2. Next, we define class constants and properties that pertain to the special needs
of a set of radio buttons.

Building Scalable Websites
3.

In this illustration, we will need a spacer, which will be placed between the radio
button and its label. We also need to decide whether to place the radio button

label before or after the actual button, thus, we use the safter flag. If we need a
default, or if we are re-displaying existing form data, we need a way of designating the
selected key. Finally, we need an array of options from which we will populate the list
of buttons:

const DEFAULT AFTER = TRUE;

const DEFAULT_SPACER = 'é&nbps;';

const DEFAULT_ OPTION KEY = 0;

const DEFAULT OPTION_VALUE = 'Choose';

protected $Safter = self::DEFAULT AFTER;
protected $spacer = self::DEFAULT_ SPACER;
protected Soptions = array() ;

protected $selectedKey = DEFAULT OPTION_KEY;

Given that we are extending Application\Form\Generic, we have the option of
expanding the _ construct () method, or, alternatively, simply defining a method
that can be used to set specific options. For this illustration, we have chosen the
latter course.

To ensure the property $this->options is populated, the first parameter
(Soptions) is defined as mandatory (without a default). All other parameters are
optional.

public function setOptions(array S$options,
$selectedKey = self::DEFAULT OPTION_KEY,
$spacer = self::DEFAULT SPACER,
safter = TRUE)

Sthis->after = Safter;
Sthis->spacer = $spacer;
Sthis->options = Soptions;
Sthis->selectedKey = $selectedKey;

}

Finally, we are ready to override the core get InputOnly () method.

We save the id attribute into an independent variable, $baseId, and later combine
it with $count so that each id attribute is unique. If the option associated with the
selected key is defined, it is assigned as the value; otherwise, we use the default:

public function getInputOnly ()

{
Scount = 1;
SbaseId = sthis-sattributes['id'];

184

Chapter 6

8. Inside the foreach () loop we check to see if the key is the one selected. If so,
the checked attribute is added for that radio button. We then call the parent class
getInputOnly () method to return the HTML for each button. Note that the value
attribute of the input element is the options array key. The button label is the options
array element value:

foreach ($this-s>options as $key => $value) (

}

Sthis-s>attributes['id'] = S$baselId . S$count++;
Sthis-sattributes['value'] = Skey;
if ($key == $this-s>selectedKey)
Sthis-s>attributes|['checked'] = '';
} elseif (isset($this-s>attributes|['checked'])) {
unset ($this->attributes['checked']) ;
}
if ($this-safter) {
Shtml = parent::getInputOnly () . S$value;
} else {
Shtml = $value . parent::getInputOnly () ;
}
Soutput .= $this->spacer . $html;

}

return Soutput;

Copy the preceding code into a new Radio.php file in the Application/Form/Element
folder. You can then define a chap 06 form element radio.php calling script that sets
up autoloading and anchors the new class:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Form\Generic;
use Application\Form\Element\Radio;

Next, define the wrappers using the Swrappers array defined in the previous recipe.

Then you can define a $status array and create an element instance by passing parameters
to the constructor:

SstatusList = [

g
D
v
A

=> 'Unconfirmed’',

=> 'Pending',

=> 'Temporary Approval',
=> 'Approved'

Building Scalable Websites

1;

$status = new Radio('status',
Generic::TYPE RADIO,
'Status',
Swrappers,
['id' => 'status']);

Now you can see if there is any status input from $_GET and set the options. Any input will
become the selected key. Otherwise, the selected key is the default:

$checked = $ GET['status'] ?? 'U';
$status->setOptions ($statusList, S$checked, '
', TRUE) ;

Lastly, don't forget to define a submit button:

Ssubmit = new Generic('submit',
Generic::TYPE SUBMIT,
'Process',

Swrappers,
['id' => 'submit', 'title' =>

'Click to process', 'value' => 'Click Here'l);
The display logic might look like this:

<form name="status" method="get">

<table id="status" class="display" cellspacing="0" width="100%">

<tr><?= $status->render(); ?></tr>
<tr><?= $submit->render(); ?></tr>
<tr>

<td colspan=2>

<pre><?php var dump ($_GET); ?></pre>
</td>
</tr>
</table>

</form>

186

Chapter 6

Here is the actual output:

PHP 7 Cookbook - Mozilla Firefox
PHP 7 Cookbook x W

€ localhost | »

Status

~ Unconfirmed
Status| ® Pending

' Temporary Approval
) Approved

Process| Click Here

array(2) {
["status"]=>
string(1) "P"
["submit"]=>
string(18) "Click Here" %

A checkbox element generator would be almost identical to the HTML radio button generator.
The main difference is that a set of checkboxes can have more than one value checked.
Accordingly, you would use PHP array notation for the element names. The element type
should be Generic: : TYPE CHECKBOX.

Creating an HTML select element generator

Generating an HTML single select element is similar to the process of generating radio
buttons. The tags are structured differently, however, in that both a SELECT tag and a series
of OPTION tags need to be generated.

How to do it...

1. Firstof all, create a new Application\Form\Element\Select class that extends
Application\Form\Generic

2. The reason why we extend Generic rather than Radio is because the structuring of
the element is entirely different:

namespace Application\Form\Element;
use Application\Form\Generic;

class Select extends Generic

Building Scalable Websites
{

// code

}

3. The class constants and properties will only need to add slightly to Application\
Form\Generic. Unlike radio buttons or checkboxes, there is no need to account for
spacers or the placement of the selected text:

const DEFAULT OPTION KEY = 0O;
const DEFAULT OPTION VALUE = 'Choose';

protected Soptions;
protected $selectedKey = DEFAULT OPTION KEY;

4. Now we turn our attention to setting options. As an HTML select element can select
single or multiple values, the $selectedKey property could be either a string or an
array. Accordingly, we do not add a type hint for this property. It is important, however,
that we identify whether or not the multiple attribute has been set. This can be
obtained from a $this->attributes property via inheritance from the parent
class.

5. Ifthemultiple attribute has been set, it's important to formulate the name
attribute as an array. Accordingly, we would append [] to the name if this were the
case:

public function setOptions (array S$options, $selectedKey =
self: :DEFAULT OPTION_KEY)

{
Sthis->options = $Soptions;
Sthis->selectedKey = $selectedKey;
if (isset($this-sattributes['multiple'])) {
Sthis->name .= '[]';

In PHP, if the HTML select multiple attribute has been set, and the name
A attribute is not specified as an array, only a single value will be returned!

6. Before we can define the core get InputOnly () method, we need to define
a method to generate the select tag. We then return the final HTML using
sprintf (), using $pattern, $name, and the return value of getAttribs () as
arguments.

188

Chapter 6

10.
11.

We replace the default value for $pattern with <select name="%s" %s>. We
then loop through the attributes, adding them as key-value pairs with spaces in
between:

protected function getSelect ()

{
$this->pattern = '<select name="%s" %s> ' . PHP_EOL;
return sprintf ($this->pattern, $this->name,
$this->getAttribs()) ;

}

Next, we define a method to obtain the option tags that will be associated with the
select tag.

As you will recall, the key from the $this->options array represents the return
value, whereas the value part of the array represents the text that will appear on
screen. If $this->selectedKey is in array form, we check to see if the value is in
the array. Otherwise, we assume $this-> selectedKey is a string and we simply
determine if it is equal to the key. If the selected key matches, we add the selected
attribute:

protected function getOptions ()
{
Soutput = '';
foreach ($this-s>options as $key => $value) (
if (is_array($this->selectedKey)) {

$selected = (in_array(skey, $this->selectedKey))
? ' selected' : '';

} else {
$selected = (Skey == S$this->selectedKey)

? ' selected' : '';

Soutput .= '<option value="' . S$key . '"!
Sselected . '>!
Svalue
'</option>"';

}

return Soutput;

}

Finally we are ready to override the core get InputOnly () method.
You will note that the logic for this method only needs to capture the return values

from the getSelect () and getOptions () methods described in the preceding
code. We also need to add the closing </select> tag:

public function getInputOnly ()

{
Soutput = $this->getSelect() ;
Soutput .= $this->getOptions() ;

Building Scalable Websites

Soutput .= '</' . Sthis->getType() . '>';
return S$output;

}

Copy the code described above into a new Select .php file in the Application/Form/
Element folder. Then define a chap 06 form element select.php calling script that
sets up autoloading and anchors the new class:

<?php
require _DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Form\Generic;
use Application\Form\Element\Select;

Next, define the wrappers using the array Swrappers defined in the first recipe. You can also
use the $statusList array defined in the Creating an HTML radio element generator recipe.
You can then create instances of SELECT elements. The first instance is single select, and the
second is multiple:

Sstatusl = new Select('statusl',
Generic::TYPE SELECT,
'Status 1',
Swrappers,
["id' => 'statusl']);
Sstatus2 = new Select('status2',
Generic::TYPE SELECT,
'Status 2",
Swrappers,
['id' => 'status2',

'multiple' => '"',

'size' => '4']);

See if there is any status input from $_GET and set the options. Any input will become the
selected key. Otherwise, the selected key is the default. As you will recall, the second instance
is multiple select, so the value obtained from $_GET and the default setting should both be in
the form of an array:

Scheckedl $ GET(['statusl'] ?? 'U';
Schecked2 $ GET(['status2'] ?? ['U'];
$statusl->setOptions ($statusList, S$Scheckedl) ;
$status2->setOptions ($statusList, S$Schecked?2) ;

Lastly, be sure to define a submit button (as shown in the Creating a generic form element
generator recipe of this chapter).

190

Chapter 6

The actual display logic is identical to the radio button recipe, except that we need to render
two separate HTML select instances:

<form name="status" method="get">
<table id="status" class="display" cellspacing="0" width="100%">
<tr><?= $statusl->render(); ?></tr>
<tr><?= $status2->render(); ?></tr>
<tr><?= $submit-s>render(); ?></tr>
<tr>
<td colspan=2>

<pre>
<?php var_dump ($_GET); °?>
</pre>
</td>
</tr>
</table>
</form>

Here is the actual output:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ (U localhost ¢l »

Status

Status 1| Pending =
Unconfirmed
Status 2| Pending

Temporary Approval
Approved

Process| Click Here

array(3) {

["statusl"]=>
string(1) "P"
["status2"l==>
array(2) {

[6]==

string(1) "U"

[1]==

string(1) "T"

¥
["submit"]=>
string(10) "Click Here" h

Building Scalable Websites

Also, you can see how the elements appear in the view source page:

http://localhost:8080/?status1=P&status2%5B%5D=U&status2%5B%5D=T&submit=Click+Here - Mozilla Firefox

PHP 7 Cookbook http://localhost:8080/7... =
view-source:http://localhost:8080/?status 1=P&status2[]=U&status2[]=T&sub c Sear Pl =] ¥ & & =
<hl>Status</hl> =

<form name="status" method="get">
<table id="status" class="display" cellspacing="0" width="100%">
<tr><th class="label">Status 1</th><td class="content"><select name="statusl" id="statusl">
<option value="U">Unconfirmed</option>
<option value="P" selected>Pending</option=>
<option value="T">Temporary Approval</option>
<option value="A">Approved</option>
</select></td></tr>
<tr><th class="label">Status 2</th><td class="content"><select name="status2[]" id="status2" multiple size="4">
<option value="U" selected>Unconfirmed</option>
<option value="P">Pending</option>
<option value="T" selected>Temporary Approval</option>
<option value="A">Approved</option>
</select></td></tr>
<tr><th class="label">Process</th><td class="content"><input type="submit" name="submit" id="submit" title="Cli|
<tr>
<td colspan=2>

<pre>
array(3) {
["status1l"]=>
string(1) "p" %
["status2"]=>
array(2) {
[0]=>

Implementing a form factory

The purpose of a form factory is to generate a usable form object from a single configuration
array. The form object should have the ability to retrieve the individual elements it contains so
that output can be generated.

How to do it...

1. First, let's create a class called Application\Form\Factory to contain the factory
code. It will have only one property, Selements, with a getter:

namespace Application\Form;

class Factory

{

protected Selements;
public function getElements ()

{

return Sthis->elements;

}

// remaining code

192

Chapter 6

Before we define the primary form generation method, it's important to consider
what configuration format we plan to receive, and what exactly the form generation
will produce. For this illustration, we will assume that the generation will produce a
Factory instance, with an $elements property. This property would be an array of
Application\Form\Generic or Application\Form\Element classes.

We are now ready to tackle the generate () method. This will cycle through the
configuration array, creating the appropriate Application\Form\Generic

or Application\Form\Element* objects, which in turn will be stored in

the Selements array. The new method will accept the configuration array as an
argument. It is convenient to define this method as static so that we can generate as
many instances as are needed using different blocks of configuration.

We create an instance of Application\Form\Factory, and then we start looping
through the configuration array:

public static function generate (array S$config)
{

Sform = new self();

foreach ($config as $key => $p) {

Next, we check for parameters that are optional in the constructor for the
Application\Form\Generic class:

Spl'errors'] = $pl'errors'] ?? array();
Spl'wrappers'] = $pl'wrappers'] ?? array();
Spl'attributes'] = $pl'attributes'] ?? array();

Now that all the constructor parameters are in place, we can create the form element
instance, which is then stored in $elements:

Sform->elements[$Skey]l = new $pl['class']
(

Skey,

$pl'type'l,

Spl['label'],

Spl'wrappers'],

Spl'attributes'],

Spl'errors']

)i

7. Next, we turn our attention to options. If the opt ions parameter is set, we extract

the array values into variables using 1ist (). We then test the element type using
switch () and run setOptions () with the appropriate number of parameters:

if (isset($pl'options'])) {
list (Sa,$b,$c,$d) = S$pl'options'];
switch ($pl'type'l) {
case Generic::TYPE_RADIO
case Generic::TYPE_CHECKBOX :

Building Scalable Websites

Sform->elements [$key] ->setOptions ($a, $b, $c, $d) ;
break;

case Generic::TYPE SELECT
Sform->elements [$key] ->setOptions ($Sa, $b) ;
break;

default :
Sform->elements [$key] ->setOptions ($Sa, $b) ;
break;

}

8. Finally, we return the form object and close out the method:

return Sform;

}

9. Theoretically, at this point, we could easily render the form in our view logic by simply
iterating through the array of elements and running the render () method. The view
logic might look like this:

<form name="status" method="get">
<table id="status" class="display" cellspacing="0" width="100%">

<?php foreach ($form->getElements() as Selement) : ?>
<?php echo S$element-s>render(); ?>
<?php endforeach; ?>
</table>
</form>

10. Finally, we return the form object and close out the method.

11. Next, we need to define a discrete Form class under Application\Form\
Element:

namespace Application\Form\Element;
class Form extends Generic

{

public function getInputOnly ()
{
$this->pattern = '<form name="%s" %s> ' . PHP EOL;
return sprintf ($this->pattern, S$this->name,
Sthis->getAttribs());
}

public function closeTag()

{

return '</' . Sthis->type . '>';

Chapter 6

12.

13.

Returning to the Application\Form\Factory class, we now need to define

a simple method that returns a sprintf () wrapper pattern that will serve as

an envelope for input. As an example, if the wrapper is div with an attribute
class="test" we would produce this pattern: <div class="test">%s</divs>.
Our content would then be substituted in place of s by the sprintf () function:

protected function getWrapperPattern (Swrapper)

{
$type = Swrapper['type'l;
unset (Swrapper ['type']) ;

Spattern = '<' . S$type;
foreach ($wrapper as $key => $value) (
Spattern .= ' ' . Skey . '="' .| $value . '"';
}
Spattern .= '>%s</' . Stype . '>';

return S$pattern;

}

Finally, we are ready to define a method that does overall form rendering. We obtain
wrapper sprintf () patterns for each form row. We then loop through the elements,
render each one, and wrap the output in the row pattern. Next, we generate an
Application\Form\Element\Form instance. We then retrieve the form wrapper
sprintf () pattern and check the form_tag inside wrapper flag, which tells us
whether we need to place the form tag inside or outside the form wrapper:

public static function render ($form, $formConfig)

{

SrowPattern = $form->getWrapperPattern (
$formConfig['row wrapper']) ;

Scontents = '';
foreach ($form->getElements() as $element) {
Scontents .= sprintf (SrowPattern, S$Selement->render());

}

SformTag = new Form($formConfig['name'l],
Generic: :TYPE FORM,

1
7

array (),
SformConfig['attributes']) ;

SformPattern = $form->getWrapperPattern (
$formConfig['form wrapper']) ;
if (isset($formConfig['form tag inside wrapper'])
&& !SformConfig['form tag inside wrapper']) {
SformPattern = '$s' . $formPattern . '%s';
return sprintf ($formPattern, S$formTag->getInputOnly (),
Scontents, S$formTag->closeTag()) ;

Building Scalable Websites

} else {
return sprintf ($formPattern, $formTag->getInputOnly ()
Scontents . $formTag->closeTag());

}

Referring to the preceding code, create the Application\Form\Factory and
Application\Form\Element\Form classes.

Next, you can define a chap 06 form factor.php calling script that sets up autoloading
and anchors the new class:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Form\Generic;
use Application\Form\Factory;

Next, define the wrappers using the Swrappers array defined in the first recipe. You can also
use the $statusList array defined in the second recipe.

See if there is any status input from $_POST. Any input will become the selected key.
Otherwise, the selected key is the default.

Semail = $ POST['email'] ?2? '
$checked0 = $ POST['statusO0'] ?? 'U';
$checkedl = $ POST['statusl'] ?? 'U';
$checked2 = $ POST['status2'] ?2? ['U'];
$checked3 = $ POST['status3'] ?? ['U'];

Now you can define the overall form configuration. The name and attributes parameters
are used to configure the form tag itself. The other two parameters represent form-level and
row-level wrappers. Lastly, we provide a form _tag_inside wrapper flagto indicate that
the form tag should not appear inside the wrapper (that is, <tables>). If the wrapper was
<div>, we would set this flag to TRUE:

SformConfig = [

'name'’ => 'status_form',

'attributes' => ['id'=>'statusForm', 'method'=>'post',
'action'=>'chap 06 form factory.php'],

'row_wrapper' => ['type' => 'tr', 'class' => 'row'l],

'form wrapper' => ['type'=>'table', 'class'=>'table',

'id'=>'statusTable',

196

1;

Next, define an array that holds parameters for each form element to be created by the

'class'=>'display', 'cellspacing'=>'0"'],

'form tag inside wrapper' => FALSE,

factory. The array key becomes the name of the form element, and must be unique:

Sconfig = [

'email!'

1,

'password!

1,

=> [
'class!'
!typel
'label!’
'wrappers'

=>
=>
=>
=>

'attributes'=>

=> [
'class!'
"type'
'label!’
'wrappers'

=>
=>
=>
=>
'attributes' =>
'title!

'required'

=>

=>

// etc.

1;

'Application\Form\Generic',

Generic::TYPE EMAIL,

'Email’',

Swrappers,

['id'=>'email', 'maxLength'=>128,
'title'=>'Enter address',

'required'=>"'", 'value'=>strip tags($email)]

'Application\Form\Generic',
Generic: :TYPE PASSWORD,
'Password’',

Swrappers,
['id'=>"'password',

'Enter your password',

!l]

Lastly, be sure to generate the form:

Sform =

The actual display logic is extremely simple, as we simply call the form level render ()

method:

<?= S$form->render ($form,

Factory: :ge

nerate ($Sconfig) ;

SformConfig); ?>

Chapter 6

Building Scalable Websites

Here is the actual output:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x Wi
€ localhost C A » =
Status
Email| doug@unlikelysource.com ar[r?glgilﬁ]:)
Password string(23) "doug@unlikelysource.com"
["password"]=>
@ Unconfirmed string(8) "password"
. . ["statuse"]=>
Status 0 Pending string(1) "u"
~ Temporary Approval ["statusl"]=>
§ string(1) "P"
Approved ["status2"]=>
N = array(2) {
Status 1| Pending = 61=
Unconfirmed ?i]rﬂg{” T
Pending N .
Status 2 ARl string(1) "A
Approved ["status3"]=>
Unconfirmed & a"[’alll"if_’ {
Shtusspending [} ?tl]'ing{l) .y
B 2]=>
Temporaryprproval string(1) *P"
Approved { -
3 "submit"]=>
Process| Click Here string(10) "Click Here" N

Chaining $_POST filters

Proper filtering and validation is a common problem when processing data submitted by users
from an online form. It is arguably also the number one security vulnerability for a website.
Furthermore, it can be quite awkward to have the filters and validators scattered all over the
application. A chaining mechanism would resolve these issues neatly, and would also allow
you to exert control over the order in which the filters and validators are processed.

How to do it...

1. There is a little-known PHP function, filter input array (), that, atfirst glance,
seems well suited for this task. Looking more deeply into its functionality, however, it
soon becomes apparent that this function was designed in the early days, and is not
up to modern requirements for protection against attack and flexibility. Accordingly,
we will instead present a much more flexible mechanism based on an array of
callbacks performing filtering and validation.

198

Chapter 6

_ The difference between filtering and validation is that filtering can
% potentially remove or transform values. Validation, on the other
L hand, tests data using criteria appropriate to the nature of the
data, and returns a boolean result.

In order to increase flexibility, we will make our base filter and validation classes
relatively light. By this, we mean not defining any specific filters or validation methods.
Instead, we will operate entirely on the basis of a configuration array of callbacks. In
order to ensure compatibility in filtering and validation results, we will also define a
specific result object, Application\Filter\Result.

The primary function of the Result class will be to hold a $item value, which would
be the filtered value or a boolean result of validation. Another property, Smessages,
will hold an array of messages populated during the filtering or validation operation.
In the constructor, the value supplied for $messages is formulated as an array. You
might observe that both properties are defined public. This is to facilitate ease of
access:

namespace Application\Filter;

class Result

{

public $item; // (mixed) filtered data | (bool) result
of validation
public S$messages = array(); // [(string) message,

(string) message]

public function __ construct ($item, $messages)

{

Sthis->item = $item;

if (is_array(Smessages)) {
Sthis->messages = $messages;

} else {
Sthis->messages = [Smessages];

}
}

We also define a method that allows us to merge this Result instance with another.
This is important as at some point we will be processing the same value through

a chain of filters. In such a case, we want the newly filtered value to overwrite the
existing one, but we want the messages to be merged:

public function mergeResults (Result Sresult)

{
Sthis->item = $Sresult->item;
Sthis->mergeMessages ($Sresult) ;

Building Scalable Websites

200

}

public function mergeMessages (Result S$result)
{
if (isset (Sresult->messages) && is_array (Sresult->messages)) {
$this->messages = array merge ($this->messages,
Sresult->messages) ;

}

Finally, to finish the methods for this class, we add a method that merges validation
results. The important consideration here is that any value of FALSE, up or down the
validation chain, must cause the entire result to be FALSE:

public function mergeValidationResults (Result Sresult)
{
if ($this-s>item === TRUE)
Sthis->item = (bool) S$Sresult->item;
}

Sthis->mergeMessages (Sresult) ;

}
}

Next, to make sure that the callbacks produce compatible results, we will define an
Application\Filter\CallbackInterface interface. You will note that we are
taking advantage of the PHP 7 ability to data type the return value to ensure that we
are getting a Result instance in return:

namespace Application\Filter;
interface CallbackInterface

{

public function __ invoke ($item, $params) : Result;

}

Each callback should reference the same set of messages. Accordingly, we define
aApplication\Filter\Messages class with a series of static properties. We
provide methods to set all messages, or just one message. The Smessages property
has been made public for easier access:

namespace Application\Filter;
class Messages
const MESSAGE UNKNOWN = 'Unknown' ;
public static Smessages;
public static function setMessages (array $messages)

{

Chapter 6

10.

self::Smessages = Smessages;
}
public static function setMessage (Skey, $message)
{
self::$messages [Skey] = Smessage;
}

public static function getMessage (Skey)

{

return self::Smessages[$Skey] ?? self::MESSAGE UNKNOWN;

}

We are now in a position to define a Application\Web\AbstractFilter

class that implements core functionality. As mentioned previously, this class

will be relatively lightweight and we do not need to worry about specific

filters or validators as they will be supplied through configuration. We use the
UnexpectedValueException class, provided as part of the PHP 7 Standard PHP
Library (SPL), in order to throw a descriptive exception in case one of the callbacks
does not implement CallbackInterface:

namespace Application\Filter;
use UnexpectedValueException;
abstract class AbstractFilter

{

// code described in the next several bullets

First, we define useful class constants that hold various housekeeping values. The
last four shown here control the format of messages to be displayed, and how to
describe missing data:

const BAD CALLBACK = 'Must implement CallbackInterface';
const DEFAULT SEPARATOR = '
' . PHP EOL;

const MISSING MESSAGE KEY = 'item.missing';

const DEFAULT MESSAGE FORMAT = '%20s : %60s';

const DEFAULT MISSING MESSAGE = 'Item Missing';

Next, we define core properties. $separator is used in conjunction with filtering and
validation messages. $callbacks represents the array of callbacks that perform
filtering and validation. $assignments map data fields to filters and/or validators.
$SmissingMessage is represented as a property so that it can be overwritten (that
is, for multi-language websites). Finally, Sresults is an array of Application)\
Filter\Result objects and is populated by the filtering or validation operation:

protected S$separator; // used for message display
protected S$Scallbacks;

protected Sassignments;

protected SmissingMessage;

protected Sresults = array();

201

Building Scalable Websites

11. At this point, we can build the _ construct () method. Its main function is to set

12.

202

the array of callbacks and assignments. It also either sets values or accepts defaults
for the separator (used in message display), and the missing message:

public function _ construct (array $callbacks, array $assignments,
$separator = NULL, S$message = NULL)

Sthis->setCallbacks ($callbacks) ;
Sthis->setAssignments (Sassignments) ;
Sthis->setSeparator ($separator ?? self::DEFAULT SEPARATOR) ;
Sthis->setMissingMessage (Smessage
?? self: :DEFAULT_MISSING_MESSAGE) ;

}

Next, we define a series of methods that allow us to set or remove callbacks. Notice
that we allow the getting and setting of a single callback. This is useful if you have

a generic set of callbacks, and need to modify just one. You will also note that
setOneCall () checks to see if the callback implements CallbackInterface. Ifit
does not, an UnexpectedValueException is thrown:

public function getCallbacks ()

{

return S$this->callbacks;

public function getOneCallback (Skey)

{

return $this->callbacks[$key] ?? NULL;

public function setCallbacks (array $callbacks)
{
foreach ($callbacks as $key => $item)
Sthis->setOneCallback ($Skey, $item);

public function setOneCallback ($key, $item)
{
if ($item instanceof CallbackInterface) {
Sthis->callbacks [$Skey] = S$item;
} else {
throw new UnexpectedValueException(self::BAD CALLBACK) ;

Chapter 6

13.

14.

public function removeOneCallback (Skey)
{
if (isset(Sthis->callbacks[Skey]))
unset (Sthis->callbacks [Skey]) ;

}

Methods for results processing are quite simple. For convenience, we added
getItemsAsArray (), otherwise getResults () will return an array of Result
objects:

public function getResults()

{

return Sthis->results;

public function getItemsAsArray ()
{
Sreturn = array();
if ($this-sresults)
foreach ($this->results as Skey => S$item)
Sreturn[$key] = S$item->item;
}

return Sreturn;

}

Retrieving messages is just a matter of looping through the array of $this
->results and extracting the Smessages property. For convenience, we also added
getMessageString () with some formatting options. To easily produce an array

of messages, we use the PHP 7 yield from syntax. This has the effect of turning
getMessages () into a delegating generator. The array of messages becomes a
sub-generator:

public function getMessages ()
{
if ($this-sresults)
foreach ($this->results as Skey => S$item)
if ($item->messages) yield from $item->messages;
} else {
return array() ;

public function getMessageString($width = 80, S$format = NULL)

{

203

Building Scalable Websites

if (!$format)
$format = self::DEFAULT MESSAGE FORMAT . S$this->separator;
Soutput = '';
if ($this-sresults)
foreach ($this-s>results as $key => $value) (
if ($value->messages)
foreach ($value->messages as $message) {
Soutput .= sprintf (
Sformat, $key, trim($message));

}

return S$output;

}

15. Lastly, we define a mixed group of useful getters and setters:

public function setMissingMessage (Smessage)

{

Sthis->missingMessage = $message;

}

public function setSeparator ($separator)

{

Sthis->separator = S$separator;

}

public function getSeparator ()

{

return $this->separator;

}

public function getAssignments ()

{

return $this->assignments;

}

public function setAssignments (array S$assignments)

{

Sthis->assignments = $assignments;

}

// closing bracket for class AbstractFilter

}

16. Filtering and validation, although often performed together, are just as often
performed separately. Accordingly, we define discrete classes for each. We'll start with
Application\Filter\Filter. We make this class extend AbstractFilterin
order to provide the core functionality described previously:

204

Chapter 6

17.

18.

19.

20.

21.

namespace Application\Filter;
class Filter extends AbstractFilter

{
}

Within this class we define a core process () method that scans an array of data
and applies filters as per the array of assignments. If there are no assigned filters for
this data set, we simply return NULL:

// code

public function process (array S$data)

{
if (! (isset($this->assignments)
&& count ($this->assignments))) {
return NULL;

}

Otherwise, we initialize $this->results to an array of Result objects where the
$1item property is the original value from $data, and the $messages property is an
empty array:
foreach ($data as $key => $value)

Sthis->results[$Skey] = new Result ($value, array());

}

We then make a copy of $this->assignments and check to see if there are any
global filters (identified by the '*' key. If so, we run processGlobal () and then
unset the '*' key:
$toDo = $this-s>assignments;
if (isset ($toDo['*']1))

Sthis->processGlobalAssignment (StoDo['*'], S$data);

unset ($tobDo['*']) ;

}

Finally, we loop through any remaining assignments, calling
processAssignment ():

foreach ($toDo as $key => $assignment)
Sthis->processAssignment ($Sassignment, Skey) ;

}

As you will recall, each assignment is keyed to the data field, and represents an array

of callbacks for that field. Thus, in processGlobalAssignment () we need to loop

through the array of callbacks. In this case, however, because these assignments are

global, we also need to loop through the entire data set, and apply each global filter in
turn:

protected function processGlobalAssignment ($Sassignment, $data)

{

foreach ($assignment as $callback) ({

205

Building Scalable Websites

if ($callback === NULL) continue;
foreach ($data as $k => $value)
Sresult = Sthis->callbacks[$Scallback['key']]
(Sthis->results[$Sk]->item,
Scallback['params']) ;
Sthis->results[$k] ->mergeResults ($Sresult) ;

The tricky bit is this line of code:
Sresult = $this->callbacks([$Scallback['key']] (Sthis
->results[$k]->item, S$callback['params']) ;

% Remember, each callback is actually an anonymous class that defines the
~ PHP magic __invoke () method. The arguments supplied are the actual
data item to be filtered, and an array of parameters. By running Sthis-
>callbacks[Scallback['key']] () we are in fact magically calling
__invoke().

22. When we define processAssignment (), in @a manner akin to
processGlobalAssignment (), we need to execute each remaining callback
assigned to each data key:

protected function processAssignment ($Sassignment, s$key)
{
foreach ($assignment as $callback) ({
if (Scallback === NULL) continue;

Sresult = Sthis->callbacks([Scallback['key']]
($this->results[$key] ->item,

Scallback['params']) ;
Sthis->results[Skey] ->mergeResults (Sresult) ;

}

}// closing brace for Application\Filter\Filter

R It is important that any filtering operation that alters the original user-supplied
% data should display a message indicating that a change was made. This can
s become part of an audit trail to safeguard you against potential legal liability
when a change is made without user knowledge or consent.

206

Chapter 6

Create an Application\Filter folder. In this folder, create the following class files, using
code from the preceding steps:

Application\Filter* class file Code described in these steps
Result.php 3-5
CallbackInterface.php 6

Messages.php 7

AbstractFilter.php 8-15

Filter.php 16-22

Next, take the code discussed in step 5, and use it to configure an array of messages in
achap 06 post data config messages.php file. Each callback references the
Messages: : Smessages property. Here is a sample configuration:

<?php
use Application\Filter\Messages;
Messages: : setMessages (

)i

[

]

'length too_ short'
'length too long'
'required’
'alnum'

'float!

'email'

'in array'

'trim'

'strip tags'
'filter float'
'phone'’

'test'

'filter length'

'Length must be at least %d',
'Length must be no more than %d',
'Please be sure to enter a value',
'Only letters and numbers allowed',
'Only numbers or decimal point',
'Invalid email address',

'Not found in the list',

'Item was trimmed',

'Tags were removed from this item',
'Converted to a decimal number',
'Phone number is
'TEST!',

'Reduced to specified length',

[+n] nnn-nnn-nnnn',

Next, create a chap 06 _post data config callbacks.php callback configuration file
that contains configuration for filtering callbacks, as described in step 4. Each callback should
follow this generic template:

'callback key!'

{

public function _ invoke($item,

=> new class ()

implements CallbackInterface
Sparams) Result

207

Building Scalable Websites

{

$changed

array () ;

$filtered = /* perform filtering operation on Sitem */

if (sfiltered !== S$item)

$changed = Messages::$messages|['callback key'];

return new Result ($filtered, S$changed) ;

}

The callbacks themselves must implement the interface and return a Result instance. We
can take advantage of the PHP 7 anonymous class capability by having our callbacks return
an anonymous class that implements CallbackInterface. Here is how an array of filtering

callbacks might look:

208

use Application\Filter\ { Result, Messages, CallbackInterface };

Sconfig = ['filters' => [
'trim' => new class () implements CallbackInterface
{
public function __ invoke ($item, S$params) : Result

{

$changed = array();
sfiltered = trim(Sitem) ;
if (sfiltered !== Sitem)
Schanged = Messages::$messages['trim'];
return new Result ($filtered, S$changed) ;
}
b
'strip tags' => new class ()
implements CallbackInterface

{

public function __ invoke ($item, S$params) : Result
{
$changed = array();
$filtered = strip tags($item);
if (sfiltered !== Sitem)
$changed = Messages::$messages|['strip tags'];
return new Result ($filtered, S$changed) ;
}
b
// etc.
]
1;

Chapter 6

For test purposes, we will use the prospects table as a target. Instead of providing data from

$_POST, we will construct an array of good and bad data:

Field name Type Allow nulls?
" id int(11) No
| first_name varchar(128) No
" last_name varchar(128) Mo
| address varchar(256) Yes
] city varchar(64) Yes
| state_province varchar(32) Yes
] postal_code char(16) Mo
| phone varchar(16) No
] country char(2) No
| email varchar(250) No
] status char(8) Yes
| budget decimal(10,2) Yes
] last_updated datetime Yes

You can now create a chap 06 post data filtering.php script that sets up

autoloading, includes the messages and callbacks configuration files:

<?php

require DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

include = DIR . '/chap 06 post data config messages.php';
include _ DIR . '/chap 06 post data config callbacks.php';

You then need to define assignments that represent a mapping between the data fields and

filter callbacks. Use the * key to define a global filter that applies to all data:

Sassignments = [
L => [['key' => 'trim', 'params' => []],
['key' => 'strip tags', 'params' => []] 1,
'first name' => [['key' => 'length',
'params' => ['length' => 128]]],
'last name' => [['key' => 'length',
'params' => ['length' => 128]]],
'city! => [['key' => 'length',
'params' => ['length' => 64]] 1,

'budget' => [['key' => 'filter float', 'params' => []]

1,

209

Building Scalable Websites

Next, define good and bad test data:

$goodData = [
'first_name' => 'Your Full',
'last _name' => 'Name',
'address' => '123 Main Street',
'city! => 'San Francisco',
'state_province' => 'California’',
'postal_ code' => '94101"',
'phone'’ => '+1 415-555-1212",
'country' => 'US',
'email! => 'your@email.address.com',
'budget ' => 1123.45",

1;
$badData = [
'first name' => 'This+Name<script>bad tag</script>valid!',
'last _name' => 'ThisLastNameIsWayTooLong
Abcdefghijklmnopgrstuvwxyz0123456789
Abcdefghijklmnopgrstuvwxyz0123456789
Abcdefghijklmnopgrstuvwxyz0123456789
Abcdefghijklmnopgrstuvwxyz0123456789"',
//'address' = ', // missing
'city! => !
ThisCityNameIsTooLong0123456789012345678901234
56789012345678901234567890123456789 ',

//'state_province'=> '"', // missing
'postal code' => '1"£$%"Non Alpha Chars',
'phone'’ => ' 12345 ',

'country' => 'XX',

'email!' => 'this.is@not@an.email',
'budget’ => 'XXX',

1
Finally, you can create an Application\Filter\Filter instance, and test the data:

$filter = new Application\Filter\Filter (
Sconfig['filters'], S$assignments) ;
$filter->setSeparator (PHP_EOL) ;
$filter->process ($goodData) ;
echo $filter->getMessageString() ;
var dump ($filter->getItemsAsArray()) ;

$filter->process ($badData) ;
echo $filter->getMessageString() ;
var dump ($filter->getItemsAsArray()) ;

Chapter 6

Processing good data produces no messages other than one indicating that the value for the
float field was converted from string to £1oat. The bad data, on the other hand, produces the
following output:

Bad Data:
first_name : Tags were removed from this item
last_name : Ttem was reduced to specified length
city : Item was trimmed
city : Item was reduced to specified length
phone : Ttem was trimmed
budget : Item was converted to a decimal number

array(1e) {

["first_name"]=>

string(22) "This+Namebad tagvalid!”

["last_name"]==>

string(128) "ThisLastNameIsWayToolLongAbcdefghijklmnopqrstuvwxyz0123456789Abcde
fghijklmnopgrstuvwxyz®123456789Abcdefghijklmnopgrstuvwxyze12345"

["address"]==>

string(15) "123 Main Street"”

["eity"]=>

string(64) "ThisCityNameIsToolLong@123456789012345678901234567890123456789012"

["state_province"]==>

string(16) "california"”

["postal_code"]=> h
string(22) "!"€£S%~Non Alpha cChars"
["phone"]=>

You will also notice that tags were removed from first_name, and that both 1ast name
and city were truncated.

The filter input_ array () function takes two arguments: the input source (in the

form of a pre-defined constant used to indicate one of the s_* PHP super-globals, that is,
$_POST), and an array of matching field definitions as keys and filters or validators as values.
This function performs not only filtering operations, but validation as well. The flags labeled
sanitize are actually filters.

See also

Documentation and examples of filter input array () can be found at http://php.
net/manual/en/function.filter-input-array.php. You might also have a look at
the different types of filters that are available on http://php.net/manual/en/filter.
filters.php.

Building Scalable Websites

Chaining $_POST validators

The heavy lifting for this recipe has already been accomplished in the preceding recipe. Core
functionality is defined by Application\Filter\AbstractFilter. The actual validation
is performed by an array of validating callbacks.

How to do it...

1.

Look over the preceding recipe, Chaining $_POST filters. We will be using all of the
classes and configuration files in this recipe, except where noted here.

To begin, we define a configuration array of validation callbacks. As with the
preceding recipe, each callback should implement Application\Filter\
CallbackInterface, and should return an instance of Application\Filter\
Result. Validators would take this generic form:

use Application\Filter\ { Result, Messages, CallbackInterface };

Sconfig = [
// validator callbacks
'validators' => [

'key' => new class () implements CallbackInterface

{

public function __ invoke ($item, S$params) : Result
{
// validation logic goes here
return new Result ($valid, Serror);
}
I

// etc.

Next, we define a Application\Filter\Validator class, which loops through
the array of assignments, testing each data item against its assigned validator
callbacks. We make this class extend AbstractFilter in order to provide the core
functionality described previously:

namespace Application\Filter;
class Validator extends AbstractFilter

{
// code

}

Chapter 6

4. Within this class, we define a core process () method that scans an array of data
and applies validators as per the array of assignments. If there are no assigned
validators for this data set, we simply return the current status of $valid (which is
TRUE):

public function process (array $data)
{
$valid = TRUE;
if (! (isset($this->assignments)
&& count ($this->assignments))) {
return S$valid;

}

5. Otherwise, we initialize $this->results to an array of Result objects where the
$item property is set to TRUE, and the Smessages property is an empty array:

foreach ($data as $key => $value)
Sthis->results[$key] = new Result (TRUE, array());

}

6. We then make a copy of Sthis->assignments and check to see if there are any
global filters (identified by the '*' key). If s0, we run processGlobal () and then
unset the '*' key:

StoDo = $this->assignments;

if (isset($toDo['*'1))
Sthis->processGlobalAssignment ($toDo['*'], $data);
unset (StoDo['*']) ;

}

7. Finally, we loop through any remaining assignments, calling
processAssignment (). This is an ideal place to check to see if any fields present
in the assignments array is missing from the data. Note that we set $valid to FALSE
if any validation callback returns FALSE:

foreach ($toDo as $key => $assignment) {
if (!lisset ($datalskeyl)) {
Sthis->results[Skey] =
new Result (FALSE, S$this->missingMessage) ;
} else {
Sthis->processAssignment (
Sassignment, skey, Sdatalskeyl);
}
if (!Sthis->results[S$key]l->item) S$valid = FALSE;

}

return S$valid;

Building Scalable Websites

8. Asyou will recall, each assignment is keyed to the data field, and represents an array
of callbacks for that field. Thus, in processGlobalAssignment (), we need to loop
through the array of callbacks. In this case, however, because these assighments are
global, we also need to loop through the entire data set, and apply each global filter
inturn.

9. In contrast to the equivalent Application\Filter\Fiter: :processGlobalAss
ignment () method, we need to call nergevalidationResults (). The reason for
this is that if the value of $result->itemis already FALSE, we need to ensure that
it does not subsequently get overwritten by a value of TRUE. Any validator in the chain
that returns FALSE must overwrite any other validation result:

protected function processGlobalAssignment ($assignment, $data)
{
foreach ($assignment as $callback) {
if ($callback === NULL) continue;
foreach ($data as $k => $value) {
Sresult = $Sthis->callbacks([$callback['key']]
($value, Scallback['params']);
Sthis->results[$k] ->mergeValidationResults ($Sresult) ;

}

10. When we define processAssignment (), in @ manner akin to
processGlobalAssignment (), we need to execute each remaining callback
assigned to each data key, again calling mergevalidationResults():

protected function processAssignment (Sassignment, S$key, $value)
{
foreach ($assignment as $callback) ({
if ($callback === NULL) continue;
Sresult = $Sthis->callbacks([$callback['key']]
($value, $callback['params']) ;
Sthis->results [$key] ->mergeValidationResults (Sresult) ;

}

As with the preceding recipe, be sure to define the following classes:

» Application\Filter\Result
» Application\Filter\CallbackInterface

214

Chapter 6

» Application\Filter\Messages
» Application\Filter\AbstractFilter

You can use the chap 06 post_data_ config messages.php file, also described in the
previous recipe.

Next, create a validator.php file in the Application\Filter folder. Place the code
described in step 3 to 10.

Next, create a chap 06 _post data config callbacks.php callback configuration file
that contains configurations for validation callbacks, as described in step 2. Each callback
should follow this generic template:

'validation_key' => new class () implements CallbackInterface
{
public function __ invoke ($item, S$params) : Result
{
Serror = array();

$valid = /* perform validation operation on $item */
if (!$valid)

Serror[] = Messages::$messages|['validation key'];
return new Result ($Svalid, Serror) ;

}

Now you can create a chap 06 post_data_validation.php calling script that initializes
autoloading and includes the configuration scripts:

<?php

require DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

include =~ DIR . '/chap 06 post data config messages.php';
include _ DIR . '/chap 06 post data config callbacks.php';

Next, define an array of assignments, mapping data fields to validator callback keys:

Sassignments = [
'first name' => [['key' => 'length',
'params' => ['min' => 1, 'max' => 128]],
['key' => 'alnum',
'params' => ['allowWhiteSpace' => TRUE]],
['key! => 'required', 'params' => []]],
'last name'=> [['key' => 'length',
'params' => ['min’ => 1, 'max' => 128]],
['key! => 'alnum',
'params' => ['allowWhiteSpace' => TRUE]],
['key! => 'required', 'params' => []]],

Building Scalable Websites

1;

'address'
'params'
'city!

'params'
'state province'=>
'params'’ =>
'postal code' =>
'params'’ =>
'params'

'phone'’
'country'
'params'
'email!

'params'

'budget'

[['key' => 'length',

['max' => 256]] 1,

[['key' => 'length',

['min' => 1, 'max' => 64]] 1,

[['key' => 'length',

['min' => 1, 'max' => 32]] 1,

[['key' => 'length',

['min' => 1, 'max' => 16] 1,
['key' => 'alnum',
['allowWhiteSpace' => TRUE]],
['key' => 'required', 'params' =>
[['key' => 'phone', 'params' =>
[['key' => 'in array',
$countries],

['key' => 'required', 'params' =>
[['key' => 'email', 'params' =>
['key' => 'length',

['max' => 250] 1,

['key' => 'required', 'params' =>
[['key' => 'float', 'params' =>

For test data, use the same good and bad data defined in the chap 06 post data
filtering.php file described in the previous recipe. After that, you are in a position to
create an Application\Filter\Validator instance, and test the data:

Svalidator =

Sassignments) ;
$validator->setSeparator (PHP_EOL) ;
$validator->process ($badData) ;

echo $validator->getMessageString (40,

var dump ($validator->getItemsAsArray()) ;

$validator->process ($goodData) ;

echo S$validator->getMessageString (40,

var dump ($validator->getItemsAsArray()) ;

As expected, the good data does not produce any validation errors. The bad data, on the other

hand, generates the following output:

'%14s

'%14s

$-26s'

$-26s'

new Application\Filter\Validator ($config['validators'],

PHP_EOL) ;

PHP_EOL) ;

Chapter 6

Bad Data:
first_name : Item must contain only letters and numbers
last_name : Length must be no more than 128
city : Length must be no more than 64
postal_code : Length must be no more than 16
postal_code : Item must contain only letters and numbers
phone : Phone number must be in a format [+n] nnn-nnn-nnnn
country : Item was not found in the list of valid values
email : Invalid email address
address : Item Missing
istate_province : Item Missing

array(10) {
["first_name"]=>
bool(false)
["last_name"]=>
bool(false)
["city"]=>
bool(false)
["postal_code”]=>
bool(false)
["phone"]=>
bool(false)
["country"]=>
bool(false)
["email"]=>
bool(false)
["budget"]=>
bool(true)
["address"]=> h
bool(false)
["state_province"]=>
bool(false)

Notice that the missing fields, address and state_province validate FALSE, and return
the missing item message.

Tying validation to a form

When a form is first rendered, there is little value in having a form class (such as
Application\Form\Factory, described in the previous recipe) tied to a class that can
perform filtering or validation (such as the Application\Filter* described in the
previous recipe). Once the form data has been submitted, however, interest grows. If the
form data fails validation, the values can be filtered, and then re-displayed. Validation error
messages can be tied to form elements, and rendered next to form fields.

How to do it...

1. First of all, be sure to implement the classes defined in the Implementing a Form
Factory, Chaining $_POST Filters, and Chaining $_POST Validators recipes.

2. We will now turn our attention to the Application\Form\Factory class, and add
properties and setters that allow us to attach instances of Application\Filter\
Filter and Application\Filter\Validator. We also need define $data,
which will be used to retain the filtered and/or validated data:

const DATA NOT FOUND = 'Data not found. Run setData()';
const FILTER NOT FOUND = 'Filter not found. Run setFilter()';

Building Scalable Websites

const VALIDATOR NOT FOUND = 'Validator not found.
Run setValidator()';

protected s$filter;
protected S$validator;
protected S$data;

public function setFilter (Filter $filter)

{

Sthis->filter = $filter;

public function setValidator (Validator $validator)

{

Sthis->validator = S$validator;

public function setData ($data)
{
Sthis->data = $data;

}

3. Next, we define a validate () method that calls the process () method of the
embedded Application\Filter\Validator instance. We check to see if
$data and svalidator exist. If not, the appropriate exceptions are thrown with
instructions on which method needs to be run first:

public function wvalidate ()
{
if (!$this->data)
throw new RuntimeException(self::DATA NOT_ FOUND) ;

if (!$this->validator)
throw new RuntimeException(self::VALIDATOR NOT_ FOUND) ;

4. After calling the process () method, we associate validation result messages
with form element messages. Note that the process () method returns a boolean
value that represents the overall validation status of the data set. When the form
is re-displayed following failed validation, error messages will appear next to each
element:

$valid = $this->validator-sprocess ($Sthis->data) ;

foreach ($this-s>elements as $element)
if (isset($this->validator->getResults ()
[$element->getName ()]))
Selement->setErrors ($this->validator->getResults ()

Chapter 6

[Selement->getName ()] ->messages) ;

}
}

return Svalid;

}

In a similar manner, we definea filter () method that calls the process ()
method of the embedded Application\Filter\Filter instance. As with the
validate () method described in step 3, we need to check for the existence of
$data and sfilter. If either is missing, we throw a Runt imeException with the
appropriate message:

public function filter()
{
if (!$this->data)
throw new RuntimeException(self::DATA NOT_ FOUND) ;

if (!$this->filter)
throw new RuntimeException(self::FILTER NOT FOUND) ;

We then run the process () method, which produces an array of Result objects
where the $item property represents the end result of the filter chain. We then loop
through the results, and, if the corresponding $element key matches, set the value
attribute to the filtered value. We also add any messages resulting from the filtering
process. When the form is then re-displayed, all value attributes will display filtered
results:

Sthis->filter->process ($Sthis->data) ;
foreach ($this->filter-s>getResults() as $key => $result) (
if (isset($this-s>elements([$key]))
Sthis->elements [$Skey]
->setSingleAttribute ('value', S$result->item);
if (isset(Sresult->messages)
&& count ($result->messages)) {
foreach ($result->messages as $message)
Sthis->elements [$key] ->addSingleError (Smessage) ;

Building Scalable Websites

You can start by making the changes to Application\Form\Factory as described above.
For a test target you can use the prospects database table shown in the How it works...
section of the Chaining $_POST filters recipe. The various column settings should give you an
idea of which form elements, filters, and validators to define.

As an example, you can define a chap 06 _tying filters to form definitions.php
file, which will contain definitions for form wrappers, elements, and filter assignments. Here

are some examples:

<?php

use Application\Form\Generic;

define ('VALIDATE SUCCESS', 'SUCCESS: form submitted ok!');
define ('VALIDATE FAILURE', 'ERROR: validation errors detected');
Swrappers = [
Generic::INPUT => ['type' => 'td', 'class' => 'content'],
Generic::LABEL => ['type' => 'th', 'class' => 'label'],
Generic::ERRORS => ['type' => 'td', 'class' => 'error']

1;

Selements = [

'first name' =>

'class' =
'type'’ =
'label! =
'wrappers' =
'attributes'=

1,

'last name' =>
'class!' =>
'type' =>
'label!’ =>
'wrappers' =>
'attributes'=>

1,

// etc.
1

[
>
>
>
>

>

'Application\Form\Generic',
Generic: :TYPE TEXT,

'First Name',

Swrappers,

['maxLength'=>128, 'required'=>""]

[

'Application\Form\Generic',
Generic::TYPE TEXT,

'Last Name',

Swrappers,

['maxLength'=>128, 'required'=>""]

// overall form config

$formConfig = [
'name'’ =>
'attributes' =>

220

[

prospectsForm',

'method'=>'post',

'action'=>'chap 06 tying filters to form.php'

1,
'row_wrapper'
'form wrapper!'
'type'=>'table',

=>

=>

'class'=>'table',

'id'=>'prospectsTable',
'class'=>'display', 'cellspacing'=>'0"

1,

'form tag inside wrapper'

1;

Sassignments = [
'first name'
'params'

'params'

'last _name' =>
'params'

'params'

'address'
'params'
'city!
'params'
'state province'=>
'params'
'postal code'
'params'

=>
=>
=>

=>
=>
=>
=>
'params'
'phone'’ =>
'country' =>
'params'
'email!

'params'

'budget'

Scountries],

[
[
[
[
[
[

'key' => 'required', 'params'
['key' => 'email',

'key' => 'length',

'max' => 250] 1,

'key' => 'required', 'params'
['key' => 'float',

['type' => 'tr', 'class' => 'row'
=> FALSE,

[['key' => 'length',

['min' => 1, 'max' => 128]1],

['key' => 'alnum',

['allowWhiteSpace' => TRUE]],

['key' => 'required', 'params' =>

[['key' => 'length',

['min' => 1, 'max' => 128]1],

['key' => 'alnum',

['allowWhiteSpace' => TRUE]],

['key' => 'required', 'params' =>

[['key' => 'length',

['max' => 256]] 1,

[['key' => 'length',

['min' => 1, 'max' => 64]] 1,

[['key' => 'length',

['min' => 1, 'max' => 32]] 1,

[['key' => 'length',

['min' => 1, 'max' => 16] 1,

['key' => 'alnum',

['allowWhiteSpace' => TRUE]],

['key' => 'required', 'params' =>

[['key' => 'phone', 'params'

[['key' => 'in array',

=>

'params'

=>

'params'

1,

(1]

(1]

]

]

’

’

Chapter 6

221

Building Scalable Websites

You can use the already existing chap_ 06 _post data config callbacks.php and
chap 06 post data config messages.php files described in the previous recipes.
Finally, define a chap 06 tying filters to_ form.php file that sets up autoloading and
includes these three configuration files:

<?php

require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

include =~ DIR . '/chap 06 post data config messages.php';

include =~ DIR . '/chap 06 post data config callbacks.php';
include _ DIR__ . '/chap_06_tying filters to_form definitions.php';

Next, you can create instances of the form factory, filter, and validator classes:

use Application\Form\Factory;
use Application\Filter\ { Validator, Filter };
$form = Factory::generate ($Selements) ;

Sform->gsetFilter (new Filter ($Scallbacks['filters'],
Sassignments['filters']));

Sform->setValidator (new Validator ($Scallbacks(['validators'],
Sassignments|['validators']l)) ;

You can then check to see if there is any $_POST data. If so, perform validation and filtering:

Smessage = '';
if (isset($_POST['submit'])) {
$form->setData ($_POST) ;

if ($form->validate())
Smessage = VALIDATE SUCCESS;
} else {
Smessage = VALIDATE FAILURE;
}

Sform->filter() ;

}

?>

The view logic is extremely simple: just render the form. Any validation messages and values
for the various elements will be assigned as part of validation and filtering:

<?= $form-s>render ($form, $formConfig); ?>

222

Here is an example using bad form data:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook

Chapter 6

€ | (0 localhost

Status

First Name| <bad>Tags In First Name</bad

>

Last Name| invalid Characters &*&*()

Address| 123 Main St.

City| San Francisco

State/Province| CA

Postal Code| 123456-7890

Phone| 22228888

Country| cA *

Email

doug@unlikelysource.com

Budget] 1234.55.66

Click Here

Data

array(0) {
H

Notice the filtering and validation messages. Also notice the bad tags:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook

€) @ localhost

Status

First Name| Tags In First Name

« Item must contain only letters and
numbers
+ Tags were removed from this item

Last Name| Invalid Characters &*&*()

« Item must contain only letters and
numbers

Address| 123 Main St.

City| San Francisco

CA

Postal Code| 123456-7890

= Item must contain only letters and
numbers

Phone| 2222/8888

« Phone number must be in a format
[+n] nnn-nnn-nnnn

Couniry| AE

Email

doug@unlikelysource.com

Budget| 1234.55

* ltem was converted to a decimal
number

Click Here

wBe 9 3+ A& 9

223

Accessing Web
Services

In this chapter, we will cover the following topics:

>

>

Converting between PHP and XML
Creating a simple REST client
Creating a simple REST server
Creating a simple SOAP client

Creating a simple SOAP server

Introduction

Making background queries to external web services is becoming an ever-increasing part

of any PHP web practice. The ability to provide appropriate, timely, and plentiful data means
more business for your customers and the websites you develop. We start with a couple

of recipes aimed at data conversion between eXtensible Markup Language (XML) and native
PHP. Next, we show you how to implement a simple Representational State Transfer (REST)
client and server. After that, we turn our attention to SOAP clients and servers.

Converting between PHP and XML

When considering a conversion between PHP native data types and XML, we would normally
consider an array as the primary target. With this in mind, the process of converting from a
PHP array to XML differs radically from the approach needed to do the reverse.

Accessing Web Services

Objects could also be considered for conversion; however, it is difficult to

render object methods in XML. Properties can be represented, however, by
s

using the get_object vars () function, which reads object properties
into an array.

How to do it...

1.

226

First, we define an Application\Parse\ConvertXml class. This class will hold
the methods that will convert from XML to a PHP array, and vice versa. We will need
both the SimpleXMLElement and SimpleXMLIterator classes from the SPL:

namespace Application\Parse;
use SimpleXMLIterator;

use SimpleXMLElement;

class ConvertXml

{
}

Next, we define a xm1ToArray () method that will accept a SimpleXMLIterator
instance as an argument. It will be called recursively and will produce a PHP array
from an XML document. We take advantage of the SimpleXMLIterator ability to
advance through the XML document, using the key (), current (), next (), and
rewind () methods to navigate:

public function xmlToArray (SimpleXMLIterator $xml) : array
{
Sa = array() ;
for ($xml-s>rewind(); $xml->valid(); $xml-snext())
if (larray key exists ($xml->key (), S$a)) {
Sa[$xml->key ()] = array();
}
if ($xml->hasChildren()) {
Sa[sxml->key ()] [] = $this->xmlToArray ($xml->current());

}

else
Sa[sxml->key ()] = (array) S$xml->current()->attributes();
Sa[sxml->key ()] ['value']l = strval ($xml->current());

}
}

return S$a;

Chapter 7

For the reverse process, also called recursively, we define two methods. The first
method, arrayToXml (), sets up an initial SimpleXMLElement instance, and
then calls the second method, phpToXml () :

public function arrayToXml (array $a)
{
$xml = new SimpleXMLElement (
'<?xml version="1.0" standalone="yes"?><root></root>"');
Sthis->phpToXml ($a, $xml) ;
return S$xml->asXML() ;

}

Note that in the second method, we use get _object vars () in case one of
the array elements is an object. You'll also note that numbers alone are not
allowed as XML tags, which means adding some text in front of the number:

protected function phpToXml ($value, &S$Sxml)
{
$node = svalue;
if (is_object ($node)) ({
$node = get object vars($node) ;

}

if (is_array(snode)) {
foreach ($node as $k => $v)
if (is_numeric($k)) {

Sk = 'number' . $k;

}

if (is_array($v))
SnewNode = $xml->addChild(Sk) ;
Sthis->phpToXml ($v, $newNode) ;

} elseif (is_object(sv)) {
SnewNode = $xml->addChild(Sk) ;
Sthis->phpToXml ($v, $newNode) ;

} else {
$xml->addChild ($k, s$v);

}
} else
$xml->addChild (self: :UNKNOWN KEY, s$node) ;

227

Accessing Web Services

As a sample XML document, you can use the Web Services Definition Language (WSDL) for
the United States National Weather Service. This is an XML document that describes a SOAP
service, and can be found at http://graphical .weather.gov/xml/SOAP_server/
ndfdXMLserver.php?wsdl

We will use the SimpleXMLIterator class to provide an iteration mechanism. You can then
configure autoloading, and get an instance of Application\Parse\ConvertXml, using
xmlToArray () to convert the WSDL to a PHP array:

require DIR_ . '/../Application/Autoload/Loader.php';

Application\Autoload\Loader::init(DIR . '/..');

use Application\Parse\ConvertXml;

$wsdl = 'http://graphical.weather.gov/xml/"'
'SOAP_server/ndfdXMLserver.php?wsdl';

$xml = new SimpleXMLIterator (Swsdl, 0, TRUE) ;

Sconvert = new ConvertXml () ;

var dump ($convert->xmlToArray ($xml)) ;

The resulting array is shown here:

(] ed@ed: ~/Desktop/Repos/php7_recipes/sourcefchaptero7

array(s) {
["types”]=>
array(1) {
[e]=>
array(e) {
1

3
["message"]=>
array(24) {
[0]=>
array(1) {
["part™]=>
array(2) {
["@attributes"]==>
array(2) {
["name"]=>
string(17) "weatherParameters"”
["type"]=>
string(25) "tns:weatherParametersType"
1
["value"]==>
string(e) ""

} B

3
[1]=>
array(1) {

To do the reverse, use the arrayToXml () method described in this recipe. As a source
document, you can use a source/data/mongo.db.global . php file that contains an
outline for a training video on MongoDB available through O'Reilly Media (disclaimer: by this
author!). Using the same autoloader configuration and instance of Application\Parse\
ConvertXml, here is the sample code you could use:

228

Sconvert = new ConvertXml () ;
header ('Content-Type: text/xml');

echo $convert-sarrayToXml (include CONFIG FILE) ;

Here is the output in a browser:

Creating a simple REST c

%} Mozilla Firefox

http://loca..._to_xmlphp x

€ localhost

This XML file does not appear to have any style information associated with it. The document tree is shown

below.

TEeE 9 ¥+ A& O B

—-<root>
—<unlikely-outliner>
—<subject>
—<mongo-db>
—<outline>
—<chapter>
—<getting-started>
<number0>Getting Started</number0>
<number1>Getting Started</numberl>
</getting-started>
—<what-is-mongo-db>
<number0>What is MongoDB?</number0>
<numberl>What is MongoDB? </numberl >
</what-is-mongo-db>
—<install-and-config>

<number0=>Installation and Configuration</number0>

<numberl>Install / Config</number1>
</install-and-config>
—<c-r-u-d-operations>

<number0>Create, Read, Update and Delete Operations</number0=>

<number1>C.R.U.D. Ops<mumberl>
</c-r-u-d-operations>
—<data-modeling>
<number0>Data Modeling</number0>
<numberl>Data Modeling</number1:>

Chapter 7

REST clients use HyperText Transfer Protocol (HTTP) to generate requests to external

web services. By changing the HTTP method, we can cause the external service to perform
different operations. Although there are quite a few methods (or verbs) available, we will only
focus on GET and POST. In this recipe, we will use the Adapter software design pattern to

present two different ways of implementing a REST client.

How to do it...

1. Before we can define REST client adapters, we need to define common classes to
represent request and response information. First, we will start with an abstract class
that has methods and properties needed for either a request or response:

namespace Application\Web;

class AbstractHttp

{

229

Accessing Web Services

2. Next, we define class constants that represent HTTP information:

const METHOD GET = 'GET';
const METHOD POST = 'POST';

const METHOD PUT = 'PUT';

const METHOD DELETE = 'DELETE';

const CONTENT TYPE HTML = 'text/html';

const CONTENT TYPE JSON = 'application/json';

const CONTENT_TYPE FORM URL_ENCODED =
'application/x-www-form-urlencoded';

const HEADER CONTENT_TYPE = 'Content-Type';

const TRANSPORT HTTP = 'http';

const TRANSPORT HTTPS = 'https';

const STATUS 200 '200"';

const STATUS 401 '401"';

const STATUS 500 '500"';

3. We then define properties that are needed for either a request or a response:

protected sSuri; // i.e. http://xxx.com/yyy

protected $method; // i.e. GET, PUT, POST, DELETE
protected S$headers; // HTTP headers

protected $cookies; // cookies

protected $metaData; // information about the transmission
protected $transport; // i.e. http or https

protected $data = array();

4. It logically follows to define getters and setters for these properties:
public function setMethod ($method)

{

Sthis->method = $method;

}

public function getMethod ()

{

return $this-s>method ?? self::METHOD GET;

}

// etc.

5. Some properties require access by key. For this purpose, we define getXxxByKey ()
and setXxxByKey () methods:

public function setHeaderByKey (Skey, S$value)

{

Sthis->headers [$key] = $value;

}

public function getHeaderByKey (Skey)

{

230

Chapter 7

return $this->headers[$key] ?? NULL;

}

public function getDataByKey (Skey)

{

return S$this->datal[skey] ?? NULL;

}

public function getMetaDataByKey ($Skey)

{

return S$this->metaData[S$key] ?? NULL;

}

In some cases, the request will require parameters. We will assume that the
parameters will be in the form of a PHP array stored in the $data property. We
can then build the request URL using the http build query () function:

public function setUri ($uri, array $params = NULL)
{
Sthis->uri = Suri;
sfirst = TRUE;
if ($params)
$this->uri .= '?' . http build query($params) ;

}

public function getDataEncoded ()

{

return http build query(sthis->getData());

}

Finally, we set Stransport based on the original request:

public function setTransport (Stransport = NULL)
{
if ($transport)
Sthis->transport = $transport;
} else {
if (substr($this-suri, 0, 5) == self::TRANSPORT HTTPS) ({
Sthis->transport self::TRANSPORT HTTPS;
} else {
Sthis->transport

self::TRANSPORT HTTP;

231

Accessing Web Services

8.

232

In this recipe, we will define a Application\Web\Request class that can
accept parameters when we wish to generate a request, or, alternatively,
populate properties with incoming request information when implementing
a server that accepts requests:

namespace Application\Web;
class Request extends AbstractHttp
{
public function __ construct (
Suri = NULL, S$method = NULL, array S$headers = NULL,
array $data = NULL, array S$Scookies = NULL)
{
if (!S$Sheaders) s$this-s>headers = $ SERVER ?? array();
else $this->headers = S$headers;
if (!Suri) s$this->uri = $this->headers['PHP_SELF'] ?? '';
else s$this->uri = Suri;
if (!$Smethod) S$this->method =
Sthis->headers| 'REQUEST METHOD'] ?? self: :METHOD_GET;
else $this->method = $method;
if (!$data) $this->data = $ REQUEST ?? array();
else $this->data = $data;
if (!S$cookies) s$this->cookies = $ COOKIE ?? array();
else $this->cookies = $cookies;
Sthis->setTransport () ;

}

Now we can turn our attention to a response class. In this case, we will define an
Application\Web\Received class. The name reflects the fact that we are re-
packaging data received from the external web service:

namespace Application\Web;
class Received extends AbstractHttp
public function __ construct (
Suri = NULL, S$method = NULL, array S$headers = NULL,
array $data = NULL, array S$Scookies = NULL)

Sthis->uri = Suri;
Sthis->method = $method;
Sthis->headers = Sheaders;
Sthis->data = $data;
Sthis->cookies = $cookies;
Sthis->setTransport () ;

Chapter 7

Creating a streams-based REST client

We are now ready to consider two different ways to implement a REST client. The first
approach is to use an underlying PHP I/0 layer referred to as Streams. This layer provides a
series of wrappers that provide access to external streaming resources. By default, any of the
PHP file commands will use the file wrapper, which gives access to the local filesystem. We will
use the http:// or https:// wrappers to implement the Application\Web\Client\
Streams adapter:

1.

First, we define a Application\Web\Client\Streams class:

namespace Application\Web\Client;
use Application\Web\ { Request, Received };
class Streams

{

const BYTES TO READ = 4096;

Next, we define a method to send the request to the external web service. In the case
of GET, we add the parameters to the URL. In the case of POST, we create a stream
context that contains metadata instructing the remote service that we are supplying
data. Using PHP Streams, making a request is just a matter of composing the URI,
and, in the case of POST, setting the stream context. We then use a simple fopen () :

public static function send(Request $request)
{
Sdata = S$request->getDataEncoded() ;
Sreceived = new Received() ;
switch (Srequest->getMethod()) {
case Request::METHOD GET
if ($data)

Srequest->setUri (Srequest->getUri() . '?' . S$data);
}
Sresource = fopen($request->getUri(), 'r');
break;
case Request::METHOD POST
Sopts = [
Srequest->getTransport () =>
[
'method' => Request::METHOD_ POST,
'header' => Request::HEADER_ CONTENT TYPE
': ' . Request::CONTENT TYPE FORM URL ENCODED,
'content' => S$data
]
1
Sresource = fopen(Srequest->getUri(), 'w',

stream context create ($Sopts));
break;

233

Accessing Web Services

}

return self::getResults(Sreceived, S$resource) ;
!

3. Finally, we have a look at retrieving and packaging results into a Received object.
You will notice that we added a provision to decode data received in JSON format:

protected static function getResults (Received $received, S$Sresource)
{
Sreceived->setMetaData (stream get meta data($resource)) ;
$data = Sreceived->getMetaDataByKey ('wrapper data');
if (lempty(Sdata) && is_array($data)) ({
foreach($data as $item)
if (preg_match('!"HTTP/\d\.\d (\d+?) .*2$!',

$item, $matches))

Sreceived->setHeaderByKey ('status', $matches[1]);
} else {

list (Skey, $value) = explode(':',6 S$Sitem);

Sreceived->setHeaderByKey (Skey, trim($value)) ;

}

Spayload = '';
while (!feof ($resource)) {
$payload .= fread($resource, self::BYTES TO READ) ;

}

if ($received->getHeaderByKey (Received: :HEADER CONTENT TYPE))

switch (TRUE) {
case stripos ($received->getHeaderByKey (
Received: :HEADER CONTENT_ TYPE),
Received: : CONTENT TYPE JSON) !== FALSE:
Sreceived->setData(json_decode ($payload)) ;
break;
default
Sreceived->setData ($Spayload) ;
break;

}
}

return Sreceived;

Chapter 7

Defining a cURL-based REST client

We will now have a look at our second approach for a REST client, one of which is based on
the cURL extension:

1. For this approach, we will assume the same request and response classes. The initial
class definition is much the same as for the Streams client discussed previously:

namespace Application\Web\Client;
use Application\Web\ { Request, Received };
class Curl

{

2. The send () method is quite a bit simpler than when using Streams. All we need to
do is to define an array of options, and let cURL do the rest:

public static function send(Request $request)
{
Sdata = S$request->getDataEncoded() ;
Sreceived = new Received() ;
switch (Srequest->getMethod()) {
case Request::METHOD GET
Suri = (Sdata)
? Srequest->getUri() . '?' . Sdata
Srequest->getUri () ;
Soptions = [
CURLOPT URL => $uri,
CURLOPT_HEADER => O,
CURLOPT_RETURNTRANSFER => TRUE,
CURLOPT_TIMEOUT => 4
1

break;

3. POST requires slightly different cURL parameters:

case Request::METHOD POST
Soptions = [
CURLOPT_POST => 1,
CURLOPT_HEADER => O,
CURLOPT URL => $request->getUri(),
CURLOPT_FRESH CONNECT => 1,
CURLOPT_RETURNTRANSFER => 1,
CURLOPT_FORBID REUSE => 1,
CURLOPT_TIMEOUT => 4,
CURLOPT POSTFIELDS => $data
1

break;

235

Accessing Web Services

4. We then execute a series of cURL functions and run the results through
getResults():
$ch = curl init();
curl_setopt_array($ch, (s$options));
if(! sresult = curl exec($ch))

{
}

Sreceived->setMetaData (curl getinfo(sch));
curl_close($ch) ;

trigger error (curl_error($ch));

return self::getResults($received, S$result);

}
5. The getResults () method packages results into a Received object:

protected static function getResults (Received S$received, S$payload)
{
Stype = sreceived->getMetaDataByKey ('content type');
if (Stype) {
switch (TRUE) {
case stripos ($Stype,

Received: :CONTENT_TYPE_JSON) == FALSE) :
Sreceived->setData (json_decode ($payload)) ;
break;

default

Sreceived->setData ($payload) ;
break;

}

return Sreceived;

Be sure to copy all the preceding code into these classes:

» Application\Web\AbstractHttp

» Application\Web\Request

» Application\Web\Received

» Application\Web\Client\Streams
» Application\Web\Client\Curl

236

Chapter 7

For this illustration, you can make a REST request to the Google Maps API to obtain
driving directions between two points. You also need to create an API key for this purpose
by following the directions given at https://developers.google.com/maps/
documentation/directions/get-api-key.

You

can then define a chap 07 simple rest client google maps_curl.php

calling script that issues a request using the Curl client. You might also consider define a
chap 07 simple rest client google maps_ streams.php calling script that
issues a request using the Streams client:

You

You

<?php

define('DEFAULT_ORIGIN', 'New York City');
define('DEFAULT_DESTINATION', 'Redondo Beach') ;
define('DEFAULT_FORMAT', 'json') ;

SapiKey = include _ DIR__ . '/google api key.php';
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Web\Request;
use Application\Web\Client\Curl;

can then get the origin and destination:

$start = $ GET['start'] ?? DEFAULT ORIGIN;
$end = $ GET['end'] ?? DEFAULT DESTINATION;
$start = strip_ tags(s$start);

$end = strip tags(s$end) ;

are now in a position to populate the Request object, and use it to generate the request:

Srequest = new Request (
'https://maps.googleapis.com/maps/api/directions/json',
Request : :METHOD GET,
NULL,
['origin' => $start, 'destination' => $end, 'key' => S$SapiKey],
NULL

)

Sreceived = Curl::send($request) ;

Sroutes = Sreceived->getData () ->routes[0];
include =~ DIR . '/chap 07 simple rest client google maps template.
php';

For the purposes of illustration, you could also define a template that represents view
logic to display the results of the request:

<?php foreach (Sroutes->legs as $item) : ?>
<!-- Trip Info --»>

237

Accessing Web Services

Distance: <?= $item->distance->text; ?>

Duration: <?= $item->duration->text; ?>

<!-- Driving Directions -->
<table>

<tr>
<thsDistance</th><th>Duration</th><th>Directions</th>
</tr>

<?php foreach ($item->steps as S$step) : ?>
<?php $class = (Scount++ & 01) ? 'colorl' : 'color2'; ?>
<tr>

<td class="<?= $class ?>"><?= S$step->distance->text ?></td>
<td class="<?= $class ?>"><?= $step->duration->text ?></td>
<td class="<?= S$class ?>">

<?= $step->html instructions ?></td>

</tr>

<?php endforeach; ?>

</table>
<?php endforeach; ?>

Here are the results of the request as seen in a browser:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook
€ localhost S search *TE 9 3+ A& © B =
= [E3] Lok |
Distance 2,808 mi
Duration 1 day 17 hours
Start New York, NY, USA
End Redondo Beach, CA, USA
[Ommnce]| ouston [0 oweew 00000000]
KTW
0.1 mi 1 min Continue onto Murray Street
0.4 mi 2 mins [Turn right onto Church St
0.4 mi 2 mins Keep left to continue on Ave of the Americas
|240 ft 1 min [Turn left onto Watts St
[Take the ramp onto I-78 W/Holland Tunnel
12.3 mi & mins IContinue to follow 178 W
Entering New Jersey
0.2 mi 1 min Keep left at the fork o continue on NJ-139 W %
1.1 mi 2 mins [Take the US-1 Truck/US-9 Truck exit toward 1-280/Jersey City/Kearny
108 ft 1 min Continue onto Charlotie Ave
(226 1t 1 min Slight right toward Newark-Jersey City Turnpike
1.3 mi 2 mins Continue onto Newark-Jersey City Turnpike
1.3 mi 2 mins Keep left to stay on Newark-Jersey City Turnpike
0.8 mi 1 min [Take the Interstate 260 W ramp
16.3 mi 17 mins Merge onto 1-260 W
11.4 mi 10 mins Merge onto 1-80 W -

238

Chapter 7

There's more...

PHP Standards Recommendations (PSR-7) precisely defines request and response objects
to be used when making requests between PHP applications. This is covered extensively in
Appendix, Defining PSR-7 Classes.

See also

For more information on Streams, see this PHP documentation page http://php.net/
manual/en/book.stream.php. An often asked question is "what is the difference between
HTTP PUT and POST?" for an excellent discussion on this topic please referto http://
stackoverflow.com/questions/107390/whats-the-difference-between-a-
post-and-a-put-http-request. For more information on obtaining an APl key from
Google, please refer to these web pages:

https://developers.google.com/maps/documentation/directions/get-api-
key

https://developers.google.com/maps/documentation/directions/
intro#Introduction

Creating a simple REST server

There are several considerations when implementing a REST server. The answers to these
three questions will then let you define your REST service:

» How is the raw request captured?

» What Application Programming Interface (API) do you want to publish?

» How do you plan to map HTTP verbs (for example, GET, PUT, POST, and DELETE) to
APl methods?

How to do it...

1. We will implement our REST server by building onto the request and response classes
defined in the previous recipe, Creating a simple REST client. Review the classes
discussed in the previous recipe, including the following:

0 Application\Web\AbstractHttp
o Application\Web\Request
0 Application\Web\Received

239

Accessing Web Services

2. We will also need to define a formal 2pplication\Web\Response response class,
based on AbstractHttp. The primary difference between this class and the others
is that it accepts an instance of Application\Web\Request as an argument. The
primary work is accomplished in the __ construct () method. It's also important to
set the Content - Type header and status:
namespace Application\Web;
class Response extends AbstractHttp

{

public function _ construct (Request S$request = NULL,
$status = NULL, S$contentType = NULL)

if ($request)
Sthis->uri = Srequest->getUri();
Sthis->data = $request->getDatal() ;
Sthis->method = $request->getMethod() ;
Sthis->cookies = $Srequest->getCookies() ;
Sthis->setTransport () ;

}

Sthis->processHeaders (ScontentType) ;

if ($status) ({
Sthis->setStatus ($status) ;

}
protected function processHeaders ($ScontentType)
{
if (!$contentType) ({
Sthis->setHeaderByKey (self: :HEADER CONTENT TYPE,
self::CONTENT TYPE JSON) ;
} else {
Sthis->setHeaderByKey (self: :HEADER CONTENT TYPE,
ScontentType) ;

}

public function setStatus($status)

{

Sthis->status = $status;

}

public function getStatus()

{

return $this->status;

240

Chapter 7

3. We are now in a position to define the Application\Web\Rest\Server class. You
may be surprised at how simple it is. The real work is done in the associated API class:

Note the use of the PHP 7 group use syntax:
S

use Application\Web\ { Request,Response,Received }

namespace Application\Web\Rest;
use Application\Web\ { Request, Response, Received };
class Server

protected S$Sapi;

public function __ construct (ApiInterface S$api)

{
}

4. Next, we define a 1isten () method that serves as a target for the request. The
heart of the server implementation is this line of code:

Sthis->api = Sapi;

$jsonData = json decode(file get contents('php://input'), true);

5. This captures raw input, which is assumed to be in JSON format:

public function listen()

{
Srequest = new Request();
Sresponse = new Response (Srequest) ;
SgetPost $_REQUEST ?? array();
$jsonData = json_decode (

file get contents('php://input'), true) ;
$jsonData = $jsonData ?? array();

Srequest->setData (array merge ($getPost, $jsonData)) ;

We have also added a provision for authentication. Otherwise, anybody could
make requests and obtain potentially sensitive data. You will note that we do
not have the server class performing authentication; rather, we leave it to the
. API class:
if (!$this->api->authenticate ($request)) {
’ $response->setStatus (Request::STATUS 401) ;
echo Sthis->api::ERROR;
exit;

241

Accessing Web Services

6. We then map API methods to the primary HTTP methods GET, PUT, POST,
and DELETE:
$id = $Srequest->getData() [$this->api::ID FIELD] ?? NULL;
switch (strtoupper ($request->getMethod())) ({
case Request::METHOD POST
Sthis->api->post (Srequest, $response) ;
break;
case Request::METHOD PUT
Sthis->api->put ($Srequest, S$Sresponse) ;
break;
case Request::METHOD DELETE
Sthis->api->delete($request, S$response) ;
break;
case Request::METHOD GET
default
// return all if no params
Sthis->api->get ($Srequest, S$Sresponse) ;

}

7. Finally, we package the response and send it out, JSON-encoded:

Sthis->processResponse ($response) ;
echo json_ encode ($response->getData()) ;

}

8. The processResponse () method sets headers and makes sure the result
is packaged as an Application\Web\Response object:

protected function processResponse ($Sresponse)
{
if ($response->getHeaders()) ({
foreach ($response->getHeaders() as $key => $value)
header ($key . ': ' . $value, TRUE,
Sresponse->getStatus()) ;

}

header (Request: :HEADER_CONTENT_TYPE
. ': ' . Request::CONTENT TYPE JSON, TRUE);
if ($response->getCookies())
foreach ($response->getCookies() as $key => $value)
setcookie (Skey, $value);

242

Chapter 7

9. As mentioned earlier, the real work is done by the API class. We start by defining
an abstract class that ensures the primary methods get (), put (), and so on are
represented, and that all such methods accept request and response objects as
arguments. You might notice that we have added a generateToken () method
that uses the PHP 7 random_bytes () function to generate a truly random
series of 16 bytes:

namespace Application\Web\Rest;
use Application\Web\ { Request, Response };
abstract class AbstractApi implements ApiInterface
{
const TOKEN BYTE SIZE = 16;
protected SregisteredKeys;
abstract public function get (Request S$request,
Response S$Sresponse) ;
abstract public function put (Request S$request,
Response S$Sresponse) ;
abstract public function post (Request $request,
Response S$Sresponse) ;
abstract public function delete (Request S$request,
Response Sresponse) ;
abstract public function authenticate (Request S$request) ;
public function __ construct ($registeredKeys, $tokenField)

{
}

public static function generateToken ()

{

}
}

10. We also define a corresponding interface that can be used for architectural
and design purposes, as well as code development control:

Sthis->registeredKeys = $registeredKeys;

return bin2hex (random bytes(self::TOKEN BYTE SIZE)) ;

namespace Application\Web\Rest;

use Application\Web\ { Request, Response };

interface ApiInterface

{
public function get (Request $request, Response Sresponse) ;
public function put (Request S$request, Response S$response) ;
public function post (Request S$request, Response $response) ;
public function delete (Request $request, Response S$Sresponse) ;
public function authenticate (Request S$request) ;

243

Accessing Web Services

11.

Here, we present a sample APl based on AbstractApi. This class leverages
database classes defined in Chapter 5, Interacting with a Database:
namespace Application\Web\Rest;

use Application\Web\ { Reguest, Response, Received };

use Application\Entity\Customer;

use Application\Database\ { Connection, CustomerService };

class CustomerApi extends AbstractApi

{

const ERROR = 'ERROR';

const ERROR_NOT_FOUND = 'ERROR: Not Found';

const SUCCESS UPDATE = 'SUCCESS: update succeeded';

const SUCCESS DELETE = 'SUCCESS: delete succeeded';

const ID FIELD = 'id'; // field name of primary key

const TOKEN FIELD = 'token'; // field used for authentication
const LIMIT FIELD = 'limit';

const OFFSET FIELD = 'offset';

const DEFAULT_ LIMIT = 20;
const DEFAULT_OFFSET = 0;

protected $service;

public function __ construct ($registeredKeys,
Sdbparams, $tokenField = NULL)

parent:: construct ($registeredKeys, s$tokenField);
Sthis->service = new CustomerService(
new Connection ($dbparams)) ;

}

12. All methods receive request and response as arguments. You will notice the use

of getDataByKey () to retrieve data items. The actual database interaction is
performed by the service class. You might also notice that in all cases, we set an
HTTP status code to inform the client of success or failure. In the case of get (), we
look for an ID parameter. If received, we deliver information on a single customer
only. Otherwise, we deliver a list of all customers using limit and offset:

public function get (Request S$request, Response S$response)
{

Sresult = array();

$id = Srequest->getDataByKey(self::ID FIELD) ?? O;

if ($id > 0) {

Sresult = $Sthis->service->
fetchById($id) ->entityToArray () ;
} else {

Chapter 7

$limit = S$request->getDataByKey (self::LIMIT FIELD)
?? self::DEFAULT LIMIT;

Soffset = $request->getDataByKey (self::0FFSET FIELD)
?? self::DEFAULT OFFSET;

$result = [];

Sfetch = $Sthis->service->fetchAll ($Slimit, Soffset);

foreach ($fetch as $row)
Sresult[] = Srow;

}

if ($result) {
Sresponse->setData (Sresult) ;
Sresponse->setStatus (Request: :STATUS 200) ;

} else {
S$response->setData([self::ERROR NOT FOUND]) ;
Sresponse->setStatus (Request: :STATUS 500) ;

}

13. The put () method is used to insert customer data:

public function put (Request $request, Response S$Sresponse)
{
Scust = Customer::arrayToEntity ($Srequest->getDatal(),
new Customer ()) ;
if ($newCust = $this-sservice-ssave($cust))
$response->setData(['success' => self::SUCCESS UPDATE,
'id' => S$newCust->getId()]);
Sresponse->setStatus (Request: :STATUS 200) ;
} else {
Sresponse->setData([self::ERROR]) ;
Sresponse->setStatus (Request: :STATUS 500) ;

}

14. The post () method is used to update existing customer entries:

public function post (Request S$request, Response $response)
{
$id = $Srequest->getDataByKey(self::ID FIELD) ?? O;
SregData = S$Srequest->getDatal() ;
ScustData = $Sthis->service->
fetchById($id) ->entityToArray () ;
SupdateData = array merge ($custData, S$regData);
SupdateCust = Customer::arrayToEntity (SupdateData,

245

Accessing Web Services

new Customer ()) ;
if ($this-s>service-s>save ($updateCust))
$response->setData(['success' => self::SUCCESS UPDATE,
'id' => SupdateCust->getId()]);

Sresponse->setStatus (Request: :STATUS 200) ;
} else {

Sresponse->setData([self::ERROR]) ;

Sresponse->setStatus (Request: :STATUS 500) ;

}

15. As the name implies, delete () removes a customer entry:

public function delete (Request S$Srequest, Response S$Sresponse)

{

$id = $Srequest->getDataByKey(self::ID FIELD) ?? O;

Scust = $this->service->fetchById($id) ;

if ($cust && $this-sservice-sremove ($cust))
=> self::SUCCESS DELETE,

Sresponse->setData(['success'
rid' => $idl);
Sresponse->setStatus (Request: :STATUS 200) ;
} else {

Sresponse->setData([self::ERROR NOT FOUND]) ;
Sresponse->setStatus (Request: :STATUS 500) ;

}
16. Finally, we define authenticate () to provide, in this example, a low-level
mechanism to protect APl usage:

public function authenticate (Request S$request)

{

SauthToken = $request->getDataByKey (self::TOKEN FIELD)

?? FALSE;
if (in array($authToken,
return TRUE;
} else {
return FALSE;

$this->registeredKeys, TRUE))

246

Chapter 7

Define the following classes, which were discussed in the previous recipe:

» Application\Web\AbstractHttp
» Application\Web\Request
» Application\Web\Received

You can then define the following classes, described in this recipe, summarized in this table:

Class Application\Web* Discussed in these steps
Response 2

Rest\Server 3-8
Rest\AbstractApi 9
Rest\ApiInterface 10
Rest\CustomerApi 11 - 16

You are now free to develop your own API class. If you choose to follow the illustration
Application\Web\Rest\CustomerApi, however, you will need to also be sure to
implement these classes, covered in Chapter 5, Interacting with a Database:

» Application\Entity\Customer

» Application\Database\Connection

» Application\Database\CustomerService

You can now define a chap 07 simple rest server.php script that invokes
the REST server:

<?php

$dbParams = include _ DIR_ . '/../../config/db.config.php';
require @ DIR . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Web\Rest\Server;

use Application\Web\Rest\CustomerApi;

SapiKey = include _ DIR . '/api key.php';

$server = new Server (new CustomerApi ([SapiKey], $dbParams, 'id'));
$server->listen() ;

You can then use the built-in PHP 7 development server to listen on port 8080
for REST requests:

php -S localhost:8080 chap 07 simple rest server.php

247

Accessing Web Services

To test your API, use the Application\Web\Rest\AbstractApi: :generateToken ()
method to generate an authentication token that you can place in an api_key.php file,
something like this:

<?php return '79e9b5211bbf2458a4085707ea378129"';

You can then use a generic API client (such as the one described in the previous recipe),

or a browser plugin such as RESTClient by Chao Zhou (see http://restclient.net/

for more information) to generate sample requests. Make sure you include the token for your
request, otherwise the API as defined will reject the request.

Here is an example of a POST request for ID 1, which sets the balance field to a
value of 888888:

RESTClient - Mozilla Firefox

B ResTClient
chrome://restclient/content/restclient.html ¢ | |Q search wEBE U & a0 H =
File Authentication Headers View Favorite Requests Setting RESTCIient
Method | POST v | URL | httpi/localnost:80807token=79¢8b521 1b5f245824085707¢23781298id-1 v IEZR
Body
{"balance":"888888"}
hotkey: b §

esponse

Response Headers Response Body (Raw) Response Body (Highlight) Response Body (Preview)
ake
2. "success": "SUCCESS: update succeeded"
3 nidn: 1
4.

There are a number of libraries that help you implement a REST server. One of my favorites
is an example implementing a REST server in a single file: https://www.leaseweb.com/
labs/2015/10/creating-a-simple-rest-api-in-php/

Various frameworks, such as Codelgniter and Zend Framework, also have REST
server implementations.

248

Chapter 7

Creating a simple SOAP client

Using SOAP, in contrast to the process of implementing a REST client or server, is quite easy
as there is a PHP SOAP extension that provides both capabilities.

A frequently asked question is "what is the difference between SOAP and
REST?" SOAP uses XML internally as its data format. SOAP uses HTTP but
R only for transport, and otherwise has no awareness of other HTTP methods.
% REST directly operates HTTP, and can use anything for data formats, but JSON
i is preferred. Another key difference is that SOAP can operate in conjunction
with a WSDL, which makes the service self-describing, thus more publicly
available. Thus, SOAP services are often offered by public institutions such as
national health organizations.

How to do it...

For this example, we will make a SOAP request for an existing SOAP service offered by the
United States National Weather service:

1. The first consideration is to identify the WSDL document. The WSDL is an XML
document that describes the service:

$wsdl = 'http://graphical.weather.gov/xml/SOAP_server/'
'ndfdXMLserver.php?wsdl';

2. Next, we create a soap client instance using the WSDL:
$soap = new SoapClient (Swsdl, array('trace' => TRUE));

3. We are then free to initialize some variables in anticipation of a weather forecast
request:
Sunits = 'm';
Sparams = '';
$numDays = 7;
1

Sweather = ;
Sformat = '24 hourly';
SstartTime = new DateTime() ;

4. We can then make a LatLonListCityNames () SOAP request, identified as an
operation in the WSDL, for a list of cities supported by the service. The request is
returned in XML format, which suggests creating a SimpleXLMElement instance:

$xml = new SimpleXMLElement ($soap->LatLonListCityNames (1)) ;

249

Accessing Web Services

5.

250

Unfortunately, the list of cities and their corresponding latitude and longitude are in
separate XML nodes. Accordingly, we use the array combine () PHP function to
create an associative array where latitude/longitude is the key, and the city name
is the value. We can then later use this to present an HTML SELECT drop-down list,
using asort () to alphabetize the list:

$cityNames = explode('|', S$xml->cityNameList) ;
$latLonCity = explode(' ', $xml->latLonList) ;
ScityLatLon = array combine($latLonCity, S$cityNames) ;
asort ($cityLatLon) ;

We can then get city data from a web request as follows:

ScurrentLatLon = (isset($_GET['city']l)) ? strip tags(
urldecode ($_GET['city']l)) : '';

The SOAP call we wish to make is NDFDgenByDay (). We can determine the nature
of the parameters supplied to the SOAP server by examining the WSDL:

<message name="NDFDgenByDayRequest">

<part name="latitude" type="xsd:decimal"/>
<part name="longitude" type="xsd:decimal"/>
<part name="startDate" type="xsd:date"/>
<part name="numDays" type="xsd:integer"/>
<part name="Unit" type="xsd:string"/>

<part name="format" type="xsd:string"/>
</message>

If the value of ScurrentLatLon is set, we can process the request. We wrap the
requestina try {} catch {} blockin case any exceptions are thrown:

if ($currentLatLon) {
list ($lat, $lon) = explode(',', S$ScurrentLatLon) ;
try {
Sweather = $soap->NDFDgenByDay ($lat, $lon,
SstartTime->format ('Y-m-d'), $SnumDays, Sunit, $format) ;
} catch (Exception S$e) ({

Sweather .= PHP EOL;

$weather .= 'Latitude: ' . $lat . ' | Longitude: ' . $lon;
$weather .= 'ERROR' . PHP EOL;

Sweather .= $e->getMessage() . PHP_ EOL;

Sweather .= $soap->_ getLastResponse() . PHP_EOL;

Chapter 7

Copy all the preceding code into a chap 07 simple soap client weather service.
php file. You can then add view logic that displays a form with the list of cities, as well as the
results:

<form method="get" name="forecast">

 City List:

<select name="city"s>

<?php foreach ($cityLatLon as $latLon => S$city) : ?>
<?php $select = (ScurrentLatLon == $latLon) ? ' selected' : ''; ?>
<option value="<?= urlencode ($latLon) ?>" <?= $select ?>>
<?= $city ?></option>

<?php endforeach; ?>

</select>

<input type="submit" value="OK"></td>

</form>

<pre>

<?php var dump ($weather); 2>

</pre>

Here is the result, in a browser, of requesting the weather forecast for Cleveland, Ohio:

PHP 7 Cookbook - Mozilla Firefox
PHP 7 Cookbook =

€ | (| localhost p_07_simple_soap_c EJ| ¢ ||Q Search W B8 ¥ & © H

Weather Forecast

| City List H Cleveland,OH & ” H ok
string(7680) "
meteorological
forecast

2016-04-13T06:08:20Z

http://www.nws.noaa.gov/forecasts/xml/ %
Meteorological Development LaboratoryProduct Generation Branch
http://www.nws.noaa.gov/disclaimer.html

http://www.weather.gov/

http://www.weather.gov/images/xml_logo.gif

http://www.weather.gov/feedback.php

pointl

http://forecast.weather.gov/MapClick.php?textFieldl=41.42&textField2=-81.87

k-p24h-n7-1

2016-04-13T06:00:00-04:00

2016-04-14T06:00:00-04:00

2016-04-14T06:00:00-04:00

2016-04-15T06:00:00-04:00

2016-04-15T06:00:00-04:00

2016-04-16T06:00:00-04:00 =

251

Accessing Web Services

See also

For a good discussion on the difference between SOAP and REST, refer to the article present
athttp://stackoverflow.com/questions/209905/representational-state-
transfer-rest-and-simple-object-access-protocol-soap?lg=1.

Creating a simple SOAP server

As with the SOAP client, we can use the PHP SOAP extension to implement a SOAP server.
The most difficult part of the implementation will be generating the WSDL from the API class.
We do not cover that process here as there are a number of good WSDL generators available.

How to do it...

1. First, you need an API that will be handled by the SOAP server. For this example, we
define an Application\Web\Soap\ProspectsApi class that allows us to create,
read, update, and delete the prospects table:

namespace Application\Web\Soap;
use PDO;
class ProspectsApi
protected SregisterKeys;
protected Spdo;

public function __ construct (pdo, SSregisteredKeys)
{
Sthis->pdo = $pdo;
Sthis->registeredKeys = SregisteredKeys;
}
}

2. We then define methods that correspond to create, read, update, and delete.
In this example, the methods are named put (), get (), post (), and delete ().
These, in turn, call methods that generate SQL requests that are executed from a
PDO instance. An example for get () is as follows:

public function get (array Srequest, array Sresponse)
{

if (!Sthis->authenticate (Srequest)) return FALSE;

Sresult = array();

$id = Srequest[self::ID FIELD] ?? O;

Semail = S$request[self::EMAIL FIELD] ?? O;

if ($id > 0) {

Sresult = Sthis->fetchById(s$id) ;

252

Chapter 7

Sresponse [self::ID FIELD] = $id;
} elseif ($email) {
Sresult = Sthis->fetchByEmail (Semail) ;
Sresponse [self::ID FIELD] = $result[self::ID FIELD] ?? O;
} else {
$limit = $request[self::LIMIT FIELD]
?? self::DEFAULT LIMIT;
Soffset = $request[self::0FFSET FIELD]
?? self::DEFAULT OFFSET;
$result = [];
foreach ($this->fetchAll ($1limit, $offset) as $row)
Sresult[] = Srow;

}

Sresponse = $this->processResponse (
Sresult, S$response, self::SUCCESS, self::ERROR) ;
return Sresponse;

protected function processResponse ($Sresult, S$response,
$success_code, S$Serror code)

if ($result) {

Sresponse['data'] = S$result;

Sresponse['code'] = S$success_code;

Sresponse['status'] = self::STATUS 200;
} else {

Sresponse['data'] FALSE;
Sresponse['code'] = self::ERROR NOT FOUND;
Sresponse['status'] = self::STATUS 500;

}

return Sresponse;

}

You can then generate a WSDL from your API. There are quite a few PHP-based WSDL
generators available (see the There's more... section). Most require that you add
phpDocumentor tags before the methods that will be published. In our example, the
two arguments are both arrays. Here is the full WSDL for the API discussed earlier:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:tns="php7cookbook"
targetNamespace="php7cookbook"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:s="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

253

Accessing Web Services

<wsdl:message name="getSoapIn">
<wsdl:part name="request" type="tns:array" />
<wsdl:part name="response" type="tns:array" />
</wsdl :message>
<wsdl:message name='"getSoapOut">
<wsdl:part name="return" type="tns:array" />
</wsdl :message>
<!—some nodes removed to conserve space -->
<wsdl :portType name="CustomerApiSoap">
<!—some nodes removed to conserve space -->

<wsdl:binding name="CustomerApiSoap" type="tns:CustomerApiSoap"s>

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="rpc" />
<wsdl:operation name="get">
<soap:operation soapAction="php7cookbook#get" />
<wsdl:inputs>
<soap:body use="encoded" encodingStyles=
"http://schemas.xmlsoap.org/soap/encoding/"
namespace="php7cookbook" parts="request response" />
</wsdl:input>
<wsdl:output>
<soap:body use="encoded" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
namespace="php7cookbook" parts="return" />
</wsdl:output>
</wsdl:operation>
<!—some nodes removed to conserve space -->
</wsdl:binding>
<wsdl:service name="CustomerApi"s>
<wsdl:port name="CustomerApiSoap"
binding="tns:CustomerApiSoap">
<soap:address location="http://localhost:8080/" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

4. Next, create a chap 07 simple soap_ server.php file, which will execute the

SOAP server. Start by defining the location of the WSDL and any other necessary files

(in this case, one for database configuration). If the wsd1l parameter is set, deliver
the WSDL rather than attempting to process the request. In this example, we use
a simple API key to authenticate requests. We then create a SOAP server instance,
assign an instance of our API class, and run handle ():

<?php
define ('DB_CONFIG FILE', '/../config/db.config.php');

Chapter 7

define ('WSDL_FILENAME', _ DIR . '/chap 07 wsdl.xml');

if (isset($ _GET['wsdl'])) {
readfile (WSDL_FILENAME) ;

exit;
}
SapiKey = include _ DIR . '/api key.php';
require DIR__ . '/../Application/Web/Soap/ProspectsApi.php';
require _ DIR_ . '/../Application/Database/Connection.php';

use Application\Database\Connection;

use Application\Web\Soap\ProspectsApi;

$connection = new Application\Database\Connection (
include _ DIR . DB_CONFIG FILE);

Sapi = new Application\Web\Soap\ProspectsApi (
Sconnection->pdo, [$SapiKey]) ;

$server = new SoapServer (WSDL FILENAME) ;

$Sserver->setObject (Sapi) ;

echo S$server->handle() ;

Depending on the settings for your php . ini file, you may need to disable the
WSDL cache, as follows:

ini set('soap.wsdl cache enabled', 0);
= If you have problems with incoming POST data, you can adjust this parameter
as follows:
e ini set('always populate raw post data', -1); -

You can easily test this recipe by first creating your target API class, and then generating
a WSDL. You can then use the built-in PHP webserver to deliver the SOAP service with this
command:

php -S localhost:8080 chap 07 simple soap server.php

You can then use the SOAP client discussed in the previous recipe to make a call to test the
SOAP service:

<?php
define ('WSDL_URL', 'http://localhost:8080?wsdl=1");
S$clientKey = include _ DIR . '/api key.php';
try {
$client = new SoapClient (WSDL_URL) ;
$response = [];

255

Accessing Web Services

$email = some email generated by test;

Semail = 'test5393@unlikelysource.com';

echo "\nGet Prospect Info for Email: " . S$email . "\n";
Srequest = ['token' => SclientKey, 'email' => Semaill;
Sresult = S$client->get (Srequest, Sresponse) ;

var dump ($result) ;

} catch (SoapFault $e)

echo 'ERROR' . PHP_EOL;

echo $e->getMessage() . PHP_EOL;
} catch (Throwable $e)

echo 'ERROR' . PHP_EOL;
echo $e->getMessage() . PHP_EOL;
} finally {

echo $client-> getLastResponse() . PHP EOL;

}

Here is the output for email address test5393@unlikelysource.com:

x Terminal

Get Prospect Info for Email: test5393@unlikelysource.com
array(4) {

["id"]=>

string(2) "50"

["data"]=>

array(13) {
["id"]=>
string(2) "50"
["first_name"]==
string(4) "Test"
["last_name"]==
string(8) "Test5393"
["address"]=>
string(16) "5393 Main Street”
["city"]==>
string(9) "City 5393"
["state_province"]=>
string(2) "vs" h
["postal_code"]=>
string(6) "@65F92"
["phone"]=>
string(16) "+17 961-482-2978"
["country”]==

256

Chapter 7

See also

A simple Google search for WSDL generators for PHP came back with easily a dozen results.
The one used to generate the WSDL for the ProspectsApi class was based on https://
code.google.com/archive/p/php-wsdl-creator/. For more information on
phpDocumentor, refer to the page at https://www.phpdoc.org/.

257

Working with
Date/Time and
International Aspects

In this chapter, we will cover the following topics:

» Using emoticons or emoji in a view script

» Converting complex characters

» Getting the locale from browser data

» Formatting numbers by locale

» Handling currency by locale

» Formatting date/time by locale

» Creating an HTML international calendar generator
» Building a recurring events generator

» Handling translation without gettext

Introduction

We will start this chapter with two recipes that take advantage of a new Unicode escape
syntax introduced with PHP 7. After that, we will cover how to determine a web visitor's locale
from browser data. The next few recipes will cover the creation of a locale class, which will
allow you to represent numbers, currency, dates, and time in a format specific to a locale.
Finally, we will cover recipes that demonstrate how to generate an internationalized calendar,
handle recurring events, and perform translation without having to use gettext.

259

Working with Date/Time and International Aspects

Using emoticons or emoji in a view script

The word emoticons is a composite of emotion and icon. Emaji, originating from Japan, is
another, larger, widely used set of icons. These icons are the little smiley faces, tiny ninjas,
and rolling-on-the-floor-laughing icons that are so popular on any website that has a social
networking aspect. Prior to PHP 7, however, producing these little beasties was an exercise in
frustration.

How to do it...

1. First and foremost, you need to know the Unicode for the icon you wish to present.
A quick search on the Internet will direct you to any one of several excellent charts.
Here are the codes for the three hear-no-evil, see-no-evil, and speak-no-evil monkey
icons:

U+1F648,U+1F649, and U+1F64A

2. Any Unicode output to the browser must be properly identified. This is most often
done by way of a meta tag. You should set the character set to UTF-8. Here is an
example:

<head>
<title>PHP 7 Cookbook</titles>

<meta http-equiv="content-type"
content="text/html;charset=utf-8" />

</head>

3. The traditional approach was to simply use HTML to display the icons. Thus, you could
do something like this:

<table>
<tr>
<td>🙈</td>
<td>🙉</td>
<td>🙊</td>
</tr>
</table>

260

Chapter 8

4. As of PHP 7, you can now construct full Unicode characters using this syntax:
"\u{xxx}". Here is an example with the same three icons as in the preceding bullet:

<table>
<tr>
<td><?php echo "\u{lF648}"; ?></td>
<td><?php echo "\u{lF649}"; ?></td>
<td><?php echo "\u{lF64A}"; ?></td>
</tr>
</table>

Your operating system and browser must both support Unicode and must also

have the right set of fonts. In Ubuntu Linux, for example, you would need to
g install the ttf-ancient-fonts package to see emoji in your browser.

In PHP 7, a new syntax was introduced that lets you render any Unicode character. Unlike
other languages, the new PHP syntax allows for a variable number of hex digits. The basic
format is this:

\u{xxxx}

The entire construct must be double quoted (or use heredoc). xxxx could be any combination
of hex digits, 2, 4, 6, and above.

Create a file called chap 08 emoji using html.php. Be sure to include the meta tag
that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>
<html>
<head>
<title>PHP 7 Cookbook</titles>
<meta http-equiv="content-type"
content="text/html;charset=utf-8" />
</head>

Next, set up a basic HTML table, and display a row of emoticons/emoji:

<body>
<table>
<tr>
<td>🙈</td>
<td>🙉</td>
<td>🙊</td>

261

Working with Date/Time and International Aspects

</tr>
</table>
</body>
</html>

Now add a row using PHP to emit emoticons/emoji:

<tr>
<td><?php echo "\u{1lF648}"; ?></td>
<td><?php echo "\u{1lF649}"; ?></td>
<td><?php echo "\u{lF64A}"; ?></td>
</tr>

Here is the output seen from Firefox:

PHP 7 Cookbook

€ localhost

B R R
B @R

» For alist of emoji codes, see http://unicode.org/emoji/charts/full-
emoji-list.html

Converting complex characters

The ability to access the entire Unicode character set opens up many new possibilities for
rendering complex characters, especially characters in alphabets other than Latin-1.

262

Chapter 8

How to do it...

1.

Some languages are read right-to-left instead of left-to-right. Examples include
Hebrew and Arabic. In this example, we show you how to present reverse text using
the U+202E Unicode character for right-to-left override. The following line of code
prints txet desreveR:

echo "\u{202E}Reversed text";

echo "\u{202D}"; // returns output to left-to-right
Don't forget to invoke the left-to-right override character, U+202D,
i when finished!

Another consideration is the use of composed characters. One such example is i
(the letter n with a tilde ~ floating above). This is used in words such as manana
(the Spanish word for morning or tomorrow, depending on the context). There is a
composed character available, represented by Unicode code U+00F1. Here is an
example of its use, which echoes mafiana:

echo "ma\u{00Fl}ana"; // shows mafiana

This could potentially impact search possibilities, however. Imagine that your
customers do not have a keyboard with this composed character. If they start to type
man in an attempt to search for mafiana, they will be unsuccessful.

Having access to the full Unicode set offers other possibilities. Instead of using the
composed character, you can use a combination of the original letter n along with
the Unicode combining code, which places a floating tilde on top of the letter. In
this echo command, the output is the same as previously. Only the way the word is
formed differs:

echo "man\u{0303}ana"; // also shows mafiana
A similar application could be made for accents. Consider the French word éléve
(student). You could render it using composed characters, or by using combining

codes to float the accents above the letter. Consider the two following examples.
Both examples produce the same output, but are rendered differently:

echo "\u{00E9}1\u{00E8}ve";
echo "e\u{0301}1le\u{0300}ve";

263

Working with Date/Time and International Aspects

Create afile called chap 08 control and combining unicode.php. Be sure to include
the meta tag that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>
<html>
<head>
<title>PHP 7 Cookbook</titles

<meta http-equiv="content-type"
content="text/html;charset=utf-8" />

</head>
Next, set up basic PHP and HTML to display the examples discussed previously:

<body>
<pre>
<?php
echo "\u{202E}Reversed text"; // reversed
//echo "\u{202D}"; // stops reverse

echo "mafiana"; // using pre-composed characters

echo "ma\u{00Fl}ana"; // pre-composed character

echo "man\u{0303}ana"; // "n" with combining ~ character
(U+0303)

echo "éléve";
echo "\u{00E9}1\u{00E8}ve"; // pre-composed characters
echo "e\u{0301}le\u{0300}ve"; // e + combining characters
?>
</pre>
</body>
</html>

Here is the output from a browser:

€ (U localhost:8

3_control_and_combining_unicode.pnp

txet desreveR
mafana
mafiana
mafiana
éléve
éleve
éléve

264

Chapter 8

Getting the locale from browser data

In order to improve the user experience on a website, it's important to display information

in a format that is acceptable in the user's locale. Locale is a generic term used to indicate

an area of the world. An effort in the I.T. community has been made to codify locales using a
two-part designation consisting of codes for both language and country. But when a person
visits your website, how do you know their locale? Probably the most useful technique involves
examining the HTTP language header.

How to do it...

1. In order to encapsulate locale functionality, we will assume a class, Application\
I18n\Locale. We will have this class extend an existing class, Locale, which is
part of the PHP Int1 extension.

118n is a common abbreviation for Internationalization. (Count the
s number of letters!)

namespace Application\I18n;

use Locale as PhplLocale;

class Locale extends PhplLocale
const FALLBACK LOCALE = 'en';
// some code

}

2. To get an idea of what an incoming request looks like, use phpinfo (INFO_
VARIABLES). Be sure to disable this function immediately after testing as it gives
away too much information to potential attackers:

<?php phpinfo (INFO VARIABLES); ?>

265

Working with Date/Time and International Aspects

3. Locale information is stored in $ SERVER['HTTP ACCEPT LANGUAGE']. The value
will take this general form: 11-cC,rl;g=0.n, 11-CC,rl;g=0.n, as defined in

this table:

Abbreviation Meaning

11 Two-character lowercase code representing the language.

- Separates language from country in the locale code 11 -CcC.

cc Two-character uppercase code representing the country.

' Separates locale code from fallback root locale code (usually the
same as the language code).

rl Two-character lowercase code representing the suggested root
locale.

i Separates locale information from quality. If quality is missing,
default is g=1 (100%) probability; this is preferred.

a Quality.

0.n Some value between 0.00 and 1.0. Multiply this value by 100 to
get the percentage of probability that this is the actual language
preferred by this visitor.

4. There can easily be more than one locale listed. For example, the website visitor
could have multiple languages installed on their computer. It so happens that the
PHP Locale class has a method, acceptFromHttp (), which reads the Accept -
language header string and gives us the desired setting:

protected S$localeCode;
public function setLocaleCode (SacceptLangHeader)

{
Sthis->localeCode =
Sthis->acceptFromHttp (SacceptLangHeader) ;

}

5. We can then define the appropriate getters. The get AcceptLanguage () method
returns the value from $_SERVER ['HTTP ACCEPT LANGUAGE']:

public function getAcceptLanguage ()

{
return $ SERVER['HTTP_ACCEPT LANGUAGE'] ??
self::FALLBACK LOCALE;

}

public function getLocaleCode ()

{

return Sthis->localeCode;

266

Chapter 8

6. Next we define a constructor that allows us to "manually" set the locale. Otherwise,
the locale information is drawn from the browser:

public function __ construct ($localeString = NULL)

{

if ($localeString)
Sthis->setLocaleCode ($localeString) ;
} else {
Sthis->setLocaleCode (Sthis->getAcceptLanguage ()) ;

}
}

7. Now comes the big decision: what to do with this information! This is covered in the
next few recipes.

Even though a visitor appears to accept one or more languages, that
visitor does not necessarily want contents in the language/locale

indicated by their browser. Accordingly, although you can certainly set the
’ locale given this information, you should also provide them with a static
list of alternative languages.

In this illustration, let's take three examples:

» information derived from the browser
» a presetlocale fr-FR
» astring taken from RFC 2616: da, en-gb;g=0.8, en;g=0.7

Place the code from steps 1 to 6 into a file, Locale . php, which is in the Application\
I18n folder.

Next, create a file, chap 08 getting locale from browser.php, which sets up
autoloading and uses the new class:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;
Now you can define an array with the three test locale strings:

$locale = [NULL, 'fr-FR', 'da, en-gb;g=0.8, en;g=0.7'];

267

Working with Date/Time and International Aspects

Finally, loop through the three locale strings, creating instances of the new class. Echo the
value returned from getLocaleCode () to see what choice was made:

echo '<table>';

foreach ($locale as $code)
$locale = new Locale ($Scode) ;
echo '<tr>

<td>' . htmlspecialchars($code) . '</td>
<td>' . $locale->getLocaleCode() . '</td>
</tr>';

}

echo '</table>';

Here is the result (with a little bit of styling):

™ & PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ > localhost C A » =
| Hen_US |

r-FR Ir FR

ha,engbn:ﬁﬂ,eng:&? |da

» Forinformation on the PHP Locale class, see http://php.net/manual/en/
class.locale.php

» For more information on the Accept - Language header, see section 14.4 of RFC
2616: https://www.w3.org/Protocols/rfc2616/rfc2616-secld . html

Formatting numbers by locale

Numeric representations can vary by locale. As a simple example, in the UK one would see
the number three million, eighty thousand, five hundred and twelve, and ninety-two one
hundredths as follows:

3,080,512.92.
In France, however, the same number might appear like so:

3 080 512,92

268

Chapter 8

How to do it...

Before you can represent a number in a locale-specific manner, you need to determine the
locale. This can be accomplished using the Application\I1l8n\Locale class discussed in
the previous recipe. The locale can be set manually or from header information.

1. Next, we will make use of the format () method of the NumberFormatter class,
to both output and parse numbers in a locale-specific format. First we add a property
that will contain an instance of the NumberFormatter class:

use NumberFormatter;
protected S$numberFormatter;

B Our initial thought would be to consider using the PHP function ™
setlocale () to produce numbers formatted according to locale. The
problem with this legacy approach, however, is that everything will be

» considered based on this locale. This could introduce problems dealing
% with data that is stored according to database specifications. Another
’ issue with setlocale () is thatit is based on outdated standards,
including RFC 1766 and ISO 639. Finally, setlocale () is highly
dependent on operating system locale support, which will make our code
— non-portable. -

2. Normally, the next step would be to set $numberFormatter in the constructor.
The problem with this approach, in the case of our Application\I18n\
Locale class, is that we would end up with a top-heavy class, as we will also
need to perform currency and date formatting as well. Accordingly, we add a
getter that first checks to see whether an instance of NumberFormatter
has already been created. If not, an instance is created and returned. The first
argument in the new NumberFormatter is the locale code. The second argument,
NumberFormatter: : DECIMAL, represents what type of formatting we need:

public function getNumberFormatter ()

{

if (!$this->numberFormatter) {
Sthis->numberFormatter =
new NumberFormatter ($this->getLocaleCode (),
NumberFormatter: :DECIMAL) ;

}

return Sthis->numberFormatter;

}

3. We then add a method that, given any number, will produce a string that represents
that number formatted according to the locale:

public function formatNumber ($number)

{

return $this->getNumberFormatter () ->format (Snumber) ;

}
269

Working with Date/Time and International Aspects

4. Next we add a method that can be used to parse numbers according to the locale,
producing a native PHP numeric value. Please note that the result might not return
FALSE on parse failure depending on the server's ICU version:

public function parseNumber ($Sstring)

{

Sresult = S$this->getNumberFormatter ()->parse($string) ;
return ($result) ? $result : self::ERROR_UNABLE_TO_ PARSE;

}

Make the additions to the Application\I18n\Locale class as discussed in the preceding
bullet points. You can then create a chap_ 08 formatting numbers.php file, which sets
up autoloading and uses this class:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;

For this illustration, create two Locale instances, one for the UK, the other for France. You
can also designate a large number to be used for testing:

$localeFr = new Locale('fr FR');
$localeUk = new Locale('en GB');
Snumber = 1234567.89;

?>

Finally, you can wrap the formatNumber () and parseNumber () methods in the
appropriate HTML display logic and view the results:

<!DOCTYPE html>
<html>
<head>
<title>PHP 7 Cookbook</titles

<meta http-equiv="content-type"
content="text/html;charset=utf-8" />

<link rel="gstylesheet" type="text/css"
href="php7cookbook html table.css">

</head>
<body>
<table>
<tr>

270

Chapter 8

<th>Number</th>

<td>1234567.89</td>
</tr>
<tr>

<th>French Format</ths>

<td><?= $localeFr->formatNumber (Snumber); ?></td>
</tr>
<tr>

<th>UK Format</ths>

<td><?= $localeUk->formatNumber (Snumber); ?></td>
</tr>
<tr>

<th>UK Parse French Number:
<?= $localeFr->formatNumber ($number) ?></ths>
<td><?= $localeUk->
parseNumber ($localeFr->formatNumber (Snumber)) ; ?></td>
</tr>
<tr>
<th>UK Parse UK Number:
<?= $localeUk->formatNumber ($number) ?></ths>
<td><?= $localeUk->
parseNumber ($localeUk->formatNumber ($Snumber)) ; ?></td>
</tr>
<tr>
<th>FR Parse FR Number:
<?= $localeFr->formatNumber ($number) ?></ths>
<td><?= $localeFr->
parseNumber ($localeFr->formatNumber (Snumber)) ; ?></td>
</tr>
<tr>
<th>FR Parse UK Number:
<?= $localeUk->formatNumber ($number) ?></ths>
<td><?= $localeFr->
parseNumber ($localeUk->formatNumber ($Snumber)) ; ?></td>
</tr>
</table>
</body>
</html>

271

Working with Date/Time and International Aspects

Here is the result as seen from a browser:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook @i PHP: NumberForma...

€ |) localhost ¢ | |Q search T A » =

 msereo e e
T emraseukmumer sy iow

Note that if the locale is set to £r FR, a UK formatted number, when parsed,
does not return the correct value. Likewise, when the locale is set to en_GB,

a French formatted number does not return the correct value upon parsing.
’ Accordingly, you might want to consider adding a validation check before
attempting to parse the number.

» For more information on the use and abuse of setlocale () please refer to this
page: http://php.net/manual/en/function.setlocale.php.

» For a brief note on why number formatting will produce an error on some servers,
but not others, check the ICU (International Components for Unicode) version. See
the comments on this page: http://php.net/manual/en/numberformatter.
parse.php. For more info on ICU formatting, see http://userguide. icu-
project.org/formatparse.

Handling currency by locale

The technique for handling currency is similar to that for numbers. We will even use the same
NumberFormatter class! There is one major difference, however, and it is a show stopper: in
order to properly format currency, you will need to have on hand the currency code.

272

Chapter 8

How to do it...

1. The first order of business is to have the currency codes available in some format.
One possibility is to simply add the currency code as an Application\I18n\
Locale class constructor argument:

const FALLBACK CURRENCY = 'GBP';

protected ScurrencyCode;

public function _ construct ($localeString = NULL,
$currencyCode = NULL)

{
// add this to the existing code:

$this->currencyCode = S$ScurrencyCode ?7?
self: :FALLBACK CURRENCY;

This approach, although obviously solid and workable, tends to fall into the
category called halfway measures or the easy way out! This approach would
% also tend to eliminate full automation as the currency code is not available
i from the HTTP header. As you have probably gathered from other recipes
in this book, we do not shy away from a more complex solution so, as the
saying goes, strap on your seat belts!

2. We will first need to establish some sort of lookup mechanism, where, given a
country code, we can obtain its predominant currency code. For this illustration, we
will use the Adapter software design pattern. According to this pattern, we should be
able to create different classes, which could potentially operate in entirely different
ways, but which produce the same result. Accordingly, we need to define the desired
result. For this purpose, we introduce a class, Application\I18n\IsoCodes. As
you can see, this class has all the pertinent properties, along with a sort-of universal
constructor:

namespace Application\I1l8n;
class IsoCodes
{
public $name;
public $iso2;
public $iso3;
public $iso numeric;
public $iso 3166;
public $currency name;
public $currency code;
public $currency number;
public function __ construct (array $data)

{

273

Working with Date/Time and International Aspects

$vars = get object vars($this);
foreach ($vars as $key => $value)
Sthis->$key = $datal$key] ?? NULL;

}

3. Next we define an interface that has the method we require to perform the country-
code-to-currency-code lookup. In this case, we introduce Application\I18n\
IsoCodesInterface

namespace Application\I18n;

interface IsoCodesInterface
public function getCurrencyCodeFromIso2CountryCode ($iso2)
IsoCodes;

}

4. Now we are ready to build a lookup adapter class, which we will call Azpplication\
I18n\IsoCodesDb. It implements the abovementioned interface, and accepts
an Application\Database\Connection instance (see Chapter 1, Building
a Foundation), which is used to perform the lookup. The constructor sets up the
required information, including the connection, the lookup table name, and the
column that represents the 1ISO2 code. The lookup method required by the interface
then issues an SQL statement and returns an array, which is then used to build an
IsoCodes instance:

namespace Application\I18n;

use PDO;
use Application\Database\Connection;

class IsoCodesDb implements IsoCodesInterface
protected S$isoTableName;
protected $iso2FieldName;
protected S$Sconnection;

public function __ construct (Connection $connection,
SisoTableName, $iso2FieldName)

Sthis->connection = S$connection;
Sthis->isoTableName = $isoTableName;
Sthis->iso2FieldName = $iso2FieldName;

}

public function getCurrencyCodeFromIso2CountryCode ($iso2)
IsoCodes

274

Chapter 8

$sgl = sprintf ('SELECT * FROM %s WHERE %s = ?',
Sthis->isoTableName,
Sthis->iso2FieldName) ;

S$stmt = $this->connection->pdo->prepare($sql) ;
$stmt->execute ([$is02]) ;
return new IsoCodes ($stmt->fetch(PDO: :FETCH ASSOC) ;

}

5. Now we turn our attention back to the Application\I18n\Locale class. We first
add a couple of new properties and class constants:

const ERROR _UNABLE TO PARSE = 'ERROR: Unable to parse';
const FALLBACK CURRENCY = 'GBP';

protected ScurrencyFormatter;
protected S$ScurrencyLookup;
protected ScurrencyCode;

6. We add new method that retrieves the country code from the locale string. We can
leverage the getRegion () method, which comes from the PHP Locale class (which
we extend). Just in case it's needed, we also add a method, getCurrencyCode () :

public function getCountryCode ()

{

return $this->getRegion($this->getLocaleCode()) ;

}

public function getCurrencyCode ()

{

return $this->currencyCode;

}

7. As with formatting numbers, we define a getCurrencyFormatter (I),
much as we did getNumberFormatter () (shown previously). Notice that
$currencyFormatter is defined using NumberFormatter, but with a different
second parameter:

public function getCurrencyFormatter ()
{
if (!$this->currencyFormatter) ({

Sthis->currencyFormatter =
new NumberFormatter ($this->getLocaleCode (),
NumberFormatter: : CURRENCY) ;

}

return $this->currencyFormatter;

275

Working with Date/Time and International Aspects

8.

We then add a currency code lookup to the class constructor if the lookup class has
been defined:

public function construct ($localeString = NULL,

IsoCodesInterface $currencyLookup = NULL)

// add this to the existing code:
$this->currencyLookup = $currencyLookup;
if ($this->currencyLookup) {
Sthis->currencyCode =
Sthis->currencyLookup
->getCurrencyCodeFromIso2CountryCode ($this
->getCountryCode ())
->currency code;
} else {
$this->currencyCode = self::FALLBACK CURRENCY;

}

Then add the appropriate currency format and parse methods. Note that parsing
currency, unlike parsing numbers, will return FALSE if the parsing operation is not
successful:

public function formatCurrency ($currency)
{

return $this->getCurrencyFormatter ()
->formatCurrency ($currency, S$Sthis->currencyCode) ;

public function parseCurrency ($string)
{
Sresult = S$this->getCurrencyFormatter ()
->parseCurrency ($string, S$this->currencyCode) ;
return ($result) ? $result : self::ERROR_UNABLE_TO_ PARSE;

Create the following classes, as covered in the first several bullet points:

Class Bullet point discussed

Application\I1l8n\IsoCodes 3

Application\Il8n\IsoCodesInterface 4

Application\I18n\IsoCodesDb 5

276

Chapter 8

We will assume, for the purposes of this illustration, that we have a populated MySQL
database table, iso _country codes, which has this structure:

CREATE TABLE “iso_country codes”™ (
“name” varchar (128) NOT NULL,
“iso2” varchar (2) NOT NULL,
“iso3" wvarchar(3) NOT NULL,
“iso numeric® int(11) NOT NULL AUTO INCREMENT,
“iso 3166 varchar(32) NOT NULL,
“currency name~ varchar (32) DEFAULT NULL,
“currency code” char (3) DEFAULT NULL,
“currency number” int (4) DEFAULT NULL,
PRIMARY KEY ("iso_numeric™)

) ENGINE=InnoDB AUTO_INCREMENT=895 DEFAULT CHARSET=utf8;

Make the additions to the Application\I18n\Locale class, as discussed in bullet points
6 to 9 previously. You can then create a chap 08 formatting currency.php file, which
sets up autoloading and uses the appropriate classes:

<?php

define ('DB_CONFIG FILE', _ DIR . '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;

use Application\I18n\IsoCodesDb;

use Application\Database\Connection;
use Application\Il8n\Locale;

Next, we create instances of the Connection and IsoCodesDb classes:

Sconnection = new Connection(include DB_CONFIG_FILE) ;

$isoLookup = new IsoCodesDb ($connection,
'iso_country codes', 'iso2');

For this illustration, create two Locale instances, one for the UK, the other for France. You
can also designate a large number to be used for testing:

$localeFr = new Locale('fr-FR', $isoLookup) ;

$localeUk = new Locale('en GB', $isoLookup) ;
Snumber = 1234567.89;
?>

277

Working with Date/Time and International Aspects

Finally, you can wrap the formatCurrency () and parseCurrency () methods in the
appropriate HTML display logic and view the results. Base your view logic on that presented
in the How it works... section of the previous recipe (not repeated here to save trees!). Here is
the final output:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ @ localhost @ | [search &A@ »

See also

» The most up-to-date list of currency codes is maintained by ISO (International
Standards Organization). You can obtain this list in either XML or XLS (that is,
Microsoft Excel spreadsheet format). Here is the page where these lists can be
found: http://www.currency-iso.org/en/home/tables/table-al.html.

Formatting date/time by locale

The formatting of date and time varies region to region. As a classic example, consider the
year 2016, month April, day 15 and a time in the evening. The format preferred by denizens
of the United States would be 7:23 PM, 4/15/2016, whereas in China you would most likely
see 2016-04-15 19:23. As mentioned with number and currency formatting, it would also be
important to display (and parse) dates in a format acceptable to your web visitors.

How to do it...

1. First of all, we need to modify Application\I18n\Locale, adding statements to
use date formatting classes:

use IntlCalendar;
use IntlDateFormatter;

278

Chapter 8

Next, we add a property to represent an Int1DateFormatter instance, as well as a
series of predefined constants:

const DATE TYPE FULL = IntlDateFormatter: :FULL;
const DATE_TYPE_ LONG = IntlDateFormatter: :LONG;
const DATE_TYPE MEDIUM IntlDateFormatter: :MEDIUM;
const DATE TYPE SHORT IntlDateFormatter: :SHORT;

const ERROR _UNABLE TO PARSE = 'ERROR: Unable to parse';
const ERROR_UNABLE_TO_ FORMAT = 'ERROR: Unable to format date';
const ERROR ARGS STRING ARRAY =
'"ERROR: Date must be gtring YYYY-mm-dd HH:ii:ss
or array(y,m,d,h,i,s)';
const ERROR CREATE INTL DATE FMT =
'"ERROR: Unable to create international date formatter';

protected S$dateFormatter;

After that, we are in a position to define a method, getDateFormatter (), which
returns an Int1DateFormatter instance. The value of $type matches one of the
DATE TYPE * constants defined previously:

public function getDateFormatter (Stype)

{
switch ($type) ({
case self::DATE_TYPE_SHORT
Sformatter = new IntlDateFormatter ($this
->getLocaleCode () ,
IntlDateFormatter: : SHORT,
IntlDateFormatter: : SHORT) ;
break;
case self::DATE_TYPE_MEDIUM
Sformatter = new IntlDateFormatter ($this
->getLocaleCode (),
IntlDateFormatter: :MEDIUM,
IntlDateFormatter: :MEDIUM) ;
break;
case self::DATE_TYPE_LONG
Sformatter = new IntlDateFormatter ($this
->getLocaleCode (),
IntlDateFormatter: : LONG,
IntlDateFormatter: : LONG) ;
break;
case self::DATE_TYPE FULL
Sformatter = new IntlDateFormatter ($this
->getLocaleCode (),
IntlDateFormatter: :FULL,
IntlDateFormatter: :FULL) ;

279

Working with Date/Time and International Aspects

280

break;
default

throw new
InvalidArgumentException (self::ERROR CREATE INTL DATE FMT) ;

}

Sthis->dateFormatter = $formatter;

return Sthis->dateFormatter;

}

Next we define a method that produces a locale formatted date. Defining the format
of the incoming $date is a bit tricky. It cannot be locale-specific, otherwise we will
need to parse it according to locale rules, with unpredictable results. A better strategy
would be to accept an array of values that represent year, month, day, and so on

as integers. As a fallback, we will accept a string but only in this format: YYYY-mm-
dd HH:ii:ss. Time zone is optional, and can be set separately. First we initialize
variables:

public function formatDate ($Sdate, StimeZone = NULL)

{

Stype,

Sresult = NULL;
Syear = date('Y');
Smonth = date('m'") ;
Sday = date('d'") ;
Shour = 0;
Sminutes = 0;
Sseconds = 0;

After that we produce a breakdown of values that represent year, month, day, and so
on:

if (is_string(sdate)) {

list ($dateParts, $timeParts) = explode(' ', $date);
list (Syear, $Smonth, $day) = explode('-', $dateParts) ;
list (Shour, $Sminutes, $seconds) = explode(':',6 $timeParts) ;

} elseif (is_array($date)) ({

list (Syear, $Smonth, $day, Shour, Sminutes, Sseconds) = S$date;
} else {
throw new InvalidArgumentException(self::ERROR_ARGS STRING

ARRAY) ;

}

Next we create an IntlCalendar instance, which will serve as an argument when

running format (). We set the date using the discreet integer values:

$intlDate = IntlCalendar::createlInstance ($StimeZone,
$this->getLocaleCode()) ;

$intlDate->set (Syear, Smonth, $day, Shour, $Sminutes, $seconds) ;

Chapter 8

Finally, we obtain the date formatter instance, and produce the result:

Sformatter = Sthis->getDateFormatter (Stype) ;
if ($timeZone)

Sformatter->setTimeZone ($timeZone) ;
}

Sresult = Sformatter->format ($intlDate) ;
return Sresult ?? self::ERROR_UNABLE_TO_FORMAT;

}

The parseDate () method is actually simpler than formatting. The only complication
is what to do if the type is not specified (which will be the most likely case). All we
need to do is to loop through all possible types (of which there are only four) until a
result is produced:

public function parseDate($string, S$type = NULL)
{
if ($type) {
Sresult = $Sthis->getDateFormatter (Stype)->parse($string) ;
} else {
$tryThese = [self::DATE TYPE FULL,
self::DATE TYPE LONG,
self::DATE_TYPE MEDIUM,
self::DATE TYPE SHORT] ;
foreach ($tryThese as $type)
Sresult = $Sthis->getDateFormatter (Stype)->parse($string) ;
if ($result) {
break;
}

}
}

return ($result) ? $result : self::ERROR_UNABLE TO_ PARSE;

}

Code the changes to 2Application\I18n\Locale, discussed previously. You can then
create a test file, chap_ 08 formatting date.php, which sets up autoloading, and creates
two instances of the Locale class, one for the USA, the other for France:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;

SlocaleFr = new Locale('fr-FR');
$localeUs = new Locale('en US');
Sdate = '2016-02-29 17:23:58";

?>

281

Working with Date/Time and International Aspects

Next, with suitable styling, run a test of formatDate () and parseDate ():

echo $localeFr->formatDate ($date, Locale::DATE_TYPE_ FULL) ;
echo $localeUs->formatDate ($date, Locale::DATE_TYPE_MEDIUM) ;

SlocaleUs->parseDate ($localeFr->formatDate ($date, Locale::DATE_TYPE
MEDIUM)) ;

// etc.

An example of the output is shown here:

-

PHP 7 Cookbook - Mozilla Firefox
+
€ localhost < e O 3 & © H

PHP 7 Cookbook x

Date: 2016-02-29 17:23:58

[FrenchFormat]undi 25 awil 2016 05:50:36 UTC 25 avri 2016 05:50:36 UTC ~ |[25 awr. 2016 05:50:36 ||25/04/2016 05:50 |

|M0nday' April 25, 2016 at 5:50:36 AM GMT ||April 25, 2016 at 5:50:36 AM GMT ||Apr 25, 2016, 5:50:36 AM | 4/25/16, 5:50 AM

_\25 avr. 2016 05:50:36 1461563436
[FRN Apr 25. 2016, 5:50:36 AM ERROR: Unable to parse
_\25 avr. 2016 05:50:36 ERROR: Unable to parse
[ErRuS I Apr 25, 2016, 5:50:36 AM 1461563436

» IS0 8601 gives precise definitions for all aspects of date and time. There is also
an RFC that discusses the impact of ISO 8601 on the Internet. For reference, see
https://tools.ietf.org/html/rfc3339. For a good overview of date formats
by country, see https://en.wikipedia.org/wiki/Date format by
country.

Creating an HTML international calendar

generator

Creating a program to display a calendar is something you would most likely do as a student
at secondary school. A nested for () loop, where the inside loop generates a list of seven
days, will generally suffice. Even the problem of how many days there are in the month is
easily solved in the form of a simple array. Where it starts to get tricky is when you need

to figure out, for any given year, on what day of the week does the 1st of January fall. Also,
what if you want to represent the months and days of the week in a language and format
acceptable to a specific locale? As you have probably guessed, we will build a solution using
the previously discussed Application\I18n\Locale class.

282

Chapter 8

How to do it...

1. First we need to create a generic class that will hold information for a single day.
Initially it will only hold an integer value, sdayOfMonth. Later, in the next recipe,
we'll expand it to include events. As the primary purpose of this class will be to yield
$dayOfMonth, we'll incorporate this value into its constructor, and define
___invoke () to return this value as well:

namespace Application\I18n;

class Day

{

public $dayOfMonth;
public function _ construct ($dayOfMonth)

{

$this->dayOfMonth = $dayOfMonth;

}

public function __ invoke ()

{

return $this->dayOfMonth ?? '';

}

2. Create a new class that will hold the appropriate calendar-generation methods. It
will accept an instance of Application\I18n\Locale, and will define a couple
of class constants and properties. The format codes, such as EEEEE and MMMM, are
drawn from ICU date formats:

namespace Application\I18n;
use IntlCalendar;

class Calendar

{

const DAY 1 = 'EEEEE'; // T

const DAY 2 = 'EEEEEE'; // Tu

const DAY 3 = 'EEE'; // Tue

const DAY FULL = 'EEEE'; // Tuesday
const MONTH 1 = 'MMMMM'; // M

const MONTH 3 = 'MMM'; // Mar

const MONTH FULL = 'MMMM'; // March
const DEFAULT_ ACROSS = 3;

const HEIGHT FULL = '150px';

const HEIGHT SMALL = '60px';

283

Working with Date/Time and International Aspects

protected S$locale;
protected S$dateFormatter;
protected SyearArray;
protected Sheight;

public function __ construct (Locale $locale)

{

Sthis->locale = $locale;

// other methods are discussed in the following bullets

}

3. Then we define a method that returns an Int1DateFormatter instance from our

28

locale class. This is stored in a class property, as it will be used frequently:

protected function getDateFormatter ()
{
if (!$this->dateFormatter)
Sthis->dateFormatter =
Sthis->locale->getDateFormatter (Locale: :DATE TYPE FULL) ;
}

return Sthis->dateFormatter;

}

Next we define a core method, buildMonthArray (), which creates a multi-
dimensional array where the outer key is the week of the year, and the inner array is
seven elements representing the days of the week. We accept the year, month, and
optional time zone as arguments. Note, as part of variable initialization, we subtract
1 from the month. This is because the Int1Calendar: :set () method expects a
0-based value for the month, where O represents January, 1 is February, and so on:

public function buildMonthArray ($Syear, S$month, S$timeZone =
NULL)

{
Smonth -= 1;
//IntlCalendar months are 0 based; Jan==0, Feb==1 and so on
Sday = 1;
sfirst = TRUE;
Svalue = 0;
SmonthArray = array();

Chapter 8

5. We then create an Int1Calendar instance, and use it to determine how many days
are in this month:
$cal = IntlCalendar::createInstance (
StimeZone, S$this->locale->getLocaleCode()) ;
Scal->set ($Syear, S$month, $day);

SmaxDaysInMonth = S$cal
->getActualMaximum(IntlCalendar: :FIELD DAY OF_ MONTH) ;

6. After that we use our Int1lDateFormatter instance to determine what day of the
week equates to the 1st of this month. After that, we set the pattern to w, which will
subsequently give us the week number:

Sformatter = $this->getDateFormatter() ;
Sformatter->setPattern('e');
SfirstDayIsWhatDow = S$formatter->format ($cal) ;

7. We are now ready to loop through all days in the month with nested loops. An
outer while () loop ensures we don't go past the end of the month. The inner
loop represents the days of the week. You will note that we take advantage of
IntlCalendar: :get (), which allows us to retrieve values from a wide range of
predefined fields. We also adjust the week of the year value to O if it exceeds 52:

while ($day <= S$maxDaysInMonth) {
for ($dow = 1; $dow <= 7; $dow++) {
Scal->set ($Syear, S$month, $day);
SweekOfYear = S$cal
->get (IntlCalendar: :FIELD WEEK OF YEAR) ;
if (SweekOfYear > 52) S$SweekOfYear = 0;

8. We then check to see whether $first is still set TRUE. If so, we start adding day
numbers to the array. Otherwise, the array value is set to NULL. We then close all
open statements and return the array. Note that we also need to make sure the
inner loop doesn't go past the number of days in the month, hence the extra if ()
statement in the outer else clause.

Note that instead of just storing the value for the day of the month, we
s use the newly defined Application\I18n\Day class.

if ($first) {
if ($dow == $firstDayIsWhatDow) {
sfirst = FALSE;
Svalue = Sday++;
} else {
Svalue = NULL;

}

} else {

285

Working with Date/Time and International Aspects

if ($day <= $maxDaysInMonth) {
Svalue = S$Sday++;
} else {
Svalue = NULL;
}
}
SmonthArray [$weekOfYear] [$Sdow] = new Day ($value) ;
}
}

return $monthArray;

}

Refining internationalized output

1. First, a series of small methods, starting with one that extracts the internationally
formatted day based on type. The type determines whether we deliver the full name
of the day, an abbreviation, or just a single letter, all appropriate for that locale:

protected function getDay (Stype, S$cal)

{
Sformatter = $this->getDateFormatter () ;
Sformatter->setPattern(Stype) ;
return Sformatter->format (Scal) ;

}

2. Next we need a method that returns an HTML row of day names, calling the newly
defined getDay () method. As mentioned previous, the type dictates the appearance

of the days:
protected function getWeekHeaderRow ($type, S$cal, $year, S$month,
Sweek)
{
Soutput = '<tr>';
Swidth = (int) (100/7);

foreach ($week as $day) {
$cal->set ($year, Smonth, sday());

Soutput .= '<th style="vertical-align:top;"
width="' . Swidth . '&">"'
Sthis->getDay(Stype, S$Scal) . '</th>';
}
Soutput .= '</tr>' . PHP_ EOL;

return S$output;

286

Chapter 8

3. After that, we define a very simple method to return a row of week dates. Note that
we take advantage of Day:: invoke () using: $day ():

protected function getWeekDaysRow (Sweek)

{

Soutput = '<tr style="height:' . $this-s>height . ';">';
Swidth = (int) (100/7);
foreach ($week as $day)
Soutput .= '<td style="vertical-align:top;"
width=""' . Swidth . '%">'
$day () . '</tds>';

}
Soutput .= '</tr>' . PHP_ EOL;

return Soutput;

}

4. And finally, a method that puts the smaller methods together to generate a calendar
for a single month. First we build the month array, but only if SyearArray is not
already available:

public function calendarForMonth ($Syear,
Smonth,
StimeZone = NULL,
$dayType = self::DAY 3,
$monthType = self::MONTH_ FULL,
SmonthArray = NULL)

sfirst = 0;
if (!$SmonthArray)
SmonthArray = $this->yearArray[$Syear] [Smonth]
?? $this->buildMonthArray (Syear, Smonth, $timeZone) ;

5. The month needs to be decremented by 1 as Int1Calendar months are O-based:
Jan =0, Feb = 1, and so on. We then build an Int1Calendar instance using the
time zone (if any), and the locale. We next create a Int1DateFormatter instance
to retrieve the month name and other information according to locale:

Smonth--;

Scal = IntlCalendar::createlInstance (
StimeZone, S$this->locale->getLocaleCode()) ;

Scal->set (Syear, Smonth, 1);

Sformatter = S$this->getDateFormatter() ;

Sformatter->setPattern ($SmonthType) ;

287

Working with Date/Time and International Aspects

6. We then loop through the month array, and call the smaller methods just mentioned
to build the final output:

$this->height = ($dayType == self::DAY FULL)

? self: :HEIGHT FULL : self: :HEIGHT SMALL;
Shtml = '<hl>' . $formatter->format ($cal) . '</hl>';
Sheader = '';
Sbody = 1';
foreach ($monthArray as SweekNum => $week) {

if ($first++ == 1)

Sheader .= $this->getWeekHeaderRow (

SdayType, Scal, Syear, S$month, Sweek);

}

Sbody .= $this->getWeekDaysRow ($dayType, Sweek) ;
}
Shtml .= '<table>' . Sheader . S$body

'</table>' . PHP_EOL;

return S$html;

}

7. In order to generate a calendar for the entire year, it's a simple matter of looping
through months 1 to 12. To facilitate outside access, we first define a method that
builds a year array:

public function buildYearArray(Syear, $timeZone = NULL)
{
Sthis->yearArray = array();
for ($month = 1; $month <= 12; $month++)
Sthis->yearArray[Syear] [Smonth] =
Sthis->buildMonthArray ($year, Smonth, S$StimeZone) ;

}

return $this->yearArray;

public function getYearArray ()

{

return $this->yearArray;

}

8. To generate a calendar for a year, we define a method, calendarForYear ().
If the year array has not been build, we call buildYearArray (). We take into
account how many monthly calendars we wish to display across and then call
calendarForMonth ():

public function calendarForYear ($year,
StimeZone = NULL,
$dayType = self::DAY 1,

288

Chapter 8

$monthType = self::MONTH 3,
Sacross = self::DEFAULT ACROSS)

if (!$this->yearArray) S$this-sbuildYearArray (Syear,

StimeZone) ;
$yMax = (int) (12 / Sacross);
Swidth = (int) (100 / $across);
Soutput = '<table>' . PHP EOL;
Smonth = 1;
for ($y = 1; $y <= $yMax; Sy++) {

Soutput .= '<tr>';

for ($x = 1; $x <= $across; $x++) {

Soutput .= '<td style="vertical-align:top;"
width="" Swidth . '$">!'

$this->calendarForMonth ($year, S$month,
StimeZone, $dayType, S$monthType,

Sthis->yearArray [$year] [$Smonth++]) . '</td>';
1
S$output .= '</trs>' . PHP_ EOL;
1
Soutput .= '</table>';
return S$output;

First of all, make sure you build the Application\I18n\Locale class as defined in the
previous recipe. After that, create a new file, Calendar .php, in the Application\I18n
folder, with all the methods described in this recipe.

Next, define a calling program, chap 08 html calendar.php, which sets up autoloading
and creates Locale and Calendar instances. Also be sure to define the year and month:

<?php
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;
use Application\Il8n\Calendar;

SlocaleFr = new Locale('fr-FR');
$localeUs = new Locale('en US');
$localeTh = new Locale('th TH');
ScalendarFr = new Calendar ($SlocaleFr) ;
ScalendarUs = new Calendar ($SlocaleUs) ;
ScalendarTh = new Calendar ($SlocaleTh) ;
Syear = 2016;

Smonth = 1;

?>

289

Working with Date/Time and International Aspects

You can then develop appropriate view logic to display the different calendars. For example,
you can include parameters to display the full month and day names:

<!DOCTYPE html>
<html>
<head>
<title>PHP 7 Cookbook</title>
<meta http-equiv="content-type"
content="text/html;charset=utf-8" />
<link rel="stylesheet" type="text/css"

href="php7cookbook html table.css">
</head>

<body>
<h3>Year: <?= $year ?></h3>

<?= S$ScalendarFr->calendarForMonth ($year, S$month, NULL,
Calendar: :DAY_FULL); ?>

<?= S$ScalendarUs->calendarForMonth ($year, S$month, NULL,
Calendar: :DAY_FULL); ?>

<?= ScalendarTh->calendarForMonth (Syear, S$month, NULL,
Calendar: :DAY_FULL); ?>
</body>
</html>

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ 9| @ localhost c A Sea e @ +F & © B =
. . ~
janvier

1 r 1 "1 " 1T&@ """]»s

11 12 13 14 15 16 17

18 19 20 21 22 123 24

25 26 27 28 29 130 31
January N
I e e

10 11 12 13 14 15 16

17 18 19 20 121 122 23

24 125 126 27 128 129 30
31 Il

With a couple of modifications, you can also display a calendar for the entire year:

$localeTh = new Locale('th_TH');
$localeEs = new Locale('es ES');
ScalendarTh = new Calendar ($localeTh) ;

290

Chapter 8

ScalendarEs = new Calendar ($SlocaleEs) ;
Syear = 2016;

echo S$ScalendarTh->calendarForYear ($year) ;
echo S$ScalendarEs->calendarForYear ($year) ;

Here is the browser output showing a full year calendar in Spanish:

) PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ localhost C e O +F A © B =

ene. feb. s mar.

() () 5) o () o)]) [| [e)] S [T

CC I e B e e s e 7 o o I8 | [5 16 |

[2 Jr3 e Jps e 17 |75 o6 Jaz_Jie Jie Jeo J1 |4 15 e |17 18 e
20 |21 |22 |[23 |4 |[fe2 |23 |4 |5 |26 o7 |e8 |[[e1 [e2 |3 [e4 |[25 |6

27 |28 |29 |30 |31 29 28 |20 |30 |31 []

abr. may. jun.

()) [) [())] N [| e e] W] ST T

[] i 2|8 1 IR
13 |14 |15 |[16 |17 ||fe [0 |11 12 iz |14 |15 ||[13 |14 |15 |16 |[i7 |[is
20 |21 |22 |[23 |24 ||[t16 |17 |18 19 J20 |21 |22 |[leo [t |2 [e3 |[24 |5
27 |28 |23 |30 23 |24 |25 26 [27 |8 |9 (o7 [e8 o a0 []

30 |[31

jul. ago. sept.

\EFEE))) [[()))) S | (e) [(S [T

N 2 2 N A 0 O

» For more information on codes used by Int1DateFormatter: :setPattern (),
see this article: http://userguide.icu-project.org/formatparse/
datetime

Building a recurring events generator

A very common need related to generating a calendar is the scheduling of events. Events can
be in the form of one-off events, which take place on one day, or on a weekend. There is a
much greater need, however, to track events that are recurring. We need to account for the
start date, the recurring interval (daily, weekly, monthly), and the number of occurrences or a
specific end date.

291

Working with Date/Time and International Aspects

How to do it...

1. Before anything else, it would be an excellent idea to create a class that represents
an event. Ultimately you'll probably end up storing the data in such a class in a
database. For this illustration, however, we will simply define the class, and leave the
database aspect to your imagination. You will notice that we will use a number of
classes included in the DateTime extension admirably suited to event generation:

namespace Application\I1l8n;

use DateTime;

use DatePeriod;

use DatelInterval;

use InvalidArgumentException;

class Event

{
}

2. Next, we define a series of useful class constants and properties. You will notice that
we defined most of the properties public in order to economize on the number of
getters and setters needed. The intervals are defined as sprintf () format strings;
%d will be substituted for a value:

// code

const INTERVAL DAY = 'P%dD';

const INTERVAL WEEK = 'P%dW';

const INTERVAL MONTH = 'P%dM';

const FLAG FIRST = 'FIRST'; // 1st of the month

const ERROR_INVALID END = 'Need to supply either # occurrences or
an end date';

const ERROR_INVALID DATE = 'String i.e. YYYY-mm-dd or DateTime
instance only';

const ERROR_INVALID INTERVAL = 'Interval must take the form "P\

a+(D | W | m)"';

public $id;

public $flag;

public S$value;
public stitle;
public S$locale;
public S$interval;
public S$description;
public S$occurrences;
public S$nextDate;
protected S$endDate;
protected S$startDate;

292

Chapter 8

3. Next we turn our attention to the constructor. We need to collect and set all

information pertinent to an event. The variable names are self-explanatory.

Svalue is not quite so clear. This parameter will ultimately be substituted

for the value in the interval format string. So, for example, if the user selects
A

$interval as INTERVAL_ DAY, and $value as 2, the resulting interval
string will be P2D, which means every other day (or every 2nd day).

public function __ construct ($title,
Sdescription,
$startDate,
Sinterval,
Svalue,
Soccurrences = NULL,
SendDate = NULL,
$flag = NULL)

{

4. We then initialize variables. Note that the ID is pseudo-randomly generated, but might

5.

ultimately end up being the primary key in a database events table. Here we use
md5 () not for security purposes, but rather to quickly generate a hash so that IDs
have a consistent appearance:

Sthis->id = md5($title . $interval . $value) . sprintf ('%044d',
rand (0,9999)) ;

Sthis->flag = s$flag;

Sthis->value = S$value;

Sthis->title = Stitle;

Sthis->description = $description;

Sthis->occurrences = S$Soccurrences;

As mentioned previously, the interval parameter is a sprintf () pattern used to
construct a proper DateInterval instance:

try {
Sthis->interval = new DateInterval (sprintf ($Sinterval, $value));
} catch (Exception $e) ({
error log($e->getMessage()) ;
throw new InvalidArgumentException (self::ERROR_INVALID
INTERVAL) ;

}

293

Working with Date/Time and International Aspects

6.

7.

8.

To initialize $startDate, we call stringOrDate (). We then attempt

to generate a value for SendDate by calling either stringOrDate () or
calcEndDateFromOccurrences (). If we have neither an end date nor a number
of occurrences, an exception is thrown:

Sthis->startDate = $this->stringOrDate ($startDate) ;
if ($endDate) {
Sthis->endDate = $this->stringOrDate ($SendDate) ;
} elseif ($occurrences) {
Sthis->endDate = $this->calcEndDateFromOccurrences () ;
} else {
throw new InvalidArgumentException(self::ERROR_INVALID END) ;

}

Sthis->nextDate = $this->startDate;

}

The stringOrDate () method consists of a few lines of code that check the data
type of the date variable, and return a DateTime instance or NULL:

protected function stringOrDate ($date)
{
if ($date === NULL)
SnewDate = NULL;
} elseif ($date instanceof DateTime) {
$newDate = $date;

} elseif (is_string($date)) {
SnewDate = new DateTime ($date) ;
} else {

throw new InvalidArgumentException(self::ERROR_INVALID END) ;

}

return S$SnewDate;

}

We call the calcEndDateFromOccurrences () method from the constructor

if Soccurrences is set so that we'll know the end date for this event. We take
advantage of the DatePeriod class, which provides an iteration based on a start
date, DateInterval, and number of occurrences:

protected function calcEndDateFromOccurrences ()
{
SsendDate = new DateTime ('now') ;
Speriod = new DatePeriod (
Sthis->startDate, $this-s>interval, $this-soccurrences);
foreach ($period as $date)
SendDate = s$date;

}

return S$SendDate;

9.

10.

11.

12.

Chapter 8

Next we throw ina __ toString () magic method, which simple echoes the title of
the event:

public function __ toString()

{

return Sthis->title;

}

The last method we need to define for our Event class is getNextDate (), which is
used when generating a calendar:

public function getNextDate (DateTime S$today)
{

if ($today > $this-s>endDate) ({

return FALSE;

}

Snext = clone S$today;

Snext->add ($this->interval) ;

return $next;

}

Next we turn our attention to the Application\I18n\Calendar class described in
the previous recipe. With a bit of minor surgery, we are ready to tie our newly defined
Event class into the calendar. First we add a new property, Sevents, and a method
to add events in the form of an array. We use the Event : : $id property to make sure
events are merged and not overwritten:

protected $events = array();
public function addEvent (Event S$event)

{

Sthis->events[Sevent->id] = S$event;

}

Next we add a method, processEvents (), which adds an Event instance to a Day
object when building the year calendar. First we check to see whether there are any
events, and whether or not the Day object is NULL. As you may recall, it's likely that
the first day of the month doesn't fall on the first day of the week, and thus the need
to set the value of a Day object to NULL. We certainly do not want to add events to

a non-operative day! We then call Event : :getNextDate () and see whether the
dates match. If so, we store the Event into Day: : Sevents [] and set the next date
on the Event object:

protected function processEvents ($SdayObj, S$cal)
{
if ($this-sevents && $dayObj())
ScalDateTime = $cal->toDateTime () ;
foreach ($this-sevents as $id => $eventObj)
Snext = SeventObj->getNextDate (SeventObj->nextDate) ;

295

Working with Date/Time and International Aspects

if ($next) {
if (ScalDateTime->format ('Y-m-d') ==

$eventObj->nextDate->format ('Y-m-d'))
$dayObj->events [$eventObj->id] = $eventObj;
SeventObj->nextDate = S$Snext;

}

return $dayObj;

}

Note that we do not do a direct comparison of the two objects. Two
_ reasons for this: first of all, one is a DateTime instance, the other is
% an IntlCalendar instance. The other, more compelling reason, is
A that it's possible that hours:minutes:seconds were included when the
DateTime instance was obtained, resulting in actual value differences
between the two objects.

13. Now we need to add a call to processEvents () in the buildMonthArray ()
method so that it looks like this:
while ($day <= $maxDaysInMonth)
for ($dow = 1; $dow <= 7; $dow++) {
// add this to the existing code:
$dayObj = Sthis->processEvents (new Day($value), $cal);
SmonthArray [$weekOfYear] [$Sdow] = $dayObj;

}

14. Finally, we need to modify getWeekDaysRow (), adding the necessary code to
output event information inside the box along with the date:

protected function getWeekDaysRow (Stype, Sweek)

{

Soutput = '<tr style="height:' . $this->height . ';">"';
$width = (int) (100/7);
foreach ($week as $day)

Sevents = '';

if ($day-sevents)
foreach ($day-s>events as $single)

Sevents .= '
' . $single->title;
if ($type == self::DAY FULL) ({
Sevents .= '
<i>' . $single->description . '</i>';

296

Chapter 8

}

Soutput .= '<td style="vertical-align:top;"
width="' . Swidth . '&">"'
$day () . Sevents . '</td>';
}
S$output .= '</trs' . PHP_ EOL;

return S$output;

To tie events to the calendar, first code the Application\I18n\Event class described in
steps 1 to 10. Next, modify Application\I18n\Calendar as described in steps 11 to
14. You can then create a test script, chap 08 recurring events.php, which sets up
autoloading and creates Locale and Calendar instances. For the purposes of illustration,
go ahead and use 'es_ES' as a locale:

<?php
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\I18n\ { Locale, Calendar, Event };

try {
Syear = 2016;
$localeEs = new Locale('es ES');
ScalendarEs = new Calendar ($SlocaleEs) ;

Now we can start defining and adding events to the calendar. The first example adds an event
that lasts 3 days and starts on 8 January 2016:

// add event: 3 days

Stitle = 'Conf';
Sdescription = 'Special 3 day symposium on eco-waste';
$startDate = '2016-01-08"';

Sevent = new Event ($title, S$description, $startDate,
Event::INTERVAL DAY, 1, 2);
ScalendarEs->addEvent (Sevent) ;

297

Working with Date/Time and International Aspects

Here is another example, an event that occurs on the first of every month until
September 2017:

Stitle = 'Pay Rent';

Sdescription = 'Sent rent check to landlord';

$startDate = new DateTime('2016-02-01"');

Sevent = new Event ($title, $description, $startDate,
Event::INTERVAL MONTH, 1, '2017-09-01', NULL, Event::FLAG_FIRST);

ScalendarEs->addEvent ($Sevent) ;

You can then add sample weekly, bi-weekly, monthly, and so on events as desired. You can
then close the try..catch block, and produce suitable display logic:

} catch (Throwable $e)
Smessage = Se->getMessage() ;
}
?>
<!DOCTYPE html>
<head>
<title>PHP 7 Cookbook</titles>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<link rel="stylesheet" type="text/css" href="php7cookbook html
table.css">
</head>
<body>
<h3>Year: <?= Syear ?></h3>
<?= $calendarEs->calendarForYear (Syear, 'Europe/Berlin',
Calendar::DAY_3, Calendar::MONTH_ FULL, 2); ?>

<?= $calendarEs->calendarForMonth($year, 1 , 'Europe/Berlin',
Calendar: :DAY_ FULL); ?>

</body>

</html>

298

Chapter 8

Here is the output showing the first few months of the year:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook * W
€ localhost c e U 3 /f © FB =
Year: 2016 b
enero febrero
11— 1r 1™ 1= 1’ ik 1= 1+ 1 1B B [|
(Online Pay Rent [[Call Mom
Forum
4 5 6 7 8 9 10 B 9 10 11 12 13 14
Call Mom Conf Conf Conf Call Mom [Online
Forum
1 12 13 14 15 16 17 15 16 % 18 19 20 121
Call Mom Online Call Mom
Forum
18 18 20 121 22 |23 [24 22 23 |24 [25 126 27 |26
Call Mom Call Mom [Online
Forum
25 126 27 126 29 130 131 129
Call Mom Cnline
Forum
marzo abril
1 2 13 4 5 1 2 13
Pay Rent Pay Rent
Call Mom

» For more information on Int1Calendar field constants that can be used with
get (), please refer to this page: http://php.net/manual/en/class.
intlcalendar.php#intlcalendar.constants

Handling translation without gettext

Translation is an important part of making your website accessible to an international
customer base. One way this is accomplished it to use the PHP gettext functions, which are
based on the GNU gettext operating system tools installed on the local server. gettext

is well documented and well supported, but uses a legacy approach and has distinct
disadvantages. Accordingly, in this recipe, we present an alternative approach to translation
where you can build your own adapter.

299

Working with Date/Time and International Aspects

Something important to recognize is that the programmatic translation tools available to PHP
are primarily designed to provide limited translation of a word or phrase, referred to as the
msgid (message ID). The translated equivalent is referred to as the msgstr (message string).
Accordingly, incorporating translation typically only involves relatively unchanging items such
as menus, forms, error or success messages, and so on. For the purposes of this recipe, we
will assume that you have the actual web page translations stored as blocks of text.

If you need to translate entire pages of content, you might consider using the
Google Translate API. This is, however, a paid service. Alternatively, you could

outsource the translation to individuals with multi-lingual skills cheaply using
’ Amazon Mechanical Turk. See the See Also section at the end of this recipe
for the URLs.

How to do it...

1. We will once again use the Adapter software design pattern, in this case to provide
alternatives to the translation source. In this recipe, we will demonstrate adapters for
.ini files, . csv files, and databases.

2. To begin, we will define an interface that will later be used to identify a translation
adapter. The requirements for a translation adapter are quite simple, we only need to
return a message string for a given message ID:

namespace Application\Il8n\Translate\Adapter;
interface TranslateAdapterInterface

{

public function translate (Smsgid) ;

}

3. Next we define a trait that matches the interface. The trait will contain the actual
code required. Note that if we fail to find the message string, we simply return the
message ID:

namespace Application\Il8n\Translate\Adapter;

trait TranslateAdapterTrait

{

protected S$Stranslation;
public function translate ($Smsgid)

{

}
}

return $this->translation[$msgid] ?? S$msgid;

300

Chapter 8

Now we're ready to define our first adapter. In this recipe, we'll start with an adapter
that uses an . ini file as the source of translations. The first thing you'll notice is
that we use the trait defined previously. The constructor method will vary between
adapters. In this case, we use parse _ini file () to produce an array of key/
value pairs where the key is the message ID. Notice that we use the $filePattern
parameter to substitute the locale, which then allows us to load the appropriate
translation file:

namespace Application\Il8n\Translate\Adapter;

use Exception;
use Application\Il8n\Locale;

class Ini implements TranslateAdapterInterface
use TranslateAdapterTrait;
const ERROR_NOT FOUND = 'Translation file not found';
public function __ construct (Locale $locale, sfilePattern)

{

StranslateFileName = sprintf ($filePattern,
Slocale->getLocaleCode()) ;

if (!file exists(StranslateFileName)) {
error_log(self::ERROR_NOT FOUND . ':' . $translateFileName) ;
throw new Exception(self::ERROR NOT FOUND) ;

} else {

S$this->translation = parse ini file($translateFileName) ;

}

The next adapter, Application\I18n\Translate\Adapter\Csv, is identical,
except that we open the translation file and loop through using fgetcsv () to
retrieve the message ID / message string key pairs. Here we show only the difference
in the constructor:

public function _ construct (Locale $locale, s$filePattern)

{

StranslateFileName = sprintf ($filePattern,
$locale->getLocaleCode()) ;
if (!file exists(StranslateFileName)) {

error_log(self::ERROR_NOT FOUND . ':' . $translateFileName) ;
throw new Exception(self::ERROR NOT FOUND) ;
} else {

$fileObj = new SplFileObject (StranslateFileName, 'r');
while ($row = $fileObj->fgetcsv()) {
Sthis->translation[$Srow[0]] = Srow([1l];

301

Working with Date/Time and International Aspects

302

}

The big disadvantage of both of these adapters is that we need to preload

the entire translation set, which puts a strain on memory if there is a large
S

number of translations. Also, the translation file needs to be opened and
parsed, which drags down performance.

We now present the third adapter, which performs a database lookup and avoids the
problems of the other two adapters. We use a PDO prepared statement which is sent
to the database in the beginning, and only one time. We then execute as many times
as needed, supplying the message ID as an argument. You will also notice that we
needed to override the translate () method defined in the trait. Finally, you might
have noticed the use of PDOStatement : : fetchColumn () as we only need the one
value:

namespace Application\Il8n\Translate\Adapter;

use Exception;
use Application\Database\Connection;
use Application\Il8n\Locale;

class Database implements TranslateAdapterInterface
{
use TranslateAdapterTrait;
protected Sconnection;
protected Sstatement;
protected sdefaultLocaleCode;
public function __ construct (Locale $locale,
Connection $connection,
StableName)

Sthis->defaultLocaleCode = S$locale->getLocaleCode() ;
Sthis->connection = $connection;

$sgl = 'SELECT msgstr FROM ' . StableName
' WHERE localeCode = ? AND msgid = ?';
Sthis->statement = Sthis->connection->pdo->prepare($sql) ;

}

public function translate(Smsgid, S$localeCode = NULL)

{
if (!$localeCode) S$localeCode = sSthis->defaultLocaleCode;
Sthis->statement->execute([$SlocaleCode, $msgid]) ;
return Sthis->statement->fetchColumn() ;

}

Chapter 8

7. We are now ready to define the core Translation class, which is tied to one (or
more) adapters. We assign a class constant to represent the default locale, and
properties for the locale, adapter, and text file pattern (explained later):

namespace Application\Il8n\Translate;

use Application\Il8n\Locale;
use Application\Il8n\Translate\Adapter\TranslateAdapterInterface;

class Translation

{
const DEFAULT_ LOCALE_CODE = 'en GB';
protected $defaultLocaleCode;
protected S$Sadapter = array() ;
protected StextFilePattern = array() ;

8. Inthe constructor, we determine the locale, and set the initial adapter to this locale.
In this manner, we are able to host multiple adapters:

public function __ construct (TranslateAdapterInterface $adapter,
$defaultLocaleCode = NULL,
StextFilePattern = NULL)

if (!$defaultLocaleCode) ({

Sthis->defaultLocaleCode = self::DEFAULT_LOCALE_CODE;
} else {

Sthis->defaultLocaleCode = $defaultLocaleCode;

}

Sthis->adapter[$this->defaultLocaleCode] = S$adapter;
Sthis->textFilePattern[$this->defaultLocaleCode] =
StextFilePattern;

}

9. Next we define a series of setters, which gives us more flexibility:

public function setAdapter ($localeCode, TranslateAdapterInterface
Sadapter)

{

Sthis->adapter[$localeCode] = $Sadapter;

}

public function setDefaultLocaleCode ($localeCode)

{

Sthis->defaultLocaleCode = $localeCode;

}

public function setTextFilePattern($localeCode, S$pattern)

{

Sthis->textFilePattern[$localeCode] = $pattern;

}

303

Working with Date/Time and International Aspects

10. We then define the PHP magic method invoke (), which lets us make a direct call
to the translator instance, returning the message string given the message ID:

public function __ invoke ($msgid, $locale = NULL)

{
if ($locale === NULL) $locale = $this->defaultLocaleCode;
return $this->adapter[$locale] ->translate ($Smsgid) ;

}

11. Finally, we also add a method that can return translated blocks of text from text
files. Bear in mind that this could be modified to use a database instead. We did not
include this functionality in the adapter, as its purpose is completely different; we
just want to return large blocks of code given a key, which could conceivably be the
filename of the translated text file:

public function text ($key, $localeCode = NULL)

{
if ($localeCode === NULL) $localeCode =
Sthis->defaultLocaleCode;
Scontents = S$key;
if (isset($this->textFilePattern[$localeCode]))
$fn = sprintf ($this->textFilePattern[$localeCodel],
$localeCode, skey);
if (file_exists($fn))
$contents = file get contents($fn);
}
}

return S$Scontents;

}

First you will need to define a directory structure to house the translation files. For the
purposes of this illustration, you can make a directory ,/path/to/project/files/data/
languages. Under this directory structure, create sub-directories that represent different
locales. For this illustration, you could use these: de DE, fr FR, en GB, and es_ES,
representing German, French, English, and Spanish.

Next you will need to create the different translation files. As an example, here is a
representative data/languages/es_ES/translation.ini file in Spanish:

Welcome=Bienvenido

About Us=Sobre Nosotros

Contact Us=Contéactenos

Find Us=Encontrarnos

click=clic para més informacidn

304

Chapter 8

Likewise, to demonstrate the CSV adapter, create the same thing as a CSV file, data/
languages/es_ES/translation.csv:

"Welcome", "Bienvenido"

"About Us", "Sobre Nosotros"
"Contact Us", "Contactenos"

"Find Ug", "Encontrarnos"
"click","clic para méas informacidén"

Finally, create a database table, translation, and populate it with the same data.
The main difference is that the database table will have three fields: msgid, msgstr,
and locale_ code:

CREATE TABLE “translation™ (
“msgid® varchar (255) NOT NULL,
“msgstr” varchar (255) NOT NULL,
“locale code” char(6) NOT NULL DEFAULT '',
PRIMARY KEY ("msgid”, “locale code’)
) ENGINE=InnoDB DEFAULT CHARSET=latinl;

Next, define the classes mentioned previously, using the code shown in this recipe:

» Application\Il8n\Translate\Adapter\TranslateAdapterInterface

» Application\Il8n\Translate\Adapter\TranslateAdapterTrait

» Application\Il8n\Translate\Adapter\Ini

» Application\Il8n\Translate\Adapter\Csv

» Application\Il8n\Translate\Adapter\Database

» Application\Il8n\Translate\Translation
Now you can create a test file, chap 08 translation database.php, to test the
database translation adapter. It should implement autoloading, use the appropriate classes,

and create a Locale and Connection instance. Note that the TEXT FILE PATTERN
constantis a sprintf () pattern in which the locale code and filename are substituted:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');

define ('TEXT FILE PATTERN', _ DIR . '/../data/languages/%$s/%s.txt');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Il8n\Locale;
use Application\Il8n\Translate\ { Translation, Adapter\Database };
use Application\Database\Connection;

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;
$locale = new Locale('fr FR');

305

Working with Date/Time and International Aspects
Next, create a translation adapter instance and use that to create a Translation instance:

$adapter = new Database ($locale, $conn, 'translation');
Stranslate = new Translation($adapter, $locale->getLocaleCode(), TEXT
FILE_PATTERN);

?>
Finally, create display logic that uses the $translate instance:

<!DOCTYPE html>
<head>
<title>PHP 7 Cookbook</titles>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
<link rel="stylesheet" type="text/css" href="php7cookbook html
table.css">
</head>
<body>
<table>
<tr>
<th><hl style="color:white;"><?= Stranslate('Welcome') ?></hl></th>
<td>
<div style="float:left;width:50%;vertical-align:middle;">
<h3 style="font-size:24pt;"><i>Some Company, Inc.</i></h3>
</div>
<div style="float:right;width:50%;">

</div>
</tds>
</tr>
<tr>
<th>

<?= $translate('About Us') ?>
<?= S$Stranslate('Contact Us') ?>
<?= $translate('Find Us') °?>
</uls
</th>
<td>
<p>
<?= $translate->text ('main page'); °?>
</p>
<p>
<?= S$translate('click') ?>
</p>
</td>
</tr>
</table>
</body>
</html>

306

Chapter 8

You can then perform additional similar tests, substituting a new locale to get a different
language, or using another adapter to test a different data source. Here is an example of
output using a locale of £r FR and the database translation adapter:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W
€) @ | localhost:8080/chap_08_translation_data ¢ | Q search TBE 9 F & © B =
<P
Some Company, g0 @
_ Inc. ¥y
Bienvenue hd
gd

Nous offrons une fantastique variété de services, tout le chemin de lavage de votre voiture pour
fixer vos dents. Nofre cadre de consultants couvre tous les services aspects du secteur, y
compris les soins de santé, la psychologie, I'administration des systémes, conseil en gestion,
université enseignement de niveau, et la dentisterie pratique.

cliguez pour plus d'informations

See also

» For more information on the Google Translation API, see https://cloud.google.
com/translate/v2/translating-text-with-rest.

» For more information on Amazon Mechanical Turk, see https://www.mturk.com/
mturk/welcome. For more information on gettext, see http://www.gnu.org/
software/gettext/manual /gettext.html.

307

Developing Middleware

In this chapter, we will cover the following topics:

» Authenticating with middleware

» Using middleware to implement access control
» Improving performance using the cache

» Implementing routing

» Making inter-framework system calls

» Using middleware to cross languages

Introduction

As often happens in the IT industry, terms get invented, and then used and abused. The
term middleware is no exception. Arguably the first use of the term came out of the Internet
Engineering Task Force (IETF) in the year 2000. Originally, the term was applied to any
software which operates between the transport (that is, TCP/IP) and the application layer.
More recently, especially with the acceptance of PHP Standard Recommendation number 7
(PSR-7), middleware, specifically in the PHP world, has been applied to the web client-server
environment.

The recipes in this section will make use of the concrete classes defined in
s Appendix, Defining PSR-7 Classes.

309

Developing Middleware

Authenticating with middleware

One very important usage of middleware is to provide authentication. Most web-based
applications need the ability to verify a visitor via username and password. By incorporating
PSR-7 standards into an authentication class, you will make it generically useful across the
board, so to speak, being secure enough that it can be used in any framework that provides
PSR-7-compliant request and response objects.

How to do it...

1. We begin by defining an Application\Acl\AuthenticateInterface class.
We use this interface to support the Adapter software design pattern, making our
Authenticate class more generically useful by allowing a variety of adapters, each
of which can draw authentication from a different source (for example, from a file,
using OAuth2, and so on). Note the use of the PHP 7 ability to define the return
value data type:

namespace Application\Acl;
use Psr\Http\Message\ { RequestInterface, Responselnterface };
interface AuthenticateInterface
public function login(RequestInterface Srequest)
ResponselInterface;

X Note that by defining a method that requires a
& PSR-7-compliant request, and produces a PSR-7-compliant
i response, we have made this interface universally
applicable.

2. Next, we define the adapter that implements the 1ogin () method required by
the interface. We make sure to use the appropriate classes, and define fitting
constants and properties. The constructor makes use of Application\Database\
Connection, defined in Chapter 5, Interacting with a Database:

namespace Application\Acl;

use PDO;

use Application\Database\Connection;

use Psr\Http\Message\ { RequestInterface, Responselnterface };
use Application\MiddleWare\ { Response, TextStream };

class DbTable implements AuthenticateInterface

Chapter 9

const ERROR_AUTH = 'ERROR: authentication error';
protected S$Sconn;
protected Stable;
public function _ construct (Connection $conn, S$tableName)
{

Sthis->conn = $Sconn;

Sthis->table = $StableName;

}

The core login () method extracts the username and password from the request
object. We then do a straightforward database lookup. If there is a match, we store
user information in the response body, JSON-encoded:

public function login(RequestInterface S$request)
Responselnterface

{
Scode = 401;
$info = FALSE;
$body = new TextStream(self::ERROR AUTH) ;
$params = json decode ($request->getBody () ->getContents()) ;
Sresponse = new Response () ;
Susername = $params->username ?? FALSE;

if ($username)
$sgl = 'SELECT * FROM ' . Sthis->table
' WHERE email = ?';
$stmt = $this->conn->pdo->prepare ($sql) ;
$stmt->execute ([Susername]) ;
Srow = $stmt->fetch(PDO: :FETCH ASSOC) ;
if ($row)
if (password verify ($params->password,
$row['password']))
unset (Srow['password']) ;
Sbody =
new TextStream(json_ encode ($row)) ;
Sresponse->withBody ($body) ;
Scode = 202;
Sinfo = Srow;

}

return S$response->withBody ($body) ->withStatus ($code) ;

Developing Middleware

4.

. Best practice

AY

~ Never store passwords in clear text. When you need to do
a password match, use password_verify (), which

negates the need to reproduce the password hash.

The Authenticate class is a wrapper for an adapter class that implements
AuthenticationInterface. Accordingly, the constructor takes an adapter class
as an argument, as well as a string that serves as the key, in which authentication
information is stored in $ SESSION:

namespace Application\Acl;
use Application\MiddleWare\ { Response, TextStream };
use Psr\Http\Message\ { RequestInterface, Responselnterface };
class Authenticate
{
const ERROR_AUTH = 'ERROR: invalid token';
const DEFAULT KEY = 'auth';
protected S$adapter;
protected S$token;
public function __ construct (
AuthenticateInterface $Sadapter, S$key)
{
Sthis-skey = Skey;
Sthis->adapter = $Sadapter;

}

In addition, we provide a login form with a security token, which helps prevent Cross
Site Request Forgery (CSRF) attacks:

public function getToken ()

{
$this->token = bin2hex(random bytes (16)) ;
$_SESSION['token'] = $this->token;
return S$this->token;

}

public function matchToken ($token)

{

$sessToken = $ SESSION|['token'] ?? date('¥Ymd');
return (S$token == $sessToken) ;

}

public function getLoginForm($action = NULL)

{

Saction = (Saction) ? 'action="' . Saction . '" ' : !

Chapter 9

}

Soutput = '<form method="post" ' . Saction . '>';
Soutput .= '<tables<tr><th>Username</th><td>"';

Soutput .= '<input type="text" name="username" /></td>';
Soutput .= '</tr><tr><th>Password</th><td>"';

Soutput .= '<input type="password" name="password" />';
Soutput .= '</td></tr><tr><th> </th>';

Soutput .= '<td><input type="submit" /></td>';

Soutput .= '</tr></table>';

Soutput .= '<input type="hidden" name="token" value="';
Soutput .= $this->getToken() . '" />';

Soutput .= '</form>';

return S$output;

6. Finally, the 1ogin () method in this class checks whether the token is valid. If not, a
400 response is returned. Otherwise, the 1ogin () method of the adapter is called:

public function login (

RequestInterface Srequest) : Responselnterface

{

$params = json decode ($request->getBody () ->getContents()) ;
Stoken = $params->token ?? FALSE;
if (! ($token && $this-s>matchToken ($token)))
Scode = 400;
$body = new TextStream(self::ERROR_AUTH) ;
Sresponse = new Response ($code, $body) ;
} else {
Sresponse = $this->adapter->login(Srequest) ;

}

if ($response->getStatusCode() >= 200
&& $response->getStatusCode () < 300)
$ SESSION[S$this->key] =
json_decode ($response->getBody () ->getContents ()) ;
} else {
$ SESSION[$this->key] = NULL;
}

return Sresponse;

Developing Middleware

First of all, be sure to follow the recipes defined in Appendix, Defining PSR-7 Classes. Next,
go ahead and define the classes presented in this recipe, summarized in the following table:

Class Discussed in these steps
Application\Acl\AuthenticateInterface 1
Application\Acl\DbTable 2-3
Application\Acl\Authenticate 4-6

You can then define a chap 09 middleware authenticate.php calling program that
sets up autoloading and uses the appropriate classes:

<?php

session start();

define ('DB_CONFIG FILE', _ DIR . '/../config/db.config.php');
define ('DB_TABLE', 'customer 09');

define ('SESSION KEY', 'auth');

require @ DIR . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

use Application\Acl\ { DbTable, Authenticate };

use Application\MiddleWare\ { ServerRequest, Request, Constants,
TextStream };

You are now in a position to set up the authentication adapter and core class:

Sconn = new Connection(include DB_CONFIG_FILE) ;
$dbAuth = new DbTable($conn, DB _TABLE) ;
Sauth = new Authenticate ($dbAuth, SESSION KEY) ;

Be sure to initialize the incoming request, and set up the request to be made to the
authentication class:

$incoming = new ServerRequest () ;
S$incoming->initialize() ;
Soutbound = new Request () ;

Check the incoming class method to see if it is POST. If so, pass a request to the
authentication class:

if ($incoming->getMethod() == Constants::METHOD POST) {
$body = new TextStream(json encode (

314

Chapter 9

$incoming->getParsedBody ())) ;
Sresponse = $auth->login (Soutbound->withBody ($Sbody)) ;

}
Saction = $incoming->getServerParams () ['PHP SELF'];

?>
The display logic looks like this:
<?= Sauth->getLoginForm(Saction) ?>

Here is the output from an invalid authentication attempt. Notice the 401 status code on the
right. In this illustration, you could add a var dump () of the response object:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W3

€ (0 localhost:s @ | |Q search Ww A 4+ A © @B =
R o [e.0. 0. = B - mB|# a0 x

Request ® - e-@ -9 -0 -|@ - Clear ter output
[x PosT nttp://tocatnost:8080/chap.. [HTTE/1.1 401 Unauthorized 6ms]

Username

Password

Submit Query
Response

object(Application\MiddleWare\Response)#12 (5) {
["statusCode":protected]=>
NULL
["body":protected]=> m
object(Application\MiddleWare\TextStream)#18 (2) {
[*stream":protected]=>
string(27) "ERROR: authentication error"
["pos":protected]==>
int(@)

["version":protected]=>
MULL
["httpHeaders":protected]=
NULL

[*status"]=>

array(2) {

p:d

Developing Middleware

Here is a successful authentication:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W]
€ localhost E1| C wBa 9 3 4 © B =
R o . e .. o. = O-mEBE[#% Qo «x
Request ® o L] @® - Clear
I PosT nttp://localhost:8080/chap 0. [HITP/1.1 202 Accepted 102ms]
Username
Password

Submit Query

Response

object (Application\MiddleWare\Response)#12 (5) {

["statusCode":protected]=>

NULL

["body":protected]=>

object(Application\MiddleWare\TextStream)#14 (2) {
["stream":protected]l==
string(152) "{"id":"91","name":"Jose Carter","balance [}
[*pos”:protected]=>
int(@)

["version":protected]=>
NULL

["httpHeaders" :protected]=>
NULL

["status"]=>

array(2) {

For guidance on how to avoid CSRF and other attacks, please see Chapter 12, Improving
Web Security.

>

Using middleware to implement access

control

As the name implies, middleware sits in the middle of a sequence of function or method calls.
Accordingly, middleware is well suited for the task of "gate keeper". You can easily implement
an Access Control List (ACL) mechanism with a middleware class that reads the ACL, and
allows or denies access to the next function or method call in the sequence.

Chapter 9

How to do it...

1.

Probably the most difficult part of the process is determining which factors to include
in the ACL. For the purposes of illustration, let's say that our users are all assigned a
level and a status. In this illustration, the level is defined as follows:

'levels' => [0, 'BEG', 'INT', 'ADV']

The status could indicate how far they are in the membership signup process.

For example, a status of 0 could indicate they've initiated the membership signup
process, but have not yet been confirmed. A status of 1 could indicate their e-mail
address is confirmed, but they have not paid the monthly fee, and so on.

Next, we need to define the resources we plan to control. In this case, we will assume
there is a need to control access to a series of web pages on the site. Accordingly, we
need to define an array of such resources. In the ACL, we can then refer to the key:
'pages' => [0 => 'sorry', 'logout' => 'logout',

'login' => 'auth',

1 => 'pagel', 2 => 'page2', 3 => 'page3',

4 => 'page4', 5 => 'page5', 6 => 'page6',

9

7 => 'page7', 8 => 'page8', => 'page9']

Finally, the most important piece of configuration is to make assignments to pages
according to 1evel and status. The generic template used in the configuration
array might look like this:
status => ['inherits' => <key>, 'pages' => [level =>

[pages allowed], etc.]]

Now we are in a position to define the Ac1 class. As before, we use a few classes,
and define constants and properties appropriate for access control:

namespace Application\Acl;

use InvalidArgumentException;
use Psr\Http\Message\RequestInterface;
use Application\MiddleWare\ { Constants, Response, TextStream };

class Acl

{

const DEFAULT_ STATUS Yy

const DEFAULT LEVEL = 0;

const DEFAULT PAGE = 0;

const ERROR_ACL = 'ERROR: authorization error';

const ERROR APP = 'ERROR: requested page not listed';

Developing Middleware

const ERROR DEF =
'"ERROR: must assign keys "levels", "pages" and "allowed"';
protected S$default;
protected S$Slevels;
protected S$Spages;
protected S$Sallowed;

Inthe construct () method, we break up the assignments array into Spages,
the resources to be controlled, slevels, and $allowed, which are the actual
assignments. If the array does not include one of these three sub-components, an
exception is thrown:

public function _ construct (array S$assignments)
{
Sthis->default = $assignments/['default']
?? self::DEFAULT PAGE;
Sthis->pages = Sassignments['pages'] ?? FALSE;
Sthis->levels = $assignments|['levels'] ?? FALSE;
Sthis->allowed = $assignments['allowed'] ?? FALSE;
if (! ($this->pages && $this->levels && $this->allowed))
throw new InvalidArgumentException (self::ERROR_DEF) ;

}

You may have noticed that we allow inheritance. In Sallowed, the inherits key
can be set to another key within the array. If so, we need to merge its values with
the values currently under examination. We iterate through sallowed in reverse,
merging any inherited values each time through the loop. This method, incidentally,
also only isolates rules that apply to a certain status and level:

protected function mergelInherited($status, S$level)

{

Sallowed = Sthis->allowed[$Sstatus] ['pages'] [$levell]

?? array();
for ($x = $status; $x > 0; $x--) {
Sinherits = $Sthis->allowed[$x] ['inherits'];
if ($inherits)
$subArray =

Sthis->allowed[$inherits] ['pages'] [$Slevel]
?? array () ;
$allowed = array merge ($allowed, $subArray) ;

}

return Sallowed;

Chapter 9

8.

10.

11.

When processing authorization, we initialize a few variables, and then extract the
page requested from the original request URI. If the page parameter doesn't exist, we
seta 400 code:

public function isAuthorized(RequestInterface S$Srequest)
{

Scode = 401; // unauthorized

Stext['page'] = S$this->pages[S$Sthis->default];

Stext ['authorized'] = FALSE;

Spage = S$request->getUri () ->getQueryParams () ['page']
?? FALSE;
if ($page === FALSE) (
Scode = 400; // bad request

Otherwise, we decode the request body contents, and acquire the status and
level. We are then in a position to call mergeInherited (), which returns an array
of pages accessible to this status and level:

} else {
$params = json_decode (
Srequest->getBody () ->getContents ()) ;
S$status = $params->status ?? self::DEFAULT LEVEL;
Slevel = S$Sparams->level ?? '*!';
Sallowed = S$Sthis-s>mergeInherited($status, $level);

If the requested page is in the $allowed array, we set the status code to a happy
200, and return an authorized setting along with the web page that corresponds to
the page code requested:

if (in_array ($page, $allowed)) {

Scode = 200; // OK

Stext ['authorized'] = TRUE;

Stext ['page'] = S$this->pages[$Spagel] ;
} else {

$code = 401; }

}
We then return the response, JSON-encoded, and we are done:

$body = new TextStream(json encode ($text)) ;
return (new Response ())->withStatus ($code)
->withBody ($body) ;

}

Developing Middleware

After that, you will need to define Application\Acl\Acl, which is discussed in this recipe.
Now move to the /path/to/source/for/this/chapter folder and create two directories:
public and pages. In pages, create a series of PHP files, such as pagel . php, page2 .php,
and so on. Here is an example of how one of these pages might look:

<?php // page 1 ?>

<hl>Page 1</hl>

<hr>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. etc.</p>

You can also define a menu . php page, which could be included in the output:

<?php // menu ?>

Page 1l
Page 2
Page 3

// etc.

The logout . php page should destroy the session:

<?php
$ SESSION['info'] = FALSE;
session destroy () ;

?>

BACK

The auth.php page will display a login screen (as described in the previous recipe):
<?= Sauth->getLoginForm($Saction) ?>

You can then create a configuration file that allows access to web pages depending on level
and status. For the sake of illustration, call it chap 09 middleware acl config.php and
return an array that might look like this:

<?php

$min = [0, 'logout'l];

return [
'default' => 0, // default page
'levels' => [0, 'BEG', 'INT', 'ADV'],
'pages' => [0 => 'sorry',

'logout' => 'logout',

'login' => 'auth',
1 => 'pagel', 2 => 'page2',K 3 => 'page3',
4 => 'page4', 5 => 'page5', 6 => 'page6',

320

Chapter 9

7 => 'page7', 8 => 'page8', 9 => 'page9'l],
'allowed' => [
0 => ['inherits' => FALSE,
'pages' => ['*' => Smin, 'BEG' => S$Smin,
'"INT' => Smin, '"ADV' => Smin]],
1 => ['inherits' => FALSE,
'pages' => ['*' => ['logout'],
'BEG' => [1, 'logout'],
'INT' => [1,2, 'logout'],
'ADV' => [1,2,3, 'logout'll],

2 => ['inherits' => 1,
'pages' => ['BEG' => [4],
'"INT' => [4,5],
'ADV' => [4,5,6]]1],

3 => ['inherits' => 2,
'pages' => ['BEG' => [7],
"INT' => [7,8],
'ADV' => [7,8,9111

1;

Finally, in the public folder, define index . php, which sets up autoloading, and ultimately
calls up both the Authenticate and Acl classes. As with other recipes, define configuration
files, set up autoloading, and use certain classes. Also, don't forget to start

the session:

<?php
session_ start();
session regenerate id() ;

define ('DB_CONFIG FILE', _ DIR . '/../../config/db.config.php');
define ('DB_TABLE', 'customer 09');

define ('PAGE_DIR', _ DIR_ . '/../pages');

define ('SESSION KEY', 'auth');

require DIR_ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(_ DIR . '/../.."');

use Application\Database\Connection;

use Application\Acl\ { Authenticate, Acl };

use Application\MiddleWare\ { ServerRequest, Request, Constants,
TextStream };

321

Developing Middleware

Best practice

It is a best practice to protect your sessions. An easy way to help protect
a session is to use session_regenerate_id (), which invalidates
the existing PHP session identifier and generates a new one. Thus, if an
attacker were to obtain the session identifier through illegal means, the
window of time in which any given session identifier is valid is kept to a
minimum. -

a1

-~

You can now pull in the ACL configuration, and create instances for Authenticate as well
as Acl:

S$config = require _ DIR__ . '/../chap 09 middleware_acl config.php';
Sacl = new Acl (Sconfig) ;

Sconn = new Connection(include DB_CONFIG_FILE) ;

$dbAuth = new DbTable ($conn, DB _TABLE) ;

Sauth = new Authenticate ($dbAuth, SESSION KEY) ;

Next, define incoming and outbound request instances:

$incoming = new ServerRequest () ;
S$incoming->initialize() ;
Soutbound = new Request () ;

If the incoming request method was post, process the authentication calling the 1ogin ()
method:

if (strtolower ($incoming->getMethod()) == Constants::METHOD POST) {
$body = new TextStream(json encode (
$incoming->getParsedBody ())) ;
Sresponse = $auth->login (Soutbound->withBody (Sbody)) ;

}

If the session key defined for authentication is populated, that means the user has been
successfully authenticated. If not, we program an anonymous function, called later, which
includes the authentication login page:

$info = $_SESSION[SESSION_KEY] ?? FALSE;
if (!1$info) {
S$execute = function () use ($auth) {
include PAGE DIR . '/auth.php';

Vi

Otherwise, you can proceed with the ACL check. You first need to find, from the original query,
which web page the user wants to visit, however:

} else {
Squery = $incoming->getServerParams () ['QUERY STRING'] ?? '';

322

Chapter 9

You can then reprogram the Soutbound request to include this information:

$outbound->withBody (new TextStream(json_ encode ($info))) ;
Soutbound->getUri () ->withQuery (Squery) ;

Next, you'll be in a position to check authorization, supplying the outbound request as
an argument:

Sresponse = $acl->isAuthorized ($outbound) ;

You can then examine the return response for the authorized parameter, and program
an anonymous function to include the return page parameter if OK, and the sorry
page otherwise:

Sparams = json_decode ($response->getBody () ->getContents ()) ;
$isAllowed = $params->authorized ?? FALSE;
if ($isAllowed)

$execute = function () use ($response, $params) {
include PAGE DIR .'/' . $params->page . '.php';
echo '<pres', var_dump (Sresponse), '</pres';

echo '<pre>', var_dump ($_SESSION[SESSION_KEY]) ;
echo '</pre>';

Vi

} else {
$execute = function () use ($response)
include PAGE DIR .'/sorry.php';
echo '<pres', var_dump (Sresponse), '</pres';

echo '<pre>', var_dump ($_SESSION[SESSION_KEY]) ;
echo '</pre>';
}i
}
}

Now all you need to do is to set the form action and wrap the anonymous function in HTML:

Saction = $incoming->getServerParams () ['PHP SELF'];
?>

<!DOCTYPE html>

<head>

<title>PHP 7 Cookbook</titles>
<meta http-equiv="content-type" content="text/html;charset=utf-8" />
</head>
<body>
<?php $execute(); ?>
</body>
</html>

323

Developing Middleware

To test it, you can use the built-in PHP web server, but you will need to use the -t flag to
indicate that the document root is public:

cd /path/to/source/for/this/chapter
php -S localhost:8080 -t public

From a browser, you can access the http://localhost:8080/ URL.

If you try to access any page, you will simply be redirected back to the login page. As per the
configuration, a user with status = 1, and level = BEG can only access page 1 and log out. If,
when logged in as this user, you try to access page 2, here is the output:

X PHP 7 Cookbook - Mozilla Firefox
PHP 7 Cookbook x W3

€ (0 localhost @ | |Q search v B8 + & @ B =

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 o >0 .o BB = 0% ce
Page 8 Page 9 Logout @ P HTML CSS JS XHR Fonts Images Media Flash
Status =~ Meth... File Domain T.. Tra... Size

Sorry! !! MW 401 GET [?page=2 localh... html 1.30kB 1.30kB

We are currently unable to process your request!

object(Application\MiddleWare\Response)#13 (5) {

["statusCode":protected]==>

NULL

["body" :protected]=>

object (Application\MiddleWare\TextStream)#12 (2} {
["stream”:protected]=>
string(35) "{"page":"sorry","authorized":false}"
["pos":protected]=>
int(@)

["version":protected]=>
NULL
["httpHeaders":protected]=>
NULL h
["status"]==
array(2) {
["code"]==>
int(401)
["reason"]==
NULL

See also

This example relies on $_SESSION as the sole means of user authentication once they have
logged in. For good examples of how you can protect PHP sessions, please see Chapter 12,
Improving Web Security, specifically the recipe entitled Safeguarding the PHP session.

324

Chapter 9

Improving performance using the cache

The cache software design pattern is where you store a result that takes a long time to generate.
This could take the form of a lengthy view script or a complex database query. The storage
destination needs to be highly performant, of course, if you wish to improve the user experience
of website visitors. As different installations will have different potential storage targets, the
cache mechanism lends itself to the adapter pattern as well. Examples of potential storage
destinations include memory, a database, and the filesystem.

How to do it...

1.

As with a couple of other recipes in this chapter, as there are shared constants,
we define a discreet Application\Cache\Constants class:

<?php

namespace Application\Cache;

class Constants

{

const DEFAULT _GROUP = 'default';
const DEFAULT_PREFIX = 'CACHE ';
const DEFAULT_SUFFIX = '.cache';

const ERROR_GET = 'ERROR: unable to retrieve from cache';
// not all constants are shown to conserve space

}

Seeing as we are following the adapter design pattern, we define an interface next:

namespace Application\Cache;

interface CacheAdapterInterface

{
public function hasKey ($key) ;
public function getFromCache (key, Sgroup) ;
public function saveToCache ($Skey, S$data, S$group) ;
public function removeByKey ($key) ;
public function removeByGroup ($group) ;

}

Now we are ready to define our first cache adapter, in this illustration, by using a
MySQL database. We need to define properties that will hold column names as well
as prepared statements:

namespace Application\Cache;
use PDO;
use Application\Database\Connection;

325

Developing Middleware

4.

5.

326

class Database implements CacheAdapterInterface
{

protected $sqgl;

protected S$Sconnection;

protected Stable;

protected $dataColumnName;

protected SkeyColumnName;

protected S$SgroupColumnName;

protected S$SstatementHasKey = NULL;
protected S$SstatementGetFromCache = NULL;
protected S$statementSaveToCache = NULL;
protected S$statementRemoveByKey = NULL;

protected S$statementRemoveByGroup= NULL;

The constructor allows us to provide key column names as well as an Application\
Database\Connection instance and the name of the table used for the cache:

public function __ construct (Connection $connection,

Stable,

$idColumnName,

SkeyColumnName,

SdataColumnName,

$groupColumnName = Constants::DEFAULT_ GROUP)

{
Sthis->connection = S$Sconnection;
Sthis->setTable (Stable) ;
Sthis->setIdColumnName ($idColumnName) ;
Sthis->setDataColumnName (SdataColumnName) ;
Sthis->setKeyColumnName ($keyColumnName) ;
$Sthis->setGroupColumnName (SgroupColumnName) ;

}
The next few methods prepare statements, and are called when we access the
database. We do not show all the methods, but present enough to give you the idea:

public function prepareHasKey ()

{

$sgl = 'SELECT ' . $this->idColumnName . '~ !
'FROM ' . Sthis->table . '~ !
'WHERE ~' . Sthis-skeyColumnName . '~ = :key ';
$this->sql[_ METHOD_] = $sqgl;

Sthis->statementHasKey =
Sthis->connection->pdo->prepare ($sql) ;

}

public function prepareGetFromCache ()

Chapter 9

$sgl = 'SELECT ~' . $this->dataColumnName . '~ !
'"FROM ' . Sthis->table . '~ !
'WHERE ~' . S$Sthis-skeyColumnName . '~ = :key '
'AND " . Sthis->groupColumnName . '~ = :group';
$this->sql[_ METHOD_] = $sqgl;

Sthis->statementGetFromCache =
Sthis->connection->pdo->prepare ($sql) ;

}

6. Now we define a method that determines whether data for a given key exists:

public function hasKey (Skey)
{
Sresult = 0;
try {
if (!S$this->statementHasKey) S$this->prepareHasKey () ;
Sthis->statementHasKey->execute(['key' => Skeyl);
} catch (Throwable $e)
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(Constants::ERROR REMOVE KEY) ;
}
return (int) S$this->statementHasKey
->fetch (PDO: : FETCH _ASSOC) [$this->idColumnName] ;

}

7. The core methods are ones that read from and write to the cache. Here is the method
that retrieves from the cache. All we need to do is to execute the prepared statement,
which performs a SELECT, with a WHERE clause, which incorporates the key and group:

public function getFromCache (
S$key, $group = Constants::DEFAULT GROUP)

{

try {
if (!$this->statementGetFromCache)

Sthis->prepareGetFromCache () ;
Sthis->statementGetFromCache->execute (
['key' => S$key, 'group' => $groupl);
while (Srow = $Sthis->statementGetFromCache
->fetch (PDO: : FETCH ASSOC)) {
if ($row && count ($row))
yield unserialize (Srow[$Sthis->dataColumnName]) ;

327

Developing Middleware

} catch (Throwable $e)
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(Constants::ERROR GET) ;

}

8. When writing to the cache, we first determine whether an entry for this cache key
exists. If so, we perform an UPDATE; otherwise, we perform an INSERT:

public function saveToCache ($key, $data,
$group = Constants::DEFAULT GROUP)

{
$id = $this->hasKey(S$key) ;
Sresult = 0;
try {
if ($id) {
if (!Sthis->statementUpdateCache)
Sthis->prepareUpdateCache () ;
Sresult = $this->statementUpdateCache
->execute (['key' => Skey,
'data' => serialize($data),
'group' => $group,
'id' => sidl);
} else {
if (!$this->statementSaveToCache)
Sthis->prepareSaveToCache () ;
Sresult = Sthis->statementSaveToCache
->execute (['key' => Skey,
'data' => serialize($data),
'group' => $groupl) ;
}
} catch (Throwable $e)
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(Constants::ERROR SAVE) ;

}

return Sresult;

}

9. We then define two methods that remove the cache either by key or by group.
Removal by group provides a convenient mechanism if there are a large number of
items that need to be deleted:

public function removeByKey ($key)

{

Sresult = 0;
try {

328

Chapter 9

if (!Sthis->statementRemoveByKey)
Sthis->prepareRemoveByKey () ;
Sresult = Sthis->statementRemoveByKey->execute (
['key' => Skeyl);
} catch (Throwable $e)
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(Constants::ERROR REMOVE KEY) ;

}

return Sresult;

public function removeByGroup ($Sgroup)
{
Sresult = 0;
try {
if (!$this->statementRemoveByGroup)
Sthis->prepareRemoveByGroup () ;
Sresult = Sthis->statementRemoveByGroup->execute (
['group' => S$groupl) ;
} catch (Throwable $e)
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(Constants::ERROR REMOVE GROUP) ;

}

return Sresult;

}

10. Lastly, we define getters and setters for each of the properties. Not all are shown here
to conserve space:

public function setTable ($name)

{

Sthis->table = $name;

}

public function getTable ()

{

return Sthis->table;

}

// etc.

}

11. The filesystem cache adapter defines the same methods as defined earlier. Note the
use of md5 () , not for security, but as a way of quickly generating a text string from
the key:
namespace Application\Cache;
use RecursivelteratorIterator;

329

Developing Middleware

use RecursiveDirectoryIterator;
class File implements CacheAdapterInterface
{

protected $dir;

protected Sprefix;

protected S$suffix;

public function __ construct (

$dir, Sprefix = NULL, S$suffix = NULL)

if (!1file exists($dir)) {
error log(METHOD . ':' . Constants::ERROR DIR NOT) ;
throw new Exception(Constants::ERROR DIR NOT) ;
}
Sthis->dir = $dir;
Sthis->prefix = $prefix ?? Constants::DEFAULT PREFIX;
Sthis->suffix = $suffix ?? Constants::DEFAULT SUFFIX;

public function hasKey ($key)
{
$action = function ($name, $md5Key, &$item) {
if (strpos ($name, $md5Key) !== FALSE)
Sitem ++;
}
}i

return $this->findKey ($key, $action);

public function getFromCache (Skey,
Sgroup = Constants::DEFAULT GROUP)
{
$fn = Sthis->dir . '/' . $group . '/’
Sthis->prefix . md5($key) . $this->suffix;
if (file exists($fn)) ({
foreach (file($fn) as $line) { yield $line; }
} else {
return array () ;

public function saveToCache (
Skey, Sdata, $group = Constants::DEFAULT GROUP)

330

Chapter 9

S$SbaseDir = sthis->dir . '/' . Sgroup;
if (!file exists($baseDir)) mkdir (SbaseDir) ;
$fn = SbaseDir . '/' . $this->prefix . md5 (Skey)

Sthis->suffix;
return file put contents($fn, json encode(sdata)) ;

protected function findKey($Skey, callable Saction)
{
$md5Key = md5 (Skey) ;
Siterator = new RecursivelteratorIterator (
new RecursiveDirectoryIterator (Sthis->dir),
RecursivelteratorIterator::SELF FIRST) ;
Sitem = 0;
foreach ($iterator as $name => $obj)
Saction ($name, S$SmdS5Key, $item) ;

}

return Sitem;

public function removeByKey ($key)
{
$action = function ($name, $md5Key, &$item) {
if (strpos ($name, $md5Key) !== FALSE)
unlink ($name) ;
Sitem++;
}
}i

return $this->findKey ($key, S$action);

public function removeByGroup ($Sgroup)

{

Sremoved = 0;
SbaseDir = sthis->dir . '/' . Sgroup;
Spattern = sSbaseDir . '/' . sthis-s>prefix . '*!'

Sthis->suffix;

foreach (glob($pattern) as $file)
unlink (sfile) ;
Sremoved++;

}

return Sremoved;

331

Developing Middleware
12.

13.

14.

332

Now we are ready to present the core cache mechanism. In the constructor, we
accept a class that implements CacheAdapterInterface as an argument:

namespace Application\Cache;

use Psr\Http\Message\RequestInterface;

use Application\MiddleWare\ { Request, Response, TextStream };
class Core

{

public function _ construct (CacheAdapterInterface $adapter)
{
Sthis->adapter = $adapter;

}

Next are a series of wrapper methods that call methods of the same name from

the adapter, but accept a Psr\Http\Message\RequestInterface class an an
argument, and return a Psr\Http\Message\ResponseInterface as a response.
We start with a simple one: hasKey () . Note how we extract the key from the
request parameters:

public function hasKey (RequestInterface $request)

{
Skey = S$request->getUri () ->getQueryParams () ['key'] ?? '';
Sresult = $this->adapter->hasKey ($key) ;

}

To retrieve information from the cache, we need to pull the key and group parameters
from the request object, and then call the same method from the adapter. If no results
are obtained, we set a 204 code, which indicates the request was a success, but no
content was produced. Otherwise, we set a 200 (success) code, and iterate through the
results. Everything is then stuffed into a response object, which is returned:

public function getFromCache (RequestInterface S$Srequest)
{
Stext = array();
Skey = S$request->getUri () ->getQueryParams () ['key'] ?? '';
Sgroup = S$request->getUri () ->getQueryParams () ['group']
?? Constants::DEFAULT GROUP;
Sresults = S$this->adapter->getFromCache ($Skey, S$group) ;
if (!$results) {
Scode = 204;

} else {
Scode = 200;
foreach ($Sresults as $line) S$text[] = $line;

Chapter 9

}

if (!$text || count ($text) == 0) Scode = 204;

$body = new TextStream(json encode ($text)) ;

return (new Response())->withStatus (Scode)
->withBody ($body) ;

15. Strangely, writing to the cache is almost identical, except that the results are expected
to be either a number (that is, the number of rows affected), or a Boolean result:

public function saveToCache (RequestInterface S$request)

{

Stext = array();
Skey = Srequest->getUri () ->getQueryParams () ['key'] ?? '';
Sgroup = $request->getUri () ->getQueryParams () ['group']
?? Constants::DEFAULT GROUP;
Sdata = Srequest->getBody () ->getContents () ;
Sresults = S$this->adapter->saveToCache ($Skey, $data, $group) ;
if (!$results) {
Scode = 204;
} else {
Scode = 200;
Stext [] = S$results;

$body = new TextStream(json encode ($text)) ;
return (new Response ())->withStatus (Scode)
->withBody ($body) ;

}

16. The remove methods are, as expected, quite similar to each other:

public function removeByKey (RequestInterface S$request)

{

Stext = array();
Skey = Srequest->getUri () ->getQueryParams () ['key'] ?? '';
Sresults = S$this->adapter->removeByKey (Skey) ;
if (!$results) {

Scode = 204;
} else {

Scode = 200;

Stext [] = S$results;
}
$body = new TextStream(json encode ($text)) ;
return (new Response())->withStatus (Scode)

333

Developing Middleware

->withBody ($body) ;

public function removeByGroup (RequestInterface S$request)
{

Stext = array();

Sgroup = $request->getUri () ->getQueryParams () ['group']

?? Constants::DEFAULT GROUP;
Sresults = S$this->adapter->removeByGroup ($Sgroup) ;
if (!$results) {
Scode = 204;

} else {
Scode = 200;
Stext [] = Sresults;

}

$body = new TextStream(json encode ($text)) ;
return (new Response ())->withStatus (Scode)
->withBody ($body) ;

}

} // closing brace for class Core

In order to demonstrate the use of the Ac1 class, you will need to define the classes
described in this recipe, summarized here:

Class Discussed in these steps
Application\Cache\Constants 1
Application\Cache\CacheAdapterInterface | 2
Application\Cache\Database 3-10
Application\Cache\File 11
Application\Cache\Core 12-16

Next, define a test program, which you could call chap 09 middleware cache db.php.
In this program, as usual, define constants for necessary files, set up autoloading, use the
appropriate classes, oh... and write a function that produces prime numbers (you're probably
re-reading that last little bit at this point. Not to worry, we can help you with that!):

<?php

define ('DB_CONFIG FILE', _DIR . '/../config/db.config.php') ;
define ('DB_TABLE', 'cache');

define ('CACHE DIR', _DIR . '/cache');

define ('MAX NUM', 100000) ;

Chapter 9

require _ DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

use Application\Cache\{ Constants, Core, Database, File };
use Application\MiddleWare\ { Request, TextStream };

Well, a function that takes a long time to run is needed, so prime number generator, here
we go! The numbers 1, 2, and 3 are given as primes. We use the PHP 7 yield from syntax
to produce these first three. then, we skip right to 5, and proceed up to the maximum value
requested:

function generatePrimes ($max)

{

yield from [1,2,3];
for (8$x = 5; $x < $max; Sx++)
{
if ($x & 1) |
Sprime = TRUE;
for($i = 3; $i < $x; $i++) {
if((sx % $1i) === 0
S$prime = FALSE;
break;

}

if ($prime) yield $x;

}

You can then set up a database cache adapter instance, which serves as an argument for
the core:

$conn = new Connection(include DB CONFIG FILE) ;
SdbCache = new Database (

$conn, DB TABLE, 'id', 'key', 'data', 'group');
Score = new Core ($dbCache) ;

Alternatively, if you wish to use the file cache adapter instead, here is the appropriate code:

$fileCache = new File(CACHE DIR) ;
Score = new Core($fileCache) ;

If you wanted to clear the cache, here is how it might be done:

Suristring = '/?group=' . Constants::DEFAULT GROUP;
ScacheRequest = new Request ($SuriString, 'get');
Sresponse = $core-s>removeByGroup ($ScacheRequest) ;

335

Developing Middleware

You can use time () and microtime () to see how long this script runs with and without
the cache:

Sstart = time() + microtime (TRUE) ;
echo "\nTime: " . S$start;

Next, generate a cache request. A status code of 200 indicates you were able to obtain a list
of primes from the cache:

SuriString = '/?key=Testl';
ScacheRequest = new Request (SuriString, 'get');
Sresponse = $core->getFromCache ($cacheRequest) ;
$Sstatus = Sresponse->getStatusCode () ;
if ($status == 200) {
S$primes = json_decode ($response->getBody () ->getContents()) ;

Otherwise, you can assume nothing was obtained from the cache, which means you need to
generate prime numbers, and save the results to the cache:

} else {
$primes = array();
foreach (generatePrimes (MAX_NUM) as S$num) {

Sprimes[] = $num;

}
$body = new TextStream(json_ encode ($primes)) ;
Sresponse = $core->saveToCache (
$cacheRequest->withBody ($body)) ;

}

You can then check the stop time, calculate the difference, and have a look at your new list
of primes:

Stime = time() + microtime (TRUE) ;
Sdiff = S$time - $start;

echo "\nTime: Stime";

echo "\nDifference: $diff";

var_ dump ($primes) ;

Here is the expected output before values were stored in the cache:

336

Chapter 9

,

Terminal

561,97571,97577,97579,97583,97607,97609,97613,97649,97651,97673,97687,97711,9772
9,97771,97777,97787,97789,97813,97829,97841,97843,97847,97849,97859,97861,97871,
97879,97883,97919,97927,97931,97943,97961,97967,97973,97987,98009,98011,98017,98
041,98047,98057,98081,981601,98123,98129,98143,98179,98207,98213,98221,98227,9825
1,98257,98269,98297,98299,98317,98321,98323,98327,98347,98369,98377,98387,98389,
98407,98411,98419,98429,98443,98453,98459,98467 ,98473,98479,98491,98507,98519,98
533,98543,98561,98563,98573,98597,98621,98627,98639,98641,98663,98669,98689,9871
1,98713,98717,98729,98731,98737,98773,98779,98801,98807,98809,98837,98849,98867,
98869,98873,98887,98893,98897,98899,98969,98911,98927,98929,98939,98947,98953,98
963,98981,98993,98999,99013,99017,99023,99041,99853,99079,99083,99089,991603,9910
9,99119,99131,99133,99137,99139,99149,99173,99181,99191,99223,99233,99241,99251,
99257,99259,99277,99289,99317,99347,99349,99367,99371,99377,99391,99397,99401,99
409,99431,99439,99469,99487,99497,99523,99527,99529,99551,99559,99563,99571,9957
7,99581,99607,99611,99623,99643,99661,99667,99679,99689,99707,99709,99713,99719,
99721,99733,99761,99767,99787,99793,99869,99817,99823,99829,99833,99839,99859,99
871,99877,99881,99901,99907,99923,99929,99961,99971,99989,99991]"

Time: 2934730510.8487
Difference: 33.938917160034

(program exited with code: @) h
Press return to continue

You can now run the same program again, this time retrieving from the cache:

729,97771,97777,97787,97789,97813,97829,97841,97843,97847,97849,97859,97861,9787
1,97879,97883,97919,97927,97931,97943,97961,97967,97973,97987,98009, 98011, 98017,
98041,98047,98057,98081,981081,98123,98129,98143,98179,98207,98213,98221,98227,98
251,98257,98269,98297,98299,98317,98321,98323,98327,98347,98369,98377,98387,9838
9,98487,98411,98419,98429,98443,98453,98459,98467 ,98473,98479,98491,98507,98519,
98533,98543,98561,98563,98573,98597,98621,98627,98639,98641,98663,98669,98689,98
711,98713,98717,98729,98731,98737,98773,98779,98801,98807,988089,98837,98849,9886
7,98869,98873,98887,98893,98897,98899,98909,98911,98927,98929,98939,98947,98953,
98963,98981,98993,98999,99013,99017,99023,99041,99053,99079,99083,99089,99103 ,99
109,99119,99131,99133,99137,99139,99149,99173,99181,99191,99223,99233,99241,9925
1,99257,99259,99277,99289,99317,99347,99349,99367,99371,99377,99391,99397,99401,
99409,99431,99439,99469,99487,99497,99523,99527,99529,99551,99559,99563,99571,99
577,99581,99607,99611,99623,99643,99661,99667,99679,99689,99787,99709,99713,9971
9,99721,99733,99761,99767,99787,99793,99809,99817,99823,99829,99833,99839,99859,
99871,99877,99881,99901,99987,99923,99929,99961,99971,99989,99991]"

1

Time: 2934730718.9282
Difference: 0.0031728744506836

(program exited with code: @)
Press return to continue

337

Developing Middleware

Allowing for the fact that our little prime number generator is not the world's most efficient,
and also that the demonstration was run on a laptop, the time went from over 30 seconds
down to milliseconds.

There's more...

Another possible cache adapter could be built around commands that are part of the Alternate
PHP Cache (APC) extension. This extension includes such functions as apc_exists (),
apc_store (), apc_fetch(), and apc_clear cache (). These functions are perfect for our
hasKey (), saveToCache (), getFromCache (), and removeBy* () functions.

See also

You might consider making slight changes to the cache adapter classes described previously
following PSR-6, which is a standards recommendation directed towards the cache. There is
not the same level of acceptance of this standard as with PSR-7, however, so we decided to
not follow this standard exactly in the recipe presented here. For more information on PSR-6,
please refer to http://www.php-fig.org/psr/psr-6/.

Implementing routing

Routing refers to the process of accepting user-friendly URLs, dissecting the URL into its
component parts, and then making a determination as to which class and method should

be dispatched. The advantage of such an implementation is that not only can you make your
URLs Search Engine Optimization (SEOQ)-friendly, but you can also create rules, incorporating
regular expression patterns, which can extract values of parameters.

How to do it...

1. Probably the most popular approach is to take advantage of a web server that
supports URL rewriting. An example of this is an Apache web server configured to
use mod_rewrite. You then define rewriting rules that allow graphic file requests
and requests for CSS and JavaScript to pass untouched. Otherwise, the request
would be funneled through a routing method.

2. Another potential approach is to simply have your web server virtual host definition
point to a specific routing script, which then invokes the routing class, make routing
decisions, and redirect appropriately.

338

Chapter 9

The first code to consider is how to define routing configuration. The obvious answer
is to construct an array, where each key would point to a regular expression against
which the URI path would match, and some form of action. An example of such
configuration is shown in the following code snippet. In this example, we have three
routes defined: home, page, and the default. The default should be last as it will
match anything not matched previously. The action is in the form of an anonymous
function that will be executed if a route match occurs:

Sconfig = [
'home' => [
turi' => '1h/81,
'exec' => function ($matches) {
include PAGE DIR . '/pageO.php'; }
1,
'page' => [

‘uri' => '1%/(page)/ (\d+)s$!",
'exec' => function (Smatches) {
include PAGE DIR . '/page' . $matches([2] . '.php'; }
1.
Router: :DEFAULT MATCH => [
'uri' => '!.*x1",
'exec' => function ($matches) {
include PAGE DIR . '/sorry.php'; }
1.
1;

Next, we define our Router class. We first define constants and properties that will
be of use during the process of examining and matching a route:

namespace Application\Routing;
use InvalidArgumentException;
use Psr\Http\Message\ServerRequestInterface;
class Router
{
const DEFAULT_MATCH = 'default';
const ERROR NO DEF = 'ERROR: must supply a default match';
protected $request;
protected S$SrequestUri;
protected SuriParts;
protected S$docRoot;
protected S$Sconfig;
protected S$routeMatch;

339

Developing Middleware

5. The constructor accepts a ServerRequestInterface compliant class, the path to
the document root, and the configuration file mentioned earlier. Note that we throw
an exception if the default configuration is not supplied:

public function __ construct (ServerRequestInterface $request,
$docRoot, S$config)

{
Sthis->config = $config;
$this->docRoot = $docRoot;
Sthis->request = S$request;
Sthis->requestUri =
$request->getServerParams () ['REQUEST URI'] ;
Sthis->uriParts = explode('/', Sthis->requestUri) ;
if (!isset (Sconfig[self::DEFAULT MATCH])) {
throw new InvalidArgumentException (
self::ERROR_NO_DEF) ;

}

6. Next, we have a series of getters that allow us to retrieve the original request,
document root, and final route match:

public function getRequest ()

{

return $this->request;

}

public function getDocRoot ()

{

return S$this->docRoot;

}

public function getRouteMatch ()

{

return S$this->routeMatch;

}

7. The isFileOrDir () method is used to determine whether we are trying to match
against a CSS, JavaScript, or graphic request (among other possibilities):

public function isFileOrDir ()
{
$fn = Sthis->docRoot . '/' . Sthis->requestUri;
$fn = str replace('//', '/', $fn);
if (file exists($fn))
return S$fn;
} else {
return '';

340

Chapter 9

8. Finally we define match (), which iterates through the configuration array and runs
the uri parameter through preg match (). If positive, the configuration key and
Smatches array populated by preg match () are stored in $routeMatch, and the
callback is returned. If there is no match, the default callback is returned:

public function match ()
{
foreach ($this-s>config as $key => $route)
if (preg match(sroute['uri'],
$this->requestUri, $matches))
Sthis->routeMatch['key'] = Skey;
Sthis->routeMatch['match'] = S$matches;
return S$Sroute['exec'];
}
}
return S$this->config[self::DEFAULT MATCH] ['exec'];
}
}

First, change to /path/to/source/for/this/chapter and create a directory called
routing. Next, define a file, index.php, which sets up autoloading and uses the right
classes. You can define a constant PAGE_DIR that points to the pages directory created in
the previous recipe:

<?php

define ('DOC_ROOT', _ DIR);

define ('PAGE_DIR', DOC ROOT . '/../pages');

require once ~ DIR . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(_ DIR . '/../..');

use Application\MiddleWare\ServerRequest;
use Application\Routing\Router;

Next, add the configuration array discussed in step 3 of this recipe. Note that you could add
(/) ? at the end of the pattern to account for an optional trailing slash. Also, for the home
route, you could offer two options: either / or /home:

Sconfig = [
'home' => [
'uri' => '!*(/|/home)$!",
'exec' => function ($matches) {
include PAGE DIR . '/pageO.php'; }

341

Developing Middleware

1,
'page' => [
'uri' => '1%/(page)/ (\d+) (/) 2$!",
'exec' => function (S$matches) {
include PAGE DIR . '/page' . $matches([2] . '.php'; }
1,
Router: :DEFAULT MATCH => [

'uri!' => 'l.*1t,
'exec' => function (Smatches) {
include PAGE DIR . '/sorry.php'; }

1,
1;

You can then define a router instance, supplying an initialized ServerRequest instance as
the first argument:

Srouter = new Router ((new ServerRequest ())

->initialize (), DOC_ROOT, $config);
Sexecute = Srouter-s>match() ;
Sparams = S$router->getRouteMatch() ['match'];

You then need to check to see whether the request is a file or directory, and also whether the
route match is /:

if ($fn = Srouter->isFileOrDir ()

&& $router-s>getRequest () ->getUri () ->getPath() != /') {
return FALSE;

} else {
include DOC_ROOT . '/main.php';

}
Next, define main.php, something like this:

<?php // demo using middleware for routing ?>
<!DOCTYPE htmls>
<head>
<title>PHP 7 Cookbook</titles>
<meta http-equiv="content-type"
content="text/html;charset=utf-8" />
</head>
<body>
<?php include PAGE DIR . '/route menu.php'; ?>
<?php $execute ($params); ?>
</body>
</html>

342

Chapter 9

And finally, a revised menu that uses user-friendly routing is required:

<?php // menu for routing ?>
Home

Page 1l
Page 2
Page 3
<!-- etc. -->

To test the configuration using Apache, define a virtual host definition that points to
/path/to/source/for/this/chapter/routing. In addition, define a .htaccess file
that directs any request that is not a file, directory, or link to index . php. Alternatively, you
could just use the built-in PHP webserver. In a terminal window or command prompt, type
this command:

cd /path/to/source/for/this/chapter/routing
php -S localhost:8080

In a browser, the output when requesting http://localhost :8080/home is something
like this:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x B

€ (0 localhost EJ| & ||Q searc w B 4+ A © H

Home Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9

Main Page

Lorem ipsum dolor sit amet, consectetur adipiscing elit. An
est aliquid per se ipsum flagitiosum, etiamsi nulla comitetur
infamia? Atque hoc loco similitudines eas, quibus illi uti
solent, dissimillimas proferebas. Est enim effectrix multarum
et magnarum voluptatum. Nescio quo modo praetervolavit
oratio. An hoc usque quaque, aliter in vita? Duo Reges:
constructio interrete. Primum in nostrane potestate est, quid
meminerimus? Non potes, nisi retexueris illa. Ut aliquid
scire se gaudeant?

Quod non faceret, si in voluptate summum bonum poneret.
Quid autem habent admirationis, cum prope accesseris?
Quo plebiscito decreta a senatu est consuli quaestio Cn. Ita
ne hoc quidem modo paria peccata sunt. Non igitur de
improbo, sed de callido improbo quaerimus, qualis Q. Nam
ista vestra: Si gravis, brevis; Cum id fugiunt, re eadem
defendunt, quae Peripatetici, verba. Nos quidem Virtutes sic
natae sumus, ut tibi serviremus, aliud negotii nihil habemus.

343

Developing Middleware

See also

For information on rewriting using the NGINX web server, have a look at this article: http://
nginx.org/en/docs/http/ngx_http rewrite module.html. There are plenty of
sophisticated PHP routing libraries available that introduce far greater functionality than

the simple router presented here. These include Altorouter (http://altorouter.com/),
TreeRoute (https://github.com/baryshev/TreeRoute), FastRoute (https://
github.com/nikic/FastRoute), and Aura.Router. (https://github.com/auraphp/
Aura.Router). In addition, most frameworks (for example, Zend Framework 2 or Codelgniter)
have their own routing capabilities.

Making inter-framework system calls

One of the primary reasons for the development of PSR-7 (and middleware) was a growing
need to make calls between frameworks. It is of interest to note that the main documentation
for PSR-7 is hosted by PHP Framework Interop Group (PHP-FIG).

How to do it...

1. The primary mechanism used in middleware inter-framework calls is to create a driver
program that executes framework calls in succession, maintaining a common request
and response object. The request and response objects are expected to represent
Psr\Http\Message\ServerRequestInterface and Psr\Http\Message\
Responselnterface, respectively.

2. For the purposes of this illustration, we define a middleware session validator. The
constants and properties reflect the session thumbprint, which is a term we use
to incorporate factors such as the website visitor's IP address, browser, and
language settings:

namespace Application\MiddleWare\Session;
use InvalidArgumentException;
use Psr\Http\Message\ {
ServerRequestInterface, Responselnterface };
use Application\MiddleWare\ { Constants, Response, TextStream };
class Validator

{

const KEY TEXT = 'text';

const KEY SESSION = 'thumbprint';
const KEY STATUS CODE = 'code';
const KEY STATUS REASON = 'reason';

Chapter 9

const KEY STOP TIME = 'stop time';

const ERROR TIME = 'ERROR: session has exceeded stop time';
const ERROR_SESSION = 'ERROR: thumbprint does not match';
const SUCCESS _SESSION = 'SUCCESS: session validates OK';

protected S$sessionKey;
protected S$ScurrentPrint;
protected S$storedPrint;
protected S$ScurrentTime;
protected S$storedTime;

The constructor takes a ServerRequestInterface instance and the session as
arguments. If the session is an array (such as $_SESSION), we wrap it in a class. The
reason why we do this is in case we are passed a session object, such as JSession
used in Joomla. We then create the thumbprint using the previously mentioned
factors. If the stored thumbprint is not available, we assume this is the first time, and
store the current print as well as stop time, if this parameter is set. We used mds ()
because it's a fast hash, is not exposed externally, and is therefore useful to this
application:

public function __ construct (
ServerRequestInterface $request, $stopTime = NULL)

Sthis->currentTime = time() ;
Sthis->storedTime = $ SESSION[self::KEY STOP TIME] ?? O;
Sthis->currentPrint =
md5 ($request->getServerParams () ['REMOTE _ADDR']
$request->getServerParams () ['HTTP_USER AGENT']
$request->getServerParams () ['HTTP_ACCEPT LANGUAGE']) ;
$this->storedPrint = $ SESSION([self::KEY SESSION]
?7? NULL;
if (empty($this-s>storedPrint)) ({
Sthis->storedPrint = $this->currentPrint;
$ SESSION[self::KEY SESSION] = S$this->storedPrint;
if ($stopTime)
Sthis->storedTime = $stopTime;
$ SESSION[self::KEY STOP_TIME] = $stopTime;

345

Developing Middleware

4. It's notrequired to define __invoke (), but this magic method is quite
convenient for standalone middleware classes. As is the convention, we accept
ServerRequestInterface and ResponseInterface instances as arguments.
In this method, we simply check to see whether the current thumbprint matches the
one stored. The first time, of course, they will match. But on subsequent requests, the
chances are an attacker intent on session hijacking will be caught out. In addition, if
the session time exceeds the stop time (if set), likewise, a 401 code will be sent:

public function __ invoke(
ServerRequestInterface $request, Response $response)

Scode = 401; // unauthorized
if ($this-s>currentPrint != $this->storedPrint)
Stext [self: :KEY_TEXT] = self::ERROR_SESSION;
$text [self::KEY STATUS REASON] =
Constants: :STATUS CODES[401] ;
} elseif ($this->storedTime) ({
if ($this-s>currentTime > $this->storedTime) {
Stext [self: :KEY_TEXT] = self::ERROR_TIME;
$text [self::KEY STATUS REASON] =
Constants: :STATUS CODES[401] ;
} else {
$code = 200; // success

}

if ($code == 200) {
Stext [self::KEY TEXT] = self::SUCCESS_ SESSION;
$text [self::KEY STATUS REASON] =

Constants: :STATUS CODES[200] ;

}

Stext [self::KEY STATUS CODE] = $code;

$body = new TextStream(json encode ($text)) ;

return S$Sresponse->withStatus ($Scode) ->withBody ($body) ;

}

5. We can now put our new middleware class to use. The main problems with inter-
framework calls, at least at this point, are summarized here. Accordingly, how we
implement middleware depends heavily on the last point:

o Not all PHP frameworks are PSR-7-compliant
o Existing PSR-7 implementations are not complete

o All frameworks want to be the "boss"

346

Chapter 9

As an example, have a look at the configuration files for Zend Expressive, which is a
self-proclaimed PSR7 Middleware Microframework. Here is the file, middleware-
pipeline.global.php, Which is located in the config/autoload folderin
a standard Expressive application. The dependencies key is used to identify the
middleware wrapper classes that will be activated in the pipeline:
<?php
use Zend\Expressive\Container\ApplicationFactory;
use Zend\Expressive\Helper;
return [
'dependencies' => [
'factories' => [
Helper\ServerUrlMiddleware: :class =>
Helper\ServerUrlMiddlewareFactory: :class,
Helper\UrlHelperMiddleware: :class =>
Helper\UrlHelperMiddlewareFactory: :class,
// insert your own class here
1.
1,

Under the middleware pipline key, you can identify classes that will be executed
before or after the routing process occurs. Optional parameters include path, error,
and priority:
'middleware pipeline' => [

'always' => [

'middleware' => [
Helper\ServerUrlMiddleware: :class,

1,

'priority' => 10000,

1.
'routing' => [

'middleware' => [
ApplicationFactory: :ROUTING MIDDLEWARE,
Helper\UrlHelperMiddleware: :class,

// insert reference to middleware here
ApplicationFactory: :DISPATCH MIDDLEWARE,
1,
'priority' => 1,
1.
'error' => [
'middleware' => [
// Add error middleware here.
1,

'error' => true,

347

Developing Middleware

'priority' => -10000,
1,
1,
1

8. Another technique is to modify the source code of an existing framework module, and
make a request to a PSR-7-compliant middleware application. Here is an example
modifying a Joomla! installation to include a middleware session validator.

9. Next, add this code the end of the index . php file in the /path/to/joomla folder.
Since Joomla! uses Composer, we can leverage the Composer autoloader:

session start(); // to support use of $ SESSION

$loader = include _ DIR__ . '/libraries/vendor/autoload.php';
$loader->add('Application', _ DIR__ . '/libraries/vendor') ;
$loader->add('Psr', _ DIR . '/libraries/vendor') ;

10. We can then create an instance of our middleware session validator, and make a
validation request just before Sapp = JFactory::getApplication('site') ;:

$session = JFactory::getSession() ;
Srequest =
(new Application\MiddleWare\ServerRequest ())->initialize() ;
Sresponse = new Application\MiddleWare\Response () ;
$validator = new Application\Security\Session\Validator (
Srequest, S$session);
Sresponse = $validator (Srequest, S$Sresponse) ;
if ($response->getStatusCode() != 200)
// take some action

}

First, create the Application\MiddleWare\Session\Validator test middleware class
described in steps 2-5. Then you will need to go to https://getcomposer.org/ and follow
the directions to obtain Composer. Download it to the /path/to/source/for/this/
chapter folder. Next, build a basic Zend Expressive application, as shown next. Be sure to
select No when prompted for minimal skeleton:

cd /path/to/source/for/this/chapter

php composer.phar create-project zendframework/zend-expressive-skeleton
expressive

348

Chapter 9

This will create a folder /path/to/source/for/this/chapter/expressive. Change
to this directory. Modify public/index.php as follows:

<?php

if (php_sapi name() === 'cli-server'
&& is_file(_ DIR . parse_url(

$_SERVER['REQUEST URI'], PHP URL_PATH))

) A

return false;
}
chdir (dirname (_ DIR));
session_start();
$ SESSION['time'] = time();
$appDir = realpath(DIR . '/../../..');
$loader = require 'vendor/autoload.php’;
$loader->add('Application', $appDir);
Scontainer = require 'config/container.php';
Sapp = $container->get (\Zend\Expressive\Application::class) ;
Sapp->run() ;

You will then need to create a wrapper class that invokes our session validator middleware.
Create a SessionvValidateAction.php file that needs to go in the /path/to/source/
for/this/chapter/expressive/src/App/Action folder. For the purposes of this
illustration, set the stop time parameter to a short duration. In this case, time () + 10 gives
you 10 seconds:

namespace App\Action;

use Application\MiddleWare\Session\Validator;

use Zend\Diactoros\ { Reqguest, Response };

use Psr\Http\Message\ResponseInterface;

use Psr\Http\Message\ServerRequestInterface;

class SessionValidateAction

{
public function __ invoke (ServerRequestInterface S$request,
ResponseInterface $response, callable $next = null)

{

$inbound = new Response() ;

Svalidator = new Validator (Srequest, time()+10);
$inbound = $validator ($Srequest, S$Sresponse) ;

if ($inbound->getStatusCode() != 200)

session_destroy () ;

setcookie ('PHPSESSID', 0, time()-300);

$params = json_decode (
$inbound->getBody () ->getContents (), TRUE) ;

349

Developing Middleware

echo '<hls>', $params([Validator::KEY TEXT], '</hl>"';
echo '<pres',var_ dump ($inbound), '</pre>';
exit;

}

return S$next ($Srequest, Sresponse) ;

}

You will now need to add the new class to the middleware pipeline. Modify
config/autoload/middleware-pipeline.global.php as follows. Modifications are
shown in bold:

<?php
use Zend\Expressive\Container\ApplicationFactory;
use Zend\Expressive\Helper;

return [
'dependencies' => [

'invokables' => [
App\Action\SessionValidateAction::class =>
App\Action\SessionValidateAction::class,

1,

'factories' => [

Helper\ServerUrlMiddleware: :class =>
Helper\ServerUrlMiddlewareFactory: :class,
Helper\UrlHelperMiddleware: :class =>
Helper\UrlHelperMiddlewareFactory: :class,
1,

1,

'middleware pipeline' => [
'always' => [

'middleware' => [
Helper\ServerUrlMiddleware: :class,

1,

'priority' => 10000,

1,
'routing' => [

'middleware' => [
ApplicationFactory: :ROUTING MIDDLEWARE,
Helper\UrlHelperMiddleware: :class,
App\Action\SessionValidateAction::class,
ApplicationFactory: :DISPATCH MIDDLEWARE,

1,

'priority' => 1,

1,

350

'error' => [

1,

1;

'middleware' => [

// Add error middleware here.

'error' => true,
'priority' => -10000,

Chapter 9

You might also consider modifying the home page template to show the status of $ SESSION.
The file in question is /path/to/source/for/this/chapter/expressive/templates/
app/home-page . phtml. Simply adding var dump ($_SESSION) should suffice.

Initially, you should see something like this:

Home - zend-expressive - Mozilla Firefox

Z¥ Home -zend-expres...

€

localhost

array(3) {
["time"]=>
int(1467628836)
["thumbprint"]=>
string(32) "99355Te649001334197af9b95c99d687"
["stop_time"]=>
int(1467628846)

Welcome to zend-expressive

Congratulations! You have successfully installed the zend-expressive skeleton application. This skeleton can

wBe 9 ¥+ A © @

351

Developing Middleware

After 10 seconds, refresh the browser. You should now see this:

Mozilla Firefox

zr http://localhost:8080/ x

€ localhost c Ww A + &# © H =

ERROR: session has exceeded stop time

object(Zend\Stratigility\Http\Responsel#109 (2} {
["complete": "Zend\Stratigility\Http\Response":private]=>
bool({false)
["psrResponse”:"Zend\Stratigility\Http\Response" :private]=>
object(Zend\Diactoros\Response)#108 (7) {
["phrases":"Zend\Diactoros\Response":private]=>

array(58) {
[108]=>
string(8) "Continue”
[101]=
string(19) "Switching Protocols"”
[102]==>
string(1@) "Processing"
[208]=>
string(2) "OK"
[201]=
string(7) "Created”
[202]=
string(8) "Accepted" h
[203]=
string(29) "Non-Authoritative Information"
[204]=
string(1@) "Mo Content"
[205]==>
string(13) "Reset Content"
[206]=

Using middleware to cross languages

Except in cases where you are trying to communicate between different versions of PHP, PSR-
7 middleware will be of minimal use. Recall what the acronym stands for: PHP Standards
Recommendations. Accordingly, if you need to make a request to an application written in
another language, treat it as you would any other web service HTTP request.

How to do it...

1. Inthe case of PHP 4, you actually have a chance in that there is limited support
for object-oriented programming. Accordingly, the best approach would be to
downgrade the basic PSR-7 classes described in the first three recipes. There is not
enough space to cover all the changes, but we present a potential PHP 4 version of
Application\MiddleWare\ServerRequest. The first thing to note is that there
are no namespaces! Accordingly, we use a classname with underscores, _, in place of
namespace separators:

class Application MiddleWare ServerRequest
extends Application MiddleWare Request
implements Psr Http Message ServerRequestInterface

{

352

Chapter 9

2. All properties are identified in PHP 4 using the key word var:

var $serverParams;

var $cookies;

var S$queryParams;

// not all properties are shown

3. Theinitialize () method is almost the same, except that syntax such as $this-
>getServerParams () ['REQUEST_ URI'] was not allowed in PHP 4. Accordingly,
we need to split this out into a separate variable:

function initialize()
{
Sparams = S$this->getServerParams() ;
Sthis->getCookieParams () ;
Sthis->getQueryParams () ;
Sthis->getUploadedFiles;
$Sthis->getRequestMethod() ;
Sthis->getContentType () ;
Sthis->getParsedBody () ;
return $this->withRequestTarget ($params['REQUEST URI']) ;

}

4. All of the $_XXX super-globals were present in later versions of PHP 4:

function getServerParams ()
if (!$this-s>serverParams) {
$this->serverParams = $_ SERVER;

}

return S$this->serverParams;

}

// not all getXXX() methods are shown to conserve space

5. The null coalesce operator was only introduced in PHP 7. We need to use
isset (XXX) ? XXX : ''; instead:

function getRequestMethod ()
{
Sparams = S$this->getServerParams() ;
Smethod = isset ($params['REQUEST_METHOD'])
? $params['REQUEST METHOD'] : '';
Sthis->method = strtolower ($method) ;
return $this->method;

353

Developing Middleware

6.

7.

The JSON extension was not introduced until PHP 5. Accordingly, we need
to be satisfied with raw input. We could also possibly use serialize () or
unserialize () in place of json_encode () and json decode ():

function getParsedBody ()
{
if (!$this-s>parsedBody) {
if (($this->getContentType () ==

Constants: :CONTENT TYPE FORM ENCODED
|| $this->getContentType() ==
Constants: :CONTENT_ TYPE MULTI FORM)
&& Sthis->getRequestMethod ()
Constants: :METHOD_POST)

$this->parsedBody = $_ POST;
} elseif ($this->getContentType() ==
Constants: : CONTENT_TYPE_JSON
|| $this->getContentType () ==
Constants: :CONTENT TYPE_HAL_JSON)

ini set("allow_url fopen", true);
Sthis->parsedBody =
file get contents('php://stdin');
} elseif (l!empty($ REQUEST)) {
$this->parsedBody = $ REQUEST;
} else {
ini set("allow_url fopen", true);
Sthis->parsedBody =
file get contents('php://stdin');

}

return $this->parsedBody;

}

The withXXX () methods work pretty much the same in PHP 4:

function withParsedBody ($data)

{
Sthis->parsedBody = $data;
return S$this;

8.

Chapter 9

Likewise, the withoutXXX () methods work the same as well:

function withoutAttribute ($name)
{
if (isset ($this-s>attributes[$name]))
unset ($this->attributes [$name]) ;

}

return S$Sthis;

}

For websites using other languages, we could use the PSR-7 classes to formulate
requests and responses, but would then need to use an HTTP client to communicate
with the other website. As an example, recall the demonstration of a Request
discussed in the recipe Developing a PSR-7 request class from this chapter.

Here is the example from the How it works... section:

Srequest = new Request (
TARGET _WEBSITE_URL,
Constants: :METHOD POST,
new TextStream($contents),
[Constants::HEADER_CONTENT_TYPE =>
Constants: : CONTENT TYPE FORM_ ENCODED,
Constants: :HEADER CONTENT LENGTH => $body->getSize ()]
)

$data = http build query(['data' =>
Srequest->getBody () ->getContents ()]) ;

Sdefaults = array(
CURLOPT URL => $request->getUri()->getUriString(),
CURLOPT POST => true,
CURLOPT POSTFIELDS => $data,

)i

$ch = curl init();

curl_setopt_array($ch, $defaults);

Sresponse = curl_exec(sch);

curl_close($ch) ;

355

10

Looking at Advanced
Algorithms

In this chapter, we will cover:

» Using getters and setters

» Implementing a linked list

» Building a bubble sort

» Implementing a stack

» Building a binary search class
» Implementing a search engine

» Displaying a multi-dimensional array and accumulating totals

Introduction

In this chapter, we cover recipes that implement various advanced algorithms such as linked
list, bubble sort, stacks, and binary search. In addition, we cover getters and setters, as well
as implementing a search engine and displaying values from a multi-dimensional array with

accumulated totals.

357

Looking at Advanced Algorithms

Using getters and setters

At first glance, it would seemingly make sense to define classes with public properties,
which can then be directly read or written. It is considered a best practice, however, to make
properties protected, and to then define a getter and setter for each. As the name implies,
a getter retrieves the value of a property. A setter is used to set the value.

Best practice

\ Define properties as protected to prevent accidental outside access. Use
~ public get* and set* methods to provide access to these properties. In
Q this manner, not only can you more precisely control access, but you can
also make formatting and data type changes to the properties while getting
and setting them.

How to do it...

1. Getters and setters provide additional flexibility when getting or setting values.
You are able to add an additional layer of logic if needed, something which would
not be possible if you were to directly read or write a public property. All you need
to do is to create a public method with a prefix of either get or set. The name of
the property becomes the suffix. It is a convention to make the first letter of the
variable uppercase. Thus, if the property is $StestValue, the getter would be
getTestValue ().

2. Inthis example, we define a class with a protected property, $date. Notice that
the get and set methods allow for treatment as either a DateTime object oras a
string. The value is actually stored in any event as a DateTime instance:

$a = new class() ({
protected sdate;
public function setDate ($date)
{
if (is_string($date))
Sthis->date = new DateTime (Sdate) ;
} else {
Sthis->date = $date;
}
}
public function getDate ($asString = FALSE)
{
if ($asString)
return Sthis->date->format ('Y-m-d H:i:s8');
} else {
return Sthis->date;

358

Chapter 10

}
}
}i

Getters and setters allow you to filter or sanitize the data coming in or going out. In
the following example, there are two properties, $intval and Sarrval, which are
set to a default initial value of NULL. Notice that not only are the return values for the
getters data-typed, but they also provide defaults. The setters also either enforce the
incoming data-type, or type-cast the incoming value to a certain data-type:
<?php
class GetSet
{

protected $intVal = NULL;

protected S$SarrVal = NULL;

// note the use of the null coalesce operator to return a
default value

public function getIntVal() : int
{

return Sthis->intVal ?? 0;
}

public function getArrVal() : array

{

return $this-sarrval ?? array();

}

public function setIntVal (Sval)
{

Sthis->intvVal = (int) S$Sval ?? 0;
}

public function setArrVal (array $val)

{
Sthis->arrvVal = $val ?? array();
1
!

If you have a class with lots and lots of properties, it might become tedious to define
a distinct getter and setter for each property. In this case, you can define a kind

of fallback using the magic method _ call (). The following class defines nine
different properties. Instead of having to define nine getters and nine setters, we
define a single method, call (), which makes a determination whether or not the
usage is get or set. If get, it retrieves the key from an internal array. If set, it stores
the value in the internal array.

359

Looking at Advanced Algorithms

% The _ call () method is a magic method which is executed if an
s application makes a call to a non-existent method.

<?php
class LotsProps

{

protected sfirstName = NULL;
protected SlastName = NULL;
protected saddrl = NULL;
protected saddr2 = NULL;
protected sScity = NULL;
protected Sstate = NULL;
protected Sprovince = NULL;
protected SpostalCode = NULL;
protected Scountry = NULL;
protected Svalues = array () ;

public function __ call ($method, S$params)

{
preg _match('/" (get|set) (.*?)$/i', $method, $matches);
Sprefix = Smatches[1] ?? '';

Skey = Smatches[2] ?? '';
Skey = strtolower (Skey) ;
if ($prefix == 'get') {
return $this-s>values|[S$Skey] ?? '---';
} else {
Sthis->values[Skey] = Sparams[0];

Copy the code mentioned in step 1 into a new file, chap 10 _ocop using getters and_
setters.php. To test the class, add the following:

// set date using a string
Sa->setDate('2015-01-01") ;
var dump ($a->getDate()) ;

// retrieves the DateTime instance
var dump ($a->getDate (TRUE)) ;

360

Chapter 10

// set date using a DateTime instance
Sa->setDate (new DateTime ('now')) ;
var_ dump ($a->getDate()) ;

// retrieves the DateTime instance
var_dump ($a->getDate (TRUE)) ;

In the output (shown next), you can see that the sdate property can be set using either a
string or an actual DateTime instance. When getDate () is executed, you can return
either a string or a DateTime instance, depending on the value of the $asString flag:

@@ Terminal

class DateTime#2 (3) {
public $date =>
string(26) "2015-01-01 00:00:00.000000"
public $timezone type =>
int(3)
public $timezone =>
string(13) "Europe/London"

}
string(19) "2015-01-01 00:00:00"
class DateTime#3 (3) {
public $date =>
string(26) "2016-02-18 ©7:04:39.000000"
public $timezone type =>
int(3)
public $timezone =>
string(13) "Europe/London"

}
string(19) "2016-02-18 07:04:39"

(program exited with code: 0)
Press return to continue k

Next, have a look at the code defined in step 2. Copy this code into a file, chap_ 10 oop
using getters and setters defaults.php, and add the following:

// create the instance
$a = new GetSet () ;

// set a "proper" value
Sa->setIntVal (1234) ;
echo $Sa->getIntval() ;
echo PHP_EOL;

// set a bogus value
Sa->setIntVal ('some bogus value');

361

Looking at Advanced Algorithms

echo $Sa->getIntval() ;
echo PHP_ EOL;

// NOTE: boolean TRUE == 1
Sa->setIntVal (TRUE) ;

echo $Sa->getIntval() ;

echo PHP_ EOL;

// returns array() even though no value was set
var dump ($a->getArrvVal()) ;
echo PHP EOL;

// sets a "proper" value
Sa->setArrVal (['A','B','C']);
var dump ($a->getArrvVal()) ;
echo PHP_ EOL;

try {
Sa->setArrVal ('this is not an array');
var dump ($a->getArrvVal()) ;
echo PHP_ EOL;
} catch (TypeError $e)
echo S$Se->getMessage() ;

echo PHP_ EOL;

As you can see from the following output, setting a proper integer value works as expected. A
non-numeric value defaults to 0. Interestingly, if you supply a Boolean TRUE as an argument
to setIntVval (), itis interpolated to 1.

If you call getArrval () without setting a value, the default is an empty array. Setting an
array value works as expected. However, if you supply a non-array value as an argument, the
type hint of the array causes a TypeError to be thrown, which can be caught as shown here:

362

Chapter 10

@@ Terminal

1234
[¢]
1
array(0) {
}

array(3) {
[0] =>
string(l) "A"
[1] =>
string(l) "B"
[2] ==
string(1l) "C"

}

PHP TypeError: Argument 1 passed to GetSet::setArrVal() must be of the type arr
ay, string given, called in /home/aed/Repos/php7_recipes/source/chapter04/chap_0
4 _oop_using getters_and setters_defaults.php on line 57 in /home/aed/Repos/php7_
recipes/source/chapter@4/chap_04 oop_using_getters_and_setters_defaults.php on 1
ine 23

PHP Stack trace:

PHP 1. {main}() /home/aed/Repos/php7_recipes/source/chapterf4/chap_04 oop_usin
g_getters_and_setters_defaults.php:0

PHP 2. GetSet->setArrVal() /home/aed/Repos/php7_recipes/source/chapter@4/chap_

Finally, take the Lot sProps class defined in step 3 and place it in a separate file, chap_ 10
oop using getters and setters magic call.php. Now add code to set values.
What will happen, of course, is that the magic method __ call () is invoked. After running
preg match (), the remainder of the non-existent property, after the letters set, will become
a key in the internal array sSvalues:

$a = new LotsProps() ;
$a->setFirstName ('Li\'l Abner') ;
Sa->setLastName ('Yokum') ;
Sa->setAddrl ('l Dirt Street');
Sa->setCity ('Dogpatch!') ;
Sa->setState ('Kentucky') ;
Sa->setPostalCode('12345") ;
Sa->setCountry ('USA') ;

?>

You can then define HTML that displays the values using the corresponding get methods.
These will in turn return keys from the internal array:

<div class="container">
<div class="left bluel"s>Name</divs>
<div class="right yellowl">
<?= $a->getFirstName() . ' ' . Sa->getLastName() ?></div>
</div>
<div class="left blue2">Address</divs>
<div class="right yellow2">
<?= $Sa->getAddrl () 2>

<?= Sa->getAddr2() ?>

363

Looking at Advanced Algorithms

<?= $a->getCity() ?>

<?= Sa->getState() ?>

<?= Sa->getProvince() ?>

<?= Sa->getPostalCode() ?>

<?= Sa->getCountry() ?>
</div>
</div>

Here is the final output:

@@ PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x | g

€ localhost

Name Li'l Abner Yokum

Address 1 Dirt Street
Dogpatch
Kentucky
12345
USA

Implementing a linked list

A linked list is where one list contains keys that point to keys in another list. An analogy, in
database terms, would be where you have a table that contains data, and a separate index
that points to the data. One index might produce a list of items by ID. Another index might
yield a list according to title and so on. The salient feature of the linked list is that you do not
have to touch the original list of items.

For example, in the diagram shown next, the primary list contains ID numbers and the names
of fruits. If you were to directly output the primary list, the fruit names would display in this
order: Apple, Grape, Banana, Orange, Cherry. If you were to use the linked list as an index, on
the other hand, the resulting output of fruit names would be Apple, Banana, Cherry, Grape,
and Orange:

Linked List Primary List

101 » 101 | Apple

oz | 105 | Grape
103 » 102 | Banana
105 104 | Orange
104 » 103 | Cherry

364

Chapter 10

How to do it...

1.

One of the primary uses of a linked list is to produce a display of items in a different
order. One approach would be to create an iteration of key value pairs, where the key
represents the new order, and the value contains the value of the key in the primary
list. Such a function might look like this:

function buildLinkedList (array S$primary,
callable $makeLink)
{
$linked = new ArrayIterator();
foreach ($primary as $key => $row)
$linked->offsetSet ($makeLink (Srow) , S$key);
}
$linked->ksort () ;
return S$linked;

}

We use an anonymous function to generate the new key in order to provide extra
flexibility. You will also notice that we do a sort by key (ksort ()) so that the linked
list iterates in key order.

All we need to do to use the linked list is to iterate through it, but produce results from
the primary list, Scustomer in this example:

foreach ($linked as $key => $link)
Soutput .= printRow($customer [$link]) ;

}

Note that in no way do we touch the primary list. This allows us to generate multiple
linked lists, each representing a different order, while retaining our original set of
data.

Another important use of a linked list is for the purposes of filtering. The technique
is similar to that shown previously. The only difference is that we expand the
buildLinkedList () function, adding a filter column and filter value:

function buildLinkedList (array S$primary,
callable $makeLink,
sfilterCol NULL,
$filterval NULL)

$linked = new ArrayIterator();
sfilterVal = trim($SfilterVval) ;
foreach ($primary as $key => $row)
if ($filterCol) {
if (trim($row[$filterCol]) == $filterval) {
$linked->offsetSet ($makeLink (Srow) , S$key);

365

Looking at Advanced Algorithms
}

} else {
$linked->offsetSet ($SmakeLink (S$Srow), S$key);

}

}

$linked->ksort () ;
return S$linked;

}

6. We only include items in the linked list where the value represented by $filterCol
in the primary list matches $filterval. The iteration logic is the same as that
shown in step 2.

7. Finally, another form of linked list is the doubly linked list. In this case, the list
is constructed in such a manner that the iteration can occur in either a forward
or reverse direction. In the case of PHP, we are fortunate to have an SPL class,
SplDhoublyLinkedList, which neatly does the trick. Here is a function that builds a
doubly linked list:

function buildDoublyLinkedList (ArrayIterator $linked)
{
$double = new SplDoublyLinkedList () ;
foreach ($linked as $key => $value)
$double->push ($value) ;

}

return Sdouble;

» The terminology for Sp1DoublyLinkedList can be misleading.
%\ SplDoublyLinkedList: :top () actually points to the end of the list,
’ whereas SplDoublyLinkedList: :bottom() points to the beginning!

Copy the code shown in the first bullet into a file, chap 10 linked list include.
php. In order to demonstrate the use of a linked list, you will need a source of data. For
this illustration, you can make use of the customer . csv file that was mentioned in earlier
recipes. It is a CSV file with the following columns:

"id", "name", "balance", "email", "password", "status", "security question",
"confirm code", "profile id","level™

366

Chapter 10

You can add the following functions to the include file mentioned previously to generate a
primary list of customers, and to display information about them. Note that we use the first
column, id as the primary key:

function readCsv($fn, &Sheaders)
{
if (!file exists($fn))
throw new Error ('File Not Found') ;
!
$fileObj = new SplFileObject ($fn, 'r');
Sresult = array();
S$headers = array() ;
sfirstRow = TRUE;
while ($row = $fileObj->fgetcsv()) {
// store 1lst row as headers
if ($firstRow)
sfirstRow = FALSE;
Sheaders = Srow;

} else {
if ($row && $row[0] !== NULL && $row[0] !== 0) {
Sresult [Srow[0]] = Srow;

}
}
}

return Sresult;

function printHeaders (Sheaders)
{
return sprintf('%4s : %18s : %8s : %32s : %4s' . PHP_EOL,

ucfirst ($headers[0]),
ucfirst ($headers[1]),
ucfirst ($headers[2]),
ucfirst ($headers[3]),
ucfirst ($headers[9]));

function printRow ($row)

{

return sprintf ('%4d : %18s : %8.2f : %32s : %4s' . PHP_EOL,
$row([0], Srow[l], $row([2], Srow[3], Srow[9]);

367

Looking at Advanced Algorithms

function printCustomer (Sheaders, $linked, S$customer)

{

Soutput = '';

Soutput .= printHeaders ($headers) ;

foreach ($linked as $key => $link)
Soutput .= printRow($customer [$1link]) ;

}

return S$output;

}

You can then define a calling program, chap 10 linked list in order.php, which
includes the file defined previously, and reads customer.csv:

<?php

define ('CUSTOMER FILE', _ DIR . '/../data/files/customer.csv');
include _ DIR . '/chap 10 linked list include.php';

S$headers = array() ;

$customer = readCsv(CUSTOMER FILE, S$headers) ;

You can then define an anonymous function that will produce a key in the linked list. In this
illustration, define a function that breaks down column 1 (name) into first and last names:

$makeLink = function ($row)
list ($first, $last) = explode(' ', Srowl[l]);
return trim($last) . trim(sSfirst);

}i

You can then call the function to build the linked list, and use printCustomer () to display
the results:

$linked = buildLinkedList (Scustomer, S$makeLink) ;
echo printCustomer ($Sheaders, $linked, $customer) ;

Here is how the output might appear:

368

Chapter 10

Id : Name : Balance : Email : Level
74 : Louella Allen : 847.65 : louella.allen@telecom.net : ADV
49 Omar Anthony : 3733.00 : omar.anthony@fastmedia.com : INT
4 : Morgan Avila : 888.88 : morgan.avila@northmedia.com : ADV
9 : Armando Barlow : 6524.00 : armando.barlow@cablecom.com : BEG
32 : Matilda Barrera : 478.32 : matilda.barrera@northcom.com : INT
54 : Ramire Bentley : 565.81 : ramiro.bentley@westmedia.com : BEG
11 : Felix Blevins : 130.57 : felix.blevins@southcom.net : BEG
69 : Lucille Bradford : 677.58 : lucille.bradford@westmedia.com : ADV
52 : Jesus Bright : B69.89 : jesus.bright@cablenet.net : BEG
76 Lana Burns : 261.98 : lana.burns@westcom.com : ADV
57 : Garrett Campos : 9.47 : garrett.campos@fastcom.net : BEG
12 : Jose Carter : 56.22 : jose.carter@westcom.net : INT
24 : Cecelia Case : 592.19 : cecelia.case@southmedia.net : INT
68 : Geneva Case : 268.75 : geneva.case@westmedia.com : BEG
43 : Roland Chang : 514.16 : roland.chang@southmedia.com : INT
46 Dominick Cline : 881.77 : dominick.cline@telecom.com : INT
22 : Coleen Walker : 6595.20 : h‘ coleen.walker@fastmedia.com : INT
39 : Lena Conway : 757.22 : lena.conway@eastnet.net : ADV
30 : Krista Cortez : 414.66 : krista.cortez@eastcom.com : BEG
8 : Brian Crawford : 125.58 : brian.crawford@fastcom.net : ADV
19 : Gene Cruz : 683.55 : gene.cruz@eastcom.com : ADV
28 : Gabriela Davis : 88.07 : gabriela.davis@southmedia.net :

79 : Renee Decker : 447.83 : renee.decker@westcom.net :

To produce a filtered result, modify buildLinkedList () as discussed in step 4. You can
then add logic that checks to see whether the value of the filter column matches the value in
the filter:

define ('LEVEL FILTER', 'INT');

sfilterCol = 9;
sfilterval = LEVEL FILTER;

$linked = buildLinkedList (Scustomer, S$makeLink, S$filterCol,
sfilterval) ;

There's more...

PHP 7.1 introduced the use of [] as an alternative to 1ist (). If you look at the anonymous
function mentioned previously, you could rewrite this in PHP 7.1 as follows:

$makeLink = function ($row)
[$sfirst, S$last] = explode(' ', Srowl[l]);
return trim($last) . trim(sSfirst);

}i

For more information, see https://wiki.php.net/rfc/short list syntax.

369

Looking at Advanced Algorithms

Building a bubble sort

The classic bubble sort is an exercise often assigned to university students. Nonetheless, it's
important to master this algorithm as there are many occasions where built-in PHP sorting
functions do not apply. An example would be sorting a multi-dimensional array where the sort
key is not the first column.

The way the bubble sort works is to recursively iterate through the list and swap the current
value with the next value. If you want items to be in ascending order, the swap occurs if the
next item is less than the current item. For descending order, the swap occurs if the reverse is
true. The sort is concluded when no more swaps occur.

In the following diagram, after the first pass, Grape and Banana are swapped, as are Orange
and Cherry. After the 2nd pass, Grape and Cherry are swapped. No more swaps occur on the
last pass, and the bubble sort ends:

L 2]
Apple | —App! . Apple |
Grape | [Banana Banana
Banana [Grape™ Cherry
. Orange | [: —Cherry— | Grape |
Cherry | [orange | Orange

How to do it...

1. We do not want to actually move the values around in the array; that would be horribly
expensive in terms of resource usage. Instead, we will use a linked list, discussed in
the previous recipe.

2. First we build a linked list using the buildLinkedList () function discussed in the
previous recipe.

3. We then define a new function, bubbleSort (), which accepts the linked list by
reference, the primary list, a sort field, and a parameter that represents sort order
(ascending or descending):

function bubbleSort (&$linked, S$Sprimary, $sortField, $Sorder = 'A')

{
4. The variables needed include one that represents the number of iterations, the
number of swaps, and an iterator based upon the linked list:

static Siterations = 0;
$Sswaps = 0;
Siterator = new Arraylterator ($linked) ;

370

Chapter 10

Inthe while () loop, we only proceed if the iteration is still valid, which is to say
still in progress. We then obtain the current key and value, and the next key and
value. Note the extra i f () statement to ensure the iteration is still valid (that is, to
make sure we don't drop off the end of the list!):
while ($iterator->valid()) {

ScurrentLink = $iterator-s>current() ;

ScurrentKey = $iterator-skey();

if (!$iterator->valid()) break;

Siterator->next () ;

SnextLink = $Siterator->current () ;

SnextKey = $iterator-skey();

Next we check to see whether the sort is to be ascending or descending. Depending
on the direction, we check to see whether the next value is greater than, or less than,
the current value. The result of the comparison is stored in Sexpr:
if ($order == 'A') {
Sexpr = $primary[$linked->offsetGet
(ScurrentKey)] [$sortField] >
Sprimary[$linked->offsetGet ($nextKey)] [$sortField] ;
} else {
Sexpr = $primary[$linked->offsetGet
(ScurrentKey)] [$sortField] <
Sprimary[$linked->offsetGet ($nextKey)] [$sortField] ;

}

If the value of $expr is TRUE, and we have valid current and next keys, the values
are swapped in the linked list. We also increment $swaps:
if (Sexpr && ScurrentKey && S$nextKey

&& $linked-s>offsetExists ($ScurrentKey)

&& $linked->offsetExists ($nextKey)) {

Stmp = $linked->offsetGet (ScurrentKey) ;

$linked->offsetSet ($currentKey,

$linked->offsetGet ($nextKey)) ;

$linked->offsetSet ($nextKey, $tmp) ;

Sswaps++;

}
}

Finally, if any swaps have occurred, we need to run through the iteration again, until
there are no more swaps. Accordingly, we make a recursive call to the same method:

if ($swaps) bubbleSort ($linked, $primary, S$sortField, S$Sorder);

The real return value is the re-organized linked list. We also return the number of
iterations just for reference:

return ++$iterations;

371

Looking at Advanced Algorithms

Add the bubbleSort () function discussed previously to the include file created in the
previous recipe. You can use the same logic discussed in the previous recipe to read the
customer. csv file, producing a primary list:

<?php
define ('CUSTOMER FILE',
__DIR
Sheaders =

DIR
'/chap 10 linked list include.php';

'/../data/files/customer.csv') ;
include
array () ;

readCsv (CUSTOMER FILE,

Scustomer = Sheaders) ;

You can then produce a linked list using the first column as a sort key:

SmakeLink =
return S$rowl0];
Vi

$linked =

function ($row)

buildLinkedList (Scustomer, S$makeLink) ;

Finally, call the bubbleSort () function, providing the linked list and customer list

as arguments. You can also provide a sort column, in this illustration column 2, that
represents the account balance, using the letter 'A"' to indicate ascending order. The
printCustomer () function can be used to display output:

echo

'Tterations: '

echo printCustomer ($Sheaders,

Here is an example of the output:

372

bubbleSort ($1linked,
Scustomer, 2,

IAI)

$linked, S$customer) ;

PHP_EOL;

Iterations: 82

Id : Name : Balance : Email : Level
101 Leonard Nimoy : -99.99 mrspock788843@starfleet.gov : ADV
21 Lauri Grimes : -37.95 lauri.grimes@cablecom.com : ADV
20 Samuel Harding : -11.56 samuel.harding@southmedia.net : ADV
88 Obama : 0.00 obama@president.gov : BEG
92 C.T. Russell : 0.00 ctrussell@jw.org : BEG
99 admin : 0.00 admin@sweetscomplete.com : ADV
5T Garrett Campos : 9.47 garrett.campos@fastcom.net : BEG
45 Wilfredo Taylor : 25.11 wilfredo.taylor@telecom.net : BEG
25 Rhonda Kinney : 46.61 rhonda.kinney@fastmedia.com : BEG
58 Todd Lindsey : 48.91 todd.lindsey@fastnet.net : ADV
12 Jose Carter : 56.22 jose.carter@westcom.net : INT
71 Fannie Moore : 68.48 % fannie.moore@cablemedia.net : ADV
16 Marc Ellis : 69.04 marc.ellis@westnet.com : ADV
28 Gabriela Davis : 88.07 gabriela.davis@southmedia.net :

6 : Spencer Sanford : 99.99 spencer.sanford@cablenet.net : INT
44 Raymond Sanford : 101.41 raymond.sanford@cablenet.net : ADV

8 Brian Crawford : 125.58 brian.crawford@fastcom.net : ADV
11 Felix Blevins : 130.57 felix.blevins@southcom.net : BEG
48 Edmond Shepherd : 135.29 edmond.shepherd@southmedia.com : ADV
50 Lonnie Eaton : 139.07 lonnie.eaton@southcom.net : ADV
65 Isabel Rodriguez : 142.87 isabel.rodriguez@fastcom.net : BEG
75 Jeannette Merritt : 146.89 : jeannette.merritt@northmedia.com : BEG

Chapter 10

Implementing a stack

A stack is a simple algorithm normally implemented as Last In First Out (LIFO). Think of a
stack of books sitting on a library table. When the librarian goes to restore the books to their
place, the topmost book is processed first, and so on in order, until the book at the bottom of
the stack has been replaced. The topmost book was the last one to be placed on the stack,
thus last in first out.

In programming terms, a stack is used to temporarily store information. The retrieval order
facilitates retrieving the most recent item first.

How to do it...

1. First we define a class, Application\Generic\Stack. The core logic is
encapsulated in an SPL class, SplStack:

namespace Application\Generic;
use SplStack;
class Stack

{

// code

}

2. Next we define a property to represent the stack, and set up an SplStack instance:

protected S$stack;
public function __ construct ()

{

Sthis->stack = new SplStack();

}

3. After that we define methods to add and remove from the stack, the classic push ()
and pop () methods:

public function push (Smessage)

{

Sthis->stack->push ($message) ;

}

public function pop ()

{

return $this->stack->pop() ;

}

373

Looking at Advanced Algorithms

4. We also throw in an implementation of __invoke () that returns an instance of the
stack property. This allows us to use the object in a direct function call:

public function _ invoke ()

{

return S$Sthis->stack;

}

One possible use for a stack is to store messages. In the case of messages, it is usually
desirable to retrieve the latest first, thus it is a perfect use case for a stack. Define the
Application\Generic\Stack class as discussed in this recipe. Next, define a calling
program that sets up autoloading and creates an instance of the stack:

<?php

// setup class autoloading

require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Generic\Stack;
Sstack = new Stack() ;

To do something with the stack, store a series of messages. As you would most likely store
messages at different points in your application, you can use sleep () to simulate other code
running:

echo 'Do Something ... ' . PHP EOL;
S$Sstack->push('lst Message: ' . date('H:i:s'));
sleep(3);

echo 'Do Something Else ... ' . PHP EOL;
$stack->push('2nd Message: ' . date('H:i:s'));
sleep(3);

echo 'Do Something Else Again ... ' . PHP_EOL;
$stack->push('3rd Message: ' . date('H:i:s'));
sleep(3);

Finally, simply iterate through the stack to retrieve messages. Note that you can call the stack
object as if it were a function, which returns the Spl1Stack instance:

echo 'What Time Is It?' . PHP_EOL;
foreach ($stack() as $item) ({
echo $item . PHP EOL;

Chapter 10

Here is the expected output:

Do Something ...

Do Something Else ...

Do Something Else Again ...
What Time Is Tt?

3rd Message: 03:10:08

2nd Message: 03:10:05

1st Message: 03:10:02

(program exited with code: 8)
Press return to continue

Building a binary search class

Conventional searches often proceed through the list of items in a sequential manner. This
means that the maximum possible number of items to be searched could be the same as
the length of the list! This is not very efficient. If you need to expedite a search, consider
implementing a binary search.

The technique is quite simple: you find the midpoint in the list, and determine whether the
search item is less than, equal to, or greater than the midpoint item. If less, you set the upper
limit to the midpoint, and search only the first half of the list. If greater, set the lower limit to
the midpoint, and search only the last half of the list. You would then proceed to divide the list
into 1/4, 1/8, 1/16, and so on, until the search item is found (or not).

It's important to note that although the maximum number of comparisons
4 is considerably smaller than a sequential search (log n + 1 where n is the
% number of elements in the list, and log is the binary logarithm), the list
involved in the search must first be sorted, which of course downgrades
performance.

How to do it...

1. We first construct a search class, Application\Generic\Search, which
accepts the primary list as an argument. As a control, we also define a property,
Siterations

namespace Application\Generic;
class Search

{

375

Looking at Advanced Algorithms

2.

376

protected S$Sprimary;
protected S$iterations;
public function _ construct ($primary)
{
Sthis->primary = $primary;

}

Next we define a method, binarySearch (), which sets up the search
infrastructure. The first order of business is to build a separate array, $search,
where the key is a composite of the columns included in the search. We then sort by
key:
public function binarySearch (array S$keys, S$item)
{
$search = array();
foreach ($this-sprimary as $primaryKey => $data)
$searchKey = function ($keys, $data) (
Skey = '';
foreach (skeys as $k) S$key .= $datalSkl;

return S$key;
Vi
$search[$searchKey (Skeys, S$Sdata)] = S$primaryKey;

}

ksort ($search) ;

We then pull out the keys into another array, $binary, so that we can perform the
binary sort based on numeric keys. We then call doBinarySearch (), which results
in a key from our intermediary array $search, or a Boolean, FALSE:

$binary = array keys($search) ;
Sresult = Sthis->doBinarySearch($binary, S$item);
return $this->primaryl[$search[$result]] ?? FALSE;

}

The first doBinarySearch () initializes a series of parameters. $iterations,
$found, $loop, $Sdone, and $max are all used to prevent an endless loop. Supper
and $lower represent the slice of the list to be examined:

public function doBinarySearch ($binary, $item)

{

Siterations = 0;

Sfound = FALSE;

$loop = TRUE;

Sdone = -1;

Smax = count ($binary) ;
Slower = 0;

Supper = $max - 1;

Chapter 10

We then implement a while () loop and set the midpoint:

while ($loop && !$found)
$mid = (int) ((Supper - Slower) / 2) + S$lower;

We now get to use the new PHP 7 spaceship operator, which gives us, in a single
comparison, less than, equal to, or greater than. If less, we set the upper limit to the
midpoint. If greater, the lower limit is adjusted to the midpoint. If equal, we're done
and home free:

switch ($item <=> $binary[$mid])
// Sitem < S$binary[$mid]
case -1
Supper = $mid;
break;
// S$item == $binary[$mid]
case 0
S$found = $binary[$mid];
break;
// Sitem > $binary[$mid]
case 1 :
default
Slower = Smid;

}

Now for a bit of loop control. We increment the number of iterations and make sure it
does not exceed the size of the list. If so, something is definitely wrong and we need
to bail out. Otherwise, we check to see whether the upper and lower limits are the
same more than twice in a row, in which case the search item has not been found.
Then we store the number of iterations and return whatever was found (or not):

$loop = (($iterations++ < $max) && ($Sdone < 1));
$done += (Supper == $lower) ? 1 : 0;

Sthis->iterations = $iterations;
return S$found;

377

Looking at Advanced Algorithms

First, implement the Application\Generic\Search class defining the methods described
in this recipe. Next, define a calling program, chap 10 binary search.php, which sets

up autoloading and reads the customer. csv file as a search target (as discussed in the
previous recipe):

<?php

define ('CUSTOMER FILE', _ DIR . '/../data/files/customer.csv');
include _ DIR . '/chap 10 linked list include.php';

require DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Generic\Search;

S$headers = array();

$customer = readCsv (CUSTOMER FILE, S$headers) ;

You can then create a new Search instance, and specify an item somewhere in the middle of
the list. In this illustration, the search is based on column 1, customer name, and the item is
Todd Lindsey:

Ssearch = new Search (Scustomer) ;

$item = 'Todd Lindsey';

Scols = [1]1;

echo "Searching For: S$item\n";

var dump ($search->binarySearch(scols, s$item)) ;

For illustration, add this line just before switch () in Application\Generic\
Search: :doBinarySearch():

echo 'Upper:Mid:Lower:<=> | ' . $upper . ':' . $mid . ':'
Slower . ':' . ($item <=> Sbinary[s$mid]) ;

The output is shown here. Notice how the upper, middle, and lower limits adjust until the item
is found:

378

Chapter 10

Searching For: Todd Lindsey
Upper:Mid:Lower:<=> | 81:40:0:1
Upper:Mid:Lower:<=> | 81:60:40:1
Upper:Mid:Lower:<=> | 81:70:60:1
Upper:Mid:Lower:<=> | 81:75:70:1
Upper:Mid:Lower:<=> | 81:78:75:0
array(1e) {

[0]=>

string(2) "s8"

[1]=>

string(12) "Todd Lindsey"

[2]=>

string(5) "48.91"

[3]==>

string(24) "todd.lindsey@fastnet.net”

[4]=>

string(16) "an2073Conscience”

[5]=>

string(1) "1"

[6]==>

string(e) "" %

[7]=>

string(e) ""

[8]=>

For more information on binary search, there is an excellent article on Wikipedia that goes
through the basic math at https://en.wikipedia.org/wiki/Binary search
algorithm.

Implementing a search engine

In order to implement a search engine, we need to make provision for multiple columns to be
included in the search. In addition, it's important to recognize that the search item might be
found in the middle of the field, and that very rarely will users provide enough information for
an exact match. Accordingly, we will rely heavily on the SQL LIKE %value% clause.

How to do it...

1. First, we define a basic class to hold search criteria. The object contains three
properties: the key, which ultimately represents a database column; the operator
(LIKE, <, >, and so on); and optionally an item. The reason why an item is optional is
that some operators, such as IS NOT NULL, do not require specific data:

namespace Application\Database\Search;
class Criteria

{
public skey;
public $item;

379

Looking at Advanced Algorithms

public Soperator;
public function _ construct (key, SSoperator, $item = NULL)
{

Sthis-s>key = Skey;

Sthis->operator = Soperator;

Sthis->item = Sitem;

}

2. Next we need to define a class, Application\Database\Search\Engine
and provide the necessary class constants and properties. The difference between
$columns and $mapping is that $columns holds information that will ultimately
appear in an HTML SELECT field (or the equivalent). For security reasons, we do not
want to expose the actual names of the database columns, thus the need for another
array Smapping:
namespace Application\Database\Search;
use PDO;
use Application\Database\Connection;
class Engine

{

const ERROR_PREPARE
const ERROR_EXECUTE
const ERROR COLUMN
const ERROR_OPERATOR
const ERROR_INVALID

'ERROR: unable to prepare statement';

'ERROR: unable to execute statement';

'"ERROR: column name not on list';

'"ERROR: operator not on list';

'"ERROR: invalid search criteria';

protected S$Sconnection;
protected Stable;
protected S$Scolumns;
protected S$Smapping;
protected S$statement;
protected $sqgl = '';

3. Next, we define a set of operators we are willing to support. The key represents actual
SQL. The value is what will appear in the form:

protected $Soperators = [

'LIKE' => 'Equals',

t<! => 'Less Than',
st => 'Greater Than',
Te>! => 'Not Equals',

'NOT NULL' => 'Exists',

380

Chapter 10

4. The constructor accepts a database connection instance as an argument. For our
purposes, we will use Application\Database\Connection, defined in Chapter
5, Interacting with a Database. We also need to provide the name of the database
table, as well as $columns, an array of arbitrary column keys and labels, which will
appear in the HTML form. This will reference $mapping, where the key matches
$columns, but where the value represents actual database column names:

public function __ construct (Connection $connection,
Stable, array $columns, array $mapping)

Sthis->connection = $Sconnection;
Sthis->setTable ($table) ;
Sthis->setColumns ($Scolumns) ;
Sthis->setMapping ($Smapping) ;

}

5. After the constructor, we provide a series of useful getters and setters:

public function setColumns ($columns)

{

Sthis->columns = $columns;

}

public function getColumns ()

{

return $this->columns;

}

// etc.

6. Probably the most critical method is the one that builds the SQL statement to be
prepared. After the initial SELECT setup, we add a WHERE clause, using $mapping
to add the actual database column name. We then add the operator and implement
switch () which, based on the operator, may or may not add a named placeholder
that will represent the search item:

public function prepareStatement (Criteria $criteria)
{
$this->sqgql = 'SELECT * FROM ' . $this->table . ' WHERE ';
Sthis->sgl .= S$this->mapping[$criteria->key] . ' ';
switch ($criteria-soperator) {
case 'NOT NULL'

$this-»>sql .= ' IS NOT NULL OR ';
break;
default
Sthis->sqgl .= S$criteria-soperator . ' :'
Sthis->mapping[$criteria-s>key] . ' OR ';

381

Looking at Advanced Algorithms

7.

10.

382

Now that the core SELECT has been defined, we remove any trailing OR keywords,
and add a clause that causes the result to be sorted according to the search column.
The statement is then sent to the database to be prepared:

Sthis->sgl = substr($this->sql, 0, -4)

' ORDER BY ' . S$this-s>mapping[S$criteria-skeyl];
S$statement = $this->connection-s>pdo->prepare($this->sql) ;
return S$statement;

}

We are now ready to move on to the main show, the search () method. We accept
an Application\Database\Search\Criteria object as an argument. This
ensures that we have an item key and operator at a minimum. To be on the safe side,
we add an if () statement to check these properties:

public function search(Criteria $criteria)
{
if (empty(Scriteria-s>key) || empty($criteria-soperator)) {
yield ['error' => self::ERROR_INVALID];
return FALSE;

}

We then call prepareStatement () using try / catch to trap errors:

try {
if (!$statement = $this-s>prepareStatement ($criteria))
yield ['error' => self::ERROR_PREPARE] ;
return FALSE;

}

Next we build an array of parameters that will be supplied to execute ().

The key represents the database column name that was used as a placeholder
in the prepared statement. Note that instead of using =, we use the LIKE
$value% construct:

$params = array();
switch ($criteria-soperator) {
case 'NOT NULL'

// do nothing: already in statement
break;
case 'LIKE'
Sparams [$this->mapping[$criteria->key]] =
'$' . Scriteria->item . '%';

break;

default

Sparams [$this->mapping[$criteria->key]] =

Scriteria->item;

Chapter 10

11. The statement is executed, and the results returned using the yield keywords,
which effectively turns this method into a generator:

$statement->execute ($params) ;
while ($row = $statement->fetch(PDO::FETCH ASSOC)) {
yield S$Srow;

}

} catch (Throwable $e)
error log(_METHOD . ':' . $Se->getMessage()) ;
throw new Exception(self::ERROR_EXECUTE) ;

}

return TRUE;

}

Place the code discussed in this recipe in the files Criteria.php and Engine.php under
Application\Database\Search. You can then define a calling script, chap_ 10 search
engine.php, which sets up autoloading. You can take advantage of the Application\
Database\Connection class discussed in Chapter 5, Interacting with a Database, and the
form element classes covered in Chapter 6, Building Scalable Websites:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

use Application\Database\Search\ { Engine, Criteria };
use Application\Form\Generic;

use Application\Form\Element\Select;

You can now define which database columns will appear in the form, and a matching
mapping file:

$dbCols = [
'cname' => 'Customer Name',
'cbal' => 'Account Balance',
'cmail' => 'Email Address',
'clevel' => 'Level!'

1;

Smapping = [
'cname' => 'name',
'cbal' => 'balance'’,
'cmail' => 'email',

'clevel' => 'level!'
1;

383

Looking at Advanced Algorithms

You can now set up the database connection and create the search engine instance:

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;
Sengine = new Engine ($conn, 'customer', $dbCols, S$mapping) ;

In order to display the appropriate drop-down SELECT elements, we define wrappers and
elements based on Application\Form* classes:

Swrappers = [
Generic::INPUT => ['type' => 'td', 'class' => 'content'],
Generic::LABEL => ['type' => 'th', 'class' => 'label'],
Generic::ERRORS => ['type' => 'td', 'class' => 'error']

1;

// define elements

sfieldElement = new Select ('field',
Generic: :TYPE SELECT,
'Field',
Swrappers,
['id' => 'field']);
SopsElement = new Select('ops',
Generic: :TYPE SELECT,
'Operators',
Swrappers,
['id' => 'ops']);
SitemElement = new Generic('item',
Generic: :TYPE TEXT,
'Searching For ...',
Swrappers,
["'id' => 'item',k 'title' => 'If more than one item,
separate with commas']) ;
$SsubmitElement = new Generic ('submit',
Generic::TYPE SUBMIT,
'Search',
Swrappers,
['id' => 'submit', 'title' => 'Click to Search',
'value' => 'Search']);

384

Chapter 10

We then get input parameters (if defined), set form element options, create search criteria,
and run the search:

$key = (isset($ _GET['field']))

? strip tags($_GET['field']) : NULL;

Sop = (isset($_GET['ops'])) ? $ GET['ops'] : NULL;

S$item = (isset($_GET['item'])) ? strip tags($ _GET['item']) : NULL;

$fieldElement->setOptions ($dbCols, S$key);
SitemElement->setSingleAttribute ('value', S$item);
SopsElement->setOptions ($Sengine->getOperators (), $Sop);
Scriteria = new Criteria($key, $op, $item);

Sresults = $engine->search($criteria);

?>

The display logic mainly orients towards rendering the form. A more thorough presentation is
discussed in Chapter 6, Building Scalable Websites, but we show the core logic here:

<form name="search" method="get">
<table class="display" cellspacing="0" width="100%">

<tr><?= $fieldElement->render(); ?></tr>
<tr><?= $opsElement->render(); ?></tr>
<tr><?= $itemElement->render(); ?></tr>
<tr><?= $submitElement->render(); ?></tr>
<tr>

<th class="label">Results</th>
<td class="content" colspan=2>

<table>
<?php foreach ($results as Srow) : ?>
<tr>
<td><?= Srow['id'] ?></td>
<td><?= $row['name'] ?></td>
<td><?= Srow['balance'] ?></td>
['email'] ?></td>
['level'] ?></td>

<td><?= Srow
<td><?= Srow
</tr>
<?php endforeach; ?>
</table>

</td>
</tr>
</table>
</form>

385

Looking at Advanced Algorithms

Here is sample output from a browser:

@ © @ PHP7 Cookbook - Mozilla Firefox
PHP 7 Cookbook x
€ > localhost wBa @ 3 A~ © B =

Field| Account Balance -

Operators| Greater Than =

g|
For ... 1000

Search| Search

49 oOmar Anthony 3733.00 omar.anthony@fastmedia.com INT

10 Jess Rocha 6405.00 jess.rocha@eastcom.net ADV
Results] 9 Armando Barlow 6524.00 armando.barlow@cablecom.com BEG
22 Coleen Walker 6595.20 coleen.walker@fastmedia.com INT
27 Flossie Dyer 7176.00 flossie.dyer@cablenet.com INT
1 Conrad Perry 888888. 00 conrad.perry@fastmedia.com INT

Displaying a multi-dimensional array and

accumulating totals

How to properly display data from a multi-dimensional array has been a classic problem for
any web developer. For illustration, assume you wish to display a list of customers and their
purchases. For each customer, you wish to show their name, phone number, account balance,
and so on. This already represents a two dimensional array where the x axis represents
customers and the y axis represents data for that customer. Now add in purchases and you
have a third axis! How can you represent a 3D model on a 2D screen? One possible solution
would be to incorporate "hidden" division tags with a simple JavaScript visibility toggle.

How to do it...

1. First we need to generate a 3D array from a SQL statement that uses a number
of JOIN clauses. We will use the Application/Database/Connection class
introduced in Chapter 1, Building a Foundation, to formulate an appropriate SQL
query. We leave two parameters open, min and max, in order to support pagination.
Unfortunately, we cannot use a simple LIMIT and OFFSET in this case, as the
number of rows will vary depending on the number of purchases for any given
customer. Accordingly, we can restrict the number of rows by placing restrictions
on the customer ID that presumably (hopefully) is incremental. To make this work
properly, we also need to set the primary ORDER to customer ID:

define ('ITEMS PER PAGE', 6);

define ('SUBROWS PER PAGE', 6);

define ('DB_CONFIG FILE', '/../config/db.config.php');
include _ DIR . '/../Application/Database/Connection.php';

386

Chapter 10

use Application\Database\Connection;
$conn = new Connection(include @ DIR . DB CONFIG FILE) ;
$sgl = 'SELECT c.id,c.name,c.balance,c.email, f.phone,
'u.transaction,u.date,u.quantity,u.sale price,r.title '
'FROM customer AS c '
'JOIN profile AS f '
'ON f.id = c.id !
'JOIN purchases AS u '
'ON u.customer id = c.id '
'JOIN products AS r !
'ON u.product id = r.id '
'"WHERE c.id >= :min AND c.id < :max '
'ORDER BY c.id ASC, u.date DESC ';

2. Next we can implement a form of pagination, based on restrictions on the customer
ID, using simple s _GET parameters. Note that we add an extra check to make sure
the value of $prev does not go below zero. You might consider adding another
control that ensures the value of $next does not go beyond the last customer ID. In
this illustration, we just allow it to increment:

Spage $ GET['page'] ?? 1;

Spage (int) Spage;

Snext = $page + 1;

$prev = $page - 1;

Sprev = ($prev >= 0) ? Sprev : 0;

3. We then calculate the values for $min and $max, and prepare and execute the SQL

statement:
$min = S$prev * ITEMS PER PAGE;
$max = S$page * ITEMS PER PAGE;

$stmt = $conn->pdo->prepare ($sql) ;
Sstmt->execute(['min' => Smin, 'max' => Smax]);

4. Awhile () loop can be used to fetch results. We use a simple fetch mode of
PDO: : FETCH_ASSOC for the purpose of this example. Using the customer ID as a
key, we store basic customer information as array parameters. We then store an array
of purchase information in a sub-array, Sresults [Skey] ['purchases'] [].When
the customer ID changes, it's a signal to store the same information for the next
customer. Note that we accumulate totals per customer in an array key total:

ScustId = 0;

Sresult = array();

$grandTotal = 0.0;

while ($row = $stmt->fetch(PDO::FETCH ASSOC)) {
if ($row['id'] != $custIid) {

ScustId = $row(['id'];
Sresult [ScustId] = [

387

Looking at Advanced Algorithms

'name'’ => Srow['name'],
'balance' => S$row['balance'l],
'email’ => Srow['email'],
'phone'’ => $Srow/['phone'],

1;
Sresult [ScustId] ['total'] = 0;

}

Sresult [$custId] ['purchases'] [] = [

'transaction' => S$row/['transaction'],
'date' => Srow['date'],
'quantity' => S$row['quantity'],
'sale price' => $row['sale price'l],
'title! => Srow['title'],

1;
Sresult [$ScustId] ['total']l += Srow['sale price'];
$grandTotal += S$Srow['sale price'];

}

?>

5. Next we implement the view logic. First, we start with a block that displays primary
customer information:

<div class="container"s>
<?php foreach ($result as $key => $data) : ?>
<div class="mainLeft color0">
<?= Sdatal'name'] ?> [<?= Skey ?>]
</div>
<div class="mainRight">
<div class="row">
<div class="left">Balance</div>
<div class="right"><?= Sdata['balance']; ?></divs>
</div>
<div class="row">
<div class="left color2"s>Email</div>
<div class="right"><?= Sdata['email']l; ?></divs>
</div>
<div class="row">
<div class="left">Phone</div>
<div class="right"><?= $data['phone'l; ?></divs>
</div>
<div class="row">
<div class="left color2"s>Total Purchases</div>
<div class="right">
<?= number format ($data['total'],2); ?>
</div>
</div>

388

Chapter 10

6. Next comes the logic to display a list of purchases for this customer:

<!-- Purchases Info -->

<table>
<tr>
<th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th>

</tr>

<?php Scount = 0; ?>

<?php foreach ($datal['purchases'] as $purchase) : ?>
<?php S$class = ($Scount++ & 01) ? 'colorl' : 'color2'; ?>
<tr>

<td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>
<td class="<?= $class ?>"><?= $purchase['date'] ?></td>
<td class="<?= S$class ?>"><?= Spurchase['quantity'] ?></td>
<td class="<?= $class ?>"><?= $purchase['sale price']l ?></td>
<td class="<?= $class ?>"><?= $purchase['title'] ?></td>
</tr>
<?php endforeach; ?>

</table>

For the purposes of pagination, we then add buttons to represent previous and next:

<?php endforeach; ?>
<div class="container">
<a href="?page=<?= S$prev ?>">
<input type="button" value="Previous">
<a href="?page=<?= $next ?>">
<input type="button" value="Next" class="buttonRight">
</div>
<div class="clearRow"></div>

</div>

The result so far, unfortunately, is nowhere near neat and tidy! Accordingly we add
a simple JavaScript function to toggle the visibility of a <div> tag based on its id
attribute:

<script type="text/javascript"s>
function showOrHide (id)
var div = document.getElementById(id) ;

div.style.display = div.style.display == "none" ?
"block" : "none";
}
</scripts>

389

Looking at Advanced Algorithms

9. Next we wrap the purchases table inside an initially invisible <div> tag. Then, we can
place a limit of how many sub-rows are initially visible, and add a link that reveals the
remaining purchase data:

<div class="row" id="<?= 'purchase' . S$key ?>"
style="display:none; ">
<table>
<tr>

<th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th>

</tr>

<?php Scount = 0; ?>

<?php $first = TRUE; °?>

<?php foreach ($datal['purchases'] as $purchase) : ?>
<?php if ($count > SUBROWS_PER_ PAGE && Sfirst) : ?>
<?php $first = FALSE; °?>
<?php $subId = 'subrow' . Skey; ?>
</table>

<a href="#" onClick="showOrHide ('<?= $subId ?>')">More
<div id="<?= $subId ?>" style="display:none;">

<table>

<?php endif; ?>
<?php $class = ($Scount++ & 01) ? 'colorl' : 'color2'; ?>
<tr>

<td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>
<td class="<?= $class ?>"><?= $purchase['date'] ?></td>
<td class="<?= S$class ?>"><?= Spurchase['quantity'] ?></td>
<td class="<?= $class ?>"><?= $purchase['sale price']l ?></td>
<td class="<?= $class ?>"><?= $purchase['title'] ?></td>
</tr>
<?php endforeach; ?>
</table>
<?php if (!s$first) : ?></div><?php endif; ?>

</div>

10. We then add a button that, when clicked, reveals the hidden <div> tag:

<input type="button" value="Purchases" class="buttonRight"
onClick="showOrHide ('<?= 'purchase' . S$key ?>')">

Place the code described in steps 1 to 5 into a file, chap 10 _html table multi array
hidden.php.

Just inside the while () loop, add the following:

printf ('%6s : %20s : %8s : %20s' . PHP_EOL,
Srow['id'], S$row['mame'], S$row['transaction'], Srow['title']);

390

Chapter 10

Just after the while () loop, add an exit command. Here is the output:

Mozilla Firefox

http://loca...hp?page=2&# x=

€ > localhost E1|l¢ w A » | =
6 : spencer Sanford : TXN5092 : Gingerbread Cookies
6 : Spencer Sanford : ZNW5593 : Peanut Brittle
6 : Spencer Sanford : ZJMB659 : Fortune Cookies
6 : Spencer Sanford : APB5068 : Cherry Pie
6 : Spencer Sanford : NO0S4583 : Apple Pie a la Mode
6 : Spencer Sanford : DFZ3481 : Cinnamon Roll
6 : Spencer Sanford : JJINB974 : Baked Alaska
6 : Spencer Sanford : WRAG6389 : Baked Alaska
6 : Spencer Sanford : EPE5574 : Banana Bread
6 : Spencer Sanford : FFL4597 : Banana Split h
6 : Spencer Sanford : WKEB965 : Chocolate Chip Cookies =

You will notice that the basic customer information, such as the ID and name, repeats for
each result row, but purchase information, such as transaction and product title, varies. Go
ahead and remove the printf () statement.

Replace the exit command with the following:
echo '<pre>', var dump($result), '</pre>'; exit;

Here is how the newly composed 3D array looks:

array(6) {
[6]=>
array(s) {
["name"]=>
string(15) "Spencer Sanford"
["balance"]=>
string(s) "99.99"
["email"]=>
string(28) "spencer.sanford@cablenet.net”
["phone"]=>
string(12) "451-815-7386"
["purchases"]=>
array(92) {
[0]=>
array(5) {
[*transaction"]=>
string(7) "TXN5092"
["date"]=>
string(19) "2016-09-12 05:46:16"
["quantity"]=>
string(2) "44"
["sale price"]=>
string(5) "10.50"
["title"]==>
string(19) "Gingerbread Cookies”
}
[1]=>
array(5) {
["transaction"]=>
string(7) "ZNW5593"
["date"]==>
string(19) "2015-09-18 03:58:26"

391

Looking at Advanced Algorithms

You can now add the display logic shown in steps 5 to 7. As mentioned, although you are now
showing all data, the visual display is not helpful. Now go ahead and add the refinements
mentioned in the remaining steps. Here is how the initial output might appear:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W

€ localhost e w B8 + & © H

Customer Info

Conrad Perry [1] Purchases Balance 888888.00
Email conrad.perry@fastmedia.com
Phone 484-181-9811
Total Purchases 3,038.90

Lonnie Knapp [2] Purchases Balance 555.55
Email lonnie_knapp@cablecom.com
Phone 817-766-0585
Total Purchases 3,118.60

Darrel Roman [3] Purchases Balance 444.44
Email darrel.roman@southcom.net
Phone +1222-333-4444
Total Purchases 4,296.80

Page Total: 10,454.30

Previous [Next

When the Purchases button is clicked, initial purchase info appears. If the link to More is
clicked, the remaining purchase information shows:

Balance 888888.00
Email conrad.perry@fastmedia.com
Phone 484-181-9811
Total Purchases 3,038.90
[Tramsacon [pae Joy [Prhiee || Product |
[oomsess |eo1e-10-27032728 |2 840 |[PeanutButterGups |
RLI3437 2016-08-10 14:16:22 17 10.20 Neapolitan Ice Cream
EOV1192 2016-05-15 08:56:28 3 17.10 Chocolate Eclair
ZAMB290 2015-10-21 23:11:22 18 72.00 Ice Cream Cake
ZNW5593 2015-09-18 03:58:26 s 75.00 Pumpkin Ice Cream
More

392

11

Implementing Software
Design Patterns

In this chapter, we will cover the following topics:

» Creating an array to object hydrator

» Building an object to array hydrator

» Implementing a strategy pattern

» Defining a mapper

» Implementing object-relational mapping

» Implementing the Pub/Sub design pattern

Introduction

The idea of incorporating software design patterns into object-oriented programming
(00P) code was first discussed in a seminal work entitled Design Patterns: Elements of
Reusable Object-Oriented Software, authored by the famous Gang of Four (E. Gamma, R.
Helm, R. Johnson, and J. Vlissides) in 1994. Defining neither standards nor protocols, this
work identified common generic software designs that have proven useful over the years. The
patterns discussed in this book are generally thought to fall into three categories: creational,
structural, and behavioral.

393

Implementing Software Design Patterns

Examples of many of these patterns have already been presented in this book. Here is a brief
summary:

Design pattern Chapter Recipe
Singleton 2 Defining visibility
Factory 6 Implementing a form factory
Adapter 8 Handling translation without gettext ()
Proxy 7 Creating a simple REST client
Creating a simple SOAP client
Iterator 2 Recursive directory iterator
Using iterators

In this chapter, we will examine a number of additional design patterns, focusing primarily on
Concurrency and Architectural patterns.

Creating an array to object hydrator

The Hydrator pattern is a variation of the Data Transfer Object design pattern. Its design
principle is quite simple: moving data from one place to another. In this illustration, we will
define classes to move data from an array to an object.

How to do it...

1. First, we define a Hydrator class that is able to use getters and setters. For this
illustration we will use Application\Generic\Hydrator\GetSet:

namespace Application\Generic\Hydrator;
class GetSet

{

// code

}

2. Next, we define a hydrate () method, which takes both an array and an object as
arguments. It then calls the setXXX () methods on the object to populate it with
values from the array. We use get_class () to determine the object's class, and
then get_class_methods () to get a list of all methods. preg match () is used
to match the method prefix and its suffix, which is subsequently assumed to be the
array key:

public static function hydrate (array S$array, S$Sobject)

{
S$class = get class(S$Sobject);
SmethodlList = get class methods ($class) ;

Chapter 11

foreach ($methodList as $method) ({
preg match('/”*(set) (.*?)$/1i', $Smethod, S$matches);
Sprefix = Smatches[1] ?? '';

$key = $Smatches[2] ?? '';
Skey = strtolower (substr($key, 0, 1)) . substr(gkey, 1);
if ($prefix == 'set' && !empty($array[$keyl)) {

$object->Smethod ($array[Skey]) ;

}

return $object;

}

To demonstrate how the array to hydrator object is used, first define the Application\
Generic\Hydrator\GetSet class as described in the How to do it... section. Next, define
an entity class that can be used to test the concept. For the purposes of this illustration,
create a Application\Entity\Person class, with the appropriate properties and
methods. Be sure to define getters and setters for all properties. Not all such methods are
shown here:

namespace Application\Entity;

class Person

{
protected $firstName L
protected S$lastName L
protected S$Saddress = '';
protected Scity v
protected S$stateProv ;
protected S$postalCode v
protected S$Scountry v

public function getFirstName ()

{

return Sthis->firstName;

public function setFirstName ($firstName)

{

Sthis->firstName = $firstName;

// etc.

395

Implementing Software Design Patterns

You can now create a calling program called chap_11 array to_object.php, which sets
up autoloading, and uses the appropriate classes:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Entity\Person;
use Application\Generic\Hydrator\GetSet;

Next, you can define a test array with values that will be added to a new Person instance:

Sa['firstName'] = 'Li\'l Abner’';
Sa['lastName'] = 'Yokum';
Sa['address'] = 'l Dirt Street';
Sal'city'l] = 'Dogpatch';
Sa['stateProv'] = 'Kentucky';
Sa['postalCode']l= '12345"';
Sa['country'] = 'USA';

You can now call hydrate () and extract () in a static manner:

Sb = GetSet::hydrate($a, new Person());
var_dump ($b) ;

The results are shown in the following screenshot:

object(Application\Entity\Person)#1 (7) {
["firstName":protected]=>
string(10@) "Li'l Abner"
["lastName":protected]=>
string(5) "Yokum"
["address":protected]=>
string(13) "1 Dirt Street"
["city":protected]=>
string(8) "Dogpatch"
["stateProv":protected]=>
string(8) "Kentucky"
["postalCode" :protected]=>
string(5) "12345"
["country":protected]==>
string(3) "UsA"

(program exited with code: 0)
Press return to continue

396

Chapter 11

Building an object to array hydrator

This recipe is the converse of the Creating an array to object hydrator recipe. In this case, we
need to pull values from object properties and return an associative array where the key will
be the column name.

How to do it...

1.

For this illustration we will build upon the Application\Generic\Hydrator\
GetSet class defined in the previous recipe:

namespace Application\Generic\Hydrator;
class GetSet

{

// code

}

After the hydrate () method defined in the previous recipe, we define an

extract () method, which takes an object as an argument. The logic is similar to
that used with hydrate (), except this time we're searching for get XXX () methods.
Again, preg _match () is used to match the method prefix and its suffix, which is
subsequently assumed to be the array key:

public static function extract ($object)
{
Sarray = array() ;
$class = get class($Sobject) ;
$methodList = get class_methods ($class) ;
foreach ($methodList as $method) ({
preg match('/”*(get) (.*?)$/1i', Smethod, Smatches);
Sprefix = Smatches[1] ?? '';

Skey = Smatches[2] 2?7 '';
Skey = strtolower (substr($key, 0, 1)) . substr(skey, 1);
if ($prefix == 'get') {

Sarray [$key] = S$Sobject->$method() ;
}
}

return S$array;

}
}

for convenience.

[Note that we have defined hydrate () and extract () as static methods]

397

Implementing Software Design Patterns

Define a calling program called chap 11 object to array.php, which sets up
autoloading, and uses the appropriate classes:

<?php
require DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Entity\Person;
use Application\Generic\Hydrator\GetSet;

Next, define an instance of Person, setting values for its properties:

$obj = new Person() ;
$obj->setFirstName ('Li\'lAbner') ;
Sobj->setLastName ('Yokum') ;
$obj->setAddress ('1DirtStreet') ;
$obj->setCity ('Dogpatch!') ;
Sobj->setStateProv ('Kentucky') ;
Sobj->setPostalCode ('12345"') ;
$obj->setCountry ('USA"') ;

Finally, call the new extract () method in a static manner:

$Sa = GetSet::extract ($obj) ;
var_ dump (Sa) ;

The output is shown in the following screenshot:

array(7) {

["firstName"]=>
string(9) "Li'lAbner"
["lastName"]=>
string(5) "Yokum"
["address"]=>
string(11) "1DirtStreet"
["city"]=>

string(8) "Dogpatch”
["stateProv"]=>
string(8) "Kentucky"
["postalCode"]=>
string(5) "12345"
["country”]=>
string(3) "USA"

(program exited with code: @)
Press return to continue

398

Chapter 11

Implementing a strategy pattern

It is often the case that runtime conditions force the developer to define several ways of doing
the same thing. Traditionally, this involved a massive 1£/elseif/else block of commands.
You would then either have to define large blocks of logic inside the if statement, or create

a series of functions or methods to enable the different approaches. The strategy pattern
attempts to formalize this process by having the primary class encapsulate a series of sub-
classes that represent different approaches to solve the same problem.

How to do it...

1.

In this illustration, we will use the GetSet hydrator class defined previously as

a strategy. We will define a primary Application\Generic\Hydrator\Any
class, which will then consume strategy classes in the Application\Generic\
Hydrator\Strategy namespace, including GetSet, PublicProps, and
Extending.

We first define class constants that reflect the built-in strategies that are available:

namespace Application\Generic\Hydrator;

use InvalidArgumentException;

use Application\Generic\Hydrator\Strategy\ {

GetSet, PublicProps, Extending };

class Any

{
const STRATEGY PUBLIC 'PublicProps';
const STRATEGY GET SET 'GetSet'!';
const STRATEGY EXTEND = 'Extending';
protected S$strategies;

public S$chosen;

We then define a constructor that adds all built-in strategies to the $strategies
property:

public function __ construct ()

{

$this->strategies[self::STRATEGY GET SET] = new GetSet();
$this->strategies[self::STRATEGY PUBLIC] = new PublicProps();
$this->strategies[self::STRATEGY EXTEND] = new Extending() ;

}

399

Implementing Software Design Patterns

4.

400

We also add an addstrategy () method that allows us to overwrite or add new
strategies without having to recode the class:

public function addStrategy($key, HydratorInterface $strategy)
{
Sthis->strategies[$key] = S$strategy;

}

The hydrate () and extract () methods simply call those of the chosen strategy:

public function hydrate (array S$array, S$object)
{
$strategy = $this->chooseStrategy (Sobject) ;
Sthis->chosen = get class($strategy);
return S$strategy::hydrate($Sarray, $object) ;

}

public function extract (Sobject)

{
$strategy = $this->chooseStrategy (Sobject) ;
Sthis->chosen = get class($strategy) ;
return $strategy::extract ($object) ;

}

The tricky bit is figuring out which hydration strategy to choose. For this purpose we
define chooseStrategy (), which takes an object as an argument. We first perform
some detective work by way of getting a list of class methods. We then scan through
the list to see if we have any getXxX () or setXxX () methods. If so, we choose the
GetSet hydrator as our chosen strategy:

public function chooseStrategy ($object)
{
$strategy = NULL;
$methodList = get class methods (get_class($object)) ;
if (!empty(SmethodList) && is_array ($methodList)) {
SgetSet = FALSE;
foreach ($methodList as $method) ({
if (preg match('/“get|set.*$/i', Smethod)) ({
$strategy = $this->strategies[self::STRATEGY GET SET];
break;

Chapter 11

10.

11.

Still within our chooseStrategy () method, if there are no getters or setters, we
next use get _class_vars () to determine if there are any available properties. If
s0, we choose PublicProps as our hydrator:

if (!$strategy) {
$vars = get_class_vars(get class($object)) ;
if (lempty($vars) && count ($vars))
$strategy = $this->strategies[self::STRATEGY PUBLIC];

}

If all else fails, we fall back to the Extending hydrator, which returns a new class
that simply extends the object class, thus making any public or protected
properties available:

if (!$strategy)
$strategy = $this->strategies[self::STRATEGY EXTEND] ;

}

return S$strategy;

}
}

Now we turn our attention to the strategies themselves. First, we define a new
Application\Generic\Hydrator\Strategy namespace.

In the new namespace, we define an interface that allows us to identify any strategies
that can be consumed by Application\Generic\Hydrator\Any:

namespace Application\Generic\Hydrator\Strategy;
interface HydratorInterface

{

public static function hydrate (array Sarray, S$object);
public static function extract ($object);

}

The GetSet hydrator is exactly as defined in the previous two recipes, with the only
addition being that it will implement the new interface:

namespace Application\Generic\Hydrator\Strategy;
class GetSet implements HydratorInterface

{

public static function hydrate (array S$array, S$Sobject)

{

// defined in the recipe:
// "Creating an Array to Object Hydrator"

public static function extract ($object)

Implementing Software Design Patterns

{

// defined in the recipe:
// "Building an Object to Array Hydrator"

}

12. The next hydrator simply reads and writes public properties:
namespace Application\Generic\Hydrator\Strategy;

class PublicProps implements HydratorInterface

{

public static function hydrate (array S$array, S$Sobject)
{
SpropertyList= array keys(
get class_vars(get class($Sobject)));
foreach ($propertyList as $property) ({
Sobject->$property = Sarray[$Sproperty] ?? NULL;
}

return $object;

}

public static function extract (Sobject)
{
Sarray = array();
SpropertyList = array keys(
get class_vars(get class($Sobject)));
foreach ($propertyList as $property)
Sarray [Sproperty] = $object->$property;
}
return S$array;
}
}

13. Finally, Extending, the Swiss Army knife of hydrators, extends the object class, thus
providing direct access to properties. We further define magic getters and setters to
provide access to properties.

14. The hydrate () method is the most difficult as we are assuming no getters or
setters are defined, nor are the properties defined with a visibility level of public.
Accordingly, we need to define a class that extends the class of the object to be
hydrated. We do this by first defining a string that will be used as a template to build
the new class:

namespace Application\Generic\Hydrator\Strategy;
class Extending implements HydratorInterface

{

const UNDEFINED PREFIX = 'undefined';

402

Chapter 11

const TEMP_ PREFIX = 'TEMP_';
const ERROR_EVAL = 'ERROR: unable to evaluate object';
public static function hydrate (array S$array, S$Sobject)

{

$className = get class($object) ;

Scomponents = explode('\\', $className) ;
$realClass = array pop (Scomponents) ;
$nameSpace = implode('\\', $components) ;
StempClass = $realClass . self::TEMP_SUFFIX;
Stemplate = 'namespace '

$nameSpace . '{'

'class ' . StempClass

' extends ' . SrealClass . ' !

15. Continuing in the hydrate () method, we define a $values property, and a
constructor that assigns the array to be hydrated into the object as an argument.
We loop through the array of values, assigning values to properties. We also define a
useful getArrayCopy () method, which returns these values if needed, as well as a
magic ___get () method to simulate direct property access:

1 { 1

' protected S$values; '

' public function _ construct ($array) '
' { $this->values = $array; '

! foreach ($array as Skey => $Svalue) '
! $this->skey = $value; '

1 } 1

' public function getArrayCopy () '

' { return $this->values; } '

16. For convenience we define a magic __get () method, which simulates direct variable
access as if they were public:

' public function _ get (skey) '
" { return S$this->values[$key] ?? NULL; } '

17. Still in the template for the new class, we define also a magic __call () method,
which simulates getters and setters:

' public function _ call($method, $params) '
o

! preg match("/”*(get|set) (.*?)$/i",

! Smethod, S$matches); '

! Sprefix = $matches[1] 2?2 ""; !

! Skey = $matches[2] 2?2 ""; !

! Skey = strtolower (substr(Skey, 0, 1)) '
! substr (Skey, 1); '

Implementing Software Design Patterns

18.

19.

20.

404

! if ($prefix == "get") {
! return $this->values[$key] ?? NULL; '
' } else {

! Sthis->values[$key] = $params[0];

1 } 1

'} // ends namespace ' . PHP EOL
Finally, still in the template for the new class, we add a function, in the global
namespace, that builds and returns the class instance:

'namespace { '
'function build(Sarray)

'{ return new ' . $nameSpace . '\\'
$tempClass . '($array); } '

'} // ends global namespace '

PHP_EOL;

Still in the hydrate () method, we execute the completed template using eval ().

We then run the build () method defined just at the end of the template. Note that
as we are unsure of the namespace of the class to be populated, we define and call
build () from the global namespace:

try {
eval (Stemplate) ;

} catch (ParseError $e) {
error log(METHOD . ':' . $e->getMessage()) ;
throw new Exception(self::ERROR EVAL) ;

}

return \build (Sarray) ;

}

The extract () method is much easier to define as our choices are extremely
limited. Extending a class and populating it from an array using magic methods is
easily accomplished. The reverse is not the case. If we were to extend the class,
we would lose all the property values, as we are extending the class, not the object
instance. Accordingly, our only option is to use a combination of getters and public
properties:

public static function extract (Sobject)

{

Sarray

array () ;
$class = get class(S$Sobject);
$methodList = get class methods ($class) ;
foreach ($methodList as $method) ({
preg match('/”*(get) (.*?)$/1i', Smethod, S$matches);

Chapter 11

Sprefix = Smatches[1] ?? '';

Skey = Smatches[2] ?? '';

Skey = strtolower (substr(skey, 0, 1))
substr (skey, 1);

if ($prefix == 'get') {

Sarray [Skey] = Sobject->$method() ;

}
SpropertyList= array keys(get class vars(s$class)) ;
foreach ($propertyList as $property) ({
Sarray [Sproperty] = $object->$property;
}

return S$array;

}

You can begin by defining three test classes with identical properties: firstName, lastName,
and so on. The first, Person, should have protected properties along with getters and setters.
The second, PublicPerson, Will have public properties. The third, ProtectedPerson, has
protected properties but no getters nor setters:

<?php
namespace Application\Entity;
class Person

{

protected $firstName L

protected S$lastName L

protected S$Saddress ;
protected Scity v
protected S$stateProv L
protected S$SpostalCode = ;
protected S$Scountry ;

public function getFirstName ()

{

return Sthis->firstName;

public function setFirstName ($firstName)

{

Sthis->firstName = $firstName;

Implementing Software Design Patterns

}

// be sure to define remaining getters and setters

<?php
namespace Application\Entity;
class PublicPerson
{
private $id = NULL;
public $firstName .

public S$lastName .

public S$address = '';

public S$city vy
public $stateProv "y

public S$postalCode ;

public S$country ;

<?php
namespace Application\Entity;

class ProtectedPerson

{
private $id = NULL;
protected $firstName ;

protected S$lastName L
protected $address = 'y
protected s$city v

protected S$stateProv ;

protected S$postalCode v
protected S$Scountry v

}

You can now define a calling program called chap 11 strategy pattern.php, which sets
up autoloading and uses the appropriate classes:

<?php
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Entity\ { Person, PublicPerson, ProtectedPerson };
use Application\Generic\Hydrator\Any;

use Application\Generic\Hydrator\Strategy\ { GetSet, Extending,
PublicProps };

406

Chapter 11
Next, create an instance of Person and run the setters to define values for properties:

Sobj = new Person() ;
$obj->setFirstName ('Li\'lAbner') ;
Sobj->setLastName ('Yokum') ;
Sobj->setAddress ('l Dirt Street');
$obj->setCity ('Dogpatch!') ;
Sobj->setStateProv ('Kentucky') ;
Sobj->setPostalCode ('12345"') ;
$obj->setCountry ('USA"') ;

Next, create an instance of the Any hydrator, call extract (), and use var_dump () to view
the results:

Shydrator = new Any() ;

$b = Shydrator-sextract ($obj) ;

echo "\nChosen Strategy: " . S$hydrator->chosen . "\n";
var_dump ($b) ;

Observe, in the following output, that the GetSet strategy was chosen:

Chosen Strategy: Application\Generic\Hydrator\Strategy\GetSet
array(7) {
["firstName"]=>
string(9) "Li'lAbner"
["lastName"]==
string(5) "Yokum"
["address"]=>
string(13) "1 Dirt Street”
["city"]=>
string(8) "Dogpatch"
["stateProv"]=>
string(8) "Kentucky"
["postalcCode"]=>
string(5) "12345"
["country"]=>
string(3) "USA"

Note that the id property is not set as its visibility level is private.

Next, you can define an array with the same values. Call hydrate () on the Any instance,
and supply a new PublicPerson instance as an argument:

$a = [
'firstName' => 'Li\'lAbner',
'lastName' => 'Yokum',

Implementing Software Design Patterns

'address' => 'l Dirt Street',
'city! => 'Dogpatch',
'stateProv'! => 'Kentucky',
'postalCode' => '12345"',
'country' => 'USA'

1;

$p =
echo

Shydrator-shydrate ($a, new PublicPerson());
"\nChosen Strategy: " . Shydrator-s>chosen . "\n";

var_dump (Sp) ;

Here is the result. Note that the PublicProps strategy was chosen in this case:

Chosen Strategy: Application\Generic\Hydrator\Strategy\PublicProps
object(Application\Entity\PublicPerson)#6 (8) {

["id":"Application\Entity\PublicPerson":private]=>

NULL

["firstName"]==>

string(9) "Li'lAbner"

["lastName"]==>

string(5) "Yokum"

["address"]=>

string{13) "1 Dirt Street”

["city"]==>

string(8) "Dogpatch”

["stateProv"]=>

string(8) "Kentucky"

["postalcCode"]=>

string(5) "12345"

["country”]=> Y

string(3) "usa"

Finally, call hydrate () again, but this time supply an instance of ProtectedPerson as the
object argument. We then call getFirstName () and getLastName () to test the magic
getters. We also access first and last names as direct variable access:

$q =
echo
echo
echo

Shydrator-shydrate ($a, new ProtectedPerson()) ;
"\nChosen Strategy: " . Shydrator->chosen . "\n";
"Name: {$g->getFirstName ()} {$g->getLastName () }\n";
"Name: {$g->firstName} {$g->lastName}\n";

var dump ($q) ;

Here is the last output, showing that the Extending strategy was chosen. You'll also note
that the instance is a new ProtectedPerson_TEMP class, and that the protected properties
are fully populated:

408

Chapter 11

Chosen Strategy: Application\Generic\Hydrator\Strategy\Extending
Name: Li'lAbner Yokum
Name: Li'lAbner Yokum
object(Application\Entity\ProtectedPerson_TEMP)#8 (9) {
["values":protected]=>
array(7) {
["firstName"]=>
string(9) "Li'lAbner"
["lastName"]=>
string(5) "Yokum"
["address"]=>
string(13) "1 Dirt Street”
["city"]=>
string(8) "Dogpatch"
["stateProv"]=>
string(8) "Kentucky"
["postalCode"]=>
string(5) "12345"
["country”]==
string(3) "USA"

["id":"Application\Entity\ProtectedPerson":private]=>
NULL

["firstName":protected]=>

string(9) "Li'lAbner"”

["lastMame" :protected]=> h
string(5) "vYokum"

["address":protected]==>

string(13) "1 Dirt Street”

Defining a mapper

A mapper or data mapper works in much the same manner as a hydrator: converting data
from one model, be it array or object, into another. A critical difference is that the hydrator

is generic and does not need to have object property names pre-programmed, whereas the
mapper is the opposite: it needs precise information on property names for both models. In
this recipe we will demonstrate the use of a mapper to convert data from one database table
into another.

How to do it...

1. We first define a Application\Database\Mapper\FieldConfig class, which
contains mapping instructions for individual fields. We also define appropriate class
constants:

namespace Application\Database\Mapper;
use InvalidArgumentException;
class FieldConfig
{
const ERROR_SOURCE =
'"ERROR: need to specify destTable and/or source';
const ERROR_DEST = 'ERROR: need to specify either '
'both destTable and destCol or neither’';

Implementing Software Design Patterns

2. Key properties are defined along with the appropriate class constants. $key is used
to identify the object. $source represents the column from the source database
table. $destTable and $destCol represent the target database table and column.
$default, if defined, contains a default value or a callback that produces the
appropriate value:

public Skey;
public $source;
public $destTable;
public S$destCol;
public S$default;

3. We now turn our attention to the constructor, which assigns default values, builds the
key, and checks to see that either or both $source or $destTable and $destCol

are defined:

public function __ construct ($source = NULL,
SdestTable = NULL,
$destCol = NULL,
$default = NULL)

// generate key from source + destTable + destCol
Sthis->key = $source . '.' . SdestTable . '.' . $destCol;
Sthis->source = $source;
Sthis->destTable = $destTable;
Sthis->destCol = $destCol;
Sthis->default = $default;
if (($destTable && !$destCol) ||
(1$destTable && $destCol))
throw new InvalidArgumentException (self::ERROR_DEST) ;

}
if (!$destTable && !$source)
throw new InvalidArgumentException (
self::ERROR_SOURCE) ;

_ Note that we allow source and destination columns to be NULL. The
a reason for this is that we might have a source column that has no place in
s the destination table. Likewise, there might be mandatory columns in the

destination table that are not represented in the source table.

410

Chapter 11

4. Inthe case of defaults, we need to check to see if the value is a callback. If so, we
run the callback; otherwise, we return the direct value. Note that the callbacks should
be defined so that they accept a database table row as an argument:

public function getDefault ()
{
if (is_callable($this->default)) {
return call user func($this->default, s$row);
} else {
return $this->default;

}

5. Finally, to wrap up this class, we define getters and setters for each of the five
properties:

public function getKey ()

{

return S$this->key;

}

public function setKey (Skey)

{

Sthis->key = Skey;

// etc.

6. Next, we define a Application\Database\Mapper\Mapping mapping class,
which accepts the name of the source and destination tables as well as an array
of FieldConfig objects as an argument. You will see later that we allow the
destination table property to be an array, as the mapping might be to two or more
destination tables:

namespace Application\Database\Mapper;
class Mapping
{

protected $sourceTable;

protected $destTable;

protected s$fields;

protected $sourceCols;

protected $destCols;

public function __ construct (
$sourceTable, S$destTable, $fields = NULL)

Sthis->sourceTable = $SsourceTable;

Implementing Software Design Patterns

7.

412

Sthis->destTable = $destTable;
Sthis->fields = $fields;

}

We then define getters and setters for these properties:

public function getSourceTable ()

{

return Sthis->sourceTable;

}

public function setSourceTable ($sourceTable)

{

Sthis->sourceTable = S$sourceTable;

}

// etc.

For field configuration, we also need to provide the ability to add an individual field.
There is no need to supply the key as a separate argument as this can be obtained
from the FieldConfig instance:

public function addField(FieldConfig $field)
{
Sthis->fields[$field->getKey ()] = $field;
return Sthis;

}

It is extremely important to obtain an array of source column names. The problem

is that the source column name is a property buried in a FieldConfig object.
Accordingly, when this method is called, we loop through the array of FieldConfig
objects and invoke getSource () on each one to obtain the source column name:

public function getSourceColumns ()

{

if (!$this-s>sourceCols)

Sthis->sourceCols = array() ;
foreach ($this->getFields() as $field) {
if (lempty($field->getSource()))

Sthis->sourceCols[$field->getKey ()] =
$field->getSource() ;

}

return Sthis->sourceCols;

Chapter 11

10.

11.

12.

We use a similar approach for getDestColumns (). The big difference compared
to getting a list of source columns is that we only want the columns for one specific
destination table, which is critical if there's more than one such table is defined. We
do not need to check to see if SdestCol is set as this is already taken care of in the
constructor for FieldConfig:

public function getDestColumns ($table)

{
if (empty($this->destCols([$table]))
foreach ($this-s>getFields() as $field) {
if ($field->getDestTable())
if ($field->getDestTable() == $table)
S$this->destCols[$table] [sfield->getKey ()] =
Sfield->getDestCol() ;

}

return $this->destCols[Stable];

}

Finally, we define a method that accepts as a first argument an array representing
one row of data from the source table. The second argument is the name of the
destination table. The method produces an array of data ready to be inserted into the
destination table.

We had to make a decision as to which would take precedence: the default value
(which could be provided by a callback), or data from the source table. We decided to
test for a default value first. If the default comes back NULL, data from the source is
used. Note that if further processing is required, the default should be defined as a
callback.

public function mapData ($sourceData, S$destTable)
{
$dest = array();
foreach ($this->fields as $field) {
if ($field->getDestTable() == $destTable)
Sdest [$field->getDestCol ()] = NULL;
Sdefault = $field->getDefault ($sourceData) ;
if ($default) {
Sdest [$field->getDestCol ()]
} else {
Sdest [$field->getDestCol ()] =
$SsourceData[$field->getSource()];

Sdefault;

Implementing Software Design Patterns

return Sdest;

R Note that some columns will appear in the destination insert that are
% not present in the source row. In this case, the $source property of the
L FieldConfig objectis left as NULL, and a default value is supplied,

either as a scalar value or as a callback.

13. We are now ready to define two methods that will generate SQL. The first such
method will generate an SQL statement to read from the source table. The statement
will include placeholders to be prepared (for example, using PDO: :prepare ()):

public function getSourceSelect ($where = NULL)

{

$sql = 'SELECT '
implode(',', $this->getSourceColumns()) . ' ';
$sgql .= 'FROM ' . sthis-s>getSourceTable() . ' ';
if ($where)
Swhere = trim(Swhere) ;
if (stripos($where, 'WHERE') !== FALSE) {
$sqgl .= S$Swhere;
} else {
$sgl .= 'WHERE ' . Swhere;

}
}

return trim($sql) ;

}

14. The other SQL generation method produces a statement to be prepared for a specific
destination table. Notice that the placeholders are the same as the column names

preceded by ":":

public function getDestInsert (Stable)

{

$sgl = 'INSERT INTO ' . $table . ' ';
$sgql .= ' ('
implode(',', $this->getDestColumns (Stable))
L)
$sgl .= ' VALUES ';
Ssgql .= '"(=
implode(',:', Sthis->getDestColumns ($table))

1) 1 H
return trim($sql) ;

}

414

Chapter 11

Use the code shown in steps 1 to 5 to produce an 2pplication\Database\Mapper\
FieldConfig class. Place the code shown in steps 6 to 14 into a second Application\
Database\Mapper\Mapping class.

Before defining a calling program that performs mapping, it's important to consider the
source and destination database tables. The definition for the source table, prospects 11,
is as follows:

CREATE TABLE “prospects 11~ (
“id® int(11) NOT NULL AUTO_INCREMENT,
“first name® varchar(128) NOT NULL,
“last _name” varchar(128) NOT NULL,
“address” varchar (256) DEFAULT NULL,
“city® varchar (64) DEFAULT NULL,
“state province” varchar(32) DEFAULT NULL,
“postal code” char(16) NOT NULL,
“phone” varchar(16) NOT NULL,
“country” char(2) NOT NULL,
“email” varchar (250) NOT NULL,
“status” char(8) DEFAULT NULL,
“budget”™ decimal (10,2) DEFAULT NULL,
“last updated™ datetime DEFAULT NULL,
PRIMARY KEY (~id™),
UNIQUE KEY \UNIQ_3573OCO6E7927C74\ (Temail™)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

In this example, you can use two destination tables, customer 11 and profile 11,
between which there is a 1:1 relationship:

CREATE TABLE ~customer 11~ (

“id® int(11) NOT NULL AUTO_INCREMENT,

“name~ varchar (256) CHARACTER SET latinl
COLLATE latinl general cs NOT NULL,

“balance” decimal(10,2) NOT NULL,

“email” varchar (250) NOT NULL,

“password” char(l16) NOT NULL,

“status” int (10) unsigned NOT NULL DEFAULT '0',

“security question® varchar (250) DEFAULT NULL,

“confirm code® varchar(32) DEFAULT NULL,

\profile_id\ int (11) DEFAULT NULL,

“level™ char(3) NOT NULL,

PRIMARY KEY (~id™),

UNIQUE KEY \UNIQ_81398EO9E7927C74\ (Temail™)

Implementing Software Design Patterns

) ENGINE=InnoDB AUTO_ INCREMENT=80 DEFAULT CHARSET=utfs8
COMMENT="'Customers';

CREATE TABLE “profile 11~ (
“id® int(11) NOT NULL AUTO_ INCREMENT,
“address~ varchar (256) NOT NULL,
“city” varchar (64) NOT NULL,
“state province” varchar(32) NOT NULL,
“postal code” varchar(10) NOT NULL,
“country” wvarchar (3) NOT NULL,
“phone” varchar(16) NOT NULL,
“photo”™ varchar(128) NOT NULL,
“dob~ datetime NOT NULL,
PRIMARY KEY (~id")
) ENGINE=InnoDB AUTO_ INCREMENT=80 DEFAULT CHARSET=utfs8
COMMENT="'Customers';

You can now define a calling program called chap 11 mapper . php, Which sets up
autoloading and uses the two classes mentioned previously. You can also use the
Connection class defined in Chapter 5, Interacting with a Database:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
define ('DEFAULT PHOTO', 'person.gif');

require _ DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Mapper\ { FieldConfig, Mapping };
use Application\Database\Connection;

$conn = new Connection(include @ DIR . DB CONFIG FILE) ;

For demonstration purposes, after having made sure the two destination tables exist, you can
truncate both tables so that any data that appears is clean:

$conn->pdo->query ('DELETE FROM customer 11');
$conn->pdo->query ('DELETE FROM profile 11');

You are now ready to build the Mapping instance and populate it with FieldConfig objects.
Each FieldConfig object represents a mapping between source and destination. In the
constructor, supply the name of the source table and the two destination tables in the form of

an array:
$mapper = new Mapping('prospects 11', ['customer 11', 'profile 11']);

You can start simply by mapping fields between prospects 11 and customer_ 11 where
there are no defaults:

$mapper>addField (new FieldConfig('email', 'customer 11', 'email'))

416

Chapter 11

Note that addField () returns the current mapping instance so there is no need to keep
specifying $mapper->addField (). This technique is referred to as the fluent interface.

The name field is tricky, as in the prospects_11 table it's represented by two columns, but
only one column in the customer 11 table. Accordingly, you can add a callback as default
for first name to combine the two fields into one. You will also need to define an entry for
last name but where there is no destination mapping:

->addField(new FieldConfig('first_name', 'customer_11', 'name'’,
function (Srow) { return trim(($row['first name'] 2?2 '')
" . (Srow['last name']l 2?2 ''));}))

->addField (new FieldConfig('last name'))

The customer 11::status field can use the null coalesce operator (??) to determine if it's
set or not:

->addField(new FieldConfig('status', 'customer 11', 'status',
function ($row) { return $row['status'] ?? 'Unknown'; }))

The customer 11::1level field is not represented in the source table, thus you can make
a NULL entry for the source field, but make sure the destination table and column are set.
Likewise, customer 11::password is not present in the source table. In this case, the
callback uses the phone number as a temporary password:

->addField (new FieldConfig (NULL, 'customer 11', 'level', 'BEG'))
->addField (new FieldConfig (NULL, 'customer 11', 'password’,
function ($row) { return $row['phone'l; }))

You can also set mappings from prospects_11toprofile 11 as follows. Note that as the
source photo and date of birth columns are not present in prospects_11, you can set any
appropriate default:

->addField(new FieldConfig('address', 'profile 11', 'address'))
->addField(new FieldConfig('city', 'profile 11', 'city'))
->addField(new FieldConfig('state_province', 'profile_11"',
'state province', function ($row) {

return $row['state province'] ?? 'Unknown'; }))
->addField(new FieldConfig('postal_code', 'profile_11"',
'postal code'))
->addField(new FieldConfig('phone', 'profile 11', 'phone'))
->addField (new FieldConfig('country', 'profile 11', 'country'))
->addField (new FieldConfig(NULL, 'profile 11', 'photo',
DEFAULT_PHOTO))
->addField (new FieldConfig (NULL, 'profile 11','dob',
date('Y-m-d')));

Implementing Software Design Patterns

In order to establish the 1:1 relationship between the profile 11 and customer 11
tables, we set the values of customer 11::1id, customer 11::profile idand
profile 11::idto the value of Srow['id'] using a callback:

$idCallback = function ($row) { return $row['id']; };
$mapper->addField(new FieldConfig('id', 'customer 11', 'id',
$idcCallback))

->addField(new FieldConfig(NULL, 'customer_11', 'profile_id',
$idcCallback))

->addField(new FieldConfig('id', 'profile 11','id', $idCallback)) ;

You can now call the appropriate methods to generate three SQL statements, one to read
from the source table, and two to insert into the two destination tables:

$sourceSelect = Smapper->getSourceSelect () ;
ScustInsert = S$mapper->getDestInsert ('customer 11');
SprofileInsert = $mapper->getDestInsert ('profile 11');

These three statements can immediately be prepared for later execution:

$sourceStmt = $conn->pdo->prepare ($sourceSelect) ;
ScustStmt = $conn->pdo->prepare (ScustInsert) ;
SprofileStmt = $conn->pdo->prepare ($profilelInsert) ;

We then execute the SELECT statement, which produces rows from the source table. In a
loop we then generate INSERT data for each destination table, and execute the appropriate
prepared statements:

$sourceStmt->execute () ;

while ($row = $sourceStmt->fetch(PDO::FETCH ASSOC)) {
ScustData = $mapper->mapData ($row, 'customer 11');
ScustStmt->execute (ScustData) ;
S$profileData = $mapper->mapData ($row, 'profile 11');
SprofileStmt->execute ($SprofileData) ;
echo "Processing: {$custData['name']}\n";

}

Here are the three SQL statements produced:

418

Chapter 11

ed@ed: ~/Desktop/Repos/php7_recipes/source/chapteri1

SQL Statements:

SELECT email,first_name,last_name,status,address,city,state_province,postal_code,phone,
country,id,id FROM prospects_11

TNSERT INTO customer_11 (email,name,status,level,password,id,profile_id) VALUES (:e
mail, :name,:status, :level, :password,:id,:profile_id)

INSERT INTO profile_11 (address,city,state_province,postal_code,phone,country,photo,dol
b,id) VALUES (:address,:city,:state_province,:postal_code, :phone, :country, :photo, : do|
b,:id)

Processing: WILFREDO RICHARDS
: WILLARD ATKINSON
MANUEL WHITE
EDGAR SLOAN
AARON ALSTON
JEFF CASTRO
NEAL CHAVEZ
LEONARD LOVE h
ROLANDO LANDRY
FREDRICK BEASLEY
RANDAL STUART
DARRYL LAWSON
SEAN DOMINGUEZ
CARLTON MCCLAIN

Processin
Processin

We can then view the data directly from the database using SQL JOIN to ensure the
relationship has been maintained:

Webmin 1.801 on ed (Ubuntu Linux 14.04.4) - Mozilla Firefox

[BE PHP: SplPriorityQue... * [ESRUTC Ty Ty I TR Ty R=Ta BN

€ a localhost c *B8 U 3 & © @B =
. Module Index
Login: ed Execute SQL
) Output from SQL command select name,address,password from customer_11
Webmin as ¢ join profile 11 as p on c.profile id = p.id..
System
s name address password
WILFREDO RICHARDS 129 Lazy Bluff Trace 159-979-1095
Apache Webserver . .
WILLARD ATKINSON 993 Quaking Robin Estates 789-488-7747

MySQL Database Server

PostgreSQL Database Server

Read User Mall

MANUEL WHITE
EDGAR SLOAN
AARON ALSTON

977 Grand Fawn Circle
729 Quiet Pony Trail
60 Blue Deer Ridge

683-936-3566
466-318-8328
835-253-0674

Others JEFF CASTRO 212 Green Barn Trail 503-721-7504
oo NEAL CHAVEZ 801 Easy Leaf Valley 148-313-9642

LEONARD LOVE 983 Grand Deer Glen 758-157-8053
Hardware ROLANDO LANDRY 755 Pleasant Cloud Street 142-505-9627
Cluster FREDRICK BEASLEY 681 Cinder Creek Path 705-228-0481

Un-used Modules

Search:

RANDAL STUART
DARRYL LAWSON
SEAN DOMINGUEZ

694 Silver Forest Terrace
886 Honey Autumn Gate
565 Dewy Blossom Drive

608-290-4356
768-173-0830
159-608-8078

CARLTON MCCLAIN 234 Green View Vista 712-311-9864
£\ View Module's Logs ROMAN BENJAMIN 64 Emerald Deer Meadow 300-177-7131
£ System Information DUSTIN STEWART 845 Amber River Farms 166-532-0178

@ Refresh Modules

@ Logout

TERRENCE GARRISON
LEWIS DOWNS
BRADLEY HOLCOMB
MARION JOYCE
ALLEN MEYER

665 Shady Lake Stead

460 Quaking Deer Chase
197 Iron Bluff View

916 Gentle Sky Dell

595 Pleasant Bluff Gardens

611-443-8788
207-902-9860
810-321-3204
718-612-4632
190-800-6488

Implementing Software Design Patterns

Implementing object-relational mapping

There are two primary techniques to achieve a relational mapping between objects. The first
technique involves pre-loading the related child objects into the parent object. The advantage
to this approach is that it is easy to implement, and all parent-child information is immediately
available. The disadvantage is that large amounts of memory are potentially consumed, and
the performance curve is skewed.

The second technique is to embed a secondary lookup into the parent object. In this latter
approach, when you need to access the child objects, you would run a getter that would
perform the secondary lookup. The advantage of this approach is that performance demands
are spread out throughout the request cycle, and memory usage is (or can be) more easily
managed. The disadvantage of this approach is that there are more queries generated, which
means more work for the database server.

Please note, however, that we will show how the use of prepared
s statements can be used to greatly offset this disadvantage.

How to do it...

Let's have a look at two techniques to implement object-relational mapping.

Technique #1 - pre-loading all child information

First, we will discuss how to implement object relational mapping by pre-loading all child
information into the parent class. For this illustration, we will use three related database
tables, customer, purchases, and products

1. We will use the existing Application\Entity\Customer class (defined in
Chapter 5, Interacting with a Database, in the Defining entity classes to match
database tables recipe) as a model to develop an Application\Entity\
Purchase class. As before, we will use the database definition as the basis of the
entity class definition. Here is the database definition for the purchases table:

CREATE TABLE ~“purchases™ (
“id® int(11) NOT NULL AUTO_INCREMENT,
“transaction® wvarchar(8) NOT NULL,
“date” datetime NOT NULL,
“quantity” int (10) unsigned NOT NULL,
“sale price® decimal (8,2) NOT NULL,
“customer id~ int(11) DEFAULT NULL,
“product_id"” int (11) DEFAULT NULL,
PRIMARY KEY (~id"),
KEY “IDX C3F3~ (“customer id"),

420

Chapter 11

KEY “IDX 665A" (“product_id”),

CONSTRAINT “FK 665A~ FOREIGN KEY (“product id~) REFERENCES
“products” (~id"),

CONSTRAINT “FK C3F3~ FOREIGN KEY (“customer id®) REFERENCES
“customer” (Tid")

)i

Based on the customer entity class, here is how Application\Entity\Purchase
might look. Note that not all getters and setters are shown:

namespace Application\Entity;

class Purchase extends Base

{

const TABLE NAME = 'purchases';
protected Stransaction = '';
protected $date = NULL;
protected Squantity = 0;
protected S$salePrice = 0.0;
protected ScustomerId = 0;
protected S$productId = 0;

protected S$mapping = [

rid! => 'id’',
'transaction' => 'transaction',
'date'’ => 'date',
'quantity' => 'quantity',
'sale price' => 'salePrice',
'customer id' => 'customerId',
'product_id’ => 'productId',
1;
public function getTransaction() : string

{

return Sthis->transaction;

}

public function setTransaction($Stransaction)

{

Sthis->transaction = S$Stransaction;

}

// NOTE: other getters / setters are not shown here

Implementing Software Design Patterns

3. We are now ready to define Application\Entity\Product. Here is the database
definition for the products table:

CREATE TABLE “products”™ (
“id® int(11) NOT NULL AUTO_INCREMENT,
“sku” varchar(16) DEFAULT NULL,
“title” wvarchar (255) NOT NULL,
“description” varchar(4096) DEFAULT NULL,
“price” decimal (10,2) NOT NULL,
“special® int(11) NOT NULL,
“link® varchar(128) NOT NULL,
PRIMARY KEY (~id"),
UNIQUE KEY “UNIQ 38C4~ (“sku")

)

4. Based on the customer entity class, here is how Application\Entity\Product
might look:

namespace Application\Entity;

class Product extends Base

{

const TABLE NAME = 'products';
protected s$sku = '';

protected s$Stitle v
protected S$description = '';
protected S$price = 0.0;
protected S$special 0;
protected $link = '';

protected S$Smapping = [

rid => 'id"',
'sku! => 'sku',
'title! => 'title',
'description' => 'description',
'price! => 'price',
'special’ => 'special',
'link" => 'link',

1;

public function getSku() : string

{

return S$this->sku;

}

public function setSku($sku)

422

Chapter 11

Sthis->sku = $sku;
1

// NOTE: other getters / setters are not shown here

}

5. Next, we need to implement a way to embed related objects. We will start with the
Application\Entity\Customer parent class. For this section, we will assume
the following relationships, illustrated in the following diagram:

o One customer, many purchases
o One purchase, one product

Purchase

6. Accordingly, we define a getter and setter that process purchases in the form of an
array of objects:

protected S$purchases = array();
public function addPurchase (Spurchase)

{

Sthis->purchases[] = $purchase;

}

public function getPurchases()

{

return $this-s>purchases;

}

7. Now we turn our attention to Application\Entity\Purchase. In this case,
there is a 1:1 relationship between a purchase and a product, so there's no need to
process an array:

protected $product = NULL;
public function getProduct ()

{

return $this-s>product;

}

public function setProduct (Product S$product)

{

Sthis->product = $product;

Implementing Software Design Patterns

8.

_ Notice that in both entity classes, we do not alter the $mapping array.
% This is because implementing object relational mapping has no bearing
i on the mapping between entity property names and database column

names.

Since the core functionality of obtaining basic customer information is still needed,
all we need to do is to extend the Application\Database\CustomerService
class described in Chapter 5, Interacting with a Database, in the Tying entity classes
to RDBMS queries recipe. We can create a new Application\Database\
CustomerOrmService 1 class, which extends Application\Database\
CustomerService:

namespace Application\Database;

use PDO;

use PDOException;

use Application\Entity\Customer;

use Application\Entity\Product;

use Application\Entity\Purchase;

class CustomerOrmService 1 extends CustomerService

{

// add methods here

}

We then add a method to the new service class that performs a lookup and embeds
the results, in the form of Product and Purchase entities, into the core customer
entity. This method performs a lookup in the form of a JOIN. This is possible because
there is a 1:1 relationship between purchase and product. Because the id column
has the same name in both tables, we need to add the purchase ID column as an
alias. We then loop through the results, creating Product and Purchase entities.
After overriding the ID, we can then embed the Product entity into the Purchase
entity, and then add the Purchase entity to the array in the Customer entity:

protected function fetchPurchasesForCustomer (Customer S$cust)
{
$sgl = 'SELECT u.*,r.*,u.id AS purch id '
'FROM purchases AS u '
'JOIN products AS r !
'ON r.id = u.product_id '
'WHERE u.customer id = :id '
. 'ORDER BY u.date';
$stmt = S$this->connection-s>pdo->prepare ($sql) ;
Sstmt->execute (['id' => $cust->getId()]);
while ($result = S$stmt->fetch(PDO::FETCH ASSOC)) ({
Sproduct = Product::arrayToEntity ($Sresult, new Product());
$product->setId($result ['product id']) ;

424

Chapter 11

Spurch = Purchase::arrayToEntity ($Sresult, new Purchase());
$purch->setId($result ['purch id']);

$Spurch->setProduct ($product) ;

$cust->addPurchase ($purch) ;

}

return Scust;

}

10. Next, we provide a wrapper for the original fetchById () method. This block
of code needs to not only get the original Customer entity, but needs to look
up and embed Product and Purchase entities. We can call the new
fetchByIdAndEmbedPurchases () method and accept a customer ID as an
argument:

public function fetchByIdAndEmbedPurchases ($id)
{
return Sthis->fetchPurchasesForCustomer (
$this->fetchById($id)) ;

Technique #2 - embedding secondary lookups

Now we will cover embedding secondary lookups into the related entity classes. We will
continue to use the same illustration as above, using the entity classes defined that
correspond to three related database tables, customer, purchases, and products:

1. The mechanics of this approach are quite similar to those described in the preceding
section. The main difference is that instead of doing the database lookup, and
producing entity classes right away, we will embed a series of anonymous functions
that will do the same thing, but called from the view logic.

2. We need to add a new method to the Application\Entity\Customer class that
adds a single entry to the purchases property. Instead of an array of Purchase
entities, we will be supplying an anonymous function:

public function setPurchases (Closure S$purchaseLookup)

{

Sthis->purchases = S$purchaseLookup;

}

3. Next, we will make a copy of the Application\Database\
CustomerOrmService 1 class, and call it Application\Database\
CustomerOrmService 2:

namespace Application\Database;
use PDO;
use PDOException;

Implementing Software Design Patterns

use Application\Entity\Customer;
use Application\Entity\Product;
use Application\Entity\Purchase;
class CustomerOrmService 2 extends CustomerService

{

// code

}

4. We then define a fetchPurchaseById () method, which looks up a single
purchase based on its ID and produces a Purchase entity. Because we will
ultimately be making a series of repetitive requests for single purchases in this
approach, we can regain database efficiency by working off the same prepared
statement, in this case, a property called $SpurchPreparedStmt:

public function fetchPurchaseById ($purchId)
{
if (!$this-s>purchPreparedsStmt) {
$sgl = 'SELECT * FROM purchases WHERE id = :id';
Sthis->purchPreparedStmt =
Sthis->connection->pdo->prepare ($sqgl) ;
}
Sthis->purchPreparedStmt->execute(['id' => S$purchId]);
$result = $this->purchPreparedStmt->fetch (PDO::FETCH ASSOC) ;
return Purchase::arrayToEntity ($Sresult, new Purchase()) ;

}

5. After that, we need a fetchProductById () method that looks up a single product
based on its ID and produces a Product entity. Given that a customer may have
purchased the same product several times, we can introduce an additional level of
efficiency by storing acquired product entities in a $products array. In addition, as
with purchases, we can perform lookups on the same prepared statement:

public function fetchProductById ($prodId)

{

if (!isset ($this-sproducts[$prodIid]))
if (!$this-s>prodPreparedStmt) {
$sgl = 'SELECT * FROM products WHERE id = :id';

Sthis->prodPreparedStmt =
Sthis->connection->pdo->prepare ($sql) ;
}
Sthis->prodPreparedStmt->execute(['id' => S$SprodId]) ;
Sresult = $Sthis->prodPreparedStmt
->fetch (PDO: : FETCH_ASSOC) ;
Sthis->products [$prodId] =
Product: :arrayToEntity ($result, new Product()) ;

}

return $this-s>products[$prodIid] ;

426

6. We can now rework the fetchPurchasesForCustomer () method to have it

Chapter 11

embed an anonymous function that makes calls to both fetchPurchaseById ()
and fetchProductById (), and then assigns the resulting product entity to the
newly found purchase entity. In this example, we do an initial lookup that just returns
the IDs of all purchases for this customer. We then embed a sequence of anonymous
functions in the Customer: : $purchases property, storing the purchase ID as the

array key, and the anonymous function as its value:

public function fetchPurchasesForCustomer (Customer S$cust)

{
$sqgl = 'SELECT id '
'FROM purchases AS u '
'WHERE u.customer id = :id '

'ORDER BY u.date';
$stmt = S$this->connection-s>pdo->prepare($sql) ;
$Sstmt->execute (['id' => S$cust->getId()]);
while ($result = $stmt->fetch(PDO::FETCH ASSOC)) ({
Scust->addPurchaseLookup (
Sresult['id'],
function ($purchId, $service)
Spurchase = $service->fetchPurchaseById ($SpurchId) ;
Sproduct = $service->fetchProductById(
Spurchase->getProductId()) ;
Spurchase->setProduct ($product) ;
return $purchase; }
)i
}

return $cust;

}

Define the following classes based on the steps from this recipe as follows:

Class Technique #1 steps
Application\Entity\Purchase 1-2,7
Application\Entity\Product 3-4
Application\Entity\Customer 6, 16, + described in Chapter 5,

Interacting with a Database.
Application\Database\ 8-10
CustomerOrmService 1

Implementing Software Design Patterns

The second approach to this would be as follows:

Class Technique #2 steps
Application\Entity\Customer 2
Application\Database\ 3-6
CustomerOrmService 2

In order to implement approach #1, where entities are embedded, define a calling program
called chap 11 orm_ embedded.php, which sets up autoloading and uses the appropriate
classes:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;
use Application\Database\CustomerOrmService 1;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService 1 (

new Connection(include = DIR . DB CONFIG FILE)) ;
$id rand(1,79) ;
Scust = $service->fetchByIdAndEmbedPurchases ($id) ;

In the view logic, you will have acquired a fully populated Customer entity by way of the
fetchByIdandEmbedPurchases () method. Now all you need to do is to call the right
getters to display information:

<!-- Customer Info -->
<hl><?= $cust->getname() ?></hl>
<div class="row">
<div class="left">Balance</div><div class="right">
<?= $cust->getBalance(); ?></div>
</div>

<l-- etc. -->

The logic needed to display purchase information would then look something like the
following HTML. Notice that Customer: :getPurchases () returns an array of Purchase
entities. To get product information from the Purchase entity, inside the loop, call
Purchase: :getProduct (), which produces a Product entity. You can then call any of the
Product getters, in this example, Product: :getTitle():

<!-- Purchases Info -->
<table>
<?php foreach ($cust->getPurchases() as S$purchase) : ?>

428

Chapter 11

<tr>
<td><?= $purchase->getTransaction() ?></td>
<td><?= $purchase->getDate() ?></td>
<td><?= $purchase->getQuantity () ?></td>
<td><?= $purchase->getSalePrice() ?></td>
<td><?= $purchase->getProduct () ->getTitle() ?></td>
</tr>
<?php endforeach; ?>
</table>

Turning your attention to the second approach, which uses secondary lookups, define a calling
program called chap 11 orm secondary lookups.php, which sets up autoloading and
uses the appropriate classes:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;
use Application\Database\CustomerOrmService 2;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService 2 (new Connection(include DIR
DB _CONFIG_FILE)) ;

$id = rand(1,79);

You can now retrieve an Application\Entity\Customer instance and call
fetchPurchasesForCustomer () for this customer, which embeds the sequence of
anonymous functions:

Scust = $service->fetchById($id) ;
Scust = S$service->fetchPurchasesForCustomer (Scust) ;

The view logic for displaying core customer information remains the same as described
previously. The logic needed to display purchase information would then look something like the
following HTML code snippet. Notice that Customer: :getPurchases () returns an array of
anonymous functions. Each function call returns one specific purchase and related products:

<table>
<?php foreach ($cust->getPurchases () as S$purchId => $function) : ?>
<tr>
<?php $purchase = $function($purchId, $service); ?>

<td><?= $purchase->getTransaction() ?></td>
<td><?= $purchase->getDate() ?></td>
<td><?= $purchase->getQuantity () ?></td>
<td><?= $purchase->getSalePrice() ?></td>

Implementing Software Design Patterns

<td><?= $purchase->getProduct () ->getTitle() ?></td>
</tr>
<?php endforeach; ?>

</table>

Here is an example of the output:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W
€ localhost e Sea w B + & © B =
Fannie Moore
Balance 68.48
Email fannie.moore@cablemedia.net
Status 1
Level ADV

Transaction Date Qty || Price Product

ITWX3279 1994-02-11 04:09:08 7 39.2 Oaimeal Raisin Cookies
DSQ0216 1994-05-06 08:28:02 4 5.6 Banana Pudding
UCH8612 1994-07-13 21:26:08 9 22.5 |Baked Alaska
SBX5015 1994-08-03 03:26:33 17 ||37.4 Peanut Brittle
SQF6552 1994-09-08 04:14:56 1 5.6 Devils Food Cake
SCS3941 1994-10-03 00:41:22 13 |39 Toasted Marshmallows
\JDX9576 1994-12-22 11:48:20 4 14 Baked Alaska
QQG6E741 1995-01-07 05:46:30 3 10.8 | Cinnamon Roll N
JIK6580 1995-01-17 13:50:13 14 |57.4 Coconut Macaroon B
JIKE580 1995-01-17 13:50:13 4 0.8 Crispy Rice Treats
|vBD8104 |[1995-05-07 16:47:15 |5 |l21.5 |Chacolate Chip Cookies
TPGann4 [[1a05-n7-13 0R-30 4R o 14 [RIack Farest Cake

Best practice

Although each iteration of the loop represents two independent database

~" queries (one for purchase, one for product), efficiency is retained by the
use of prepared statements. Two statements are prepared in advance: one
that looks up a specific purchase, and one that looks up a specific product.
These prepared statements are then executed multiple times. Also, each
product retrieval is independently stored in an array, resulting in even
greater efficiency.

Probably the best example of a library that implements object-relational mapping is Doctrine.
Doctrine uses an embedded approach that its documentation refers to as a proxy. For more
information, please refer to http://www.doctrine-project.org/projects/orm.
html.

430

Chapter 11

You might also consider reviewing a training video on Learning Doctrine, available from
O'Reilly Media at http://shop.oreilly.com/product/0636920041382.do.
(Disclaimer: this is a shameless plug by the author of both this book and this video!)

Implementing the Pub/Sub design pattern

The Publish/Subscribe (Pub/Sub) design pattern often forms the basis of software event-
driven programming. This methodology allows asynchronous communications between different
software applications, or different software modules within a single application. The purpose of
the pattern is to allow a method or function to publish a signal when an action of significance
has taken place. One or more classes would then subscribe and take action if a certain signal
has been published.

Example of such actions are when the database is modified, or when a user has logged in.
Another common use for this design pattern is when an application delivers news feeds. If
an urgent news item has been posted, the application would publish this fact, allowing client
subscribers to refresh their news listings.

How to do it...

1. First, we define our publisher class, Application\PubSub\Publisher. You'll
notice that we are making use of two useful Standard PHP Library (SPL) interfaces,
SplSubject and SplObserver:

namespace Application\PubSub;

use SplSubject;

use SplObserver;

class Publisher implements SplSubject

{

// code

}

2. Next, we add properties to represent the publisher name, data to be passed to
subscribers, and an array of subscribers (also referred to as listeners). You will also
note that we will use a linked list (described in Chapter 10, Looking at Advanced
Algorithms) to allow for priority:

protected $name;
protected $data;
protected $linked;
protected $subscribers;

Implementing Software Design Patterns

3. The constructor initializes these properties. We also throw in __ toString () in case
we need quick access to the name of this publisher:

public function __ construct ($name)

{
Sthis->name = $name;
$this->data = array();
Sthis->subscribers = array() ;
$this->linked = array();

}

public function __ toString()

{

return S$this->name;

}

4. |In order to associate a subscriber with this publisher, we define attach (), which
is specified in the SplSubject interface. We accept an SplObserver instance
as an argument. Note that we need to add entries to both the $subscribers and
$1inked properties. $1inked is then sorted by value, represented by the priority,
using arsort (), which sorts in reverse and maintains the key:

public function attach(SplObserver $subscriber)

{

Sthis->subscribers [$subscriber->getKey ()] = $subscriber;

Sthis->linked[$subscriber->getKey ()] =
$subscriber->getPriority () ;

arsort ($this->linked) ;

}

5. The interface also requires us to define detach (), which removes the subscriber
from the list:

public function detach(SplObserver $subscriber)

{

unset ($this->subscribers [$subscriber->getKey ()]) ;
unset ($this->linked[$subscriber->getKey ()]) ;

}

6. Also required by the interface, we define notify (), which calls update () on all the
subscribers. Note that we loop through the linked list to ensure the subscribers are
called in order of priority:

public function notify ()

{

foreach ($this->linked as S$key => S$value)

{

Sthis->subscribers [$key] ->update (Sthis) ;

432

Chapter 11

7.

10.

Next, we define the appropriate getters and setters. We don't show them all here to
conserve space:

public function getName ()

{

return S$this->name;

public function setName ($name)
{
Sthis->name = S$name;

}

Finally, we need to provide a means of setting data items by key, which will then be
available to subscribers when notify () is invoked:

public function setDataByKey (Skey, $value)
{
Sthis->datal[S$key] = $value;

}

Now we can have a look at Application\PubSub\Subscriber. Typically, we
would define multiple subscribers for each publisher. In this case, we implement the
SplObserver interface:

namespace Application\PubSub;

use SplSubject;

use SplObserver;

class Subscriber implements SplObserver

{
}

Each subscriber needs a unique identifier. In this case, we create the key using

md5 () and date/time information, combined with a random number. The constructor
initializes the properties as follows. The actual logical functionality performed by the
subscriber is in the form of a callback:

// code

protected skey;
protected $name;
protected S$priority;
protected S$callback;
public function __ construct (
string $name, callable S$callback, S$priority = 0)
{

Sthis->key = md5(date('YmdHis') . rand(0,9999));
Sthis->name = $name;

Sthis->callback = $callback;

Sthis-s>priority = S$priority;

Implementing Software Design Patterns

11. The update () function is called when notifiy () on the publisher is invoked.
We pass a publisher instance as an argument, and call the callback defined for this
subscriber:

public function update (SplSubject $publisher)

{

call user func($this->callback, $publisher);

}
12. We also need to define getters and setters for convenience. Not all are shown here:

public function getKey ()

{

return S$this-s>key;

}

public function setKey (Skey)

{

Sthis->key = Skey;

// other getters and setters not shown

For the purposes of this illustration, define a calling program called chap 11 pub sub
simple example.php, which sets up autoloading and uses the appropriate classes:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\PubSub\ { Publisher, Subscriber };
Next, create a publisher instance and assign data:

Spub = new Publisher ('test');

Spub->setDataByKey ('1l', 'AARA');
Spub->setDataByKey ('2', 'BBB');
Spub->setDataByKey ('3', 'CCC');
Spub->setDataByKey('4', 'DDD') ;

Now you can create test subscribers that read data from the publisher and echo the results.
The first parameter is the name, the second the callback, and the last is the priority:

Ssubl = new Subscriber (
,l,l
function (Spub)

Chapter 11

echo 'l:' . $pub->getData() [1] . PHP_EOL;
b
10
) ;
S$sub2 = new Subscriber (
121,
function ($pub)
echo '2:' . $pub->getData() [2] . PHP_EOL;
b
20
) ;
S$sub3 = new Subscriber (
131,
function ($pub)
echo '3:' . $pub->getData() [3] . PHP_EOL;
b
99

For test purposes, attach the subscribers out of order, and call notify () twice:

Spub->attach ($sub2) ;
Spub->attach ($subl) ;
Spub->attach ($sub3) ;
Spub->notify () ;
Spub->notify () ;

Next, define and attach another subscriber that looks at the data for subscriber 1 and exits if
it's not empty:

$sub4 = new Subscriber (
141,
function ($pub)
echo '4:' . $pub->getData() [4] . PHP_EOL;
if (lempty ($pub->getData () [1]))
die('l is set ... halting execution');
b
25

S$pub->attach (Ssub4) ;
$pub->notify () ;

Implementing Software Design Patterns

Here is the output. Note that the output is in order of priority (where higher priority goes first),
and that the second block of output is interrupted:

First Set:
:CCC
:BBB
AAA
:CCC
:BBB
TAAA

R W R

Second Set:

3:CCC

4:DDD

1 is set ... halting execution

(program exited with code: @)
Press return to continue

There's more...

A closely related software design pattern is Observer. The mechanism is similar but the
generally agreed difference is that Observer operates in a synchronous manner, where all
observer methods are called when a signal (often also referred to as message or event)

is received. The Pub/Sub pattern, in contrast, operates asynchronously, typically using a
message queue. Another difference is that in the Pub/Sub pattern, publishers do not need to
be aware of subscribers.

See also

For a good discussion on the difference between the Observer and Pub/Sub patterns, refer
to the article at http://stackoverflow.com/questions/15594905/difference-
between-observer-pub-sub-and-data-binding.

436

12

Improving Web Security

In this chapter, we will cover the following topics:

>

Filtering s_POST data

Validating $_POST data

Safeguarding the PHP session
Securing forms with a token

Building a secure password generator
Safeguarding forms with a CAPTCHA
Encrypting/decrypting without mcrypt

Introduction

In this chapter, we will show you how to set up a simple yet effective mechanism for filtering
and validating a block of post data. Then, we will cover how to protect your PHP sessions from
potential session hijacking and other forms of attack. The next recipe shows how to protect
forms from Cross Site Request Forgery (CSRF) attacks using a randomly generated token.
The recipe on password generation shows you how to incorporate PHP 7 true randomization to
generate secure passwords. We then show you two forms of CAPTCHA: one that is text based,
the other using a distorted image. Finally, there is a recipe that covers strong encryption
without using the discredited and soon-to-be-deprecated mcrypt extension.

Improving Web Security

Filtering $_POST data

The process of filtering data can encompass any or all of the following:

>

>

>

Removing unwanted characters (that is, removing <script> tags)
Performing transformations on the data (that is, converting a quote to " ;)
Encrypting or decrypting the data

Encryption is covered in the last recipe of this chapter. Otherwise, we will present a basic
mechanism that can be used to filter $_POST data arriving following form submission.

How to do it...

1.

438

First of all, you need to have an awareness of the data that will be presentin $_POST.
Also, perhaps more importantly, you will need to be aware of the restrictions imposed
by the database table in which the form data will presumably be stored. As an
example, have a look at the database structure for the prospects table:

COLUMN TYPE NULL DEFAULT

first name varchar (128) No None NULL
last name varchar (128) No None NULL
address varchar (256) Yes None NULL
city varchar (64) Yes None NULL
state_province varchar(32) Yes None NULL
postal code char (16) No None NULL
phone varchar (16) No None NULL
country char (2) No None NULL
email varchar (250) No None NULL
status char (8) Yes None NULL
budget decimal (10,2) Yes None NULL
last_updated datetime Yes None NULL

Once you have completed an analysis of the data to be posted and stored, you can
determine what type of filtering is to occur, and which PHP functions will serve this
purpose.

As an example, if you need to get rid of leading and trailing white space, which is
completely possible from user supplied form data, you can use the PHP trim()
function. All of the character data has length limits according to the database
structure. Accordingly, you might consider using substr () to ensure the length
is not exceeded. If you wanted to remove non-alphabetical characters, you might
consider using preg_replace () with the appropriate pattern.

Chapter 12

4. We can now group the set of desired PHP functions into a single array of callbacks.
Here is an example based on the filtering needs for the form data that will eventually
be stored in the prospects table:

sfilter = [
'trim' => function ($item) { return trim($item); },
'float' => function ($item) { return (float) S$Sitem; },
'upper' => function ($item) { return strtoupper(Sitem); },
'email' => function ($item) {
return filter var($item, FILTER SANITIZE EMAIL) ; },
'alpha' => function ($item) {
return preg_replace('/[*A-Za-z]/', '', $item); },
'alnum' => function ($item) {
return preg_replace('/["0-9A-Za-z]/', '', $item); },
'length' => function ($item, $length) {
return substr(Sitem, 0, $length); },
'stripTags' => function ($item) { return strip tags($item); },
1;

5. Next, we define an array that matches the field names expected in $_POST. In this
array, we specify the key in the $filter array, along with any parameters. Note the
first key, *. We will use that as a wildcard to be applied to all fields:

Sassignments = [

vkt => ['trim' => NULL, 'stripTags' => NULL],

'first name' => ['length' => 32, 'alnum' => NULL],

'last _name' => ['length' => 32, 'alnum' => NULL],

'address' => ['length' => 64, 'alnum' => NULL],

'city! => ['length' => 32],

'state_province'=> ['length' => 20],

'postal code' => ['length' => 12, 'alnum' => NULL],

'phone'’ => ['length' => 12],

'country' => ['length' => 2, 'alpha' => NULL,
'upper' => NULL],

'email' => ['length' => 128, 'email' => NULL],

'budget!' => ['float' => NULL],

1;

6. We then loop through the data set (that is, coming from $_POST) and apply the
callbacks in turn. We first run all callbacks assigned to the wildcard (*) key.

It is important to implement a wildcard filter to avoid redundant settings.
In the preceding example, we wish to apply filters that represent the
PHP functions strip_tags () and trim() for every item.

¢

Improving Web Security

7. Next, we run through all callbacks assigned to a particular data field. When we're
done, all values in $data will be filtered:

foreach ($data as $field => $item)
foreach ($assignments['*'] as $key => $option) ({
Sitem = $filter[skey] ($item, Soption);
}
foreach ($assignments([$field] as $key => $option)
Sitem = $filter[skey] ($item, Soption);

Place the code shown in steps 4 through 6 into a file called chap 12 post data_
filtering basic.php. You will also need to define an array to simulate data that would
be presentin $_POST. In this case, you could define two arrays, one with good data, and one
with bad data:

StestData = [

'goodData' => [
'first_name' => 'Doug’',
'last _name' => 'Bierer',
'address' => '123 Main Street',
'city! => 'San Francisco',
'state_province'=> 'California’,
'postal_ code' => '94101"',
'phone'’ => '+1 415-555-1212",
'country' => 'US',
'email! => 'doug@unlikelysource.com',
'budget ' => 1123.45",

1,
'badData' => [

'first name' => 'This+Name<scriptsbad tag</script>valid!"',

'last _name' =>
'ThisLastNameIsWayTooLongAbcdefghijklmnopgrstuvwxyz0123456789
Abcdefghijklmnopgrstuvwxyz0123456789Abcdefghijklmnopgrstuvwxyz
0123456789Abcdefghijklmnopgrstuvwxyz0123456789"',

//'address' => '', // missing

'city! => 'ThisCityNameIsTooLong01234567890123456
7890123456789012345678901234567890123456789 ',

//'state_province'=> '"', // missing

'postal code' => '1"£$%"Non Alpha Chars',

'phone'’ => ' 12345 ',

'country' => '12345',

440

Chapter 12

'email’ => 'this.is@not@an.email',
'budget' => 'XXX',
1
1;

Finally, you will need to loop through the filter assignments, presenting the good and bad data:

foreach ($testData as $data)
foreach ($data as $field => $item)
foreach ($assignments['*'] as $key => $option)
Sitem = $filter[S$key] (Sitem, Soption) ;

}

foreach ($assignments([$field] as $key => $option)
Sitem = $filter[S$key] ($Sitem, Soption) ;

}

printf ("%$16s : %s\n", $field, S$item);

}

Here's how the output might appear for this example:

first_name

first_name : Doug
last_name : Bierer
address : 123 Main Street
city : San Francisco
state_province : California
postal_code : 94101
phone : +1 415-555-1
country : US
email : doug@unlikelysource.com
budget : 123.45

: ThisNamebad tagvalid

last_name : ThislLastNameIsWayToolLongAbcdefgh
city : ThisCityNameIsToolLong@1234567890
postal_code : Non A
phone : 12345
country :
email : this.is@not@an.emaill
budget : @

(program exited with code: @)
Press return to continue

Note that the names were truncated and tags were removed. You will also note that although
the e-mail address was filtered, it is still not a valid address. It's important to note that for
proper treatment of data, it might be necessary to validate as well as to filter.

Improving Web Security

See also

In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST filters,
discusses how to incorporate the basic filtering concepts covered here into a comprehensive
filter chaining mechanism.

Validating $ POST data

The primary difference between filtering and validation is that the latter does not alter the
original data. Another difference is in intent. The purpose of validation is to confirm that the
data matches certain criteria established according to the needs of your customer.

How to do it...

1. The basic validation mechanism we will present here is identical to that shown in
the preceding recipe. As with filtering, it is vital to have an idea of the nature of the
data to be validated, how it fits your customer's requirements, and also whether it
matches the criteria enforced by the database. For example, if in the database, the
maximum width of the column is 128, the validation callback could use strlen () to
confirm that the length of the data submitted is less than or equal to 128 characters.
Likewise, you could use ctype alnum() to confirm that the data only contains
letters and numbers, as appropriate.

2. Another consideration for validation is to present an appropriate validation failure
message. The validation process, in a certain sense, is also a confirmation process,
where somebody presumably will review the validation to confirm success or failure. If
the validation fails, that person will need to know the reason why.

3. For this illustration, we will again focus on the prospects table. We can now group
the set of desired PHP functions into a single array of callbacks. Here is an example
based on the validation needs for the form data, which will eventually be stored in the
prospects table:

Svalidator = [
'email' => [
'callback' => function ($item) {
return filter var($item, FILTER VALIDATE EMAIL) ; },
'message' => 'Invalid email address'],
'alpha' => [
'callback' => function ($item) {
return ctype alpha(str replace(' ', '', $item)); },
'message' => 'Data contains non-alpha characters'],
'alnum' => [
'callback' => function ($item) {
return ctype alnum(str replace(' ', '', $item)); },

442

1;

'message' => 'Data contains characters which are '

'not letters or numbers'],

'digits' => [

'callback' => function ($item) {
return preg _match('/[*0-9.]1/', $item); },
'message' => 'Data contains characters which '
'are not numbers'],
'length' => [
'callback' => function ($item, $length) {
return strlen($item) <= S$length; },
'message' => 'Item has too many characters'],
'upper' => [
'callback' => function ($item) {
return $item == strtoupper ($item) ; },
'message' => 'Item is not upper case'l,

'phone' => [

'callback' => function ($item) {

return preg _match('/["0-9() -+]1/', S$item); },

'message' => 'Item is not a valid phone number'],

Notice, for the alpha and alnum callbacks, we allow for whitespace by
first removing it using str_replace (). We can then call ctype
alpha () or ctype alnum(), which will determine whether any

disallowed characters are present.

Chapter 12

4. Next, we define an array of assignments that matches the field names expected in
$_POST. In this array, we specify the key in the $validator array, along with any

parameters:

Sassignments = [
'first name' =>
'last name' =>
'address' =>
'city! =>
'state province'=>
'postal code' =>
'phone'’ =>
'country' =>
'email! =>
'budget' =>

'upper'
['length'
['digits'

=> 32, 'alpha'
=> 32, 'alpha'
=> 64, 'alnum'
=> 32, 'alnum'
=> 20, 'alpha'
=> 12, 'alnum'
=> 12, 'phone'
=> 2, 'alpha'
=> NULL],

=> 128, 'email'
=> NULL],

=> NULL],
=> NULL],
=> NULL],
=> NULL],
=> NULL],
=> NULL],
=> NULL],

=> NULL,

=> NULL],

Improving Web Security

5. We then use nested foreach () loops to iterate through the block of data one field
at a time. For each field, we loop through the callbacks assigned to that field:

foreach ($data as $field => $item) {
echo 'Processing: ' . $field . PHP_EOL;
foreach ($assignments([$field] as $key => $option)
if ($validator([$key] ['callback'] ($item, $option)) ({

Smessage = 'OK';
} else {
Smessage = $validator[$key] ['message'];
}
printf ('%8s : %s' . PHP_EOL, S$key, $message);

}

Instead of echoing the output directly, as shown, you might log the validation
M success/failure to be presented to the reviewer at a later time. Also, as
Q shown in Chapter 6, Building Scalable Websites, you can work the validation
mechanism into the form, displaying validation messages next to their
matching form elements.

Place the code shown in steps 3 through 5 into a file called chap 12 post data_
validation basic.php. You will also need to define an array of data that simulates data
that would be present in $_POST. In this case, you use the two arrays mentioned in the
preceding recipe, one with good data, and one with bad data. The final output should look
something like this:

Processing: postal_code

length : Item has too many characters
alnum : Data contains characters which are not letters or numbers

length : Item has too many characters
alpha : Data contains non-alpha characters

length : OK
email : Invalid email address

444

Chapter 12

>

In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST
validators discusses how to incorporate the basic validation concepts covered here
into a comprehensive filter chaining mechanism.

Safeguarding the PHP session

The PHP session mechanism is quite simple. Once the session is started using session
start () orthe php.ini session.autostart setting, the PHP engine generates a
unique token that is, by default, conveyed to the user by way of a cookie. On subsequent
requests, while the session is still considered active, the user's browser (or equivalent)
presents the session identifier, again usually by way of a cookie, for inspection. The PHP
engine then uses this identifier to locate the appropriate file on the server, populating $
SESSION with the stored information. There are tremendous security concerns when the
session identifier is the sole means of identifying a returning website visitor. In this recipe, we
will present several techniques that will help you to safeguard your sessions, which, in turn,
will vastly improve the overall security of the website.

How to do it...

1.

First of all, it's important to recognize how using the session as the sole means of
authentication can be dangerous. Imagine for a moment that when a valid user logs
in to your website, that you set a LoggedIn flagin $ SESSION:

session start();
$loggedIn = $ SESSION|['isLoggedIn'] ?? FALSE;
if (isset($ POST['login'l)) {
if ($_POST['username'] ==
&& $ POST ['password']
$loggedIn = TRUE;
$ SESSION|['isLoggedIn'] = TRUE;

// username lookup
== // password lookup) ({

}
}

In your program logic, you allow the user to see sensitive information if $_
SESSION|['isLoggedIn'] is setto TRUE

Secret Info

<?php if ($loggedIn) echo // secret information; ?>

Improving Web Security

3.

4.

5.

6.

446

If an attacker were to obtain the session identifier, for example, by means of a
successfully executed Cross-site scripting (XSS) attack, all he/she would need to do
would be to set the value of the PHPSESSID cookie to the illegally obtained one, and
they are now viewed by your application as a valid user.

One quick and easy way to narrow the window of time during which the PHPSESSID is
valid is to use session regenerate id (). This very simple command generates
a new session identifier, invalidates the old one, maintains session data intact, and
has a minimal impact on performance. This command can only be executed after the
session has started:

session_start () ;
session_regenerate_id() ;

Another often overlooked technique is to ensure that web visitors have a logout
option. It is important, however, to not only destroy the session using session_
destroy (), butalso to unset $ SESSION data and to expire the session cookie:

session_unset () ;
session_destroy () ;
setcookie ('PHPSESSID', 0, time() - 3600);

Another easy technique that can be used to prevent session hijacking is to develop a
finger-print or thumb-print of the website visitor. One way to implement this technique
is to collect information unique to the website visitor over and above the session
identifier. Such information includes the user agent (that is, the browser), languages
accepted, and remote IP address. You can derive a simple hash from this information,
and store the hash on the server in a separate file. The next time the user visits the
website, if you have determined they are logged in based on session information, you
can then perform a secondary verification by matching finger-prints:

SremotePrint = md5 ($_SERVER [REMOTE_ADDR']
$_ SERVER['HTTP_USER_AGENT']
$_SERVER [HTTP_ACCEPT_LANGUAGE' 1);
SprintsMatch = file exists (THUMB_PRINT DIR . S$remotePrint);
if ($loggedIn && !$printsMatch)
Sinfo = 'SESSION INVALID!!!';
error_log('Session Invalid: ' . date('Y-m-d H:i:s'), 0);
// take appropriate action

We are using mds () as it's a fast hashing algorithm and is well suited for

internal usage. It is not recommended to use md5 () for any external use

as it is subject to brute-force attacks.

Chapter 12

To demonstrate how a session is vulnerable, code a simple login script thatsetsa $_
SESSION ['isLoggedIn'] flag upon successful login. You could call the file chap 12
session hijack.php:

session_ start();
$loggedUser = $ SESSION|['loggedUser'] ?? '';
$loggedIn = $ SESSION|['isLoggedIn'] ?? FALSE;

Susername = 'test';
Spassword = 'password';
$info = 'You Can Now See Super Secret Information!!!';
if (isset($ _POST['login'l)) {
if ($_POST['username'] == $username
&& $_POST['password'] == $password) {
$loggedIn = TRUE;
$ SESSION|['isLoggedIn'] = TRUE;
$ SESSION['loggedUser'] = $Susername;
$loggedUser = Susername;
}
} elseif (isset($ _POST['logout'])) {

session destroy () ;

}

You can then add code that displays a simple login form. To test for session vulnerability,
follow this procedure using the chap 12 session_ hijack.php file we just created:

=

Change to the directory containing the file.

Run the php -S localhost:8080 command.

Using one browser, open the URL http://localhost:8080/<filename>.
Login as user test with a password as password.

You should be able to see You Can Now See Super Secret Information!!!.
Refresh the page: each time, you should see a new session identifier.

Copy the value of the PHPSESSID cookie.

Open another browser to the same web page.

© ® N o oA~

Modify the cookie sent by the browser by copying the value of PHPSESSID.

Improving Web Security

For illustration, we are also showing the value of $ COOKIE and $ SESSION, shown in the
following screenshot using the Vivaldi browser:

V] o x
[&] PHP 7 Cookbook
C Q ® localhost:8080/chap_12_session_hijack.php n ID\' Search Bing
Session Protection
Welcome: test
Username
Password
| Login || Logout || Refresh |
array(1l) {
["PHPSESSID"]=>
$_COOKIE string(32) "0754562251cb3aa91fd2b7c5652ade7f"
array(2) {
["isLoggedIn"]=>
boolitrue)
$ SESSION ["LoggedUser®]=> b
string(4) "test”
Secret Info You Can Now See Super Secret Information!!!
M <> 100 %

We then copy the value of PHPSESSID, open a Firefox browser, and use a tool called Tamper
Data to modify the value of the cookie:

> Tamper Popup

http://localhost:8080/chap_12_session_hijack.php

Request Header Name Request Header Value Post Paramete...
Host localhost:8080
User-Agent Mozilla/5.0 (X11; Ubuntuy; Linux x86_64; rv:46.0) Gec
Accept text/html,application/xhtml+xml,application/xml;c
AcceptLanguage en-Us,en;q=0.5
Accept-Encoding gzip, deflate

PHPSESSID=0754562251cb3aa91fd2b7c5652a4e7f

Cancel oK

448

Chapter 12

You can see in the next screenshot that we are now an authenticated user without entering
the username or password:

PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W
€ localhost c wB © 3+ 4 © B =
L] L]
Session Protection
Welcome: test
Username
Password
Login Logout Refresh
array(1) {
["PHPSESSID"]=>
$_COOKIE string(32) "B8754562251cb3aadlfd2b7c5652a4e7f"
}
array(2) {
["isLoggedIn”]=> %
bool(true)
S—SESSION ["loggedUser”]==
string(4) "test”
}
Secret Info You Can Now See Super Secret Information!!!

You can now implement the changes discussed in the preceding steps. Copy the file created
previously to chap 12 session protected.php. Now go ahead and regenerate the
session ID:

<?php

define ('THUMB PRINT DIR', _DIR . '/../data/');
session start();

session regenerate id() ;

Next, initialize variables and determine the logged in status (as before):

Susername = 'test';
Spassword = 'password';
$info = 'You Can Now See Super Secret Information!!!';

$loggedIn = $ SESSION|['isLoggedIn'] ?? FALSE;
$loggedUser = $ SESSION['user'] ?? 'guest';

You can add a session thumb-print using the remote address, user agent, and language
settings:

$remotePrint = md5($_ SERVER['REMOTE_ADDR']
$ SERVER['HTTP USER AGENT']

Improving Web Security

$ SERVER['HTTP_ACCEPT LANGUAGE']) ;

$printsMatch = file exists (THUMB PRINT DIR SremotePrint) ;

If the login is successful, we store thumb-print info and login status in the session:
if (isset($_POST['login'l)) {

if ($_POST['username'] ==

&& $_POST['password']

$loggedIn = TRUE;
$ SESSION['user'] =

Susername

== $password) {

strip tags($username) ;
$ SESSION['isLoggedIn'] = TRUE;

file put contents(

THUMB_PRINT DIR . $remotePrint, $remotePrint);

You can also check for the logout option and implement a proper logout procedure: unset

$_SESSION variables, invalidate the session, and expire the cookie. You can also remove the
thumb-print file and implement a redirect:

} elseif (isset($ _POST['logout'])) {
session unset () ;

session destroy () ;

setcookie ('PHPSESSID', O,

time() - 3600);
if

(file exists(THUMB PRINT DIR
unlink (THUMB PRINT DIR
header ('Location: '

exit;

SremotePrint))
SremotePrint) ;

$ SERVER['REQUEST URI']);

Otherwise, if the operation is not login or logout, you can check to see whether the user is

considered logged in, and if the thumb-print doesn't match, the session is considered invalid,
and the appropriate action is taken:

} elseif ($loggedIn && !$printsMatch) {
$info = 'SESSION INVALID!!!';
error log('Session Invalid: '

date('Y-m-d H:i:s'), 0);
// take appropriate action

}

You can now run the same procedure as mentioned previously using the new chap 12

session protected.php file. The first thing you will notice is that the session is now
considered invalid. The output will look something like this:

450

Chapter 12

PHP 7 Cookbook - Mezilla Firefox

PHP 7 Cookbook

€ localhost
L] L]
Session Protection
Welcome: test
Username
Password
Login Logout Refresh
array(1) {
["PHPSESSID" 1=>
s—COOKIE string(32) "794f619bab9a@cfd4c6bc3472d8cobde”
array(2) {
["user"]=>
string(4) "test"
s—SESSION ["isLoggedIn"]=>
bool(true)
i
Secret Info SESSION INVALID!! N

The reason for this is that the thumb-print does not match as you are now using a different
browser. Likewise, if you refresh the page of the first browser, the session identifier is
regenerated, making any previously copied identifier obsolete. Finally, the logout button will
completely clear session information.

See also

For an excellent overview of website vulnerabilities, please refer to the article present at
https://www.owasp.org/index.php/Category:Vulnerability. For information on
session hijacking, refer to https://www.owasp.org/index.php/Session _hijacking
attack.

Securing forms with a token

This recipe presents another very simple technique that will safeguard your forms against
Cross Site Request Forgery (CSRF) attacks. Simply put, a CSRF attack is possible when,
possibly using other techniques, an attacker is able to infect a web page on your website.

In most cases, the infected page will then start issuing requests (that is, using JavaScript to
purchase items, or make settings changes) using the credentials of a valid, logged-in user.
It's extremely difficult for your application to detect such activity. One measure that can easily
be taken is to generate a random token that is included in every form to be submitted. Since
the infected page will not have access to the token, nor have the ability to generate one that
matches, form validation will fail.

Improving Web Security

How to do it...

1. First, to demonstrate the problem, we create a web page that simulates an infected
page that generates a request to post an entry to the database. For this illustration,
we will call the file chap 12 form csrf test unprotected.html

<!DOCTYPE htmls>
<body onload="load()">
<form action="/chap 12 form unprotected.php"
method="post" id="csrf test" name="csrf test">
<input name="name" type="hidden" value="No Goodnick" />
<input name="email" type="hidden" value="malicious@owasp.org" />
<input name="comments" type="hidden"
value="Form is vulnerable to CSRF attacks!" />
<input name="process" type="hidden" value="1" />
</form>
<scripts
function load() { document.forms['csrf test'].submit(); }
</script>
</body>
</html>

2. Next, we create a script called chap 12 form unprotected.php that responds to
the form posting. As with other calling programs in this book, we set up autoloading
and use the Application\Database\Connection class covered in Chapter 5,
Interacting with a Database:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

$conn = new Connection(include @ DIR . DB CONFIG FILE) ;

3. We then check to see the process button has been pressed, and even implement a
filtering mechanism, as covered in the Filtering $_POST data recipe in this chapter.
This is to prove that a CSRF attack is easily able to bypass filters:

if ($_POST['process']) {
sfilter = [
'trim' => function ($item) { return trim($item); },
'email' => function ($item) {

return filter var($item, FILTER SANITIZE EMAIL) ; },
'length' => function ($item, $length) {

return substr ($item, 0, S$length); },
'stripTags' => function ($item) {

452

Chapter 12

return strip tags($item); },
1;
Sassignments = [
vkt => ['trim' => NULL, 'stripTags' => NULL],
'email’ => ['length' => 249, 'email' => NULL],
'name'’ => ['length' => 128],

'comments'=> ['length' => 249],

1;

$data = $ POST;
foreach ($data as $field => $item)
foreach ($assignments['*'] as $key => $option) ({
Sitem = $filter[S$key] (Sitem, Soption) ;
}
if (isset ($assignments[$field]))
foreach ($assignments([$field] as $key => $option)
Sitem = $filter[S$key] (Sitem, Soption) ;
}

sfilteredData[$field] = Sitem;

}

Finally, we insert the filtered data into the database using a prepared statement. We
then redirect to another script, called chap 12 form view results.php, which
simply dumps the contents of the visitors table:

try {
$filteredData['visit date']l = date('Y-m-d H:i:s');
$sgl = 'INSERT INTO visitors '

' (email,name,comments,visit date)

'VALUES (:email, :name, :comments, :visit date)';
$insertStmt = Sconn->pdo-s>prepare ($sql) ;
SinsertStmt->execute ($filteredData) ;

} catch (PDOException $e) {
echo S$Se->getMessage() ;

}

}

header ('Location: /chap 12 form view results.php');
exit;

The result, of course, is that the attack is allowed, despite filtering and the use of
prepared statements.

Improving Web Security

6. Implementing the form protection token is actually quite easy! First of all, you need
to generate the token and store it in the session. We take advantage of the new
random_bytes () PHP 7 function to generate a truly random token, one which will
be difficult, if not impossible, for an attacker to match:

session_start () ;
$token = urlencode (base64_encode ((random bytes(32))));
$_SESSION|['token'] = $token;

The output of random_bytes () is binary. We use base64
encode () to convert it into a usable string. We then further process it
tad using urlencode () so that it is properly rendered in an HTML form.

7. When we render the form, we then present the token as a hidden field:

<input type="hidden" name="token" value="<?= Stoken ?>" />

8. We then copy and alter the chap 12 form unprotected.php script mentioned
previously, adding logic to first check to see whether the token matches the one
stored in the session. Note that we unset the current token to make it invalid for
future use. We call the new script chap 12 form protected with token.php:

if ($_POST['process']) {
$sessToken = $ SESSION|['token'] ?? 1;
SpostToken = $ POST['token'] ?? 2;
unset ($_SESSION|['token']) ;

if ($sessToken != $postToken)
$ SESSION|['message'] = 'ERROR: token mismatch';
} else {
$ SESSION['message']l = 'SUCCESS: form processed';

// continue with form processing

}

To test how an infected web page might launch a CSRF attack, create the following files, as
shown earlier in the recipe:

» chap 12 form csrf test unprotected.html

» chap 12 form unprotected.php

Chapter 12

You can then define a file called chap 12 form view results.php, which dumps the
visitors table:

<?php

session_start();

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Database\Connection;

Sconn = new Connection(include _ DIR__ . DB_CONFIG_FILE) ;

Smessage = $ SESSION|['message'] ?2? '';
unset ($_SESSION|['message']) ;
$stmt = $conn->pdo->query('SELECT * FROM visitors');
?>
<!DOCTYPE html>
<body>
<div class="container">
<h1>CSRF Protection</hls>
<h3>Visitors Table</h3>
<?php while ($row = $stmt->fetch(PDO::FETCH ASSOC)) : ?>
<pre><?php echo implode(':', S$row); ?></pre>
<?php endwhile; ?>
<?php if ($message) : ?>
<?= Smessage; ?>
<?php endif; ?>
</div>
</body>
</html>

From a browser, launch chap 12 form csrf test unprotected.html. Here is how the
output might appear:

o PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x B

€ localhost ¢ wBE 9 3 4 © B

CSREF Protection

Visitors Table

16:malicious@owasp.org:2016-06-06 12:13:24:1If you see this, your form is wulnerable to CSRF attacks!:No Goodnick

INDEX

Improving Web Security

As you can see, the attack was successful despite filtering and the use of prepared
statements!

Next, copy the chap 12 form unprotected.php file to chap 12 form protected.
php. Make the change indicated in step 8 in the recipe. You will also need to alter the test
HTML file, copying chap 12 form csrf test unprotected.htmltochap 12 form
csrf test protected.html. Change the value for the action parameter in the FORM tag
as follows:

<form action="/chap 12 form protected with token.php"
method="post" id="csrf test" name="csrf test">

When you run the new HTML file from a browser, it calls chap 12 form protected.php,
which looks for a token that does not exist. Here is the expected output:

' PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook

€ localhost] TE 9 +n 0

CSRF Protection

Visitors Table
ERROR: token mismatch

INDEX

Finally, go ahead and define a file called chap_ 12 form protected.php that generates a
token and displays it as a hidden element:

<?php

session start();

Stoken = urlencode (base64 encode ((random bytes(32))));

$ SESSION['token'] = $token;

?>

<!DOCTYPE html>

<body onload="load()">

<div class="container">

<h1>CSRF Protected Form</hl>

<form action="/chap 12 form protected with token.php"
method="post" id="csrf test" name="csrf test">

<table>

<tr><th>Name</th><td><input name="name" type="text" /></td></tr>

<tr><th>Email</th><td><input name="email" type="text" /></td></tr>

<tr><th>Comments</th><td>

<input name="comments" type="textarea" rows=4 cols=80 />

</td></tr>

<tr><th> </th><td>

456

Chapter 12

<input name="process" type="submit" value="Process" />
</td></tr>
</table>
<input type="hidden" name="token" value="<?= Stoken ?>" />
</form>

CLICK HERE to view results
</div>
</body>
</html>

When we display and submit data from the form, the token is validated and the data insertion
is allowed to continue, as shown here:

-

™ © PHP 7 Cookbook - Mozilla Firefox

PHP 7 Cookbook x W2

& localhost “ e U 4 & © H

CSRF Protection

Visitors Table

17:test@unlikelysource.com:2016-06-86 12:31:00:Test:Test

SUCCESS: form processed

INDEX

See also

For more information on CSFR attacks, please refer to https://www.owasp.org/index.
php/Cross-Site Request Forgery (CSRF).

Building a secure password generator

A common misconception is that the only way attackers crack hashed passwords is by using
brute force attacks and rainbow tables. Although this is often the first pass in an attack
sequence, attackers will use much more sophisticated attacks on a second, third, or fourth
pass. Other attacks include combination, dictionary, mask, and rules-based. Dictionary
attacks use a database of words literally from the dictionary to guess passwords. Combination
is where dictionary words are combined. Mask attacks are similar to brute force, but more
selective, thus cutting down the time to crack. Rules-based attacks will detect things such as
substituting the number O for the letter o.

Improving Web Security

The good news is that by simply increasing the length of the password beyond the magic
length of six characters exponentially increases the time to crack the hashed password. Other
factors, such as interspersing uppercase with lowercase letters randomly, random digits, and
special characters, will also have an exponential impact on the time to crack. At the end of the
day, we need to bear in mind that a human being will eventually need to enter the passwords
created, which means that need to be at least marginally memorable.

Best practice
Passwords should be stored as a hash, and never as plain text. MD5 and
M SHA* are no longer considered secure (although SHA* is much better than
Q MD?5). Using a utility such as oclHashcat, an attacker can generate an
average of 55 billion attempts per second on a password hashed using MD5
that has been made available through an exploit (that is, a successful SQL
injection attack). _

How to do it...

1. First, we define a Application\Security\PassGen class that will hold the
methods needed for password generation. We also define certain class constants
and properties that will be used as part of the process:

namespace Application\Security;
class PassGen
{
const SOURCE_SUFFIX = 'src';
const SPECIAL CHARS =
\TatreESster () —+={}[1:@~;\"#<>?, . /|\\";
protected Salgorithm;
protected Ssourcelist;
protected sSword;
protected s$list;

2. We then define low-level methods that will be used for password generation. As the
names suggest, digits () produces random digits, and special () produces a
single character from the SPECIAL CHARS class constant:

public function digits(Smax = 999)

{

return random int (1, $max);

}

public function special ()

{

SmaxSpecial = strlen(self::SPECIAL CHARS) - 1;
return self::SPECIAL CHARS [random int (0, $maxSpecial)l];

}
458

3.

4.

5.

Chapter 12

i Notice that we are frequently using the new PHP 7 function random_
% int () in this example. Although marginally slower, this method offers true
L Cryptographically Secure Pseudo Random Number Generator (CSPRNG)
capabilities compared to the more dated rand () function.

Now comes the tricky part: generating a hard-to-guess word. This is where the
$wordSource constructor parameter comes into play. It is an array of websites from
which our word base will be derived. Accordingly, we need a method that will pull a
unique list of words from the sources indicated, and store the results in a file. We
accept the $SwordSource array as an argument, and loop through each URL. We use
md5 () to produce a hash of the website name, which is then built into a filename.
The newly produced filename is then stored in $sourcelList:

public function processSource (
SwordSource, S$minWordLength, $cacheDir)

{

foreach ($wordSource as $html) {
ShashKey = md5 ($html) ;

$sourceFile = $cacheDir . '/' . ShashKey . '.'
self::SOURCE SUFFIX;
Sthis->sourcelist[] = $sourceFile;

If the file doesn't exist, or is zero-byte, we process the contents. If the source is HTML,
we only accept content inside the <body > tag. We then use str_word count () to
pull a list of words out of the string, also employing strip tags () to remove any
markup:

if (!file exists($SsourceFile) || filesize($sourceFile) == 0) {
echo 'Processing: ' . $html . PHP EOL;
Scontents = file get contents($html) ;
if (preg match('/<bodys>(.*)<\/body>/1i",
$contents, $matches))
Scontents = $matches([1];

}

$list = str word count (strip_tags(s$scontents), 1);

We then remove any words that are too short, and use array unique () to get rid
of duplicates. The final result is stored in a file:

foreach ($list as $key => $value) {
if (strlen(svalue) < $minWordLength) {
Slist [Skey] = 'xxxxxx';
} else {
$list [Skey] = trim($value) ;
}
}

Improving Web Security

6.

460

$list = array unique($list);
file put_ contents(SsourceFile, implode ("\n",$list));

}
}

return TRUE;
}
Next, we define a method that flips random letters in the word to uppercase:

public function flipUpper (Sword)

{

SmaxLen = strlen (Sword) ;
$numFlips = random int (1, $maxLen - 1);
$flipped = strtolower (Sword) ;

for ($x = 0; $x < $numFlips; $x++) {
Spos = random int (0, $maxLen - 1);
Sword [$pos] = strtoupper ($word[Spos]) ;

}

return Sword;

}

Finally, we are ready to define a method that chooses a word from our source. We
choose a word source at random, and use the file () function to read from the
appropriate cached file:

public function word ()

{

SwsKey = random int (0, count ($this->sourceList) - 1);
Slist = file($this->sourcelList [SwsKey]) ;

SmaxList = count($list) - 1;

Skey = random int (0, $maxList) ;

Sword = $list [Skey];

return $this->flipUpper (Sword) ;

}

So that we do not always produce passwords of the same pattern, we define a
method that allows us to place the various components of a password in different
positions in the final password string. The algorithms are defined as an array of
method calls available within this class. So, for example, an algorithm of ['word',
'digits', 'word',6 ‘'special'l] mightend up looking like hE1Lol23aUTo!:

public function initAlgorithm()

{

$this-salgorithm = [

['word', 'digits', 'word', 'special'l],
['digits', 'word', 'special', 'word'],
['word', 'word',6 'special', 'digits'],

Chapter 12

['special', 'word', 'special', 'digits'],
['word', 'special', 'digits', 'word',6 'special'l,
['special', 'word', 'special', 'digits',

'special', 'word', 'special'],
1;
1

9. The constructor accepts the word source array, minimum word length, and location of
the cache directory. It then processes the source files and initializes the algorithms:

public function __ construct (
array S$wordSource, $minWordLength, $cacheDir)

$this->processSource ($SwordSource, S$SminWordLength, S$cacheDir) ;
Sthis->initAlgorithm() ;

}

10. Finally, we are able to define the method that actually generates the password. All it
needs to do is to select an algorithm at random, and then loop through, calling the
appropriate methods:

public function generate ()
{
Spwd = '';
$key = random int (0, count ($this->algorithm) - 1);
foreach ($this-salgorithm[$key] as $method)
Spwd .= $this->$Smethod() ;

}

return str replace("\n", '', $pwd);

First, you will need to place the code described in the previous recipe into a file called
PassGen.php in the Application\Security folder. Now you can create a calling program
called chap 12 password generate.php that sets up autoloading, uses PassGen, and
defines the location of the cache directory:

<?php

define ('CACHE DIR', _ DIR . '/cache');

require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Security\PassGen;

Improving Web Security

Next, you will need to define an array of websites that will be used as a source for the word-
base to be used in password generation. In this illustration, we will choose from the Project
Gutenberg texts Ulysses (J. Joyce), War and Peace (L. Tolstoy), and Pride and Prejudice

(J. Austen):

Ssource = [
'https://www.gutenberg.org/files/4300/4300-0.txt"',
'https://www.gutenberg.org/files/2600/2600-h/2600-h.htm',
'https://www.gutenberg.org/files/1342/1342-h/1342-h.htm',

1;

Next, we create the PassGen instance, and run generate ():

SpassGen = new PassGen ($source, 4, CACHE_DIR);
echo $passGen->generate() ;

Here are a few example passwords produced by PassGen:

&deAth(647eREeKinG,
BLaDeS_458BagraTioN@
PrEDOMinAnCE[442G10rious’

(program exited with code: @)
Press return to continue

An excellent article on how an attacker would approach cracking a password can be viewed
athttp://arstechnica.com/security/2013/05/how-crackers-make-minced-
meat-out-of-your-passwords/. To find out more about brute force attacks you can refer
to https://www.owasp.org/index.php/Brute force attack. For information on
oclHashcat, see this page: http://hashcat .net/oclhashcat/.

462

Chapter 12

Safeguarding forms with a CAPTCHA

CAPTCHA is actually an acronym for Completely Automated Public Turing Test to Tell
Computers and Humans Apart. The technique is similar to the one presented in the
preceding recipe, Securing forms with a token. The difference is that instead of storing the
token in a hidden form input field, the token is rendered into a graphic that is difficult for

an automated attack system to decipher. Also, the intent of a CAPTCHA is slightly different
from a form token: it is designed to confirm that the web visitor is a human being, and not an
automated system.

How to do it...

1.

There are several approaches to CAPTCHA: presenting a question based on
knowledge only a human would possess, text tricks, and a graphics image that needs
to be interpreted.

The image approach presents web visitors with an image with heavily distorted letters
and/or numbers. This approach can be complicated, however, in that it relies on the
GD extension, which may not be available on all servers. The GD extension can be
difficult to compile, and has heavy dependencies on various libraries that must be
present on the host server.

The text approach is to present a series of letters and/or numbers, and give the web
visitor a simple instruction such as please type this backwards. Another variation is to
use ASCII "art" to form characters that a human web visitor is able to interpret.

Finally, you might have a question/answer approach with questions such as The head
is attached to the body by what body part, and have answers such as Arm, Leg, and
Neck. The downside to this approach is that an automated attack system will have a
1 in 3 chance of passing the test.

Generating a text CAPTCHA

1.

For this illustration, we will start with the text approach, and follow with the image
approach. In either case, we first need to define a class that generates the phrase
to be presented (and decoded by the web visitor). For this purpose, we define an
Application\Captcha\Phrase class. We also define properties and class
constants used in the phrase generation process:

namespace Application\Captcha;

class Phrase

{
const DEFAULT_ LENGTH
const DEFAULT_ NUMBERS
const DEFAULT UPPER
const DEFAULT_ LOWER

5;

'0123456789";

' ABCDEFGHJKLMNOPQRSTUVWXYZ' ;
'abcdefghijklmnopgrstuvwxyz';

Improving Web Security

46

const DEFAULT SPECIAL =
TS\ IrESSs e () —+={} 1@\ ~H<,>. 2/ |\\";
const DEFAULT SUPPRESS = ['O','l'];

protected S$Sphrase;
protected S$includeNumbers;
protected S$includeUpper;
protected S$includelower;
protected S$includeSpecial;
protected S$SotherChars;
protected S$suppressChars;
protected S$string;
protected S$length;

The constructor, as you would expect, accepts values for the various properties,
with defaults assigned so that an instance can be created without having to specify
any parameters. The $include* flags are used to signal which character sets

will be present in the base string from which the phrase will be generated. For
example, if you wish to only have numbers, $includeUpper and $includeLower
would both be set to FALSE. SotherChars is provided for extra flexibility. Finally,
$suppressChars represents an array of characters that will be removed from the
base string. The default removes uppercase 0 and lowercase 1:

public function __ construct (

$length = NULL,

$includeNumbers = TRUE,

$includeUpper= TRUE,

$includeLower= TRUE,

$includeSpecial = FALSE,

SotherChars = NULL,

array S$suppressChars = NULL)

{
$this->length = $length ?? self::DEFAULT LENGTH;
Sthis->includeNumbers = $includeNumbers;
Sthis->includeUpper = $includeUpper;
Sthis->includeLower = $includeLower;
Sthis->includeSpecial = $includeSpecial;
Sthis->otherChars = SotherChars;
Sthis->suppressChars = S$suppressChars

?? self::DEFAULT SUPPRESS;

Sthis->phrase = $this->generatePhrase() ;

Chapter 12

3. We then define a series of getters and setters, one for each property. Please note that

we only show the first two in order to conserve space.

public function getString()

{

return $this->string;

public function setString($string)

{

Sthis->string = $string;

// other getters and setters not shown

We next need to define a method that initializes the base string. This consists of a

series of simple if statements that check the various $include* flags and append
to the base string as appropriate. At the end, we use str_replace () to remove the

characters represented in $suppressChars:

public function initString()

{

$string = '';
if ($this->includeNumbers) {
$string .= self::DEFAULT NUMBERS;

if ($this->includeUpper) ({
Sstring .= Self::DEFAULT_UPPER;

if ($this->includeLower) {
$string .= self::DEFAULT LOWER;

if ($this->includeSpecial)
Sstring .= self::DEFAULT SPECIAL;

if ($this-s>otherChars)
$Sstring .= S$this-sotherChars;

if ($this->suppressChars)
$string = str replace(

Sthis->suppressChars, '', $string);

}

return $string;

Improving Web Security

466

. Best practice

A\Y

~ Get rid of letters that can be confused with numbers (that is, the letter O
can be confused with the number 0, and a lowercase 1 can be confused
with the number 1.

We are now ready to define the core method that generates the random phrase that
the CAPTCHA presents to website visitors. We set up a simple for () loop, and use
the new PHP 7 random_int () function to jump around in the base string:

public function generatePhrase ()
{
Sphrase = '';
Sthis->string = $this->initString() ;
Smax = strlen($this->string) - 1;
for ($x = 0; $x < $this->length; $x++)
Sphrase .= substr(
$this->string, random int (0, $max), 1);
}
return S$phrase;
}
}

Now we turn our attention away from the phrase and onto the class that will produce
a text CAPTCHA. For this purpose, we first define an interface so that, in the future,
we can create additional CAPTCHA classes that all make use of Application\
Captcha\Phrase. Note that get Image () will return text, text art, or an actual
image, depending on which class we decide to use:

namespace Application\Captcha;

interface Captchalnterface

{
public function getLabel () ;
public function getImage() ;
public function getPhrase() ;

}

For a text CAPTCHA, we define a Application\Captcha\Reverse class. The
reason for this name is that this class produces not just text, but text in reverse. The
__construct () method builds an instance of Phrase. Note that get Image ()
returns the phrase in reverse:

namespace Application\Captcha;

class Reverse implements CaptchaInterface
const DEFAULT LABEL = 'Type this in reverse';
const DEFAULT_ LENGTH = 6;

Chapter 12

protected S$Sphrase;
public function __ construct (

Slabel = self: :DEFAULT_LABEL,
$length = self:: DEFAULT LENGTH,
$includeNumbers = TRUE,
$includeUpper = TRUE,
$includeLower = TRUE,
$includeSpecial = FALSE,
SotherChars = NULL,

array S$suppressChars = NULL)

Sthis->label Slabel;

Sthis->phrase = new Phrase (
$length,
$includeNumbers,
$includeUpper,
$includeLower,
$includeSpecial,
SotherChars,
$suppressChars) ;

}

public function getLabel ()

{
}

return Sthis->label;

public function getImage ()

{
}

return strrev($this->phrase->getPhrase()) ;

public function getPhrase ()

{
}

return $this->phrase->getPhrase() ;

Generating an image CAPTCHA

1.

The image approach, as you can well imagine, is much more complicated. The phrase
generation process is the same. The main difference is that not only do we need to
imprint the phrase on a graphic, but we also need to distort each letter differently and
introduce noise in the form of random dots.

Improving Web Security

2.

468

We define a Application\Captcha\Image class that implements
CaptchalInterface. The class constants and properties include not only those
needed for phrase generation, but what is needed for image generation as well:

namespace Application\Captcha;
use DirectoryIterator;
class Image implements CaptchalInterface

{

const DEFAULT WIDTH = 200;
const DEFAULT HEIGHT = 50;

const DEFAULT_LABEL = 'Enter this phrase';

const DEFAULT BG COLOR = [255,255,255];

const DEFAULT URL = '/captcha';

const IMAGE PREFIX = 'CAPTCHA ';

const IMAGE SUFFIX = '.jpg';

const IMAGE EXP TIME = 300; // seconds

const ERROR_REQUIRES GD = 'Requires the GD extension + '
' the JPEG library';

const ERROR_IMAGE = 'Unable to generate image';

protected S$phrase;
protected $imageFn;
protected $label;
protected $imageWidth;
protected $imageHeight;
protected $imageRGB;
protected $imageDir;
protected $imageUrl;

The constructor needs to accept all the arguments required for phrase generation,
as described in the previous steps. In addition, we need to accept arguments
required for image generation. The two mandatory parameters are $imageDir and
$imageUrl. The first is where the graphic will be written. The second is the base
URL, after which we will append the generated filename. $imageFont is provided in
case we want to provide TrueType fonts, which will produce a more secure CAPTCHA.
Otherwise, we're limited to the default fonts which, to quote a line in a famous movie,
ain't a pretty sight:
public function __ construct (

$imageDir,

$imageUrl,

$imageFont = NULL,

Slabel = NULL,

$length = NULL,

$includeNumbers = TRUE,

Chapter 12

$includeUpper= TRUE,
$includeLower= TRUE,
$includeSpecial = FALSE,
SotherChars = NULL,
array $suppressChars = NULL,
$imageWidth = NULL,
$imageHeight = NULL,
array $imageRGB = NULL

)

{

4. Next, still in the constructor, we check to see whether the imagecreatetruecolor

function exists. If this comes back as FALSE, we know the GD extension is not
available. Otherwise, we assign parameters to properties, generate the phrase,
remove old images, and write out the CAPTCHA graphic:

if (!function exists('imagecreatetruecolor')) ({
throw new \Exception(self::ERROR REQUIRES GD) ;

}

Sthis->imageDir = $imageDir;
$this->imageUrl = $imageUrl;
Sthis->imageFont = $imageFont;

Sthis->label $label ?? self::DEFAULT LABEL;
$this->imageRGB = $imageRGB ?? self::DEFAULT BG COLOR;
$this->imageWidth = $imageWidth ?? self::DEFAULT WIDTH;
$this->imageHeight= $imageHeight ?? self::DEFAULT HEIGHT;
if (substr($imageUrl, -1, 1) == '/') {

$imageUrl = substr($imageUrl, 0, -1);
}

Sthis->imageUrl = $imageUrl;

if (substr($imageDir, -1, 1) == DIRECTORY SEPARATOR) {
$imageDir = substr($imageDir, 0, -1);

}

Sthis->phrase = new Phrase (
$length,
$includeNumbers,
$includeUpper,
$includeLower,
$includeSpecial,
SotherChars,
$suppressChars) ;

Sthis->removeOldImages () ;

$this->generatedpg() ;

}

Improving Web Security

5.

470

The process of removing old images is extremely important; otherwise we

will end up with a directory filled with expired CAPTCHA images! We use the
DirectoryIterator class to scan the designated directory and check the access
time. We calculate an old image file as one that is the current time minus the value
specified by IMAGE EXP TIME:

public function removeOldImages ()

{

$0ld = time() - self::IMAGE_EXP TIME;
foreach (new DirectoryIterator ($this->imageDir)
as $fileInfo) {
if($fileInfo->isDot ()) continue;
if ($fileInfo->getATime() < $old)
unlink ($this->imageDir . DIRECTORY SEPARATOR
SfileInfo->getFilename()) ;
}

}
}

We are now ready to move on to the main show. First, we split the $imageRGB array
into $red, $green, and sblue. We use the core imagecreatetruecolor ()
function to generate the base graphic with the width and height specified. We use the
RGB values to colorize the background:

public function generatedpg ()

{
try {

list (Sred, sgreen, $blue) = $this->imageRGB;

$im = imagecreatetruecolor (
Sthis->imageWidth, S$this->imageHeight) ;

Sblack = imagecolorallocate($im, 0, 0, 0);

$imageBgColor = imagecolorallocate (
im, Sred, S$green, S$blue);

imagefilledrectangle ($im, 0, 0, S$this->imageWidth,
Sthis->imageHeight, $imageBgColor) ;

Next, we define x and y margins based on image width and height. We then initialize
variables to be used to write the phrase onto the graphic. We then loop a number of
times that matches the length of the phrase:

SxMargin = (int) ($this->imageWidth * .1 + .5);
SyMargin = (int) (Sthis->imageHeight * .3 + .5);
Sphrase = $this->getPhrase() ;

Smax = strlen ($Sphrase);

Scount = 0;

$x = $xMargin;

$size = 5;

for ($i = 0; $i < $max; $i++) {

10.

11.

Chapter 12

If $imageFont is specified, we are able to write each character with a different size
and angle. We also need to adjust the x axis (that is, horizontal) value according to
the size:
if ($this->imageFont) {
Ssize = rand (12, 32);
Sangle = rand (0, 30);
Sy = rand($SyMargin + $size, $this->imageHeight) ;
imagettftext ($im, $size, Sangle, x, Sy, Sblack,
Sthis->imageFont, S$phrase($il);
$x += (int) ($size + rand(0,5));

Otherwise, we're stuck with the default fonts. We use the largest size of 5, as smaller
sizes are unreadable. We provide a low level of distortion by alternating between
imagechar (), which writes the image normally, and imagecharup (), which writes
it sideways:
} else {
Sy = rand (0, ($this->imageHeight - $yMargin)) ;
if ($count++ & 1)
imagechar ($im, 5, x, Sy, SSphrase($i]l, $black);
} else {
imagecharup ($im, 5, x, Sy, Sphrase[$i], S$black) ;
}
$x += (int) ($size * 1.2);

}

} // end for ($i = 0; $1i < $max; $i++)

Next we need to add noise in the form of random dots. This is necessary in order to
make the image harder for automated systems to detect. It is also recommended that
you add code to draw a few lines as well:

$numDots = rand (10, 999);
for ($i = 0; $i < $numDots; $i++)
imagesetpixel ($im, rand(0, $this->imageWidth),
rand (0, $this->imageHeight), $black);

}

We then create a random image filename using our old friend md5 () with the date
and a random number from 0 to 9999 as arguments. Note that we can safely use
md5 () as we are not trying to hide any secret information; we're merely interested
in generating a unique filename quickly. We wipe out the image object as well to
conserve memory:

$this->imageFn = self::IMAGE PREFIX
. md5(date('YmdHis') . rand(0,9999))
self::IMAGE SUFFIX;
imagejpeg (im, Sthis->imageDir . DIRECTORY_ SEPARATOR

Improving Web Security

12.

13.

$this->imageFn) ;
imagedestroy ($im) ;

The entire construct is in a try/catch block. If an error or exception is thrown, we
log the message and take the appropriate action:

} catch (\Throwable $e) {
error log(METHOD . ':' . $e->getMessage()) ;
throw new \Exception(self::ERROR IMAGE) ;

}

}

Finally, we define the methods required by the interface. Note that get Image ()
returns an HTML tag, which can then be immediately displayed:

public function getLabel ()

{

return Sthis->label;

}

public function getImage ()

{
return sprintf ('',
Sthis->imageUrl, S$this->imageFn) ;
}

public function getPhrase ()

{

return $this->phrase->getPhrase() ;

}
}

Be sure to define the classes discussed in this recipe, summarized in the following table:

Class Subsection The steps it appears in
Application\Captcha\Phrase Generating a text 1-5

CAPTCHA
Application\Captcha\ 6
Captchalnterface
Application\Captcha\Reverse 7
Application\Captcha\Image Generating an image 2-13

CAPTCHA

472

Chapter 12

Next, define a calling program called chap_ 12 captcha_text.php thatimplements a text
CAPTCHA. You first need to set up autoloading and use the appropriate classes:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Captcha\Reverse;

After that, be sure to start the session. You would use appropriate measures to protect
the session as well. To conserve space, we only show one simple measure, session_
regenerate id():

session_start();
session_regenerate_ id() ;

Next, you can define a function that creates the CAPTCHA,; retrieves the phrase, label,
and image (in this case, reverse text); and stores the value in the session:

function setCaptcha (&$Sphrase, &$label, &S$Simage)

{

Scaptcha = new Reverse() ;

Sphrase = S$Scaptcha->getPhrase() ;
$label = Scaptcha->getLabel () ;
$image = Scaptcha->getImage () ;

$_SESSION|['phrase'] = sphrase;

}

Now is a good time to initialize variables and determine the 1oggedIn status:

Simage = '';

$label = ',

$phrase = $ SESSION|['phrase'] ?2? '';

Smessage = '';

$info = 'You Can Now See Super Secret Information!!!';
$loggedIn = $ SESSION|['isLoggedIn'] ?? FALSE;

$loggedUser = $ SESSION['user'] ?? 'guest';

You can then check to see whether the login button has been pressed. If so, check to see
whether the CAPTCHA phrase has been entered. If not, initialize a message informing the
user they need to enter the CAPTCHA phrase:

if (lempty($_POST['login']l)) {
if (empty($_POST['captcha'l)) ({
Smessage = 'Enter Captcha Phrase and Login Information';

Improving Web Security

If the CAPTCHA phrase is present, check to see whether it matches what is stored in the
session. If it doesn't match, proceed as if the form is invalid. Otherwise, process the login as
you would have otherwise. For the purposes of this illustration, you can simulate a login by
using hard-coded values for the username and password:

} else {
if ($_POST['captcha']l == S$phrase) ({
Susername = 'test';
Spassword = 'password';
if ($_POST['user'] == Susername
&& $ POST['pass'] == Spassword) ({
$loggedIn = TRUE;
$ _SESSION['user'] = strip tags($username) ;
$_SESSION|['isLoggedIn'] = TRUE;
} else {
Smessage = 'Invalid Login';
}
} else {
Smessage = 'Invalid Captcha';

}
}

You might also want to add code for a logout option, as described in the Safeguarding the PHP
session recipe:

} elseif (isset($ _POST['logout'])) {
session_unset () ;
session_destroy () ;

setcookie ('PHPSESSID', 0, time() - 3600);
header ('Location: ' . $_SERVER['REQUEST URI']);
exit;

}
You can then run setCaptcha ():
setCaptcha ($phrase, $label, $image) ;

Lastly, don't forget the view logic, which, in this example, presents a basic login form. Inside
the form tag, you'll need to add view logic to display the CAPTCHA and label:

<tr>

<th><?= $label; ?></th>

<td><?= $image; ?><input type="text" name="captcha" /></td>
</tr>

Chapter 12

Here is the resulting output:

@ & @ PHP 7 Cookbook - Mozilla Firefox
PHP 7 Cookbook x W
€ localhost wBe 9 3% A4 © B =

Login With CAPTCHA

‘Welcome: guest

Username

Password
Type this in reverse iQGVK1
Login Logout
Secret Info

Enter Captcha Phrase and Login Information

To demonstrate how to use the image CAPTCHA, copy the code from chap 12 captcha
text.phpto cha 12 captcha_ image.php. We define constants that represent the
location of the directory in which we will write the CAPTCHA images. (Be sure to create this
directory!) Otherwise, the autoloading and use statement structure is similar. Note that we
also define a TrueType font. Differences are noted in bold:

<?php

define ('IMAGE DIR', _ DIR__ . '/captcha');

define ('IMAGE URL', '/captcha');

define ('IMAGE_FONT', _ DIR . '/FreeSansBold.ttf');
require DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Captcha\Image;

session_start();
session_regenerate_ id() ;

Important!

\ Fonts can potentially be protected under copyright, trademark, patent,
~ or other intellectual property laws. If you use a font for which you are not
Q licensed, you and your customer could be held liable in court! Use an open
source font, or one that is available on the web server for which you have a
valid license.

Of course, in the setCaptcha () function, we use the Image class instead of Reverse:

function setCaptcha (&$Sphrase, &$label, &S$Simage)

{

Scaptcha = new Image(IMAGE_DIR, IMAGE URL, IMAGE_FONT);
Sphrase = $captcha->getPhrase() ;

Improving Web Security

1
Variabl

$label = S$captcha->getLabel () ;
S$image = S$captcha->getImage () ;
$ SESSION|['phrase'] = sphrase;
return S$captcha;

e initialization is the same as the previous script, and login processing is identical to

the previous script:

$image = '';

Slabel = '';

Sphrase = $ SESSION/['phrase'] ?2? '';

Smessage = '';

sinfo = 'You Can Now See Super Secret Information!!!';
$loggedIn = $ SESSION|['isLoggedIn'] ?? FALSE;

$loggedUser = $ SESSION['user'] ?? 'guest';

if

(tempty ($_POST['login'l)) {

// etc. -- identical to chap_ 12 captcha text.php

Even the view logic remains the same, as we are using get Image (), which, in the case of the

image

CAPTCHA, returns directly usable HTML. Here is the output using a TrueType font:
Qe PHP 7 Cookbook - Mozilla FireFox

PHP 7 Cookbook *
€ localhost C W B + & © B

Login With CAPTCHA

Welcome: guest

Username

Password

Enter this phrase ‘\? 0 0 6 .

Login Logout

Secret Info

Enter Captcha Phrase and Login Information

If you are not inclined to use the preceding code to generate your own in-house CAPTCHA,
there are plenty of libraries available. Most popular frameworks have this ability. Zend
Framework, for example, has its Zend\Captcha component class. There is also reCAPTCHA,

which

is generally invoked as a service in which your application makes a call to an external

website that generates the CAPTCHA and token for you. A good place to start looking is

http:

476

//www.captcha.net/ website.

Chapter 12

See also

For more information on the protection of fonts as intellectual property, refer to the
article presentat https://en.wikipedia.org/wiki/Intellectual property
protection of typefaces.

Encrypting/decrypting without mcrypt

Itis a little-known fact among members of the general PHP community that the mcrypt
extension, the core of most PHP-based encryption considered secure, is anything but secure.
One of the biggest issues, from a security perspective, is that the mcrypt extension requires
advanced knowledge of cryptography to successfully operate, which few programmers have. This
leads to gross misuse and ultimately problems such as a 1 in 256 chance of data corruption.
Not good odds. Furthermore, developer support for 1ibmcrypt, the core library upon which

the merypt extension is based, was abandoned in 2007, which means the code base is out-of-
date, bug-ridden, and has no mechanism to apply patches. Accordingly, it is extremely important
to understand how to perform strong encryption/decryption without using mcrypt!

How to do it...

1. The solution to the problem posed previously, in case you're wondering, is to use
openssl. This extension is well maintained, and has modern and very strong
encryption/decryption capabilities.

. Important

A}

= In order to use any openss1* functions, the openssl PHP extension
must be compiled and enabled! In addition, you will need to install the

latest OpenSSL package on your web server.

2. First, you will need to determine which cipher methods are available on your
installation. For this purpose, you can use the openssl get cipher methods ()
command. Examples will include algorithms based on Advanced Encryption
Standard (AES), BlowFish (BF), CAMELLIA, CAST5, Data Encryption Standard
(DES), Rivest Cipher (RC) (also affectionately known as Ron's Code), and SEED. You
will note that this method shows cipher methods duplicated in upper and lowercase.

Improving Web Security

3. Next, you will need to figure out which method is most appropriate for your needs.
Here is a table that gives a quick summary of the various methods:

Method Published | Key size (bits) Key block | Notes
size
(bytes)
camellia 2000 128, 192, 256 16 Developed by Mitsubishi and NTT
aes 1998 128, 192, 256 16 Developed by Joan Daemen
and Vincent Rijmen. Originally
submitted as Rijndael
seed 1998 128 16 Developed by the Korea
Information Security Agency
cast5s 1996 40to 128 8 Developed by Carlisle Adams and
Stafford Tavares
bf 1993 1t0 448 Designed by Bruce Schneier
rc2 1987 810 1,024 Designed by Ron Rivest (one of
defaults to 64 the core founders of RSA)
des 1977 56 (+8 parity 8 Developed by IBM, based on
bits) work done by Horst Feistel

4. Another consideration is what your preferred block cipher mode of operation is.
Common choices are summarized in this table:

Mode

Stands For

Notes

ECB

Electronic Code Book

Does not require initialization vector (IV);
supports parallelization for both encryption
and decryption; simple and fast; does not
hide data patterns; not recommended!!!

CBC

Cipher Block Chaining

Requires IV; subsequent blocks, even if
identical, are XOR'ed with previous block,
resulting in better overall encryption; if
the IVs are predictable, the first block can
be decoded, leaving remaining message
exposed; message must be padded to a
multiple of the cipher block size; supports
parallelization only for decryption

CFB

Cipher Feedback

Close relative of CBC, except that encryption
is performed in reverse

478

Chapter 12

Mode Stands For Notes

OFB Output Feedback Very symmetrical: encrypt and decrypt are
the same; does not supports parallelization
at all

CTR Counter Similar in operation to OFB; supports
parallelization for both encryption and
decryption

CCM Counter with CBC-MAC Derivative of CTR; only designed for block

length of 128 bits; provides authentication
and confidentiality; CBC-MAC stands

for Cipher Block Chaining - Message
Authentication Code

GCM Galois/Counter Mode Based on CTR mode; should use a different
IV for each stream to be encrypted;
exceptionally high throughput (compared to
other modes); supports parallelization for
both encryption and decryption

XTS XEX-based Tweaked-codebook Relatively new (2010) and fast; uses two
mode with ciphertext Stealing keys; increases the amount of data that can
be securely encrypted as one block

5. Before choosing a cipher method and mode, you will also need to determine whether
the encrypted contents needs to be unencrypted outside of your PHP application. For
example, if you are storing database credentials encrypted into a standalone text file,
do you need to have the ability to decrypt from the command line? If so, make sure
that the cipher method and operation mode you choose are supported by the target
operating system.

6. The number of bytes supplied for the IV varies according to the cipher method
chosen. For best results, use random_bytes () (new in PHP 7), which returns a true
CSPRNG sequence of bytes. The length of the IV varies considerably. Try a size of 16
to start with. If a warning is generated, the correct number of bytes to be supplied for
that algorithm will be shown, so adjust the size accordingly:

$iv = random bytes(16) ;

Improving Web Security

7. To perform encryption, use openssl encrypt (). Here are the parameters that
should be passed:
Parameter Notes
Data Plain text you need to encrypt.
Method One of the methods you identified using openssl get
cipher methods (). identified as follows:
method - key_size - cipher_mode
So, for example, if you want a method of AES, a key size of
256, and GCM mode, you would enter aes-256 -gcm.
Password Although documented as password, this parameter can be
viewed as a key. Use random_bytes () to generate a key
with a number of bytes to match the desired key size.
Options Until you gain more experience with openssl encryption, it
is recommended you stick with the default value of 0.
\Y Use random_bytes () to generate an IV with a number of
bytes to match the cipher method.
8. As an example, suppose you wanted to choose the AES cipher method, a key size of
256, and XTS mode. Here is the code used to encrypt:
SplainText = 'Super Secret Credentials';
$key = random bytes (16) ;
Smethod = 'aes-256-xts';
$cipherText = openssl encrypt ($plainText, $method, $key, 0, $iv);
9. To decrypt, use the same values for $key and siv, along with the openssl

decrypt () function

$plainText = openssl decrypt ($ScipherText, $method, $key, 0, $iv);

In order to see which cipher methods are available, create a PHP script called chap 12
openssl encryption.php and run this command

<?php
echo implode(', ', openssl get cipher methods()) ;

480

Chapter 12

The output should look something like this:

< Terminal

IAES-128-CBC, AES-128-CFB, AES-128-CFB1, AES-128-CFB8, AES-128-CTR, AES-128-ECB,
IAES-128-0FB, AES-128-XTS5, AES-192-CBC, AES-192-CFB, AES-192-CFB1, AES-192-CFBS,
IAES-192-CTR, AES-192-ECB, AES-192-0FB, AES-256-CBC, AES-256-CFB, AES-256-CFB1, A
E5-256-CFB8, AES-256-CTR, AES-256-ECB, AES-256-0FB, AES-256-XTS5, BF-CBC, BF-CFB,
BF-ECB, BF-OFB, CAMELLIA-128-CBC, CAMELLIA-128-CFB, CAMELLIA-128-CFB1, CAMELLIA
-128-CFB8, CAMELLIA-128-ECB, CAMELLIA-128-0FB, CAMELLIA-192-CBC, CAMELLIA-192-CF
B, CAMELLIA-192-CFB1, CAMELLIA-192-CFB8, CAMELLIA-192-ECB, CAMELLIA-192-0FB, CAM
ELLIA-256-CBC, CAMELLIA-256-CFB, CAMELLIA-256-CFB1, CAMELLIA-256-CFB8, CAMELLIA-
256-ECB, CAMELLIA-256-0FB, CAST5-CBC, CAST5-CFB, CASTS5-ECB, CAST5-0FB, DES-CBC,
DES-CFB, DES-CFB1, DES-CFB8, DES-ECB, DES-EDE, DES-EDE-CBC, DES-EDE-CFB, DES-EDE
-OFB, DES-EDE3, DES-EDE3-CBC, DES-EDE3-CFB, DES-EDE3-CFB1, DES-EDE3-CFB8, DES-ED
E3-0FB, DES-OFB, DESX-CBC, RC2-40-CBC, RC2-64-CBC, RC2-CBC, RC2-CFB, RC2-ECB, RC
2-0FB, RC4, RC4-40, RC4-HMAC-MD5, SEED-CBC, SEED-CFB, SEED-ECB, SEED-OFB, aes-12
8-cbc, aes-128-cfb, aes-128-cfb1, aes-128-cfb8, aes-128-ctr, aes-128-ecb, aes-12
8-gcm, aes-128-ofb, aes-128-xts, aes-192-cbc, aes-192-cfb, aes-192-cfbl, aes-192
-cfb8, aes-192-ctr, aes-192-ecb, aes-192-gcm, aes-192-ofb, aes-256-cbc, aes-256-
cfb, aes-256-cfbl, aes-256-cfb8, aes-256-ctr, aes-256-ecb, aes-256-gcm, aes-256-
ofb, aes-256-xts, bf-cbc, bf-cfb, bf-ecb, bf-ofb, camellia-128-cbc, camellia-128
-cfb, camellia-128-cfb1, camellia-128-cfb8, camellia-128-ecb, camellia-128-ofb,
camellia-192-cbc, camellia-192-cfb, camellia-192-cfbl, camellia-192-cfb8, camell
ia-192-ecb, camellia-192-ofb, camellia-256-cbc, camellia-256-cfb, camellia-256-c
fbl, camellia-256-cfb8, camellia-256-ecb, camellia-256-ofb, cast5-cbc, cast5-cfb
, cast5-ecb, cast5-ofb, des-cbec, des-cfb, des-cfbl, des-cfb8, des-ecb, des-ede,
des-ede-cbc, des-ede-cfb, des-ede-ofb, des-ede3, des-ede3-cbc, des-ede3-cfb, des
-ede3-cfbl, des-ede3-cfb8, des-ede3-ofb, des-ofb, desx-cbc, id-aes128-GCM, id-ae
5192-GCM, id-aes256-GCM, rc2-40-cbc, rc2-64-cbc, rc2-cbc, rc2-cfb, rc2-ecb, rc2-
ofb, rc4, rc4-40, rc4-hmac-md5, seed-cbc, seed-cfb, seed-ecb, seed-ofb N

Next, you can add values for the plain text to be encrypted, the method, key, and IV. As an
example, try AES, with a key size of 256, using the XTS operating mode:

SplainText = 'Super Secret Credentials';
Smethod = 'aes-256-xts';
S$key = random bytes (16) ;
$iv = random bytes(16) ;

To encrypt, you can use openssl_encrypt (), specifying the parameters configured
previously:

ScipherText = openssl encrypt ($plainText, $method, $key, 0, $iv);
You might also want to base 64-encode the result to make it more usable:
ScipherText = base64 encode ($cipherText) ;

To decrypt, use the same $key and $iv values. Don't forget to un-encode the base 64 value
first:

$plainText = openssl decrypt (base64 decode ($cipherText),
Smethod, $key, 0, $iv);

Improving Web Security

Here is the output showing the base 64-encoded cipher text, followed by the decrypted

plain text:

ENCODED:
bEEZM2tvOWVKaB81V1IBV3pZNFE20VY1S3FTWGprekk=

DECODED:
Super Secret Credentials

(program exited with code: @)
Press return to continue

If you supply an incorrect number of bytes for the IV, for the cipher method chosen, a warning

message will be shown:

%) Terminal

Warning: openssl_encrypt(): IV passed is only 12 bytes long, cipher expects an I
\V of precisely 16 bytes, padding with \@ in /home/ed/Desktop/Repos/php7_recipes/

ENCODED:

DECODED:

source/chapteri2/chap_12_openssl_encryption.php on line 18
aTdGZG1kSGISQNRiWMxId2k1ZGQwV jhGMUhzMB9CVXk=

Warning: openssl_decrypt(): IV passed is only 12 bytes long, cipher expects an I
Vv of precisely 16 bytes, padding with \@ in /home/ed/Desktop/Repos/php7_recipes/|
source/chapter12/chap_12_openssl_encryption.php on line 16

Super Secret Credentials

(program exited with code: @)
Press return to continue

In PHP 7, there was a problem when using open_ssl encrypt () and open_ssl

decrypt () and the Authenticated Encrypt with Associated Data (AEAD) modes supported:

GCM and CCM. Accordingly, in PHP 7.1, three extra parameters have been added to these

functions, as follows:

Parameter Description

Stag Authentication tag passed by reference; variable value remains the
same if authentication fails

Saad Additional authentication data

$tag_length

4 to 16 for GCM mode; no limits for CCM mode; only for open_ssl
encrypt ()

For more information, you can refer to https://wiki.php.net/rfc/openssl aead.

482

Chapter 12

For an excellent discussion on why the mcrypt extension is being deprecated in PHP 7.1,
please refer to the article at https://wiki.php.net/rfc/merypt-viking-funeral.
For a good description of block cipher, which forms the basis for the various cipher methods,
refer to the article present at https://en.wikipedia.org/wiki/Block cipher. For
an excellent description of AES, refer to https://en.wikipedia.org/wiki/Advanced
Encryption_ Standard. A good article that describes encryption operation modes can be
seen athttps://en.wikipedia.org/wiki/Block cipher mode of operation.

For some of the newer modes, if the data to be encrypted is less than the block
. size, openssl_decrypt () will return no value. If you pad the data to be
% at least the block size, the problem goes away. Most of the modes implement
S internal padding so this is not an issue. With some of the newer modes (that is,
xtg) you might see this problem. Be sure to conduct tests on short strings of
data less than eight characters before putting your code into production.

13

Best Practices, Testing,
and Debugging

In this chapter, we will cover the following topics:

» Using Traits and Interfaces
» Universal exception handler
» Universal error handler

» Writing a simple test

» Writing a test suite

» Generating fake test data

» Customizing sessions using session_ start parameters

Introduction

In this chapter, we will show you how traits and interfaces work together. Then, we turn our
attention to the design of a fallback mechanism that will catch errors and exceptions in
situations where you were not able (or forgot) to define specific try/catch blocks. We will
then venture into the world of unit testing, showing you first how to write simple tests, and
then how to group those tests together into test suites. Next, we define a class that lets you
create any amount of generic test data. We close the chapter with a discussion of how to
easily manage sessions using new PHP 7 features.

Best Practices, Testing, and Debugging

Using Traits and Interfaces

It is considered a best practice to make use of interfaces as a means of establishing the
classification of a set of classes, and to guarantee the existence of certain methods. Traits
and Interfaces often work together, and are an important aspect of implementation. Wherever
you have a frequently used Interface that defines a method where the code does not change
(such as a setter or getter), it is useful to also define a Trait that contains the actual code
implementation.

How to do it...

1. For this example, we will use ConnectionAwareInterface, first presented in
Chapter 4, Working with PHP Object-Oriented Programming. This interface defines a
setConnection () method that sets a $connection property. Two classes in the
Application\Generic hamespace, CountryList and CustomerList, contain
redundant code, which matches the method defined in the interface.

2. Hereis what CountryList looks like before the change:

class CountryList

{

protected S$Sconnection;

protected Skey = 'iso3';
protected S$Svalue = 'name';
protected $table = 'iso country codes';

public function setConnection (Connection S$connection)

{

Sthis->connection = $connection;

}

public function list ()

{

Slist
$sqgl

[1;
sprintf ('SELECT %s,%s FROM %s', Sthis-skey,
Sthis->value, Sthis->table);
$stmt = $this->connection->pdo->query($sql) ;
while ($item = $stmt->fetch(PDO::FETCH ASSOC)) {
Slist[Sitem[$this->key]] = Sitem[Sthis->valuel;

}

return $list;

486

Chapter 13

3. We will now move 1ist () into a trait called ListTrait:

trait ListTrait

{

public function list ()
{
$list (1
$sgql = sprintf ('SELECT %s,%s FROM %s',
Sthis->key, $this->value, S$this->table);
$stmt = S$this->connection->pdo->query($sql) ;
while ($item = $stmt->fetch(PDO::FETCH ASSOC)) {
Slist[Sitem[$this->key]] = $item[$this->valuel;

}

return S$list;

}

4. We can then insert the code from ListTrait into a new class,
CountryListUsingTrait, as shown next:

class CountryListUsingTrait

{

use ListTrait;
protected S$Sconnection;

protected Skey = 'iso3';
protected S$value = 'name';
protected $table = 'iso country codes';

public function setConnection (Connection $connection)

{

Sthis->connection = $connection;

}

5. Next, we observe that many classes need to set a connection instance. Again,
this calls for a trait. This time, however, we place the trait in the Application\
Database namespace. Here is the new trait:

namespace Application\Database;
trait ConnectionTrait

{

protected S$Sconnection;
public function setConnection (Connection $connection)

{

Best Practices, Testing, and Debugging

488

Sthis->connection = S$Sconnection;

}

Traits are often used to avoid duplication of code. It is often the case that you also
need to identify the class that uses the trait. A good way to do this is to develop an
interface that matches the trait. In this example, we will define Application\
Database\ConnectionAwareInterface

namespace Application\Database;
use Application\Database\Connection;
interface ConnectionAwareInterface

{

public function setConnection (Connection $connection) ;

}

And here is the revised CountryListUsingTrait class. Note that as the

new trait is affected by its location in the namespace, we needed to add a

use statement at the top of the class. You will also note that we implement
ConnectionAwareInterface to identify the fact that this class requires the
method defined in the trait. Notice that we are taking advantage of the new PHP 7
group use syntax:

namespace Application\Generic;

use PDO;

use Application\Database\

Connection, ConnectionTrait, ConnectionAwarelInterface

class CountryListUsingTrait implements ConnectionAwareInterface
use ListTrait;
use ConnectionTrait;

protected Skey = 'iso3';
protected S$Svalue = 'name';
protected $table = 'iso country codes';

Chapter 13

First of all, make sure the classes developed in Chapter 4, Working with PHP Object-

Oriented Programming, have been created. These include the Application\Generic\
CountryList and Application\Generic\CustomerList classes discussed in Chapter
4, Working with PHP Object-Oriented Programming, in the recipe Using interfaces. Save each
class in a new file in the Application\Generic folder as CountryListUsingTrait.php
and CustomerListUsingTrait .php. Be sure to change the class hames to match the new
names of the files!

As discussed in step 3, remove the 1ist () method from both CountryListUsingTrait.
php and CustomerListUsingTrait.php. Add use ListTrait; in place of the method
removed. Place the removed code into a separate file, in the same folder, called ListTrait.

php.

You will also notice further duplication of code between the two list classes, in this case the
setConnection () method. This calls for another trait!

Cut the setConnection () method out of both CountryListUsingTrait.

php and CustomerListUsingTrait.php list classes, and place the removed code
into a separate file called ConnectionTrait .php. As this trait is logically related to
ConnectionAwareInterface and Connection, it makes sense to place the file in the
Application\Database folder, and to specify its namespace accordingly.

Finally, define Application\Database\ConnectionAwareInterface as discussed in
step 6. Here is the final Application\Generic\CustomerListUsingTrait class after
all changes:

<?php

namespace Application\Generic;

use PDO;

use Application\Database\Connection;

use Application\Database\ConnectionTrait;

use Application\Database\ConnectionAwareInterface;

class CustomerListUsingTrait implements ConnectionAwareInterface

{

use ListTrait;
use ConnectionTrait;

protected Skey = 'id’';
protected S$Svalue = 'name';
protected Stable = 'customer';

Best Practices, Testing, and Debugging

You can now copy the chap 04 oop simple interfaces example.php file
mentioned in Chapter 4, Working with PHP Object-Oriented Programming, to a new file
called chap 13 trait and interface.php. Change the reference from CountryList
to CountryListUsingTrait. Likewise, change the reference from CustomerList to
CustomerListUsingTrait. Otherwise, the code can remain the same:

<?php

define ('DB_CONFIG FILE', '/../config/db.config.php');
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');
Sparams = include _ DIR . DB_CONFIG_FILE;

try {

$list = Application\Generic\ListFactory::factory(
new Application\Generic\CountryListUsingTrait (), $params) ;
echo 'Country List' . PHP_EOL;
foreach ($list->1list() as $item) echo $item . ' ';
$list = Application\Generic\ListFactory::factory(
new Application\Generic\CustomerListUsingTrait (),

Sparams) ;
echo 'Customer List' . PHP_EOL;
foreach ($list->1list() as $item) echo S$item . ' ';

} catch (Throwable $e)
echo S$Se->getMessage() ;

}

The output will be exactly as described in the Using interfaces recipe of Chapter 4, Working
with Object-Oriented Programming. You can see the country list portion of the output in the
following screenshot:

@® Terminal

k
IAfghanistan Albania Antarctica Algeria American Samoa Andorra Angola Antigua and
Barbuda Azerbaijan Argentina Australia Austria Bahamas Bahrain Bangladesh Armen
ia Barbados Belgium Bermuda Bhutan Bolivia, Plurinational State of Bosnia and He
rzegovina Botswana Bouvet Island Brazil Belize British Indian Ocean Territory So
lomon Islands Virgin Islands, British Brunei Darussalam Bulgaria Myanmar Burundi
Belarus Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Repu
blic Sri Lanka Chad Chile China Taiwan, Province of China Christmas Island Cocos
(Keeling) Islands Colombia Comoros Mayotte Congo Congo, the Democratic Republic
of the Cook Islands Costa Rica Croatia Cuba Cyprus Czech Republic Benin Denmark
Dominica Dominican Republic Ecuador El Salvador Equatorial Guinea Ethiopia Erit
rea Estonia Faroe Islands Falkland Islands (Malvinas) South Georgia and the Sout
h Sandwich Islands Fiji Finland Aland Islands France French Guiana French Polyne
sia French Southern Territories Djibouti Gabon Georgia Gambia Palestine, State o
f Germany Ghana Gibraltar Kiribati Greece Greenland Grenada Guadeloupe Guam Guat
emala Guinea Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican Ci
ty State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Repub
lic of Iraq Ireland Israel Italy Céte d'Ivoire Jamaica Japan Kazakhstan Jordan K
enya Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan
Lao People's Democratic Republic Lebanon Lesotho Latvia Liberia Libya Liechtens
tein Lithuania Luxembourg Macao Madagascar Malawi Malaysia Maldives Mali Malta M

490

Chapter 13

The next image displays the customer list portion of the output:

@@ Terminal

Conrad Perry Lonnie Knapp Darrel Roman Morgan Avila Lee Mccray Spencer Sanford T
homas Kirby Brian Crawford Armando Barlow Jess Rocha Felix Blevins Jose Carter 0
rlando Fulton Mitchell Roth Eduardo Wright Marc Ellis Joaquin Moses Morris Varga
s Gene Cruz Samuel Harding Lauri Grimes Coleen Walker Tabitha Foster Cecelia Ca
se Rhonda Kinney Elvia Giles Flossie Dyer Gabriela Davis Dolly Wong Krista Corte
z Leta Solomon Matilda Barrera Tommie Porter Helene Gillespie Camille Perez Grac
iela Joyner Penelope Molina Celeste Justice Lena Conway Katrina Freeman Jeff Val
dez Leonardo Parrish Roland Chang Raymond Sanford Wilfredo Taylor Dominick Cline
Alonzo Sullivan Edmond Shepherd Omar Anthony Lonnie Eaton Peter Pugh Jesus Brig
ht Ramiro Bentley Derrick Hendricks Hans Page Garrett Campos Todd Lindsey Denis

Snider Stan Rocha Dollie Hernandez Aileen Duncan Essie Short Jami Ruiz Isabel Ro
driguez Ingrid Santos Jaime Noel Geneva Case Lucille Bradford Josefina Hampton F
annie Moore Socorro Jimenez Elba Mccall Louella Allen Jeannette Merritt Lana Bur
ns Karyn Francis Blanca Le Renee Decker Obama C.T. Russell admin Leonard Nimoy

(program exited with code: 0)
Press return to continue L

Universal exception handler

Exceptions are especially useful when used in conjunction with code in a try/catch block.
Using this construct, however, can be awkward in some situations, making code virtually
unreadable. Another consideration is that many classes end up throwing exceptions that you
have not anticipated. In such cases, it would be highly desirable to have some sort of fallback
exception handler.

How to do it...

1.

First, we define a generic exception handling class, Application\Error\
Handler:

namespace Application\Error;
class Handler

{

// code goes here

}

We define properties that represents a log file. If the name is not supplied, it is
named after the year, month, and day. In the constructor, we use set exception
handler () to assign the exceptionHandler () method (in this class) as the
fallback handler:

protected $logFile;
public function __ construct (
$logFileDir = NULL, $logFile = NULL)

'y
o
-

Best Practices, Testing, and Debugging

3.

{

$logFile = S$logFile ?? date('Ymd') . '.log';

$logFileDir = $logFileDir ?? _ DIR ;

$this->logFile = $logFileDir . '/' . $logFile;

$this->logFile = str replace('//', '/', Sthis-
>logFile) ;

set exception handler([$this, 'exceptionHandler']) ;

}

Next, we define the exceptionHandler () method, which takes an Exception
object as an argument. We record the date and time, the class name of the
exception, and its message in the log file:

public function exceptionHandler ($ex)

{
$message = sprintf('%19s : %20s : %s' . PHP EOL,
date('Y-m-d H:i:s'), get class($Sex), S$ex->getMessage()) ;
file put contents($this->logFile, S$message, FILE APPEND) ;

}

If we specifically put a try/catch block in our code, this will override our universal
exception handler. If, on the other hand, we do not use try/catch and an exception is
thrown, the universal exception handler will come into play.

Best practice

in your application. The exception handler described here is only designed
to allow your application to end "gracefully" in situations where exceptions
thrown have not been caught.

él@ You should always use try/catch to trap exceptions and possibly continue

First, place the code shown in the preceding recipe into a Handler . php file in the
Application\Error folder. Next, define a test class that will throw an exception. For the
purposes of illustration, create an Application\Error\ThrowsException class that
will throw an exception. As an example, set up a PDO instance with the error mode set to
PDO: : ERRMODE_EXCEPTION. You then craft an SQL statement that is guaranteed to fail:

namespace Application\Error;
use PDO;
class ThrowsException

{

492

protected sSresult;
public function __ construct (array sSconfig)

{

$dsn = Sconfig['driver'] . ':';

Chapter 13

unset (Sconfig['driver']) ;
foreach ($config as $key => $value)

$dsn .= $key . '=' . $value . ';';
}
$Spdo = new PDO (

Sdsn,

$config['user'],

Sconfig['password'],

[PDO: : ATTR_ERRMODE => PDO::ERRMODE EXCEPTION]) ;

$stmt = $pdo->query('This Is Not SQL');

while ($row = $stmt->fetch(PDO::FETCH ASSOC)) {
$this->result[] = $row;

}

}
}

Next, define a calling program called chap 13 exception handler.php that sets up
autoloading, uses the appropriate classes:

<?php

define ('DB_CONFIG FILE', _ DIR . '/../config/db.config.php');
$config = include DB CONFIG FILE;

require _ DIR_ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

use Application\Error\ { Handler, ThrowsException };

At this point, if you create a ThrowsException instance without implementing the universal
handler, a Fatal Error is generated as an exception has been thrown but not caught:

Sthrowsl = new ThrowsException($Sconfig) ;

Fatal error: Uncaught PDOException: SQLSTATE[42000]: Syntax error or access viol|
ation: 1064 You have an error in your SQL syntax; check the manual that correspo
nds to your MySQL server wversion for the right syntax to use near 'This Is Not S

L' at line 1 in /home/ed/Desktop/Repos/php7_recipes/source/Application/Error/Th
rowsException.php:23
Stack trace:

® /home/ed/Desktop/Repos/php7_recipes/source/Application/Error/ThrowsException.
php(23): PDO->query('This Is Not SQL')

1 /home/ed/Desktop/Repos/php7_recipes/source/chapter13/chap_13_exception_handle|
r.php(15): Application\Error\ThrowsException->__construct(Array)

2 {main}

thrown in fhome/ed/Desktop/Repos/php7_recipes/source/Application/Error/ThrowsE

(program exited with code: 255)
Press return to continue

N
©
(2]

Best Practices, Testing, and Debugging

If, on the other hand, you use a try/catch block, the exception will be caught and your
application is allowed to continue, if it is stable enough:

try {
Sthrowsl = new ThrowsException($config) ;
} catch (Exception $e) ({

echo 'Exception Caught: ' . get class($e) . ':' . $e->getMessage()
PHP EOL;
}
echo 'Application Continues ...' . PHP_EOL;

You will observe the following output:

2 & Terminal

Exception Caught: PDOException:SQLSTATE[42000]: Syntax error or access violation
: 1064 You have an error in your SQL syntax; check the manual that corresponds t
o your MysQL server version for the right syntax to use near 'This Is Not SQL' a
t line 1

Application Continues ...

(program exited with code: 8)
Press return to continue

To demonstrate use of the exception handler, define a Handler instance, passing a
parameter that represents the directory to contain log files, before the try/catch block.
After try/catch, outside the block, create another instance of ThrowsException. When
you run this sample program, you will notice that the first exception is caught inside the try/
catch block, and the second exception is caught by the handler. You will also note that after
the handler, the application ends:

Shandler = new Handler(DIR . '/logs');
try {
Sthrowsl = new ThrowsException($Sconfig) ;
} catch (Exception S$e) ({
echo 'Exception Caught: ' . get class($e) . ':!
$e->getMessage () . PHP EOL;
}
Sthrowsl = new ThrowsException($Sconfig) ;
echo 'Application Continues ...' . PHP_ EOL;

494

Chapter 13

Here is the output from the completed example program, along with the contents of the
log file:

ed@ed: ~/Desktop/Repos/php7_recipes/sourcejchapteri3

ed@ed:~/Desktop/Repos/php7_recipes/source/chapter135 php chap_13_exception_handler.php
Exception Caught: PDOException:SQLSTATE[42008]: Syntax error or access violation: 16864 You
have an error in your SQL syntax; check the manual that corresponds to your MySQL server ve
rsion for the right syntax to use near 'This Is Not SQL' at line 1

ed@ed: ~/Desktop/Repos/php7_recipes/source/chapter13$ cat logs/20160610.1log

2016-06-10 06:25:37 : PDOException : SQLSTATE[42000]: Syntax error or access violat
ion: 1064 You have an error in your SQL syntax: check the manual that corresponds to your M
ySQL server version for the right syntax to use near 'This Is Not SQL' at line 1
ed@ed:~/Desktop/Repos/php7_recipes/source/chapter13s$

» It might be a good idea to review the documentation on the set _exception
handler () function. Have a look, especially, at the comment (posted 7 years ago,
but still pertinent) by Anonymous that clarifies how this function works: http://
php.net/manual/en/function.set-exception-handler.php.

Universal error handler

The process of developing a universal error handler is quite similar to the preceding recipe.
There are certain differences, however. First of all, in PHP 7, some errors are thrown and can
be caught, whereas others simply stop your application dead in its tracks. To further confuse
matters, some errors are treated like exceptions, whereas others are derived from the new
PHP 7 Exrror class. Fortunately for us, in PHP 7, both Error and Exception implement a
new interface called Throwable. Accordingly, if you are not sure whether your code will throw
an Exception or an Exrror, simply catch an instance of Throwable and you'll catch both.

How to do it...

1. Modify the Application\Error\Handler class defined in the preceding recipe.
In the constructor, set a new errorHandler () method as the default error handler:

public function _ construct ($logFileDir = NULL, $logFile = NULL)
{

$SlogFile = $logFile ?? date('Ymd') . '.log';

$logFileDir = $logFileDir ?? _ DIR _;

$this->logFile = $logFileDir . '/' . $logFile;

$this->logFile = str_replace('//', '/', Sthis->logFile);

set exception handler([$this, 'exceptionHandler']) ;

set _error handler([$this, 'errorHandler'l]) ;

N
©
(3]

Best Practices, Testing, and Debugging

2. We then define the new method, using the documented parameters. As with our
exception handler, we log information to a log file:

public function errorHandler ($Serrno, S$Serrstr, Serrfile, Serrline)
Smessage = sprintf ('ERROR: %s : %d : %s : %s : %s' . PHP_EOL,
date('Y-m-d H:i:s'), Serrno, Serrstr, Serrfile, $errline);
file put contents($this->logFile, $message, FILE APPEND) ;

}

3. Also, just to be able to distinguish errors from exceptions, add EXCEPTION to the
message sent to the log file in the exceptionHandler () method:

public function exceptionHandler ($ex)
{
Smessage = sprintf ('EXCEPTION: %19s : %20s : %s' . PHP_EOL,
date('Y-m-d H:i:s'), get class($ex), S$ex->getMessage()) ;
file put contents($this->logFile, s$message, FILE APPEND) ;

}

First, make the changes to Application\Error\Handler as defined previously.

Next, create a class that throws an error that, for this illustration, could be defined as
Application\Error\ThrowsError. For example, you could have a method that attempts
a divide by zero operation, and another that attempts to parse non-PHP code using eval ():

<?php
namespace Application\Error;
class ThrowsError

{

const NOT_PARSE = 'this will not parse';
public function divideByZero ()
{

Sthis->zero = 1 / 0;

}

public function willNotParse ()

{

eval (self::NOT PARSE) ;

}
}

You can then define a calling program called chap 13 error throwable.php that sets up
autoloading, uses the appropriate classes, and creates an instance of ThrowsError:

<?php
require _DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(DIR . '/..');

496

Chapter 13

use Application\Error\ { Handler, ThrowsError };
Serror = new ThrowsError () ;

If you then call the two methods, without a try/catch block and without defining the universal
error handler, the first method generates a Warning, whereas the second throws a
ParseError

Serror->divideByZero() ;
Serror->willNotParse () ;
echo 'Application continues ... ' . PHP EOL;

Because this is an error, program execution stops, and you will not see Application
continues

Warning: Division by zero in /home/ed/Desktop/Repos/php7_recipes/source/Applicat
ion/Error/ThrowsError.php on line 11

Parse error: syntax error, unexpected 'will' (T_STRING) in /home/ed/Desktop/Repo

s /php7_recipes/source/Application/Error/ThrowsError.php(15) : eval()'d code on 1
ine 1

(program exited with code: 255)
Press return to continue

If you wrap the method calls in try/catch blocks and catch Throwable, the code execution
continues:

try {
Serror->divideByZero () ;
} catch (Throwable $e)
echo 'Error Caught: ' . get class($e) . ':'
$e->getMessage () . PHP_ EOL;
}
try {
Serror->willNotParse() ;
} catch (Throwable $e)
echo 'Error Caught: ' . get class($e) . ':'
$e->getMessage () . PHP_ EOL;

}

echo 'Application continues ... ' . PHP_ EOL;

H
©
~

Best Practices, Testing, and Debugging

From the following output, you will also note that the program exits with code 0, which tells
us all is OK:

Warning: Division by zero in /fhome/ed/Desktop/Repos/php7_recipes/source/Applicat
ion/Error/ThrowsError.php on line 11

Error Caught: ParseError:syntax error, unexpected 'will' (T_STRING)

Application continues ...

(program exited with code: @)
Press return to continue

Finally, after the try/catch blocks, run the errors again, moving the echo statement to
the end. You will see in the output that the errors were caught, but in the log file, notice that
DivisionByZeroError is caught by the exception handler, whereas the ParseError is
caught by the error hander:

S$handler = new Handler(DIR . '/logs');
Serror->divideByZero () ;
Serror->willNotParse() ;

echo 'Application continues ... ' . PHP EOL;

ed@ed: ~/Desktop/Repos/php7_recipes/sourcefchapter13
ed@ed:~/Desktop/Repos/php7_recipes/source/chapter13$ php chap_13_error_throwable.php

Warning: Division by zero in /home/ed/Desktop/Repos/php7_recipes/source/Application/Error/T
hrowsError.php on line 11

Error Caught: ParseError:syntax error, unexpected 'will' (T_STRING)
ed@ed:~/Desktop/Repos/php7_recipes/source/chapter13$ cat logs/20160610.log

ERROR : 2016-06-10 ©7:16:00 : 2 : Division by zero : /home/ed/Desktop/Repos/php7_recipes

/source/Application/Error/ThrowsError.php : 11

EXCEPTION: 2016-06-10 07:16:00 : ParseError : syntax error, unexpected identifier
(T_STRING)

ed@ed:~/Desktop/Repos/php7_recipes/source/chapteri13s

See also

» PHP 7.1 allows you to specify more than one class in the catch () clause. So,
instead of a single Throwable you could say catch (Exception | Exrror $e) {
xxx }

498

Chapter 13

Writing a simple test

The primary means of testing PHP code is to use PHPUnit, which is based on a methodology
called Unit Testing. The philosophy behind unit testing is quite simple: you break down your
code into the smallest possible logical units. You then test each unit in isolation to confirm
that it performs as expected. These expectations are codified into a series of assertions.

If all assertions return TRUE, then the unit has passed the test.

In the case of procedural PHP, a unit is a function. For OOP PHP,
i the unit is a method within a class.

How to do it...

1. The first order of business is to either install PHPUnit directly onto your development
server, or download the source code, which is available in the form of a single
phar