O'REILLY"

)
o
L
=
=
<
o
O
o
o
o
o
I
o
o
o
L
w
L
—
o
=
<<
>
L
o
2]
=
=
—
=)
—
o
wn

id Sklar & Adam Trachtenberg

Dav

t-ebooks.info

http://www.it-ebooks.info/

9

O'REILLY"

PHP Cookbook

Want to understand a certain PHP programming technigque? Or learn how
to accomplish a particular task? This cookbook is the first place to look.
With more than 350 code-rich recipes revised for PHP 5.4 and 5.5, this
third edition provides updated solutions for generating dynamic web
content—everything from using basic data types to querying databases,
and from calling RESTful APIs to testing and securing your site.

Each recipe includes code solutions that you can freely use, along with
a discussion of how and why they work. Whether you're an experienced
PHP programmer or coming to PHP from another language, this book is an
ideal on-the-job resource.

You'll find recipes to help you with:

m Basic data types: strings, numbers, arrays, and dates and times
m Program building blocks: variables, functions, classes, and objects

m Web programming: cookies, forms, sessions, and
authentication

Database access using PDO, SQLite, and other extensions
RESTful API clients and servers, including HTTP, XML, and OAuth
Key concepts: email, regular expressions, and graphics creation

Designing robust applications: security and encryption, error
handling, debugging and testing, and performance tuning

m Files, directories, and PHP's Command Line Interface

m Libraries and package managers such as Composer and PECL

David Sklar is an independent technology consultant. In addition to writing pre-
vious editions of PHP Cookbook, he's also the author of Learning PHP 5 (O'Reilly)
and Essential PHP Tools (Apress).

Adam Trachtenberg is the Director of the LinkedIn Developer Network. He's the
author of Upgrading to PHP 5 (O'Reilly), and previous editions of PHP Cookbook.

“The recipes in PHP
Cookbook make it an
essential companion

for anyone using PHP.”

—Andi Gutmans
CEO and Co-founder,
Zend Technologies

PHP

US $59.99 CAN $62.99
ISBN: 978-1-449-36375-8

IV
zep R T

4491363

8

www.it-ebooks.info

Twitter: @oreillymedia
facebook.com/oreilly

http://www.it-ebooks.info/

THIRD EDITION

PHP Cookbook

David Sklar and Adam Trachtenberg

Beijing + Cambridge - Farnham - Kdln - Sebastopol + Tokyo [KOAR{=|MN4

www.it-ebooks.info

http://www.it-ebooks.info/

PHP Cookbook, Third Edition
by David Sklar and Adam Trachtenberg

Copyright © 2014 David Sklar and Adam Trachtenberg. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Allyson MacDonald Indexer: Judith McConville

Production Editor: Melanie Yarbrough Cover Designer: Karen Montgomery
Copyeditor: Kim Cofer Interior Designer: David Futato
Proofreader: Charles Roumeliotis lllustrator: Rebecca Demarest

June 2001: First Edition

June 2004: Second Edition

June 2014: Third Edition

Revision History for the Third Edition:
2014-06-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449363758 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’'Reilly logo are registered trademarks of O’Reilly
Media, Inc. PHP Cookbook, the image of a Galapagos land iguana, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36375-8
[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449363758
http://www.it-ebooks.info/

Table of Contents

Preface......ooonueiiii Xv
P 11T P 1
1.1 Accessing Substrings 5
1.2 Extracting Substrings 6
1.3 Replacing Substrings 7
1.4 Processing a String One Byte at a Time 9
1.5 Reversing a String by Word or Byte 10
1.6 Generating a Random String 11
1.7 Expanding and Compressing Tabs 12
1.8 Controlling Case 14
1.9 Interpolating Functions and Expressions Within Strings 16
1.10 Trimming Blanks from a String 17
1.11 Generating Comma-Separated Data 18
1.12 Parsing Comma-Separated Data 20
1.13 Generating Fixed-Width Field Data Records 21
1.14 Parsing Fixed-Width Field Data Records 22
1.15 Taking Strings Apart 25
1.16 Wrapping Text at a Certain Line Length 27
1.17 Storing Binary Data in Strings 28
1.18 Program: Downloadable CSV File 31
2, NUMDEIS. ...ttt e 35
2.1 Checking Whether a Variable Contains a Valid Number 36
2.2 Comparing Floating-Point Numbers 37
2.3 Rounding Floating-Point Numbers 38
2.4 Operating on a Series of Integers 40
2.5 Generating Random Numbers Within a Range 42
2.6 Generating Predictable Random Numbers 43

www.it-ebooks.info

http://www.it-ebooks.info/

2.7 Generating Biased Random Numbers 44

2.8 Taking Logarithms 46
2.9 Calculating Exponents 46
2.10 Formatting Numbers 47
2.11 Formatting Monetary Values 49
2.12 Printing Correct Plurals 50
2.13 Calculating Trigonometric Functions 51
2.14 Doing Trigonometry in Degrees, Not Radians 52
2.15 Handling Very Large or Very Small Numbers 53
2.16 Converting Between Bases 55
2.17 Calculating Using Numbers in Bases Other Than Decimal 56
2.18 Finding the Distance Between Two Places 58
3. DatesandTimes........oooiiiiiiiiiiie i 61
3.1 Finding the Current Date and Time 63
3.2 Converting Time and Date Parts to an Epoch Timestamp 66
3.3 Converting an Epoch Timestamp to Time and Date Parts 68
3.4 Printing a Date or Time in a Specified Format 69
3.5 Finding the Difference of Two Dates 71
3.6 Finding the Day in a Week, Month, or Year 73
3.7 Validating a Date 75
3.8 Parsing Dates and Times from Strings 77
3.9 Adding to or Subtracting from a Date 79
3.10 Calculating Time with Time Zones and Daylight Saving Time 80
3.11 Generating a High-Precision Time 82
3.12 Generating Time Ranges 83
3.13 Using Non-Gregorian Calendars 84
3.14 Program: Calendar 87
1 { 93
4.1 Specifying an Array Not Beginning at Element 0 96
4.2 Storing Multiple Elements per Key in an Array 97
4.3 Initializing an Array to a Range of Integers 99
4.4 Iterating Through an Array 99
4.5 Deleting Elements from an Array 102
4.6 Changing Array Size 104
4.7 Appending One Array to Another 106
4.8 Turning an Array into a String 108
4.9 Printing an Array with Commas 109
4.10 Checking if a Key Is in an Array 110
4.11 Checking if an Element Is in an Array 111
4.12 Finding the Position of a Value in an Array 113
iv | Tableof Contents

www.it-ebooks.info

http://www.it-ebooks.info/

4.13 Finding Elements That Pass a Certain Test

4.14 Finding the Largest or Smallest Valued Element in an Array
4.15 Reversing an Array

4.16 Sorting an Array

4.17 Sorting an Array by a Computable Field

4.18 Sorting Multiple Arrays

4.19 Sorting an Array Using a Method Instead of a Function
4.20 Randomizing an Array

4.21 Removing Duplicate Elements from an Array

4.22 Applying a Function to Each Element in an Array

4.23 Finding the Union, Intersection, or Difference of Two Arrays
4.24 Iterating Efficiently over Large or Expensive Datasets

4.25 Accessing an Object Using Array Syntax

CVariables. ...
5.1 Avoiding == Versus = Confusion

5.2 Establishing a Default Value

5.3 Exchanging Values Without Using Temporary Variables

5.4 Creating a Dynamic Variable Name

5.5 Persisting a Local Variable’s Value Across Function Invocations

5.6 Sharing Variables Between Processes

5.7 Encapsulating Complex Data Types in a String

5.8 Dumping Variable Contents as Strings

CRUNCtions. ...
6.1 Accessing Function Parameters

6.2 Setting Default Values for Function Parameters

6.3 Passing Values by Reference

6.4 Using Named Parameters

6.5 Enforcing Types of Function Arguments

6.6 Creating Functions That Take a Variable Number of Arguments
6.7 Returning Values by Reference

6.8 Returning More Than One Value

6.9 Skipping Selected Return Values

6.10 Returning Failure

6.11 Calling Variable Functions

6.12 Accessing a Global Variable Inside a Function

6.13 Creating Dynamic Functions

. Classesand Objects.oveeneii ittt ittt cie i
7.1 Instantiating Objects
7.2 Defining Object Constructors

114
115
116
116
118
120
122
123
123
124
126
128
131

135
137
138
139
140
141
143
149
151

157
158
159
161
162
163
164
167
169
170
171
172
175
176

179
183
184

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Defining Object Destructors

7.4 Implementing Access Control

7.5 Preventing Changes to Classes and Methods
7.6 Defining Object Stringification

7.7 Requiring Multiple Classes to Behave Similarly
7.8 Creating Abstract Base Classes

7.9 Assigning Object References

7.10 Cloning Objects

7.11 Overriding Property Accesses

7.12 Calling Methods on an Object Returned by Another Method

7.13 Aggregating Objects

7.14 Accessing Overridden Methods

7.15 Creating Methods Dynamically

7.16 Using Method Polymorphism

7.17 Defining Class Constants

7.18 Defining Static Properties and Methods

7.19 Controlling Object Serialization

7.20 Introspecting Objects

7.21 Checking If an Object Is an Instance of a Specific Class
7.22 Autoloading Class Files upon Object Instantiation
7.23 Instantiating an Object Dynamically

7.24 Program: whereis

. WebFundamentals.oovriiiiniiiiiiiiiiiiiiiiiiiiiienenenn,

8.1 Setting Cookies

8.2 Reading Cookie Values

8.3 Deleting Cookies

8.4 Building a Query String

8.5 Reading the POST Request Body

8.6 Using HTTP Basic or Digest Authentication
8.7 Using Cookie Authentication

8.8 Reading an HTTP Header

8.9 Writing an HTTP Header

8.10 Sending a Specific HT TP Status Code

8.11 Redirecting to a Different Location

8.12 Flushing Output to the Browser

8.13 Buffering Output to the Browser

8.14 Compressing Web Output

8.15 Reading Environment Variables

8.16 Setting Environment Variables

8.17 Communicating Within Apache

8.18 Redirecting Mobile Browsers to a Mobile Optimized Site

185
186
189
190
191
195
197
198
201
205
206
210
212
213
215
217
220
222
226
229
230
231

235
236
238
238
239
240
241
245
248
249
250
251
252
253
255
255
256
257
258

vi

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

10.

8.19 Program: Website Account (De)activator
8.20 Program: Tiny Wiki
8.21 Program: HTTP Range

9.1 Processing Form Input

9.2 Validating Form Input: Required Fields

9.3 Validating Form Input: Numbers

9.4 Validating Form Input: Email Addresses

9.5 Validating Form Input: Drop-Down Menus

9.6 Validating Form Input: Radio Buttons

9.7 Validating Form Input: Checkboxes

9.8 Validating Form Input: Dates and Times

9.9 Validating Form Input: Credit Cards

9.10 Preventing Cross-Site Scripting

9.11 Processing Uploaded Files

9.12 Working with Multipage Forms

9.13 Redisplaying Forms with Inline Error Messages

9.14 Guarding Against Multiple Submissions of the Same Form
9.15 Preventing Global Variable Injection

9.16 Handling Remote Variables with Periods in Their Names
9.17 Using Form Elements with Multiple Options

9.18 Creating Drop-Down Menus Based on the Current Date

Database ACCess.
10.1 Using DBM Databases

10.2 Using an SQLite Database

10.3 Connecting to an SQL Database

10.4 Querying an SQL Database

10.5 Retrieving Rows Without a Loop

10.6 Modifying Data in an SQL Database

10.7 Repeating Queries Efficiently

10.8 Finding the Number of Rows Returned by a Query

10.9 Escaping Quotes

10.10 Logging Debugging Information and Errors

10.11 Creating Unique Identifiers

10.12 Building Queries Programmatically

10.13 Making Paginated Links for a Series of Records

10.14 Caching Queries and Results

10.15 Accessing a Database Connection Anywhere in Your Program
10.16 Program: Storing a Threaded Message Board

259
262
265

275
277
279
281
283
284
285
287
289
290
291
292
295
296
299
301
303
304
305

307
310
313
315
316
319
320
321
324
325
327
329
331
336
339
341
343

Table of Contents

www.it-ebooks.info

vii

http://www.it-ebooks.info/

1.

12.

13.

14.

10.17 Using Redis

Sessions and Data Persistence.o.vviriinii i

11.1 Using Session Tracking

11.2 Preventing Session Hijacking

11.3 Preventing Session Fixation

11.4 Storing Sessons in Memcached

11.5 Storing Sessions in a Database

11.6 Storing Arbitrary Data in Shared Memory

11.7 Caching Calculated Results in Summary Tables

12.1 Generating XML as a String

12.2 Generating XML with DOM

12.3 Parsing Basic XML Documents

12.4 Parsing Complex XML Documents
12.5 Parsing Large XML Documents

12.6 Extracting Information Using XPath
12.7 Transforming XML with XSLT

12.8 Setting XSLT Parameters from PHP
12.9 Calling PHP Functions from XSLT Stylesheets
12.10 Validating XML Documents

12.11 Handling Content Encoding

12.12 Reading RSS and Atom Feeds
12.13 Writing RSS Feeds

12.14 Writing Atom Feeds

Web AUtOMaAtioN. ..o v eee ettt ittt et enrenenennenes

13.1 Marking Up a Web Page

13.2 Cleaning Up Broken or Nonstandard HTML
13.3 Extracting Links from an HTML File

13.4 Converting Plain Text to HTML

13.5 Converting HTML to Plain Text

13.6 Removing HTML and PHP Tags

13.7 Responding to an Ajax Request

13.8 Integrating with JavaScript

13.9 Program: Finding Stale Links

13.10 Program: Finding Fresh Links

Consuming RESTRULAPIs.cvevreniii i i

14.1 Fetching a URL with the GET Method
14.2 Fetching a URL with the POST Method and Form Data

351

353
354
356
357
358
359
362
365

369
372
373
376
379
381
387
390
392
394
398
400
401
404
407

413
414
416
420
422
423
424
428
429
433
435

439
440
444

viii

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

14.3 Fetching a URL with an Arbitrary Method and POST Body 446

14.4 Fetching a URL with Cookies 448
14.5 Fetching a URL with Arbitrary Headers 450
14.6 Fetching a URL with a Timeout 451
14.7 Fetching an HTTPS URL 453
14.8 Debugging the Raw HT TP Exchange 453
14.9 Making an OAuth 1.0 Request 458
14.10 Making an OAuth 2.0 Request 460
15. Serving RESTRULAPIS.o evveeeetie et iie e i e iie e eiee e enaeaenns 465
15.1 Exposing and Routing to a Resource 468
15.2 Exposing Clean Resource Paths 471
15.3 Exposing a Resource for Reading 472
15.4 Creating a Resource 474
15.5 Editing a Resource 479
15.6 Deleting a Resource 481
15.7 Indicating Errors and Failures 482
15.8 Supporting Multiple Formats 484
16. Internet Services.vveeeeiiiiiiiiiiii i 487
16.1 Sending Mail 488
16.2 Sending MIME Mail 490
16.3 Reading Mail with IMAP or POP3 491
16.4 Getting and Putting Files with FTP 495
16.5 Looking Up Addresses with LDAP 498
16.6 Using LDAP for User Authentication 499
16.7 Performing DNS Lookups 502
16.8 Checking If a Host Is Alive 504
16.9 Getting Information About a Domain Name 506
L7 €T 113 509
17.1 Drawing Lines, Rectangles, and Polygons 512
17.2 Drawing Arcs, Ellipses, and Circles 515
17.3 Drawing with Patterned Lines 517
17.4 Drawing Text 518
17.5 Drawing Centered Text 520
17.6 Building Dynamic Images 524
17.7 Getting and Setting a Transparent Color 526
17.8 Overlaying Watermarks 527
17.9 Creating Thumbnail Images 530
17.10 Reading EXIF Data 533
17.11 Serving Images Securely 535
Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

18.

19.

20.

17.12 Program: Generating Bar Charts from Poll Results

Security and Encryption.cooiiiiiiiiiiiiii i

18.1 Preventing Session Fixation

18.2 Protecting Against Form Spoofing

18.3 Ensuring Input Is Filtered

18.4 Avoiding Cross-Site Scripting

18.5 Eliminating SQL Injection

18.6 Keeping Passwords Out of Your Site Files

18.7 Storing Passwords

18.8 Dealing with Lost Passwords

18.9 Verifying Data with Hashes

18.10 Encrypting and Decrypting Data

18.11 Storing Encrypted Data in a File or Database
18.12 Sharing Encrypted Data with Another Website
18.13 Detecting SSL

18.14 Encrypting Email with GPG

Internationalization and Localization............ccovvvivevninnnnnn.

19.1 Determining the User’s Locale

19.2 Localizing Text Messages

19.3 Localizing Dates and Times

19.4 Localizing Numbers

19.5 Localizing Currency Values

19.6 Localizing Images

19.7 Localizing Included Files

19.8 Sorting in a Locale-Aware Order

19.9 Managing Localization Resources

19.10 Setting the Character Encoding of Outgoing Data
19.11 Setting the Character Encoding of Incoming Data
19.12 Manipulating UTF-8 Text

ErrorHandling.coovivniiinii i

20.1 Finding and Fixing Parse Errors

20.2 Creating Your Own Exception Classes
20.3 Printing a Stack Trace

20.4 Reading Configuration Variables

20.5 Setting Configuration Variables

20.6 Hiding Error Messages from Users
20.7 Tuning Error Handling

20.8 Using a Custom Error Handler

20.9 Logging Errors

536

541
542
543
544
545
546
547
548
551
553
555
557
560
562
563

567
569
570
573
577
579
581
583
584
584
587
587
588

593
594
596
599
602
603
604
606
608
609

X

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

21.

22,

23.

24,

20.10 Eliminating “headers already sent” Errors
20.11 Logging Debugging Information

Software ENgineering.oovevuiieiiinreiniieeennerernneeeennnnsens
21.1 Using a Debugger Extension

21.2 Writing a Unit Test

21.3 Writing a Unit Test Suite

21.4 Applying a Unit Test to a Web Page

21.5 Setting Up a Test Environment

21.6 Using the Built-in Web Server

Performance TUNING.cvuiereinier ittt iie e iee e eenneeaenns
22.1 Using an Accelerator

22.2 Timing Function Execution

22.3 Timing Program Execution by Function

22.4 Timing Program Execution by Statement

22.5 Timing Program Execution by Section

22.6 Profiling with a Debugger Extension

22.7 Stress-Testing Your Website

22.8 Avoiding Regular Expressions

Regular EXpressions.ovvuereniienneeiiiriinrenieenneriierenneenneennes
23.1 Switching from ereg to preg

23.2 Matching Words

23.3 Finding the nth Occurrence of a Match

23.4 Choosing Greedy or Nongreedy Matches

23.5 Finding All Lines in a File That Match a Pattern
23.6 Capturing Text Inside HTML Tags

23.7 Preventing Parentheses from Capturing Text

23.8 Escaping Special Characters in a Regular Expression
23.9 Reading Records with a Pattern Separator

23.10 Using a PHP Function in a Regular Expression

24.1 Creating or Opening a Local File

24.2 Creating a Temporary File

24.3 Opening a Remote File

24.4 Reading from Standard Input

24.5 Reading a File into a String

24.6 Counting Lines, Paragraphs, or Records in a File
24.7 Processing Every Word in a File

24.8 Picking a Random Line from a File

611
612

615
615
619
620
622
624
625

629
630
631
632
634
636
638
642
643

647
651
652
654
656
658
659
660
662
663
664

667
671
672
673
674
675
676
679
680

Table of Contents

www.it-ebooks.info

| xi

http://www.it-ebooks.info/

25.

26.

27.

24.9 Randomizing All Lines in a File
24.10 Processing Variable-Length Text Fields
24.11 Reading Configuration Files

24.12 Modifying a File in Place Without a Temporary File

24.13 Flushing Output to a File

24.14 Writing to Standard Output

24.15 Writing to Many Filehandles Simultaneously
24.16 Escaping Shell Metacharacters

24.17 Passing Input to a Program

24.18 Reading Standard Output from a Program
24.19 Reading Standard Error from a Program
24.20 Locking a File

24.21 Reading and Writing Custom File Types
24.22 Reading and Writing Compressed Files

) (T (1) <X

25.1 Getting and Setting File Timestamps

25.2 Getting File Information

25.3 Changing File Permissions or Ownership

25.4 Splitting a Filename into Its Component Parts
25.5 Deleting a File

25.6 Copying or Moving a File

25.7 Processing All Files in a Directory

25.8 Getting a List of Filenames Matching a Pattern
25.9 Processing All Files in a Directory Recursively
25.10 Making New Directories

25.11 Removing a Directory and Its Contents
25.12 Program: Web Server Directory Listing
25.13 Program: Site Search

Command-LINePHP.covriiiii ittt ii i nanens

26.1 Parsing Program Arguments

26.2 Parsing Program Arguments with getopt

26.3 Reading from the Keyboard

26.4 Running PHP Code on Every Line of an Input File
26.5 Reading Passwords

26.6 Colorizing Console Output

26.7 Program: DOM Explorer

g T T

27.1 Defining and Installing Composer Dependencies
27.2 Finding Composer Packages

681
682
683
685
687
688
688
689
691
692
693
694
697
702

705
708
709
710
711
713
713
714
715
717
717
718
719
723

727
729
730
732
734
736
738
740

745
748
749

Xii

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

27.3 Installing Composer Packages 751

27.4 Using the PEAR Installer 754
27.5 Finding PEAR Packages 757
27.6 Finding Information About a Package 759
27.7 Installing PEAR Packages 760
27.8 Upgrading PEAR Packages 762
27.9 Uninstalling PEAR Packages 763
27.10 Installing PECL Packages 764
INAEX. ..t 767
Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

PHP is the engine behind millions of dynamic web applications. Its broad feature set,
approachable syntax, and support for different operating systems and web servers have
made it an ideal language for both rapid web development and the methodical con-
struction of complex systems.

One of the major reasons for PHP’s success as a web scripting language is its origins as
atool to process HTML forms and create web pages. This makes PHP very web-friendly.
Additionally, it is eagerly promiscuous when it comes to external applications and li-
braries. PHP can speak to a multitude of databases, and it knows numerous Internet
protocols. PHP also makes it simple to parse form data and make HTTP requests. This
web-specific focus carries over to the recipes and examples in the PHP Cookbook.

This book is a collection of solutions to common tasks in PHP. We've tried to include
material that will appeal to everyone from newbies to wizards. If we've succeeded, you'll
learn something (or perhaps many things) from PHP Cookbook. There are tips in here
for everyday PHP programmers as well as for people coming to PHP with experience
in another language.

PHP, in source code and binary forms, is available for download free from http://
www.php.net/. The PHP website also contains installation instructions, comprehensive
documentation, and pointers to online resources, user groups, mailing lists, and other
PHP resources.

Who This Book Is For

This book is for programmers who need to solve problems with PHP. If you don’t know
any PHP, make this your second PHP book. The first should be Learning PHP 5, also
from O’Reilly.

If you're already familiar with PHP, this book helps you overcome a specific problem
and get on with your life (or at least your programming activities). The PHP Cook-

XV

www.it-ebooks.info

http://shop.oreilly.com/product/0636920029335.do
http://shop.oreilly.com/product/0636920029335.do
http://www.php.net/
http://www.php.net/
http://www.it-ebooks.info/

book can also show you how to accomplish a particular task in PHP, such as sending
email or parsing JSON, that you may already know how to do in another language.
Programmers converting applications from other languages to PHP will find this book
a trusty companion.

What Is in This Book

We don’t expect that you'll sit down and read this book from cover to cover (although
we'll be happy if you do!). PHP programmers are constantly faced with a wide variety
of challenges on a wide range of subjects. Turn to the PHP Cookbook when you en-
counter a problem you need to solve. Each recipe is a self-contained explanation that
gives you a head start toward finishing your task. When a recipe refers to topics outside
its scope, it contains pointers to related recipes and other online and offline resources.

If you choose to read an entire chapter at once, that's OK. The recipes generally flow
from easy to hard, with example programs that “put it all together” at the end of many
chapters. The chapter introduction provides an overview of the material covered in the
chapter, including relevant background material, and points out a few highlighted rec-
ipes of special interest.

The book begins with four chapters about basic data types. Chapter 1 covers details like
processing substrings, manipulating case, taking strings apart into smaller pieces, and
parsing comma-separated data. Chapter 2 explains operations with floating-point num-
bers, random numbers, converting between bases, and number formatting. Chapter 3
shows you how to manipulate dates and times, format them, handle time zones and
daylight saving time, and find time to microsecond precision. Chapter 4 covers array
operationslike iterating, merging, reversing, sorting, and extracting particular elements.

Next are three chapters that discuss program building blocks. Chapter 5 covers notable
features of PHP’s variable handling, such as default values, static variables, and pro-
ducing string representations of complex data types. The recipes in Chapter 6 deal with
using functions in PHP: processing arguments, passing and returning variables by ref-
erence, creating functions at runtime, and scoping variables. Chapter 7 covers PHP’s
object-oriented capabilities, with recipes on OOP basics as well as more advanced fea-
tures, such as magic methods, destructors, access control, reflection, traits, and name-
spaces.

After the data types and building blocks come six chapters devoted to topics that are
central to web programming. Chapter 8 covers cookies, headers, authentication, work-
ing with query strings, and other fundamentals of web applications. Chapter 9 covers
processing and validating form input, displaying multipage forms, showing forms with
error messages, and guarding against problems such as cross-site scripting and multiple
submissions of the same form. Chapter 10 explains the differences between DBM and
SQL databases and, using the PDO database access abstraction layer, shows how to

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

connect to a database, assign unique ID values, retrieve rows, change data, escape quotes,
and log debugging information. Chapter 11 covers PHP’s built-in sessions module,
which lets you maintain information about a user as he moves from page to page on
your website. This chapter also highlights some of the security issues associated with
sessions. Chapter 12 discusses all things XML: the SimpleXML extension and DOM
functions, using XPath and XSLT, and reading and writing both RSS and Atom feeds.
Chapter 13 explores topics useful to PHP applications that integrate with external web-
sites and client-side JavaScript such as retrieving remote URLs, cleaning up HTML, and
responding to an Ajax request.

The next three chapters are all about network interaction. Chapter 14 details the ins and
outs of consuming a web service—using an external REST service from within your
code. Chapter 15 handles the other side of the web services equation—serving up REST
requests to others. Both chapters discuss authentication, headers, and error handling.
Chapter 16 discusses other network services such as sending email messages, using
LDAP, and doing DNS lookups.

The next section of the book is a series of chapters on features and extensions of PHP
that help you build applications that are robust, secure, user-friendly, and efficient.
Chapter 17 shows you how to create graphics, with recipes on drawing text, lines,
polygons, and curves. Chapter 18 focuses on security topics such as avoiding session
fixation and cross-site scripting, working with passwords, and encrypting data. Chap-
ter 19 helps you make your applications globally friendly and includes recipes for lo-
calizing text, dates and times, currency values, and images, as well as a recipe working
with text in UTF-8 character encoding. Chapter 20 goes into detail on error handling
and logging, while Chapter 21 discusses debugging techniques, writing tests for your
code, and using PHP’s built-in web server. Chapter 22 explains how to compare the
performance of two functions and provides tips on getting your programs to run at
maximum speed. Chapter 23 covers regular expressions, including capturing text inside
of HTML tags, calling a PHP function from inside a regular expression, and using greedy
and nongreedy matching.

Chapters 24 and 25 cover the filesystem. Chapter 24 focuses on files: opening and closing
them, using temporary files, locking files, sending compressed files, and processing the
contents of files. Chapter 25 deals with directories and file metadata, with recipes on
changing file permissions and ownership, moving or deleting a file, and processing all
files in a directory.

Last, there are two chapters on topics that extend the reach of what PHP can do. Chap-
ter 26 covers using PHP outside of web programming. Its recipes cover command-line
topics such as parsing program arguments and reading passwords. Chapter 27 covers
Composer, PEAR (PHP Extension and Application Repository), and PECL (PHP Ex-
tension Community Library). Composer and PEAR provide access to a collection of
PHP code that provides functions and extensions to PHP. PECL is a similar collection,

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

but of extensions to PHP written in C. We use PEAR and PECL modules throughout
the book and Chapter 27 shows you how to install and upgrade them.

Other Resources
Websites

There is a tremendous amount of PHP reference material online. With everything from
the annotated PHP manual to sites with periodic articles and tutorials, a fast Internet
connection rivals a large bookshelf in PHP documentary usefulness. Here are some key
sites:

The Annotated PHP Manual
Availablein 11 languages, this site includes both official documentation of functions
and language features as well as user-contributed comments.

PHP mailing lists
There are many PHP mailing lists covering installation, programming, extending
PHP, and various other topics; there is also a read-only web interface to the mailing
lists.

PHP support resources
This handy collection of support resources has information on PHP user groups,
events, and other support channels.

Composer
Composer is a dependency manager for PHP that provides a structured way both
to declare dependencies in your project and to install them.

PEAR
PEAR calls itself “a framework and distribution system for reusable PHP compo-
nents” You'll find lots of useful PHP classes and sample code there. Read more
about PEAR in Chapter 27.

PECL
PECL calls itself “a repository for PHP Extensions, providing a directory of exten-
sions and hosting facilities for downloading and development of PHP extensions.”
Read more about PECL in Chapter 27.

PHP.net: A Tourist’s Guide
This is a guide to the various websites under the php.net umbrella.

PHP: The Right Way
A quick reference that attempts to be a comprehensive source of PHP best practices.
A great place to start if you're wondering about the idiomatic way to do something
in PHP.

xviii | Preface

www.it-ebooks.info

http://www.php.net/manual
http://www.php.net/mailing-lists.php
http://news.php.net/
http://us3.php.net/support.php
https://getcomposer.org/
http://pear.php.net
http://pecl.php.net
http://www.php.net/sites.php
http://www.phptherightway.com/
http://www.it-ebooks.info/

Planet PHP
An aggregation of blog posts by PHP developers, about PHP.

SitePoint Blogs on PHP
A good collection of information that explores PHP.

Books

This section lists books that are helpful references and tutorials for building applications
with PHP. Most are specific to web-related programming; look for books on MySQL,
HTML, XML, and HTTP.

At the end of the section, we've included a few books that are useful for every program-
mer regardless of language of choice. These works can make you a better programmer
by teaching you how to think about programming as part of a larger pattern of problem
solving:

o Learning PHP 5 by David Sklar (O’Reilly)

o Programming PHP by Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre (O’'Reil-

ly)

o Extending and Embedding PHP by Sara Golemon (Sams)

o Learning PHP, MySQL, JavaScript, and CSS by Robin Nixon (O’Reilly)

o Mastering Regular Expressions by Jeffrey E. E. Friedl (O’Reilly)

o MySQL Reference Manual

o MySQL, by Paul DuBois (New Riders)

o The Practice of Programming, by Brian W. Kernighan and Rob Pike (Addison-
Wesley)

o Programming Pearls by Jon Louis Bentley (Addison-Wesley)
o The Mythical Man-Month, by Frederick P. Brooks (Addison-Wesley)

Conventions Used in This Book

Programming Conventions

The examples in this book were written to run under PHP version 5.4.28 (and, where
applicable, PHP 5.5.12). Sample code should work on both Unix and Windows, except
where noted in the text. We've generally noted in the text when we depend on a feature
added to PHP in or after 5.5.

Preface | xix

www.it-ebooks.info

http://www.planet-php.net
http://www.sitepoint.com/blogs/category/php
http://shop.oreilly.com/product/9780596005603.do
http://shop.oreilly.com/product/0636920012443.do
http://shop.oreilly.com/product/0636920023487.do
http://shop.oreilly.com/product/9780596528126.do
http://dev.mysql.com/doc/#manual
http://www.it-ebooks.info/

Some examples rely on the $php_errormsg variable, which is only available when the
track_errors configuration directive is turned on.

Typesetting Conventions
The following typographic conventions are used in this book:

Italic
Used for commands, filenames, and example URLs. It is also used to define new
terms when they first appear in the text.

Constant width
Used in code examples to show partial or complete PHP source code program
listings. It is also used for class names, method names, variable names, and other
fragments of PHP code.

Constant width bold
Used for user input, such as commands that you type on the command line.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/phpckbk3.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

www.it-ebooks.info

http://bit.ly/phpckbk3
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments

Most importantly, a huge thanks to everyone who has contributed their time, creativity,
and skills to making PHP what it is today. This amazing volunteer effort has created not
only hundreds of thousands of lines of source code, but also comprehensive documen-
tation, a QA infrastructure, lots of add-on applications and libraries, and a thriving user
community worldwide. It’s a thrill and an honor to add the PHP Cookbook to the world
of PHP.

Thanks also to our reviewers: Paul Huff, Peter MacIntyre, Simon MacIntyre, and Russ
Uman. Special mention to Chris Shiflett and Clay Lovelace for their contributions to
the second edition of this book.

And big thanks to the folks at O’'Reilly that made this book a reality: Rachel Roumeliotis,
Allyson MacDonald, Melanie Yarbrough, and Maria Gulick as well as the nameless orcs
and dwarves that toil in the subterranean caverns of Sebastopol and Cambridge to make
sure that the production process runs smoothly.

David Sklar

Thanks twice again to Adam. We've been working together (in one way or another) for
18 years and PHPing together for 17. There is still no one with whom I’d rather have
written this book (except, to be completely honest, maybe Ben Franklin, if he could
somehow be brought back to life).

Thanks to my family members of all ages. You gave me the time and space to focus on
the book. Now I will give you time and space to read the entire thing!

Adam Trachtenberg

David: It’s tough to complete with Ben Franklin. Please know that I support the turkey
as the official animal of PHP instead of the elephant. Many thanks for your support over
all these years, beginning long ago in the days of PHP/FI. Without you, this book would
merely be a dream.

Thanks to my family and friends for their support and encouragement over these many
months. All my love to my two sons, even the one who helped me relearn that human
children don't give you extensions after 40 weeks if your work on PHP Cookbook isn't
complete. Finally, special thanks to my wife Elizabeth Anne; I should take your good
advice more often.

Preface | xxi

www.it-ebooks.info

http://shop.oreilly.com/product/0636920029335.do
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Strings

1.0 Introduction

Strings in PHP are sequences of bytes, such as “We hold these truths to be self-evident”
or “Once upon a time” or even “111211211” When you read data from a file or output
it to a web browser, your data is represented as strings.

PHP strings are binary-safe (i.e., they can contain null bytes) and can grow and shrink
on demand. Their size is limited only by the amount of memory that is available to PHP.

Usually, PHP strings are ASCII strings. You must do extra work to
handle non-ASCII data like UTF-8 or other multibyte character en-
codings (see Chapter 19).

Similar in form and behavior to Perl and the Unix shell, strings can be initialized in
three ways: with single quotes, with double quotes, and with the “here document”
(heredoc) format. With single-quoted strings, the only special characters you need to
escape inside a string are the backslash and the single quote itself. This example shows
four single-quoted strings:

print 'I have gone to the store.';

print 'I\'ve gone to the store.';

print 'Would you pay $1.75 for 8 ounces of tap water?';

print 'In double-quoted strings, newline is represented by \n';

It prints:

I have gone to the store.

I've gone to the store.

Would you pay $1.75 for 8 ounces of tap water?

In double-quoted strings, newline is represented by \n

www.it-ebooks.info

http://www.it-ebooks.info/

The preceding output shows what the raw output looks like. If you
view it in a web browser, you will see all the sentences on the same
line because HTML requires additional markup to insert line breaks.

Because PHP doesn't check for variable interpolation or almost any escape sequences
in single-quoted strings, defining strings this way is straightforward and fast.

Double-quoted strings don’t recognize escaped single quotes, but they do recognize
interpolated variables and the escape sequences shown in Table 1-1.

Table 1-1. Double-quoted string escape sequences

Escape sequence Character

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)
\t Tab (ASCII 9)

\\ Backslash

\$ Dollar sign

\" Double quote

\0 through \777 Octal value
\x0 through \xFF Hex value

Example 1-1 shows some double-quoted strings.

Example 1-1. Double-quoted strings

print "I've gone to the store.";

print "The sauce cost \$10.25.";

$cost = '$10.25"';

print "The sauce cost $cost.";

print "The sauce cost \$\061\060.\x32\x35.";

Example 1-1 prints:

I've gone to the store.

The sauce cost $10.25.

The sauce cost $10.25.

The sauce cost $10.25.
The last line of Example 1-1 prints the price of sauce correctly because the character 1
is ASCII code 49 decimal and 061 octal. Character 0 is ASCII 48 decimal and 060 octal;
2 is ASCII 50 decimal and 32 hex; and 5 is ASCII 53 decimal and 35 hex.

Heredoc-specified strings recognize all the interpolations and escapes of double-quoted
strings, but they don’t require double quotes to be escaped. Heredocs start with <<< and

2 | Chapter1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

a token. That token (with no leading or trailing whitespace), followed by a semicolon
to end the statement (if necessary), ends the heredoc. Example 1-2 shows how to define
a heredoc.

Example 1-2. Defining a here document

print <<< END

It's funny when signs say things like:
Original "Root" Beer
"Free" Gift
Shoes cleaned while "you" wait

or have other misquoted words.

END;

Example 1-2 prints:

It's funny when signs say things like:
Original "Root" Beer
"Free" Gift
Shoes cleaned while "you" wait

or have other misquoted words.

Newlines, spacing, and quotes are all preserved in a heredoc. By convention, the end-
of-string identifier is usually all caps, and it is case sensitive. Example 1-3 shows two
more valid heredocs.

Example 1-3. More here documents

print <<< PARSLEY

It's easy to grow fresh:
Parsley

Chives

on your windowsill
PARSLEY;

print <<< DOGS

If you like pets, yell out:
DOGS AND CATS ARE GREAT!
DOGS;

Heredocs are especially useful for printing out HTML with interpolated variables be-
cause you don’t have to escape the double quotes that appear in the HTML elements.
Example 1-4 uses a heredoc to print HTML.

Example 1-4. Printing HTML with a here document

if ($Sremaining_cards > 0) {
Surl = '/deal.php';
$text = 'Deal More Cards';
} else {
$url = '/new-game.php';
Stext = 'Start a New Game';

1.0 Introduction | 3

www.it-ebooks.info

http://www.it-ebooks.info/

print <<< HTML

There are $remaining_cards left.
<p>

$text

HTML ;

In Example 1-4, the semicolon needs to go after the end-of-string delimiter to tell PHP
the statement is ended. In some cases, however, you shouldn’t use the semicolon. One
of these cases is shown in Example 1-5, which uses a heredoc with the string concate-
nation operator.

Example 1-5. Concatenation with a here document

$html = <<< END

<div class="$divClass">

<ul class="$ulClass">

END

. SlistItem . '</lis</div>';

print $html;

Assuming some reasonable values for the $divClass, SulClass, and $listItem vari-
ables, Example 1-5 prints:

<div class="class1">>
<ul class="class2">
 The List Item </div>

In Example 1-5, the expression needs to continue on the next line, so you don’t use a
semicolon. Note also that in order for PHP to recognize the end-of-string delimiter,

the . string concatenation operator needs to go on a separate line from the end-of-string
delimiter.

Nowdocs are similar to heredocs, but there is no variable interpolation. So, nowdocs
are to heredocs as single-quoted strings are to double-quoted strings. They’re best when
you have a block of non-PHP code, such as JavaScript, that you want to print as part of
an HTML page or send to another program.

For example, if you're using jQuery:

$js = <<<'__JS_ "

$.ajax({
'url': '/api/getStock',
'data': {

"ticker': 'LNKD'
}’
'success': function(data) {
$("#stock-price").html("$" + data + "");
}
s

4 | Chapter 1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Js

print $js;
Individual bytes in strings can be referenced with square brackets. The first byte in the
string is at index 0. Example 1-6 grabs one byte from a string.
Example 1-6. Getting an individual byte in a string
$neighbor = 'Hilda';
print $neighbor[3];
Example 1-6 prints:
d

1.1 Accessing Substrings

Problem

You want to know if a string contains a particular substring. For example, you want to
find out if an email address contains a @.

Solution

Use strpos(), as in Example 1-7.

Example 1-7. Finding a substring with strpos()

if (strpos($_POST['email'], '@') === false) {
print 'There was no @ in the e-mail address!';

}

Discussion

The return value from strpos() is the first position in the string (the “haystack”) at
which the substring (the “needle”) was found. If the needle wasn’t found at all in the
haystack, strpos() returns false. If the needle is at the beginning of the haystack,
strpos() returns 0 because position 0 represents the beginning of the string. To dif-
ferentiate between return values of 0 and false, you must use the identity operator
(===) or the not-identity operator (!==) instead of regular equals (==) or not-equals
(!=). Example 1-7 compares the return value from strpos() to false using ===. This
test only succeeds if strpos() returns false, not if it returns 0 or any other number.

See Also

Documentation on strpos().

1.1 Accessing Substrings | 5

www.it-ebooks.info

http://www.php.net/strpos
http://www.it-ebooks.info/

1.2 Extracting Substrings

Problem

You want to extract part of a string, starting at a particular place in the string. For
example, you want the first eight characters of a username entered into a form.

Solution
Use substr() to select your substring, as in Example 1-8.

Example 1-8. Extracting a substring with substr()

$substring = substr($string,$start,$length);
Susername = substr($_GET['username'],0,8);
Discussion

If $start and $length are positive, substr() returns $length characters in the string,
starting at $start. The first character in the string is at position 0. Example 1-9 has
positive $start and $length.

Example 1-9. Using substr() with positive $start and $length
print substr('watch out for that tree',6,5);

Example 1-9 prints:
out f

If you leave out $length, substr() returns the string from $start to the end of the
original string, as shown in Example 1-10.

Example 1-10. Using substr() with positive start and no length
print substr('watch out for that tree',17);

Example 1-10 prints:
t tree

If $start is bigger than the length of the string, substr() returns false.

If $start plus $length goes past the end of the string, substr () returns all of the string
from $start forward, as shown in Example 1-11.

Example 1-11. Using substr() with length past the end of the string

print substr('watch out for that tree',20,5);

Example 1-11 prints:

6 | Chapter1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

ree

If $start is negative, substr() counts back from the end of the string to determine
where your substring starts, as shown in Example 1-12.

Example 1-12. Using substr() with negative start

print substr('watch out for that tree',-6);
print substr('watch out for that tree',-17,5);

Example 1-12 prints:

t tree
out f

With a negative $start value that goes past the beginning of the string (for example, if
$start is —27 with a 20-character string), substr() behaves as if $start is 0.

If $length is negative, substr() counts back from the end of the string to determine
where your substring ends, as shown in Example 1-13.

Example 1-13. Using substr() with negative length

print substr('watch out for that tree',15,-2);
print substr('watch out for that tree',-4,-1);

Example 1-13 prints:

hat tr
tre

See Also

Documentation on substr().

1.3 Replacing Substrings

Problem

You want to replace a substring with a different string. For example, you want to obscure
all but the last four digits of a credit card number before printing it.

Solution

Use substr_replace(), as in Example 1-14.

Example 1-14. Replacing a substring with substr_replace()

// Everything from position $start to the end of Sold string
// becomes Snew_substring
Snew_string = substr_replace($Sold_string,S$new_substring,$start);

1.3 Replacing Substrings | 7

www.it-ebooks.info

http://www.php.net/substr
http://www.it-ebooks.info/

// Slength characters, starting at position $start, become Snew_substring
S$new_string = substr_replace($old_string,Snew_substring,$start,$length);

Discussion

Without the $length argument, substr_replace() replaces everything from $start
to the end of the string. If $length is specified, only that many characters are replaced:
print substr_replace('My pet is a blue dog.','fish.',12);
print substr_replace('My pet is a blue dog.','green',12,4);

Scredit_card = '4111 1111 1111 1111';
print substr_replace($credit_card, 'xxxx ',0,strlen($credit_card)-4);

My pet is a fish.
My pet is a green dog.
XXXx 1111

If $start is negative, the new substring is placed by counting $start characters from
the end of $old_string, not from the beginning:

print substr_replace('My pet is a blue dog.','fish.',-9);
print substr_replace('My pet is a blue dog.','green',-9,4);

My pet is a fish.
My pet is a green dog.

If $start and $length are 0, the new substring is inserted at the start of $old_string:
print substr_replace('My pet is a blue dog.','Title: ',0,0);
Title: My pet is a blue dog.

The function substr_replace() is useful when you've got text that’s too big to display
all at once, and you want to display some of the text with a link to the rest. Example 1-15
displays the first 25 characters of a message with an ellipsis after it as a link to a page
that displays more text.

Example 1-15. Displaying long text with an ellipsis

$r = mysql_query("SELECT id,message FROM messages WHERE id = $1d") or die();
$ob = mysql_fetch_object(Sr);
printf('%s",

$ob->1d, substr_replace($ob->message,' ...',25));

The more-text.php page referenced in Example 1-15 can use the message ID passed in
the query string to retrieve the full message and display it.

See Also

Documentation on substr_replace().

8 | Chapter1:Strings

www.it-ebooks.info

http://www.php.net/substr-replace
http://www.it-ebooks.info/

1.4 Processing a String One Byte at a Time

Problem

You need to process each byte in a string individually.

Solution

Loop through each byte in the string with for. Example 1-16 counts the vowels in a
string.

Example 1-16. Processing each byte in a string

$string = "This weekend, I'm going shopping for a pet chicken.";
Svowels = 0;
for ($1 = 0, $j = strlen(Sstring); $1 < $j; Si++) {
if (strstr('aelouAEIOU',$string[$1])) {
Svowels++;

}
}

Discussion

Processing a string a character at a time is an easy way to calculate the “Look and Say”
sequence, as shown in Example 1-17.

Example 1-17. The Look and Say sequence

function lookandsay(S$s) {
// initialize the return value to the empty string
$r="";
// Sm holds the character we're counting, initialize to the first
// character in the string

$m = $s[0];
// Sn is the number of $m's we've seen, initialize to 1
$n = 1;

for ($1 = 1, $j = strlen($s); $i < $j; Si++) {
// 1f this character is the same as the last one
if ($s[$1] == $m) {
// increment the count of this character
Sn++;
} else {
// otherwise, add the count and character to the return value
$r .= $n.$m;
// set the character we're looking for to the current one
$m = $s[$1];
// and reset the count to 1
Sn = 1;
}
}

// return the built up string as well as the last count and character

1.4 Processing a String One ByteataTime | 9

www.it-ebooks.info

http://www.it-ebooks.info/

return $r.$n.Sm;

}

for ($1 =0, $s = 1; $1 < 10; S$i++) {
$s = lookandsay(Ss);
print "$s\n";

}

Example 1-17 prints:

1

11

21

1211

111221

312211

13112221

1113213211
31131211131221
13211311123113112211

It’s called the “Look and Say” sequence because each element is what you get by looking
at the previous element and saying whats in it. For example, looking at the first element,
1, you say “one one.” So the second element is “11.” That’s two ones, so the third element
is “21” Similarly, that’s one two and one one, so the fourth element is “1211,” and so on.

See Also

Documentation on for; more about the “Look and Say” sequence.

1.5 Reversing a String by Word or Byte

Problem

You want to reverse the words or the bytes in a string.

Solution
Use strrev() to reverse by byte, as in Example 1-18.
Example 1-18. Reversing a string by byte

print strrev('This is not a palindrome.');
Example 1-18 prints:

.emordnilap a ton si sihT

To reverse by words, explode the string by word boundary, reverse the words, and then
rejoin, as in Example 1-19.

10 | Chapter 1:Strings

www.it-ebooks.info

http://www.php.net/for
http://bit.ly/1g2X0sD
http://www.it-ebooks.info/

Example 1-19. Reversing a string by word

$s = "Once upon a time there was a turtle.";
// break the string up into words

$words = explode(' ',$s);

// reverse the array of words

$words = array_reverse(Swords);

// rebuild the string

$s = implode(' ',$words);

print $s;

Example 1-19 prints:

turtle. a was there time a upon Once

Discussion

Reversing a string by words can also be done all in one line with the code in
Example 1-20.

Example 1-20. Concisely reversing a string by word

$reversed_s = implode(' ',array_reverse(explode(' ',$s)));

See Also

Recipe 24.7 discusses the implications of using something other than a space character
as your word boundary; documentation on strrev() and array_reverse().

1.6 Generating a Random String

Problem

You want to generate a random string.

Solution
Use str_rand():

function str_rand($length = 32,

$characters = «
'0123456789abcdefghi jklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ ') {
if (!is_int($length) || Slength < 0) {

return false;

}

Scharacters_length = strlen($characters) - 1;

$string = '';

1.6 Generating a Random String | 11

www.it-ebooks.info

http://www.php.net/strrev
http://www.php.net/array-reverse
http://www.it-ebooks.info/

for ($1 = $Slength; $1 > 0; $i--) {
$string .= $characters[mt_rand(0, Scharacters_length)];

}
return $string;
}
Discussion

PHP has native functions for generating random numbers, but nothing for random
strings. The str_rand() function returns a 32-character string constructed from letters
and numbers.

Pass in an integer to change the length of the returned string. To use an alternative set
of characters, pass them as a string as the second argument. For example, to get a 16-
digit Morse Code:

print str_rand(16, '.-");

See Also

Recipe 2.5 for generating random numbers.

1.7 Expanding and Compressing Tabs

Problem

You want to change spaces to tabs (or tabs to spaces) in a string while keeping text
aligned with tab stops. For example, you want to display formatted text to users in a
standardized way.

Solution

Use str_replace() to switch spaces to tabs or tabs to spaces, as shown in Example 1-21.

Example 1-21. Switching tabs and spaces

$rows = $db->query('SELECT message FROM messages WHERE id = 1');
$obj = Srows->fetch(PDO::FETCH_0BJ);

Stabbed = str_replace(' ' , "\t", Sobj->message);
$spaced = str_replace("\t", ' ' , Sobj->message);

print "With Tabs: <pre>$tabbed</pre>";
print "With Spaces: <pre>S$spaced</pre>";

12 | Chapter 1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Using str_replace() for conversion, however, doesn’t respect tab stops. If you want
tab stops every eight characters, aline beginning with a five-letter word and a tab should
have that tab replaced with three spaces, not one. Use the tab_expand() function shown
in Example 1-22 to turn tabs to spaces in a way that respects tab stops.

Example 1-22. tab_expand()

function tab_expand($text) {
while (strstr($text,"\t")) {

}

Stext = preg_replace_callback('/A([A\t\n]*)(\t+)/m',
'tab_expand_helper', S$text);

return $text;

}

function tab_expand_helper(Smatches) {
$tab_stop = 8;

return $matches[1] .
str_repeat(' ',strlen($matches[2]) *

Stab_stop - (strlen($matches[1]) % $tab_stop));

$spaced = tab_expand($Sobj->message);

You can use the tab_unexpand() function shown in Example 1-23 to turn spaces back

to tabs.

Example 1-23. tab_unexpand()

function tab_unexpand(S$text) {
S$tab_stop = 8;
$lines = explode("\n",S$text);
foreach (S$lines as $1 => $line) {

}

// Expand any tabs to spaces

Sline = tab_expand($line);

$chunks = str_split($line, S$tab_stop);

SchunkCount = count($chunks);

// Scan all but the last chunk

for ($j = 0; $j < SchunkCount - 1; $j++) {
$chunks[$3] = preg_replace('/ {2,}$/","\t",$chunks[$3]);

}

// If the last chunk is a tab-stop's worth of spaces

// convert it to a tab; Otherwise, leave it alone

if ($chunks[$chunkCount-1] == str_repeat(' ', $tab_stop)) {
Schunks[$chunkCount-1] = "\t";

}

// Recombine the chunks

$lines[$1] = implode('',Schunks);

// Recombine the lines

1.7 Expanding and Compressing Tabs

www.it-ebooks.info

| 13

http://www.it-ebooks.info/

return implode("\n",$lines);

}
Stabbed = tab_unexpand($obj->message);

Both functions take a string as an argument and return the string appropriately modi-

fied.

Discussion

Each function assumes tab stops are every eight spaces, but that can be modified by
changing the setting of the $tab_stop variable.

The regular expression in tab_expand() matches both a group of tabs and all the text
in a line before that group of tabs. It needs to match the text before the tabs because the
length of that text affects how many spaces the tabs should be replaced with so that
subsequent text is aligned with the next tab stop. The function doesn't just replace each
tab with eight spaces; it adjusts text after tabs to line up with tab stops.

Similarly, tab_unexpand() doesn't just look for eight consecutive spaces and then re-
place them with one tab character. It divides up each line into eight-character chunks
and then substitutes ending whitespace in those chunks (at least two spaces) with tabs.
This not only preserves text alignment with tab stops; it also saves space in the string.

See Also

Documentation on str_replace(), on preg_replace_callback(), and on
str_split(). Recipe 23.10 has more information on preg_replace_callback().

1.8 Controlling Case

Problem

You need to capitalize, lowercase, or otherwise modify the case of letters in a string. For
example, you want to capitalize the initial letters of names but lowercase the rest.

Solution

Use ucfirst() orucwords() to capitalize the first letter of one or more words, as shown
in Example 1-24.
Example 1-24. Capitalizing letters

print ucfirst("how do you do today?");
print ucwords("the prince of wales");

14 | Chapter 1: Strings

www.it-ebooks.info

http://www.php.net/str-replace
http://www.php.net/preg_replace_callback
http://www.php.net/str_split
http://www.it-ebooks.info/

Example 1-24 prints:

How do you do today?
The Prince Of Wales

Use strtolower() or strtoupper() to modify the case of entire strings, as in
Example 1-25.
Example 1-25. Changing case of strings

print strtoupper("i'm not yelling!");
print strtolower('one");

Example 1-25 prints:

I'M NOT YELLING!
one

Discussion

Use ucfirst() to capitalize the first character in a string:

print ucfirst('monkey face');
print ucfirst('1l monkey face');

This prints:

Monkey face
1 monkey face

Note that the second phrase is not “1 Monkey face”

Use ucwords() to capitalize the first character of each word in a string:

print ucwords('1l monkey face');
print ucwords("don't play zone defense against the philadelphia 76-ers");

This prints:

1 Monkey Face

Don't Play Zone Defense Against The Philadelphia 76-ers
As expected, ucwords() doesn't capitalize the “t” in “don’t” But it also doesn’t capitalize
the “¢” in “76-ers.” For ucwords(), a word is any sequence of nonwhitespace characters
that follows one or more whitespace characters. Because both ' and - aren’t whitespace
characters, ucwords () doesn’t consider the “t” in “don’t” or the “e” in “76-ers” to be word-
starting characters.

Both ucfirst() and ucwords() don’t change the case of non-first letters:

print ucfirst('macWorld says I should get an iBook');
print ucwords('eTunaFish.com might buy itunaFish.Com!');

This prints:

1.8 ControllingCase | 15

www.it-ebooks.info

http://www.it-ebooks.info/

MacWorld says I should get an iBook
ETunaFish.com Might Buy ItunaFish.Com!

The functions strtolower() and strtoupper() work on entire strings, not just indi-
vidual characters. All alphabetic characters are changed to lowercase by strtolow
er() and strtoupper() changes all alphabetic characters to uppercase:

print strtolower("I programmed the WOPR and the TRS-80.");
print strtoupper('"since feeling is first" is a poem by e. e. cummings.');

This prints:

i1 programmed the wopr and the trs-80.
"SINCE FEELING IS FIRST" IS A POEM BY E. E. CUMMINGS.

When determining upper- and lowercase, these functions respect your locale settings.

See Also

For more information about locale settings, see Chapter 19; documentation on uc
first(), ucwords(), strtolower(), and strtoupper().

1.9 Interpolating Functions and Expressions Within
Strings

Problem

You want to include the results of executing a function or expression within a string.

Solution

Use the string concatenation operator (.), as shown in Example 1-26, when the value
you want to include can’t be inside the string.

Example 1-26. String concatenation

print 'You have '.($_POST['boys'] + $_POST['girls']).' children.';
print "The word 'Sword' is ".strlen($word).' characters long.';
print 'You owe '.S$amounts['payment'].' immediately.';

print "My circle's diameter is ".Scircle->getDiameter().' inches.';

Discussion

You can put variables, object properties, and array elements (if the subscript is unquo-
ted) directly in double-quoted strings:

print "I have S$children children.";
print "You owe $amounts[payment] immediately.";
print "My circle's diameter is $circle->diameter inches.";

16 | Chapter 1: Strings

www.it-ebooks.info

http://www.php.net/ucfirst
http://www.php.net/ucfirst
http://www.php.net/ucwords
http://www.php.net/strtolower
http://www.php.net/strtoupper
http://www.it-ebooks.info/

Interpolation with double-quoted strings places some limitations on the syntax of what
can be interpolated. In the previous example, $amounts['payment'] had to be written
as $amounts[payment] so it would be interpolated properly. Use curly braces around
more complicated expressions to interpolate them into a string. For example:

print "I have {$children} children.";

print "You owe {$amounts['payment']} immediately.";

print "My circle's diameter is {$circle->getDiameter()} inches.";
Direct interpolation or using string concatenation also works with heredocs. Interpo-
lating with string concatenation in heredocs can look a little strange because the closing
heredoc delimiter and the string concatenation operator have to be on separate lines:

print <<< END

Right now, the time is

END

. strftime('%c') . <<< END

but tomorrow it will be

END

. strftime('%c',time() + 86400);
Also, if you're interpolating with heredocs, make sure to include appropriate spacing
for the whole string to appear properly. In the previous example, Right now, the time
s has to include a trailing space, and but tomorrow it will be has to include leading

and trailing spaces.

See Also

For the syntax to interpolate variable variables (such as ${"amount_$i"}), see
Recipe 5.4; documentation on the string concatenation operator.

1.10 Trimming Blanks from a String

Problem

You want to remove whitespace from the beginning or end of a string. For example, you
want to clean up user input before validating it.

Solution

Use 1trim(), rtrim(), or trim(). The ltrim() function removes whitespace from the
beginning of a string, rtrim() from the end of a string, and trim() from both the
beginning and end of a string:

$zipcode = trim($_GET['zipcode']);

$no_linefeed = rtrim(S_GET['text']);
Sname = ltrim(S$_GET['name']);

1.10 Trimming Blanks froma String | 17

www.it-ebooks.info

http://www.php.net/language.operators.string
http://www.it-ebooks.info/

Discussion

For these functions, whitespace is defined as the following characters: newline, carriage
return, space, horizontal and vertical tab, and null.

Trimming whitespace off of strings saves storage space and can make for more precise
display of formatted data or text within <pre> tags, for example. If you are doing com-
parisons with user input, you should trim the data first, so that someone who mistakenly
enters 98052 followed by a few spaces as their zip code isn't forced to fix an error that
really isn’t one. Trimming before exact text comparisons also ensures that, for example,
“salami\n” equals “salami.” It’s also a good idea to normalize string data by trimming it
before storing it in a database.

The trim() functions can also remove user-specified characters from strings. Pass the
characters you want to remove as a second argument. You can indicate a range of char-
acters with two dots between the first and last characters in the range:

// Remove numerals and space from the beginning of the line
print ltrim('10 PRINT AS$',' 0..9');

// Remove semicolon from the end of the line

print rtrim('SELECT * FROM turtles;',';");

This prints:

PRINT AS
SELECT * FROM turtles

PHP also provides chop() as an alias for rtrim(). However, youre best off using
rtrim() instead because PHP’s chop() behaves differently than Perl’s chop() (which is
deprecated in favor of chomp(), anyway), and using it can confuse others when they
read your code.

See Also

Documentation on trim(), 1trim(), and rtrim().

1.11 Generating Comma-Separated Data

Problem

You want to format data as comma-separated values (CSV) so that it can be imported
by a spreadsheet or database.

Solution

Use the fputcsv() function to generate a CSV-formatted line from an array of data.
Example 1-27 writes the data in $sales into a file.

18 | Chapter 1: Strings

www.it-ebooks.info

http://www.php.net/trim
http://www.php.net/ltrim
http://www.php.net/rtrim
http://www.it-ebooks.info/

Example 1-27. Generating comma-separated data

$sales = array(array('Northeast','2005-01-01','2005-02-01",12.54),
array('Northwest', '2005-01-01"','2005-02-01"',546.33),
array('Southeast', '2005-01-01"','2005-02-01',93.26),
array('Southwest', '2005-01-01"','2005-02-01"',945.21),
array('All Regions','--','--',1597.34));

$filename = './sales.csv';
$fh = fopen($filename, 'w') or die("Can't open $filename");
foreach ($sales as $sales_line) {
if (fputcsv($fh, $sales_line) === false) {
die("Can't write CSV line");
}

}
fclose($fh) or die("Can't close $filename");

Discussion

To print the CSV-formatted data instead of writing it to a file, use the special output

stream php://output, as shown in Example 1-28.

Example 1-28. Printing comma-separated data

$sales = array(array('Northeast','2005-01-01','2005-02-01"',12.54),
array('Northwest', '2005-01-01"','2005-02-01"',546.33),
array('Southeast', '2005-01-01','2005-02-01',93.26),
array('Southwest', '2005-01-01"','2005-02-01"',945.21),
array('All Regions','--','--',1597.34));

$fh = fopen('php://output','w');
foreach ($sales as $sales_line) {
if (fputcsv($fh, $sales_line) === false) {
die("Can't write CSV line");
}

}
fclose($fh);

To put the CSV-formatted data into a string instead of printing it or writing it to a file,
combine the technique in Example 1-28 with output buffering, as shown in

Example 1-29.

Example 1-29. Putting comma-separated data into a string

$sales = array(array('Northeast','2005-01-01','2005-02-01"',12.54),
array('Northwest', '2005-01-01"','2005-02-01"',546.33),
array('Southeast', '2005-01-01','2005-02-01',93.26),
array('Southwest', '2005-01-01"',"'2005-02-01"',945.21),
array('All Regions','--','--',1597.34));

ob_start();

1.11 Generating Comma-Separated Data

www.it-ebooks.info

19

http://www.it-ebooks.info/

$fh = fopen('php://output','w') or die("Can't open php://output");
foreach ($sales as $sales_line) {

if (fputcsv($fh, $sales_line) === false) {

die("Can't write CSV line");

}
}
fclose($fh) or die("Can't close php://output");
Soutput = ob_get_contents();
ob_end_clean();

See Also

Documentation on fputcsv(); Recipe 8.13 has more information about output buffer-
ing.

1.12 Parsing Comma-Separated Data

Problem

You have data in comma-separated values (CSV) format—for example, a file exported
from Excel or a database—and you want to extract the records and fields into a format
you can manipulate in PHP.

Solution

If the CSV data is in a file (or available via a URL), open the file with fopen() and read
in the data with fgetcsv(). Example 1-30 prints out CSV data in an HTML table.

Example 1-30. Reading CSV data from a file

$fp = fopen(Sfilename,'r') or die("can't open file");
print "<table>\n";
while(Scsv_line = fgetcsv($fp)) {
print '<tr>';
for ($1 = 0, $j = count(Scsv_line); S$i < $j; Si++) {
print '<td>'.htmlentities($csv_line[$1]).'</td>";
}
print "</tr>\n";
}
print "</table>\n";
fclose($fp) or die("can't close file");

Discussion

By default, fgetcsv() reads in an entire line of data. If your average line length is more
than 8,192 bytes, your program may run faster if you specify an explicit line length
instead of letting PHP figure it out. Do this by providing a second argument to
fgetcsv() that is a value larger than the maximum length of a line in your CSV file.

20 | Chapter1:Strings

www.it-ebooks.info

http://www.php.net/fputcsv
http://www.it-ebooks.info/

(Don't forget to count the end-of-line whitespace.) If you pass a line length of 0, PHP
will use the default behavior.

You can pass fgetcsv() an optional third argument, a delimiter to use instead of a
comma (,). However, using a different delimiter somewhat defeats the purpose of CSV
as an easy way to exchange tabular data.

Don’t be tempted to bypass fgetcsv() and just read a line in and explode() on the
commas. CSV is more complicated than that so that it can deal with field values that
have, for example, literal commas in them that should not be treated as field delimiters.
Using fgetcsv() protects you and your code from subtle errors.

See Also

Documentation on fgetcsv().

1.13 Generating Fixed-Width Field Data Records

Problem

You need to format data records such that each field takes up a set amount of characters.

Solution

Use pack() with a format string that specifies a sequence of space-padded strings.
Example 1-31 transforms an array of data into fixed-width records.

Example 1-31. Generating fixed-width field data records

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
array('The Scarlatti Inheritance','Robert Ludlum', 1971),
array('The Parsifal Mosaic','William Styron', 1979));

foreach (Sbooks as $book) {
print pack('A25A15A4', $book[0], $book[1], $book[2]) . "\n";
}

Discussion

The format string A25A14A4 tells pack() to transform its subsequent arguments into a
25-character space-padded string, a 14-character space-padded string, and a 4-
character space-padded string. For space-padded fields in fixed-width records, pack()
provides a concise solution.

To pad fields with something other than a space, however, use substr() to ensure that
the field values aren’t too long and str_pad() to ensure that the field values aren’t too

1.13 Generating Fixed-Width Field Data Records | 21

www.it-ebooks.info

http://www.php.net/fgetcsv
http://www.it-ebooks.info/

short. Example 1-32 transforms an array of records into fixed-width records
with .-padded fields.

Example 1-32. Generating fixed-width field data records without pack()

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
array('The Scarlatti Inheritance','Robert Ludlum', 1971),
array('The Parsifal Mosaic','William Styron', 1979));

foreach (Sbooks as $book) {
Stitle = str_pad(substr($book[0], 0, 25), 25, '.');
$Sauthor = str_pad(substr($book[1], 0, 15), 15, '.');
Syear = str_pad(substr($book[2], 0, 4), 4, ".");
print "S$titleSauthorS$year\n";

}

See Also

Documentation on pack() and on str_pad(). Recipe 1.17 discusses pack() format
strings in more detail.

1.14 Parsing Fixed-Width Field Data Records

Problem

You need to break apart fixed-width records in strings.

Solution

Use substr() as shown in Example 1-33.

Example 1-33. Parsing fixed-width records with substr()

$fp = fopen('fixed-width-records.txt','r',true) or die ("can't open file");

while ($s = fgets($fp,1024)) {
$fields[1] = substr($s,0,25); // first field: first 25 characters of the line
$fields[2] = substr($s,25,15); // second field: next 15 characters of the line
$fields[3] = substr($s,40,4); // third field: next 4 characters of the line
$fields = array_map('rtrim', $fields); // strip the trailing whitespace
// a function to do something with the fields
process_fields($fields);

}
fclose($fp) or die("can't close file");

Or unpack(), as shown in Example 1-34.

Example 1-34. Parsing fixed-width records with unpack()

function fixed_width_unpack($format_string,$data) {
S$r = array();

22 | Chapter1:Strings

www.it-ebooks.info

http://www.php.net/pack
http://www.php.net/str_pad
http://www.it-ebooks.info/

for ($1 = 0, $j = count($data); Si < $j; Si++) {
$r[$i] = unpack($format_string,$data[$i]);
}

return Sr;

}

Discussion

Data in which each field is allotted a fixed number of characters per line may look like
this list of books, titles, and publication dates:

Sbook1list=<<<END

Elmer Gantry Sinclair Lewis 1927
The Scarlatti InheritanceRobert Ludlum 1971
The Parsifal Mosaic Robert Ludlum 1982
Sophie's Choice William Styron 1979
END;

In each line, the title occupies the first 25 characters, the author’s name the next 15
characters, and the publication year the next 4 characters. Knowing those field widths,
you can easily use substr() to parse the fields into an array:

Sbooks = explode("\n",S$booklist);

for($i = 0, $j = count(Sbooks); S$1 < $j; Si++) {
Sbook_array[$i]['title'] = substr($books[$1],0,25);
Sbook_array[$i]['author'] = substr($books[$1],25,15);
Sbook_array[$i]['publication_year'] = substr($books[$1],40,4);
}

Exploding $booklist into an array of lines makes the looping code the same whether
it’s operating over a string or a series of lines read in from a file.

The loop can be made more flexible by specifying the field names and widths in a
separate array that can be passed to a parsing function, as shown in the
fixed_width_substr() function in Example 1-35.

Example 1-35. fixed_width_substr()

function fixed_width_substr($fields,$data) {
$r = array();
for (81 = 0, $j = count(Sdata); $i < $j; Si++) {
$line_pos = 0;
foreach($fields as $field_name => $field_length) {
Sr[$i][sfield_name] = rtrim(substr($data[$i],S$line_pos,$field_length));
$line_pos += $field_length;
}
}
return $r;

}

$book_fields = array('title' => 25,

1.14 Parsing Fixed-Width Field Data Records | 23

www.it-ebooks.info

http://www.it-ebooks.info/

'author' => 15,
'publication_year' => 4);

Sbook_array = fixed_width_substr($book_fields,Sbooklist);

The variable $line_pos keeps track of the start of each field and is advanced by the
previous field’s width as the code moves through each line. Use rtrim() to remove
trailing whitespace from each field.

You can use unpack() as a substitute for substr() to extract fields. Instead of specifying
the field names and widths as an associative array, create a format string for unpack().
A fixed-width field extractor using unpack() looks like the fixed_width_unpack()
function shown in Example 1-36.

Example 1-36. fixed_width_unpack()

function fixed_width_unpack($format_string,$data) {
$r = array();
for ($1 = 0, $j = count(Sdata); $i < $j; S$i++) {
S$r[$i] = unpack(Sformat_string,$data[$i]);
}
return $r;

}

Because the A format to unpack () means space-padded string, there’s no need to rtrim()
off the trailing spaces.

Once the fields have been parsed into $book_array by either function, the data can be
printed as an HTML table, for example:

Sbook_array = fixed_width_unpack('A25title/Al5author/Adpublication_year',
Sbooks);
print "<table>\n";
// print a header row
print '<tr><td>';
print join('</td><td>',array_keys(Sbook_array[0]));
print "</td></tr>\n";
// print each data row
foreach (Sbook_array as $row) {
print '<tr><td>';
print join('</td><td>',array_values($row));
print "</td></tr>\n";
}
print "</table>\n";

Joining data on </td><td> produces a table row that is missing its first <td> and last
</td>. We produce a complete table row by printing out <tr><td> before the joined
data and </td></tr> after the joined data.

24 | Chapter 1: Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Both substr() and unpack() have equivalent capabilities when the fixed-width fields
are strings, but unpack() is the better solution when the elements of the fields aren’t just
strings.

If all of your fields are the same size, str_split() is a handy shortcut for chopping up
incoming data. It returns an array made up of sections of a string. Example 1-37 uses
str_split() to break apart a string into 32-byte pieces.

Example 1-37. Chopping up a string with str_split()
$fields = str_split($line_of_data,32);
// Sfields[0] is bytes 0 - 31
// Sfields[1] is bytes 32 - 63
// and so on
See Also

For more information about unpack(), see Recipe 1.17 and the PHP website; docu-
mentation on str_split(); Recipe 4.8 discusses join().

1.15 Taking Strings Apart

Problem

You need to break a string into pieces. For example, you want to access each line that a
user enters in a <textarea> form field.

Solution
Use explode() if what separates the pieces is a constant string:
$words = explode(' ','My sentence is not very complicated');

Use preg_split() if you need a Perl-compatible regular expression to describe the
separator:

$words = preg_split('/\d\. /','my day: 1. get up 2. get dressed 3. eat toast');
$lines = preg_split('/[\n\r]+/',$_POST['textarea']);

Use the /1 flag to preg_split() for case-insensitive separator matching:

$words = preg_split('/ x /i','31 inches x 22 inches X 9 inches');

Discussion

The simplest solution of the bunch is explode(). Pass it your separator string, the string
to be separated, and an optional limit on how many elements should be returned:

1.15 Taking Strings Apart | 25

www.it-ebooks.info

http://www.php.net/u⁠n⁠pack
http://www.php.net/str_split
http://www.it-ebooks.info/

$dwarves = 'dopey,sleepy,happy,grumpy,sneezy,bashful,doc';
Sdwarf_array = explode(',',Sdwarves);

This makes $dwarf_array a seven-element array, so print_r($dwarf_array) prints:

Array

(
[0] => dopey
[1] => sleepy
[2] => happy

[3] => grumpy
[4] => sneezy
[5] => bashful
[6] => doc

)

If the specified limit is less than the number of possible chunks, the last chunk contains
the remainder:

Sdwarf_array = explode(',',Sdwarves,5);
print_r($dwarf_array);

This prints:

Array
(

[0] => dopey

[1] => sleepy

[2] => happy

[3] => grumpy

[4] => sneezy,bashful,doc
)

The separator is treated literally by explode(). If you specify a comma and a space as a
separator, it breaks the string only on a comma followed by a space, not on a comma or
a space.

With preg_split(), you have more flexibility. Instead of a string literal as a separator,
it uses a Perl-compatible regular expression engine. With preg_split(), you can take
advantage of various Perl-ish regular expression extensions, as well as tricks such as
including the separator text in the returned array of strings:

Smath = "3 +2 / 7 - 9";
$stack = preg_split('/ *([+\-\/*]) */',$math,-1,PREG_SPLIT_DELIM_CAPTURE);
print_r($stack);

This prints:
Array
(
[@] = 3
[1] => +
[2] = 2
[31 =/

26 | Chapter1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

[4] =7

[5] => -

[5] = 9
)

The separator regular expression looks for the four mathematical operators (+, -, /, *),
surrounded by optional leading or trailing spaces. The PREG_SPLIT_DELIM_CAPTURE flag
tells preg_split() to include the matches as part of the separator regular expression
in parenthesesin the returned array of strings. Only the mathematical operator character
class is in parentheses, so the returned array doesn’t have any spaces in it.

See Also

Regular expressions are discussed in more detail in Chapter 23; documentation on
explode() and preg_split().

1.16 Wrapping Text at a Certain Line Length

Problem

You need to wrap lines in a string. For example, you want to display text by using <pre>
and </pre> tags but have it stay within a regularly sized browser window.

Solution
Use wordwrap():

$s = "Four score and seven years ago our fathers brought forth on this continent «
a new nation, conceived in liberty and dedicated to the proposition «
that all men are created equal.";

print "<pre>\n".wordwrap($s)."\n</pre>";
This prints:

<pre>

Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all men are created equal.

</pre>

Discussion

By default, wordwrap() wraps text at 75 characters per line. An optional second argu-
ment specifies a different line length:

print wordwrap($s,50);

This prints:

1.16 Wrapping Text at a Certain Line Length | 27

www.it-ebooks.info

http://www.php.net/explode
http://www.php.net/preg-split
http://www.it-ebooks.info/

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all
men are created equal.

Other characters besides \n can be used for line breaks. For double spacing, use "\n\n":
print wordwrap($s,50,"\n\n");

This prints:
Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in

liberty and dedicated to the proposition that all

men are created equal.

Thereisan optional fourth argument towordwrap() that controls the treatment of words
that are longer than the specified line length. If this argument is 1, these words are
wrapped. Otherwise, they span past the specified line length:

print wordwrap('jabberwocky',5) . "\n";
print wordwrap('jabberwocky',5,"\n",1);

This prints:

jabberwocky
jabbe
rwock

y

See Also

Documentation on wordwrap().

1.17 Storing Binary Data in Strings

Problem

You want to parse a string that contains values encoded as a binary structure or encode
values into a string. For example, you want to store numbers in their binary represen-
tation instead of as sequences of ASCII characters.

Solution

Use pack() to store binary data in a string:

$packed = pack('S4',1974,106,28225,32725);

28 | Chapter 1: Strings

www.it-ebooks.info

http://www.php.net/wordwrap
http://www.it-ebooks.info/

Use unpack() to extract binary data from a string:

$nums = unpack('S4',S$packed);

Discussion

The first argument to pack() is a format string that describes how to encode the data
that’s passed in the rest of the arguments. The format string S4 tells pack() to produce
four unsigned short 16-bit numbers in machine byte order from its input data. Given
1974,106, 28225, and 32725 as input on a little-endian machine, this returns eight bytes:
182,7,106,0, 65,110, 213, and 127. Each two-byte pair corresponds to one of the input
numbers: 7 * 256 + 182 is 1974; 0 * 256 + 106 is 106; 110 * 256 + 65 = 28225; 127 * 256
+ 213 = 32725.

The first argument to unpack() is also a format string, and the second argument is the
data to decode. Passing a format string of S4, the eight-byte sequence that pack()
produced returns a four-element array of the original numbers. print_r($nums) prints:

Array

(
[1] => 1974
[2] => 106
[3] => 28225
[4] => 32725

)

In unpack(), format characters and their count can be followed by a string to be used
as an array key. For example:

$nums = unpack('S4num',$packed);
print_r($nums);

This prints:

Array

(
[num1] => 1974

[num2] => 106
[num3] => 28225
[num4] => 32725

)

Multiple format characters must be separated with / in unpack():

$nums = unpack('S1a/S1b/S1c/S1d"',$packed);
print_r($nums);

This prints:

Array

(
[a] => 1974

1.17 Storing Binary Datain Strings | 29

www.it-ebooks.info

http://www.it-ebooks.info/

[b] => 106

[c] => 28225

[d] => 32725
)

The format characters that can be used with pack() and unpack() arelisted in Table 1-2.

Table 1-2. Format characters for pack() and unpack()

Format character Data type

a NUL-padded string

A Space-padded string

h Hex string, low nibble first

H Hex string, high nibble first

C signed char

C unsigned char

s signed short (16 bit, machine byte order)

S unsigned short (16 bit, machine byte order)

n unsigned short (16 bit, big endian byte order)

v unsigned short (16 bit, little endian byte order)
i signed int (machine-dependent size and byte order)
I unsigned int (machine-dependent size and byte order)
1 signed long (32 bit, machine byte order)

L unsigned long (32 bit, machine byte order)

N unsigned long (32 bit, big endian byte order)

v unsigned long (32 bit, little endian byte order)

f float (machine-dependent size and representation)
d doube (machine-dependent size and representation)
X NUL byte

X Back up one byte

Q NUL-fill to absolute position

For a, A, h, and H, a number after the format character indicates how long the string is.
For example, A25 means a 25-character space-padded string. For other format charac-
ters, a following number means how many of that type appear consecutively in a string.
Use * to take the rest of the available data.

You can convert between data types with unpack(). This example fills the array $as
cii with the ASCII values of each character in $s:
$s = 'platypus';

Sascii = unpack('c*',$s);
print_r($ascii);

30 | Chapter1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

This prints:

Array

(
[1] => 112
[2] => 108
[3] => 97
[4] => 116
[5] => 121
[6] => 112
[7] => 117
[8] => 115

)

See Also

Documentation on pack() and unpack().

1.18 Program: Downloadable CSV File

Combining the header () function to change the content type of what your PHP pro-
gram outputs with the fputcsv() function for data formatting lets you send CSV files
to browsers that will be automatically handed off to a spreadsheet program (or whatever
application is configured on a particular client system to handle CSV files).
Example 1-38 formats the results of an SQL SELECT query as CSV data and provides the
correct headers so that it is properly handled by the browser.

Example 1-38. Downloadable CSV file

$db = new PDO('sqlite:/usr/local/data/sales.db');
Squery = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);
$sales_data = Sdb->fetchAll();

// Open filehandle for fputcsv()
Soutput = fopen('php://output','w') or die("Can't open php://output");
Stotal = 03

// Tell browser to expect a CSV file
header('Content-Type: application/csv');
header('Content-Disposition: attachment; filename="sales.csv"');

// Print header row
fputcsv($output,array('Region','Start Date','End Date', 'Amount'));
// Print each data row and increment Stotal
foreach ($sales_data as $sales_line) {
fputcsv(Soutput, $sales_line);
Stotal += $sales_line[3];
}
// Print total row and close file handle

1.18 Program: Downloadable CSVFile | 31

www.it-ebooks.info

http://www.php.net/pack
http://www.php.net/unpack
http://www.it-ebooks.info/

fputcsv(Soutput,array('All Regions','--',"'--',$total));
fclose(Soutput) or die("Can't close php://output");

Example 1-38 sends two headers to ensure that the browser handles the CSV output
properly. The first header, Content-Type, tells the browser that the output isnot HTML,
but CSV. The second header, Content-Disposition, tells the browser not to display the
output but to attempt to load an external program to handle it. The filename attribute
of this header supplies a default filename for the browser to use for the downloaded file.

If you want to provide different views of the same data, you can combine the formatting
code in one page and use a query string variable to determine which kind of data for-
matting to do. In Example 1-39, the format query string variable controls whether the
results of an SQL SELECT query are returned as an HTML table or CSV.

Example 1-39. Dynamic CSV or HTML
$db = new PDO('sqlite:/usr/local/data/sales.db');

Squery = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);

$sales_data = $db->fetchAll();

Stotal = 0;

$column_headers = array('Region','Start Date','End Date', 'Amount');
// Decide what format to use

$format = $_GET['format'] == 'csv' ? 'csv' : 'html';

// Print format-appropriate beginning
if ($format == 'csv') {
Soutput = fopen('php://output','w') or die("Can't open php://output");
header('Content-Type: application/csv');
header('Content-Disposition: attachment; filename="sales.csv"');
fputcsv($Soutput,Scolumn_headers);
} else {
echo '<table><tr><th>"';
echo implode('</th><th>', $column_headers);
echo '</th></tr>';
}

foreach ($sales_data as $sales_line) {
// Print format-appropriate line
if ($format == 'csv') {
fputcsv(Soutput, $sales_line);
} else {
echo '<tr><td>' . implode('</td><td>', $sales_line) . '</td></tr>';
}
Stotal += $sales_line[3];
}

Stotal_line = array('All Regions','--','--",Stotal);
// Print format-appropriate footer

if (S$format == 'csv') {
fputcsv(Soutput,Stotal_line);

32 | Chapter1:Strings

www.it-ebooks.info

http://www.it-ebooks.info/

fclose(Soutput) or die("Can't close php://output");

} else {
echo '<tr><td>' . implode('</td><td>', S$total_line) . '</td></tr>';
echo '</table>';

}

Accessing the program in Example 1-39 with format=csv in the query string causes it
to return CSV-formatted output. Any other format value in the query string causes it
to return HTML output. The logic that sets $format to CSV or HTML could easily be
extended to other output formats such as JSON. If you have many places where you
want to offer for download the same data in multiple formats, package the code in
Example 1-39 into a function that accepts an array of data and a format specifier and
then displays the right results.

1.18 Program: Downloadable CSVFile | 33

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Numbers

2.0 Introduction

In everyday life, numbers are easy to identify. They’re 3:00 PM., as in the current time,
or $1.29, as in the cost of a pint of milk. Maybe they're like 7, the ratio of the circum-
ference to the diameter of a circle. They can be pretty large, like Avogadros number,
which is about 6 x 10%*. In PHP, numbers can be all these things.

However, PHP doesn’t treat all these numbers as numbers. Instead, it breaks them down
into two groups: integers and floating-point numbers. Integers are whole numbers, such
as -4, 0, 5, and 1,975. Floating-point numbers are decimal numbers, such as -1.23, 0.0,
3.14159, and 9.9999999999.

Conveniently, most of the time PHP doesn’t make you worry about the differences
between the two because it automatically converts integers to floating-point numbers
and floating-point numbers to integers. This conveniently allows you to ignore the un-
derlying details. It also means 3/2 is 1.5, not 1, as it would be in some programming
languages. PHP also automatically converts from strings to numbers and back. For
instance, 1+"1" is 2.

However, sometimes this blissful ignorance can cause trouble. First, numbers can’t be
infinitely large or small; there’s a minimum size of 2.2e-308 and a maximum size of
about 1.8e308." If you need larger (or smaller) numbers, you must use the BCMath or
GMP libraries, which are discussed in Recipe 2.15.

Next, floating-point numbers aren’t guaranteed to be exactly correct but only correct
plus or minus a small amount. This amount is small enough for most occasions, but
you can end up with problems in certain instances. For example, humans automatically

1. These numbers are actually platform-specific, but the values are common because they are from the 64-bit
IEEE standard 754.

35

www.it-ebooks.info

http://www.it-ebooks.info/

convert 6 followed by an endless string of 9s after the decimal point to 7, but PHP thinks
it’s 6 with a bunch of 9s. Therefore, if you ask PHP for the integer value of that number,
it returns 6, not 7. For similar reasons, if the digit located in the 200th decimal place is
significant to you, don’t use floating-point numbers—instead, use the BCMath and GMP
libraries. But for most occasions, PHP behaves very nicely when playing with numbers
and lets you treat them just as you do in real life.

2.1 Checking Whether a Variable Contains a Valid Number

Problem

You want to ensure that a variable contains a number, even if it’s typed as a string.
Alternatively, you want to check if a variable is not only a number, but is also specifically
typed as one.

Solution

Use is_numeric() to discover whether a variable contains a number:

foreach ([5, '5', '05', 12.3, '16.7', 'five', OxDECAFBAD, '10e200']
as SmaybeNumber) {
S$isItNumeric = is_numeric($maybeNumber);
SactualType = gettype(SmaybeNumber);
print "Is the $SactualType $maybeNumber numeric? ";
if (is_numeric($maybeNumber)) {
print "yes";
} else {
print "no";
}
print "\n";

}

The example code prints:

Is the integer 5 numeric? yes

Is the string 5 numeric? yes

Is the string 05 numeric? yes

Is the double 12.3 numeric? yes

Is the string 16.7 numeric? yes

Is the string five numeric? no

Is the integer 3737844653 numeric? yes
Is the string 10e200 numeric? yes

Discussion

Numbers come in all shapes and sizes. You cannot assume that something is a number
simply because it only contains the characters 0 through 9. What about decimal points,
or negative signs? You can’t simply add them into the mix because the negative must

36 | Chapter2: Numbers

www.it-ebooks.info

http://www.it-ebooks.info/

come at the front, and you can only have one decimal point. And then there’s hexadec-
imal numbers and scientific notation.

Instead of rolling your own function, use is_numeric() to check whether a variable
holds something that’s either an actual number (as in it’s typed as an integer or floating
point), or a string containing characters that can be translated into a number.

There’s an actual difference here. Technically, the integer 5 and the string 5 aren’t the
same in PHP. However, most of the time you won't actually be concerned about the
distinction, which is why the behavior of is_numeric() is useful.

Helpfully, is_numeric() properly parses decimal numbers, such as 5. 1; however, num-
bers with thousands separators, such as 5,100, cause is_numeric() to return false.

To strip the thousands separators from your number before calling is_numeric(), use
str_replace():

Snumber = "5,100";

// This is_numeric() call returns false
SwithCommas = is_numeric($number);

// This is_numeric() call returns true
SwithoutCommas = is_numeric(str_replace(',', '', $number));

To check if your number is a specific type, there are a variety of related functions with
self-explanatory names: is_float() (or is_double() or is_real(); they’re all the
same) and is_int() (or is_integer() or is_long()).

To validate input data, use the techniques from Recipe 9.3 instead of is_numeric().
That recipe describes how to check for positive or negative integers, decimal numbers,
and a handful of other formats.

See Also

Recipe 9.3 for validating numeric user input; documentation on is_numeric() and
str_replace().

2.2 Comparing Floating-Point Numbers

Problem

You want to check whether two floating-point numbers are equal.

2.2 Comparing Floating-Point Numbers | 37

www.it-ebooks.info

http://www.php.net/is-numeric
http://www.php.net/str-replace
http://www.it-ebooks.info/

Solution

Use a small delta value, and check if the numbers have a difference smaller than that
delta:

$delta = 0.00001;

$a
$b

1.00000001;
1.00000000;

if (abs($a - $b) < S$delta) {
print 'Sa and $b are equal enough.';
}
Discussion

Floating-point numbers are represented in binary form with only a finite number of
bits for the mantissa and the exponent. You get overflows when you exceed those bits.
As a result, sometimes PHP (just like some other languages) doesn’t believe that two
equal numbers are actually equal because they may differ toward the very end.

To avoid this problem, instead of checking if $a == $b, make sure the first number is
within a very small amount ($delta) of the second one. The size of your delta should
be the smallest amount of difference you care about between two numbers. Then use
abs() to get the absolute value of the difference.

See Also

Recipe 2.3 for information on rounding floating-point numbers; documentation on
floating-point numbers in PHP.

2.3 Rounding Floating-Point Numbers

Problem

You want to round a floating-point number, either to an integer value or to a set number
of decimal places.

Solution

To round a number to the closest integer, use round():

$number = round(2.4);
printf("2.4 rounds to the float %s", $number);

This prints:

2.4 rounds to the float 2

38 | Chapter2: Numbers

www.it-ebooks.info

http://www.php.net/language.types.float
http://www.it-ebooks.info/

To round up, use ceil():

Snumber = ceil(2.4);
printf("2.4 rounds up to the float %s", $number);

This prints:
2.4 rounds up to the float 3
To round down, use floor():

$number = floor(2.4);
printf("2.4 rounds down to the float %s", $number);

This prints:

2.4 rounds down to the float 2

Discussion

If a number falls exactly between two integers, PHP rounds away from 0:

$number = round(2.5);
printf("Rounding a positive number rounds up: %s\n", Snumber);

$number = round(-2.5);
printf("Rounding a negative number rounds down: %s\n", $number);

This prints:

Rounding a positive number rounds up: 3

Rounding a negative number rounds down: -3
You may remember from Recipe 2.2 that floating-point numbers don’t always work out
to exact values because of how the computer stores them. This can create confusion. A
value you expect to have a decimal part of “0.5” might instead be ©499999...9” (with a
whole bunch of 9s) or ©.500000...1” (with many 0s and a trailing 1).

PHP automatically incorporates a little “fuzz factor” into its rounding calculations, so
you don’t need to worry about this.

To keep a set number of digits after the decimal point, round() accepts an optional
precision argument. For example, perhaps you are calculating the total price for the
items in a user’s shopping cart:

Scart = 54.23;

$tax = Scart * .05;

Stotal = S$cart + $Stax;
$final = round($total, 2);

print "Tax calculation uses all the digits it needs: $total, but ";
print "round() trims it to two decimal places: $final";

This prints:

2.3 Rounding Floating-Point Numbers | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Tax calculation uses all the digits it needs: 56.9415, but round()
trims it to two decimal places: 56.94

To round a number down, use the floor() function:

$numberl = floor(2.1); // floor(2.1) is the float 2.0
Snumber2 = floor(2.9); // floor(2.9) is the float 2.0, also
$number3 = floor(-2.1); // floor(-2.1) is the float -3.0
S$number4 = floor(-2.9); // floor(-2.9) is the float 3.0, also

To round up, use the ceil() function:

$numberl = ceil(2.1); // ceil(2.1) is the float 3.0
Snumber2 = ceil(2.9); // ceil(2.9) is the float 3.0, also
$number3 = ceil(-2.1); // cetil(-2.1) is the float -2.0
Snumber4 = ceil(-2.9); // ceil(-2.9) is the float 2.0, also

These two functions are named because when you're rounding down, youre rounding
“toward the floor;” and when you’re rounding up, youre rounding “toward the ceiling”

See Also

Recipe 2.2 for information on comparing floating-point numbers; documentation on
cell(), on floor(), on round(), and on printf formatting strings such as %s.

2.4 Operating on a Series of Integers

Problem

You want to apply a piece of code to a range of integers.

Solution

Use a for loop:

Sstart = 3;

Send = 7;

for ($1 = Sstart; $i1 <= $end; $i++) {
printf("%d squared is %d\n", $i, $i * $i);

}

You can increment using values other than 1. For example:

Sstart = 3;
$Send = 7;
for ($1 = S$start; $i <= Send; $i += 2) {
printf("The odd number %d squared is %d\n", $i, $i1 * $i);
}

If you want to preserve the numbers for use beyond iteration, use the range() method:

40 | Chapter2: Numbers

www.it-ebooks.info

http://www.php.net/ceil
http://www.php.net/floor
http://www.php.net/round
http://www.php.net/sprintf
http://www.it-ebooks.info/

$numbers = range(3, 7);
foreach (Snumbers as $n) {
printf("%d squared is %d\n", $n, $n * $n);
}
foreach (Snumbers as $n) {
printf("%d cubed is %d\n", $n, Sn * Sn * Sn);
}

Discussion

Loops like this are common. For instance, you could be plotting a function and need to
calculate the results for multiple points on the graph. Or you could be a student counting
down the number of seconds until the end of school.

The for loop method uses a single integer and you have great control over the loop,
because you can increment and decrement $1 freely. Also, you can modify $1 frominside
the loop.

In the last example in the Solution, range() returns an array with values from $start
to $end. The advantage of using range() is its brevity, but this technique has a disad-
vantage: a large array can take up unnecessary memory.

If you want range to skip steps, provide a third argument indicating how big each step
should be. For example, range(1, 10, 2) returns an array containing 1, 3, 5, 7,
9. It’s also valid for $start to be larger than $end. In this case, the numbers returned by
range() are in descending order.

range() can also be used to retrieve character sequences:

print_r(range('l', 'p'));

This prints:

Array

(
[0] => 1
[1] =m
[2] =>n
[3] => 0
[4] => p

)

Note that the character sequences range() generates are just ASCII bytes, so it won’t
work with multibyte Unicode characters.

Starting with PHP 5.5, you can use a generator to operate on a series. A generator is a
function that, instead of calling return to return a value, calls yield (perhaps within a
loop). Then a call to that function can be used where you'd otherwise use an array, and
you operate on the series of values passed to the yield keyword. For example, here’s
how to use a generator to produce a list of squares:

2.4 Operating on a Series of Integers | 41

www.it-ebooks.info

http://www.it-ebooks.info/

function squares($start, $stop) {
if (Sstart < $stop) {
for ($i1 = $start; $1 <= $stop; Si++) {
yield $1 => $i * $i;

}
}
else {
for ($1 = $stop; $i >= Sstart; $i--) {
yield $1 => $1 * $i;
}
}

}

foreach (squares(3, 15) as $n => $square) {
printf("%d squared is %d\n", $n, $square);
}

PHP keeps calling the squares() function as long as it calls yield. The key and value
passed to yield can be used in the foreach just like a regular array element.

Generators are handy because you can have arbitrary behavior to create each value
(whatever you put inside your function) but the values are generated on demand. You
don’t have to commit the memory (or processing) to create the whole array first, as with
range(), before you start operating on it.

See Also

Recipe 4.3 for details on initializing an array to a range of integers; documentation on
range().

2.5 Generating Random Numbers Within a Range

Problem

You want to generate a random number within a range of numbers.

Solution

Usemt_rand():
Slower = 65;
Supper = 97;

// random number between Supper and Slower, inclusive
$random_number = mt_rand($lower, Supper);

42 | Chapter 2: Numbers

www.it-ebooks.info

http://www.php.net/range
http://www.it-ebooks.info/

Discussion

Generating random numbers is useful when you want to display a random image on a
page, randomize the starting position of a game, selecta random record from a database,
or generate a unique session identifier. To generate a random number between two
endpoints, pass mt_rand() two arguments: the minimum number that can be returned
and the maximum number that can be returned. Calling mt_rand() without any argu-
ments returns a number between 0 and the maximum random number, which is re-
turned by mt_getrandmax().

Generating truly random numbers is hard for computers to do. Computers excel at
following instructions methodically; they’re not so good at spontaneity. If you want to
instruct a computer to return random numbers, you need to give it a specific set of
repeatable commands; the fact that they’re repeatable undermines the desired random-
ness.

PHP has two different random number generators, a classic function called rand() and
a better function called mt_rand(). MT stands for Mersenne Twister, which is named
for the French monk and mathematician Marin Mersenne and the type of prime num-
bers he’s associated with. The algorithm is based on these prime numbers. Because
mt_rand() is less predictable and faster than rand(), we prefer it to rand().

See Also

Recipe 2.7 for generating biased random numbers and Recipe 1.6 for generating random
strings; documentation on mt_rand() and rand().

2.6 Generating Predictable Random Numbers

Problem

You want to make the random number generate predictable numbers so you can guar-
antee repeatable behavior.

Solution
Seed the random number generator with a known value usingmt_srand() (orsrand()):
<?php
function pick_color() {
$colors = array('red', 'orange','yellow','blue','green', 'indigo', 'violet');

$1 = mt_rand(0, count($colors) - 1);
return $colors[S$i];

2.6 Generating Predictable Random Numbers | 43

www.it-ebooks.info

http://www.php.net/mt-rand
http://www.php.net/rand
http://www.it-ebooks.info/

mt_srand(34534);
S$first = pick_color();
$second = pick_color();

// Because a specific value was passed to mt_srand(), we can be
// sure the same colors will get picked each time: red and yellow
print "$first is red and $second is yellow.";

Discussion

For unpredictable random numbers, letting PHP generate the seed is perfect. But seed-
ing your random number generator with a known value is useful when you want the
random number generator to generate a predictable series of values. This is handy when
writing tests for your code. If you are writing a unit test to verify the behavior of a
function that retrieves a random element from an array, the condition you're testing for
will change each time the test runs if your numbers are really random. But by calling
mt_srand() (or srand()) with a specific value at the beginning of your test, you can
ensure that the sequence of random numbers that is generated is the same each time
the test is run.

See Also

Documentation on mt_srand() and on srand().

2.7 Generating Biased Random Numbers

Problem

You want to generate random numbers, but you want these numbers to be somewhat
biased, so that numbers in certain ranges appear more frequently than others. For ex-
ample, you want to spread out a series of banner ad impressions in proportion to the
number of impressions remaining for each ad campaign.

Solution

Use the rand_wetighted() function shown in Example 2-1.

Example 2-1. rand_weighted()

// returns the weighted randomly selected key
function rand_weighted($numbers) {
Stotal = 0;
foreach (Snumbers as $number => S$Sweight) {
Stotal += Sweight;
$distribution[$number] = $total;
}
$rand = mt_rand(0, Stotal - 1);

44 | Chapter 2: Numbers

www.it-ebooks.info

http://www.php.net/mt_srand
http://www.php.net/srand
http://www.it-ebooks.info/

foreach (Sdistribution as $number => Sweights) {
if ($rand < Sweights) { return $number; }
}
}

Discussion

Imagine if instead of an array in which the values are the number of remaining impres-
sions, you have an array of ads in which each ad occurs exactly as many times as its
remaining number of impressions. You can simply pick an unweighted random place
within the array, and that'd be the ad that shows.

This technique can consume a lot of memory if you have millions of impressions re-
maining. Instead, you can calculate how large that array would be (by totaling the re-
maining impressions), pick a random number within the size of the make-believe array,
and then go through the array figuring out which ad corresponds to the number you
picked. For instance:

$ads = array('ford' => 12234, // advertiser, remaining impressions
'att' => 33424,
'ibm' => 16823);

$ad = rand_weighted($ads);

With a generator in PHP 5.5, you could select the weighted random number without
having to build the distribution array first:

function incremental_total(Snumbers) {
Stotal = 03
foreach (Snumbers as $number => Sweight) {
Stotal += Sweight;
yield $number => $total;

}

// returns the weighted randomly selected key
function rand_weighted_generator($numbers) {
Stotal = array_sum($numbers);
$rand = mt_rand(0, Stotal - 1);
foreach (incremental_total($numbers) as Snumber => Sweight) {
if ($rand < Sweight) { return S$number; }
}
}

See Also

Recipe 2.5 for how to generate random numbers within a range.

2.7 Generating Biased Random Numbers | 45

www.it-ebooks.info

http://www.it-ebooks.info/

2.8 Taking Logarithms

Problem

You want to take the logarithm of a number.

Solution

For logs using base e (natural log), use log():

// Slog is about 2.30258
$log = log(10);

For logs using base 10, use 1og10():

// Slog10 == 1
$1log10 = 1og10(10);

For logs using other bases, pass the base as the second argument to log():
// log base 2 of 10 is about 3.32
$log2 = log(10, 2);
Discussion
Both log() and 1og10() are defined only for numbers that are greater than zero. If you

pass in a number equal to or less than zero, they return NAN, which stands for not a
number.

See Also

Documentation on log() and log10().

2.9 Calculating Exponents

Problem

You want to raise a number to a power.

Solution

To raise e to a power, use exp():

// Sexp (e squared) is about 7.389
$exp = exp(2);

To raise it to any power, use pow():

46 | Chapter 2: Numbers

www.it-ebooks.info

http://www.php.net/log
http://www.php.net/log10
http://www.it-ebooks.info/

// Sexp (2%e) is about 6.58

$exp = pow(2, M_E);

// Spowl (2710) is 1024

Spowl = pow(2, 10);

// Spow2 (2*-2) is 0.25

Spow2 = pow(2, -2);

// Spow3 (272.5) is about 5.656

Spow3 = pow(2, 2.5);

// Spowd ((-2)710) is 1024

Spowd = pow(-2, 10);

// is_nan(Spow5) returns true, because
// fractional exponent of negative 2 is not a real number.
Spow5 = pow(-2, -2.5);

Discussion

The built-in constant M_E is an approximation of the value of e. It equals
2.7182818284590452354. So exp($n) and pow(M_E, $n) are identical.

It’s easy to create very large numbers using exp() and pow(); if you outgrow PHP’s
maximum size (almost 1.8e308), see Recipe 2.15 for how to use the arbitrary precision
functions. With exp() and pow(), PHP returns INF (infinity) if the result is too large
and NAN (not a number) on an error.

See Also

Documentation on pow(), exp(), and information on predefined mathematical con-
stants.

2.10 Formatting Numbers

Problem

You have a number and you want to print it with thousands and decimal separators. For
example, you want to display the number of people who have viewed a page, or the
percentage of people who have voted for an option in a poll.

Solution

If you always need specific characters as decimal point and thousands separators, use
number_format():

Snumber = 1234.56;

// Sformatted1 is "1,235" - 1234.56 gets rounded up and , is
// the thousands separator");
Sformattedl = number_format($number);

2.10 Formatting Numbers | 47

www.it-ebooks.info

http://www.php.net/pow
http://www.php.net/exp
http://www.php.net/math
http://www.php.net/math
http://www.it-ebooks.info/

// Second argument specifies number of decimal places to use.
// Sformatted? is 1,234.56
Sformatted2 = number_format($number, 2);

// Third argument specifies decimal point character
// Fourth argument specifies thousands separator
// Sformatted3 is 1.234,56

$formatted3 = number_format($number, 2, ",", ".");

If you need to generate appropriate formats for a particular locale, use NumberFormat
ter:

Snumber = '1234.56';

// Sformatted1 is 1,234.56
$usa = new NumberFormatter("en-US", NumberFormatter::DEFAULT_STYLE);
Sformattedl = Susa->format($number);

// Sformatted2 is 1 234,56

// Note that it's a "non breaking space (|uGOA@) between the 1 and the 2
$france = new NumberFormatter("fr-FR", NumberFormatter::DEFAULT_STYLE);
S$formatted2 = Sfrance->format($number);

Discussion

The number_format() function formats a number with decimal and thousands sepa-
rators. By default, it rounds the number to the nearest integer. If you want to preserve
the entire number, but you don’t know ahead of time how many digits follow the decimal
point in your number, use this:

$number = 31415.92653; // your number

Tist(Sint, $dec) = explode('.', Snumber);

// Sformatted is 31,415.92653

Sformatted = number_format($number, strlen($dec));

The NumberFormatter class, part of the intl extension, uses the extensive formatting
rules that are part of the ICU library to give you an easy and powerful way to format
numbers appropriately for anywhere in the world. You can even do fancy things such
as spell out a number in words:

Snumber = '1234.56';

$france = new NumberFormatter("fr-FR", NumberFormatter::SPELLOUT);
// Sformatted is "mille-deux-cent-trente-quatre virgule cing six"
Sformatted = $france->format(Snumber);

Recipe 19.4 discusses NumberFormatter in more detail.

48 | Chapter 2: Numbers

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Chapter 19 for information on internationalization and localization; documentation on
number_format() and NumberFormatter.

2.11 Formatting Monetary Values

Problem

You have a number and you want to print it with thousands and decimal separators. For
instance, you want to display prices for items in a shopping cart.

Solution
Use the NumberFormatter class with the NumberFormatter: : CURRENCY format style:

Snumber = 1234.56;

// US uses S , and .

// Sformatted1 is $1,234.56

Susa = new NumberFormatter("en-US", NumberFormatter::CURRENCY);
$formattedl = Susa->format(Snumber);

// France uses , and €

// Sformatted? is 1 234,56 €

$france = new NumberFormatter("fr-FR", NumberFormatter::CURRENCY);
Sformatted2 = $france->format($number);

Discussion

The NumberFormatter: : CURRENCY format style formats a number by inserting the cor-
rect currency symbol, decimal, and thousands separators for the locale used to create
the NumberFormatter object instance. It assumes that the currency to use is the one
native to the locale—US Dollars for the en-US locale, Euro for the fr-FR locale, and so
on.

To produce the right format for a currency other than the locale’s native currency, use
the formatCurrency() method. Its second argument lets you specify the currency to
use. For example, what’s the correct way, in the USA, to format the price of something
in Euro?

Snumber = 1234.56;

// US uses € , and . for Euro

// Sformatted is €1,234.56

Susa = new NumberFormatter("en-US", NumberFormatter::CURRENCY);
Sformatted = Susa->formatCurrency($number, 'EUR');

2.11 Formatting Monetary Values | 49

www.it-ebooks.info

http://www.php.net/number-format
http://www.php.net/numberformatter
http://www.it-ebooks.info/

ISO-4217 specifies the three-letter codes to use for the various currencies of Earth.

Recipe 19.5 discusses using NumberFormatter to format currency values in more detail.

See Also

Chapter 19 for information on internationalization and localization; documentation on
ISO-4217 currency codes and on NumberFormatter.

2.12 Printing Correct Plurals

Problem

You want to correctly pluralize words based on the value of a variable. For instance, you
are returning text that depends on the number of matches found by a search.

Solution
Use a conditional expression:

Snumber = 4;
print "Your search returned $number " . (Snumber == 1 ? 'hit' : 'hits') . '.';

This prints:

Your search returned 4 hits.

Discussion

Another option is to use one function for all pluralization, as shown in the may_plural
ize() function in Example 2-2.

Example 2-2. may_pluralize()

function may_pluralize($singular_word, $amount_of) {

// array of special plurals
S$plurals = array(
"fish' => 'fish',
'person' => 'people',

);

// only one
if (1 == S$Samount_of) {
return $singular_word;

}

// more than one, special plural
if (isset($plurals[$singular_word])) {
return $plurals[$singular_word];

50 | Chapter2: Numbers

www.it-ebooks.info

http://en.wikipedia.org/wiki/ISO_4217
http://www.php.net/numberformatter
http://www.it-ebooks.info/

}

// more than one, standard plural: add 's' to end of word
return $singular_word . 's';

}

Here are some examples:

S$number_of_fish = 1;
// Soutl is "I ate 1 fish."
Soutl = "I ate Snumber_of_fish " . may_pluralize('fish', Snumber_of_fish) . '.';

$number_of_people = 4;

// Sout2 is "Soylent Green is people!"

Sout2 = 'Soylent Green is ' . may_pluralize('person', $number_of_people) . '!';
If you plan to have multiple plurals inside your code, using a function such as may_plu
ralize() increases readability. To use the function, pass may_pluralize() the singular
form of the word as the first argument and the amount as the second. Inside the function,
there’s a large array, $plurals, that holds all the special cases. If the $amount is 1, you
return the original word. If it’s greater, you return the special pluralized word, if it exists.
As a default, just add an s to the end of the word.

As written, may_pluralize() encapsulates pluralization rules for American English.
Obviously, the rules are different for other languages. If your application only needs to
produce output in one language, then a function like may_pluralize() with language-
specific logic is reasonable. If your application needs to produce output in many lan-
guages, then a more comprehensive approach is necessary. This is discussed in Chap-
ter 19.

See Also

Recipe 19.2 discusses pluralization in multiple locales.

2.13 Calculating Trigonometric Functions

Problem

You want to use trigonometric functions, such as sine, cosine, and tangent.

Solution
PHP supports many trigonometric functions natively: sin(), cos(), and tan():

// cosine of 2 pi is 1, Sresult = 1
Sresult = cos(2 * M_PI);

You can also use their inverses: asin(), acos(), and atan():

2.13 Calculating Trigonometric Functions | 51

www.it-ebooks.info

http://www.it-ebooks.info/

// arctan of pi/4 is about 0.665773
$result = atan(M_PI / 4);

Discussion

These functions assume all angles are in radians, not degrees. (See Recipe 2.14 if this is
a problem.)

The function atan2() takes two variables $x and Sy, and computes atan($x/Sy). How-
ever, it always returns the correct sign because it uses both parameters when finding the
quadrant of the result.

For secant, cosecant, and cotangent, you should manually calculate the reciprocal values
of sin(), cos(), and tan():

Sn = 0.707;
// secant of 0.707 is about 1.53951
$secant =1 / sin(Sn);

// cosecant of 0.707 is about 1.31524
Scosecant = 1 / cos($n);

// cotangent of 0.707 is about 1.17051
$Scotangent = 1 / tan($n);

You can also use hyperbolic functions: sinh(), cosh(), and tanh(), plus, of course,
asinh(), acosh(), and atanh(). The inverse functions, however, aren’t supported on
Windows for PHP versions before 5.3.0.

See Also

Recipe 2.14 for how to perform trig operations in degrees, not radians; documentation
on sin(), cos(), tan(), asin(), acos(), atan(), and atan2().

2.14 Doing Trigonometry in Degrees, Not Radians

Problem

You have numbers in degrees but want to use the trigonometric functions.

Solution
Use deg2rad() and rad2deg() on your input and output:

$degree = 90;
// cosine of 90 degrees is 0@
Scosine = cos(deg2rad(S$degree));

52 | Chapter2: Numbers

www.it-ebooks.info

http://www.php.net/sin
http://www.php.net/cos
http://www.php.net/tan
http://www.php.net/asin
http://www.php.net/acos
http://www.php.net/atan
http://www.php.net/atan2
http://www.it-ebooks.info/

Discussion

By definition, 360 degrees is equal to 27 radians, so it’s easy to manually convert between
the two formats. However, these functions use PHP’s internal value of 7, so you're as-
sured a high-precision answer. To access this number for other calculations, use the
constant M_PI, which is 3.14159265358979323846.

There is no built-in support for gradians. This is considered a feature, not a bug.

See Also

Recipe 2.13 for trig basics; documentation on deg2rad() and rad2deg().

2.15 Handling Very Large or Very Small Numbers

Problem

You need to use numbers that are too large (or small) for PHP’s built-in floating-point
numbers.

Solution
Use either the BCMath or GMP libraries.
Using BCMath:

// Ssum = "9999999999999999"
$sum = bcadd('1234567812345678"', '8765432187654321");

Using GMP:

$sum = gmp_add('1234567812345678"', '8765432187654321"');
// Ssum is now a GMP resource, not a string; use gmp_strval() to convert
print gmp_strval($sum); // prints 9999999999999999

Discussion

The BCMath library is easy to use. You pass in your numbers as strings, and the function
returns the sum (or difference, product, etc.) as a string. However, the range of actions
you can apply to numbers using BCMath is limited to basic arithmetic.

Another option is the GMP library. While most members of the GMP family of func-
tions accept integers and strings as arguments, they prefer to pass numbers around as
resources, which are essentially pointers to internal representations of the numbers. So
unlike BCMath functions, which return strings, GMP functions return only resources.
You then pass the resource to any GMP function, and it acts as your number.

2.15 Handling Very Large or Very Small Numbers | 53

www.it-ebooks.info

http://www.php.net/deg2rad
http://www.php.net/rad2deg
http://www.it-ebooks.info/

The only downside is that when you want to view or use the resource with a non-GMP
function, you need to explicitly convert it using gmp_strval() or gmp_intval().

GMP functions are liberal in what they accept. For instance, see Example 2-3.

Example 2-3. Adding numbers using GMP

Sfour = gmp_add(2, 2); // You can pass integers
Seight = gmp_add('4', '4'); // Or strings
Stwelve = gmp_add($four, Seight); // Or GMP resources

However, you can do many more things with GMP numbers than addition, such as
raising a number to a power, computing large factorials very quickly, finding a greatest
common divisor (GCD), and other fancy mathematical stuff, as shown in Example 2-4.

Example 2-4. Computing fancy mathematical stuff using GMP

// Raising a number to a power
$pow = gmp_pow(2, 10);

// Computing large factorials very quickly
$factorial = gmp_fact(20);

// Finding a GCD
$gcd = gmp_gcd(123, 456);

// Other fancy mathematical stuff
$legendre = gmp_legendre(l, 7);

The BCMath and GMP libraries aren’t necessarily enabled with all PHP configurations.
BCMath is bundled with PHP, so it’s likely to be available. However, GMP isn’'t bundled
with PHP, so you'll need to download, install it, and instruct PHP to use it during the
configuration process. Check the values of function_defined('bcadd') and func
tion_defined('gmp_init') to see if you can use BCMath and GMP.

Another option for high-precision mathematics is PECLs big_1int library, shown in
Example 2-5.

Example 2-5. Adding numbers using big_int

Stwo bi_from_str('2");

$four = bi_add($two, Stwo);

// Use bi_to_str() to get strings from big_int resources
print bi_to_str(Sfour); // prints 4

// Computing large factorials very quickly
S$factorial = bi_fact(20);

It’s faster than BCMath, and almost as powerful as GMP. However, whereas GMP is
licensed under the LGPL, big_int is under a BSD-style license.

54 | Chapter2: Numbers

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Documentation on BCMath, big_int, and GMP.

2.16 Converting Between Bases

Problem

You need to convert a number from one base to another.

Solution

Use the base_convert() function:

// hexadecimal number (base 16)
Shex = 'al';

// convert from base 16 to base 10
// Sdecimal is '161'
$decimal = base_convert($hex, 16, 10);

Discussion

The base_convert() function changes a string representing a number in one base to
the correct string in another base. It works for all bases from 2 to 36 inclusive, using the
letters a through z as additional symbols for bases above 10. The first argument is the
number to be converted, followed by the base it is in and the base you want it to become.

There are also a few specialized functions for conversions to and from base 10 and the
most commonly used other bases of 2, 8, and 16. They’re bindec() and decbin(),
octdec() and decoct(), and hexdec() and dechex():

// convert from base 2 to base 10
// Sa =27

$a = bindec(11011);

// convert from base 8 to base 10
// $b =27

$b = octdec(33);

// convert from base 16 to base 10
// Sc =27

$c = hexdec('1b');

// convert from base 10 to base 2
// sd = '11011'

$d = decbin(27);

// Se = '33'

Se = decoct(27);

// Sf="1b’

$f = dechex(27);

2.16 Converting Between Bases | 55

www.it-ebooks.info

http://www.php.net/bc
http://pecl.php.net/big_int
http://www.php.net/gmp
http://www.it-ebooks.info/

Note that the specialized functions that convert to base 10 return integers. The functions
that convert from base 10 return strings.

Another alternative is to use the printf() family of functions, which allows you to
convert decimal numbers to binary, octal, and hexadecimal numbers with a wide range
of formatting, such as leading zeros and a choice between upper- and lowercase letters
for hexadecimal numbers.

For instance, say you want to print out HTML color values. You can use the %02X format
specifier:

Sred = 0;
$green = 102;
Sblue = 204;

// Scolor is '#0066CC'
Scolor = sprintf('#%02X%02X%02X', Sred, $green, S$blue);

See Also

Documentation on base_convert() and sprintf() formatting options.

2.17 Calculating Using Numbers in Bases Other Than
Decimal

Problem

You want to perform mathematical operations with numbers formatted not in decimal,
but in octal or hexadecimal. For example, you want to calculate web-safe colors in hex-
adecimal.

Solution

Prefix the number with a leading symbol, so PHP knows it isn't in base 10. The leading
symbol 0b indicates binary (base 2), the leading symbol 0 indicates octal (base 8) and
the leading symbol 0x indicates hexadecimal (base 16). If $a = 100 and $b = 0144 and
$c = 0x64 and $d = 0b1100100, PHP considers $a, $b, $c, and $d to be equal.

Here’s how to count from decimal 1 to 15 using hexadecimal notation:
for ($1 = Ox1; $1 < Ox10; $i++) {
print "$i\n";
}
Discussion

Even if you use hexadecimally formatted numbers in a for loop, by default all numbers
are printed in decimal. In other words, the code in the Solution doesn't print out ..., 8,

56 | Chapter2: Numbers

www.it-ebooks.info

http://www.php.net/base-convert
http://www.php.net/sprintf
http://www.it-ebooks.info/

9,a, b, To print in hexadecimal, use one of the methods listed in Recipe 2.16. Here’s
an example:

for ($1 = Ox1; $1 < 0x10; S$i++) { print dechex($i) . "\n"; }

For most calculations, it’s easier to use decimal. Sometimes, however, it’s more logical
to switch to another base—for example, when doing byte arithmetic. Dan Bernsteins
popular “times 33” hash is a convenient and fast way to hash a string of arbitrary length
to an integer value. To compute the “times 33” hash, you start with the magic number
5381 as your hash value. Then, for each byte in the string you want to hash, you add the
byte and the previous hash value times 32 to the hash value. Translating that directly to
PHP produces code that looks like this:

function times_33_hash($str) {
Sh = 5381;
for ($1 = 0, $j = strlen(Sstr); $i < $3; $i++) {
// Shifting Sh left by 5 bits is a quick way to multiply by 32
$h += (Sh << 5) + ord($str[$i]);
}

return $h;

}

That code isn’t completely correct, however. It produces some strange results. For ex-
ample, times_33_hash("Once, I ate a papaya.") returnsa float, not an integer, with
a really, really large value (about 2.28375 x 10"). The repeated multiplications and ad-
ditions, once for each byte in the string, have overflowed PHP’s maximum integer value
so PHP’s autoconversion to float (with loss of precision) kicked in. To fix this, all you
have to do is logical-AND the hash value with a mask of the significant bits you want
to keep in the hash value. Expressing those significant bits is a lot more understandable
in hexadecimal rather than decimal. For example, if you want 32 bits in the hashed value,
add a masking line inside the loop as follows:

function times_33_hash(S$str) {

Sh = 5381;

for ($1 = 0, $j = strlen(Sstr); $i < $3; S$i++) {
// Shifting Sh left by 5 bits is a quick way to multiply by 32
$h += ($h << 5) + ord($str[$i]);
// Only keep the lower 32 bits of Sh
$h = $h & OXFFFFFFFF;

}

return $h;

}

Each hexadecimal F represents four bits, so masking with eight of them produces a 32-
bit mask. You could use 4294967295 in your code as the mask value instead of
OXFFFFFFFF, but it wouldn’t be as clear.

2.17 Calculating Using Numbers in Bases Other Than Decimal | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Note that although octal and hexadecimal number expressions have
been part of PHP for many versions, the use of the @b prefix for binary
numbers is new to PHP 5.4.

See Also

Recipe 2.16 for details on converting between bases; Dan Bernstein’s comp. lang. c post
about the times 33 hash.

2.18 Finding the Distance Between Two Places

Problem

You want to find the distance between two coordinates on planet Earth.

Solution

Use sphere_distance(), as shown in Example 2-6.

Example 2-6. Finding the distance between two points

function sphere_distance($latl, $lonl, $lat2, $lon2, Sradius = 6378.135) {
$rad = doubleval(M_PI/180.0);

$latl = doubleval($latl) * $rad;
$lonl = doubleval($lonl) * $rad;
$lat2 = doubleval($lat2) * $rad;
$lon2 = doubleval($lon2) * $rad;

Stheta = $lon2 - S$loni;
Sdist = acos(sin($latl) * sin($lat2) +
cos($latl) * cos($lat2) *
cos(Stheta));
if (Sdist < 0) { Sdist += M_PI; }
// Default is Earth equatorial radius in kilometers
return $dist = $dist * Sradius;

}

// NY, NY (10040)
$latl = 40.858704;
$lonl = -73.928532;

// SF, CA (94144)
$lat2 = 37.758434;
$lon2 -122.435126;

$dist = sphere_distance($lat1l, $lonil, $lat2, $lon2);

58 | Chapter2: Numbers

www.it-ebooks.info

http://bit.ly/1g8c4F6
http://www.it-ebooks.info/

// It's about 2570 miles from NYC to SF
// Sformatted is 2570.18
S$formatted = sprintf("%.2f", $dist * 0.621); // Format and convert to miles

Discussion

Because the Earth is not flat, you cannot get an accurate distance between two locations
using a standard Pythagorean distance formula. You must use a Great Circle algorithm
instead, such as the one in sphere_distance().

Pass in the latitude and longitude of your two points as the first four arguments. The
latitude and longitude of the origin come first, and then the latitude and longitude of
the destination. The value returned is the distance between them in kilometers.

The code in Example 2-6 finds the distance between New York City and San Francisco,
converts the distance to miles, and then formats it to have two decimal places.

Because the Earth is not a perfect sphere, these calculations are somewhat approximate
and could have an error up to 0.5%.

sphere_distance() accepts an alternative sphere radius as an optional fifth argument.
This lets you, for example, discover the distance between points on Mars:

S$martian_radius = 3397;
$dist = sphere_distance($lat1l, $lonil, $lat2, $lon2, Smartian_radius);
Sformatted = sprintf("%.2f", Sdist * 0.621); // Format and convert to miles

See Also

Recipe 2.13 for trig basics; the Wikipedia entry on Earth radius; and the article “Trip
Mapping with PHP”

2.18 Finding the Distance Between Two Places | 59

www.it-ebooks.info

http://en.wikipedia.org/wiki/Earth_radius
http://www.onlamp.com/pub/a/php/2002/11/07/php_map.html
http://www.onlamp.com/pub/a/php/2002/11/07/php_map.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Dates and Times

3.0 Introduction

Displaying and manipulating dates and times seems simple at first but gets more difficult
depending on how diverse your users are. Do your users span more than one time zone?
Probably so, unless you are building an intranet or a site with a very specific geographical
audience. Is your audience frightened away by timestamps that look like “2015-07-20
14:56:34 EDT” or do they need to be calmed with familiar representations like “Saturday
July 20, 2015 (2:56 P.M.)”? Calculating the number of hours between today at 10 A.M.
and today at 7 P.M. is pretty easy. How about between today at 3 A.M. and noon on the
first day of next month? Finding the difference between dates is discussed in Recipes
3.5and 3.6.

These calculations and manipulations are made even more hectic by daylight saving (or
summer) time (DST). Because of DST, there are times that don’t exist (in most of the
United States, 2 A.M. to 3 A.M. on a day in the spring) and times that exist twice (in
most of the United States, 1 A.M. to 2 A.M. on a day in the fall). Some of your users may
live in places that observe DST, some may not. Recipe 3.10 provides ways to work with
time zones and DST.

Programmatic time handling is made much easier by two conventions. First, treat time
internally as Coordinated Universal Time (abbreviated UTC and also known as GMT,
Greenwich Mean Time), the patriarch of the time-zone family with no DST or summer
time observance. This is the time zone at 0 degrees longitude, and all other time zones
are expressed as offsets (either positive or negative) from it. Second, treat time not as
an array of different values for month, day, year, minute, second, etc., but as seconds
elapsed since the Unix epoch: midnight on January 1, 1970 (UTC, of course). This makes
calculating intervals much easier, and PHP has plenty of functions to help you move
easily between epoch timestamps and human-readable time representations.

61

www.it-ebooks.info

http://www.it-ebooks.info/

The function mktime() produces epoch timestamps from a given set of time parts, while
date(), given an epoch timestamp, returns a formatted time string. Example 3-1 uses
these functions to find on what day of the week New Year’s Day 1986 occurred.

Example 3-1. Using mktime() and date()

$stamp = mktime(0,0,0,1,1,1986);
print date('l',$stamp);

Example 3-1 prints:
Wednesday

In Example 3-1, mktime() returns the epoch timestamp at midnight on January 1, 1986.
The 1 format character to date() tells it to return the full name of the day of the week
that corresponds to the given epoch timestamp. Recipe 3.4 details the many format
characters available to date().

To ensure smooth date and time processing in your code, set the date. timezone con-
figuration variable to an appropriate time zone (or call date_default_time
zone_set() before you do any date or time operations). To always use UTC as the time
zone for your date calculations, set date.timezone to UTC. Then, as discussed in
Recipe 3.4, you can ensure a time or date is represented in a way appropriate to a user’s
time zone and location at display time.

In this book, the phrase epoch timestamp refers to a count of seconds since the Unix
epoch. Time parts (or date parts or time and date parts) means an array or group of time
and date components such as day, month, year, hour, minute, and second. Formatted
time string (or formatted date string, etc.) means a string that contains some particular
grouping of time and date parts—for example, “2002-03-12,” “Wednesday, 11:23 A.M..”
or “February 25”

If you used epoch timestamps as your internal time representation, you avoided any
Y2K issues, because the difference between 946702799 (1999-12-31 23:59:59 UTC) and
946702800 (2000-01-01 00:00:00 UTC) is treated just like the difference between any
other two timestamps. You may, however, run into a Y2038 problem. January 19, 2038
at 3:14:07 A.M. (UTC) is 2147483647 seconds after midnight January 1, 1970. What’s
special about 21474836472 It’s 2*' — 1, which is the largest integer expressible when 32
bits represent a signed integer. (The 32nd bit is used for the sign.)

The PHP functions that rely on its bundled time handling library, such as date(),
mktime(), and the methods of the DateTime class store timestamps internally as 64-bit
integers. This gives you about a 600-billion year range, which is probably adequate for
your calculations. For this reason, as well as simplicity, this chapter uses those functions
for date and time operations instead of functions such as strftime() and
gmstrftime(). These functions rely on underlying system calls, which may not have
the same range or functionality.

62 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.php.net/timezones
http://www.it-ebooks.info/

3.1 Finding the Current Date and Time

Problem

You want to know what the time or date is.

Solution

Use date() for a formatted time string, as in Example 3-2.

Example 3-2. Finding the current date and time
print date('r');
It obviously depends on the time and date the code is run, but Example 3-2 prints
something like:
Fri, 01 Feb 2013 14:23:33 -0500
Or, use a DateTime object. Its format() method works just like the date() function:

Swhen = new DateTime();
print $Swhen->format('r');

Use getdate() or localtime() if you want time parts. Example 3-3 shows how these
functions work.

Example 3-3. Finding time parts

Snow_1 = getdate();

S$now_2 = localtime();

print "{$Snow_1['hours']}:{$now_1['minutes']}:{Snow_1['seconds']}\n";
print "Snow_2[2]:$now_2[1]:$now_2[0]";

Example 3-3 prints:

18:23:45
18:23:45

Discussion

The function date() (and the DateTime object) can produce a variety of formatted time
and date strings. They are discussed in more detail in Recipe 3.4. Both localtime() and
getdate(), on the other hand, return arrays whose elements are the different pieces of
the specified date and time.

The associative array getdate() returns the key/value pairs listed in Table 3-1.

3.1Finding the Current Date and Time | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-1. Return array from getdate()
Key Value

seconds Seconds

minutes Minutes

hours Hours

mday Day of the month

wday Day of the week, numeric (Sunday is 0, Saturday is 6)
mon Month, numeric

year Year, numeric (4 digits)

yday Day of the year, numeric (e.g., 299)

weekday Day of the week, textual, full (e.g., “Friday”)

month Month, textual, full (e.g., “January”)

0 Seconds since epoch (what time() returns)

Example 3-4 shows how to use getdate() to print out the month, day, and year.

Example 3-4. Finding the month, day, and year
$a = getdate();
printf('%s %d, %d',$a['month'],$a['mday'],%a['year']);
Example 3-4 prints:
February 4, 2013
Pass getdate() an epoch timestamp as an argument to make the returned array the

appropriate values for local time at that timestamp. The month, day, and year at epoch
timestamp 163727100 is shown in Example 3-5.

Example 3-5. getdate() with a specific timestamp

$a = getdate(163727100);
printf('%s %d, %d',%a['month'],%a['mday'],%a['year']);

Example 3-5 prints:
March 10, 1975

The function localtime() also returns an array of time and date parts. It also takes an
epoch timestamp as an optional firstargument, as well as a boolean as an optional second
argument. If that second argument is true, localtime() returns an associative array
instead of a numerically indexed array. The keys of that array are the same as the mem-
bers of the tm_struct structure that the C function localtime() returns, as shown in
Table 3-2.

64 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-2. Return array from localtime()

Numeric position Key Value

tm_sec Second

tm_min Minutes

tm_hour Hour

tm_mday Day of the month

tm_mon Month of the year (January is 0)
tm_year Yearssince 1900

tm_wday Day of the week (Sunday is 0)
tm_yday Day of the year

0 N o 1AW N L, O

tm_isdst Isdaylight saving time in effect?

Example 3-6 shows how to use localtime() to print out today’s date in month/day/
year format.

Example 3-6. Using localtime()

$a = localtime();

$a[4] += 1;

$a[5] += 1900;

print "$a[4]/%a[3]/%a[5]";

Example 3-6 prints:
2/4/2013

The month is incremented by 1 before printing because localtime() starts counting
months with 0 for January, but we want to display 1 if the current month is January.
Similarly, the year is incremented by 1900 because localtime() starts counting years
with 0 for 1900.

The functions getdate() and localtime() both use the same internal implementation
to generate the returned date and time parts. They differ only in the format of the
returned arrays and in some of the information they return. (For example, local
time() includes whether DST is in effect at the specified time.)

Thetime zone that getdate() and localtime() use for their calculations is the currently
active one, as set by the date.timezone configuration variable or a call to date_de
fault_timezone_set().

See Also

Documentation on date(), the DateTime class, getdate(), and localtime().

3.1Finding the Current Date and Time | 65

www.it-ebooks.info

http://www.php.net/date
http://www.php.net/class.datetime
http://www.php.net/getdate
http://www.php.net/localtime
http://www.it-ebooks.info/

3.2 Converting Time and Date Parts to an Epoch
Timestamp

Problem

You want to know what epoch timestamp corresponds to a set of time and date parts.

Solution

Use mktime() if your time and date parts are in the local time zone, as shown in
Example 3-7.

Example 3-7. Getting a specific epoch timestamp

// 7:45:03 PM on March 10, 1975, local time
// Assuming your "local time" is US Eastern time
Sthen = mktime(19,45,3,3,10,1975);

Use gmmktime(), as in Example 3-8, if your time and date parts are in GMT.

Example 3-8. Getting a specific GMT-based epoch timestamp

// 7:45:03 PM on March 10, 1975, in GMT
$then = gmmktime(19,45,3,3,10,1975);

Use DateTime::createFromFormat(), as in Example 3-9, if your time and date parts
are in a formatted time string.

Example 3-9. Getting a specific epoch timestamp from a formatted time string

// 7:45:03 PM on March 10, 1975, in a particular timezone
Sthen = DateTime::createFromFormat(DateTime::ATOM, "1975-03-10T19:45:03-04:00");

Discussion

The functionsmktime() and gmmktime() each take a date and time’s parts (hour, minute,
second, month, day, year) and return the appropriate Unix epoch timestamp. The com-
ponents are treated as local time by mktime(), while gmmktime() treats them as a date
and time in UTC.

In Example 3-10, $stamp_future is set to the epoch timestamp for 3:25 PM. on De-
cember 3, 2024. The epoch timestamp can be fed back to date() to produce a formatted
time string.

Example 3-10. Working with epoch timestamps

date_default_timezone_set('America/New_York');
// Sstamp_future is 1733257500
$stamp_future = mktime(15,25,0,12,3,2024);

66 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

// Sformatted is '2024-12-03T15:25:00-05:00'
Sformatted = date('c', $stamp_future);

Because the calls to mktime() in Example 3-10 were made with the time zone set to
America/New_York, using gmmktime() instead produces epoch timestamps that are
18,000 seconds (five hours) smaller, as shown in Example 3-11.

Example 3-11. Epoch timestamps and gmmktime()

date_default_timezone_set('America/New_York');
// $stamp_future is 1733239500, whch is 18000
// smaller than 1733257500

$stamp_future = gmmktime(15,25,0,12,3,2024);

The createFromFormat() method of the DateTime class behaves more flexibly. Instead
of accepting already-chopped-up time parts, you give it a formatted time or date string
and tell it the structure of that string. It then decomposes the parts properly and calcu-
lates the correct timestamp. In addition to the format strings listed in Recipe 3.4 that

the date() function understands, createFromFormat() also uses the characters listed
in Table 3-3.

Table 3-3. Format characters for DateTime::createFromFormat()

Character Meaning

space or tab

Any one of the separation bytes ;, :, /, ., ,, -, (,)

5ol e 5 -, () Literal character

? Any byte (not a character, just one byte)

* Any number of bytes until the next digit or separation character

! Reset all fields to “start of Unix epoch” values (without this, any unspecified fields will be set to the current
date/time)

Reset any unparsed fields to “start of Unix epoch” values

+ Treat unparsed trailing data as a warning rather than an error

Example 3-12 showshowDateTime: :createFromFormat() canbe used to get time parts
out of a larger string.

Example 3-12. Using DateTime::createFromFormat()

Stext = "Birthday: May 11, 1918.";

Swhen = DateTime::createFromFormat("*: F j, Y.|", Stext);
// Sformatted is "Saturday, 11-May-18 00:00:00 UTC"
Sformatted = $Swhen->format(DateTime: :RFC850);

3.2 Converting Time and Date Parts to an Epoch Timestamp | 67

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 3.3 for how to convert an epoch timestamp back to time and date parts; docu-
mentation on mktime() and gmmktime(), date_default_timezone_set(), and Date
Time::createFromFormat().

3.3 Converting an Epoch Timestamp to Time and Date
Parts

Problem

You want the set of time and date parts that corresponds to a particular epoch timestamp.

Solution
Pass an epoch timestamp to getdate(): $time_parts = getdate(163727100);.

Discussion

The time parts returned by getdate() are detailed in Table 3-1. These time parts are
relative to whatever PHP’s time zone is set to. If you want time parts relative to another
time zone, you can change PHP’s time zone with date_default_timezone_set(), and
then change it back after your call to getdate(). You could also create a DateTime object,
set it to a specific time zone, then retrieve the time and date parts you need with that
object’s format() method:

$when = new DateTime("@163727100");

Swhen->setTimezone(new DateTimeZone('America/Los_Angeles'));

$parts = explode('/', $when->format('Y/m/d/H/i1/s'));

// Year, month, day, hour, minute, second

// Sparts is array('1975', '03','10', '16','45', '00'))
The @ character tells DateTime that the rest of the argument to the constructor is an
epoch timestamp. When specifying a timestamp as the initial value, DateTime ignores
any time zone also passed to the constructor, so setting that requires an additional call
to setTimezone(). Once thats done, format() can generate any parts you need.

See Also

Recipe 3.2 for how to convert time and date parts back to epoch timestamps; Recipe 3.10
for more information on how to deal with time zones; documentation on getdate()
and DateT1ime.

68 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.php.net/mktime
http://www.php.net/gmmktime
http://www.php.net/date_default_timezone_set
http://www.php.net/datetime.createfromformat
http://www.php.net/datetime.createfromformat
http://www.php.net/getdate
http://www.php.net/class.datetime
http://www.it-ebooks.info/

3.4 Printing a Date or Time in a Specified Format

Problem

You need to print out a date or time formatted in a particular way.

Solution
Use date() or DateTime::format(), as shown in Example 3-13.

Example 3-13. Using date() and DateTime::format()

print date('d/M/Y') . "\n";
Swhen = new DateTime();
print Swhen->format('d/M/Y");

Example 3-13 prints something like:

06/Feb/2013
06/Feb/2013

Discussion

Both date() and DateTime: : format() use the same code internally for generating for-
matted time and date strings. They are flexible functions that can produce a formatted
time string with a variety of components. The format characters for these functions are

listed in Table 3-4.

Table 3-4. date() format characters

Type Character Description Range or examples
Hour H Hour, numeric, 24-hour clock, leading zero 00-23

Hour h Hour, numeric, 12-hour clock, leading zero 01-12

Hour G Hour, numeric, 24-hour clock 0-23

Hour g Hour, numeric, 12-hour clock 1-12

Hour A Ante/Post Meridiem designation AM, PM

Hour a Ante/Post Meridiem designation am, pm

Minute i Minute, numeric 00-59

Second s Second, numeric 00-59

Second u Microseconds, string 000000-999999
Day d Day of the month, numeric, leading zero 01-31

Day j Day of the month, numeric 1-31

Day z Day of the year, numeric 0-365

Day N Day of the week, numeric (Monday is 1) 1-7

3.4 Printing a Date or Time in a Specified Format

www.it-ebooks.info

69

http://www.it-ebooks.info/

Type
Day
Day
Week
Week

Week

Month
Month
Month
Month
Month
Year

Year

Year

Year

Time zone

Time zone

Time zone

Time zone
Time zone
Time zone
Compound

Compound

Other
Other

Character Description

w
S
D
1

W

2

<

L

U
B

Day of the week, numeric (Sunday is 0)
English ordinal suffix for day of the month, textual
Abbreviated weekday name

Full weekday name

150 8601:1988 week numberin the year, numeric,
week 1 is the first week that has at least 4 days
in the current year, Monday is the first day of the
week

Full month name

Abbreviated month name
Month, numeric, leading zero
Month, numeric

Month length in days, numeric
Year, numeric, including century
Year without century, numeric

150 8601 year with century; numeric; the four-
digityear corresponding to the IS0 week number;
same as Y except if the 1SO week number belongs
to the previous or next year, that year is used
instead

Leap year flag (yes is 1)

Hour offset from GMT, £HHMM (e.qg., —0400,
+0230)

Like 0, but with a colon

Seconds offset from GMT; west of GMT is negative,
east of GMT is positive

Time zone identifier

Time zone abbreviation

Daylight saving time flag (yes is 1)
150 8601—formatted date and time
RFC 2822—formatted date

Seconds since the Unix epoch

Swatch Internet time

Range or examples

0-6

“st,” “th,” “nd,” “rd"

Mon, Tue, Wed, Thu, Fri, Sat, Sun

Monday, Tuesday, Wednesday Thursday, Friday,
Saturday, Sunday

1-53

January—December
Jan—Dec

01-12

1-12

28,29, 30,31

e.g., 2016

e.g., 16

e.g. 2016

0,1
—1200-+1200

—12:00 —+12:00
-43200-50400

e.g., America/New_York

e.g, EDT

0,1
e.g.,2012-09-06T15:29:34+0000

e.g., Thu, 22 Aug 2002 16:01:07
+0200

0-2147483647
000-999

Format characters such as F, M, or D, which generate words, not numbers, produce output
in English. To generate formatted date and time strings in other languages, see

Recipe 19.3.

70 |

Chapter 3: Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

There are also some handy constants for common date formats that represent the format
string to be passed to date() or DateTime::format(). These constants are listed in
Table 3-5.

Table 3-5. Constants for use with date()

Constant Class constant Value Example Usage

DATE_ATOM DateTime: :ATOM Y-m-d\TH:1:sP 2013-02-22720:25:31+-00:00 Section 3.3 of the
Atom Syndication

format
DATE_IS08601 Date Y-m-d\TH:1:s0 2013-02-22720:25:31+0000 150 8601 (as
Time::1508601 discussed at the W3C
website)
DATE_RFC822 DateTime::RFC822 D, d My Fri, 22 Feb 13 20:25:31+0000 Email messages (as
H:i:s 0 defined at FAQs)
DATE_RFC850 DateTime::RFC850 1, d-M-y Friday, 22-Feb-13 20:25:31 UTC Usenet messages (as
Hiiis T defined by FAQs)
DATE_RFC1036 Date D, dMy Fri, 22 Feb 13 20:25:31 +0000 Usenet messages (as
Time::RFC1036 H:i:s O defined by FAQs)
DATE_RFC1123 Date D, dMY Fri, 22 Feb 2013 20:25:31+0000 As defined by FAQs
Time::RFC1123 H:1:s 0
DATE_RF(C2822 Date D, dMY Fri, 22 Feb 2013 20:25:31 +0000 E-mail messages (as
Time: :RFC2822 H:i:s 0 defined by FAQs)
DATE_RFC3339 Date Y-m-d\TH:1:sP 2013-02-22720:25:31+00:00 As described by FAQs
Time::RFC3339
DATE_RSS DateTime: :RSS D, dMY Fri, 22 Feb 2013 20:25:31 +0000 RSSfeeds (as defined
H:i:s O at RSS 2.0)
DATE_W3C DateTime: :W3C Y-m-d\TH:1:sP 2013-02-22720:25:31+00:00 As described by W3C

See Also

Documentation on date() and DateTime::format(); Recipe 19.3 for generating for-
matted time and date strings in different languages.

3.5 Finding the Difference of Two Dates

Problem

You want to find the elapsed time between two dates. For example, you want to tell a
user how long it’s been since she last logged on to your site.

3.5 Finding the Difference of Two Dates | 71

www.it-ebooks.info

http://bit.ly/1j2cYYM
http://bit.ly/1j2cYYM
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.faqs.org/rfcs/rfc822.html
http://www.faqs.org/rfcs/rfc850.html
http://www.faqs.org/rfcs/rfc1036.html
http://www.faqs.org/rfcs/rfc1123.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc3339.html
http://blogs.law.harvard.edu/tech/rss
http://www.w3.org/TR/NOTE-datetime
http://www.php.net/date
http://www.php.net/datetime.format
http://www.it-ebooks.info/

Solution

Create DateTime objects for each date. Then use the DateTime: :diff() method to ob-
tain a DateInterval object that describes the difference between the dates.
Example 3-14 displays the difference in weeks, days, hours, minutes, and seconds.

Example 3-14. Calculating the difference between two dates

// 7:32:56 pm on May 10, 1965
$first = new DateTime("1965-05-10 7:32:56pm",
new DateTimeZone('America/New_York'));
// 4:29:11 am on November 20, 1962
$second = new DateTime("1962-11-20 4:29:11am",
new DateTimeZone('America/New_York'));
Sdiff = $second->diff($first);
printf("The two dates have %d weeks, %s days, "
"%d hours, %d minutes, and %d seconds
"elapsed between them.",
floor($diff->format('%a') / 7),
Sdiff->format('%a') % 7,
Sdiff->format('%h'),
Sdiff->format('%il'),
S$diff->format('%s'));

Example 3-14 prints:

The two dates have 128 weeks, 6 days, 15 hours, 3 minutes, and 45 seconds
elapsed between them.

Discussion

There are a few subtleties about computing date differences that you should be aware
of. First of all, 1962 and 1965 precede the beginning of the Unix epoch. Because of the
600-billion year range of PHP’s built-in time library, however, this isn’t a problem.

Next, note that the results of DateTime: :diff() produce what a clock would say is the
time difference, not necessarily the absolute amount of elapsed time. The two dates in
Example 3-14 are on different sides of a DST switch, so the actual amount of elapsed
time between them is an hour less (due to the repeating clock-hour in the fall switch to
standard time) than what’s shown in the output.

To compute elapsed time difference, build DateTime objects out of the epoch timestamps
from each local timestamp, then apply DateTime: :diff() to those objects, as shown in
Example 3-15.

Example 3-15. Calculating the elapsed-time difference between two dates

// 7:32:56 pm on May 10, 1965
$first_local = new DateTime("1965-05-10 7:32:56pm",
new DateTimeZone('America/New_York'));

72 | Chapter3:Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

// 4:29:11 am on November 20, 1962
$second_local = new DateTime("1962-11-20 4:29:11am",
new DateTimeZone('America/New_York'));

$first = new DateTime('@' . $first_local->getTimestamp());
$second = new DateTime('@' . $second_local->getTimestamp());

Sdiff = $second->diff($first);

printf("The two dates have %d weeks, %s days, "
"%d hours, %d minutes, and %d seconds
"elapsed between them.",
floor($diff->format('%a') / 7),
Sdiff->format('%a') % 7,
Sdiff->format('%h'),
S$diff->format('%i'),
S$diff->format('%s'));

Example 3-15 prints:

The two dates have 128 weeks, 6 days, 14 hours, 3 minutes, and 45 seconds

elapsed between them.
This, as you can see, is an hour different from the output of Example 3-14. The Date
Time objects created with a format string of @ plus an epoch timestamp always have a
time zone of UTC, so their difference is not affected by any daylight saving time or other
local time adjustments.

At the time of writing, PHP Bug 52480 is outstanding, which affects some rare date
interval calculations with certain hour values and time zone offsets. You can work
around this bug by using UTC as the time zone for interval calculations.

See Also

Documentation on DateTime: :diff() and DateInterval. More information on PHP
Bug 52480.

3.6 Finding the Day in a Week, Month, or Year

Problem

You want to know the day or week of the year, the day of the week, or the day of the
month. For example, you want to print a special message every Monday, or on the first
of every month.

3.6 Finding the Day in a Week, Month, orYear | 73

www.it-ebooks.info

http://www.php.net/datetime.diff
http://www.php.net/class.dateinterval
https://bugs.php.net/bug.php?id=52480
https://bugs.php.net/bug.php?id=52480
http://www.it-ebooks.info/

Solution

Use the appropriate arguments to date() or DateTime::format(), as shown in
Example 3-16.
Example 3-16. Finding days of the week, month, and year

print "Today is day " . date('d') . ' of the month and ' . date('z') .
' of the year.';
print "\n";

$birthday = new DateTime('January 17, 1706', new DateTimeZone('America/New_York'));

print "Benjamin Franklin was born on a " . $birthday->format('l') . ", " .
"day " . $birthday->format('N') . " of the week.";
Discussion

The functions date() and DateTime::format() use the same format characters.
Table 3-6 contains all the day and week number format characters they understand.

Table 3-6. Day and week number format characters

Type Character Description Range
Day d Day of the month, numeric, leading zero 01-31
Day 3 Day of the month, numeric 1-31
Day z Day of the year, numeric 0-365
Day N Day of the week, numeric (Monday is 1) 1-7
Day w Day of the week, numeric (Sunday is 0) 0-6
Day s English ordinal suffix for day of the month, textual st, th, nd, rd
Week D Abbreviated weekday name Mon, Tue, Wed, Thu, Fri, Sat, Sun
Week 1 Full weekday name Monday, Tuesday, Wednesday
Thursday, Friday, Saturday,
Sunday
Week W 150 8601:1988 week number in the year, numeric, week 1 is the first ~ 1-53
week that has at least 4 days in the current year, Monday is the first
day of the week

To print out something only on Mondays, use the w format character, as in Example 3-17.

Example 3-17. Checking for the day of the week

if (1 == date('w")) {
print "Welcome to the beginning of your work week.";

}

There are different ways to calculate week numbers and days in a week, so take care to
choose the appropriate one. The ISO standard (ISO 8601) says that weeks begin on

74 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

Mondays and that the days in the week are numbered 1 (Monday) through 7 (Sunday).
Week 1 in a year is the first week in a year with a Thursday. This means the first week
in a year is the first week with a majority of its days in that year. These week numbers
range from 01 to 53.

Other week number standards range from 00 to 53, with days in a year’s week 53 po-
tentially overlapping with days in the following year’s week 00.

As long as you're consistent within your programs, you shouldn’t run into any trouble,
butbe careful when interfacing with other PHP programs or your database. For example,
MySQLs DAYOFWEEK() function treats Sunday as the first day of the week, but numbers
the days 1 to 7, which is the ODBC standard. Its WEEKDAY () function, however, treats
Monday as the first day of the week and numbers the days from 0 to 6. Its WEEK() function
lets you choose whether weeks should start on Sunday or Monday, but it’s incompatible
with the ISO standard.

See Also

Documentation on date() and DateTime::format(); MySQLs DAYOFWEEK(), WEEK
DAY (), and WEEK() functions are documented at the MySQL website.

3.7 Validating a Date

Problem

You want to check if a date is valid. For example, you want to make sure a user hasn’t
provided a birthdate such as February 30, 1962.

Solution
Use checkdate():

// Sok is true - March 10, 1993 is a valid date

$ok = checkdate(3, 10, 1993);

// Snot_ok is false - February 30, 1962 is not a valid date
$not_ok = checkdate(2, 30, 1962);

Discussion

The function checkdate() returns true if $Smonth is between 1 and 12, $year is between
1and 32767, and $day is between 1 and the correct maximum number of days for $month
and $year. Leap years are correctly handled by checkdate(), and dates are rendered
using the Gregorian calendar.

3.7ValidatingaDate | 75

www.it-ebooks.info

http://www.php.net/date
http://www.php.net/datetime.format
http://bit.ly/1sqXgMU
http://www.it-ebooks.info/

Because checkdate() has such a broad range of valid years, you should do additional
validation on user input if, for example, you’re expecting a valid birthdate. The longest
confirmed human life span is 122 years old. To check that a birthdate indicates that a
user is between 18 and 122 years old, use the checkbirthdate() function shown in
Example 3-18.

Example 3-18. checkbirthdate()

function checkbirthdate($month,$day,Syear) {
$min_age = 18;
$max_age = 122;

if (! checkdate($month,$day,Syear)) {
return false;

}

$now = new DateTime();

Sthen_formatted = sprintf("%d-%d-%d", Syear, Smonth, $day);
$then = DateTime::createFromFormat("Y-n-j|",$then_formatted);
$age = Snow->diff(Sthen);

if (($age->y < $min_age)|| ($age->y > $max_age)) {
return FALSE;

}
else {

return TRUE;
}

}

// check December 3, 1974
if (checkbirthdate(12,3,1974)) {
print "You may use this web site.";
} else {
print "You are too young (or too old!!) to proceed.";

}

The function first uses checkdate() to make sure that $month, $day, and $year repre-
sent a valid date. If they do, it builds two DateTime objects: one for “right now” and one
representing the passed-in month, day, and year. The call to sprintf() normalizes the
passed-in values as integers with no leading zeros, which matches what’s expected by
the Y-n-j format string given to DateTime: :createFromFormat(). The trailing | in the
format string tells DateTime: :createFromFormat() to initialize the unspecified hour,
minute, and second time parts to zero.

Once the two DateTime objects are built, determining whether the specified birthdate
produces an age within the acceptable range is just a matter of calling Date

Time::diff() and then checking the resultant DateInterval object to see if its y prop-
erty, containing the number of years in the date interval, is appropriate.

76 | Chapter3:Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

The function returns true if the supplied date is exactly $min_age years before the
current date, but false if the supplied date is exactly Smax_age years after the current
date. That is, it would let you through on your 18th birthday, but not on your 123rd.

See Also

Documentation on checkdate(); information about Jeanne Calment, the person with
the longest confirmed life span, is at Wikipedia.

3.8 Parsing Dates and Times from Strings

Problem

You need to get a date or time in a string into a format you can use in calculations. For
example, you want to convert date expressions such as “last Thursday” or “February 9,
2004” into an epoch timestamp.

Solution

The simplest way to parse a date or time string of arbitrary format is with strto
time(), which turns a variety of human-readable date and time strings into epoch
timestamps, as shown in Example 3-19.

Example 3-19. Parsing strings with strtotime()

$a = strtotime('march 10'); // defaults to the current year
$b = strtotime('last thursday');
$c = strtotime('now + 3 months');

Discussion

The grammar strtotime() uses is both complicated and comprehensive. It incorpo-
rates the GNU Date Input Formats specification (which is available from GNU) and
some extensions.

The function strtotime() understands words about the current time:

$a = strtotime('now');
print date(DATE_RFC850, $a);
print "\n";

$a = strtotime('today');
print date(DATE_RFC850, $a);

Tuesday, 12-Feb-13 19:12:14 UTC
Tuesday, 12-Feb-13 00:00:00 UTC

It understands different ways to identify a time and date:

3.8 Parsing Dates and Times from Strings | 77

www.it-ebooks.info

http://www.php.net/checkdate
http://en.wikipedia.org/wiki/Jeanne_Calment
http://bit.ly/1niI2DL
http://www.it-ebooks.info/

$a = strtotime('5/12/2014");
print date(DATE_RFC850, $a);
print "\n";

$a = strtotime('12 may 2014');
print date(DATE_RFC850, $a);

Monday, 12-May-14 00:00:00 UTC
Monday, 12-May-14 00:00:00 UTC

It understands relative times and dates:

$a = strtotime('last thursday'); // On February 12, 2013
print date(DATE_RFC850, $a);
print "\n";

$a = strtotime('2015-07-12 2pm + 1 month');
print date(DATE_RFC850, $a);

Thursday, 07-Feb-13 00:00:00 UTC

Wednesday, 12-Aug-15 14:00:00 UTC
It understands time zones. In the following code, the time part (2pm) doesn’t change
because both PHP’s default time zone identifier (America/New_York) and the time zone
in the string passed to strtotime() are the same (EDT is the time zone abbreviation
for daylight saving time in New York):

date_default_timezone_set('America/New_York');

$a = strtotime('2012-07-12 2pm America/New_York + 1 month');
print date(DATE_RFC850, $a);

Sunday, 12-Aug-12 14:00:00 EDT

However, with PHP’s default time zone identifier set to America/Denver (two hours

before America/New_York), the same string passed to strtotime() produces the time

in New York when it is 2 PM. in Denver (two hours before New York):
date_default_timezone_set('America/New_York');

$a = strtotime('2012-07-12 2pm America/Denver + 1 month');
print date(DATE_RF(C850, $a);

Sunday, 12-Aug-12 16:00:00 EDT

The same extensive grammar that strtotime() uses is also applied when creating a
DateTime object. So, although strtotime() is very useful if you just need an epoch
timestamp, you can pass the same strings to new DateTime() to build a DateTime object
for further manipulation.

If you find yourself with a date or time string with a known format, but that is not
parseable by strtotime(), you can still create DateTime objects based on the string by
using DateTime::createFromFormat(). Example 3-20 shows how to use Date
Time::createFromFormat() to parse date strings written in day-month-year order.
(PHP’s default is month-day-year order.)

78 | Chapter3:Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-20. Parsing a date with a specific format
$dates = array('01/02/2015', '03/06/2015', '09/08/2015");
foreach (Sdates as $date) {

Sdefault = new DateTime(Sdate);
$day_first = DateTime::createFromFormat('d/m/Y|"', Sdate);

printf("The default interpretation is %s\n but day-first is %s.\n",

Sdefault->format(DateTime: :RFC850),
Sday_first->format(DateTime: :RFC850));
}

Example 3-20 prints:

The default interpretation is Friday, 02-Jan-15 00:00:00 UTC
but day-first is Sunday, 01-Feb-15 00:00:00 UTC.

The default interpretation is Friday, 06-Mar-15 00:00:00 UTC
but day-first is Wednesday, 03-Jun-15 00:00:00 UTC.

The default interpretation is Tuesday, 08-Sep-15 00:00:00 UTC
but day-first is Sunday, 09-Aug-15 00:00:00 UTC.

See Also

Documentation on strtotime() and DateTime: :createFromFormat(). Rules describ-

ing what strtotime() can parse.

3.9 Adding to or Subtracting from a Date

Problem

You need to add or subtract an interval from a date.

Solution

Apply a DateInterval object to a DateTime object with either the DateTime: :add() or

DateTime: :sub() method, as shown in Example 3-21.

Example 3-21. Adding and subtracting a date interval

Sbirthday = new DateTime('March 10, 1975');

// When is 40 weeks before Sbirthday?
S$human_gestation = new DateInterval('P40W');
S$birthday->sub($human_gestation);

print $birthday->format(DateTime: :RFC850);
print "\n";

// What if it was an elephant, not a human?
Selephant_gestation = new DateInterval('P616D');

3.9 Adding to or Subtracting from a Date

www.it-ebooks.info

79

http://www.php.net/strtotime
http://www.php.net/datetime.createfromformat
http://bit.ly/1iL8FgR
http://bit.ly/1iL8FgR
http://www.it-ebooks.info/

$birthday->add($elephant_gestation);
print $birthday->format(DateTime: :RFC850);

Discussion

The add() and sub() methods of DateTime modify the DateTime method they are called
on by whatever amount is specified in the interval. The average human gestation time
is 40 weeks, so an interval of P40W walks back the birthday to 40 weeks earlier, approx-
imating conception time. An elephant, on the other hand, has an average gestation time
of 616 days. So, adding an interval of P616D to that conception time produces the ex-
pected due date of an elephant conceived at the same time as the human.

ADateTime objectsmodify() method accepts,instead ofaDateIntervalobject,astring
that strtotime() understands. This provides an easy way to find relative dates like “next
Tuesday” from a given object. For example, election day in the United States is the
Tuesday after the first Monday in November. (That is, the first Tuesday of November,
unless that’s the first of the month, in which case it’s the following Tuesday.) With
DateTime: :modify() you can find the date of election day as follows:

Syear = 2016;
Swhen = new DateTime("November 1, Syear");
if (Swhen->format('D') != 'Mon') {

Swhen->modify("next Monday");

}
Swhen->modify("next Tuesday");

print "In Syear, US election day is on the
Swhen->format('jS') . ' day of November.';

The format character D produces the day of the week. So if the first day of November is
not a Monday, the call to $when->modify("next Monday") advances the DateTime
object to the following Monday. Then, the subsequent call to modify() finds the first
Tuesday after that.

See Also

Documentation on creating DateInterval objects, DateTime::add(), Date
Time::sub(), and DateTime: :modify().

3.10 Calculating Time with Time Zones and Daylight
Saving Time

Problem

You need to calculate times in different time zones. For example, you want to give users
information adjusted to their local time, not the local time of your server.

80 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.php.net/dateinterval.construct
http://www.php.net/datetime.add
http://www.php.net/datetime.sub
http://www.php.net/datetime.sub
http://www.php.net/datetime.modify
http://www.it-ebooks.info/

Solution

Use appropriate DateTimeZone objects when you build DateTime objects and PHP will
do all the work for you, as in Example 3-22.

Example 3-22. Simple time zone usage

$nowInNewYork = new DateTime('now', new DateTimeZone('America/New_York'));
$nowInCalifornia = new DateTime('now', new DateTimeZone('America/Los_Angeles'));

printf("It's %s in New York but %s in California.",
SnowInNewYork->format(DateTime: :RFC850),
$nowInCalifornia->format(DateTime: :RFC850));

This prints:

It's Friday, 15-Feb-13 14:50:25 EST in New York but

Friday, 15-Feb-13 11:50:25 PST in California.
Note how not only is the time localized (the hours shown differ by three) but the time
zone displayed is the locally appropriate one as well. If a time zone you're using observes
daylight saving time, this is accounted for automatically.

PHP’s default time zone is set at request startup by the date.timezone configuration
parameter. Change this by calling date_default_time_zone_set(); that time zone be-
comes the new default until changed again or the end of the request. Example 3-23 prints
the current time twice—once as appropriate for New York and once for Paris.

Example 3-23. Changing time zone with date_default_timezone_set()

Snow = time();
date_default_timezone_set('America/New_York');
print date(DATE_RF(C850, $now);

print "\n";

date_default_timezone_set('Europe/Paris');

print date(DATE_RF(C850, $now);

Example 3-23 displays appropriately localized time values as well as time zones, just like
Example 3-22.

Discussion

Because DateTime objects cooperate with DateTimeZone objects (and other functions,
such as date(), respect the system-set time zone) it is very easy to twiddle time zones
and get appropriately formatted output. The time zone information that PHP relies on
incorporates daylight saving time transitions as well.

The time zones that PHP understands are listed in the PHP Manual. The names of these
time zones—such as America/New_York, Europe/Paris, and Africa/Dar_es_Salaam

3.10 Calculating Time with Time Zones and Daylight Saving Time | 81

www.it-ebooks.info

http://www.php.net/timezones
http://www.it-ebooks.info/

—mirror the structure of the popular zoneinfo database. If you want to update your time
zone database without updating your entire PHP installation, install (or update) the
timezonedb extension from PECL. This packages the IANA-managed Time Zone Da-
tabase for PHP.

See Also

Documentation on date_default_timezone_set(), on date_default_time
zone_get(), and on the DateTimeZone class; the time zones that PHP knows about;
information about the IANA Time Zone Database; the timezonedb PECL extension.

3.11 Generating a High-Precision Time

Problem

You need to measure time with finer than one-second resolution—for example, to gen-
erate a unique ID or benchmark a function call.

Solution

Use microtime(true) to get the current time in seconds and microseconds.
Example 3-24 uses microtime(true) to time how long it takes to do 1,000 regular
expression matches.

Example 3-24. Timing with microtime()

$start = microtime(true);

for ($1 = 0; $1 < 1000; $i++) {
preg_match('/age=\d{1,5}/"',$_SERVER['QUERY_STRING']);

}

Send = microtime(true);

Selapsed = $end - S$start;

Discussion

Without an argument that evaluates to true, microtime() returns a string that contains
the microseconds part of elapsed time since the epoch, a space, and seconds since the
epoch. For example, a return value of 0.41644100 1026683258 means that
1026683258.41644100 seconds have elapsed since the epoch. This allows for more pre-
cision than can fit into a float, but makes it difficult to calculate with.

Since PHP 5.4.0, the $_SERVER superglobal array is populated with a RE

QUEST_TIME_FLOAT entry. This contains the time (including microseconds) when the
request started. This makes it easy to determine how long a request has been running
at any point—just compute microtime(true) - $_SERVER['REQUEST_TIME_FLOAT'].

82 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.php.net/date_default_timezone_set
http://www.php.net/date_default_timezone_get
http://www.php.net/date_default_timezone_get
http://www.php.net/class.datetimezone
http://www.php.net/timezones
http://www.iana.org/time-zones
http://pecl.php.net/package/timezonedb
http://www.it-ebooks.info/

Time including microseconds is useful for generating unique IDs. When combined with
the current process ID, it guarantees a unique ID, as long as a process doesn’t generate
more than one ID per microsecond. Example 3-25 uses microtime() (with its string
return format) to generate just such an ID.

Example 3-25. Generating an ID with microtime()
list(Smicroseconds,$seconds) = explode(' ',microtime());

$1d = $seconds.$microseconds.getmypid();

Note that the method in Example 3-25 is not as foolproof on multithreaded systems,
where there is a nonzero (but very tiny) chance that two threads of the same process
could call microtime() during the same microsecond.

See Also

Documentation on microtime().

3.12 Generating Time Ranges

Problem

You need to know all the days in a week or a month. For example, you want to print out
a list of appointments for a week.

Solution

Use the DatePeriod class, available starting with PHP 5.3.0. Its constructor accepts a
flexible combination of options that lets you control the range length, time between
items in the range, and how many items there are in the range.

You can build a DatePeriod with a start, interval, and end. Here’s how to construct a
range that represents every day in August 2014:

// Start on August 1

$start = new DateTime('August 1, 2014");

// End date is exclusive, so this will stop on August 31
Send = new DateTime('September 1, 2014');

// Go 1 day at a time

Sinterval = new Datelnterval('PiD');

$rangel = new DatePeriod(S$Sstart, $interval, $end);
Here’s another way to do the same thing:

// Start on August 1

$start = new DateTime('August 1, 2014');
// Go 1 day at a time

$interval= new DateInterval('PiD');

3.12 Generating Time Ranges | 83

www.it-ebooks.info

http://www.php.net/microtime
http://www.it-ebooks.info/

// Recur 30 times more after the first occurrence.
$Srecurrences = 30;

Srange2 = new DatePeriod($start, $interval, S$recurrences);
And a third way, using the ISO 8601 specified format for describing date ranges:
$range3 = new DatePeriod('R30/2014-08-01T00:00:00Z/P1D");

The DatePeriod class implements the Traversable interface, so once you've construc-
ted an object, just pass it to foreach and you’ll get a DateTime object for each item in
the range:

foreach (Srangel as $d) {
print "A day in August is " . $d->format('d') . "\n";
}
Discussion

By default a DatePeriod includes the time specified as its start and excludes the time
specified as its end. You can also exclude the start time by passing DatePeriod: :EX
CLUDE_START_DATE as a final argument to the constructor.

DatePeriod only implements Traversable, not any of the other “make my object act
like an array” interfaces that PHP provides, so you can't grab all the values at once, for
example, by passing it to implode(). You have to use foreach to accumulate the values
you want into a regular array.

See Also

Documentation on DatePeriod and DateInterval().

3.13 Using Non-Gregorian Calendars

Problem

You want to use a non-Gregorian calendar, such as a Julian, Jewish, or French Republican
calendar.

Solution

PHP’s calendar extension provides conversion functions for working with the Julian
calendar as well as the French Republican and Jewish calendars. To use these functions,
the calendar extension must be loaded.

These functions use the Julian day count (which is different than the Julian calendar)
as their intermediate format to move information between them. cal_to_jd() converts

84 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.php.net/class.dateperiod
http://www.php.net/class.dateinterval
http://www.it-ebooks.info/

a month, day, and year to a Julian day count value; cal_from_jd() converts a Julian day
count value to a month, day, and year in a particular calendar. Example 3-26 converts
between Julian days and the familiar Gregorian calendar.

Example 3-26. Converting between Julian days and the Gregorian calendar

// March 8, 1876
// Sjd i1s 2406323, the Julian day count
$jd = gregoriantojd(3,9,1876);

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* Sgregorian is array('date' => '3/9/1876',
'month' => 3,

'day' => 9,
'year' => 1876,
"dow' => 4,

'abbrevdayname' => 'Thu',
'dayname’ => 'Thursday',
'abbrevmonth' => 'Mar’,
'monthname’' => 'March'));

*/

The valid range for the Gregorian calendar is 4714 BCE to 9999 CE.

Discussion

To convert between Julian days and the Julian calendar, use the CAL_JULIAN constant,
as shown in Example 3-27.

Example 3-27. Using the Julian calendar

// February 29, 1900 (not a Gregorian leap year)
// Sjd i1s 2415092, the Julian day count
$jd = cal_to_jd(CAL_JULIAN, 2, 29, 1900);

$julian = cal_from_jd($jd, CAL_JULIAN);
/* Sjulian is array('date' => '2/29/1900',
'month' => 2,

'day' => 29,
'year' => 1900,
"dow' => 2,

'abbrevdayname' => 'Tue',
'dayname’' => 'Tuesday',
'abbrevmonth' => 'Feb',
'monthname' => 'February'));

*/

Sgregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* Sgregorian is array('date' => '3/13/1900',
'month' => 3,
'day' => 13,
'year' => 1900,

3.13 Using Non-Gregorian Calendars | 85

www.it-ebooks.info

http://www.it-ebooks.info/

"dow' => 2,
'abbrevdayname' => 'Tue',
'dayname’ => 'Tuesday',
'abbrevmonth' => 'Mar’,
'monthname' => 'March'));

*/
The valid range for the Julian calendar is 4713 BCE to 9999 CE, but because it was created

in 46 BCE, you run the risk of annoying Julian calendar purists if you use it for dates
before that.

To convert between Julian days and the French Republican calendar, use the CAL_FRENCH
constant, as shown in Example 3-28.

Example 3-28. Using the French Republican calendar

// 13 Floréal XI
// Sjd i1s 2379714, the Julian day count
$jd = cal_to_jd(CAL_FRENCH, 8, 13, 11);

$french = cal_from_jd($jd, CAL_FRENCH);
/* Sfrench is array('date' => '8/13/11',
'month’' => 8,

'day' => 13,
'year' => 11,
'dow' => 2,

'abbrevdayname' => 'Tue',
'dayname’ => 'Tuesday',
"abbrevmonth' => 'Floreal',
'monthname' => 'Floreal'));

*/

// May 3, 1803 - sale of Louisiana to the US

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

/* Sgregorian is array('date' => '5/3/1803',
'month' => 5,

'day' => 3,
'year' => 1803,
"dow' => 2,

'abbrevdayname' => 'Tue’,
'dayname' => 'Tuesday',
'abbrevmonth' => 'May',
'monthname' => 'May'));

*/

The valid range for the French Republican calendar is September 1792 to September
1806, which is small, but because the calendar was only in use from October 1793 to
January 1806, thats comprehensive enough. Note that the month names that
cal_from_jd() returns do not have proper accents—they are, for example, Floreal
instead of Floréal.

86 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

To convert between Julian days and the Jewish calendar, use the CAL_JEWISH constant,
as shown in Example 3-29.

Example 3-29. Using the Jewish calendar

// 25 Kislev 5774 is the first night/day of Hanukah
// Sjd i1s 2456625, the Julian day count
$jd = cal_to_jd(CAL_JEWISH, 3, 25, 5774);

$jewish = cal_from_jd($jd, CAL_JEWISH);
/* Sjewish is array('date' => '3/25/5774',
'month’' => 3,

'day' => 25,
'year' => 5774,
"dow' => 4,

'abbrevdayname' => 'Thu',
'dayname’ => 'Thursday',
'abbrevmonth' => 'Kislev',
'monthname' => 'Kislev'));

*/

// November 28, 2013 is US Thanksgiving holiday

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

/* Sgregorian is array('date' => '11/28/2013"',
'month' => 11,

'day' => 28,
'year' => 2013,
"dow' => 4,

'abbrevdayname' => 'Thu',

'dayname’ => 'Thursday',

'abbrevmonth' => 'Nov',

'monthname’' => 'November'));

*/

The valid range for the Jewish calendar starts with 3761 BCE (year 1 on the Jewish
calendar). Note that whether or not it falls within a leap year, the month Adar is always
returned as AdarI. In leap years, Adar II is returned as AdarII.

See Also

Documentation for the calendar functions; the history of the Gregorian calendar.

3.14 Program: Calendar

TheLittleCalendar class shown in Example 3-31 prints out a month’s calendar, similar
to the Unix cal program. Example 3-30 shows how you can use the class, including
default styles for its layout.

3.14 Program: Calendar | 87

www.it-ebooks.info

http://www.php.net/calendar
http://bit.ly/1idcn5J
http://www.it-ebooks.info/

Example 3-30. Using LittleCalendar()

<style type="text/css">

.prev { text-align: left; }

.next { text-align: right; }

.day, .month, .weekday { text-align: center; }

.today { background: yellow; }

.blank { }

</style>

<?php

// print the calendar for the current month if a month

// or year isn't in the query string

$month = isset($_GET['month']) ? intval($_GET['month']) : date('m');
Syear = isset(S_GET['year']) ? intval($_GET['year']) : date('Y');

$cal = new LittleCalendar($month, Syear);
print $cal->html();

The LittleCalendar class can produce a representation of a month’s calendar in dif-
ferent formats. Its prepare() method calculates the right information about each day
of the month and appropriate beginning and end padding. Then, separate internal
methods, invoked by generate() based on its argument, produce formatting appro-
priate for different contexts. The html() method produces an HTML calendar suitable
for display in a web page. The text() method produces a text-based calendar for display
in the shell.

Example 3-31. LittleCalendar

class LittleCalendar {

/** DateTime */
protected SmonthToUse;

protected Sprepared = false;
protected $days = array();

public function __construct($month, Syear) {
/* Build a DateTime for the month we're going to display */
$this->monthToUse = DateTime::createFromFormat('Y-m|',
sprintf("%04d-%02d",
Syear, $month));
Sthis->prepare();
}

protected function prepare() {
// Build up an array of information about each day
// in the month including appropriate padding at the
// beginning and end
// First, days of the week across the first row

88 | (Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

foreach (array('Su', 'Mo','Tu','We','Th','Fr','Sa') as $dow) {
SendOfRow = ($dow == 'Sa');
Sthis->days[] = array('type' => 'dow',
'label' => $dow,
'endOfRow' => $endOfRow);
}

// Next, placeholders up to the first day of the week
for ($1 = 0, $j = S$this->monthToUse->format('w'); $1 < $j; Si++) {
Sthis->days[] = array('type' => 'blank');

}

// Then, one item for each day in the month
$today = date('Y-m-d');
$days = new DatePeriod($this->monthToUse,
new DateInterval('P1D'),
$this->monthToUse->format('t') - 1);
foreach (Sdays as S$day) {
SisToday = (Sday->format('Y-m-d') == Stoday);
SendOfRow = ($day->format('w') == 6);
Sthis->days[] = array('type' => 'day',
'label' => $day->format('j'),
'today' => $isToday,
'endOfRow' => $endOfRow);
}

// Last, any placeholders for the end of the month, if we

// didn't have an endOfWeek day as the last day in the month

if (! $endOfRow) {
for (51 = 0, $j

= 6 - Sday->format('w'); $1 < $3j; Si++) {
Sthis->days[] =

array('type' => 'blank');
}

}

public function html(Sopts = array()) {
if (! isset(Sopts['id'])) {
Sopts['id'] = 'calendar';
}
if (! isset($Sopts['month_link'])) {
Sopts['month_link'] =
'<a href="".htmlentities($_SERVER['PHP_SELF']) . '?' .
'month=%d&year=%d">%s";
}
$classes = array();
foreach (array('prev','month','next', 'weekday','blank','day', 'today')
as Sclass) {
if (isset($Sopts['class']) && isset(Sopts['class'][$class])) {
Sclasses[$class] = Sopts['class'][$class];
}

else {

3.14 Program: Calendar | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Sclasses[Sclass] = $class;

}

/* Build a DateTime for the previous month */

SprevMonth = clone $this->monthToUse;

$prevMonth->modify("-1 month");

$prevMonthLink = sprintf($opts['month_link'],
SprevMonth->format('m'),
$prevMonth->format('Y"'),
'« ');

/* Build a DateTime for the following month */

$nextMonth = clone $this->monthToUse;

$nextMonth->modify("+1 month");

$nextMonthLink = sprintf(Sopts['month_link'],
$nextMonth->format('m'),
$nextMonth->format('Y"),
'»');

$html = '<table id="'.htmlentities($Sopts['id'])."'">

<tr>

<td class=""'.htmlentities($classes['prev'])."'">"
SprevMonthLink . '</td>

<td class=""'.htmlentities($classes['month'])."'" colspan="5">".
Sthis->monthToUse->format('F Y') .'</td>

<td class=""'.htmlentities($classes['next'])."'">"
SnextMonthLink . '</td>

</tr>";

Shtml .= '<tr>';

$lastDayIndex = count($this->days) - 1;
foreach ($this->days as $i => $day) {
switch ($day['type']) {

case 'dow':
Sclass = 'weekday';
$label = htmlentities($day['label']);
break;

case 'blank':
Sclass = 'blank';
Slabel = ' ';
break;
case 'day':
Sclass = Sday['today'] ? 'today' : 'day';
$label = htmlentities($day['label']);
break;
}
Shtml .=
'<td class="' . htmlentities(Sclasses[Sclass]).'">".

90 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

Slabel . '</td>';

if (isset($day['endOfRow']) && Sday['endOfRow']) {
Shtml .= "</tr>\n";
if (S$1 != $SlastDayIndex) {
Shtml .= '<tr>';
}
}
}
Shtml .= '</table>';
return $html;
}

public function text() {
$lineLength = strlen('Su Mo Tu We Th Fr Sa');
Sheader = Sthis->monthToUse->format('F Y');
SheaderSpacing = floor(($lineLength - strlen($header))/2);

Stext = str_repeat(' ', SheaderSpacing) . $header . "\n";

foreach (Sthis->days as $1 => $day) {
switch (S$day['type']) {

case 'dow':
Stext .= sprintf('% 2s', S$day['label']);
break;
case 'blank':
Stext .= ' ';
break;
case 'day':
Stext .= sprintf("% 2d", S$day['label']);
break;
}
Stext .= (isset(Sday['endOfRow']) && $day['endOfRow']) ? "\n" : " ";
}
if (Stext[strlen($text)-1] != "\n") {
Stext .= "\n";
}

return $text;

}

The LittleCalendar constructor just builds a DateTime object for the month it needs
to render. Then, it calls prepare(), which does the work of building up the $days
member variable into an array of information about each of the days (or placeholders)
to be rendered. The prepare() function first puts elements for each day of the week (as
a header row) into $days, then some spacers based on the day of the week of the first
day of the month. Next, it puts an element for each day of the month, and finally spacers
to pad out the end of the month if necessary.

3.14 Program: Calendar | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Inside prepare(), the necessary information about each day of the month is retrieved
by calling format() on DateTime objects. This provides day-of-the-week information
for the spacers as well as per-day information for each day. The individual days of the
month are obtained by iterating through a DatePeriod spanning the month to use at a
1-day interval.

Although prepare() figures out enough information to lay out the calendar, it leaves
the actual formatting to other methods. The html() method produces an HTML-
formatted calendar and the text() method produces a text-formatted calendar.

The html() method takes an optional array of options as an argument. You can pass a
printf()-style format string in $opts['month_link'] to change how the links to the
previous and next months are printed as well as an 1d attribute for the table. The id
defaults to calendar if not specified.

Additionally, you can pass in class names to use for various elements in the layout. These
go in an array-valued class option. In that class array, the classes you can specify are
prev, month, next, weekday, blank, day, and today. Example 3-30 includes styles that
provide a basic pleasant layout for the table, including highlighting the current day in
yellow.

The html() method finds the previous and next months (using DateTime: :modify())
in order to generate proper previous and next links. After making a short header, it
iterates through the calculated days, putting each one into an appropriate table cell. At
the end of each week, the table row is closed.

The text() method has similar logic, but (obviously) different output. It generates a
header containing the month and year and then iterates through the calculated days,
adding a newline at the end of each week.

By subclassing LittleCalendar, you could add other customized calendar outputs. For
example, for fancier console output you could make a colorText() method that uses
ANSI escape codes to display the current day in a different color.

92 | Chapter3:Datesand Times

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Arrays

4.0 Introduction

Arrays are lists: lists of people, lists of sizes, lists of books. To store a group of related
items in a variable, use an array. Like a list on a piece of paper, the elements in an array
have an order. Usually, each new item comes after the last entry in the array, but just as
you can wedge a new entry between a pair of lines already in a paper list, you can do
the same with arrays in PHP.

Most languages have numerical arrays (sometimes referred to just as arrays). In a nu-
merical array, if you want to find an entry, you need to know its position within the
array, known as an index. Positions are identified by numbers: they start at 0 and work
upward one by one.

In some languages, there is also another type of array: an associative array, also known
as a hash or a map or a dictionary. In an associative array, indexes aren’t integers, but
strings. So in a numerical array of US presidents, “Abraham Lincoln” might have index
16; in the associative-array version, the index might be “Honest” However, whereas
numerical arrays have a strict ordering imposed by their keys, associative arrays fre-
quently make no guarantees about the key ordering. Elements are added in a certain
order, but there’s no way to determine the order later.

When alanguage has both numerical and associative arrays, usually the numerical array
$presidents and the associative array $presidents are distinct arrays. Each array type
has a specific behavior, and you need to operate on it accordingly. PHP has both nu-
merical and associative arrays, but they don’t behave independently.

In PHP, numerical arrays are associative arrays, and associative arrays are numerical
arrays. So which kind are they really? Both and neither. The line between them con-
stantly blurs back and forth from one to another. At first, this can be disorienting,
especially if you're used to rigid behavior, but soon you’ll find this flexibility an asset.

93

www.it-ebooks.info

http://www.it-ebooks.info/

To assign multiple values to an array in one step, use array():
$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

Now, the value of $fruits[2] is 'Cantaloupes'.

array() is very handy when you have a short list of known values. The same array is
also produced by:

$fruits[0] 'Apples’;
$fruits[1] = 'Bananas';
$fruits[2] = 'Cantaloupes';
$fruits[3] = 'Dates';

and:

Sfruits[] '"Apples’;
$fruits[] = 'Bananas’';
$fruits[] = 'Cantaloupes';
$fruits[] = 'Dates';

As of PHP 5.4, you can also use the short array syntax, inspired by JavaScript:
$fruits = ['Apples', 'Bananas', 'Cantaloupes', 'Dates'];

Assigning a value to an array with an empty subscript is shorthand for adding a new
element to the end of the array. So PHP looks up the length of $fruits and uses that as
the position for the value you're assigning. This assumes, of course, that $fruits isn’t
set to a scalar value, such as 3, and isn't an object. PHP complains if you try to treat a
nonarray as an array; however, if this is the first time you're using this variable, PHP
automatically converts it to an array and begins indexing at 0.

An identical feature is the function array_push(), which pushes a new value on top of
the array stack. However, the $foo[] notation is the more traditional PHP style; it’s also
faster. But sometimes, using array_push() more accurately conveys the stack nature of
what you're trying to do, especially when combined with array_pop(), which removes
the last element from an array and returns it.

So far, we've placed integers and strings only inside arrays. However, PHP allows you
to assign any data type you want to an array element: booleans, integers, floating-point
numbers, strings, objects, resources, NULL, and even other arrays. So you can pull arrays
or objects directly from a database and place them into an array:

while ($row = mysqli_fetch_assoc(sr)) {
S$fruits[] = Srow;
}

while ($obj = mysqli_fetch_object($s)) {
Svegetables[] = $obj;
}

94 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

The first while statement creates an array of arrays; the second creates an array of
objects. See Recipe 4.2 for more on storing multiple elements per key.

To define an array using not integer keys but string keys, you can also use array(), but
specify the key/value pairs with =>:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',
'beige' => 'Cantaloupes', 'brown' => 'Dates');

Now, the value of $fruits['beige'] is Cantaloupes. This is shorthand for:

S$fruits['red'] = 'Apples';

$fruits['yellow'] = 'Bananas';
$fruits['beige'] = 'Cantaloupes';
$fruits['brown'] = 'Dates';

The short syntax works here, too:
S$fruits = [
'red' => 'Apples’',
'yellow' => 'Bananas',
'beige' => 'Cantaloupes',
'brown' => 'Dates'

I;
Each array can only hold one unique value for each key. Adding:
S$fruits['red'] = 'Strawberry';

overwrites the value of 'Apples'. However, you can always add another key at a later
time:

S$fruits['orange'] = 'Orange’;

The more you program in PHP, the more you find yourself using associative arrays
instead of numerical ones. Instead of creating a numeric array with string values, you
can create an associative array and place your values as its keys. If you want, you can
then store additional information in the element’s value. There’s no speed penalty for
doing this, and PHP preserves the ordering. Plus, looking up or changing a value is easy
because you already know the key.

The easiest way to cycle though an array and operate on all or some of the elements
inside is to use foreach:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',
'beige' => 'Cantaloupes', 'brown' => 'Dates');

foreach ($fruits as S$color => $fruit) {
print "$fruit are S$Scolor.\n";
}
Each time through the loop, PHP assigns the next key to $color and the key’s value to
$fruit. When there are no elements left in the array, the loop finishes.

4.0 Introduction | 95

www.it-ebooks.info

http://www.it-ebooks.info/

To break an array apart into individual variables, use 1ist():

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

list(Sred, Syellow, Sbeige, $brown) = Sfruits;

4.1 Specifying an Array Not Beginning at Element 0

Problem

You want to assign multiple elements to an array in one step, but you don’t want the first
index to be 0.

Solution
Instruct array() to use a different index using the => syntax:

Spresidents = array(l => 'Washington', 'Adams', 'Jefferson', 'Madison');

Discussion

Arrays in PHP—like most, but not all, computer languages—begin with the first entry
located at index 0. Sometimes, however, the data youre storing makes more sense if the
list begins at 1. (And were not just talking to recovering Pascal programmers here.)

In the Solution, George Washington is the first president, not the zeroth, so if you wish
to print a list of the presidents, it’s simpler to do this:
foreach (Spresidents as $number => $president) {

print "S$number: S$Spresident\n";

}
than this:

foreach ($presidents as $number => $president) {
Snumber++;
print "$number: Spresident\n";

}

The feature isn’t restricted to the number 1; any integer works:

$reconstruction_presidents = array(16 => 'Lincoln', 'Johnson', 'Grant');
// alternatively,
$reconstruction_presidents = [16 => 'Lincoln', 'Johnson', 'Grant'];

Also, you can use => multiple times in one call:'

1. John Tyler was elected as Harrison’s vice president under the Whig Party platform but was expelled from the
party shortly after assuming the presidency following the death of Harrison.

96 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

$whig_presidents = array(9 => 'Harrison', 'Tyler', 12 => 'Taylor', 'Fillmore');

// alternatively,

$whig_presidents = [9 => 'Harrison', 'Tyler', 12 => 'Taylor', 'Fillmore'];
PHP even allows you to use negative numbers in the array() call. (In fact, this method
works for noninteger keys, too.) What you’ll get is technically an associative array, al-
though as we said, the line between numeric arrays and associative arrays is often blurred
in PHP; this is just another one of these cases:

Sus_leaders = array(-1 => 'George II', 'George III', 'Washington');

// alternatively,

Sus_leaders = [-1 => 'George II', 'George III', 'Washington'];
If Washington is the first US leader, George III is the zeroth, and his grandfather George
IT is the negative-first.

Of course, you can mix and match numeric and string keys in one array() definition,
but it’s confusing and very rarely needed:
$presidents = array(1 => 'Washington', 'Adams', 'Honest' => 'Lincoln',
'Jefferson');

// alternatively,
Spresidents = [1 => 'Washington', 'Adams', 'Honest' => 'Lincoln', 'Jefferson'];

This is equivalent to:

Spresidents[1] = 'Washington'; // Key is 1

$presidents[] = 'Adams'; // Key is 1 + 1 => 2

Spresidents['Honest'] = 'Lincoln'; // Key is 'Honest'

$presidents[] = 'Jefferson'; // Key is 2 + 1 => 3
See Also

Documentation on array().

4.2 Storing Multiple Elements per Key in an Array

Problem

You want to associate multiple elements with a single key.

Solution
Store the multiple elements in an array:

$fruits = array('red' => array('strawberry','apple'),
'yvellow' => array('banana'));

4.2 Storing Multiple Elements perKeyinan Array | 97

www.it-ebooks.info

http://www.php.net/array
http://www.it-ebooks.info/

Or use an object:

while ($obj = mysqli_fetch_assoc(Sr)) {
S$fruits[] = Sobj;
}

Discussion

In PHP, keys are unique per array, so you can't associate more than one entry in a key
without overwriting the old value. Instead, store your values in an anonymous array:

$fruits = array();
Sfruits['red'][] = 'strawberry';
S$fruits['red'][] = 'apple';
Sfruits['yellow'][] = 'banana';

print_r($fruits);

This prints:
Array
(
[red] => Array
(
[0] => strawberry
[1] => apple
)
[yellow] => Array
(
[0] => banana
)

)
Or, if you're processing items in a loop:

while (list(S$color,$fruit) = mysqli_fetch_assoc(sSr)) {
Sfruits[$color][] = $fruit;
}

To print the entries, loop through the array:

foreach (S$fruits as Scolor => $color_fruit) {
// Scolor_fruit is an array
foreach (Scolor_fruit as S$fruit) {
print "$fruit is colored $color.
";

}

98 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

Or use the array_to_comma_string() function from Recipe 4.9:

foreach (Sfruits as Scolor => $color_fruit) {
print "S$color colored fruits include "
array_to_comma_string($color_fruit) . "
";

}

See Also

Recipe 4.9 for how to print arrays with commas.

4.3 Initializing an Array to a Range of Integers

Problem

You want to assign a series of consecutive integers to an array.

Solution
Use range($start, Sstop):

$cards = range(1, 52);

Discussion
For increments other than 1, pass an increment to range() as a third argument.
So for odd numbers:
$odd = range(1, 52, 2);
And for even numbers:

Seven = range(2, 52, 2);

See Also

Recipe 2.4 for how to operate on a series of integers; documentation on range().

4.4 Iterating Through an Array

Problem

You want to cycle though an array and operate on all or some of the elements inside.

Solution

Use foreach:

4.3 Initializing an Array to a Range of Integers | 99

www.it-ebooks.info

http://www.php.net/range
http://www.it-ebooks.info/

foreach (Sarray as $value) {
// Act on Svalue
}

Or to get an array’s keys and values:

foreach ($array as Skey => $value) {
// Act II
}

Another technique is to use for:

for (Skey = 0, $size = count(Sarray); Skey < $size; Skey++) {
// Act III
}

Finally, you can use each() in combination with 1ist() and while:

reset($array); // reset internal pointer to beginning of array
while (list(Skey, $Svalue) = each ($array)) {

// Final Act
}

Discussion

A foreach loop is the most concise way to iterate through an array:

// foreach with values

foreach (Sitems as $cost) {
/) ...

}

// foreach with keys and values

foreach($items as $item => $cost) {
// ...

}

With foreach, PHP iterates over a copy of the array instead of the actual array. In

contrast, when using each() and for, PHP iterates over the original array. So if you
modify the array inside the loop, you may (or may not) get the behavior you expect.

If you want to modify the array, reference it directly:

foreach (Sitems as S$item => $cost) {
if (! in_stock($item)) {
unset(S$items[Sitem]); // address the array directly
}
}

The variables returned by foreach() aren’t aliases for the original values in the array:
they’re copies, so if you modify them, it’s not reflected in the array. That’s why you need
to modify $items[$item] instead of $cost.

100 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

When using each(), PHP keeps track of where you are inside the loop. After completing
a first pass through, to begin again at the start, call reset() to move the pointer back
to the front of the array. Otherwise, each() returns false.

The for loop works only for arrays with consecutive integer keys. Unless youre mod-
ifying the size of your array, it’s inefficient to recompute the count() of $items each
time through the loop, so we always use a $size variable to hold the array’s size:

for (S$item = 0, Ssize = count($items); Sitem < Ssize; Sitem++) {
// ...
}

If you prefer to count efficiently with one variable, count backward:

for (Sitem = count($items) - 1; Sitem >= 0; Sitem--) {
/) ...
}

The associative array version of the for loop is:

for (reset(Sarray); Skey = key(Sarray); next($Sarray)) {
/] ...
}
This fails if any element holds a string that evaluates to false, so a perfectly normal
value such as 0 causes the loop to end early. Therefore, this syntax is rarely used, and is
included only to help you understand older PHP code.

Finally, use array_map() to hand off each element to a function for processing:

// lowercase all words
$lc = array_map('strtolower', Swords);

The first argument to array_map() is a function to modify an individual element, and
the second is the array to be iterated through.

Generally, we find this function less flexible than the previous methods, but it is well-
suited for the processing and merging of multiple arrays.

If youre unsure if the data you’ll be processing is a scalar or an array, you need to protect
against calling foreach with a nonarray. One method is to use is_array():

if (is_array(Sitems)) {

// foreach loop code for array
} else {

// code for scalar

}
Another method is to coerce all variables into array form using settype():

settype($items, 'array');
// loop code for arrays

4.4 Iterating Throughan Array | 101

www.it-ebooks.info

http://www.it-ebooks.info/

This turns a scalar value into a one-element array and cleans up your code at the expense
of a little overhead.

See Also

Recipe 4.24 for how to use a generator to iterate efficiently overly large or expensive
datasets; documentation on for, foreach, while, each(), reset(), and array_map().

4.5 Deleting Elements from an Array

Problem

You want to remove one or more elements from an array.

Solution
To delete one element, use unset():

unset($array[3]);
unset($array['foo']);

To delete multiple noncontiguous elements, also use unset():

unset($array[3], $array[5]);
unset($array['foo'], S$array['bar']);

To delete multiple contiguous elements, use array_splice():

array_splice($array, Soffset, $length);

Discussion

Using these functions removes all references to these elements from PHP. If you want
tokeep akeyin thearray, but with an empty value, assign the empty string to the element:

Sarray[3] = Sarray['foo'] = '';

Besides syntax, there’s a logical difference between using unset() and assigning ' ' to
the element. The first says, “This doesn't exist anymore,” and the second says, “This still
exists, but its value is the empty string”

If youre dealing with numbers, assigning © may be a better alternative. So if a company
stopped production of the model XL1000 sprocket, it would update its inventory with:

unset($products['XL1000']);

However, if the company temporarily ran out of XL1000 sprockets but was planning to
receive a new shipment from the plant later this week, this is better:

$products['XL1000'] = 0;

102 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/for
http://www.php.net/f⁠o⁠r⁠each
http://www.php.net/while
http://www.php.net/each
http://www.php.net/reset
http://www.php.net/array-map
http://www.it-ebooks.info/

If you unset() an element, PHP adjusts the array so that looping still works correctly.
It doesn't compact the array to fill in the missing holes. This is what we mean when we
say that all arrays are associative, even when they appear to be numeric. Here’s an ex-
ample:

// create a "numeric" array

$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');
print $animals[1]; // prints 'bee'

print $animals[2]; // prints 'cat'

count($animals); // returns 6
// unset()
unset($animals[1]); // removes element Sanimals[1] = 'bee'

print $animals[1]; // prints nothing and throws an E_NOTICE error
print $animals[2]; // still prints 'cat'
count($animals); // returns 5, even though Sarray[5] is 'fox'

// add new element

Sanimals[] = 'gnu'; // add new element (not Unix)

print $animals[1]; // prints nothing, still throws an E_NOTICE error
print $animals[6]; // prints 'gnu', this is where 'gnu' ended up

count($animals); // returns 6

// assign "'

Sanimals[2] = ''; // zero out value

print $animals[2]; // prints '’

count($animals); // returns 6, count does not decrease

To compact the array into a densely filled numeric array, use array_values():
$animals = array_values(S$Sanimals);

Alternatively, array_splice() automatically reindexes arrays to avoid leaving holes:
// create a "numeric" array
$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');
array_splice($animals, 2, 2);
print_r($animals);

Array

(
[0] => ant
[1] => bee
[2] => elk
[3] => fox

)

This is useful if you're using the array as a queue and want to remove items from the
queue while still allowing random access. To safely remove the first or last element from
an array, use array_shift() and array_pop(), respectively.

4.5 Deleting Elements froman Array | 103

www.it-ebooks.info

http://www.it-ebooks.info/

However, if you find yourself often running into problems because of holes in arrays,
youmay notbe “thinking PHP?” Look at the ways to iterate through the array in Recipe 4.4
that don’t involve using a for loop.

See Also

Recipe 4.4 for iteration techniques; documentation on unset(), array_splice(), and
array_values().

4.6 Changing Array Size

Problem

You want to modify the size of an array, either by making it larger or smaller than its
current size.

Solution

Use array_pad() to make an array grow:

// start at three
Sarray = array('apple', 'banana', 'coconut');

// grow to five
Sarray = array_pad($array, 5, '');

Now, count($array) is 5, and the last two elements, $array[3] and $array[4], contain
the empty string.

To reduce an array, you can use array_splice():

// no assignment to Sarray
array_splice($array, 2);

This removes all but the first two elements from $array.

Discussion
Arrays aren’t a predeclared size in PHP, so you can resize them on the fly.

To pad an array, use array_pad(). The first argument is the array to be padded. The
nextargument is the size and direction you want to pad. To pad to the right, use a positive
integer; to pad to the left, use a negative one. The third argument is the value to be
assigned to the newly created entries. The function returns a modified array and doesn’t
alter the original.

Here are some examples:

104 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/unset
http://www.php.net/array-splice
http://www.php.net/array-values
http://www.it-ebooks.info/

// make a four-element array with 'dates' to the right
Sarray = array('apple', 'banana', 'coconut');

Sarray = array_pad(S$array, 4, 'dates');
print_r($array);

Array

(
[0] => apple
[1] => banana
[2] => coconut
[3] => dates

)

// make a six-element array with 'zucchinis' to the left
Sarray = array_pad(S$array, -6, 'zucchini');
print_r($array);
Array
(

[0] => zucchini

[1] => zucchini

[2] => apple

[3] => banana

[4] => coconut

[5] => dates
)

Be careful: array_pad($array, 4, 'dates') makes sure an $array is at least four

elements long; it doesn’'t add four new elements. In this case, if $array was already four
elements or larger, array_pad() would return an unaltered $array.

Also, if you declare a value for a fourth element, $array[4]:

Sarray = array('apple', 'banana', 'coconut');
Sarray[4] = 'dates';
print_r($array);

you end up with a four-element array with indexes 0, 1, 2, and 4:

Array

(
[0] => apple
[1] => banana
[2] => coconut
[4] => dates

)

PHP essentially turns this into an associative array that happens to have integer keys.

The array_splice() function, unlike array_pad(), has the side effect of modifying the
original array. It returns the spliced-out array. Thats why you don't assign the return
value to $array. However, like array_pad(), you can splice from either the right or left.
So calling array_splice() with a value of -2 chops off the last two elements from the
end:

4.6 Changing Array Size | 105

www.it-ebooks.info

http://www.it-ebooks.info/

// make a four-element array
Sarray = array('apple', 'banana', 'coconut', 'dates');

// shrink to three elements
array_splice($array, 3);

// remove last element, equivalent to array_pop()
array_splice($array, -1);

// only remaining fruits are apple and banana
print_r($array);

See Also

Documentation on array_pad() and array_splice().

4.7 Appending One Array to Another

Problem

You want to combine two arrays into one.

Solution
Use array_merge():

$garden = array_merge($fruits, $vegetables);

Discussion

The array_merge() function works with both predefined arrays and arrays defined in
place using array():
$p_languages = array('Perl', 'PHP');

$p_languages = array_merge($p_languages, array('Python'));
print_r($p_languages);

Array

(
[0] => Perl
[1] => PHP

[2] => Python
)

Accordingly, merged arrays can be either preexisting arrays, as with $p_languages, or
anonymous arrays, as with array('Python").

You can’t use array_push(), because PHP won’t automatically flatten out the array into
a series of independent variables, and you'll end up with a nested array. Thus:

106 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-pad
http://www.php.net/array-splice
http://www.it-ebooks.info/

array_push($p_languages, array('Python'));
print_r($p_languages);

Array
(
[0] => Perl
[1] => PHP
[2] => Array
(
[0] => Python
)
)

Merging arrays with only numerical keys causes the arrays to get renumbered, so values
aren’t lost. Merging arrays with string keys causes the second array to overwrite the value
of any duplicated keys. Arrays with both types of keys exhibit both types of behavior.
For example:

$lc = array('a', 'b' => 'b'); // lowercase letters as values
Suc = array('A', 'b' => 'B'); // uppercase letters as values
$ac = array_merge($lc, Suc); // all-cases?

print_r($ac);

Array

(
[0] => a
[b] => B
[1] => A

)

The uppercase A has been renumbered from index 0 to index 1, to avoid a collision,
and merged onto the end. The uppercase B has overwritten the lowercase b and replaced
it in the original place within the array.

The + operator can also merge arrays. For any identically named keys found in both
arrays, the value from the left will be used. It doesn’t do any reordering to prevent
collisions. Using the previous example:

print_r($uc + S$Slc);
print_r($lc + Suc);

Array
(
[0] => A
[b] => B
)
Array
(
[0] => a
[b] == b
)

Because a and A both have a key of 0, and b and B both have a key of b, you end up with
a total of only two elements in the merged arrays.

4.7 Appending One Array to Another | 107

www.it-ebooks.info

http://www.it-ebooks.info/

In the first case, $a + $b becomes just $b, and in the other, $b + $a becomes $a.

However, if you had two distinctly keyed arrays, this wouldn't be a problem, and the
new array would be the union of the two arrays.

See Also

Documentation on array_merge().

4.8 Turning an Array into a String

Problem

You have an array, and you want to convert it into a nicely formatted string.

Solution
Use join():

// make a comma delimited list
$string = join(',', Sarray);

Or loop yourself:

$string = '';

foreach ($array as Skey => $value) {
$string .= ",$value";

}

$string = substr($string, 1); // remove leading ","

Discussion

If you can use join(), do; its faster than any PHP-based loop. However, join() isn’t
very flexible. First, it places a delimiter only between elements, not around them. To
wrap elements inside HTML bold tags and separate them with commas, do this:

Sleft = '';
$right = '";

shtml = Sleft . join("$right,S$left", Shtml) . $right;

Second, join() doesn't allow you to discriminate against values. If you want to include
a subset of entries, you need to loop yourself:

$string = '';

foreach ($fields as $Skey => $value) {
// don't include password

108 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-merge
http://www.it-ebooks.info/

if ('password' != Skey) {
$string .= ",$value";
}
}

non

$string = substr($string, 1); // remove leading ",

Notice that a separator is always added to each value and then stripped off outside the
loop. Although it’s somewhat wasteful to add something that will be subtracted later, it’s
far cleaner and efficient (in most cases) than attempting to embed logic inside of the
loop. To wit:

$string = '';
foreach ($fields as Skey => $value) {
// don't include password

if ('password' != $value) {
if (lempty(S$Sstring)) { $string .= ','; }
$string .= "$value";

}

}

Now you have to check $string every time you append a value. That’s worse than the
simple substr() call. Also, prepend the delimiter (in this case a comma) instead of
appending it because it’s faster to shorten a string from the front than the rear.

See Also

Recipe 4.9 for printing an array with commas; documentation on join() and substr().

4.9 Printing an Array with Commas

Problem

You want to print out an array with commas separating the elements and with an and
before the last element if there are more than two elements in the array.

Solution

Use the array_to_comma_string() function shown in Example 4-1, which returns the
correct string.

Example 4-1. array_to_comma_string()

function array _to_comma_string($array) {
switch (count(Sarray)) {
case 0:
return '';

case 1:

4.9 Printing an Array with Commas | 109

www.it-ebooks.info

http://www.php.net/join
http://www.php.net/substr
http://www.it-ebooks.info/

return reset($array);

case 2:
return join(' and ', S$array);

default:
$last = array_pop($array);
return join(', ', Sarray) . ", and S$Slast";
}
}
Discussion

If you have a list of items to print, it’s useful to print them in a grammatically correct
fashion. It looks awkward to display text like this:

$thundercats = array('Lion-0', 'Panthro', 'Tygra', 'Cheetara', 'Snarf');

print 'ThunderCat good guys include ' . join(', ', Sthundercats) . '.';

This implementation of this function isn't completely straightforward because we want
array_to_comma_string() to work with all arrays, not just numeric ones beginning at
0. If restricted only to that subset, for an array of size one, you return $array[0]. But if
the array doesn’t begin at 0, $array[0] is empty. So you can use the fact that reset(),
which resets an array’s internal pointer, also returns the value of the first array element.

For similar reasons, you call array_pop() to grab the end element, instead of assuming
it’s located at $array[count($array)-1]. This allows you to use join() on $array.

Also note that the code for case 2 actually works correctly for case 1, too. And the default
code works (though inefficiently) for case 2; however, the transitive property doesn’t
apply, so you can't use the default code on elements of size 1.

See Also

Recipe 4.8 for turning an array into a string; documentation on join(), array_pop(),
and reset().

4.10 Checking if a Key Is in an Array

Problem

You want to know if an array contains a certain key.

Solution

Use array_key_exists() to check for a key no matter what the associated value is:

110 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/join
http://www.php.net/array-pop
http://www.php.net/reset
http://www.it-ebooks.info/

if (array_key_exists('key', $array)) {
/* there is a value for Sarray['key'] */
}

Use isset() to find a key whose associated value is anything but null:

if (isset(Sarray['key'])) { /* there is a non-null value for 'key' in Sarray */ }

Discussion

The array_key_exists() function completely ignores array values—it just reports
whether there isan elementin the array with a particular key. isset(), however, behaves
the same way on array keys as it does with other variables. A null value causes is
set() to return false. See the Introduction to Chapter 5 for more information about
the truth value of variables.

See Also

Documentation on isset() and on array_key_exists().

4.11 Checking if an Element Is in an Array

Problem

You want to know if an array contains a certain value.

Solution
Use in_array():

if (in_array(S$value, $Sarray)) {
// an element has Svalue as its value in array Sarray

}

Discussion
Use in_array() to check if an element of an array holds a value:

$book_collection = array('Emma', 'Pride and Prejudice', 'Northhanger Abbey');
$book = 'Sense and Sensibility';

if (in_array(Sbook, $book_collection)) {
echo 'Own it.';

} else {
echo 'Need it.';

}

4.11 Checking if an Element Isinan Array | 111

www.it-ebooks.info

http://www.php.net/isset
http://www.php.net/array_key_exists
http://www.it-ebooks.info/

The default behavior of in_array() is to compare items using the == operator. To use
the strict equality check, ===, pass true as the third parameter to in_array():

$array = array(l, '2', 'three');

in_array(0, $array); // true!
in_array(0, S$array, true); // false
in_array(1, $array); // true
in_array(1l, Sarray, true); // true
in_array(2, $array); // true
in_array(2, S$array, true); // false

The first check, in_array(0, S$array), evaluates to true because to compare the num-

ber 0 against the string three, PHP casts three to an integer. Because three isn't a
numeric string, as is 2, it becomes 0. Therefore, in_array() thinks there’s a match.

Consequently, when comparing numbers against data that may contain strings, it’s safest
to use a strict comparison.

Ifyou find yourself calling in_array() multiple times on the same array, it may be better
to use an associative array, with the original array elements as the keys in the new as-
sociative array. Looking up entries using in_array() takes linear time; with an asso-
ciative array, it takes constant time.

If you can’t create the associative array directly but need to convert from a traditional
one with integer keys, use array_flip() to swap the keys and values of an array:

$book_collection = array('Emma’,
'Pride and Prejudice',
'"Northhanger Abbey');

// convert from numeric array to associative array
$book_collection = array_flip($book_collection);
$book = 'Sense and Sensibility';

if (isset($book_collection[Sbook])) {
echo 'Own it.';

} else {
echo 'Need it.';

}

Note that doing this condenses multiple keys with the same value into one element in
the flipped array.

See Also

Recipe 4.12 for determining the position of a value in an array; documentation on
in_array() and array_flip().

12 | Chapter4:Arrays

www.it-ebooks.info

http://www.php.net/in-array
http://www.php.net/array-flip
http://www.it-ebooks.info/

4.12 Finding the Position of a Value in an Array

Problem

You want to know if a value is in an array. If the value is in the array, you want to know
its key.

Solution

Use array_search(). It returns the key of the found value. If the value is not in the
array, it returns false:

$position = array_search($value, $array);
if ($position !== false) {
// the element in position Sposition has Svalue as its value in array Sarray

}

Discussion

Use in_array() to find if an array contains a value; use array_search() to discover
where that value is located. However, because array_search() gracefully handles
searches in which the value isn’'t found, it’s better to use array_search() instead of
in_array(). The speed difference is minute, and the extra information is potentially
useful:

$favorite_foods = array(1 => 'artichokes', 'bread', 'cauliflower',
'deviled eggs');

$food = 'cauliflower';

$position = array_search($food, S$favorite_foods);

if (Sposition !== false) {
echo "My #S$Sposition favorite food i1s $food";
} else {
echo "Blech! I hate S$food!";
}
Use the !== check against false because if your string is found in the array at position
0, the if evaluates to a logical false, which isn’t what is meant or wanted.

If a value is in the array multiple times, array_search() is only guaranteed to return
one of the instances, not the first instance.

See Also

Recipe 4.11 for checking whether an element is in an array; documentation on ar
ray_search(); for more sophisticated searching of arrays using regular expressions, see
preg_replace(), which you can find at the PHP website and in Chapter 23.

4.12 Finding the Position of a Valueinan Array | 113

www.it-ebooks.info

http://www.php.net/array-search
http://www.php.net/array-search
http://www.php.net/preg-replace
http://www.it-ebooks.info/

4.13 Finding Elements That Pass a Certain Test

Problem

You want to locate entries in an array that meet certain requirements.

Solution
Use a foreach loop:

Smovies = array(/*...*/);

foreach (Smovies as Smovie) {
if (Smovie['box_office_gross'] < 5000000) { $flops[] = $Smovie; }
}

Or array_filter():

$movies = array(/* ... */);

$flops = array_filter($movies, function (Smovie) {
return ($Smovie['box_office_gross'] < 5000000) ? 1 : 0;
b

Discussion

The foreach loops are simple: you iterate through the data and append elements to the
return array that match your criteria.

If you want only the first such element, exit the loop using break:

$movies = array(/*...*/);
foreach (Smovies as Smovie) {

if (Smovie['box_office_gross'] > 200000000) { $blockbuster = $movie; break; }
}

You can also return directly from a function:

function blockbuster($movies) {
foreach (Smovies as S$movie) {
if (Smovie['box_office_gross'] > 200000000) { return $movie; }
}
}

With array_filter(), however, you first create an anonymous function that returns

true for values you want to keep and false for values you don't. Using array_fil
ter(), you then instruct PHP to process the array as you do in the foreach.

It's impossible to bail out early from array_filter(), so foreach provides more flex-
ibility and is simpler to understand. Also, it’s one of the few cases in which the built-in
PHP function doesn’t clearly outperform user-level code.

114 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Documentation on array_filter() and anonymous functions.

4.14 Finding the Largest or Smallest Valued Element in an
Array

Problem

You have an array of elements, and you want to find the largest or smallest valued
element. For example, you want to find the appropriate scale when creating a histogram.

Solution

To find the largest element, use max():
$largest = max($array);

To find the smallest element, use min():

$smallest = min($array);

Discussion

Normally, max () returns the larger of two elements, but if you pass it an array, it searches
the entire array instead. Unfortunately, there’s no way to find the index of the largest
element using max(). To do that, you must sort the array in reverse order to put the
largest element in position 0:

arsort(Sarray);
Now the value of the largest element is $array[0].

If you don't want to disturb the order of the original array, make a copy and sort the
copy:

Scopy = $array;
arsort(Scopy);

The same concept applies to min() but uses asort() instead of arsort().

Both max() and min() issue a warning if you provide them with an empty array.

See Also

Recipe 4.16 for sorting an array; documentation on max(), min(), arsort(), and
asort().

4.14 Finding the Largest or Smallest Valued Elementinan Array | 115

www.it-ebooks.info

http://www.php.net/array-filter
http://www.php.net/functions.anonymous
http://www.php.net/max
http://www.php.net/min
http://www.php.net/arsort
http://www.php.net/asort
http://www.it-ebooks.info/

4.15 Reversing an Array

Problem

You want to reverse the order of the elements in an array.

Solution
Use array_reverse():
$array = array('Zero', 'One', 'Two');

Sreversed = array_reverse($array);

Discussion

The array_reverse() function reverses the elements in an array. However, it’s often
possible to avoid this operation. If you wish to reverse an array you've just sorted, modify
the sort to do the inverse. If you want to reverse a list you're about to loop through and
process, just invert the loop. Instead of:

for ($1 = 0, Ssize = count($array); $i < $size; Si++) {
/).
}

do the following:

for ($1 = count(Sarray) - 1; $i1 >=0 ; $i--) {
/) ...
}

However, as always, use a for loop only on a tightly packed array.

Another alternative would be, if possible, to invert the order in which elements are
placed into the array. For instance, if youre populating an array from a series of rows
returned from a database, you should be able to modify the query to ORDER DESC. See
your database manual for the exact syntax for your database.

See Also

Documentation on array_reverse().

4.16 Sorting an Array

Problem

You want to sort an array in a specific way.

116 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-reverse
http://www.it-ebooks.info/

Solution
To sort an array using the traditional definition of sort, use sort():

$states = array('Delaware', 'Pennsylvania', 'New Jersey');
sort(Sstates);

To sort numerically, pass SORT_NUMERIC as the second argument to sort():

$scores = array(1l, 10, 2, 20);

sort($scores, SORT_NUMERIC);
This resorts the numbers in ascending order (1, 2, 10, 20) instead of lexicographical
order (1, 10, 2, 20).

Discussion

The sort() function doesn't preserve the key/value association between elements; in-
stead, entries are reindexed starting at 6 and going upward.

To preserve the key/value links, use asort(). The asort() function is normally used
for associative arrays, but it can also be useful when the indexes of the entries are mean-
ingful:

$states = array(l => 'Delaware', 'Pennsylvania', 'New Jersey');
asort($states);

while (list($rank, $state) = each($states)) {
print "S$state was the #Srank state to join the United States\n";

}
Use natsort() tosort thearray using a natural sorting algorithm. Under natural sorting,
you can mix strings and numbers inside your elements and still get the right answer:

Stests = array('testl.php', 'test10.php', 'testil.php', 'test2.php');

natsort($tests);
The elements are now ordered 'testl.php', 'test2.php', 'test10.php', and
'"test1l.php'. With natural sorting, the number 10 comes after the number 2; the
opposite occurs under traditional sorting. For case-insensitive natural sorting, use nat
casesort().

To sort the array in reverse order, use rsort() or arsort(), which is like rsort() but
also preserves keys. There is no natrsort() or natcasersort(). You can also pass
SORT_NUMERIC into these functions.

4.16 Sortingan Array | 117

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 4.17 for sorting with a custom comparison function and Recipe 4.18 for sorting
multiple arrays; documentation on sort(), asort(), natsort(), natcasesort(),

rsort(),and arsort().

4.17 Sorting an Array by a Computable Field

Problem

You want to define your own sorting routine.

Solution

Use usort() in combination with a custom comparison function:

Stests = array('testl.php', 'test10.php', 'testll.php', 'test2.php');

// sort in reverse natural order
usort($tests, function ($a, $b) {
return strnatcmp($b, $a);

b;

Discussion

The comparison function must return a value greater than 0 if $a > $b, 0 if Sa == $b,
and a value less than 0 if $a < $b. To sort in reverse, do the opposite. The function in
the Solution, strnatcmp(), obeys those rules.

To reverse the sort, instead of multiplying the return value of strnatcmp($a, $b) by
-1, switch the order of the arguments to strnatcmp($b, $a).

The comparison function doesn’t need to be a wrapper for an existing sort or an anony-
mous function. For instance, the date_sort() function, shown in Example 4-2, shows

how to sort dates.

Example 4-2. date_sort()

// expects dates in the form of "MM/DD/YYYY"

function date_sort($a, $b) {
list(Sa_month, $a_day, $a_year)
list($b_month, $b_day, $b_year)

if (Sa_year > $b_year) return
if ($a_year < $b_year) return

if (Sa_month > $b_month) return
if (Sa_month < $b_month) return

explode('/", $a);
explode('/", $b);

118 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/sort
http://www.php.net/asort
http://www.php.net/natsort
http://www.php.net/natcasesort
http://www.php.net/rsort
http://www.php.net/arsort
http://www.it-ebooks.info/

if (Sa_day > $b_day) return 1;
if (Sa_day < $b_day) return -1;

return 0;

}

$dates = array('12/14/2000', '08/10/2001', '08/07/1999');
usort($dates, 'date_sort');

While sorting, usort() frequently recomputes the comparison function’s return values
each time it’s needed to compare two elements, which slows the sort. To avoid unnec-
essary work, you can cache the comparison values, as shown in array_sort() in
Example 4-3.

Example 4-3. array_sort()

function array_sort($array, $map_func, $sort_func = '') {
$mapped = array_map($map_func, $array); // cache Smap_func() values

if ('' === S$sort_func) {

asort(Smapped); // asort() is faster then usort()
} else {

uasort($mapped, S$sort_func); // need to preserve keys
}

while (list($key) = each($mapped)) {
$sorted[] = Sarray[Skey]; // use sorted keys
}

return $sorted;

}

To avoid unnecessary work, array_sort() uses a temporary array, $mapped, to cache
the return values. It then sorts $mapped, using either the default sort order or a user-
specified sorting routine. Importantly, it uses a sort that preserves the key/value rela-
tionship. By default, it uses asort() because asort() is faster than uasort(). (Slowness
in uasort() is the whole reason for array_sort() after all.) Finally, it creates a sorted
array, $sorted, using the sorted keys in $mapped to index the values in the original array.

For small arrays or simple sort functions, usort() is faster, but as the number of com-
putations grows, array_sort() surpasses usort(). The following example sorts ele-
ments by their string lengths, a relatively quick custom sort:

function u_length($a, $b) {
$a = strlen($a);
$b = strlen(Sb);

if ($Sa == $b) return 0;
if ($a > $b) return 1;
return -1;

4.17 Sorting an Array by a Computable Field | 119

www.it-ebooks.info

http://www.it-ebooks.info/

}

function map_length($a) {
return strlen($a);

}

Stests = array('one', 'two', 'three', 'four', 'five',
'six', 'seven', 'eight', 'nine', 'ten');

// faster for < 5 elements using u_length()
usort($tests, 'u_length');

// faster for >= 5 elements using map_length()
Stests = array_sort(S$tests, 'map_length');

Here, array_sort() is faster than usort() once the array reaches five elements.

See Also

Recipe 4.16 for basic sorting and Recipe 4.18 for sorting multiple arrays; documentation
on usort(), asort(), array_map(), and anonymous functions.

4.18 Sorting Multiple Arrays

Problem

You want to sort multiple arrays or an array with multiple dimensions.

Solution
Use array_multisort():

To sort multiple arrays simultaneously, pass multiple arrays to array_multisort():

Scolors = array('Red', 'White', 'Blue');
$Scities = array('Boston', 'New York', 'Chicago');

array_multisort($colors, $cities);
print_r($colors);
print_r($cities);
Array
(
[0] => Blue
[1] => Red
[2] => White
)
Array
(
[0] => Chicago
[1] => Boston

120 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/usort
http://www.php.net/asort
http://www.php.net/array-map
http://www.php.net/functions.anonymous
http://www.it-ebooks.info/

[2] => New York
)

To sort multiple dimensions within a single array, pass the specific array elements:

$stuff = array('colors' => array('Red', 'White', 'Blue'),
'cities' => array('Boston', 'New York', 'Chicago'));

array_multisort(Sstuff['colors'], Sstuff['cities']);
print_r($stuff);

Array
(
[colors] => Array
(
[0] => Blue
[1] => Red
[2] => White
)
[cities] => Array
(
[0] => Chicago
[1] => Boston
[2] => New York
)

)

To modify the sort type, as in sort(), pass in SORT_REGULAR, SORT_NUMERIC, or
SORT_STRING after the array. To modify the sort order, unlike in sort(), passin SORT_ASC
or SORT_DESC after the array. You can also pass in both a sort type and a sort order after
the array.

Discussion

The array_multisort() function can sort several arrays at once or a multidimensional
array by one or more dimensions. The arrays are treated as columns of a table to be
sorted by rows. The first array is the main one to sort by; all the items in the other arrays
are reordered based on the sorted order of the first array. If items in the first array
compare as equal, the sort order is determined by the second array, and so on.

The default sorting values are SORT_REGULAR and SORT_ASC, and they’re reset after each
array, so there’s no reason to pass either of these two values, except for clarity:
$numbers = array(0, 1, 2, 3);
Sletters = array('a', 'b', 'c', 'd');
array_multisort(Snumbers, SORT_NUMERIC, SORT_DESC,
Sletters, SORT_STRING , SORT_DESC);

This example reverses the arrays.

4.18 Sorting Multiple Arrays | 121

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 4.16 for simple sorting and Recipe 4.17 for sorting with a custom function;
documentation on array_multisort().

4.19 Sorting an Array Using a Method Instead of a
Function

Problem

You want to define a custom sorting routine to order an array. However, instead of using
a function, you want to use an object method.

Solution
Pass in an array holding a class name and method in place of the function name:

usort($access_times, array('dates', 'compare'));

Discussion

As with a custom sort function, the object method needs to take two input arguments
and return 1, 0, or —1, depending on whether the first parameter is larger than, equal
to, or less than the second:

class sort {
// reverse-order string comparison
static function strrcmp($a, $b) {
return strcmp($b, $a);

}
}

usort($words, array('sort', 'strrcmp'));
It must also be declared as static. Alternatively, you can use an instantiated object:

class Dates {
public function compare($a, $b) { /* compare here */ }

}

Sdates = new Dates;

usort($access_times, array(Sdates, 'compare'));

See Also

Chapter 7 for more on classes and objects; Recipe 4.17 for more on custom sorting of
arrays.

122 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-multisort
http://www.it-ebooks.info/

4.20 Randomizing an Array

Problem

You want to scramble the elements of an array in a random order.

Solution
Use shuffle():

shuffle($Sarray);

Discussion

It’s surprisingly tricky to properly shuffle an array. In fact, up until PHP 4.3, PHP’s
shuffle() routine wasn't a truly random shuffle. It would mix elements around, but
certain combinations were more likely than others.

Therefore, you should use PHP’s shuffle() function whenever possible.

See Also

Documentation on shuffle().

4.21 Removing Duplicate Elements from an Array

Problem

You want to eliminate duplicates from an array.

Solution

If the array is already complete, use array_unique(), which returns a new array that
contains no duplicate values:

Sunique = array_unique($array);
If you create the array while processing results, here is a technique for numerical arrays:

foreach ($_GET['fruits'] as $fruit) {
if (!in_array($fruit, Sarray)) { Sarray[] = $fruit; }
}

Here’s one for associative arrays:

foreach ($_GET['fruits'] as $fruit) {
Sarray[$fruit] = $fruit;
}

4.20 Randomizingan Array | 123

www.it-ebooks.info

http://www.php.net/shuffle
http://www.it-ebooks.info/

Discussion

Once processing is completed, array_unique() is the best way to eliminate duplicates.
But if you're inside a loop, you can eliminate the duplicate entries from appearing by
checking if they’re already in the array.

An even faster method than using in_array() is to create a hybrid array in which the
key and the value for each element are the same. This eliminates the linear check of
in_array() but still allows you to take advantage of the array family of functions that
operate over the values of an array instead of the keys.

In fact, it’s faster to use the associative array method and then call array_values() on
the result (or, for that matter, array_keys(), but array_values() is slightly faster) than
to create a numeric array directly with the overhead of in_array().

See Also

Documentation on array_unique().

4.22 Applying a Function to Each Element in an Array

Problem

You want to apply a function or method to each element in an array. This allows you to
transform the input data for the entire set all at once.

Solution
Use array_walk():

S$names = array('firstname' => "Baba",
'lastname' => "O'Riley");

array_walk($names, function (&Svalue, S$key) {
Svalue = htmlentities($value, ENT_QUOTES);

s

foreach (Snames as $name) {
print "Sname\n";

}

Baba
0'Riley

For nested data, use array_walk_recursive():

S$names = array('firstnames' => array("Baba", "Bill"),
'lastnames' => array("O'Riley", "O'Reilly"));

124 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-unique
http://www.it-ebooks.info/

array_walk_recursive($names, function (&S$value, $Skey) {
Svalue = htmlentities($value, ENT_QUOTES);
b

foreach (Snames as $nametypes) {
foreach ($nametypes as $name) {
print "$name\n";
}
}

Baba
Bill
0'Riley
0'Reilly

Discussion

It’s frequently useful to loop through all the elements of an array. One option is to
foreach through the data. However, an alternative choice is the array_walk() function.

This function takes an array and a callback function, which is the function that processes
the elements of the array. The callback function takes two parameters: a value and a key.
It can also take an optional third parameter, which is any additional data you wish to
expose within the callback.

Here’s an example that ensures all the data in the $names array is properly HTML en-
coded. The anonymous callback function takes the array values, passes them to htmlen
tities() to encode the key HTML entities, and assigns the result back to $value:

$names = array('firstname' => "Baba",
'lastname' => "O'Riley");

array_walk($names, function (&Svalue, Skey) {
Svalue = htmlentities($value, ENT_QUOTES);
b

foreach ($names as $name) {
print "S$name\n";

}

Baba

0'Riley
Because array_walk operates in-place instead of returning a modified copy of the array,
you must pass in values by reference when you want to modify the elements. In those
cases, as in this example, there is an & before the parameter name. However, this is only
necessary when you wish to alter the array.

When you have a series of nested arrays, use the array_walk_recursive() function:

$names = array('firstnames' => array("Baba", "Bill"),
'lastnames' => array("O'Riley", "O'Reilly"));

4.22 Applying a Function to Each Elementinan Array | 125

www.it-ebooks.info

http://www.it-ebooks.info/

array_walk_recursive($names, function (&Svalue, $Skey) {
Svalue = htmlentities($value, ENT_QUOTES);
b

foreach ($names as $nametypes) {
foreach (Snametypes as $name) {
print "S$name\n";
}
}

Baba
Bill
0'Riley
0'Reilly

The array_walk_recursive() function only passes nonarray elements to the callback,
so you don’t need to modify a callback when switching from array_walk().

See Also

Documentation on array_walk(), array_walk_recursive(), htmlentities(), and
anonymous functions.

4.23 Finding the Union, Intersection, or Difference of Two
Arrays

Problem

You have a pair of arrays, and you want to find their union (all the elements), intersection
(elements in both, not just one), or difference (in one but not both).

Solution
To compute the union:

Sunion = array_unique(array_merge($a, $b));
To compute the intersection:

$intersection = array_intersect($a, $b);
To find the simple difference:

$difference = array_diff($a, $b);
And for the symmetric difference:

Sdifference = array_merge(array_diff($a, $b), array diff($b, $a));

126 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-walk
http://www.php.net/array_walk_recursive
http://www.php.net/htmlentities
http://www.php.net/functions.anonymous
http://www.it-ebooks.info/

Discussion

Many necessary components for these calculations are built into PHP; it’s just a matter
of combining them in the proper sequence.

To find the union, you merge the two arrays to create one giant array with all of the
values. But array_merge() allows duplicate values when merging two numeric arrays,
so you call array_unique() to filter them out. This can leave gaps between entries
because array_unique() doesn’t compact the array. It isn't a problem, however, because
foreach and each() handle sparsely filled arrays without a hitch.

The function to calculate the intersection is simply named array_intersection() and
requires no additional work on your part.

The array_diff() function returns an array containing all the unique elements in $old
that aren’t in $new. This is known as the simple difference:

$old = array('To', 'be', 'or', 'not', 'to', 'be');

Snew = array('To', 'be', 'or', 'whatever');

S$difference = array_diff(Sold, S$new);
print_r($difference);

The resulting array, $difference, contains 'not' and 'to' because array_diff() is
case sensitive. It doesn’t contain 'whatever' because it doesn’'t appear in $old.

To get a reverse difference, or in other words, to find the unique elements in $new that
are lacking in $old, flip the arguments:

$old = array('To', 'be', 'or', 'not', 'to', 'be');
Snew = array('To', 'be', 'or', 'whatever');
Sreverse_diff = array_diff(Snew, $old);
print_r($reverse_diff);

The $reverse_diff array contains only 'whatever'.

If you want to apply a function or other filter to array_diff(), roll your own diffing
algorithm:

// implement case-insensitive diffing; diff -i

$seen = array();
foreach (Snew as $n) {
$seen[strtolower(Sn)]++;

}

foreach (Sold as $o0) {
$o = strtolower($o);

if (!$seen[$o0]) { $diff[$o] = $So; }

4.23 Finding the Union, Intersection, or Difference of Two Arrays | 127

www.it-ebooks.info

http://www.it-ebooks.info/

The first foreach builds an associative array lookup table. You then loop through $old
and, if you can’t find an entry in your lookup, add the element to $diff.

It can be a little faster to combine array_diff() with array_map():
$diff = array_diff(array_map('strtolower', $old), array_map('strtolower', Snew));
The symmetric difference is what’s in $a but not $b, and what’s in $b but not $a:
$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

Once stated, the algorithm is straightforward. You call array_diff() twice and find the
two differences. Then you merge them together into one array. There’s no need to call
array_unique() because you've intentionally constructed these arrays to have nothing
in common.

See Also

Documentation on array_unique(), array_intersect(), array_diff(), ar
ray_merge(), and array_map().

4.24 Iterating Efficiently over Large or Expensive Datasets

Problem

You want to iterate through a list of items, but the entire list takes up a lot of memory
or is very slow to generate.

Solution
Use a generator:

function FileLineGenerator($file) {
if (!$fh = fopen($file, 'r')) {
return;

}

while (false !== ($line = fgets($fh))) {
yield $line;
}

fclose($fh);
}

$file = FileLineGenerator('log.txt');
foreach (S$file as S$line) {

if (preg_match('/~rasmus: /', $line)) { print $line; }
}

128 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/array-unique
http://www.php.net/array-intersect
http://www.php.net/array-diff
http://www.php.net/array-merge
http://www.php.net/array-merge
http://www.php.net/array-map
http://www.it-ebooks.info/

Discussion

Generators provide a simple way to efficiently loop over items without the overhead
and expense of loading all the data into an array. They are available in PHP 5.5.

A generator is a function that returns an iterable object. As you loop through the object,
PHP repeatedly calls the generator to get the next value, which is returned by the gen-
erator function using the yield keyword.

Unlike normal functions where you start fresh every time, PHP preserves the current
function state between calls to a generator. This allows you to keep any necessary in-
formation to provide the next value.

If there’s no more data, exit the function without a return or with an empty return
statement. (Trying to return data from a generator is illegal.)

A perfect use of a generator is processing all the lines in a file. The simplest way is to
use the file() function. This open the file, loads each line into an element of an array,
and closes it. However, then you store the entire file in memory.

$file = file('log.txt');
foreach (S$file as S$line) {

if (preg_match('/~rasmus: /', $line)) { print $line; }
}

Another option is to use the standard file reading functions, but then your code for
reading from the file and acting on each line gets intertwined. This doesn’t make for
reusable or easy-to-read code:

function print_matching_lines($file, $regex) {
if (!$fh = fopen('log.txt','r")) {
return;

}
while(false !== ($line = fgets($fh))) {
if (preg_match($regex, $line)) { print $line; }

}
fclose($fh);

}
print_matching_lines('log.txt', '/Arasmus: /');

However, if you wrap the code to process the file into a generator, you get the best of
both options—a general function to efficiently iterate through lines of a file and then
clean syntax as if all the data is stored in an array:

function FilelLineGenerator($file) {
if (!$fh = fopen($file, 'r')) {
return;

}

while (false !== ($line = fgets($fh))) {

4.24 Iterating Efficiently over Large or Expensive Datasets | 129

www.it-ebooks.info

http://www.it-ebooks.info/

yield $line;
}

fclose($fh);
}

$file = FileLineGenerator('log.txt');
foreach ($file as S$line) {
if (preg_match('/~rasmus: /', $line)) { print $line; }
}
In a generator, control passes back and forth between the loop and the function via the
yield statement. The first time the generator is called, control begins at the top of the
function and pauses when it reaches a yield statement, returning the value.

In this example, the FileLineGenerator () generator function loops through lines of a
file. After the file is opened, fgets() is called in a loop. As long as there are more lines,
the loop yields $line back to the iterator. At the end of the file, the loop terminates, the
file is closed, and the function terminates. Because nothing is yielded back, the
foreach() exits.

Now, FileLineGenerator () can be used any time you want to loop through a file. The
previous example prints lines beginning with rasmus: . The following one prints a
random line from the file:

$line_number = 0;
foreach (FileLineGenerator('sayings.txt') as $line) {
$line_number++;
if (mt_rand(0, $line_number - 1) == 0) {
$selected = $line;
}
}

print $selected . "\n";

Despite a completely different use case, FileLineGenerator() is reusable without
modifications. In this example, the generator is invoked from within the foreach loop
instead of storing it in a variable.

You cannot rewind a generator. They only iterate forward.

See Also

Recipe 4.4 foriteration techniques and Chapter 24 for reading from files; documentation
on generators.

130 | Chapter4: Arrays

www.it-ebooks.info

http://www.php.net/generators
http://www.it-ebooks.info/

4.25 Accessing an Object Using Array Syntax

Problem

You have an object, but you want to be able to read and write data to it as an array. This
allows you to combine the benefits from an object-oriented design with the familiar
interface of an array.

Solution
Implement SPLs ArrayAccess interface:

class FakeArray implements ArrayAccess {
private $elements;

public function __construct() {
Sthis->elements = array();

}

public function offsetExists($offset) {
return isset($this->elements[$Soffset]);

}

public function offsetGet($offset) {
return $this->elements[$Soffset];

}

public function offsetSet($offset, $value) {
return $this->elements[$Soffset] = $value;

}

public function offsetUnset($offset) {
unset(Sthis->elements[$offset]);
}
}

Sarray = new FakeArray;

// What's Opera, Doc?
Sarray['animal'] = 'wabbit';

// Be very quiet I'm hunting wabbits
if (isset($array['animal']) &&
// Wabbit tracks!!!
Sarray['animal'] == 'wabbit') {

// Kill the wabbit, kill the wabbit, kill the wabbit
unset($array['animal']);
// Yo ho to oh! Yo ho to oh! Yo ho...

4.25 Accessing an Object Using Array Syntax | 131

www.it-ebooks.info

http://www.it-ebooks.info/

}

// What have I done?? I've killed the wabbit....
// Poor little bunny, poor little wabbit...
if (!isset(Sarray['animal'])) {
print "Well, what did you expect in an opera? A happy ending?\n";

}

Discussion

The ArrayAccess interface allows you to manipulate data in an object using the same
set of conventions you use for arrays. This allows you to leverage the benefits of an
object-oriented design, such as using a class hierarchy or implementing additional
methods on the object, but still allow people to interact with the object using a familiar
interface. Alternatively, it allows you create an “array” that stores its data in an external
location, such as shared memory or a database.

An implementation of ArrayAccess requires four methods: of fsetExists(), which
indicates whether an element is defined; of fsetGet (), which returns an element’s value;
offsetSet(), which setsan element to a new value; and of fsetUnset(), which removes
an element and its value.

This example stores the data locally in an object property:

class FakeArray implements ArrayAccess {
private $elements;

public function __construct() {
S$this->elements = array();

}

public function offsetExists($offset) {
return isset(Sthis->elements[$offset]);

}

public function offsetGet($offset) {
return $this->elements[$offset];

}

public function offsetSet($offset, $value) {
return $this->elements[$offset] = $value;

}

public function offsetUnset($offset) {
unset($this->elements[$offset]);
}

132 | Chapter4: Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

The object constructor initializes the $elements property to a new array. This provides
you with a place to store the keys and values of your array. That property is defined as
private, so people can only access the data through one of the accessor methods defined
as part of the interface.

The next four methods implement everything you need to manipulate an array. Because
offsetExists() checks if an array element is set, the method returns the value of
isset(Sthis->elements[Soffset]).

The offsetGet() and of fsetSet() methods interact with the $Selements property as
you would normally use those features with an array.

Last, the of fsetUnset() method simply calls unset() on the element. Unlike the other
three methods, it does not return the value from its operation. That’s because unset()
is a statement, not a function, and doesn’t return a value.

Now you can instantiate an instance of FakeArray and manipulate it like an array:

Sarray = new FakeArray;

// What's Opera, Doc?
Sarray['animal'] = 'wabbit';

// Be very quiet I'm hunting wabbits
if (isset($array['animal']) &&
// Wabbit tracks!!!
Sarray['animal'] == 'wabbit') {

// Kill the wabbit, kill the wabbit, kill the wabbit
unset($array['animal']);
// Yo ho to oh! Yo ho to oh! Yo ho...

}

// What have I done?? I've killed the wabbit....

// Poor little bunny, poor little wabbit...

if (!isset(S$array['animal'])) {

print "Well, what did you expect in an opera? A happy ending?\n";

}
Each operation calls one of your methods: assigning a value to $array['animal']
triggers of fsetSet(), checking isset($array['animal']) invokes of fsetExists(),
offsetGet() comes into play when you do the comparison $array['animal'] ==

'wabbit', and offsetUnset() is called for unset($array['animal']).

As you can see, after all this, the wabbit is dead.

See Also

More on objects in Chapter 7; the ArrayAccess reference page; and What’s Opera, Doc?

4.25 Accessing an Object Using Array Syntax | 133

www.it-ebooks.info

http://bit.ly/1g8ekwe
http://bit.ly/1mCtfCH
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Variables

5.0 Introduction

Along with conditional logic, variables are the core of what makes computer programs
powerful and flexible. If you think of a variable as a bucket with a name that holds a
value, PHP lets you have plain old buckets, buckets that contain the name of other
buckets, buckets with numbers or strings in them, buckets holding arrays of other
buckets, buckets full of objects, and just about any other variation on that analogy you
can think of.

A variable is either set or unset. A variable with any value assigned to it, true or
false, empty or nonempty, is set. The function isset() returns true when passed a
variable that’s set. To turn a variable that’s set into one that’s unset, call unset() on the
variable or assign null to the variable. Scalars, arrays, and objects can all be passed to
unset(). You can also pass unset() multiple variables to unset them all:

unset($vegetables);

unset($fruits[12]);

unset($earth, Smoon, S$stars);
If a variable is present in the query string of a URL, even if it has no value assigned to
it, it is set in the appropriate superglobal array. Thus:

http://www.example.com/set.php?chimps=&monkeys=12
sets $_GET['monkeys'] to 12 and $_GET['chimps'] to the empty string.

All unset variables are also empty. Set variables may be empty or nonempty. Empty
variables have values that evaluate to false as a boolean. These are listed in Table 5-1.

135

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1. Values that evaluate to false

Type Value

integer 0

double 0.0

string " (empty string)

string “0”

boolean false

array array() (empty array)

null NULL

object An object with no properties, only prior to PHP 5

Everything else not listed in Table 5-1 is nonempty. This includes the string "00", and
the string " ", containing just a space character.

In 5.5, empty() accepts arbitrary expressions.

Variables evaluate to either true or false. The values in Table 5-1 are the complete set
of what’s false in PHP. Every other value is true. The language construct isset() tells
you whether a variable is set. The language construct empty() tells you whether a value
is empty or not. In versions of PHP prior to 5.5 empty() only accepts variables as ar-
guments. In PHP 5.5, you can pass an arbitrary expression to empty().

Constants and return values from functions can be false, but before PHP 5.5, they can't
be empty. For example, Example 5-1 shows a valid use of empty () (in any PHP version)
because $first_name is a variable.

Example 5-1. Correctly checking if a variable is empty
if (empty($first_name)) { .. }
On the other hand, the code in Example 5-2 returns parse errors before PHP 5.5 because
0 (a constant) and the return value from get_first_name() can’t be empty.
Example 5-2. Incorrectly checking if a constant is empty before PHP 5.5

if (empty(0)) { .. }
if (empty(get_first_name())) { .. }

136 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Avoiding == Versus = Confusion

Problem

You don’t want to accidentally assign values when comparing a variable and a constant.

Solution
Use:

if (12 == Sdwarves) { ... }
instead of:

if (Sdwarves == 12) { ... }

Putting the constant on the left triggers a parse error with the assignment operator. In
other words, PHP complains when you write:

if (12 = Sdwarves) { ... }
but:
if (Sdwarves = 12) { ... }

silently executes, assigning 12 to the variable $dwarves, and then executing the code
inside the block. ($dwarves = 12 evaluates to 12, which is true.)

Discussion

Putting a constant on the left side of a comparison coerces the comparison to the type
of the constant. This causes problems when you are comparing an integer with a variable
that could be an integer or a string. 0 == $dwarves is true when $dwarves is 0, but it’s
also true when $dwarves is sleepy. Because an integer () is on the left side of the
comparison, PHP converts what’s on the right (the string sleepy) to an integer (0) before

comparing. To avoid this, use the identity operator, ® === $dwarves, instead.
See Also
Documentation for = and for www.php.net/operators.comparison[==] and

www.php.net/operators.comparison[===].

5.1 Avoiding == Versus = Confusion | 137

www.it-ebooks.info

http://www.php.net/operators.assignment
http://www.it-ebooks.info/

5.2 Establishing a Default Value

Problem

You want to assign a default value to a variable that doesn’t already have a value. It often
happens that you want a hardcoded default value for a variable that can be overridden
from form input or through an environment variable.

Solution
Use isset() to assign a default to a variable that may already have a value:

if (! isset($cars)) {
Scars = $default_cars;

}
Use the ternary (a ? b : c) operator to give a new variable a (possibly default) value:

Scars = isset($_GET['cars']) ? $_GET['cars'] : S$default_cars;

Discussion

Using isset() is essential when assigning default values. Without it, the nondefault
value can't be 0 or anything else that evaluates to false. Consider this assignment:

$Scars = isset(S_GET['cars']) ? $_GET['cars'] : S$default_cars;
If$_GET['cars']is 0, $carsis set to $default_cars even though @ may be a valid value
for $cars.
An alternative syntax for checking arrays is the array_key_exists() function:

$Scars = array_key_exists('cars', $_GET) ? $_GET['cars'] : S$default_cars;

The one difference between isset() and array_key_exists() is that when a key exists
but its value is null, then array_key_exists() returns true, whereas isset() returns
false:

Svehicles = array('cars' => null);
// array_key exists() returns TRUE because the key is present
Sake_result = array_key_exists('cars', $Svehicles);

// isset() returns values because the key's value is NULL
Sisset_result = isset(Svehicles['cars']);

Use an array of defaults to set multiple default values easily. The keys in the defaults
array are variable names, and the values in the array are the defaults for each variable:

$defaults = array('emperors' => array('Rudolf II','Caligula'),
'vegetable' => 'celery',
'acres' => 15);

138 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

foreach (Sdefaults as Sk => $v) {
if (! isset(SGLOBALS[S$k])) { SGLOBALS[Sk] = Sv; }
}

Because the variables are set in the global namespace, the previous code doesn’t work
for setting default variables private within a function. To do that, use variable variables:

foreach ($defaults as Sk => $v) {
if (! isset($$k)) { $Sk = $Sv; }
}

In this example, the first time through the loop, $k is emperors, so $$k is Semperors.

See Also

Documentation on isset(), array_key_exists() and variable variables.

5.3 Exchanging Values Without Using Temporary Variables

Problem

You want to exchange the values in two variables without using additional variables for
storage.

Solution
To swap $a and $b:

$a = 'Alice';
Sb = '"Bob';

list($a,$b) = array($b,%a);
// now Sa is Bob and $b is Alice

Discussion

PHP’s 1ist() language construct lets you assign values from an array to individual
variables. Its counterpart on the right side of the expression, array(), lets you construct
arrays from individual values. Assigning the array that array() returns to the variables
in the 1ist() lets you juggle the order of those values. This works with more than two
values, as well:

Syesterday = 'pleasure';
$today = 'sorrow';
Stomorrow = 'celebrate';

list(Syesterday,Stoday,$tomorrow) = array(S$today,Stomorrow,$yesterday);
// now Syesterday is 'sorrow', Stoday is 'celebrate'
// and Stomorrow is 'pleasure’

5.3 Exchanging Values Without Using Temporary Variables | 139

www.it-ebooks.info

http://www.php.net/isset
http://www.php.net/array_key_exists
http://www.php.net/language.variables.variable
http://www.it-ebooks.info/

This method isn’t faster than using temporary variables, so you should use it for clarity,
but not speed.

See Also

Documentation on list() and array().

5.4 Creating a Dynamic Variable Name

Problem

You want to construct a variable’s name dynamically. For example, you want to use
variable names that match the field names from a database query.

Solution

Use PHP’s variable variable syntax by prepending a $ to a variable whose value is the
variable name you want:

Sanimal = 'turtles';
Sturtles = 103;
print $Sanimal;

This prints:

103

Discussion

Placing two dollar signs before a variable name causes PHP to dereference the right
variable name to get a value. It then uses that value as the name of your real variable.
The preceding example prints 103 because $animal = turtles, so $$animal is $tur
tles, which equals 103.

Using curly braces, you can construct more complicated expressions that indicate vari-
able names:

$stooges = array('Moe','Larry','Curly');

$stooge_moe = 'Moses Horwitz';
$stooge_larry = 'Louis Feinberg';
$stooge_curly = 'Jerome Horwitz';

foreach ($stooges as $s) {
print "$s's real name was ${'stooge_'.strtolower($s)}.\n";
}
PHP evaluates the expression between the curly braces and uses it as a variable name.
That expression can even have function calls in it, such as strtolower().

140 | Chapter5: Variables

www.it-ebooks.info

http://www.php.net/list
http://www.php.net/array
http://www.it-ebooks.info/

Variable variables are also useful when iterating through similarly named variables. Say
you are querying a database table that has fields named title_1, title_2, etc. If you
want to check if a title matches any of those values, the easiest way is to loop through
them like this:
for ($1 = 1; $1 <= $n; $i++) {
St = "title_$i";
if (Stitle == $$t) { /* match */ }
}
Of course, it would be more straightforward to store these values in an array, but if you
are maintaining old code that uses this technique (and you can’t change it), variable
variables are helpful.

The curly brace syntax is also necessary in resolving ambiguity about array elements.
The variable variable $$donkeys[12] could have two meanings. The first is take what’s
in the 12th element of the $donkeys array and use that as a variable name. Write this as:
${$donkeys[12]}. The second is use what’s in the scalar $donkeys as an array name
and look in the 12th element of that array. Write this as: ${$donkeys}[12].

You are not limited by two dollar signs. You can use three, or more, but in practice it’s
rare to see greater than two levels of indirection.

See Also

Documentation on variable variables.

5.5 Persisting a Local Variable’s Value Across Function
Invocations

Problem

You want a local variable to retain its value between invocations of a function.

Solution
Declare the variable as static:

function track_times_called() {
static $i1 = 0;
Si++;
return $i;

5.5 Persisting a Local Variable's Value Across Function Invocations | 141

www.it-ebooks.info

http://www.php.net/language.variables.variable
http://www.it-ebooks.info/

Discussion

Inside a function, declaring a variable static causes its value to be remembered by the
function. So, if there are subsequent calls to the function, you can access the value of
the saved variable. The check_the_count() function shown in Example 5-3 uses stat
ic variables to keep track of the strikes and balls for a baseball batter.

Example 5-3. check_the_count()

function check_the_count($pitch) {
static $strikes = 0;
static $balls = 0;

switch ($pitch) {
case 'foul':
if (2 == $strikes) break; // nothing happens if 2 strikes
// otherwise, act like a strike
case 'strike':
$strikes++;
break;
case 'ball':
Sballs++;
break;

}

if (3 == S$strikes) {
$strikes = Sballs = 0;
return 'strike out';

}

if (4 == $balls) {
$strikes = Sballs = 0;
return 'walk';

}

return 'at bat';

}

$pitches = array('strike', 'ball', 'ball', 'strike', 'foul','strike');
Swhat_happened = array();
foreach ($pitches as $pitch) {
Swhat_happened[] = check_the_count($pitch);
}

// Display the results
var_dump($what_happened);

Example 5-3 prints:

array(6) {
[0]=>
string(6) "at bat"
[1]=>
string(6) "at bat"

142 | Chapter5:Variables

www.it-ebooks.info

http://www.it-ebooks.info/

[2]=>
string(6) "at bat"

[3]=>
string(6) "at bat"
[4]=>

string(6) "at bat"
[5]=>

string(10) "strike out"

}

In check_the_count(), the logic of what happens to the batter depending on the pitch
count is in the switch statement inside the function. You can instead return the number
of strikes and balls, but this requires you to place the checks for striking out, walking,
and staying at the plate in multiple places in the code.

Though static variables retain their values between function calls, they do so only
during one invocation of a script. A static variable accessed in one request doesn’t
keep its value for the next request to the same page.

See Also

Documentation on static variables.

5.6 Sharing Variables Between Processes

Problem

You want a way to share information between processes that provides fast access to the
shared data.

Solution

Use the data store functionality of the APC extension, as shown in Example 5-4.

Example 5-4. Using APC’s data store

// retrieve the old value

Spopulation = apc_fetch('population');

// manipulate the data

Spopulation += ($births + $immigrants - $deaths - $emigrants);
// write the new value back

apc_store('population', $population);

If you don’'t have APC available, use one of the two bundled shared memory extensions,
shmop or System V shared memory.

With shmop, you create a block and read and write to and from it, as shown in
Example 5-5.

5.6 Sharing Variables Between Processes | 143

www.it-ebooks.info

http://www.php.net/language.variables.scope
http://www.it-ebooks.info/

Example 5-5. Using the shmop shared memory functions

// create key
$shmop_key = ftok(__FILE__, 'p');
// create 16384 byte shared memory block
$shmop_1id = shmop_open(Sshmop_key, "c", 0600, 16384);
// retrieve the entire shared memory segment
S$population = shmop_read(Sshmop_1id, 0, 0);
// manipulate the data
Spopulation += (Sbirths + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($Sshmop_bytes_written != strlen($population)) {
echo "Can't write all of: Spopulation\n";
}
// close the handle
shmop_close($shmop_1id);

With System V shared memory, you store the data in a shared memory segment, and
guarantee exclusive access to the shared memory with a semaphore, as shown in
Example 5-6.

Example 5-6. Using the System V shared memory functions

$semaphore_id = 100;
Ssegment_id = 200;
// get a handle to the semaphore associated with the shared memory
// segment we want
$sem = sem_get($semaphore_id,1,0600);
// ensure exclusive access to the semaphore
sem_acquire(Ssem) or die("Can't acquire semaphore");
// get a handle to our shared memory segment
$shm = shm_attach($segment_1id,16384,0600);
// Each value stored in the segment is identified by an integer
// ID
Svar_id = 3476;
// retrieve a value from the shared memory segment
if (shm_has_var($shm, Svar_id)) {
Spopulation = shm_get_var($shm,$var_id);

}
// Or initialize it if it hasn't been set yet
else {
Spopulation = 0;
}

// manipulate the value

Spopulation += (Sbirths + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
shm_put_var($shm,$var_id, $population);

// release the handle to the shared memory segment
shm_detach($shm);

// release the semaphore so other processes can acquire it
sem_release(S$sem);

144 | Chapter5:Variables

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

If you have the APC extension available, its data store is an extremely convenient way
to share information between separate PHP processes across different requests. The
apc_store() function takes a key and a value and stores the value associated with the
specified key. You can also supply an optional time to live (T'TL) as a third argument to
apc_store() to limit the number of seconds the value is stored in the cache.

Once you've stored something, retrieve it by passing apc_fetch() the key. Because
apc_fetch() returns the value stored, or false on failure, it can be difficult to distin-
guish between a successful call that returned a false value and a failed call. To help with
this apc_fetch() supportsasecond by-reference argument which issetto true or false
indicating whether the call succeeded, as follows:

// Shucks, you failed the test!
apc_store('passed the test?', false);

// Sresults is false, because the stored value was false
// S$success is true, because the call to apc_fetch() succeeded
$results = apc_fetch('passed the test?', $success);

In addition to store and fetch, APC also functions for more complicated data manipu-
lation. The apc_inc() and apc_dec() functions atomically increment and decrement
a stored number. This makes them very useful for speedy counters. You can also im-
plement some lightweight locking by using the apc_add() function, which only inserts
a variable into the data store if nothing already exists at that key. Example 5-7 shows
how to do that.

Example 5-7. Using apc_add() to implement locking

function update_recent_users(Scurrent_user) {
Srecent_users = apc_fetch('recent-users', $success);
if (S$success) {
if (! in_array($current_user, $recent_users)) {
array_unshift($recent_users, $current_user);

}
}
else {

Srecent_users = array($current_user);
}

$recent_users = array_slice($recent_users, 0, 10);
apc_store('recent-users', Srecent_users);

}

Stries = 3;
$done = false;

while ((! $done) && (Stries-- > 0)) {
if (apc_add('my-lock', true, 5)) {
update_recent_users($current_user);

5.6 Sharing Variables Between Processes | 145

www.it-ebooks.info

http://www.it-ebooks.info/

apc_delete('my-lock');
$done = true;

}

In Example 5-7, the call to apc_add('my-lock', true, 5) means “Insert a true value
atkeymy-lock onlyifit's notalready there, and expire it automatically after five seconds”
So if this succeeds, any subsequent request that attempts the same thing (in the next five
seconds) will fail until the apc_delete('my-lock") call in the first request removes the
entry from the data store. The update_recent_users() call inside the loop, as an ex-
ample, maintains an array of the 10 most recent users. The loop will try three times to
obtain the lock and then quit.

If you don’t have APC available, you can use a shared memory extension to accomplish
similar in-memory data sharing, albeit with a little more work.

A shared memory segment is a slice of your machine’s RAM that different processes
(such as the multiple web server processes that handle requests) can access. The shmop
and System V shared memory extensions solve the similar problem of allowing you to
save information between requests in a fast and efficient manner, but they take slightly
different approaches and have slightly different interfaces as a result.

The shmop functions have an interface similar to the familiar file manipulation. You
can open a segment, read in data, write to it, and close it. Like a file, there’s no built-in
segmentation of the data, it’s all just a series of consecutive characters.

In Example 5-5, you first create the shared memory block. Unlike a file, you must pre-
declare the maximum size. In this example, it's 16,384 bytes:

// create key

$shmop_key = ftok(__FILE__, 'p');

// create 16384 byte shared memory block

$shmop_1id = shmop_open(Sshmop_key, "c", 0600, 16384);
Just as you distinguish files by using filenames, shmop segments are differentiated by
keys. Unlike filenames, these keys aren’t strings but integers, so they’re not easy to re-
member. Therefore, it’s best to use the ftok() function to convert a human-friendly
name, in this case the filename in the form of __ FILE_ , to a format suitable for
shmop_open(). The ftok() function also takes a one-character project identifier. This
helps you avoid collisions in case you accidently reuse the same string. Here it’s p, for
PHP.

Once you have a key, pass it to shmop_create(), along with the flag you want, the file
permissions (in octal), and the block size. See Table 5-2 for a list of suitable flags.

These permissions work just like file permissions, so 0600 means that the user that
created the block can read it and write to it. In this context, user doesn’t just mean the
process that created the semaphore, but any process with the same user ID. Permissions

146 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

of 8600 should be appropriate for most uses, in which web server processes run as the
same user.

Table 5-2. shmop_open() flags

Flag Description

a Opens for read-only access.
c Creates a new segment. If it already exists, opens it for read and write access.
W Opens for read and write access.

n (reates a new segment, but fails if one already exists. Useful to avoid race conditions.

Once you have a handle, you can read from the segment using shmop_read() and ma-
nipulate the data:

// retrieve the entire shared memory segment

Spopulation = shmop_read(Sshmop_1id, 0, 0);

// manipulate the data

Spopulation += (Sbirths + $immigrants - $deaths - $emigrants);

This code reads in the entire segment. To read in a shorter amount, adjust the second

and third parameters. The second parameter is the start, and the third is the length. As
a shortcut, you can set the length to 0 to read to the end of the segment.

Once you have the adjusted data, store it back with shmop_write() and release the
handle with shmop_close():

// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($Sshmop_bytes_written != strlen($Spopulation)) {

echo "Can't write all of: $population\n";

i/ close the handle

shmop_close($shmop_1id);
Because shared memory segments are of a fixed length, if you're not careful, you can
try to write more data than you have room. Check to see if this happened by comparing
the value returned from shmop_write() with the string length of your data. They should
be the same. If shmop_write() returned a smaller value, then it was only able to fit that
many bytes in the segment before running out of space.

In constrast to shmop, the System V shared memory functions behave similarly to an
array. You access slices of the segment by specifying a key, such as population, and
manipulate them directly. Depending on what you're storing, this direct access can be
more convenient.

However, the interface is more complex as a result, and System V shared memory also
requires you to do manage locking in the form of semaphore.

5.6 Sharing Variables Between Processes | 147

www.it-ebooks.info

http://www.it-ebooks.info/

A semaphore makes sure that the different processes don't step on each other’s toes when
they access the shared memory segment. Before a process can use the segment, it needs
to get control of the semaphore. When it's done with the segment, it releases the
semaphore for another process to grab.

To get control of a semaphore, use sem_get() to find the semaphore’s ID. The first
argument to sem_get() is an integer semaphore key. You can make the key any integer
you want, as long as all programs that need to access this particular semaphore use the
same key. If a semaphore with the specified key doesn't already exist, it’s created; the
maximum number of processes that can access the semaphore is set to the second ar-
gument of sem_get() (in this case, 1); and the semaphore’s permissions are set to
sem_get()’s third argument (0600). Permissions here behave like they do with files and
shmop. For example:

$semaphore_id = 100;

S$segment_id = 200;

// get a handle to the semaphore associated with the shared memory
// segment we want

$sem = sem_get($semaphore_1id,1,0600);

// ensure exclusive access to the semaphore

sem_acquire($sem) or die("Can't acquire semaphore");

sem_get() returns an identifier that points to the underlying system semaphore. Use
this ID to gain control of the semaphore with sem_acquire(). This function waits until
the semaphore can be acquired (perhaps waiting until other processes release the
semaphore) and then returns true. It returns false on error. Errors include invalid
permissions or not enough memory to create the semaphore. Once the semaphore is
acquired, you can read from the shared memory segment:

// get a handle to our shared memory segment
$shm = shm_attach($segment_1id,16384,0600);
// each value stored in the segment is identified by an integer
// ID
Svar_id = 3476;
// retrieve a value from the shared memory segment
if (shm_has_var($shm, Svar_id)) {
Spopulation = shm_get_var($shm,$var_id);

}
// or initialize it if it hasn't been set yet
else {
Spopulation = 0;
}

// manipulate the value

Spopulation += (Sbirths + $immigrants - $deaths - $emigrants);
First, establish a link to the particular shared memory segment with shm_attach(). As
with sem_get(), the first argument to shm_attach() is an integer key. This time, how-
ever, it identifies the desired segment, not the semaphore. If the segment with the speci-
fied key doesn't exist, the other arguments create it. The second argument (16384) is the

148 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

size in bytes of the segment, and the last argument (0600) is the permissions on the
segment. shm_attach(200,16384,0600) creates a 16K shared memory segment that
can be read from and written to only by the user who created it. The function returns
the identifier you need to read from and write to the shared memory segment.

After attaching to the segment, pull variables out of it with shm_get_var($shm,
$var_id). This looks in the shared memory segment identified by $shm and retrieves
the value of the variable with integer key $var_1id. You can store any type of variable in
shared memory. Once the variable is retrieved, it can be operated on like other variables.
shm_put_var($shm, $var_id ,Spopulation) puts the value of Spopulation back into
the shared memory segment at variable $var_1id.

Youre now done with the shared memory statement. Detach from it with shm_de
tach() and release the semaphore with sem_release() so another process can use it:

// release the handle to the shared memory segment
shm_detach($shm);

// release the semaphore so other processes can acquire it
sem_release(S$Ssem);

Shared memory’s chief advantage is that it’s fast. But because it’s stored in RAM, it can’t
hold too much data, and it doesn’t persist when a machine is rebooted (unless you take
special steps to write the information in shared memory to disk before shutdown and
then load it into memory again at startup).

You cannot use System V shared memory under Windows, but the shmop functions
work fine.

See Also

Documentation on apc; shmop; and System V shared memory and semaphore func-
tions.

5.7 Encapsulating Complex Data Types in a String

Problem

You want a string representation of an array or object for storage in a file or database.
This string should be easily reconstitutable into the original array or object.

Solution

Use serialize() to encode variables and their values into a textual form:

$pantry = array('sugar' => '2 1lbs.','butter' => '3 sticks');
$fp = fopen('/tmp/pantry','w') or die ("Can't open pantry");

5.7 Encapsulating Complex Data TypesinaString | 149

www.it-ebooks.info

http://pecl.php.net/apc
http://www.php.net/shmop
http://www.php.net/sem
http://www.it-ebooks.info/

fputs($fp,serialize($pantry));
fclose($fp);

To re-create the variables, use unserialize():

// Snew_pantry will be the array:

// array('sugar' => '2 lbs.', 'butter' => '3 sticks'

$new_pantry = unserialize(file_get_contents('/tmp/pantry'));
For easier interoperability with other languages (at a slight performance cost), use
json_encode() to serialize data:

$pantry = array('sugar' => '2 1bs.','butter' => '3 sticks');

$fp = fopen('/tmp/pantry.json','w') or die ("Can't open pantry");

fputs($fp,json_encode($pantry));
fclose($fp);

And use json_decode() to re-create the variables:

// Snew_pantry will be the array:
// array('sugar' => '2 lbs.', 'butter' => '3 sticks')
$new_pantry = json_decode(file_get_contents('/tmp/pantry.json'), TRUE);

Discussion

The PHP serialized string that is reconstituted into $pantry looks like:
a:2:{s:5:"sugar";s:6:"2 lbs.";s:6:"butter";s:8:"3 sticks";}

The JSON-encoded version looks like:
{"sugar":"2 1bs.","butter":"3 sticks"}

The extra business in the serialized string that’s not in the JSON string encodes the types
and lengths of the values. This makes it uglier to look at but a little faster to decode. If
you're just shuttling data among PHP applications, native serialization is great. If you
need to work with other languages, use JSON instead.

Both native serialization and JSON store enough information to bring back all the values
in the array, but the variable name itself isn’t stored in either serialized representation.

JSON can't distinguish between objects and associative arrays in its serialization format,
so you have to choose which you want when you call json_decode(). A second argu-
ment of true, as in the previous example, produces associative arrays. Without that
argument, the same JSON would be decoded into an object of class stdClass with two
properties: sugar and butter.

When passing serialized data from page to page in a URL, call urlencode() on the data
to make sure URL metacharacters are escaped in it:

$shopping_cart = array('Poppy Seed Bagel' => 2,
'"Plain Bagel' => 1,
"Lox' => 4);

150 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

print '<a href="next.php?cart="'.urlencode(serialize(Sshopping_cart)).
"">Next"';

Serialized data going into a database always needs to be escaped as well. Recipe 10.9
explains how to safely escape values for insertion into a database.

When you unserialize an object, PHP automatically invokes its __wakeUp() method.
This allows the object to reestablish any state that’s not preserved across serialization,
such as database connection. This can alter your environment, so be sure you know
what you're unserializing. See Recipe 7.19 for more details.

See Also

Documentation on serialize(), unserialize(), json_encode(), and json_de
code(). Recipe 10.9 discusses safely inserting values into a database and Recipe 7.19
discusses the interaction of objects and serialization.

5.8 Dumping Variable Contents as Strings

Problem

You want to inspect the values stored in a variable. It may be a complicated nested array
or object, so you can’t just print it out or loop through it.

Solution
Use var_dump(), print_r(), or var_export(), depending on exactly what you need.

The var_dump() and print_r() functions provide different human-readable represen-
tations of variables.

The print_r() function is a little more concise:

$info = array('name' => 'frank', 12.6, array(3, 4));
print_r($info);

prints:
Array
(
[name] => frank
[0] => 12.6
[1] => Array
(
[0] => 3
[1] => 4
)
)

5.8 Dumping Variable Contents as Strings | 151

www.it-ebooks.info

http://www.php.net/serialize
http://www.php.net/unserialize
http://www.php.net/json_encode
http://www.php.net/json_decode
http://www.php.net/json_decode
http://www.it-ebooks.info/

While this:

$info = array('name' => 'frank', 12.6, array(3, 4));
var_dump($info);

prints:

array(3) {
["name"]=>
string(5) "frank"
[0]=>
float(12.6)
[1]=>
array(2) {
[0]=>
int(3)
[1]=>
int(4)
}
}

The var_export() function produces valid PHP code that, when executed, defines the
exported variable:

$info = array('name' => 'frank', 12.6, array(3, 4));
var_export($info);
prints:
array (
'name' => 'frank',
0 => 12.6,
1 =>
array (
0 => 3,
1=>4,
)s
)

Discussion

The three functions mentioned in the Solution differ in how they handle recursion in
references. Because these functions recursively work their way through variables, if you
have references within a variable pointing back to the variable itself, you would end up
with an infinite loop unless these functions bailed out.

When var_dump() or print_r() hasseen a variable once, it prints *RECURSION* instead
of printing information about the variable again and continues iterating through the
rest of the information it has to print. The var_export() function does a similar thing,
but it prints null instead of *RECURSION* to ensure its output is executable PHP code.

152 | Chapter5: Variables

www.it-ebooks.info

http://www.it-ebooks.info/

Consider the arrays Suser_1 and $user_2, which reference each other through their
friend elements:

Suser_1 = array('name' => 'Max Bialystock',
'username' => 'max');

Suser_2 = array('name' => 'Leo Bloom',
'username' => 'leo');

// Max and Leo are friends
Suser_2['friend'] = &Suser_1;
Suser_1['friend'] = &Suser_2;

// Max and Leo have jobs
Suser_1['job'] = 'Swindler';
Suser_2['job'] = 'Accountant';

The output of print_r(Suser_2) is:

Array

(
[name] => Leo Bloom
[username] => leo
[friend] => Array

(
[name] => Max Bialystock
[username] => max
[friend] => Array
(
[name] => Leo Bloom
[username] => leo
[friend] => Array
RECURSION
[job] => Accountant
)
[job] => Swindler
)

[job] => Accountant

)

When print_r() sees the reference to Suser_1 the second time, it prints *RECUR
SION* instead of descending into the array. It then continues on its way, printing the
remaining elements of $user_1 and $user_2. The var_dump() function behaves simi-
larly:

array(4) {
["name"]=>
string(9) "Leo Bloom"
["username"]=>
string(3) "leo"

5.8 Dumping Variable Contents as Strings | 153

www.it-ebooks.info

http://www.it-ebooks.info/

["friend"]=>
&array(4) {
["name"]=>
string(14) "Max Bialystock"
["username"]=>
string(3) "max"
["friend"]=>
&array(4) {
["name"]=>
string(9) "Leo Bloom"
["username"]=>
string(3) "leo"
["friend"]=>
RECURSION
["job"]=>
string(10) "Accountant
}
["job"]=>
string(8) "Swindler"
}
["job"]=>
string(10) "Accountant"

}
As does var_export(), but with null instead of *RECURSION*:

array (
'name' => 'Leo Bloom',
'username' => 'leo',
"friend' =>
array (
'name' => 'Max Bialystock',
'username' => 'max',
'friend' =>
array (
'name' => 'Leo Bloom',
'username' => 'leo',
'friend' => NULL,
'job' => 'Accountant',

)s

'job' => 'Swindler',
))
'job' => 'Accountant',

)

The print_r() and var_export() functions accept a second argument which, if set to
true tells the functions to return the string representation of the variable rather than
printing it. To capture the output from var_dump(), however, you need to use output
buffering:

ob_start();
var_dump(Suser);

154 | Chapter5:Variables

www.it-ebooks.info

http://www.it-ebooks.info/

$dump = ob_get_contents();
ob_end_clean();

This puts the results of var_dump($user) in Sdump.

See Also

Output buffering is discussed in Recipe 8.13; documentation on print_r(),
var_dump(), and var_export().

5.8 Dumping Variable Contents as Strings | 155

www.it-ebooks.info

http://www.php.net/print-r
http://www.php.net/var-dump
http://www.php.net/var_export
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6
Functions

6.0 Introduction

Functions help you create organized and reusable code. They allow you to abstract out
details so your code becomes more flexible and more readable. Without functions, it is
impossible to write easily maintainable programs because youre constantly updating
identical blocks of code in multiple places and in multiple files.

With a function you pass a number of arguments in and get a value back:

function add($a, $b) {
return $a + $b;

}

$total = add(2, 2);

// Stotal is 4
Declare a function using the function keyword, followed by the name of the function
and any parameters in parentheses. To invoke a function, simply use the function name,
specifying argument values for any parameters to the function. If the function returns
avalue, you can assign the result of the function to a variable, as shown in the preceding
example.

You don’t need to predeclare a function before you call it. PHP parses the entire file
before it begins executing, so you can intermix function declarations and invocations.
You can’t, however, redefine a function in PHP. If PHP encounters a function with a
name identical to one it’s already found, it throws a fatal error and dies.

Sometimes, the standard procedure of passing in a fixed number of arguments and
getting one value back doesn't quite fit a particular situation in your code. Maybe you
don’t know ahead of time exactly how many parameters your function needs to accept.
Or you do know your parameters, but theyre almost always the same values, so its

157

www.it-ebooks.info

http://www.it-ebooks.info/

tedious to continue to repass them. Or you want to return more than one value from
your function.

This chapter helps you use PHP to solve these types of problems. We begin by detailing
different ways to pass arguments to a function. Recipe 6.1 through Recipe 6.6 cover
passing arguments by value, reference, and as named parameters; assigning default pa-
rameter values; and functions with a variable number of parameters.

The next four recipes are all about returning values from a function. Recipe 6.7 describes
returning by reference; Recipe 6.8 covers returning more than one variable; Recipe 6.9
describes how to skip selected return values; and Recipe 6.10 talks about the best way
to return and check for failure from a function. The final three recipes show how to call
variable functions, deal with variable scoping problems, and dynamically create a func-
tion. If you want a variable to maintain its value between function invocations, see
Recipe 5.5.

6.1 Accessing Function Parameters

Problem

You want to access the values passed to a function.

Solution
Use the names from the function prototype:

function commercial_sponsorship($letter, $number) {
print "This episode of Sesame Street is brought to you by ";
print "the letter $letter and number $number.\n";

}
commercial_sponsorship('G', 3);

Sanother_letter = 'X';
$another_number = 15;
commercial_sponsorship($Sanother_letter, $another_number);

Discussion

Inside the function, it doesn’t matter whether the values are passed in as strings, num-
bers, arrays, or another kind of variable. You can treat them all the same and refer to
them using the names from the prototype.

Unless otherwise specified, all non-object values being passed into and out of a function
are passed by value, not by reference. (By default, objects are passed by reference.) This
means PHP makes a copy of the value and provides you with that copy to access and

158 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

manipulate. Therefore, any changes you make to your copy don’t alter the original value.
For example:

function add_one($number) {
Snumber++;

}

Snumber = 1;
add_one($number);
print $number;

prints:
1

If the variable had been passed by reference, the value of $number in the global scope
would have been 2.

In many languages, passing variables by reference has the additional benefit of being
significantly faster than passing them by value. Although passing by reference is faster
in PHP, the speed difference is marginal. For that reason, we suggest passing variables
by reference only when actually necessary and never as a performance-enhancing trick.

See Also

Recipe 6.3 to pass values by reference and Recipe 6.7 to return values by reference.

6.2 Setting Default Values for Function Parameters

Problem

You want a parameter to have a default value if the function’s caller doesn’t pass it. For
example, a function to wrap text in an HTML tag might have a parameter for the tag
name, which defaults to strong if none is given.

Solution
Assign the default value to the parameters inside the function prototype:

function wrap_in_html_tag(Stext, $tag = 'strong') {
return "<$tag>Stext</Stag>";
}

Discussion
The example in the Solution sets the default tag value to strong. For example:

print wrap_in_html_tag("Hey, a mountain lion!");

6.2 Setting Default Values for Function Parameters | 159

www.it-ebooks.info

http://www.it-ebooks.info/

prints:

Hey, a mountain lion!
This example:

print wrap_in_html_tag("Look over there!", "em");
prints:

Look over there!

There are two important things to remember when assigning default values. First, all
parameters with default values must appear after parameters without defaults. Other-
wise, PHP can’t tell which parameters are omitted and should take the default value and
which arguments are overriding the default. So wrap_in_html_tag() can't be defined
as:

function wrap_in_html_tag($tag = 'strong', S$text)

If you do this and pass wrap_in_html_tag() only a single argument, PHP assigns the
value to $tag and issues a warning complaining of a missing second argument.

Second, the assigned value must be a constant, such as a string or a number. It can’t be
a variable. Again, using wrap_in_html_tag(), such as our example, you can’t do this:

smy_favorite_html_tag = 'blink';

function wrap_in_html_tag($text, Stag = Smy_favorite_html_tag) {
return "<$tag>Stext</Stag>";
}
If you want to assign a default of nothing, one solution is to assign the empty string to
your parameter:

function wrap_in_html_tag($text, $Stag = '') {
if (empty(Stag)) { return Stext; }
return "<$tag>Stext</Stag>";

}

This function returns the original string, if no value is passed in for the $tag. If a non-
empty tag is passed in, it returns the string wrapped inside of tags.

Depending on circumstances, another option for the $tag default value is either 0 or
NULL. Inwrap_in_html_tag(), you don’t want to allow an empty-valued tag. However,
in some cases, the empty string can be an acceptable option. As the following code
shows, you can use a default message if no argument is provided but an empty message
if the empty string is passed:
function log_db_error($message = NULL) {
if (is_null(Smessage)) {
$message = "Couldn't connect to DB";

}

160 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

error_log("[DB] [$Smessage]");
}

See Also

Recipe 6.6 on creating functions that take a variable number of arguments.

6.3 Passing Values by Reference

Problem

You want to pass a variable to a function and have it retain any changes made to its value
inside the function.

Solution

To instruct a function to accept an argument passed by reference instead of value, pre-
pend an & to the parameter name in the function prototype:

function wrap_in_html_tag(&Stext, $tag = 'strong') {
Stext = "<$tag>Stext</Stag>";
}

Now there’s no need to return the string because the original is modified in place.

Discussion

Passing a variable to a function by reference allows you to avoid the work of returning
the variable and assigning the return value to the original variable. It is also useful when
you want a function to return a boolean success value of true or false, but you still
want to modify argument values with the function.

You can'’t switch between passing a parameter by value or reference; it’s either one or
the other. In other words, there’s no way to tell PHP to optionally treat the variable as
a reference or as a value.

Also, if a parameter is declared to accept a value by reference, you can't pass a constant

string (or number, etc.), or PHP will die with a fatal error.

See Also

Recipe 6.7 on returning values by reference.

6.3 Passing Values by Reference | 161

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Using Named Parameters

Problem

You want to specify your arguments to a function by name, instead of simply their
position in the function invocation.

Solution

PHP doesn’t have language-level named parameter support like some other languages
do. However, you can emulate it by having a function use one parameter and making
that parameter an associative array:

function image($img) {
Stag = '<img src=""' . $img['src'] . '" ';
$tag .= 'alt=""' . (isset($img['alt']) ? S$img['alt'] : "') .'""/>";
return $tag;

}

// Simagel is '"'
$imagel = image(array('src' => 'cow.png', 'alt' => 'cows say moo'));

"

// Simage2 is '"
$image2 = image(array('src' => 'pig.jpeg'));

Discussion

Though using named parameters makes the code inside your functions more complex,
it ensures the calling code is easier to read. Because a function lives in one place but is
called in many, this makes for more understandable code.

Because you've abstracted function parameters into an associative array, PHP can’t warn
youif you accidentally misspell a parameter’s name. You need to be more careful because
the parser won't catch these types of mistakes. Also, you can’t take advantage of PHP’s
ability to assign a default value for a parameter. Luckily, you can work around this deficit
with some simple code at the top of the function:

function image($img) {
if (! isset($img['src'])) { $img['src'] = 'cow.png'; }
if (! isset(Simg['alt'])) { $img['alt'] 'milk factory'; }
if (! isset($img['height'])) { $img['height'] = 100; }
if (! isset(Simg['width'])) { $img['width'] 50; }
VAR 74

}

Using the isset() function, check to see if a value for each parameter is set; if not, assign
a default value.

Alternatively, you can use array_merge() to handle this:

162 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

function image($img) {
Sdefaults = array('src' => 'cow.png',
'alt!' => 'milk factory',
'height' => 100,
'width' => 50
);
$img = array_merge(Sdefaults, $img);
VAT 74
}
If the same key exists in the arrays passed to array_merge(), then it uses the value in
the later array. In the preceding example, that means that any values in $img override
values in $defaults. But if a key is missing from $img, the value from $defaults is
used.

See Also

Recipe 6.6 on creating functions that accept a variable number of arguments.

6.5 Enforcing Types of Function Arguments

Problem

You want to ensure argument values have certain types.

Solution

Use type hints on the arguments when you define your function. A type hint goes before
the parameter name in a function declaration:

function drink_juice(Liquid $drink) {

VAR
}
function enumerate_some_stuff(array Svalues) {
VAR
}
Discussion

A type hint can be a class name, an interface name, the keyword array (since PHP 5.1)
or the keyword callable (since PHP 5.4). If, at runtime, a value is passed for a type-
hinted parameter that does not satisfy the type hint, PHP triggers an E_RECOVERA
BLE_ERROR error.

If you give a type-hinted parameter a default value of null, either the null value or a
value of the proper type is allowed. In the following code, the must_be_an_array()

6.5 Enforcing Types of Function Arguments | 163

www.it-ebooks.info

http://www.it-ebooks.info/

function requires an array-typed parameter. Anything else will trigger an E_RECOVERA
BLE_ERROR error. The array_or_null_1is_ok() function, however, is more forgiving. If
you provide a parameter, it must be an array or null. If you omit the parameter, the
$fruits local variable in the function will be equal to null:

function must_be_an_array(array $fruits) {
foreach (S$fruits as S$fruit) {
print "S$fruit\n";
}
}

function array_or_null_1is_ok(array $fruits = null) {
if (is_array($fruits)) {
foreach (S$fruits as $fruit) {
print "S$fruit\n";
}

}

See Also

Documentation on type hints.

6.6 Creating Functions That Take a Variable Number of
Arguments

Problem

You want to define a function that takes a variable number of arguments.

Solution

Pass the function a single array-typed argument and put your variable arguments inside
the array:

// find the "average" of a group of numbers
function mean($numbers) {

// initialize to avoid warnings

Ssum = 0;

// the number of elements in the array
$size = count(Snumbers);

// iterate through the array and add up the numbers
for (51 = 0; $1 < $size; S$i++) {
$sum += Snumbers[$i];

}

164 | Chapter 6: Functions

www.it-ebooks.info

http://www.php.net/language.oop5.typehinting
http://www.it-ebooks.info/

// divide by the amount of numbers
Saverage = $sum / $size;

// return average
return $average;

}

// Smean is 96.25
$mean = mean(array(96, 93, 98, 98));

Discussion

There are two good solutions, depending on your coding style and preferences. The
more traditional PHP method is the one described in the Solution. We prefer this
method because using arrays in PHP is a frequent activity; therefore, all programmers
are familiar with arrays and their behavior.

So although this method creates some additional overhead, bundling variables is com-
monplace. It's done in Recipe 6.4 to create named parameters and in Recipe 6.8 to return
more than one value from a function. Also, inside the function, the syntax to access and
manipulate the array involves basic commands such as $array[$1] and count($array).

However, this can seem clunky, so PHP provides an alternative and allows you direct
access to the argument list, as shown in Example 6-1.

Example 6-1. Accessing function parameters without using the argument list

// find the "average" of a group of numbers
function mean() {

// initialize to avoid warnings

Ssum = 0;

// the arguments passed to the function
$size = func_num_args();

// iterate through the arguments and add up the numbers
for ($1 = 0; $1 < Ssize; S$i++) {
$sum += func_get_arg($i);

}

// divide by the amount of numbers
Saverage = $sum / $size;

// return average
return $average;

}

// Smean is 96.25
$mean = mean(96, 93, 98, 98);

6.6 Creating Functions That Take a Variable Number of Arguments | 165

www.it-ebooks.info

http://www.it-ebooks.info/

This example uses a set of functions that return data based on the arguments passed to
the function they are called from. First, func_num_args() returns an integer with the
number of arguments passed into its invoking function—in this case, mean(). From
there, you can then call func_get_arg() to find the specific argument value for each
position.

When you callmean(96, 93, 98, 98), func_num_args() returns 4. The first argument
is in position 0, so you iterate from @ to 3, not 1 to 4. That’s what happens inside the for
loop where $1 goes from 0 to less than $size. As you can see, this is the same logic used
in the Solution in which an array was passed. If youre worried about the potential
overhead from using func_get_arg() inside a loop, don’t be. This version is actually
faster than the array-passing method.

There is a third version of this function that uses func_get_args() to return an array
containing all the values passed to the function. It ends up looking like a hybrid between
the previous two functions, as shown in Example 6-2.

Example 6-2. Accessing function parameters without using the argument list

// find the "average" of a group of numbers
function mean() {

// initialize to avoid warnings

Ssum = 0;

// the arguments passed to the function
$size = func_num_args();

// iterate through the arguments and add up the numbers
foreach (func_get_args() as $arg) {
$sum += Sarg;

}

// divide by the amount of numbers
Saverage = $sum / $size;

// return average
return $average;

}

// Smean is 96.25
$mean = mean(96, 93, 98, 98);

Here you have the dual advantages of not needing to place the numbers inside a tem-
porary array when passing them into mean(), but inside the function you can continue
to treat them as if you did.

166 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 6.8 on returning multiple values from a function; documentation on
func_num_args(), func_get_arg(), and func_get_args().

6.7 Returning Values by Reference

Problem

You want to return a value by reference, not by value. This allows you to avoid making
a duplicate copy of a variable.

Solution

The syntax for returning a variable by reference is similar to passing it by reference.
However, instead of placing an & before the parameter, place it before the name of the
function:
function &array_find_value($Sneedle, &Shaystack) {
foreach (Shaystack as Skey => $value) {
if ($Sneedle == $value) {

return $haystack[Skey];
}

}

Also, you must use the =& assignment operator instead of plain = when invoking the
function:

$band =& array_find_value('The Doors', Sartists);

Discussion

Returning a reference from a function allows you to directly operate on the return value
and have those changes directly reflected in the original variable.

The following code searches through an array looking for the first element that matches
a value. It returns the first matching value. For instance, you need to search through a
list of famous people from Minnesota looking for Prince, so you can update his name:

function &array_find_value($needle, &S$haystack) {
foreach ($haystack as S$Skey => $value) {
if (Sneedle == $value) {
return $haystack[Skey];
}

}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald',

6.7 Returning Values by Reference | 167

www.it-ebooks.info

http://www.php.net/func-num-args
http://www.php.net/func-get-arg
http://www.php.net/func-get-args
http://www.it-ebooks.info/

'"Prince', 'Charles Schultz');
S$prince =& array_find_value('Prince', $minnesota);
S$prince = '0(+>'; // The ASCII version of Prince's unpronounceable symbol

print_r($minnesota);
This prints:

Array

(
[6] => Bob Dylan
[1] => F. Scott Fitzgerald
[2] => O(+>
[3] => Charles Schultz
)

Without the ability to return values by reference, you would need to return the array
key and then rereference the original array:

function array_find_value($needle, &S$haystack) {
foreach ($haystack as Skey => $value) {
if (Sneedle == $value) {
return $key;

}
}

S$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald',
'"Prince', 'Charles Schultz');

$prince = array_find_value('Prince', $minnesota);
// The ASCII version of Prince's unpronounceable symbol
$minnesota[$prince] = '0O(+>";

When returning a reference from a function, you must return a reference to a variable,
not a string. For example, this is not legal:

function &array_find_value($Sneedle, &Shaystack) {
foreach ($haystack as Skey => $value) {
if (Sneedle == $value) {
Smatch = Shaystack[$key];
}
}

return "Smatch is found in position $key";

}

That’s because "$match is found in position $key" isa string, and it doesn't make
logical sense to return a reference to nonvariables. This causes PHP to emitan E_NOTICE.

168 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike passing values into functions, in which an argument is either passed by value or
by reference, you can optionally choose not to assign a reference and just take the re-
turned value. Just use = instead of =&, and PHP assigns the value instead of the reference.

See Also

Recipe 6.3 on passing values by reference.

6.8 Returning More Than One Value

Problem

You want to return more than one value from a function.

Solution
Return an array and use 1ist() to separate elements:

function array_stats($values) {
smin = min(Svalues);
Smax = max($values);
S$mean = array_sum($values) / count($values);

return array(Smin, $max, Smean);

}

$values = array(1,3,5,9,13,1442);
Tist(Smin, $max, Smean) = array_stats($values);

Discussion

From a performance perspective, this isn’t a great idea. There is a bit of overhead because
PHP is forced to first create an array and then dispose of it. That’s what is happening in
this example:

function time_parts($time) {

return explode(':', $time);

}

list(Shour, Sminute, $second) = time_parts('12:34:56");

You pass in a time string as you might see on a digital clock and call explode() to break
itapartasarray elements. When time_parts() returns, use 1ist() to take each element
and store it in a scalar variable. Although this is a little inefficient, the other possible
solutions are worse because they can lead to confusing code.

6.8 Returning More Than One Value | 169

www.it-ebooks.info

http://www.it-ebooks.info/

One alternative is to pass the values in by reference. However, this is somewhat clumsy
and can be nonintuitive because it doesn’t always make logical sense to pass the necessary
variables into the function. For instance:

function time_parts(Stime, &Shour, &Sminute, &$second) {
list(Shour, $minute, $second) = explode(':', Stime);

}

time_parts('12:34:56', Shour, $minute, $second);

Without knowledge of the function prototype, there’s no way to look at this and know
Shour, Sminute, and $second are, in essence, the return values of time_parts().

You can also use global variables, but this clutters the global namespace and also makes
it difficult to easily see which variables are being silently modified in the function. For
example:

function time_parts(Stime) {
global $hour, $minute, $second;
list(Shour, $minute, $second) = explode(':', Stime);

}
time_parts('12:34:56");

Again, here it’s clear because the function is directly above the call, but if the function
is in a different file or written by another person, itd be more mysterious and thus open
to creating a subtle bug.

Our advice is that if you modify a value inside a function, return that value and assign
itto avariable unless you have a very good reason not to, such as significant performance
issues. It’s cleaner and easier to understand and maintain.

See Also

Recipe 6.3 on passing values by reference and Recipe 6.12 for information on variable
scoping.

6.9 Skipping Selected Return Values

Problem

A function returns multiple values, but you only care about some of them.

Solution
Omit variables inside of 1ist():

// Only care about minutes
function time_parts(Stime) {

170 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

return explode(':', $time);

}

list(, Sminute,) = time_parts('12:34:56');

Discussion

Even though it looks like there’s a mistake in the code, the code in the Solution is valid
PHP. To reduce confusion, don't use this feature frequently; but if a function returns
many values, and you only want one or two of them, it can come in handy. One example
of this case is if you read in fields using fgetcsv(), which returns an array holding the
fields from the line. In that case, you can use the following:

while ($fields = fgetcsv($fh, 4096)) {
print $fields[2] . "\n"; // the third field
}

If it’s a user-defined function and not built-in, you could also make the returning array
have string keys, because it’s hard to remember, for example, that array element 2 is
associated with 'rank':

while ($fields = read_fields(S$filename)) {
$rank = S$fields['rank']; // the third field is now called rank
print "Srank\n";

}

However, here’s the most efficient method:

while (list(,,$rank,,) = fgetcsv($th, 4096)) {
print "Srank\n"; // directly assign Srank
}

Be careful you don’t miscount the amount of commas; you’ll end up with a bug.

See Also

Recipe 1.12 for more on reading files using fgetcsv().

6.10 Returning Failure

Problem

You want to indicate failure from a function.

Solution
Return false:

function lookup($name) {
if (empty($name)) { return false; }

6.10 Returning Failure | 171

www.it-ebooks.info

http://www.it-ebooks.info/

JE L
}

Sname = 'alice';

if (false !== lookup($name)) {
/* act upon lookup */

} else {
/* log an error */

}

Discussion

In PHP, nontrue values aren’t standardized and can easily cause errors. As a result, your
functions should return the defined false keyword because this works best when
checking a logical value.

Other possibilities are '' or 0. However, while all three evaluate to nontrue inside an
if, there’s actually a difference among them. Also, sometimes a return value of 0 is a
meaningful result, but you still want to be able to also return failure.

For example, strpos() returns the location of the first substring within a string. If the
substring isn't found, strpos() returns false. If it is found, it returns an integer with
the position. Therefore, to find a substring position, you might write:

if (strpos(S$string, S$Ssubstring)) { /* found it! */ }

However, if $substring is found at the exact start of $string, the value returned is 0.
Unfortunately, inside the if, this evaluates to false, so the conditional is not executed.
Here’s the correct way to handle the return value of strpos():

if (false !== strpos($string, $substring)) { /* found it! */ }

See Also

The introduction to Chapter 5 for more on the truth values of variables; documentation
on strpos() and empty().

6.11 Calling Variable Functions

Problem

You want to call different functions depending on a variable’s value.

Solution

Use call_user_func():

172 | Chapter 6: Functions

www.it-ebooks.info

http://www.php.net/strpos
http://www.php.net/empty
http://www.it-ebooks.info/

function get_file(S$filename) { return file_get_contents($filename); }

$function = 'get_file';
$filename = 'graphic.png';

// calls get_file('graphic.png')
call_user_func($function, $filename);

Use call_user_func_array() when your functions accept differing argument counts:

function get_file(Sfilename) { return file_get_contents($filename); }
function put_file(S$filename, $d) {
return file_put_contents($filename, $d); 1}

if (Saction == 'get') {

$function = 'get_file';

$args = array('graphic.png');
} elseif (Saction == 'put') {

S$function = 'put_file';

$args = array('graphic.png', $graphic);
}

// calls get_file('graphic.png')
// calls put_file('graphic.png', S$graphic)
call_user_func_array($function, $args);

Discussion

The call_user_func() and call_user_func_array() functions are a little different
from your standard PHP functions. Their first argument isn’t a string to print, or a
number to add, but the name of a function that’s executed. The concept of passing a
function name that the language invokes is known as a callback, or a callback function.

The call_user_func_array() function comes in quite handy when you're invoking a
callback inside a function that can accept a variable number of arguments. In these cases,
instead of embedding the logic inside your function, you can grab all the arguments
directly using func_get_args():

// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {

Sdate = date(DATE_RSS);

$args = func_get_args();

return print "$date: . call_user_func_array('sprintf', Sargs) . "\n";

}
logf('%s", 'http://developer.ebay.com', 'eBay Developer Program');

The logf() function has the same interface as the printf family: the first argument is
a formatting specifier and the remaining arguments are data that’s interpolated into the

6.11 Calling Variable Functions | 173

www.it-ebooks.info

http://www.it-ebooks.info/

string based on the formatting codes. Because there could be any number of arguments
following the formatting code, you cannot use call_user_func().

Instead, you grab all the arguments in an array using func_get_args() and pass that
array to sprintf using call_user_func_array().

In this particular example, you can also use vsprintf (), whichisa version of sprintf()
that, like call_user_func_array(), accepts an array of arguments:

// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {

Sdate = date(DATE_RSS);

$args = func_get_args();

$format = array_shift($args);

return print "$date: " . vsprintf($format, Sargs) . "\n";

}

If you have more than two possibilities to call, use an associative array of function names:

S$dispatch = array(

'add’ => 'do_add',
'commit' => 'do_commit',
'checkout' => 'do_checkout"',
'update' => 'do_update'
);
$cmd = (isset($S_REQUEST['command']) ? $_REQUEST['command'] : '');

if (array_key_exists($cmd, $dispatch)) {
$function = Sdispatch[$cmd];
call_user_func(S$function); // call function
} else {
error_log("Unknown command $cmd");

}
This code takes the command name from a request and executes that function. Note
the check to see that the command is in a list of acceptable commands. This prevents
your code from calling whatever function was passed in from a request, such as phpin
fo(). This makes your code more secure and allows you to easily log errors.

Another advantage is that you can map multiple commands to the same function, so
you can have a long and a short name:

Sdispatch = array(

'add’ => 'do_add',

'commit’ => 'do_commit', 'cl' => 'do_commit',
'checkout' => 'do_checkout', 'co' => 'do_checkout',
'update’ => 'do_update', 'up' => 'do_update'

);

174 | Chapter 6: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Documentation on array_key_exists(), call_user_func(), call_user_func_ar
ray(), and isset().

6.12 Accessing a Global Variable Inside a Function

Problem

You need to access a global variable inside a function.

Solution
Bring the global variable into local scope with the global keyword:

function eat_fruit($fruit) {
global $chew_count;

for ($1 = $chew_count; $1 > 0; $i--) {
Y
}
}
Or reference it directly in $GLOBALS:
function eat_fruit($fruit) {
for ($1 = $GLOBALS['chew_count']; $i > 0; $i--) {
VA4
}
}

Discussion

If you use a number of global variables inside a function, the global keyword may make
the syntax of the function easier to understand, especially if the global variables are
interpolated in strings.

You can use the global keyword to bring multiple global variables into local scope by
specifying the variables as a comma-separated list:

global $age,$gender,shoe_size;
You can also specify the names of global variables using variable variables:

Swhich_var = 'age';

global $$which_var; // refers to the global variable Sage
However, if you call unset() on a variable brought into local scope using the global
keyword, the variable is unset only within the function. To unset the variable in the
global scope, you must call unset() on the element of the $GLOBALS array:

6.12 Accessing a Global Variable Inside a Function | 175

www.it-ebooks.info

http://www.php.net/array-key-exists
http://www.php.net/call-user-func
http://www.php.net/call-user-func-array
http://www.php.net/call-user-func-array
http://www.php.net/isset
http://www.it-ebooks.info/

$food = 'pizza';
Sdrink = 'beer';

function party() {
global $food, $drink;

unset($food); // eat pizza
unset(SGLOBALS['drink']); // drink beer
}

print "$food: Sdrink\n";

party();

print "S$food: Sdrink\n";
This prints:

pizza: beer
pizza:

You can see that $food stayed the same, while $drink was unset. Declaring a variable
global inside a function is similar to assigning a reference of the global variable to the
local one:

$food = $GLOBALS['food'];

See Also

Documentation on variable scope and variable references.

6.13 Creating Dynamic Functions

Problem

You want to create and define a function as your program is running.

Solution
Use the closure syntax to define a function and store it in a variable:

$increment = 7;
$add = function($i, $j) use (S$increment) { return $i + $j + Sincrement; };

S$sum = Sadd(1, 2);
$sum is now 10. If you are using a version of PHP earlier than 5.3.0, use create_func
tion() instead:

Sincrement = 7;

$add = create_function('S$i,$j', 'return $1+$j + . $increment. ';');

176 | Chapter 6: Functions

www.it-ebooks.info

http://www.php.net/variables.scope
http://www.php.net/language.references
http://www.it-ebooks.info/

$sum = Sadd(1, 2);

Discussion

The closure syntax is much more pleasant than using create_function(). With cre
ate_function, the argument list and function body are written as literal strings. This
means PHP can’t parse their syntax until runtime and you have to pay attention to single
quoting and double quoting and variable interpolation rules.

With the closure syntax, PHP can do the same compile-time checking of your anony-
mous function as it does on the rest of your code. You use the same syntax youd use
elsewhere for writing a function, with one exception: a use() declaration after the ar-
gument list can enumerate variables from the scope in which the closure is defined that
should be available inside the closure. In the preceding example, the use($incre
ment) means that, inside the closure, $increment has the value (7) that it does in the
scope in which the closure is defined.

A frequent use for anonymous functions is to create custom sorting functions for
usort() or array_walk():

$files = array('ziggy.txt', '10steps.doc', 'lilpants.org', "frank.mov");
// sort files in reverse natural order

usort($files, function($a, $b) { return strnatcmp($b, $a); });

// Now Sfiles 1is

// array('ziggy.txt', 'frank.mov','llpants.org', '10steps.doc’')

See Also

Recipe 4.17 for information on usort(); documentation on create_function() and
on usort().

6.13 Creating Dynamic Functions | 177

www.it-ebooks.info

http://www.php.net/create-function
http://www.php.net/usort
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7
Classes and Objects

7.0 Introduction

Early versions of PHP were strictly procedural: you could define functions, but not
objects. PHP 3 introduced an extremely rudimentary form of objects, written as a late-
night hack. Back in 1997, nobody expected the explosion in the number of PHP pro-
grammers, or that people would write large-scale programs in PHP. Therefore, these
limitations weren’t considered a problem.

Over the years, PHP gained additional object-oriented (OO) features; however, the
development team never redesigned the core OO code to gracefully handle objects and
classes. As a result, although PHP 4 improved overall performance, writing complex
OO programs with it was still difficult, if not nearly impossible.

PHP 5 fixed these problems by using Zend Engine 2 (ZE2). ZE2 enables PHP to include
more advanced object-oriented features, while still providing a high degree of backward
compatibility to the millions of PHP scripts already written. Later versions of PHP 5
further enhanced PHP’s OO toolkit. Today, it’s capable of allowing developers to write
fully featured OO applications.

If you don't have experience with object-oriented programming, then you're in for a bit
of a surprise. Although some features allow you to do things more easily, many features
actually restrict what you can do.

Even though it seems counterintuitive, these limitations actually help you quickly write
safe code because they promote code reuse and data encapsulation. These key OO pro-
gramming techniques are explained throughout the chapter. But first, here’s an intro-
duction to object-oriented programming, its vocabulary, and its concepts.

A class is a package containing two things: data and methods to access and modify that
data. The data portion consists of variables; they’re known as properties. The other part
of a class is a set of functions that can use its properties—they’re called methods.

179

www.it-ebooks.info

http://www.it-ebooks.info/

When you define a class, you don't define an object that can be accessed and manipu-
lated. Instead, you define a template for an object. From this blueprint, you create
malleable objects through a process known as instantiation. A program can have mul-
tiple objects of the same class, just as a person can have more than one book or many
pieces of fruit.

Classes also live in a defined hierarchy. Each class down the line is more specialized than
the one above it. These specialized classes are called child classes, and the class they’re
modifying is called the parent class. For example, a parent class could be a building.
Buildings can be further divided into residential and commercial. Residential buildings
can be further subdivided into houses and apartment buildings, and so forth. The top-
most parent class is also called the base class.

Both houses and apartment buildings have the same set of properties as all residential
buildings, just as residential and commercial buildings share some things in common.
When classes are used to express these parent-child relationships, the child class inherits
the properties and methods defined in the parent class. This allows you to reuse the
code from the parent class and requires you to write code only to adapt the new child
to its specialized circumstances. This is called inheritance and is one of the major ad-
vantages of classes over functions. The process of defining a child class from a parent
is known as subclassing or extending.

Classes in PHP are easy to define and create:

class guest_book {
public S$comments;
public $last_visitor;

function update(Scomment, Svisitor) {
}
}

The class keyword defines a class, just as function defines a function. Properties are
declared using the public keyword. Method declaration is identical to function defi-
nition.

The new keyword instantiates an object:
$gb = new guest_book;
Object instantiation is covered in more detail in Recipe 7.1.

Inside a class, you can optionally declare properties using public. There’s no require-
ment to do so, but it is a useful way to reveal all the variables of the class. Because PHP
doesn’t force you to predeclare all your variables, it’s possible to create one inside a class
without PHP throwing an error or otherwise letting you know. This can cause the list

180 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

of variables at the top of a class definition to be misleading, because it’s not the same as

the list of variables actually in the class.
Besides declaring a property, you can also assign it a value:
public S$last_visitor = 'Donnan';
The right-hand side of this construct can only be a constant value:

public $last_visitor = 'Donnan'; // okay
public S$last_visitor = 9; // okay

public S$last_visitor = array('Jesse'); // okay
public S$last_visitor = pick_visitor(); // bad
public S$last_visitor = 'Chris' . '9'; // bad

If you try to assign something else, PHP dies with a parse error.
To assign a nonconstant value to a variable, do it from a method inside the class:

class guest_book {
public $last_visitor;

public function update($comment, Svisitor) {
if (!empty(Scomment)) {
array_unshift($this->comments, $comment);
Sthis->last_visitor = $visitor;
}
}
}

If the visitor left a comment, you add it to the beginning of the array of comments and
set that person as the latest visitor to the guest book. The variable $this is a special
variable that refers to the current object. So to access the $last_visitor property of an

object from inside that object, refer to $this->last_visitor.

To assign nonconstant values to variables upon instantiation, assign them in the class
constructor. The class constructor is a method automatically called when a new object

is created, and it is named __construct(), as shown:

class guest_book {
public $comments;
public $last_visitor;

public function __construct(Suser) {
$dbh = mysqli_connect('localhost', 'username', 'password', 'sites');
Suser = mysqli_real_escape_string($dbh, Suser);

$sql = "SELECT comments, last_visitor FROM guest_books WHERE user='Suser'";

$r = mysqli_query($dbh, $sql);

if (Sobj = mysqli_fetch_object($dbh, $r)) {
Sthis->comments = $obj->comments;
Sthis->last_visitor = $obj->last_visitor;

}

7.0 Introduction

www.it-ebooks.info

181

http://www.it-ebooks.info/

}
}

$gb = new guest_book('stewart');

Constructors are covered in Recipe 7.2.

Be careful not to mistakenly type $this->$size. This is legal, but it's not the same as
$this->size. Instead, it accesses the property of the object whose name is the value
stored in the $size variable. More often than not, $size is undefined, so $this->
$size appears empty. For more on variable property names, see Recipe 5.4.

As of PHP 5.4, you can call a method or access a property directly upon object instan-
tiation:

$last_visitor = (new guest_book('stewart'))->last_visitor;

$last_visitor = (new guest_book('stewart'))->getlLastVisitor();

Besides using - > to access a method or member variable, you can also use : :. This syntax
accesses static methods in a class. These methods are identical for every instance of a
class, because they can’t rely on instance-specific data. There’s no $this in a static
method. For example:

class convert {
// convert from Celsius to Fahrenheit
public static function c2f($degrees) {
return (1.8 * Sdegrees) + 32;

}
}

$f = convert::c2f(100); // 212
To implement inheritance by extending an existing class, use the extends keyword:

class xhtml extends xml {

/...
}

Child classes inherit parent methods and can optionally choose to implement their own
specific versions. For example:

class DB {
public S$result;

function getResult() {
return $this->result;

}

function query($sql) {
error_log("query() must be overridden by a database-specific child");
return false;

}

182 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

}

class MySQL extends DB {
function query($sql) {
Sthis->result = mysql_query($sql);
}
}
The MySQL class inherits the getResult() method unchanged from the parent DB class,
but has its own MySQL-specific query() method. Preface the method name with par
ent:: to explicitly call a parent method:
function escape(S$sql) {
$safe_sql = mysql_real_escape_string($sql); // escape special characters
$safe_sql = parent::escape($safe_sql); // parent method adds '' around S$sql
return $safe_sql;

}

Recipe 7.14 covers accessing overridden methods.

7.1 Instantiating Objects

Problem

You want to create a new instance of an object.

Solution

Define the class, then use new to create an instance of the class:

class user {
function load_info(Susername) {
// load profile from database
}
}

Suser = new user;
Suser->load_info($_GET['username']);

Discussion
You can instantiate multiple instances of the same object:

$adam = new user;
$adam->load_info('adam');

$dave = new user;
$dave->load_info('adam');

7.1Instantiating Objects | 183

www.it-ebooks.info

http://www.it-ebooks.info/

These are two independent objects that happen to have identical information. They’re
like identical twins; they may start off the same, but they go on to live separate lives.

See Also

Recipe 7.10 for more on copying and cloning objects; documentation on classes and
objects.

7.2 Defining Object Constructors

Problem

You want to define a method that is called when an object is instantiated. For example,
you want to automatically load information from a database into an object upon cre-
ation.

Solution
Define a method named __construct():

class user {
function __ construct($username, $password) {

/...
}
}

Discussion

The method named __construct() (that’s two underscores before the word con
struct) acts as a constructor:

class user {
public S$username;

function _ construct($username, $password) {
if ($this->validate_user(Susername, Spassword)) {
$this->username = $Susername;
}
}

}

Suser = new user('Grif', 'Mistoffelees'); // using built-in constructor

For backward compatibilty with PHP 4, if PHP 5 does not find a method named __con
struct(), but does find one with the same name as the class (the PHP 4 constructor
naming convention), it will use that method as the class constructor.

184 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop
http://www.php.net/oop
http://www.it-ebooks.info/

Having a standard name for all constructors makes it easier to call your parent’s con-
structor (because you don't need to know the name of the parent class) and also doesn’t
require you to modify the constructor if you rename your class.

See Also

Recipe 7.14 for more on calling parent constructors; documentation on object con-
structors.

7.3 Defining Object Destructors

Problem

You want to define a method that is called when an object is destroyed. For example,
you want to automatically save information from a database into an object when it’s

deleted.

Solution

Objects are automatically destroyed when a script terminates. To force the destruction
of an object, use unset():

$car = new car; // buy new car

/) ...

unset($car); // car wreck
To make PHP call a method when an object is eliminated, define a method named
__destruct():

class car {
function __destruct() {
// head to car dealer

}
}

Discussion

It's not normally necessary to manually clean up objects, but if you have a large loop,
unset() can help keep memory usage from spiraling out of control.

PHP supports object destructors. Destructors are like constructors, except that they’re
called when the object is deleted. Even if you don't delete the object yourself using
unset (), PHP still calls the destructor when it determines that the object is no longer
used. This may be when the script ends, but it can be much earlier.

You use a destructor to clean up after an object. For instance, the Database destructor
would disconnect from the database and free up the connection. Unlike constructors,

7.3 Defining Object Destructors | 185

www.it-ebooks.info

http://www.php.net/oop5.decon
http://www.php.net/oop5.decon
http://www.it-ebooks.info/

you cannot pass information to a destructor, because you're never sure when it’s going
to be run.

Therefore, if your destructor needs any instance-specific information, store it as a
property:

// Destructor
class Database {
function __destruct() {
db_close(S$this->handle); // close the database connection
}
}

Destructors are executed before PHP terminates the request and finishes sending data.
Therefore, you can print from them, write to a database, or even ping a remote server.

You cannot, however, assume that PHP will destroy objects in any particular order.
Therefore, you should not reference another object in your destructor, because PHP
may have already destroyed it. Doing so will not cause a crash, but it will cause your
code to behave in an unpredictable (and buggy) manner.

See Also

Documentation on unset().

7.4 Implementing Access Control

Problem

You want to assign a visibility to methods and properties so they can only be accessed
within classes that have a specific relationship to the object.

Solution
Use the public, protected, and private keywords:

class Person {
public $name; // accessible anywhere
protected $age; // accessible within the class and child classes
private $salary; // accessible only within this specific class

public function
/] ...
}

construct() {

protected function set_age() {
/) ...
}

186 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/unset
http://www.it-ebooks.info/

private function set_salary() {

// ...
}
}
Discussion

PHP allows you to enforce where you can access methods and properties. There are
three levels of visibility:

e public

o protected

e private

Making a method or property public means anyone can call or edit it.!

You can also label a method or property as protected, which restricts access to only the
current class and any child classes that extend that class.

The final visibility is private, which is the most restrictive. Properties and methods
that are private can only be accessed within that specific class.

If you're unfamiliar with this concept, access control can seem like an odd thing. How-
ever, when you use access control, you can actually create more robust code because it
promotes data encapsulation, a key tenet of OO programming.

Inevitably, whenever you write code, there’s some part—the way you store the data, what
parameters the functions take, how the database is organized—that doesn’t work as well
as it should. It’s too slow, too awkward, or doesn’t allow you to add new features, so you
clean it up.

Fixing code is a good thing, unless you accidently break other parts of your system in
the process. When a program is designed with a high degree of encapsulation, the un-
derlying data structures and database tables are not accessed directly. Instead, you define
a set of functions and route all your requests through these functions.

For example, you have a database table that stores names and email addresses. A pro-
gram with poor encapsulation directly accesses the table whenever it needs to fetch a
person’s email address:

Sname = 'Rasmus Lerdorf';
$sqlite = new PDO('sqlite:/usr/local/users.db');

$rows = $db->query("SELECT email FROM users WHERE name LIKE 'Sname'");

1. Prior to PHP 5, all methods and properties were public.

7.4 Implementing Access Control | 187

www.it-ebooks.info

http://www.it-ebooks.info/

Srow = Srows->fetch();
Semaill = S$row['email'];

A better encapsulated program uses a function instead:

function getEmail($Sname) {
$sqlite = new PDO("sqlite:/usr/local/users.db");

$rows = $db->query("SELECT email FROM users WHERE name LIKE 'Sname'");
Srow = Srows->fetch();

Semail = Srow['email'];

return S$email;

}

Semail = getEmail('Rasmus Lerdorf');

Using getEmail() has many benefits, including reducing the amount of code you need
to write to fetch an email address. However, it also lets you safely alter your database
schema because you only need to change the single query in getEmail() instead of
searching through every line of every file, looking for places where you SELECT data
from the users table. Or you can switch from one database to another with relative ease.

It’s hard to write a well-encapsulated program using functions, because the only way to
signal to people “Don’t touch this!” is through comments and programming conven-
tions.

Objects allow you to wall off implementation internals from outside access. This pre-
vents people from relying on code that may change and forces them to use your functions
toreach the data. Functions of this type are known as accessors, because they allow access
to otherwise protected information. When redesigning code, if you update the accessors
to work as before, none of the code will break.

Marking something as protected or private signals that it may change in the future,
so people shouldn’t access it or they’ll violate encapsulation.

This is more than a social convention. PHP actually prevents people from calling a
private method or reading a private property outside of the class. Therefore, from an
external perspective, these methods and properties might as well not exist because there’s
no way to access them.

In object-oriented programming, there is an implicit contract between the author and
the users of the class. The users agree not to worry about the implementation details.
The author agrees that as long as a person uses public methods they’ll always work, even
if the author redesigns the class.

Both protected and private provide protection against usage outside of the class.
Therefore, the decision to choose one visibility versus the other really comes down to
a judgment call—do you expect someone will need to invoke that method in a child
class?

188 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

If you (or your team) are the only people using that class, choosing private over
protected allows you to be conservative and not overexpose access unnecessarily. It’s
easy to open up the visibility later on, if needed. If you're planning on distributing this
code as a package, then biasing toward protected helps enable others to extend on your
work without needing to modify your master library.

1.5 Preventing Changes to Classes and Methods

Problem

You want to prevent another developer from redefining specific methods within a child
class, or even from subclassing the entire class itself.

Solution
Label the particular methods or class as final:

final public function connect($server, $Susername, $password) {
// Method definition here
}

and:

final class MySQL {
// Class definition here
}

Discussion
Inheritance is normally a good thing, but it can make sense to restrict it.

The best reason to declare a method final is that a real danger could arise if someone
overrides it; for example, data corruption, a race condition, or a potential crash or
deadlock from forgetting (or forgetting to release) a lock or a semaphore.

Make a method final by placing the final keyword at the beginning of the method
declaration:

final public function connect(S$server, Susername, $password) {
// Method definition here
}

This prevents someone from subclassing the class and creating a different connect()
method.

To prevent subclassing of an entire class, don't mark each method final. Instead, make
a final class:

7.5 Preventing Changes to Classes and Methods | 189

www.it-ebooks.info

http://www.it-ebooks.info/

final class MySQL {
// Class definition here
}
A final class cannot be subclassed. This differs from a class in which every method is
final because that class can be extended and provided with additional methods, even
if you cannot alter any of the preexisting methods.

7.6 Defining Object Stringification

Problem

You want to control how PHP displays an object when you print it.

Solution
Implement a __toString() method:

class Person {
// Rest of class here

public function __toString() {
return "$this->name <S$this->emails>";
}
}

Discussion

PHP provides objects with a way to control how they are converted to strings. This
allows you to print an object in a friendly way without resorting to lots of additional
code.

PHP calls an object’s__toString() method when you echo or print the object by itself.
For example:

class Person {
protected Sname;
protected $email;

public function setName($name) {
S$this->name = S$name;

}

public function setEmail(S$email) {
Sthis->email = Semail;

}

public function __toString() {
return "S$this->name <S$this->email>";

190 | Chapter7:Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

}

You can write:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
Srasmus->setEmail(' rasmus@php.net');
print $rasmus;

Rasmus Lerdorf <rasmus@php.net>

This causes PHP to invoke the __toString() method behind the scenes and return the
stringified version of the object.

Your method must return a string; otherwise, PHP will issue an error. Though this seems
obvious, you can sometimes get tripped up by PHP’s auto-casting features, which do
not apply here.

For example, it’s easy to treat the string '9"' and the integer 9 identically, because PHP
generally switches seamlessly between the two depending on context, almost always to
the correct result.

However, in this case, you cannot return integers from __toString(). If you suspect
you may be in a position to return a nonstring value from this method, consider ex-
plicitly casting the results, as shown:

class TextInput {
// Rest of class here

public function __toString() {
return (string) $this->label;
}
}

By casting $this->1label to a string, you don’'t need to worry if someone decided to
label that text input with a number.

The __toString() feature has a number of limitations prior to PHP 5.2. Therefore, if
you're using __toString() heavily in your code, it’s best to use PHP 5.2 or greater.

7.7 Requiring Multiple Classes to Behave Similarly

Problem

You want multiple classes to use the same methods, but it doesn’t make sense for all the
classes to inherit from a common parent class.

7.7 Requiring Multiple Classes to Behave Similarly | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Define an interface and declare that your class will implement that interface:

interface Namelnterface {
public function getName();
public function setName($name);

}

class Book implements NamelInterface {
private $name;

public function getName() {
return $this->name;

}

public function setName($name) {
return $this->name = Sname;
}
}

TheNameInterfaceinterface defines two methods necessary to name an object. Because

books are nameable, the Book class says it implements the NameInterface interface, and
then defines the two methods in the class body.

When you want to include the code that implements the interface, define a trait and
declare that your classes will use that trait:

trait NameTrait {
private $name;

public function getName() {
return $this->name;

}

public function setName($name) {
return $this->name = $name;
}
}

class Book {
use NameTrait;

}

class Child {
use NameTrait;

}
The NameTratt trait defines and implements two methods necessary to name an object.
Because books are nameable, the Book class says it will use the NameTratt trait, and then
you can call the two methods in the class body.

192 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

In object-oriented programming, objects must work together. Therefore, you should be
able to require a class (or more than one class) to implement methods that are necessary
for the class to interact properly in your system.

For instance, an e-commerce application needs to know a certain set of information
about every item up for sale. These items may be represented as different classes: Book,
CD, DVD, etc. However, at the very minimum you need to know that every item in your
catalog has a name, regardless of its type. (You probably also want them to have a price
and maybe even an ID, while you're at it.)

The mechanism for forcing classes to support the same set of methods is called an
interface. Defining an interface is similar to defining a class:

interface NameInterface {
public function getName();
public function setName(Sname);
}
Instead of using the keyword class, an interface uses the keyword interface. Inside
the interface, define your method prototypes, but don't provide an implementation.

This creates an interface named NameInterface. Any class that has the NameInter
face mustimplement the two methodslisted in the interface: getName () and setName().

When a class supports all the methods in the interface, it’s said to implement the inter-
face. You agree to implement an interface in your class definition:

class Book implements NamelInterface {
private Sname;

public function getName() {
return $this->name;

}

public function setName($name) {
return $this->name = $name;
}
}
Failing to implement all the methods listed in an interface, or implementing them with
a different prototype, causes PHP to emit a fatal error.

A class can agree to implement as many interfaces as you want. For instance, you may
want to have a ListenInterface interface that specifies how you can retrieve an audio
clip for an item. In this case, the CD and DVD classes would also implement ListenIn
terface, whereas the Book class wouldn’t. (Unless, of course, it is an audio book.)

7.7 Requiring Multiple Classes to Behave Similarly | 193

www.it-ebooks.info

http://www.it-ebooks.info/

When you use interfaces, it's important to declare your classes before you instantiate
objects. Otherwise, when a class implements interfaces, PHP can sometimes become
confused. To avoid breaking existing applications, this requirement is not enforced, but
it’s best not to rely on this behavior.

To check if a class implements a specific interface, use class_implements(), as shown:

class Book implements NamelInterface {
// .. Code here
}

S$interfaces = class_implements('Book');
if (isset($interfaces['Namelnterface'])) {
// Book implements NameInterface

}

You can also use the Reflection classes:

class Book implements NameInterface {
// .. Code here
}

$rc = new ReflectionClass('Book');
if (Src->implementsInterface('NamelInterface')) {
print "Book implements NameInterface\n";

}

When you want to share code across two classes, use a trait:

trait NameTrait {
private $name;

public function getName() {
return $this->name;

}

public function setName($Sname) {
return $this->name = $name;
}
}

class Book {
use NameTrait;

}

S$book = new Book;
$book->setName('PHP Cookbook');
print $book->getName();

You can use interfaces and traits together. This is actually a best-practice design:

class Book implements NamelInterface {
use NameTrait;

}

194 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Interfaces allow you to establish clear contracts with explicit promises about how your
objects behave. Traits allow you to reuse code across objects that don’t have an “is a”
inheritance relationship; they are just a programmatic way to avoid copy and pasting
code in multiple places.

Interfaces combined with traits give you the best of both. The interface provides the
contract across a wide set of classes, and the trait lets you fulfill it. Then, a specific class
can choose to use the trait, or implement the interface on its own. For example, you
could impose a contraint that each Book must have a unique name or that the name
should be stored in a database. In these cases, the NameTrait wouldn’t serve your needs.

You can have a class implement multiple interfaces or traits by separating them with a
comma:

class Book implements NamelInterface, Sizelnterface {
use NameTrait, SizeTrait;

}

See Also

Recipe 7.20 for more on the Reflection classes; documentation on class_imple
ments(), interfaces, and traits.

7.8 Creating Abstract Base Classes

Problem

You want to create an abstract class, or, in other words, one that is not directly instan-
tiable, but acts as a common base for children classes.

Solution
Label the class as abstract:

abstract class Database {
/) ...
}

Do this by placing the abstract keyword before the class definition.

You must also define at least one abstract method in your class. Do this by placing the
abstract keyword in front of the method definition:

abstract class Database {
abstract public function connect();
abstract public function query();
abstract public function fetch();

7.8 Creating Abstract Base Classes | 195

www.it-ebooks.info

http://www.php.net/class_implements
http://www.php.net/class_implements
http://www.php.net/interfaces
http://www.php.net/traits
http://www.it-ebooks.info/

abstract public function close();

}

Discussion

Abstract classes are best used when you have a series of objects that are related using
the is a relationship. Therefore, it makes logical sense to have them descend from a
common parent. However, whereas the children are tangible, the parent is abstract.

Take, for example, a Database class. A database is a real object, so it makes sense to have
a Database class. However, although Oracle, MySQL, Postgres, MSSQL, and hundreds
of other databases exist, you cannot download and install a generic database. You must
choose a specific database.

PHP provides a way for you to create a class that cannot be instantiated. This class is
known as an abstract class. For example, see the Database class:

abstract class Database {
abstract public function connect($server, Susername, $password, $database);
abstract public function query($sql);
abstract public function fetch();
abstract public function close();

}
Mark a class as abstract by placing the abstract keyword before class.

Abstract classes must contain at least one method that is also marked abstract. These
methods are called abstract methods. Database contains four abstract methods: con
nect(), query(), fetch(), and close(). These four methods are the basic set of func-
tionality necessary to use a database.

If a class contains an abstract method, the class must also be declared abstract. However,
abstract classes can contain nonabstract methods (even though there are no regular
methods in Database).

Abstract methods, like methods listed in an interface, are not implemented inside the
abstract class. Instead, abstract methods are implemented in a child class that extends
the abstract parent. For instance, you could use a MySQL class:

class MySQL extends Database {
protected $dbh;
protected $Squery;

public function connect($server, $username, $password, $database) {
$this->dbh = mysqli_connect($server, $username,
Spassword, S$database);
}

public function query($sql) {
$this->query = mysqli_query($this->dbh, $sql);

196 | Chapter7:Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

}

public function fetch() {
return mysqli_fetch_row($this->dbh, $this->query);
}

public function close() {
mysqli_close(S$this->dbh);
}
}
When implementing abstract methods, you must keep the same method prototypes. In
this example, for instance, query() takes one argument, $sql.

If a subclass fails to implement all the abstract methods in the parent class, then it itself
is abstract and another class must come along and further subclass the child. You might
do this if you want to create two MySQL classes: one that fetches information as objects
and another that returns arrays.

There are two requirements for abstract methods:

o Abstract methods cannot be defined private, because they need to be inherited.

o Abstract methods cannot be defined final, because they need to be overridden.
Abstract classes and interfaces are similar concepts, but are not identical. For one, you
can implement multiple interfaces, but extend only one abstract class. Additionally, in
an interface you can only define method prototypes—you cannot implement them. An

abstract class, in comparison, needs only one abstract method to be abstract, and can
have many nonabstract methods and even properties.

You should also use abstract classes when the “is a” rule applies. For example, because
you can say “MySQL is a Database,” it makes sense for Database to be an abstract class.
In constrast, you cannot say, “Book is a Namelnterface” or “Book is a Name,” so Name
Interface should be an interface.

7.9 Assigning Object References

Problem

You want to link two objects, so when you update one, you also update the other.

Solution
Use = to assign one object to another by reference:

Sadam
Sdave

new user;
Sadam;

7.9 Assigning Object References | 197

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

When you do an object assignment using =, you don’t create a new copy of an object,
but a reference to the first. So, modifying one alters the other.

This is different from how PHP treats other types of variables, where it does a copy-by-
value:

$adam = new user;
$adam->load_info('adam');

$dave = $Sadam;

Now $dave and $adam are two names for the exact same object.

See Also

Recipe 7.10 for more on cloning objects; documentation on references.

7.10 Cloning Objects

Problem

You want to copy an object.

Solution

Copy objects by reference using =:
$rasmus = Szeev;

Copy objects by value using clone:

$rasmus = clone $Szeev;

Discussion

PHP copies objects by reference instead of value. When you assign an existing object
toanew variable, that new variable is just another name for the existing object. Accessing
the object by the old or new name produces the same results.

To create an independent instance of a value with the same contents, otherwise known
as copying by value, use the clone keyword. Otherwise, the second object is simply a
reference to the first.

This cloning process copies every property in the first object to the second. This includes
properties holding objects, so the cloned object may end up sharing object references
with the original.

198 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/references
http://www.it-ebooks.info/

This is frequently not the desired behavior. For example, consider the aggregated version
of Person that holds an Address object:

class Address {
protected Scity;
protected Scountry;

public function setCity(Scity) { $this->city = Scity; }
public function getCity() { return $this->city; }
public function setCountry($country) { $this->country = S$country; }
public function getCountry() { return $this-> country;}
}

class Person {
protected Sname;
protected $address;

public function __construct() { Sthis->address = new Address; }
public function setName($name) { $this->name = $name; }
public function getName() { return $this->name; }
public function __ call($Smethod, Sarguments) {
if (method_exists($this->address, Smethod)) {
return call_user_func_array(array($this->address, $method), Sarguments);
}
}
}

An aggregated class is one that embeds another class inside in a way that makes it easy
to access both the original and embedded classes. The key point to remember is that the
$address property holds an Address object.

With this class, this example shows what happens when you clone an object:

$rasmus = new Person;
S$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;
Szeev->setName('Zeev Suraski');
Szeev->setCity('Tel Aviv');

. Srasmus->getCity() . '.';

. Szeev->getCity() . '.';

print $rasmus->getName() . ' lives in
print $zeev->getName() . ' lives in '

Rasmus Lerdorf lives in Tel Aviv.

Zeev Suraski lives in Tel Aviv.
Interesting. Calling setName () worked correctly because the $name property is a string,
so it’s copied by value. However, because $address is an object, it’s copied by reference,
so getCity() doesn’t produce the correct results, and you end up relocating Rasmus to
Tel Aviv.

7.10 Cloning Objects | 199

www.it-ebooks.info

http://www.it-ebooks.info/

This type of object cloning is known as a shallow clone or a shallow copy. In contrast, a
deep clone occurs when all objects involved are cloned.

Control how PHP clones an object by implementinga __clone() method in your class.
When this method exists, PHP allows __clone() to override its default behavior, as
shown:

class Person {

// ... everything from before

public function __clone() {
Sthis->address = clone $this->address;
}

}

Inside of __clone(), youre automatically presented with a shallow copy of the variable,
stored in $this, the object that PHP provides when __clone() does not exist.

Because PHP has already copied all the properties, you only need to overwrite the ones
you dislike. Here, $name is okay, but $address needs to be explicitly cloned.

Now the clone behaves correctly:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

Szeev = clone S$rasmus;
$zeev->setName('Zeev Suraski');
Szeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';

print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.';

Rasmus Lerdorf lives in Sunnyvale.
Zeev Suraski lives in Tel Aviv.

Using the clone operator on objects stored in properties causes PHP to check whether
any of those objects containa __clone() method. If one exists, PHP calls it. This repeats
for any objects that are nested even further.

This process correctly clones the entire object and demonstrates why it’s called a deep
copy.

See Also

Recipe 7.9 for more on assigning objects by reference.

200 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

7.11 Overriding Property Accesses

Problem

You want handler functions to execute whenever you read and write object properties.
This lets you write generalized code to handle property access in your class.

Solution
Use the magic methods __get() and __set() to intercept property requests.

To improve this abstraction, also implement __1isset() and __unset() methods to
make the class behave correctly when you check a property using isset() or delete it
using unset().

Discussion

Property overloading allows you to seamlessly obscure from the user the actual location
of your object’s properties and the data structure you use to store them.

For example, the Person class stores variables in an array, $__data. (The name of the
variable doesn’t need begin with two underscores, that’s just to indicate to you that it’s
used by a magic method.)

class Person {
private $_ data = array();

public function _ get($property) {
if (isset($this->__data[$property])) {
return $this->__data[$property];
} else {
return false;
}
}

public function __set($property, $value) {
Sthis->__data[$Sproperty] = Svalue;
}
}

Use it like this:

$johnwood = new Person;
$johnwood->email = 'jonathan@wopr.mil'; // sets Suser->__data['email']
print $johnwood->email; // reads Suser->__data['email']

jonathan@wopr.mil

When you set data, __set() rewrites the element inside of $__data. Likewise, use
__get() to trap the call and return the correct array element.

7.11 Overriding Property Accesses | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Using these methods and an array as the alternate variable storage source makes it less
painful to implement object encapsulation. Instead of writing a pair of accessor methods
for every class property, you use __get() and __set().

With __get() and __set(), you can use what appear to be public properties, such as
$johnwood->name, without violating encapsulation. This is because the programmer
isn't reading from and writing to those properties directly, but is instead being routed
through accessor methods.

The __get() method takes the property name as its single parameter. Within the meth-
od, you check to see whether that property has a value inside $__data. If it does, the
method returns that value; otherwise, it returns false.

When you read $johnwood->name, you actually call __get('name')
and it’s returning $__data['name'], but for all external purposes
that’s irrelevant.

The __set() method takes two arguments: the property name and the new value.
Otherwise, the logic inside the method is similar to __get().

Besides reducing the number of methods in your classes, these magical methods also
make it easy to implement a centralized set of input and output validation.

Here’s how to also enforce exactly what properties are legal and illegal for a given class:

class Person {
// list person and email as valid properties
protected $__data = array('person' => false, 'email' => false);

public function _ get($property) {
if (isset($this->__data[$property])) {
return $this->__data[$property];
} else {
return false;
}
}

// enforce the restriction of only setting
// predefined properties
public function __set(S$property, $value) {
if (isset($this->__data[$property])) {
return $this->__data[$property] = $value;
} else {
return false;

}

202 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

In this updated version of the code, you explicitly list the object’s valid property names
when you define the $__data property. Then, inside __set(), you use isset() to con-
firm that all property writes are going to allowable names.

Preventing rogue reads and writes is why the visibility of the $__data property isn’t
public, but protected. Otherwise, someone could do this:

Sperson = new Person;
S$person->__data['fake_property'] = 'fake_data';

because the magical accessors aren’t used for existing properties.

Pay attention to this important implementation detail. In particular, if youre expecting
people to extend the class, they could introduce a property that conflicts with a property
you're expecting to handle using __get() and __set(). For that reason, the property in
the earlier example is called $__data with two leading underscores.

You should consider prefixing all your “actual” properties in classes where you use
magical accessors to prevent collisions between properties that should be handled using
normal methods and ones that should be routed through __get() and __set().

There are three downsides to using __get() and __set(). First, these methods only
catch missing properties. If you define a property for your class, __get() and __set()
are not invoked by PHP when that property is accessed.

This is the case even if the property you're trying to access isn’t visible in the current
scope (for instance, when you're reading a property that exists in the class but isn’t
accessible to you, because it’s declared private). Doing this causes PHP to emit a fatal
error:

PHP Fatal error: Cannot access private property...

Second, these methods completely destroy any notion of property inheritance. If a par-
ent object has a __get() method and you implement your own version of __get() in
the child, your object won't function correctly because the parent’s __get() method is
never called.

You can work around this by calling parent: :__get(), but it is something you need to
explicitly manage instead of “getting for free” as part of OO design.

The illusion is incomplete because it doesn’t extend to the isset() and unset() meth-
ods. For instance, if you try to check if an overloaded property isset(), you will not
get an accurate answer, as PHP doesn’t know to invoke __get().

You can fix this by implementing your own version of these methods in the class, called
__isset() and __unset():

class Person {
// list person and email as valid properties

7.11 Overriding Property Accesses | 203

www.it-ebooks.info

http://www.it-ebooks.info/

protected $data = array('person' => false, 'email' => false);

public function __get($property) {
if (isset(Sthis->data[Sproperty])) {
return $this->data[$property];
} else {
return null;
}
}

// enforce the restriction of only setting
// pre-defined properties
public function __set($property, $value) {
if (isset(Sthis->data[$Sproperty])) {
Sthis->data[$property] = Svalue;
}
}

public function __isset($property) {
return isset($this->data[$property]);
}

public function __unset($property) {
if (isset($this->data[$property])) {
unset($this->data[$property]);
}

}

The __1isset() method checks inside the $data element and returns true or false
depending on the status of the property you're checking.

Likewise, __unset() passes back the value of unset() applied to the real property, or
false if it’s not set.

Implementing these two methods isn’t required when using __get() and __set(), but
it’s best to do so because it’s hard to predict how you may use object properties. Failing
to code these methods will lead to confusion when someone (perhaps even yourself)
doesn’t know (or forgets) that this class is using magic accessor methods.

Other reasons to consider not using magical accessors are:
o They're relatively slow. They’re both slower than direct property access and explic-
itly writing accessor methods for all your properties.

o They make it impossible for the Reflection classes and tools such as phpDocu-
mentor to automatically document your code.

« You cannot use them with static properties.

204 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Documentation on overloaded methods.

7.12 Calling Methods on an Object Returned by Another
Method

Problem

You need to call a method on an object returned by another method.

Solution
Call the second method directly from the first:

Sorange = $fruit->get('citrus')->peel();

Discussion

PHP is smart enough to first call $fruit->get('citrus') and then invoke the peel()
method on what’s returned.

You can design your classes to facilitate chaining calls repeatedly as if you're writing a
sentence. This is known as a fluent interface. For example:

Stweet = new Tweet;

Stweet->from('@rasmus')
->withStatus('PHP 6 released! #php')
->send();

By stringing together a set of method calls, you build up the Tweet one segment at a
time, then send it to the world.

The keyis to return $this within every chainable method. That preserves the current
context for each subsequent method. Because people can pick and choose which meth-
ods to call (and the order they call them), you need one method that always goes last.
In this case, it’s send(). That’s where the logic lives to assemble all the various pieces
together and execute what you want done.

This code doesn’t actually send a tweet (as the Twitter API requires OAuth), but is a
good illustration of the design practices:

class Tweet {
protected S$data;

public function from($from) {
$data['from'] = $from;
return $this;

7.12 Calling Methods on an Object Returned by Another Method | 205

www.it-ebooks.info

http://www.php.net/oop5.overloading
http://www.it-ebooks.info/

public function withStatus($status) {
$data['status'] = $status;
return $this;

}

public function inReplyToId($id) {
$data['id'] = $id;
return $this;

}

public function send() {
// Generate Twitter API request using info in Sdata
// POST https://api.twitter.com/1.1/statuses/update. json
// with http_build_query(Sdata)

return $id;

}

Stweet = new Tweet;

$id = $Stweet->from('@rasmus')
->withStatus('PHP 6 released! #php')
->send();

S$reply = new Tweet;

$1d2 = Sreply->withStatus('I <3 Unicode!")
->from('@a")
->inReplyToId(S$id)
->send();

Fluent interfaces can be very elegant, but it's important not to overuse them. They’re
best when tied to domains with a well-defined language, such as SQL or sending mes-
sages. This example uses a Tweet, but email or SMS would also work.

See Also

A description of fluent interfaces on Wikipedia and documentation on the Twitter API.

7.13 Aggregating Objects

Problem

You want to compose two or more objects together so that they appear to behave as a
single object.

206 | Chapter7: Classes and Objects

www.it-ebooks.info

http://en.wikipedia.org/wiki/Fluent_interface
https://dev.twitter.com
http://www.it-ebooks.info/

Solution

Aggregate the objects together and use the __call() and __callStatic() magic meth-
ods to intercept method invocations and route them accordingly:

class Address {
protected $city;

public function setCity($city) {
Sthis->city = Scity;
}

public function getCity() {
return $this->city;
}
}

class Person {
protected $name;
protected $address;

public function __construct() {
$this->address = new Address;

}

public function setName($name) {
Sthis->name = S$name;

}

public function getName() {
return $this->name;

}

public function _ call(Smethod, Sarguments) {
if (method_exists($this->address, $method)) {
return call_user_func_array(
array($this->address, $method), $arguments);

}

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

print $rasmus->getName() . ' lives in ' . S$rasmus->getCity() . '.';

An instance of the Address object is created during the construction of every Person.
When you invoke methods not defined in Person, the __call() method catches them
and, when applicable, dispatches them using call_user_func_array().

Use __callStatic() when you need to route static methods.

7.13 Aggregating Objects | 207

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

In this recipe, you cannot say a Person “is an” Address or vice versa. Therefore, it doesn’t
make sense for one class to extend the other.

However, it makes sense for them to be separate classes so that they provide maximum
flexibility and reuse, as well as reduced duplicated code. So you check if another rule—
the “hasa” rule—applies. Because a Person “has an” Address, it makes sense to aggregate
the classes together.

With aggregation, one object acts as a container for one or more additional objects. This
is another way of solving the problem of multiple inheritance because you can easily
piece together an object out of smaller components.

For example, a Person object can contain an Address object. Clearly, People have ad-
dresses. However, addresses aren’t unique to people; they also belong to businesses and
other entities. Therefore, instead of hardcoding address information inside of Person,
it makes sense to create a separate Address class that can be used by multiple classes.

Here’s how this works in practice:

class Address {
protected Scity;

public function setCity($city) {
Sthis->city = Scity;
}

public function getCity() {
return $this->city;
}
}

class Person {
protected Sname;
protected $address;

public function __construct() {
$this->address = new Address;

}

public function setName($name) {
$this->name = S$name;

}

public function getName() {
return $this->name;

}

public function _ call(Smethod, Sarguments) {
if (method_exists(Sthis->address, $method)) {

208 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

return call_user_func_array(
array($this->address, $method), $arguments);

}

The Address class stores a city and has two accessor methods to manipulate the data,
setCity() and getCity().

Person has setName() and getName(), similar to Address, but it also has two other
methods: __construct() and __call().

Its constructor instantiates an Address object and stores it in a protected $address
property. This allows methods inside Person to access $address, but prevents others
from talking directly to the class.

Ideally, when you call a method that exists in Address, PHP would automatically execute
it. This does not occur, because Person does not extend Address. You must write code
to glue these calls to the appropriate methods yourself.

Wrapper methods are one option. For example:

class Person {
public function setCity($city) {
$this->address->setCity($city);
}
}

This setCity() method passes along its data to the setCity() method stored in $ad
dress. This is simple, but it is also tedious because you must write a wrapper for every
method.

Using __call() lets you automate this process by centralizing these methods into a
single place:
class Person {
public function __call(Smethod, Sarguments) {
if (method_exists($Sthis->address, Smethod)) {

return call_user_func_array(
array($this->address, $method), $arguments);

}

The __call() method captures any calls to undefined methods in a class. It is invoked
with two arguments: the name of the method and an array holding the parameters
passed to the method. The first argument lets you see which method was called, so you
can determine whether it’s appropriate to dispatch it to $address.

7.13 Aggregating Objects | 209

www.it-ebooks.info

http://www.it-ebooks.info/

Here, you want to pass along the method if it’s a valid method of the Address class.
Check this using method_exists(), providing the object as the first parameter and the
method name as the second.

If the function returns true, you know this method is valid, so you can call it. Unfortu-
nately, you're still left with the burden of unwrapping the arguments out of the $argu
ments array. That can be painful.

The seldom used and oddly named call_user_func_array() function solves this
problem. This function lets you call a user function and pass along arguments in an
array. Its first parameter is your function name, and the second is the array of arguments.

In this case, however, you want to call an object method instead of a function. There’s
a special syntax to cover this situation. Instead of passing the function name, you pass
an array with two elements. The first element is the object, and the other is the method
name.

This causes call_user_func_array() to invoke the method on your object. You must
then return the result of call_user_func_array() back to the original caller, or your
return values will be silently discarded.

Here’s an example of Person that calls both a method defined in Person and one from
Address:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

print $rasmus->getName() . ' lives in . Srasmus->getCity() . '.';

Even though setCity() and getCity() aren’t methods of Person, you have aggregated
them into that class.

You can aggregate additional objects into a single class, and also be more selective as to
which methods you expose to the outside user. This requires some basic filtering based
on the method name.

See Also

Documentation on magic methods.

7.14 Accessing Overridden Methods

Problem

You want to access a method in the parent class that’s been overridden in the child.

210 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop5.magic
http://www.it-ebooks.info/

Solution
Prefix parent to the method name:

class shape {
function draw() {
// write to screen

}
}

class circle extends shape {
function draw($origin, $radius) {
// validate data
if (Sradius > 0) {
parent::draw();
return true;

}

return false;

}
}

Discussion

When you override a parent method by defining one in the child, the parent method
isn’t called unless you explicitly reference it.

In the Solution, we override the draw() method in the child class, circle, because we
want to accept circle-specific parameters and validate the data. However, in this case,
we still want to perform the generic shape: :draw() action, which does the actual draw-
ing, so we call parent: :draw() inside our method if $radius is greater than 0.

Only code inside the class can use parent: :. Calling parent: :draw() from outside the
class gets you a parse error. For example, if circle: :draw() checked only the radius,
but you also wanted to call shape: :draw(), this wouldn’t work:?

Scircle = new circle;
if (Scircle->draw($origin, S$Sradius)) {
Scircle->parent::draw();

}
This also applies to object constructors, so it’s quite common to see the following:

class circle {
function __construct($x, Sy, $r) {
// call shape's constructor first
parent::__construct();

// now do circle-specific stuff

2. In fact, it fails with the error unexpected T_PAAMAYIM_NEKUDOTAYIM, which is Hebrew for “double-colon.”

7.14 Accessing Overridden Methods | 211

www.it-ebooks.info

http://www.it-ebooks.info/

}

See Also

Recipe 7.2 for more on object constructors; documentation on class parents and on
get_parent_class().

7.15 Creating Methods Dynamically

Problem

You want to dynamically provide methods without explicitly defining them.

Usethe __call() and __callStatic() magic methods to intercept method invocations
and route them accordingly.

This technique is best used when you’re providing an object relational map (ORM) or
creating a proxy class. For instance, you want to expose findBy () methods that translate
to database queries or RESTful APIs.

For example, you have users of your application and want to let people retrieve them
using a varied set search terms: ID, email address, telephone number. You could create
one method per term: findById(), findByEmail(), findByPhone(). However, the un-
derlying code is largely identical, so you can put that in one place.

Here’s where __callStatic() comes in:

class Users {
static function find($Sargs) {
// here's where the real logic lives
// for example a database query:
// SELECT user FROM users WHERE Sargs['field'] = Sargs['value']
}

static function _ callStatic($Smethod, $args) {

if (preg_match('/~AfindBy(.+)$/', $method, $matches)) {
return static::find(array('field' => $matches[1],
'value' => S$args[0]));

}

Suser = User::findById(123);
Suser = User::findByEmail('rasmus@php.net');

When you invoke findById(), PHP passes this request to __callStatic(). Inside, the
regular expression looks for any requests beginning with findBy and extracts the re-

212 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/keyword.parent
http://www.php.net/get-parent-class
http://www.it-ebooks.info/

maining characters. That value and the first argument to the function are then bundled
up and passed to Users: : find(), where the “real” logic lives.

See Also

Documentation on overloaded methods; Recipe 7.18 for more on calling static meth-
ods.

7.16 Using Method Polymorphism

Problem

You want to execute different code depending on the number and type of arguments
passed to a method.

Solution

PHP doesn't support method polymorphism as a built-in feature. However, you can
emulate it using various type-checking functions. The following combine() function
uses is_numeric(), is_string(), is_array(), and is_bool():

// combine() adds numbers, concatenates strings, merges arrays,
// and ANDs bitwise and boolean arguments
function combine($a, $b) {
if (is_int($a) && is_int($b)) {
return $a + $b;

}

if (is_float($a) && is_float(Sb)) {
return $a + $b;

}

if (is_string($a) && is_string($b)) {
return "asbh";

}

if (is_array($a) && is_array(sb)) {
return array_merge($a, $b);

}

if (is_bool($a) && is_bool($b)) {
return $a & $b;

}

return false;

7.16 Using Method Polymorphism | 213

www.it-ebooks.info

http://www.php.net/oop5.overloading
http://www.it-ebooks.info/

Discussion

Because PHP doesn’t allow you to declare a variable’s type in a method prototype, it
can’t conditionally execute a different method based on the method’s signature, as Java
and C++ can. You can, instead, make one function and use a switch statement to man-
ually re-create this feature.

For example, PHP lets you edit images using GD. It can be handy in an image class to
be able to pass in either the location of the image (remote or local) or the handle PHP
has assigned to an existing image stream. This Image class that does just that:

class Image {
protected $handle;

function ImageCreate($image) {
if (is_string($image)) {
// simple file type guessing

// grab file suffix
$info = pathinfo($image);
Sextension = strtolower($info['extension']);
switch ($extension) {
case 'jpg':
case 'jpeg':
$this->handle = ImageCreateFromJPEG(Simage);
break;
case 'png':
Sthis->handle = ImageCreateFromPNG($image);
break;
default:
die('Images must be JPEGs or PNGs.');
}
} elseif (is_resource($image)) {
Sthis->handle = $image;
} else {
die('Variables must be strings or resources.');

}
}

In this case, any string passed in is treated as the location of a file, so use pathinfo() to
grab the file extension. Once you know the extension, try to guess which ImageCreate
From() function accurately opens the image and create a handle.

If it’s not a string, youre dealing directly with a GD stream, which is a type of re
source. Because there’s no conversion necessary, assign the stream directly to $han
dle. Of course, if youre using this class in a production environment, youd be more
robust in your error handling.

214 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Method polymorphism also encompasses methods with differing numbers of argu-
ments. The code to find the number of arguments inside a method is identical to how
you process variable argument functions using func_num_args(). This is discussed in
Recipe 6.6.

See Also

Recipe 6.6 for variable argument functions; documentation on is_string(), is_re
source(), and pathinfo().

71.17 Defining Class Constants

Problem

You want to define constants on a per-class basis, not on a global basis.

Solution

Define them like class properties, but use the const label instead:

class Math {
const pi
const e

3.14159; // universal
2.71828; // constants

}

Sarea = math::pi * $radius * Sradius;

Discussion

PHP reuses its concept of global constants and applies them to classes. Essentially, these
are final properties.

Declare them using the const label:

class Math {
const pi
const e

3.14159; // universal
2.71828; // constants

}
Sarea = math::pi * $radius * Sradius;

Like static properties, you can access constants without first instantiating a new instance
of your class, and they’re accessed using the double colon (: :) notation. Prefix the word
self:: to the constant name to use it inside of a class.

Unlike properties, constants do not have a dollar sign ($) before them:

class Circle {
const pi = 3.14159;

7.17 Defining Class Constants | 215

www.it-ebooks.info

http://www.php.net/is-string
http://www.php.net/is-resource
http://www.php.net/is-resource
http://www.php.net/pathinfo
http://www.it-ebooks.info/

protected $radius;

public function __construct($radius) {
Sthis->radius = S$radius;

}

public function circumference() {
return 2 * self::pil * $this->radius;
}
}

$c = new circle(1);

print $c->circumference();
This example creates a circle with aradius of 1 and then calls the circumference method
to calculate its circumference:

define('pi', 10); // global pi constant

class Circle {
const pil = 3.14159; // class pi constant
protected $radius;

public function __construct($radius) {
$this->radius = $radius;

}

public function circumference() {
return 2 * pi * $this->radius;

}
}

$c = new circle(l);

print $c->circumference();
Oops! PHP has used the value of 10 instead of 3.14159, so the new answer is 20 instead
of 6.28318.

Although it’s unlikely that you will accidentally redefine m (you’ll probably use the built-
in M_PI constant anyway), this can still slip you up.

You cannot assign the value of an expression to a constant, nor can they use information
passed into your script:

// invalid
class permissions {
const read = 1 << 2;

const write =1 << 1;
const execute = 1 << 0;

}

// invalid and insecure

216 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

class database {
const debug = $_REQUEST['debug'];
}

Neither the constants in permissions nor the debug constantin database are acceptable
because they are not fixed. Even the first example, 1 << 2, where PHP does not need
to read in external data, is not allowed.

Because you need to access constants using an explicit name, either self: : or the name
of the class, you cannot dynamically calculate the class name during runtime. It must
be declared beforehand. For example:

class Constants {
const pi = 3.14159;

// rest of class here

}
$class = 'Constants';

print $class::pi;

This produces a parse error, even though this type of construct is legal for nonconstant
expressions, such as $class->pti.

See Also

Documentation on class constants.

7.18 Defining Static Properties and Methods

Problem

You want to define methods in an object, and be able to access them without instantiating
a object.

Solution
Declare the method as static:

class Format {
public static function number($number, $decimals = 2,
Sdecimal = '.', $thousands = ',") {
return number_format($number, $decimals, $decimal, S$thousands);

}

print Format::number(1234.567);

1,234.57

7.18 Defining Static Properties and Methods | 217

www.it-ebooks.info

http://www.php.net/oop5.constants
http://www.it-ebooks.info/

Discussion

Occasionally, you want to define a collection of methods in an object, but you want to
be able to invoke those methods without instantiating a object. In PHP, declaring a
method static lets you call it directly:
class Format {
public static function number($number, $decimals = 2,

Sdecimal = '.', $Sthousands = ',") {
return number_format($number, $decimals, $decimal, S$thousands);

}

print Format::number(1234.567);
1,234.57

Because static methods don’t require an object instance, use the class name instead of
the object. Don’t place a dollar sign ($) before the class name.

Static methods aren’t referenced with an arrow (->), but with double colons (: :)—this
signals to PHP that the method is static. So in the example, the number () method of the
Format class is accessed using Format: :number().

Number formatting doesn’t depend on any other object properties or methods. There-
fore, it makes sense to declare this method static. This way, for example, inside your
shopping cart application, you can format the price of items in a pretty manner with
just one line of code and still use an object instead of a global function.

Within the class where the static method is defined, refer to it using self:

class Format {
public static function number($number, $decimals = 2,
Sdecimal = '.', $Sthousands = ',") {
return number_format($number, $decimals, $decimal, S$thousands);

}

public static function integer($number) {
return self::number($number, 0);

}
}
print Format::number(1234.567) . "\n";
print Format::integer(1234.567) . "\n";
1,234.57
1,235

Here the integer () method references another method defined in Format, number ().
So, it uses self: :number ().

218 | (Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Static methods do not operate on a specific instance of the class where theyre defined.
PHP does not “construct” a temporary object for you to use while you're inside the
method. Therefore, you cannot refer to $this inside a static method, because there’s no
$this on which to operate. Calling a static method is just like calling a regular function.

There’s a potential complication from using self::. It doesn’t follow the same inheri-
tance rules as nonstatic methods. In this case, self:: always attaches the reference to
the class it’s defined in, regardless whether it’s invoked from that class or from a child.

Use static:: to change this behavior, such as in this ORM example:

class Model {
protected static function validateArgs($args) {
throw new Exception("You need to override this in a subclass!");

}

public static function find($args) {
static::validateArgs(Sargs);
Sclass = get_called_class();
// now you can do a database query, such as:
// SELECT * FROM S$class WHERE ...

}

class Bicycle extends Model {
protected static function validateArgs($args) {
return true;

}
}

Bicycle::find(['owner' => 'peewee']);

With self::, PHP binds to Model: :validateArgs(), which doesn’t allow for model-
specific validation. However, with static: :, PHP will defer until it knows which class
the method is actually called from. This is known as late static binding.

Inside of find(), to generate your SQL, you need the name of the calling class. You
cannot use the Reflection classes and the __ CLASS__ constant because they return
Model, so use get_called_class() to pull this at runtime.

PHP also has a feature known as static properties. Every instance of a class shares these
properties in common. Thus, static properties act as class-namespaced global variables.

One reason for using a static property is to share a database connection among multiple
Database objects. For efficiency, you shouldn’t create a new connection to your database
every time you instantiate Database. Instead, negotiate a connection the first time and
reuse that connection in each additional instance, as shown:

class Database {
private static $dbh = NULL;

7.18 Defining Static Properties and Methods | 219

www.it-ebooks.info

http://www.it-ebooks.info/

public function _ construct($server, S$Susername, $password) {
if (self::Sdbh == NULL) {
self::$dbh = db_connect($server, Susername, $password);
} else {
// reuse existing connection

}
}

$db = new Database('db.example.com', 'web', 'jsdéw@2d');
// Do a bunch of queries

$db2 = new Database('db.example.com', 'web', 'jsdew@2d');
// Do some additional queries

Static properties, like static methods, use the double colon notation. To refer to a static
property inside of a class, use the special prefix of self. self is to static properties and
methods as $this is to instantiated properties and methods.

The constructor uses self: :$dbh to access the static connection property. When $db
is instantiated, dbh is still set to NULL, so the constructor calls db_connect() to negotiate
a new connection with the database.

This does not occur when you create $db2, because dbh has been set to the database
handle.

See Also

Documentation on the static keyword.

7.19 Controlling Object Serialization

Problem

You want to control how an object behaves when you serialize() and unserial
ize() it. This is useful when you need to establish and close connections to remote
resources, such as databases, files, and web services.

Solution
Define the magical methods __sleep() and __wakeUp():

class LogFile {
protected $filename;
protected $handle;

public function __construct($filename) {

220 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop5.static
http://www.it-ebooks.info/

Sthis->filename = $filename;
$this->open();
}

private function open() {
$this->handle = fopen($this->filename, 'a');
}

public function __destruct($filename) {
fclose(Sthis->handle);
}

// called when object is serialized
// should return an array of object properties to serialize
public function __sleep() {

return array('filename');

}

// called when object is unserialized
public function __wakeUp() {
$this->open();
}
}

Discussion

When you serialize an object in PHP, it preserves all your object properties. However,
this does not include connections or handles that you hold to outside resources, such
as databases, files, and web services.

These must be reestablished when you unserialize the object, or the object will not
behave correctly. You can do this explicitly within your code, but it’s better to abstract
this away and let PHP handle everything behind the scenes.

Do this through the __sleep() and __wakeUp() magic methods. When you call seri
alize() on a object, PHP invokes __sleep(); when you unserialize() it, it calls
__wakeUp().

The LogFile class in the Solution has five simple methods. The constructor takes a
filename and saves it for future access. The open() method opens this file and stores
the file handle, which is closed in the object’s destructor.

The __sleep() method returns an array of properties to store during object serializa-
tion. Because file handles aren't preserved across serializations, it only returns ar
ray('filename') because that’s all you need to store.

That's why when the object is reserialized, you need to reopen the file. This is handled
inside of __wakeUp(), which calls the same open() method used by the constructor.
Because you cannot pass arguments to __wakeUp(), it needs to get the filename from

7.19 Controlling Object Serialization | 221

www.it-ebooks.info

http://www.it-ebooks.info/

somewhere else. Fortunately, it’s able to access object properties, which is why the file-
name is saved there.

It'simportant to realize that the same instance can be serialized multiple times in a single
request, or even continue to be used after it’s serialized. Therefore, you shouldn’t do
anything in __sleep() that could prevent either of these two actions. The __sleep()
method should only be used to exclude properties that shouldn’t be serialized because
they take up too much disk space, or are calculated based on other data and should be
recalculated or otherwise made fresh during object unserialization.

That’s why the call to fclose() appears in the destructor and not in __sleep().

See Also

Documentation on magic methods; the unserialize() function and the serial
ize() function.

7.20 Introspecting Objects

Problem

You want to inspect an object to see what methods and properties it has, which lets you
write code that works on any generic object, regardless of type.

Solution
Use the Reflection classes to probe an object for information.
For a quick overview of the class, call Reflection: :export():

// learn about cars
Reflection::export(new ReflectionClass('car'));

Or probe for specific data:

$Scar = new ReflectionClass('car');
if ($car->hasMethod('retractTop')) {
// car is a convertible

}

Discussion

It’s rare to have an object and be unable to examine the actual code to see how its
described. Still, with the Reflection classes, you can programmatically extract infor-
mation about both object-oriented features, such as classes, methods, and properties,
and non-OO features, such as functions and extensions.

222 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop5.magic
http://www.php.net/unserialize
http://www.php.net/serialize
http://www.php.net/serialize
http://www.it-ebooks.info/

This is useful for projects you want to apply to a whole range of different classes, such
as creating automated class documentation, generic object debuggers, and state savers,
like serialize().

To help show how the Reflection classes work, Example 7-1 contains an example
Person class that uses many of PHP’s OO features.

Example 7-1. Person class

class Person {
public $name;
protected $spouse;
private $password;

public function __construct($name) {
$this->name = $name

}

public function getName() {
return $name;

}

protected function setSpouse(Person $spouse) {
if (!isset(Sthis->spouse)) {
Sthis->spouse = $spouse;
}
}

private function setPassword($password) {
$this->password = $password;
}
}

For a quick overview of the class, call Reflection: :export():

Reflection::export(new ReflectionClass('Person'));

Class [<user> class Person] {
@@ /www/reflection.php 3-25

- Constants [0] {
}

Static properties [0] {
}

Static methods [0] {
}

Properties [3] {

Property [<default> public $name]
Property [<default> protected $spouse]
Property [<default> private $password]

7.20 Introspecting Objects | 223

www.it-ebooks.info

http://www.it-ebooks.info/

}

- Methods [4] {
Method [<user> <ctor> public method _ _construct] {
@@ /www/reflection.php 8 - 10

- Parameters [1] {
Parameter #0 [$name]
}
}

Method [<user> public method getName] {
@@ /www/reflection.php 12 - 14
}

Method [<user> protected method setSpouse] {
@@ /www/reflection.php 16 - 20

- Parameters [1] {
Parameter #0 [Person or NULL S$spouse]
}
}

Method [<user> private method setPassword] {
@@ /www/reflection.php 22 - 24

- Parameters [1] {
Parameter #0 [S$password]
}
}
}
}

The Reflection::export() static method takes an instance of the ReflectionClass
class and returns a copious amount of information. As you can see, it details the number
of constants, static properties, static methods, properties, and methods in the class. Each
item is broken down into component parts. For instance, all the entries contain visibility
identifiers (private, protected, or public), and methods have a list of their parameters
underneath their definition.

Reflection: :export() not only reports the file where everything is defined, but even
gives the line numbers! This lets you extract code from a file and place it in your doc-
umentation.

Example 7-2 shows a short command-line script that searches for the filename and
starting line number of a method or function.

Example 7-2. Using reflection to locate function and method definitions

if (Sargc < 2) {
print "$argv[0]: function/method, classesl.php [, ... classesN.php]\n";

224 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

exit;

}

// Grab the function name
$function = $Sargv[1];

// Include the files
foreach (array_slice($argv, 2) as $filename) {
include_once S$filename;

}

try {
if (strpos(Sfunction, '::')) {
// It's a method
list ($class, Smethod) = explode('::', $function);
Sreflect = new ReflectionMethod($class, $method);
} else {
// It's a function
$reflect = new ReflectionFunction($function);

}

$file = Sreflect->getFileName();
$line = Sreflect->getStartLine();

printf ("%s | %s | %d\n", "$function()", S$file, $line);
} catch (ReflectionException $Se) {

printf ("%s not found.\n", "$function()");
}

Pass the function or method name as the first argument, and the include files as the
remaining arguments. These files are then included, so make sure they don’t print out
anything.

The next step is to determine whether the first argument is a method or a function.

Because methods are in the form class: :method, you can use strpos() to tell them
apart.

If it’s a method, use explode() to separate the class from the method, passing both to
ReflectionMethod. If it’s a function, you can directly instantiate a ReflectionFunc
tion without any difficulty.

Because ReflectionMethod extends ReflectionFunction, you can then call both get
FileName() and getStartLine() of either class. This gathers the information that you
need to print out, which is done via printf().

When you try to instantiate a ReflectionMethod or ReflectionFunction with the
name of an undefined method, these classes throw a ReflectionException. Here, it’s
caught and an error message is displayed.

7.20 Introspecting Objects | 225

www.it-ebooks.info

http://www.it-ebooks.info/

A more complex script that prints out the same type of information for all user-defined
methods and functions appears in Recipe 7.24.

If you just need a quick view at an object instance, and don't want to fiddle with the
Reflection classes, use either var_dump(), var_export(), or print_r() to print the
object’s values. Each of these three functions prints out information in a slightly different
way; var_export() can optionally return the information, instead of displaying it.

See Also

Recipe 5.8 for more on printing variables; documentation on reflection, var_dump(),
var_export(), and print_r().

7.21 Checking If an Object Is an Instance of a Specific Class

Problem

You want to check if an object is an instance of a specific class.

Solution

To check that a value passed as a function argument is an instance of a specific class,
specify the class name in your function prototype:

public function add(Person $person) {
// add Sperson to address book
}
}

In other contexts, use the instanceof operator:

Smedia = get_something_from_catalog();
if (Smedia instanceof Book) {
// do bookish things
} else if ($media instanceof DVD) {
// watch the movie

}

Discussion

One way of enforcing controls on your objects is by using type hints. A type hint is a
way to tell PHP that an object passed to a function or method must be of a certain class.

To do this, specify a class name in your function and method prototypes. You can also
require that an argument is an array, by using the keyword array. This only works for
classes and arrays, though, not for any other variable types. You cannot, for example,
specify strings or integers.

226 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/book.reflection
http://www.php.net/var-dump
http://www.php.net/var-export
http://www.php.net/print-r
http://www.it-ebooks.info/

For example, to require the first argument to your AddressBook class’s add() method
to be of type Person:

class AddressBook {

public function add(Person S$person) {
// add Sperson to address book
}
}

Then, if you call add() but pass a string, you get a fatal error:

$book = new AddressBook;
$person = 'Rasmus Lerdorf';

$book->add($person);
PHP Fatal error: Argument 1 must be an object of class Person 1in...

Placing a type hint of Person in the first argument of your function declaration is
equivalent to adding the following PHP code to the function:

public function add($person) {
if (!($person instanceof Person)) {
die("Argument 1 must be an instance of Person");
}
}

The instanceof operator checks whether an object is an instance of a particular class.
This code makes sure $person is a Person.

The instanceof operator also returns true with classes that are subclasses of the one
you're comparing against. For instance:

class Person { /* ... */ }
class Kid extends Person { /* ... */ }
Skid = new Kid;

if ($kid instanceof Person) {
print "Kids are people, to.\n";

}

Kids are people, too.
Last, you can use instanceof to see if a class has implemented a specific interface:

interface Nameable {
public function getName();
public function setName($name);

7.21 Checking If an Object Is an Instance of a SpecificClass | 227

www.it-ebooks.info

http://www.it-ebooks.info/

class Book implements Nameable {
private $name;

public function getName() {
return $this->name;

}

public function setName(Sname) {
return $this->name = $name;
}
}

Sbook = new Book;
if ($Sbook instanceof Book) {
print "You can name a Book.\n";

}

You can name a Book

Type hinting has the side benefit of integrating API documentation directly into the
class itself. If you see that a class constructor takes an Event type, you know exactly what
to provide the method. Additionally, you know that the code and the “documentation”
must always be in sync, because it’s baked directly into the class definition.

You can also use type hinting in interface definitions, which lets you further specify all
your interface details.

However, type hinting does come at the cost of less flexibility. There’s no way to allow
a parameter to accept more than one type of object, so this places some restrictions on
how you design your object hierarchy.

Also, the penalty for violating a type hint is quite drastic—the script aborts with a fatal
error. In a web context, you may want to have more control over how errors are handled
and recover more gracefully from this kind of mistake. Implementing your own form
of type checking inside of methods lets you print out an error page if you choose.

Last, unlike some languages, you cannot use type hinting for return values, so there’s
no way to mandate that a particular function always returns an object of a particular

type.

See Also

Documentation on type hints and instanceof.

228 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop5.typehinting
http://www.php.net/operators.type
http://www.it-ebooks.info/

7.22 Autoloading Class Files upon Object Instantiation

Problem

You don’t want to include all your class definitions within every page. Instead, you want
to dynamically load only the ones necessary in that page.

Solution
Use the __autoload() magic method:

function __autoload(Sclass_name) {
include "$class_name.php";

}

$person = new Person;

Discussion

When you normally attempt to instantiate a class that’s not defined, PHP dies with a
fatal error because it can’t locate what you're looking for. Therefore, it’s typical to load
in all the potential classes for a page, regardless of whether they’re actually invoked.

This has the side effect of increasing processing time, because PHP must parse every
class, even the unused ones. One solution is to load missing code on the fly using the
__autoload() method, which is invoked when you instantiate undefined classes.

For example, here’s how you include all the classes used by your script:

function _ autoload(Sclass_name) {
include "Sclass_name.php";

}

Sperson = new Person;

The __autoload() function receives the class name as its single parameter. This example
appends a .php extension to that name and tries to include a file based on
$class_name. So when you instantiate a new Person, it looks for Person.php in your
include_path.

When __autoload() fails to successfully load a class definition for the object you're
trying to instantiate, PHP fails with a fatal error, just as it does when it can’t find a class
definition without autoload.

If you adopt the PSR-0 naming convention, use the code at GitHub.

Then you can do the following:

7.22 Autoloading Class Files upon Object Instantiation | 229

www.it-ebooks.info

https://gist.github.com/jwage/221634
http://www.it-ebooks.info/

use Mysite\Person;

$person = new Person;
If the class isn’t defined, Person gets passed to __autoload(). The function pulls in the
file based on the namespace and classname.

Though using __autoload() slightly increases processing time during the addition of
aclass, itis called only once per class. Multiple instances of the same class does not result
in multiple calls to __autoload().

Before deploying __autoload(), be sure to benchmark that the overhead of opening,
reading, and closing the multiple files necessary isn’t actually more of a performance
penalty than the additional parsing time of the unused classes.

In particular if you're using an opcode cache, such as OPcache, using __autoload() and
include_once can hurt performance. For best results, you should include all your files
at the top of the script and make sure you don’t reinclude a file twice.

See Also

Recipe Recipe 27.3 for more on PSR-0; documentation on autoloading.

7.23 Instantiating an Object Dynamically

Problem

You want to instantiate an object, but you don’t know the name of the class until your
code is executed. For example, you want to localize your site by creating an object be-
longing to a specific language. However, until the page is requested, you don't know
which language to select.

Solution

Use a variable for your class name:

$language = $_REQUEST['language'];

$valid_langs = array('en_US' => 'US English',
'en_UK' => 'British English',
'es_US' => 'US Spanish',
'"fr_CA' => 'Canadian French');

if (isset(Svalid_langs[$language]) && class_exists($language)) {
$lang = new S$Slanguage;

}

230 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.php.net/oop5.autoload
http://www.it-ebooks.info/

Discussion

Sometimes you may not know the class name you want to instantiate at runtime, but

you know part of it. However, although this is legal PHP:

$class_name = 'Net_Ping';
$class = new $class_name; // new Net_Ping

This is not:

$partial_class_name = 'Ping';
Sclass = new "Net_S$partial_class_name"; // new Net_Ping

This, however, is okay:

$partial_class_name = 'Ping';

Sclass_prefix = 'Net_';

$class_name = "$class_prefix$partial_class_name";
$class = new $class_name; // new Net_Ping

So you can’t instantiate an object when its class name is defined using variable concat-
enation in the same step. However, because you can use simple variable names, the

solution is to preconcatenate the class name.

See Also

Documentation on class_exists().

71.24 Program: whereis

Although tools such as phpDocumentor provide quite detailed information about an
entire series of classes, it can be useful to get a quick dump that lists all the functions

and methods defined in a list of files.

The program in Example 7-3 loops through a list of files, includes them, and then uses
the Reflection classes to gather information about them. Once the master list is com-
piled, the functions and methods are sorted alphabetically and printed out.

Example 7-3. whereis

if (Sargc < 2) {
print "Sargv[0]: classesl.php [, ...]\n";
exit;

}

// Include the files
foreach (array_slice($argv, 1) as $filename) {
include_once S$filename;

}

www.it-ebooks.info

7.24 Program: whereis

231

http://www.php.net/class-exists
http://www.it-ebooks.info/

// Get all the method and function information
// Start with the classes
$methods = array();
foreach (get_declared_classes() as $class) {
$r = new ReflectionClass(S$Sclass);
// Eliminate built-in classes
if ($r->isUserDefined()) {
foreach ($r->getMethods() as Smethod) {
// Eliminate inherited methods
if ($method->getDeclaringClass()->getName() == $class) {
$signature = "Sclass::" . $method->getName();
Smethods[$signature] = $method;

}

// Then add the functions

$functions = array();

Sdefined_functions = get_defined_functions();

foreach (Sdefined_functions['user'] as $function) {
$functions[$function] = new ReflectionFunction($function);

}

// Sort methods alphabetically by class

function sort_methods($a, $b) {
list (Sa_class, $a_method) = explode('::', $a);
list ($b_class, $b_method) = explode('::', $b);

if ($cmp = strcasecmp($a_class, $b_class)) {
return $cmp;

}

return strcasecmp($a_method, $b_method);

}
uksort($Smethods, 'sort_methods');

// Sort functions alphabetically

// This is less complicated, but don't forget to
// remove the method sorting function from the list
unset($functions['sort_methods']);

// Sort 'em

ksort($functions);

// Print out information

foreach (array_merge($functions, $methods) as $name => $reflect) {
$file = Sreflect->getFileName();
$line = $reflect->getStartLine();

printf ("%-25s | %-40s | %6d\n", "Sname()", $file, S$line);

232 | Chapter7: Classes and Objects

www.it-ebooks.info

http://www.it-ebooks.info/

This code uses both the Reflection classes and also a couple of PHP functions, get_de
clared_classes() and get_declared_functions(), that aren’t part of the Reflection
classes, but help with introspection.

It's important to filter out any built-in PHP classes and functions; otherwise, the report
will be less about your code and more about your PHP installation. This is handled in
two different ways. Because get_declared_classes() doesn’t distinguish between user
and internal classes, the code calls ReflectionClass: :isUserDefined() to check. The
get_defined_function() call, on the other hand, actually computes this for you,
putting the information in the user array element.

Because it’s easier to scan the output of a sorted list, the script sorts the arrays of methods
and functions. Because multiple classes can have the same method, you need to use a
user-defined sorting method, sort_methods(), which first compares two methods by
their class names and then by their method names.

Once the data is sorted, it’s a relatively easy task to loop though the merged arrays, gather
up the filename and starting line numbers, and print out a report.

Here are the results of running the PEAR HTTP class through the script:

HTTP: :Date() | /usr/1lib/php/HTTP.php | 38
HTTP: :head() | /usr/1lib/php/HTTP.php | 144
HTTP: :negotiatelLanguage() | /usr/lib/php/HTTP.php | 77
HTTP: :redirect() | /usr/1lib/php/HTTP.php | 186

7.24 Program: whereis | 233

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8
Web Fundamentals

8.0 Introduction

Web programming is probably why youre reading this book. It’s why the first version
of PHP was written and what continues to make it so popular today. With PHP, it’s easy
to write dynamic web programs that do almost anything. Other chapters cover various
PHP capabilities, such as web services, regular expressions, database access, and file
I/0. These capabilities are all part of web programming, but this chapter focuses on key
web-specific concepts and organizational topics that will make your web programming
stronger.

HTTP requests aren’t “stateful”; each request isn’t connected to a previous one. A cookie,
however, can link different requests by the same user. This makes it easier to build
features such as shopping carts or to keep track of a user’s search history. Recipes 8.1,
8.2, and 8.3 show how to set, read, and delete cookies. A cookie is a small text string
that the server instructs the browser to send along with requests the browser makes.

Other good ways to pass data are through query strings and the body of the request.
Recipe 8.4 shows the details of constructinga URL that includes a query string, including
proper encoding of special characters and handling of HTML entities. Similarly,
Recipe 8.5 provides information on reading the data submitted in the body of a request
when it’s not form data, so PHP cannot automatically parse it into $_POST.

The next recipes demonstrate how to use authentication, which lets you protect your
web pages with passwords. PHP’s special features for dealing with HT TP Basic authen-
tication are explained in Recipe 8.6. It’s often a better idea to roll your own authentication
method using cookies, as shown in Recipe 8.7.

Cookies and Authentication are two specific HTTP headers. Learn how to read any
HTTP header in Recipe 8.8 and write one in Recipe 8.9.

235

www.it-ebooks.info

http://www.it-ebooks.info/

Setting the HTTP status code is covered in Recipe 8.10. Recipe 8.11 shows how to
redirect users to a different web page than the one they requested.

The three following recipes deal with output control. Recipe 8.12 shows how to force
output to be sent to the browser. Recipe 8.13 explains the output buffering functions.
Output buffers enable you to capture output that would otherwise be printed or delay
output until an entire page is processed. Automatic compression of output is shown in
Recipe 8.14.

The next two recipes show how to interact with external variables: environment vari-
ables and PHP configuration settings. Recipe 8.15 and Recipe 8.16 discuss environment
variables. If Apache is your web server, you can use the techniques in Recipe 8.17 to
communicate with other Apache modules from within your PHP programs.

Identifying mobile browsers, so you can choose to provide alternative versions of your
site, is shown in Recipe 8.18.

This chapter also includes three programs that demonstrate some of the concepts in the
recipes. Recipe 8.19 validates user accounts by sending an email message with a cus-
tomized link to each new user. If the user doesn’t visit the link within a week of receiving
the message, the account is deleted. Recipe 8.20 is a small example of a wiki system that
makes any page on your website editable from within the web browser. Recipe 8.21
shows how to parse the HTTP Range header to return specified portions of a file. This
allows a client to resume an interrupted download exactly where they got cut off.

8.1 Setting Cookies

Problem

You want to set a cookie so that your website can recognize subsequent requests from
the same web browser.

Solution
Call setcookie() with a cookie name and value:

setcookie('flavor', 'chocolate chip');

Discussion

Cookies are sent with the HTTP headers, so if you're not using output buffering, set
cookie() must be called before any output is generated.

Pass additional arguments to setcookie() to control cookie behavior. The third argu-
ment to setcookie() is an expiration time, expressed as an epoch timestamp. For ex-
ample, this cookie expires at noon GMT on December 3, 2014:

236 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

setcookie('flavor', 'chocolate chip',1417608000);

If the third argument to setcookie() is missing (or empty), the cookie expires when
the browser is closed. Also, many systems can’t handle a cookie expiration time greater
than 2147483647, because that’s the largest epoch timestamp that fits in a 32-bit integer,
as discussed in the introduction to Chapter 3.

The fourth argument to setcookie() is a path. The cookie is sent back to the server
only when pages whose path begin with the specified string are requested. For example,
a cookie sent back only to pages whose path begins with /products/:

setcookie('flavor', 'chocolate chip',0,'/products/');

The page that’s setting the cookie doesn’t have to have a URL whose path component
begins with /products/, but the cookie is sent back only to pages that do.

The fifth argument to setcookie() is a domain. The cookie is sent back to the server
only when pages whose hostname ends with the specified domain are requested. Here
the first cookie is sent back to all hosts in the example.com domain, but the second
cookie is sent only with requests to the host jeannie.example.com:

setcookie('flavor', 'chocolate chip',0,'',"'.example.com');

setcookie('flavor', 'chocolate chip',0,"'', " 'jeannie.example.com');
If the first cookie’s domain was just example.com instead of .example.com, it would be
sent only to the single host example.com (and not www.example.com or jeannie.exam-
ple.com). If a domain is not specified when setcookie() is called, the browser sends
back the cookie only with requests to the same hostname as the request in which the
cookie was set.

The last optional argument to setcookie() is a flag that, if set to true, instructs the
browser only to send the cookie over an SSL connection. This can be useful if the cookie
contains sensitive information, but remember that the data in the cookie is stored as
unencrypted plain text on the user’s computer.

Different browsers handle cookies in slightly different ways, especially with regard to
how strictly they match path and domain strings and how they determine priority be-
tween different cookies of the same name. The setcookie() page of the online manual
has helpful clarifications of these differences.

See Also

Recipe 8.2 shows how to read cookie values; Recipe 8.3 shows how to delete cookies;
Recipe 8.13 explains output buffering; documentation on setcookie(); an expanded
cookie specification is detailed in RFC 2965.

8.1 Setting Cookies | 237

www.it-ebooks.info

http://www.php.net/setcookie
http://www.faqs.org/rfcs/rfc2965.html
http://www.it-ebooks.info/

8.2 Reading Cookie Values

Problem

You want to read the value of a cookie that you've previously set.

Solution
Look in the $_COOKIE superglobal array:

if (isset($_COOKIE['flavor'])) {
print "You ate a {$_COOKIE['flavor']} cookie.";
}

Discussion

A cookie’s value isn’t available in $_COOKIE during the request in which the cookie is set.
In other words, calling the setcookie() function doesn't alter the value of $_COOKIE.
On subsequent requests, however, each cookie sent back to the server is stored in
$_COOKIE.

When a browser sends a cookie back to the server, it sends only the value. You can't
access the cookie’s domain, path, expiration time, or secure status through $_COOKIE
because the browser doesn't send that to the server.

To print the names and values of all cookies sent in a particular request, loop through
the $_COOKIE array:

foreach ($_COOKIE as $cookie_name => $cookie_value) {
print "$cookie_name = $cookie_value
";

}

See Also

Recipe 8.1 shows how to set cookies; Recipe 8.3 shows how to delete cookies.

8.3 Deleting Cookies

Problem

You want to delete a cookie so a browser doesn’t send it back to the server. For example,
you’re using cookies to track whether a user is logged in to your website, and a user logs
out.

238 | (Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Call setcookie() with no value for the cookie and an expiration time in the past:

setcookie('flavor','"',1);

Discussion

It’s a good idea to make the expiration time a long time in the past, in case your server
and the user’s computer have unsynchronized clocks. For example, if your server thinks
it’s 3:06 P.M. and a user’s computer thinks it’s 3:02 P.M., a cookie with an expiration time
of 3:05 P.M. isn’t deleted by that user’s computer even though the time is in the past for
the server.

The call to setcookie() to delete a cookie has to have the same arguments (except for
value and time) that the call to setcookie() that set the cookie did, so include the path,
domain, and secure flag if necessary.

See Also

Recipe 8.1 shows how to set cookies; Recipe 8.2 shows how to read cookie values; doc-
umentation on setcookie().

8.4 Building a Query String

Problem

You need to construct a link that includes name/value pairs in a query string.

Solution
Use the http_build_query() function:
$vars = array('name' => 'Oscar the Grouch',
'color' => 'green',
'favorite_punctuation' => '#');
Squery_string = http_build_query($vars);
Surl = '/muppet/select.php?' . $query_string;
Discussion
The URL built in the Solution is:

/muppet/select.php?name=0scar+the+Grouch&color=green&favorite_punctuation=%23

Because only some characters are valid in URLs and query strings, the function has
encoded the data into the proper format. For example, this query string has spaces as

8.4Buildinga QueryString | 239

www.it-ebooks.info

http://www.php.net/setcookie
http://www.it-ebooks.info/

+. Special characters, such as #, are hex encoded as %23 because the ASCII value of # is
35, which is 23 in hexadecimal.

Although the encoding that http_build_query() does prevents any special characters
in the variable names or values from disrupting the constructed URL, you may have
problems if your variable names begin with the names of HTML entities. Consider this
partial URL for retrieving information about a stereo system:

/stereo.php?speakers=12&cdplayer=52&=10
The HTML entity for ampersand (&) is & so a browser may interpret that URL as:
/stereo.php?speakers=12&cdplayer=52&=10

To prevent embedded entities from corrupting your URLs, you have three choices. The
first is to choose variable names that can’t be confused with entities, such as _amp instead
of amp. The second is to convert characters with HTML entity equivalents to those
entities before printing out the URL. Use htmlentities():

Surl = '/muppet/select.php?' . htmlentities($query_string);
The resulting URL is:

/muppet/select.php?name=0scar+the+Grouch&color=green&favorite_punctuation=%23

Your third choice is to change the argument separator from & to & by setting the
configuration directive arg_separator.input to &. Then, http_build_query()
joins the different name/value pairs with &:

ini_set('arg_separator.input', '&');

See Also

Documentation on http_build_query() and htmlentities().

8.5 Reading the POST Request Body

Problem

You want direct access to the body of a request, not just the parsed data that PHP puts
in $_POST for you. For example, you want to handle an XML document that’s been posted
as part of a web services request.

Solution
Read from the php://input stream:

$body = file_get_contents('php://input');

240 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/http_build_query
http://www.php.net/htmlentities
http://www.it-ebooks.info/

Discussion

The superglobal array $_POST is designed for accessing submitted HTML form variables,
but it doesn’t cut it when you need raw, uncut access to the whole request body. That’s
where the php://input stream comes in. Read the entire thing with file_get_con
tents(), or if you're expecting a large request body, read it in chunks with fread().

If the configuration directive always_populate_raw_post_data is on, then raw post
data is also put into the global variable SHTTP_RAW_POST_DATA. But to write maximally
portable code, you should use php: //input instead—that works even when always_pop
ulate_raw_post_data is turned off.

See Also

Documentation on php://input and on always_populate_raw_post_data; ways to
read files are discussed in Chapter 24.

8.6 Using HTTP Basic or Digest Authentication

Problem

You want to use PHP to protect parts of your website with passwords. Instead of storing
the passwords in an external file and letting the web server handle the authentication,
you want the password verification logic to be in a PHP program.

Solution

The $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] superglobal vari-
ables contain the username and password supplied by the user, if any. To deny access to
a page, send a WWW-Authenticate header identifying the authentication realm as part
of a response with HTTP status code 401:

http_response_code(401);

header('WWW-Authenticate: Basic realm="My Website"');
echo "You need to enter a valid username and password.";
exit();

Discussion

When a browser sees a 401 header, it pops up a dialog box for a username and password.
Those authentication credentials (the username and password), if accepted by the serv-
er, are associated with the realm in the WWW-Authenticate header. Code that checks
authentication credentials needs to be executed before any output is sent to the browser,
because it might send headers. For example, you can use a function such as vali
date(), shown in Example 8-1.

8.6 Using HTTP Basic or Digest Authentication | 241

www.it-ebooks.info

http://www.php.net/wrappers
http://bit.ly/1oqkqgo
http://www.it-ebooks.info/

Example 8-1. validate()

function validate(Suser, $pass) {
/* replace with appropriate username and password checking,
such as checking a database */
Susers = array('david' => 'fadj&32',
'adam' => '8HE]j838');

if (isset(Susers[Suser]) && (Susers[Suser] === $pass)) {
return true;

} else {
return false;

}
}

Example 8-2 shows how to use validate().

Example 8-2. Using a validation function

if (! validate($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW'])) {
http_response_code(401);
header('WWW-Authenticate: Basic realm="My Website"');
echo "You need to enter a valid username and password.";
exit;

}

Replace the contents of the validate() function with appropriate logic to determine if
a user entered the correct password. You can also change the realm string from My
Website and the message that gets printed if a user hits Cancel in her browser’s authen-
tication box from You need to enter a valid username and password.

PHP supports Digest authentication in addition to Basic authentication. With Basic
authentication, usernames and passwords are sent in the clear on the network, just
minimally obscured by Base64 encoding. With Digest authentication, however, the
password itself is never sent from the browser to the server. Instead, only a hash of the
password with some other values is sent. This reduces the possibility that the network
traffic could be captured and replayed by an attacker. The increased security provided
by Digest authentication means that the code to implement is more complicated than
justasimple password comparison. Example 8-3 provides functions that compute digest
authentication as specified in RFC 2617.

Example 8-3. Using Digest authentication

/* replace with appropriate username and password checking,
such as checking a database */
Susers = array('david' => 'fadj&32',
'adam' => '8HEj838');
Srealm = 'My website';

Susername = validate_digest($realm, Susers);

242 | Chapter 8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

// Execution never reaches this point if invalid auth data is provided
print "Hello, " . htmlentities($Susername);

function validate_digest(Srealm, Susers) {

// Fail if no digest has been provided by the client

if (! isset($_SERVER['PHP_AUTH_DIGEST'])) {
send_digest(Srealm);

}

// Fail if digest can't be parsed

Susername = parse_digest($S_SERVER['PHP_AUTH_DIGEST'], Srealm, Susers);

if (Susername === false) {
send_digest(Srealm);

}

// Valid username was specified in the digest

return $username;

}

function send_digest($realm) {
http_response_code(401);
$nonce = md5(uniqid());
Sopaque = md5(Srealm);
header("WWW-Authenticate: Digest realm=\"$realm\" qop=\"auth\" ".
"nonce=\"$nonce\" opaque=\"Sopaque\"");
echo "You need to enter a valid username and password.";
exit;

}

function parse_digest($digest, Srealm, Susers) {
// We need to find the following values in the digest header:
// username, uri, qop, cnonce, nc, and response
$digest_info = array();
foreach (array('username','uri','nonce','cnonce', 'response') as $part) {
// Delimiter can either be ' or " or nothing (for qop and nc)
if (preg_match('/'.$part.'=([\'"]?2)(.*?)\1/', S$digest, $match)) {
// The part was found, save it for calculation
Sdigest_info[$part] = $match[2];
} else {
// If the part is missing, the digest can't be validated;
return false;
}
}
// Make sure the right qop has been provided
if (preg_match('/qop=auth(,|$)/"', $digest)) {
Sdigest_info['qop'] = 'auth';
} else {
return false;
}
// Make sure a valid nonce count has been provided
if (preg_match('/nc=([0-9a-f1{8})(,|$)/', Sdigest, Smatch)) {
Sdigest_info['nc'] = $match[1];
} else {

8.6 Using HTTP Basic or Digest Authentication | 243

www.it-ebooks.info

http://www.it-ebooks.info/

return false;

}

// Now that all the necessary values have been slurped out of the
// digest header, do the algorithmic computations necessary to
// make sure that the right information was provided.

//

// These calculations are described in sections 3.2.2, 3.2.2.1,

// and 3.2.2.2 of RFC 2617.

// Algorithm is MD5

$A1 = $digest_info['username'] . ':' . Srealm .
Susers[$digest_1info['username']];

// qop is 'auth'

$A2 = $_SERVER['REQUEST_METHOD'] . ':' . $digest_info['uri'];

$Srequest_digest = md5(implode(':', array(md5($A1), $digest_1info['nonce'],
$digest_info['nc'],

$digest_1info['cnonce'], $digest_info['qop'], md5($A2))));

// Did what was sent match what we computed?
if (Srequest_digest != $digest_info['response']) {
return false;

}

// Everything's OK, return the username
return $digest_1info['username'];

}

Neither HTTP Basic nor Digest authentication can be used if youre running PHP as a
CGI program. If you can’t run PHP as a server module, you can use cookie authenti-
cation, discussed in Recipe 8.7.

Another issue with HTTP authentication is that it provides no simple way for a user to
log out, other than to exit his browser. The PHP online manual has a few suggestions
for log out methods that work with varying degrees of success with different server and
browser combinations.

There is a straightforward way, however, to force a user to log out after a fixed time
interval: include a time calculation in the realm string. Browsers use the same username
and password combination every time they’re asked for credentials in the same realm.
By changing the realm name, the browser is forced to ask the user for new credentials.
Example 8-4 uses Basic authentication and forces a logout every night at midnight.

Example 8-4. Forcing logout with Basic authentication

if (! validate($_SERVER['PHP_AUTH_USER'],$_SERVER['PHP_AUTH_PW'])) {
Srealm = 'My Website for '.date('Y-m-d');
http_response_code(401);

header ('WWW-Authenticate: Basic realm="'.$realm.'"');
echo "You need to enter a valid username and password.";
exit;

244 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/features.http-auth
http://www.php.net/features.http-auth
http://www.it-ebooks.info/

You can also have a user-specific timeout without changing the realm name by storing
the time that a user logs in or accesses a protected page. The validate_date() function
in Example 8-5 stores login time in a database and forces a logout if it's been more than
15 minutes since the user last requested a protected page.

Example 8-5. validate_date()

function validate_date($Suser,Spass) {
$db = new PDO('sqlite:/databases/users');

// Prepare and execute

$st = $db->prepare('SELECT password, last_access
FROM users WHERE user LIKE ?');

$st->execute(array($Suser));

if (Sob = $st->fetchObject()) {
if ($ob->password == $pass) {

Snow = time();

if (($now - Sob->last_access) > (15 * 60)) {
return false;

} else {
// update the last access time
$st2 = Sdb->prepare('UPDATE users SET last_access = "now"

WHERE user LIKE ?');

$st2->execute(array(Suser));
return true;

}
}
}
return false;
}
See Also

Recipe 8.7; the HT TP authentication section of the PHP online manual.

8.7 Using Cookie Authentication

Problem

You want more control over the user login procedure, such as presenting your own login
form.

Solution

Store authentication status in a cookie or as part of a session. When a user logs in
successfully, put her username (or another unique value) in a cookie. Also include a

8.7 Using Cookie Authentication | 245

www.it-ebooks.info

http://www.php.net/features.http-auth
http://www.it-ebooks.info/

hash of the username and a secret word so a user can't just make up an authentication
cookie with a username in it:

$secret_word = 'if 1 ate spinach';
if (validate($_POST['username'],$_POST['password'])) {
setcookie('login',
$_POST['username']."',"'.md5($_POST['username'].S$secret_word));
}

Discussion

When using cookie authentication, you have to display your own login form, such as
the form in Example 8-6.

Example 8-6. Sample cookie authentication login form

<form method="POST" action="login.php">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Log In">

</form>

You can use the same validate() function from Example 8-1 to verify the username
and password. The only difference is that you pass it $_POST['username'] and
$_POST['password'] as the credentials instead of $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW'].Ifthe password checks out, send back a cookie that contains
a username and a hash of the username, and a secret word. The hash prevents a user
from faking a login just by sending a cookie with a username in it.

Once the user has logged in, a page just needs to verify that a valid login cookie was sent
in order to do special things for that logged-in user. Example 8-7 shows one way to do
this.

Example 8-7. Verifying a login cookie

unset(Susername);
if (isset($_COOKIE['login'])) {
list(Sc_username, $cookie_hash) = split(',', $_COOKIE['login']);

if (md5($c_username.Ssecret_word) == $cookie_hash) {
Susername = $c_username;
} else {

print "You have sent a bad cookie.";

}
}

if (isset(Susername)) {
print "Welcome, Susername.";
} else {
print "Welcome, anonymous user.";

}

246 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

If you use the built-in session support, you can add the username and hash to the session
and avoid sending a separate cookie. When someone logs in, set an additional variable
in the session instead of sending a cookie, as shown in Example 8-8.

Example 8-8. Storing login info in a session

if (validate(S$_POST['username'],$_POST['password'])) {
$_SESSION['login'] =
$_POST['username']."',"'.md5($_POST['username'].$secret_word);
}

The verification code, shown in Example 8-9, is almost the same; it just uses $_SES
SION instead of $_COOKIE.

Example 8-9. Verifying session info

unset(Susername);
if (isset($_SESSION['login'])) {
list(Sc_username,$cookie_hash) = explode(',',$_SESSION['login']);

if (md5(S$c_username.Ssecret_word) == $cookie_hash) {
Susername = $c_username;
} else {

print "You have tampered with your session.";
}
}

Using cookie or session authentication instead of HT'TP Basic authentication makes it
much easier for users to log out: you just delete their login cookie or remove the login
variable from their session. Another advantage of storing authentication information
in a session is that you can link users’ browsing activities while logged in to their brows-
ing activities before they log in or after they log out. With HTTP Basic authentication,
you have no way of tying the requests with a username to the requests that the same
user made before they supplied a username. Looking for requests from the same IP
address is error prone, especially if the user is behind a firewall or proxy server. If you
are using sessions, you can modify the login procedure to log the connection between
session ID and username using code such as that in Example 8-10.

Example 8-10. Connecting logged-out and logged-in usage

if (validate(S$_POST['username'], $_POST['password'])) {
$_SESSION['login'] =
$_POST['username'].","'.md5($_POST['username'].$secret_word);
error_log('Session id '.session_id().' log in as '.$_POST['username']);

}

Example 8-10 writes a message to the error log, but it could just as easily record the
information in a database that you could use in your analysis of site usage and traffic.

One danger of using session IDs is that sessions are hijackable. If Alice guesses Bob’s
session ID, she can masquerade as Bob to the web server. The session module has two

8.7 Using Cookie Authentication | 247

www.it-ebooks.info

http://www.it-ebooks.info/

optional configuration directives that help you make session IDs harder to guess. The
session.entropy_file directive contains a path to a device or file that generates ran-
domness, such as /dev/random or /dev/urandom. The session.entropy_length di-
rective holds the number of bytes to be read from the entropy file when creating session
IDs.

No matter how hard session IDs are to guess, they can also be stolen if they are sent in
clear text between your server and a user’s browser. HT TP Basic authentication also has
this problem. Use SSL to guard against network sniffing, as described in Recipe 18.13.

See Also

Recipe 8.6; Recipe 20.9 discusses logging errors; Recipe 18.9 discusses verifying data
with hashes; documentation on setcookie() and on md5().

8.8 Reading an HTTP Header

Problem

You want to read an HT TP request header.

Solution
For a single header, look in the $_SERVER superglobal array:

// User-Agent Header
echo $_SERVER['HTTP_USER_AGENT'];

For all headers, call getallheaders():

Sheaders = getallheaders();
echo Sheaders['User-Agent'];

Discussion

HTTP headers allow the browser (or any application) to pass supplementary informa-
tion about the request. For example, Content-Type to describe the body (Did you send
a web form or JSON?), Accept-Language for alist of preferred languages (Do you want
that in Canadian English or Canadian French?), and User -Agent (What’s the name and
description of the browser?).

Sometimes your web server will automatically process these headers and act accordingly,
particularly when it comes to low-level details about the request, such as serving data
from a cache or (de-)compressing the data. Other times PHP will parse specific headers,
as in Recipes 8.2 and 8.6.

248 | Chapter 8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/setcookie
http://www.php.net/md5
http://www.it-ebooks.info/

But there are times when you want to read a specific header within your code. One
example is parsing the ETag header to see if the version the client has is the same as the
one thatd be sent back.

In these cases, reference the $_SERVER superglobal array. PHP namespaces HTTP re-
quest headers by prefixing HTTP_ before the header name. It also uppercases all header
names to make them easy to find. (This is legal because header names are case-
insensitive.)

So, the ETag header, if sent, will be at $_SERVER['HTTP_ETAG']. If the field munging is
aesthetically displeasing, you can also find it at getallheaders()['Etag’].

See Also
Recipe 8.9 for writing HTTP headers.

8.9 Writing an HTTP Header

Problem

You want to write an HTTP header.

Solution
Call the header () function:

// Tell 'em its a PNG
header('Content-Type: image/png');

Discussion

Your web server and PHP often take care of setting all the necessary headers with the
proper values to serve your script. For example, when you return an HTML page, the
Content-Length or Transfer-Encoding header is automatically set to let the browser
know how to determine the size of the response.

The header () function lets you explicitly set these values when there’s no way for the
server to compute them or you want to modify the default behavior.

For instance, many web servers are configured to send a Content-Type header of text/
html for all pages processed by PHP. To also use PHP to create a JSON file, one option
is changing the Content-Type from within your script itself:

header('Content-Type: application/json');

If you set the same header multiple times, only the final value is sent. Change this by
passing true as the second value to the function:

8.9 Writing an HTTP Header | 249

www.it-ebooks.info

http://www.it-ebooks.info/

header('WWW-Authenticate: Basic realm="http://server.example.com/"');
header ('WWW-Authenticate: OAuth realm="http://server.example.com/"', true);

When you support multiple ways for someone to authenticate himself, it’s okay to return
multiple WWW-Authenticate headers. In this case, someone can either use HTTP Basic
authentication or OAuth.

See Also

Documentation on header (); Recipe 8.8 for reading HT TP headers.

8.10 Sending a Specific HTTP Status Code

Problem

You want to explicitly set the HT TP status code. For example, you want to indicate that
the user is unauthorized to view the page or the page is not found.

Solution
Use http_response_code() to set the response:

http_response_code(401);

Discussion

Your web server returns HTTP status code 200 (OK) for most pages processed by PHP.
But there are a wide range of status codes, or response codes, that you may need to use.

A few popular codes get recipes of their own. When you're redirecting to a different
page, you need to send a 302 (Found) status code. This is covered in Recipe 8.11. When
a person is not allowed to view a page, you send a 401 (Unauthorized). See Recipe 8.6
and Recipe 8.7 for more on that topic.

But there’s always 304 (Not Modified) for conditional GETs, when you should only
return content if it’s changed since the last request. This can be used when someone is
polling your site and you want to tell them there’s nothing new to retrieve.

Or, the infamous 404 (Not Found), when a page isn’t there. Normally, this is handled
by your web server. But if you want to support dynamic URLs, where there aren’t any
physical files stored on disk, but you process the URL and respond to it based on in-
formation in a database, then you need to handle this yourself when someone tries to
fetch an invalid URL.

One great example is WordPress, which responds to URLs based on categories or dates
(e.g., /category/php/ or /2014/11/03/). In these cases, whenever someone adds a cat-
egory or a post on a new date, WordPress can be configured to automatically respond

250 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/header
http://www.it-ebooks.info/

to requests at URLs that match that pattern, even though there aren’t actually files at
that location.

With http_response_code(), you provide the status code number and PHP takes care
of setting the proper Status Line. For some status codes, including 204 (No Content),
the HTTP specification states you must not provide a message body. In these cases, it’s
best to send exit() to immediately end the script. This prevents content from being
accidentally added later on:

http_response_code(204);
exit();

If youre stuck on PHP 5.3, use header(), and pass in the status code as the third pa-
rameter:

header('HTTP/1.0 204 No Content', true, 204);

See Also
The HTTP 1.1 specification’s description of status codes.

8.11 Redirecting to a Different Location

Problem

You want to automatically send a user to a new URL. For example, after successfully
saving form data, you want to redirect a user to a page that confirms that the data has
been saved.

Solution

Before any output is printed, use header() to send a Location header with the new
URL, and then call exit() so that nothing else is printed:

header('Location: http://www.example.com/confirm.html');
exit();

Discussion

To pass variables to the new page, include them in the query string of the URL, as in
Example 8-11.
Example 8-11. Redirecting with query string variables

header('Location: http://www.example.com/?monkey=turtle');
exit();

8.11 Redirecting to a Different Location | 251

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

Redirect URLs must include the protocol and hostname. They cannot be just a path-
name. Example 8-12 shows a good Location header and a bad one.

Example 8-12. Good and bad Location headers

// Good Redirect
header('Location: http://www.example.com/catalog/food/pemmican.php');

// Bad Redirect
header('Location: /catalog/food/pemmican.php');

The URL that you are redirecting a user to is retrieved with GET. You can’t redirect
someone to retrieve a URL via POST. With JavaScript, however, you can simulate a re-
direct via POST by generating a form that gets submitted (via POST) automatically. When
a (JavaScript-enabled) browser receives the page in Example 8-13, it will immediately
POST the form that is included.

Example 8-13. Redirecting via a posted form

<html>
<body onload="document.getElementById('redirectForm').submit()">
<form id='redirectForm' method='POST' action='/done.html'>
<input type='hidden' name='status' value='complete'/>
<input type='hidden' name='id' value='0Ou812'/>
<input type='submit' value='Please Click Here To Continue'/>
</form>
</body>
</html>

The form in Example 8-13 has an id of redirectForm, so the code in the <body/>
element’s onload attribute submits the form. The onload action does not execute if the
browser has JavaScript disabled. In that situation, the user sees a Please Click Here To
Continue button.

See Also

Documentation on header().

8.12 Flushing Output to the Browser

Problem

You want to force output to be sent to the browser. For example, before doing a slow
database query, you want to give the user a status update.

252 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/header
http://www.it-ebooks.info/

Solution
Use flush():

print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

Discussion

The flush() function sends all output that PHP has internally buffered to the web
server, but the web server may have internal buffering of its own that delays when the
data reaches the browser. Additionally, some browsers don't display data immediately
upon receiving it, and some versions of Internet Explorer don’t display a page until it
has received at least 256 bytes. To force IE to display content, print blank spaces at the
beginning of the page, as shown in Example 8-14.

Example 8-14. Forcing IE to display content immediately

print str_repeat(' ',300);
print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

See Also

Recipe 24.13; documentation on flush().

8.13 Buffering Output to the Browser

Problem

You want to start generating output before you're finished sending headers or cookies.

Solution

Call ob_start() at the top of your page and ob_end_flush() at the bottom. You can
then intermix commands that generate output and commands that send headers. The
output won't be sent until ob_end_flush() is called:

<?php ob_start(); ?>
I haven't decided if I want to send a cookie yet.

<?php setcookie('heron','great blue'); 7>

8.13 Buffering Output to the Browser | 253

www.it-ebooks.info

http://www.php.net/flush
http://www.it-ebooks.info/

Yes, sending that cookie was the right decision.
<?php
ob_end_flush();

Discussion

You can pass ob_start() the name of a callback function to process the output buffer
with that function. This is useful for postprocessing all the content in a page, such as
hiding email addresses from address-harvesting robots. For example:

<?php
function mangle_email($s) {
return preg_replace('/([*@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/1is",
'<$1@...>",
$s);
}

ob_start('mangle_email');
?>

I would not like spam sent to ronald@example.com!

<?php
ob_end_flush();

The mangle_email() function transforms the output to:

I would not like spam sent to <ronald@...>!
The output_buffering configuration directive turns output buffering on for all pages:
output_buffering = On
Similarly, output_handler sets an output buffer processing callback to be used on all
pages:
output_handler=mangle_email

Setting an output_handler automatically sets output_buffering to on.

See Also

Documentation on ob_start(), ob_end_flush(), and output buffering.

254 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/ob-start
http://www.php.net/ob-end-flush
http://www.php.net/outcontrol
http://www.it-ebooks.info/

8.14 Compressing Web Output

Problem

You want to send compressed content to browsers that support automatic decompres-
sion.

Solution
Add this setting to your php.ini file:

z1lib.output_compression=1

Discussion

Browsers tell the server that they can accept compressed responses with the Accept-
Encoding header. If a browser sends Accept-Encoding: gzip or Accept-Encoding:
deflate, and PHP is built with the zIib extension, the z1ib.output_compression con-
figuration directive tells PHP to compress the output with the appropriate algorithm
before sending it back to the browser. The browser uncompresses the data before dis-

playing it.
You can adjust the compression level with the z1ib.output_compression_level con-
figuration directive:

; minimal compression
z1lib.output_compression_level=1

; maximal compression
z1lib.output_compression_level=9

At higher compression levels, less data needs to be sent from the server to the browser,
but more server CPU time must be used to compress the data.

See Also

Documentation on the zlib extension.

8.15 Reading Environment Variables

Problem

You want to get the value of an environment variable.

8.14 Compressing Web Qutput | 255

www.it-ebooks.info

http://www.php.net/zlib
http://www.it-ebooks.info/

Solution
Use getenv():

S$path = getenv('PATH'");

Discussion

Environment variables are named values associated with a process. For instance, in
Unix, the value of getenv('HOME') returns the home directory of a user:

print getenv('HOME'); // user's home directory

PHP automatically loads environment variables into $_ENV by default. However, php.ini-
development and php.ini-production disables this because of speed considerations.

If you frequently access many environment variables, enable the $_ENV array by adding
E to the variables_order configuration directive. Then you can read values from the
$_ENV superglobal array. For instance:

$name = $_ENV['USER'];

The getenv() function isn’t available if you're running PHP as an ISAPI module.

See Also

Recipe 8.16 on setting environment variables; documentation on getenv(); information
on environment variables in PHP.

8.16 Setting Environment Variables

Problem

You want to set an environment variable in a script or in your server configuration.
Setting environment variables in your server configuration on a host-by-host basis al-
lows you to configure virtual hosts differently.

Solution

To set an environment variable in a script, use putenv():
putenv('ORACLE_SID=0RACLE'); // configure oci extension

To set an environment variable in your Apache httpd.conf file, use SetEnv:
SetEnv DATABASE_PASSWORD password

Variables set in httpd.conf show up in the PHP superglobal array $_SERVER, not via
getenv() or S_ENV.

256 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/getenv
http://bit.ly/1uAGMA9
http://www.it-ebooks.info/

Discussion

An advantage of setting variables in httpd.confis that you can set more restrictive read
permissions on it than on your PHP scripts. Because PHP files need to be readable by
the web server process, this generally allows other users on the system to view them. By
storing passwords in httpd.conf, you can avoid placing a password in a publicly available
file. Also, if you have multiple hostnames that map to the same document root, you can
configure your scripts to behave differently based on the hostnames.

For example, you could have members.example.com and guests.example.com. The mem-
bers version requires authentication and allows users additional access. The guests ver-
sion provides a restricted set of options, but without authentication. Example 8-15
shows how this could work.

Example 8-15. Adjusting behavior based on an environment variable

$version = (isset($_SERVER['SITE_VERSION']) ? $_SERVER['SITE_VERSION'] : 'guest');
// redirect to http://guest.example.com, if user fails to sign in correctly
if ('members' == $version) {
if (!authenticate_user($_POST['username'], $_POST['password'])) {
header('Location: http://guest.example.com/');
exit;
}
}

include_once "${version}_header"; // load custom header

See Also

Recipe 8.15 on getting the values of environment variables; documentation on pu
tenv(); information on setting environment variables in Apache.

8.17 Communicating Within Apache

Problem

You want to communicate from PHP to other parts of the Apache request process. This
includes setting variables in the access_log.

Solution
Use apache_note():

// get value
$session = apache_note('session');

// set value
apache_note('session', $session);

8.17 Communicating Within Apache | 257

www.it-ebooks.info

http://www.php.net/putenv
http://www.php.net/putenv
http://bit.ly/1hxl5Ii
http://www.it-ebooks.info/

Discussion

When Apache processes a request from a client, it goes through a series of steps; PHP
plays only one part in the entire chain. Apache also remaps URLs, authenticates users,
logs requests, and more. While processing a request, each handler has access to a set of
key/value pairs called the notes table. The apache_note() function provides access to
the notes table to retrieve information set by handlers earlier on in the process and leave
information for handlers later on.

For example, if you use the session module to track users and preserve variables across
requests, you can integrate this with your logfile analysis so you can determine the
average number of page views per user. Use apache_note() in combination with the
logging module to write the session ID directly to the access_log for each request. First,
add the session ID to the notes table with the code in Example 8-16.

Example 8-16. Adding the session ID to the notes table

// retrieve the session ID and add it to Apache's notes table
apache_note('session_1id', session_1id());

See Also

Documentation on apache_note(); information on logging in Apache.

8.18 Redirecting Mobile Browsers to a Mobile Optimized
Site

Problem

You want to send mobile or tablet browsers to an alternative site or alternative content
that is optimized for their device.

Solution
Use the object returned by get_browser () to determine if it's a mobile browser:

if (Sbrowser->ismobilebrowser) {
// print mobile layout

} else {
// print desktop layout

}

Discussion

The get_browser () function examines the environment variable (set by the web server)
and compares it to browsers listed in an external browser capability file. Due to licensing

258 | Chapter 8: Web Fundamentals

www.it-ebooks.info

http://www.php.net/apache-note
http://bit.ly/1notFxM
http://www.it-ebooks.info/

issues, PHP isn’t distributed with a browser capability file. One source for a browser
capability file is Browscap. Download the php_browscap.ini file from that site (not the
standard version).

Once you download a browser capability file, you need to tell PHP where to find it by
setting the browscap configuration directive to the pathname of the file. If you use PHP
as a CGI, set the directive in the php.ini file:

browscap=/usr/local/lib/php_browscap.ini

After you identify the device as mobile, you can then redirect the request to a specific
mobile optimized site or render a mobile optimized page:

header('Location: http://m.example.com/');

As a lighter-weight alternative to get_browser(), parse the $_SERV
ER['HTTP_USER_AGENT'] yourself.

See Also

Documentation on get_browser (). Read about redirecting requests in Recipe 8.11 and
reading HTTP headers in Recipe 8.8.

8.19 Program: Website Account (De)activator

When users sign up for your website, it’s helpful to know that they’ve provided you with
a correct email address. To validate the email address they provide, send an email to the
address they supply when they sign up. If they don’t visit a special URL included in the
email after a few days, deactivate their account.

This system has three parts. The first is the notify-user.php program that sends an email
to a new user and asks that user to visit a verification URL, shown in Example 8-18. The
second, shown in Example 8-19, is the verify-user.php page that handles the verification
URL and marks users as valid. The third is the delete-user.php program that deactivates
accounts of users who don't visit the verification URL after a certain amount of time.
This program is shown in Example 8-20.

Example 8-17 contains the SQL to create the table in which the user information is
stored.

Example 8-17. SQL for user verification table

CREATE TABLE users (

emaill VARCHAR(255) NOT NULL,
created_on DATETIME NOT NULL,
verify_string VARCHAR(16) NOT NULL,
verified TINYINT UNSIGNED

);

8.19 Program: Website Account (De)activator | 259

www.it-ebooks.info

http://browscap.org/
http://www.php.net/get-browser
http://www.it-ebooks.info/

What’s in Example 8-17 is the minimum amount of information necessary for user
verification. You probably want to store more information than this about your users.
When creating a user’s account, save information to the users table, and send the user
an email telling him how to verify his account. The code in Example 8-18 assumes that
the user’s email address is stored in the variable $email.

Example 8-18. notify-user.php

// Connect to the database
$db = new PDO('sqlite:users.db');

Semail = 'david';

// Generate verify string

Sverify_string = '';

for ($1 = 0; $1 < 16; $i++) {
$verify_string .= chr(mt_rand(32,126));

}

// Insert user into database
// This uses an SQLite-specific datetime() function
$sth = $db->prepare("INSERT INTO users " .
"(email, created_on, verify_string, verified) " .
"VALUES (?, datetime('now'), ?, 0)");
$sth->execute(array(Semail, $verify_string));

$verify_string = urlencode(Sverify_string);
$safe_email = urlencode(Semail);

Sverify_url = "http://www.example.com/verify-user.php";

$mail_body=<<<_MAIL_
To Semail:

Please click on the following link to verify your account creation:
Sverify_url?email=$safe_email&verify_string=$verify_string

If you do not verify your account in the next seven days, it will be
deleted.

MAIL;

mail($email,"User Verification",$mail_body);

The verification page that users are directed to when they follow the link in the email
message updates the users table if the proper information has been provided, as shown
in Example 8-19.

260 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-19. verify-user.php
// Connect to the database
$db = new PDO('sqlite:users.db');

$sth = $db->prepare('UPDATE users SET verified = 1 WHERE email = ? '.
' AND verify_string = ? AND verified = 0');

$res = $sth->execute(array($_GET['email'], $_GET['verify_string']));
var_dump($res, $sth->rowCount());

if (! Sres) {
print "Please try again later due to a database error.";
} else {

if ($sth->rowCount() == 1) {

print "Thank you, your account is verified.";
} else {

print "Sorry, you could not be verified.";

}
}

The user’s verification status is updated only if the email address and verify string pro-
vided match a row in the database that has not already been verified. The last step is the
short program that deletes unverified users after the appropriate interval, as shown in
Example 8-20.

Example 8-20. delete-user.php

// Connect to the database
$db = new PDO('sqlite:users.db');

Swindow = '-7 days';

$sth

$db->prepare("DELETE FROM users WHERE verified = 0 AND ".
"created_on < datetime('now',?)");

Sres = S$sth->execute(array($Swindow));
if (Sres) {

print "Deactivated " . S$sth->rowCount() . " users.\n";
} else {

print "Can't delete users.\n";

}

Run the program in Example 8-20 once a day to scrub the users table of users that
haven’t been verified. If you want to change how long users have to verify themselves,
adjust the value of $window, and update the text of the email message sent to users to
reflect the new value.

8.19 Program: Website Account (De)activator | 261

www.it-ebooks.info

http://www.it-ebooks.info/

8.20 Program: Tiny Wiki

The program in Example 8-21 puts together various concepts discussed in this chapter
and implements a complete wiki system—a website whose pages are all user-editable.
It follows a structure common among simple PHP programs of its type. The first part
of the code defines various configuration settings. Then comes an if/else section that
decides what to do (display a page, save page edits, etc.) based on the values of submitted
form or URL variables. The remainder of the program consists of the functions invoked
from that if/else section—functions to print the page header and footer, load saved
page contents, and display a page-editing form.

The Tiny Wiki relies on an external library, PHP Markdown by Michel Fortin, to handle
translating from the handy and compact Markdown syntax to HTML.

Example 8-21. Tiny Wiki

<?php
// Install PSR-0-compatible class autoloader
spl_autoload_register(function($class){
require preg_replace('{\\\\|_(?2!'.*\\\\)}', DIRECTORY_SEPARATOR,
trim($class, '\\')).'.php';
b

// Use Markdown for Wiki-like text markup
// Located at http://michelf.ca/projects/php-markdown/
use \Michelf\Markdown;

// The directory where the Wiki pages will be stored
// Make sure the web server user can write to it
define('PAGEDIR', dirname(__FILE__) . '/pages');

// Get page name, or use default
$page = isset($S_GET['page']) ? $_GET['page'] : 'Home';

// Figure out what to do: display an edit form, save an
// edit form, or display a page

// Display an edit form that's been asked for

if (isset(S_GET['edit'])) {
pageHeader($page);
edit($page);
pageFooter($page, false);

}

// Save a submitted edit form

else if (isset($_POST['edit'])) {
file_put_contents(pageToFile($_POST['page']), $_POST['contents']);
// Redirect to the regular view of the just-edited page
header('Location: http://'.$_SERVER['HTTP_HOST'] . $_SERVER['SCRIPT_NAME'] .

'?page=".urlencode($_POST['page']));

exit();

262 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://bit.ly/1irTpE9
http://www.it-ebooks.info/

}
// Display a page
else {
pageHeader($page);
// If the page exists, display it and the footer with an "Edit" link
if (is_readable(pageToFile($page))) {
// Get the contents of the page from the file it's saved in
Stext = file_get_contents(pageToFile($page));
// Convert Markdown syntax (using Markdown library loaded above)
Stext = Markdown::defaultTransform($text);
// Make bare [links] link to other wiki pages
Stext = wikiLinks($text);
// Display the page
echo Stext;
// Display the footer
pageFooter(Spage, true);
}
// If the page doesn't exist, display an edit form
// and the footer without an "Edit" link
else {
edit(Spage, true);
pageFooter($page, false);

}

// The page header -- pretty simple, just the title and the usual HTML
// pleasantries

function pageheader($page) { 7>

<html>

<head>

<title>Wiki: <?php echo htmlentities($page) ?></title>
</head>

<body>

<h1><?php echo htmlentities($page) ?></hi1>

<hr/>

<?php

}

// The page footer -- a "last modified" timestamp, an optional
// "Edit" link, and a link back to the front page of the Wiki
function pageFooter(Spage, $displayEditLink) {
Stimestamp = @filemtime(pageToFile($page));
if (Stimestamp) {
$lastModified = strftime('%c', Stimestamp);
} else {
$lastModified = 'Never';

}
if ($displayEditLink) {
SeditLink = ' - Edit";
} else {
SeditLink = '';
}

8.20 Program: Tiny Wiki | 263

www.it-ebooks.info

http://www.it-ebooks.info/

7>

<hr/>

Last Modified: <?php echo $lastModified ?>

<?php echo $editLink ?> - <a href="<?php echo $_SERVER['SCRIPT_NAME'] ?>">Home
</body>

</html>

<?php

}

// Display an edit form. If the page already exists, include its current
// contents in the form
function edit($page, $isNew = false) {

if (SisNew) {

Scontents = '';

?>
<p>This page doesn't exist yet. To create it, enter its contents below
and click the Save button.</p>

<?php } else {

Scontents = file_get_contents(pageToFile($page));

}
7>
<form method='post' action='<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>'>
<input type='hidden' name='edit' value='true'/>
<input type='hidden' name='page' value='<?php echo htmlentities($page) ?>'/>
<textarea name='contents' rows='20"' cols='60">
<?php echo htmlentities(Scontents) ?></textarea>

<input type='submit' value='Save'/>
</form>
<?php
}

// Convert a submitted page to a filename. Using md5() prevents naughty
// characters in Spage from causing security problems
function pageToFile(Spage) {
return PAGEDIR.'/'.md5(Spage);
}

// Turn text such as [something] in a page into an HTML link to the
// Wiki page "something"
function wikiLinks($page) {
if (preg_match_all('/\[([*\1]1+2)\]1/', Spage, Smatches, PREG_SET_ORDER)) {
foreach (Smatches as $match) {
Spage = str_replace($match[0], '<a href=""'.$_SERVER['SCRIPT_NAME'].
'?page=".urlencode($match[1])."'">" .htmlentities(Smatch[1]).'", $page);
}
}

return $page;

264 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Information on installing and using packages, including information on PSR-0, at
Recipe 27.3.

8.21 Program: HTTP Range

The program in Example 8-22 implements the HTTP Range feature, which allows cli-
ents to request one or more sections of a file. This is most frequently used to download
the remaining portion of a file that was interrupted. For example, only fetching the
remaining part of a movie that the viewer stopped watching.

Normally, your web server can handle this for you. It will parse the header, load in the
selected portions of the file, and serve them back to the browser (along with the nec-
essary HTTP).

However, if you sell multimedia, such as podcasts or music, you don’'t want to expose
those files directly. Otherwise, anyone who got the URL could download the files. In-
stead, you want to make sure only people who purchased the file are able to read it. And,
for that, you can’t use the web server by itself, but need PHP.

Recipe 17.11 shows how to restrict a file from direct access. But that recipe only works
for sending an entire file. This program expands upon that simpler example to enable
sending only the sections of the file requested by the web browser.

At first glance, this doesn’t sound difficult. However, the HTTP 1.1 specification has a
number of features that layer on complexity, such as multiple ranges (with a different
syntax for these replies), offsets from the end of the file (e.g., “only the last 1000 bytes”),
and specific status codes and headers for invalid requests.

Beyond showing how to translate a specification into code, this program demonstrates
how to read and send HTTP status codes and headers. It also integrates a number of
other recipes, including Recipe 1.6.

Example 8-22. HTTP Range

// Add your authenication here, optionally.

// The file
$file = __DIR__ . '/numbers.txt';
$Scontent_type = 'text/plain';

// Check that it's readable and get the file size
if (($filelength = filesize($file)) === false) {
error_log("Problem reading filesize of $file.");

}

// Parse header to determine info needed to send response
if (isset($_SERVER['HTTP_RANGE'])) {

8.21 Program: HTTPRange | 265

www.it-ebooks.info

http://www.it-ebooks.info/

// Delimiters are case insensitive

if (!preg_match('/bytes=\d*-\d*(,\d*-\d*)*$/i', $_SERVER['HTTP_RANGE'])) {
error_log("Client requested invalid Range.");
send_error($filelength);
exit;

}
/*

Spec: "When a client requests multiple byte-ranges in one request, the
server SHOULD return them in the order that they appeared in the
request."
*/
$ranges = explode(',"',

substr($_SERVER['HTTP_RANGE'], 6)); // everything after bytes=
Soffsets = array();
// Extract and validate each offset
// Only keep the ones that pass
foreach ($ranges as Srange) {

Soffset = parse_offset($range, $filelength);

if (Soffset !== false) {

Soffsets[] = Soffset;

}

}

J*
Depending on the number of valid ranges requested, you must return
the response in a different format
*/
switch (count(Soffsets)) {
case 0:
// No valid ranges
error_log("Client requested no valid ranges.");
send_error($filelength);
exit;
break;
case 1:
// One valid range, send standard reply
http_response_code(206); // Partial Content
list(Sstart, $Send) = Soffsets[0];
header("Content-Range: bytes $start-Send/$filelength");
header("Content-Type: $content_type");

// Set variables to allow code reuse across this case and the next one
// Note: 0-0 is 1 byte long, because we're inclusive
Scontent_length = Send - S$start + 1;
S$boundaries = array(0 => '', 1 => "');
break;
default:
// Multiple valid ranges, send multipart reply
http_response_code(206); // Partial Content
Sboundary = str_rand(32); // String to separate each part

266 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

/*

Need to compute Content-Length of entire response,

but loading the entire response into a string could use a lot of memory,
so calculate value using the offsets.

Take this opportunity to also calculate the boundaries.

*/

$boundaries = array();

$content_length = 0;

foreach (Soffsets as $offset) {
list(Sstart, $Send) = Soffset;

// Used to split each section
Sboundary_header =
"\r\n" .
"--$boundary\r\n" .
"Content-Type: Scontent_type\r\n" .
"Content-Range: bytes $start-Send/Sfilelength\r\n" .
"\r\n";

Scontent_length += strlen($boundary_header) + ($end - $start + 1);
Sboundaries[] = Sboundary_header;

}

// Add the closing boundary
$boundary_header = "\r\n--$boundary--";
Scontent_length += strlen($boundary_header);
$boundaries[] = $boundary_header;

// Chop off extra \r\n in first boundary
$boundaries[0] = substr($boundaries[0], 2);
Scontent_length -= 2;

// Change to the special multipart Content-Type
Scontent_type = "multipart/byteranges; boundary=$boundary";

}

} else {

// Send the entire file

// Set variables as if this was extracted from Range header

$start = 0;

Send = S$filelength - 1;

Soffset = array(S$start, $end);

$offsets = array($offset);

Scontent_length = $filelength;

$boundaries = array(0 => "', 1 => "');

}

// Tell us what we're getting
header("Content-Type: Scontent_type");

8.21 Program: HTTP Range | 267

www.it-ebooks.info

http://www.it-ebooks.info/

header("Content-Length: $content_length");

// Give it to us
Shandle = fopen($file, 'r');
if (Shandle) {
Soffsets_count = count($offsets);
// Print each boundary delimiter and the appropriate part of the file
for ($1 = 0; $1 < Soffsets_count; $i++) {
print $boundaries[$i];
list(Sstart, $end) = $Soffsets[$i];
send_range($handle, $start, $end);
}
// Closing boundary
print $boundaries[$i];

fclose(Shandle);
}

// Move the proper place in the file

// And print out the requested piece in chunks

function send_range(Shandle, Sstart, $end) {
$line_length = 4096; // magic number

if (fseek($handle, $start) === -1) {
error_log("Error: fseek() fail.");
}
S$left_to_read = $Send - S$start + 1;
do {
$length = min(S$line_length, $left_to_read);
if ((Sbuffer = fread($handle, $length)) !== false) {
print Sbuffer;
} else {
error_log("Error: fread() fail.");
}

} while ($left_to_read -= $length);
}

// Send the failure header
function send_error($filelength) {

http_response_code(416);

header("Content-Range: bytes */S$filelength"); // Required in 416.
}

// Convert an offset to the start and end locations in the file
// Or return false if it's invalid
function parse_offset(Srange, $filelength) {
/*
Spec: "The first-byte-pos value in a byte-range-spec gives the
byte-offset of the first byte in a range."
Spec: "The last-byte-pos value gives the byte-offset of the last byte in the
range; that is, the byte positions specified are inclusive."

268 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

*/
list(Sstart, $end) = explode('-', $range);

/*
Spec: "A suffix-byte-range-spec is used to specify the suffix of the
entity-body, of a length given by the suffix-length value."

*/
if ($start === "") {
if (Send === "' || $end === 0) {
// Asked for range of "-" or "-0"
return false;
} else {
/*
Spec: "If the entity is shorter than the specified suffix-length,
the entire entity-body is used."
Spec: "Byte offsets start at zero."
*
/
Sstart = max(0, $filelength - $end);
Send = Sfilelength - 1;
}
} else {
/*

Spec: "If the last-byte-pos value is absent, or if the value is greater
than or equal to the current length of the entity-body, last-byte-pos
is taken to be equal to one less than the current length of the entity
body in bytes."

*/

if (Send === "' || $end > $filelength - 1) {
Send = Sfilelength - 1;

}

/*

Spec: "If the last-byte-pos value is present, it MUST be greater than
or equal to the first-byte-pos in that byte-range-spec, or the
byte-range-spec is syntactically invalid."
This also catches cases where start > filelength
*/
if (Sstart > Send) {
return false;
}
}

return array(Sstart, $end);

}

// Generate a random string to delimit sections within the response
function str_rand($length = 32,
$characters = '0123456789abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ') {
if (!is_int($length) || $length < 0) {
return false;

}

8.21 Program: HTTP Range | 269

www.it-ebooks.info

http://www.it-ebooks.info/

Scharacters_length = strlen($characters) - 1;

$string = '';
for ($1 = $length; $1 > 0; $i--) {

$string .= $characters[mt_rand(0, $characters_length)];
}

return $string;

}

For simplicity, the demonstration file, numbers.txt, looks like:
01234567890123456789

Here’s how it behaves, making requests from the command-line curl program to the
built-in PHP webserver. This dumps a verbose version of the HTTP exchange.

The entire file, without any Range header:

$ curl -v http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)
Trying ::1...

connected

Connected to localhost (::1) port 8000 (#0)

GET /range.php HTTP/1.1

User-Agent: curl/7.24.0

Host: localhost:8000

Accept: */*

* Ok

*

Sun Aug 18 14:33:36 2013] ::1:59812 [200]: /range.php
HTTP/1.1 200 OK

Host: localhost:8000

Connection: close

X-Powered-By: PHP/5.4.9

Content-Type: text/plain

Content-Length: 10

* AN ANAANAANANAMPV V V V V

Closing connection #0
0123456789

Only the first 5 bytes:

$ curl -v -H 'Range: bytes=0-4' http://localhost:8000/range.php
* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)
> GET /range.php HTTP/1.1
> User-Agent: curl/7.24.0
> Host: localhost:8000
> Accept: */*

> Range: bytes=0-4

>

[

Sun Aug 18 14:30:52 2013] ::1:59798 [206]: /range.php

270 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

¥ ANANANANNANNA

HTTP/1.1 206 Partial Content
Host: localhost:8000
Connection: close
X-Powered-By: PHP/5.4.9
Content-Range: bytes 0-4/10
Content-Type: text/plain
Content-Length: 5

Closing connection #0

01234

See how the status code is now 206 instead of 200, and there is a Content-Range HTTP
header telling you what bytes were returned.

Or the last 5 bytes:

$

*

*
*
*
>
>
>
>
>
>

curl -v -H 'Range: bytes=-5' http://localhost:8000/range.php
About to connect() to localhost port 8000 (#0)

connected

Connected to localhost (::1) port 8000 (#0)
GET /range.php HTTP/1.1

User-Agent: curl/7.24.0

Host: localhost:8000

Accept: */*

Range: bytes=-5

[Sun Aug 18 14:30:33 2013] ::1:59796 [206]: /range.php

ANANANANNANANNA

HTTP/1.1 206 Partial Content
Host: localhost:8000
Connection: close
X-Powered-By: PHP/5.4.9
Content-Range: bytes 5-9/10
Content-Type: text/plain
Content-Length: 5

Closing connection #0

56789
The first 5 and the last 5 bytes:

$

curl -v -H 'Range: bytes=0-4,-5' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* ¥

*

m VvV V.V V V VvV

connected

Connected to localhost (::1) port 8000 (#0)
GET /range.php HTTP/1.1

User-Agent: curl/7.24.0

Host: localhost:8000

Accept: */*

Range: bytes=0-4,-5

Sun Aug 18 14:30:12 2013] ::1:59794 [206]: /range.php

8.21 Program: HTTPRange | 271

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP/1.1 206 Partial Content

Host: localhost:8000

Connection: close

X-Powered-By: PHP/5.4.9

Content-Type: multipart/byteranges; boundary=ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai
Content-Length: 236

A ANANNANNA

<
--ALLIeNOkvwgKkOib91ZNph5qi8fHo2ail
Content-Type: text/plain
Content-Range: bytes 0-4/10

01234
--ALLIeNOkvwgKkoib91ZNph5qi8fHo2ai
Content-Type: text/plain
Content-Range: bytes 5-9/10

56789
* Closing connection #0
--ALLIeNOkvwgKkOib91ZNph5qi8fHo2ai--

The Content-Type is switched from text/plain to multipart/byteranges; bound
ary=ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ati. The “real” Content headers have moved
within each section.

Because this is the entire file, it’s also valid to serve it up as if you requested this without
any Range header.

An invalid request, because bytes 20-24 do not exist:

$ curl -v -H 'Range: bytes=20-24' http://localhost:8000/range.php
* About to connect() to localhost port 8000 (#0)
Trying ::1...
connected
Connected to localhost (::1) port 8000 (#0)
GET /range.php HTTP/1.1
User-Agent: curl/7.24.0
Host: localhost:8000
Accept: */*
Range: bytes=20-24

Sun Aug 18 14:32:17 2013] Client requested no valid ranges.
Sun Aug 18 14:32:17 2013] ::1:59806 [416]: /range.php
HTTP/1.1 416 Requested Range Not Satisfiable

Host: localhost:8000

Connection: close

X-Powered-By: PHP/5.4.9

Content-Range: bytes */10

Content-type: text/html

* ANAAANANANAANAMPMTP YV V V V V V % % %

Closing connection #0

272 | Chapter8: Web Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

This returns a third status code, 416, along with a helpful header to let us know the legal
set of values to request: Content-Range: bytes */10.

Finally, a legal and illegal value:

$

curl -v -H 'Range: bytes=0-4,20-24' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* ¥

*

¥ ANANANAANANANA APV V V V VYV

connected

Connected to localhost (::1) port 8000 (#0)
GET /range.php HTTP/1.1

User-Agent: curl/7.24.0

Host: localhost:8000

Accept: */*

Range: bytes=0-4,20-24

Sun Aug 18 14:31:27 2013] ::1:59801 [206]: /range.php

HTTP/1.1 206 Partial Content
Host: localhost:8000
Connection: close
X-Powered-By: PHP/5.4.9
Content-Range: bytes 0-4/10
Content-Type: text/plain
Content-Length: 5

Closing connection #0

01234

Because there’s at least one valid range, the illegal ones are ignored and the response is
the same as only asking for the first 5 bytes.

8.21 Program: HTTPRange | 273

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9
Forms

9.0 Introduction

The genius of PHP is its seamless integration of form variables into your programs. It
makes web programming smooth and simple, speeding the cycle from web form to PHP
code to HTML output.

With that convenience, however, comes the responsibility to make sure that the user-
provided information that flows so easily into your program contains appropriate con-
tent. External input can never be trusted, so it's imperative always to validate all incoming
data. Recipes 9.2 through 9.9 show how to validate common kinds of information as
well as providing general guidelines on arbitrary form validation you might need to do.
Recipe 9.10 discusses escaping HTML entities to allow the safe display of user-entered
data. Recipe 9.11 covers how to process files uploaded by a user.

HTTP is a ’stateless’ protocol—it has no built-in mechanism that helps you to save
information from one page so you can access it in other pages. Recipes 9.12, 9.13, and
9.14 all show ways to work around the fundamental problem of figuring out which user
is making which requests to your web server.

Whenever PHP processes a page, it checks for URL and form variables, uploaded files,
applicable cookies, and web server and environment variables. These are then directly
accessible in the following arrays: $_GET, $_POST, $_FILES, $_COOKIE, $_SERVER, and
$_ENV. They hold, respectively, all variables set in the query string, in the body of a post
request, by uploaded files, by cookies, by the web server, and by the environment in
which the web server is running. There’s also $_REQUEST, which is one giant array that
contains the values from the other six arrays.

When placing elements inside of $_REQUEST, if two arrays both have a key with the same
name, PHP breaks the tie by relying on the variables_order configuration directive.
By default, variables_order is EGPCS (or GPCS, if youre using the php.ini-

275

www.it-ebooks.info

http://www.it-ebooks.info/

recommended configuration file). So PHP first adds environment variables to $_RE
QUEST and then adds query string, post, cookie, and web server variables to the array,
in this order. For instance, since C comes after P in the default order, a cookie named
username overwrites a posted variable named username. Note that the GPCS value from
php.ini-recommended means that the $_ENV array doesn’t get populated with environ-
ment variables.

While $_REQUEST can be convenient, it’s usually a better idea to look in the more detailed
array directly. That way, you know exactly what youre getting and don’t have to be
concerned that a change in variables_order affects the behavior of your program.

All of these arrays are auto-global. That means global inside of a function or class—
they’re always in scope.

Versions of PHP prior to 5.4.0 had a configuration directive named register_glob
als. If this was set to on, all these variables are also available as variables in the global
namespace. So $_GET['password'] is also just $password. While convenient, this in-
troduces major security problems because malicious users can easily set variables from
the outside and overwrite trusted internal variables. If you're using an older version of
PHP, make sure this is set to of f in your configuration.

Example 9-1 is a basic form. The form asks the user to enter his first name. When the
form is submitted the information is sent to hello.php.

Example 9-1. Basic HTML form

<form action="hello.php" method="post">
<p>What is your first name?</p>

<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>

The name of the text input element inside the form is first_name. Also, the method of
the form is post. This means that when the form is submitted, $_POST[' first_name']
will hold whatever string the user typed in. (It could also be empty, of course, if he didn’t

type anything.)

Example 9-2 shows the contents of hello.php, which will display information from the
form.

Example 9-2. Basic PHP form processing

echo 'Hello, ' . $_POST['first_name'] . '!';

If you type Twinkle into the form in Example 9-1, Example 9-2 prints:

Hello, Twinkle!

276 | Chapter9:Forms

www.it-ebooks.info

http://www.it-ebooks.info/

Example 9-2 is so basic that it omits two important steps that should be in all PHP form-
processing applications: data validation (to make sure what’s typed into the form is
acceptable to your program), and output escaping (to make sure that malicious users
can’t use your website to attack others). Recipes Recipe 9.2 through Recipe 9.9 discuss
data validation and Recipe 9.10 discusses output escaping.

9.1 Processing Form Input

Problem

You want to use the same HTML page to emit a form and then process the data entered
into it. In other words, you're trying to avoid a proliferation of pages that each handle
different steps in a transaction.

Solution

Use the $_SERVER['REQUEST_METHOD'] variable to determine whether the request was
submitted with the get or post method. If the get method was used, print the form. If
the post method was used, process the form. Example 9-3 combines the form from
Example 9-1 and the code from Example 9-2 into one program, deciding what to do
based on $_SERVER['REQUEST_METHOD'].

Example 9-3. Deciding what to do based on request method

<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { 7>
<form action="<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>" method="post">
What is your first name?
<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>
<?php } else {
echo 'Hello, ' . $_POST['first_name'] . "!';
}

Discussion

Forms can be easier to maintain when all parts live in the same file (or are referenced
by the same file) and context dictates which sections to display. The get method (what
your browser uses when you just type in a URL or click on a link) means ‘Hey, server,
give me something you've got’ The post method (what your browser uses when you
submit a form whose method attribute is set to post) means ‘Hey, server, here’s some
data that changes something. So the characteristic response to aget request is the HTML
form, and the response to the post request is the results of processing that form. In
Example 9-3, the ‘processing’ is extremely simple—just printing a greeting. In more

9.1 Processing Form Input | 277

www.it-ebooks.info

http://www.it-ebooks.info/

typical applications, the processing is more complicated—saving information to a da-
tabase or sending an email message.

Note that although the XHTML specification requires that the method attribute of a
<form/> element be lowercase (get or post), the HTTP specification requires that a
web browser use all uppercase (GET or POST) when sending the request method to the
server. The value in $_SERVER['REQUEST_METHOD'] is whatever the browser sends, so
in practice it will always be uppercase.

One other technique also makes pages easier to maintain: don't hardcode the path to
your page directly into the form action. This makes it impossible to rename or relocate
your page without also editing it. Instead, use the $_SERVER[' SCRIPT_NAME'] variable
asthe formaction. This is set up by PHP on each request to contain the filename (relative
to the document root) of the current script.

If you're using a web application framework, it has its own conventions on how you mix
displaying a form and processing the results. While we don’t focus on any specific
framework in this book, having a separation between the presentation part of your
application (showing things to users) and the “business logic” part of your application
(doing stuff with the data users give you) is a good idea to keep your code maintainable
and easy to understand. If your form is anything more complicated than Example 9-3
you can benefit from splitting out the display logic into a template. There are lots of
swell template languages but to keep things simple in this book we use PHP itself as the
template language.

Reworked this way, Example 9-3 becomes three files: one that displays the form on a
get request, one that processes the results on a post request and one that decides what
to do.

Here’s the form display code:

<form action="<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>" method="post">
What is your first name?

<input type="text" name="first_name" />

<input type="submit" value="Say Hello" />

</form>

Here’s the form processing logic:
Hello, <?= $_POST['first_name'] 7> !

And here’s the logic that decides what to do:

if ($_SERVER['REQUEST_METHOD'] == 'GET') {
include _ DIR__ . '/getpost-get.php';
}
else {
include _ DIR__ . '/getpost-post.php';
}

278 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

The deciding-what-to-do logic assumes that the form display code is saved as getpost-
get.php, that the form processing code is saved as getpost-post.php and that all three files
are in the same directory. The __DIR__ constant tells the program to look in the same
directory as the executing code for the files being included.

We'll use this strategy of breaking things out into separate files in other recipes in this
chapter, too.

See Also
Recipe 9.12 for handling multipage forms.

9.2 Validating Form Input: Required Fields

Problem

You want to make sure a value has been supplied for a form element. For example, you
want to make sure a text box hasn’t been left blank.

Solution

Use filter_has_var() to see if the element exists in the appropriate input array, as in
Example 9-4.

Example 9-4. Testing a required field

if (! filter_has_var(INPUT_POST, 'flavor')) {
print 'You must enter your favorite ice cream flavor.';

}

Discussion

The filter_has_var() function examines input as received by PHP before any possible
modification by your code. Consistent use of the various filter functions, explained in
this chapter, ensure you treat user input with the proper validation and sanitization.
The first argument to filter_has_var() tells it where to look. INPUT_POST examines
POST data in the request body. The other possible values are INPUT_GET (query string
variables), INPUT_COOKIE (cookies), INPUT_SERVER (server information that ends up in
$_SERVER), and INPUT_ENV (environment variables).

Different types of form elements cause different types of behavior in GET and POST
data when left empty. Blank text boxes, text areas, and file-upload boxes result in ele-
ments whose value is a zero-length string. Unchecked checkboxes and radio buttons
don’t produce any elements in GET or POST data. Browsers generally force a selection
in a drop-down menu that only allows one choice, but drop-down menus that allow

9.2 Validating Form Input: Required Fields | 279

www.it-ebooks.info

http://www.it-ebooks.info/

multiple choices and have no choices selected act like checkboxes—they don’t produce
any elements in GET or POST data.

What’s worse, requests don’t have to come from web browsers. Your PHP program may
receive a request from another program, a curious hacker constructing requests by
hand, or a malicious attacker building requests in an attempt to find holes in your
system. To make your code as robust as possible, always check that a particular element
exists in the appropriate set of input data before applying other validation strategies to
the element. Additionally, if the validation strategy assumes that the element is an array
of values (as in Example 9-14), ensure that the value really is an array by using the
FILTER_REQUIRE_ARRAY filter flag.

Example 9-5 uses filter_has_var(), filter_input(), and strlen() for maximally
strict form validation.

Example 9-5. Strict form validation

// Making sure S_POST['flavor'] exists before checking its length
if (! (filter_has_var(INPUT_POST, 'flavor') &&
(strlen(filter_input(INPUT_POST, 'flavor')) > 0))) {
print 'You must enter your favorite ice cream flavor.';

}

// S_POST['color'] is optional, but if it's supplied, it must be

// more than 5 characters after being sanitized

if (filter_has_var(INPUT_POST, 'color') &&
(strlen(filter_input(INPUT_POST, 'color', FILTER_SANITIZE_STRING)) <= 5)) {
print 'Color must be more than 5 characters.';

}

// Making sure $_POST['choices'] exists and is an array
if (! (filter_has_var(INPUT_POST, 'choices') &&
filter_input(INPUT_POST, 'choices', FILTER_DEFAULT,
FILTER_REQUIRE_ARRAY))) {
print 'You must select some choices.';

}

Calling filter_input() with only two arguments applies the default filter, which does
not modify any of the input data. In Example 9-5, nothing is done to transform any
submitted flavor value. The FILTER_SANITIZE_STRING filter, used against a submitted
color, strips HTML tags, removes binary non-ASCII characters, and encodes amper-
sands. The FILTER_DEFAULT filter, applied to choices, is a way of explicitly specifying
the default filter. This is useful in the last part of Example 9-5 because, as a filter flag,
FILTER_REQUIRE_ARRAY needs to be in the fourth argument to filter_input().

In a moment of weakness, you may be tempted to use empty() instead of strilen() to
test if a value has been entered in a text box. Succumbing to such weakness leads to
problems since the one character string 0 is false according to the rules of PHP’s

280 | Chapter9:Forms

www.it-ebooks.info

http://www.it-ebooks.info/

boolean calculations. This could lead to broken form validation if, for example, someone
types 0 into a text box named children , causing $_POST['children'] to contain
0.Then empty($_POST['children']) is true—which, from a form validation perspec-
tive, is wrong.

See Also

Documentation on filter_has_var(), filter_input(), a list of sanitization filters, a
list of filter flags; Recipe 9.5 for information about validating drop-down menus,
Recipe 9.6 for information about validating radio buttons, and Recipe 9.7 for informa-
tion about validating checkboxes.

9.3 Validating Form Input: Numbers

Problem

You want to make sure a number is entered in a form input box. For example, you don't
want someone to be able to say that her age is old enough or tangerine, but instead want
values such as 13 or 56.

Solution

If youre looking for an integer, use the FILTER_VALIDATE_INT filter, as shown in
Example 9-6.

Example 9-6. Validating a number with FILTER_VALIDATE_INT
Sage = filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT);
if (Sage === false) {

print "Submitted age is invalid.";

}

If you're looking for a decimal number, use the FILTER_VALIDATE_FLOAT filter, as shown
in Example 9-7.

Example 9-7. Validating a number with FILTER_VALIDATE_FLOAT

S$price = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);
if ($price === false) {
print "Submitted price is invalid.";

}

9.3 Validating Form Input: Numbers | 281

www.it-ebooks.info

http://bit.ly/1mfhmAq
http://bit.ly/1lcLuvR
http://bit.ly/1pOBxL8
http://bit.ly/1pBzBne
http://www.it-ebooks.info/

Discussion

The FILTER_VALIDATE_INT and FILTER_VALIDATE_FLOAT filters cause filter_input() to
return a number of the specified type (int or float) if the input string represents an
appropriate number for the filter, or false otherwise.

There are a few filter flags that affect these number filters. The FILTER_FLAG_ALLOW_0OC
TAL flag tells FILTER_VALIDATE_INT to accept octal notation. That is, a submitted string
of 017 will cause the integer 15 to be returned. Similarly, the flag FILTER_FLAG_AL
LOW_HEX allows a submitted string of @x2f to be returned as the integer 47.

The FILTER_FLAG_ALLOW_THOUSAND modifies the behavior of the FILTER_VALI
DATE_FLOAT filter by allowing commas as a thousands separator. Without it, 5,252 will
be considered invalid. With it, 5,252 correctly validates as the float 5252.

Ifyou're a fan of regular expressions, those can be useful in certain validation situations.
Example 9-8 shows regular expressions that validate an integer and a decimal number.

Example 9-8. Validating numbers with regular expressions

// The pattern matches an optional-sign and then

// at least one digit

if (! preg_match('/~-?\d+$/',$_POST['rating'])) {
print 'Your rating must be an integer.';

}

// The pattern matches an optional-sign and then

// optional digits to go before a decimal point

// an optional decimal point

// and then at least one digit

if (! preg_match('/~-2\d*\.?\d+$/',$_POST['temperature'])) {
print 'Your temperature must be a number.';

}

It is a common refrain among performance-tuning purists that regular expressions
should be avoided because they are comparatively slow. In this case, however, with such
simple regular expressions, they are about equally efficient as the filter functions. If
youre more comfortable with regular expressions, or you're using them in other vali-
dation contexts as well, they can be a handy choice. The regular expression also allows
you to consider valid numbers, such as 782364.238723123, that cannot be stored as a
PHP float without losing precision. This can be useful with data such as a longitude or
latitude that you plan to store as a string.

See Also

Recipe 9.2 for information on validating required fields; a list of validation filters; a list
of filter flags.

282 | Chapter9:Forms

www.it-ebooks.info

http://www.php.net/filter.filters.validate
http://www.php.net/filter.filters.flags
http://www.it-ebooks.info/

9.4 Validating Form Input: Email Addresses

Problem

You want to know whether an email address a user has provided is valid.

Solution

Use the FILTER_VALIDATE_EMAIL filter, as show in Example 9-9. It tells you whether an
email address is valid according to the rules in RFC 5321 (mostly).

Example 9-9. Validating an email address

$email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);
if (Semail === false) {
print "Submitted email address is invalid.";

}

Discussion

RFC 5321 consolidates a number of email-related RFCs and defines the standards for
avalid email address. The FILTER_VALIDATE_EMAIL filter uses a regular expression based
on those rules, although it explicitly does not support comments or folding whitespace.

The filter only checks that a particular address is syntactically correct. This is useful for
preventing a user from accidentally telling you that her email address is bingolov
er2261@example instead of bingolover2261@example.com. What it doesn't tell you,
however, is what happens if you send a message to that address. Furthermore, it doesn't
let you know that the person providing the email address is in control of the address.
For those sorts of validations, you need to send a confirmation message to the address.
The confirmation message can ask the user to take some affirmative task (reply to the
message, click on a link) to indicate theyre the same person that entered the address on
the form. Or, the confirmation message can tell the user what to do if she’s not the same
person that entered the address on the form — such as to click on a link in the messsage
to indicate the wrong address was entered. Recipe 8.19 demonstrates a system that sends
an email message containing a link that the recipient must click on to confirm that she
provided the address.

See Also
RFC 5321

9.4 Validating Form Input: Email Addresses | 283

www.it-ebooks.info

http://www.faqs.org/rfcs/rfc5321.html
http://www.it-ebooks.info/

9.5 Validating Form Input: Drop-Down Menus

Problem

You want to make sure that a valid choice was selected from a drop-down menu gen-
erated by the HTML <select/> element.

Solution

Use an array of values to generate the menu. Then validate the input by checking that
the value is in the array. Example 9-10 uses in_array() to do the validation.

Example 9-10. Validating a drop-down menu with in_array()

// Generating the menu
Schoices = array('Eggs','Toast','Coffee');
echo "<select name='food'>\n";
foreach ($choices as $choice) {
echo "<option>$choice</option>\n";
}

echo

</select>";

// Then, later, validating the menu
if (! in_array($_POST['food'], $choices)) {
echo "You must select a valid choice.";

}

The menu that Example 9-10 generates is:

<select name='food'>
<option>Eggs</option>
<option>Toast</option>
<option>Coffee</option>
</select>

<select name='food'>
<option>Eggs</option>
<option>Toast</option>
<option>Coffee</option>
</select>

To work with a menu that sets value attributes on each <option/> element, use ar
ray_key_exists() to validate the input, as shown in Example 9-11.

Example 9-11. Validating a drop-down menu with array_key_exists()

// Generating the menu
Schoilces = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam',
'coffee' => 'Piping Hot Coffee');
echo "<select name='food'>\n";
foreach ($choices as $key => S$choice) {

284 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

echo "<option value='$key'>S$choice</option>\n";

}

echo

</select>";

// Then, later, validating the menu
if (! array_key exists($_POST['food'], S$choices)) {
echo "You must select a valid choice.";

}

The menu that Example 9-11 generates is:

<select name='food'>

<option value='eggs'>Eggs Benedict</option>

<option value='toast'sButtered Toast with Jam</option>
<option value='coffee's>Piping Hot Coffee</option>
</select>

Discussion

The methods in Examples 9-10 and 9-11 differ in the kinds of menus that they generate.
Example 9-10 hasa $choices array with automatic numeric keys and outputs <option/>
elements. Example 9-11 has a $choices array with explicit keys and outputs <option/>
elements with value attributes drawn from those keys.

In either case, the validation strategy is the same: make sure that the value submitted
for the form element is one of the allowed choices. For requests submitted by well-
behaved browsers, this validation rule never fails—web browsers generally don't let you
make up your choice for a drop-down menu. Remember, though, that there’s nothing
requiring that requests to your PHP program come from a well-behaved web browser.
They could come from a buggy browser or from a bored 11-year-old with a copy of the
HTTP specification in one hand and a command-line telnet client in the other. Because
you always need to be mindful of malicious, hand-crafted HTTP requests, it's important
to validate input even in circumstances where most users will never encounter an error.

See Also

Documentation on in_array() and on array_key_exists().

9.6 Validating Form Input: Radio Buttons

Problem

You want to make sure a valid radio button is selected from a group of radio buttons.

9.6 Validating Form Input: Radio Buttons | 285

www.it-ebooks.info

http://bit.ly/1v6das6
http://bit.ly/1v6ddE3
http://www.it-ebooks.info/

Solution

Use an array of values to generate the menu. Then validate the input by checking that
the submitted value is in the array. Example 9-12 uses array_key_exists() to do the
validation.

Example 9-12. Validating a radio button

// Generating the radio buttons
Schoilces = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam',
'coffee' => 'Piping Hot Coffee');
foreach ($choices as $key => Schoice) {
echo "<input type='radio' name='food' value='$key'/> $Schoice \n";

}

// Then, later, validating the radio button submission
if (! array_key _exists($_POST['food'], $choices)) {
echo "You must select a valid choice.";

}

Discussion

The radio button validation in Example 9-12 is very similar to the drop-down menu
validation in Example 9-11. They both follow the same pattern—define the data that
describes the choices, generate the appropriate HTML, and then use the defined data
to ensure that a valid value was submitted. The difference is in what HTML is generated.

One difference between drop-down menus and radio buttons is how defaults are han-
dled. When the HTML doesn't explicitly specify a default choice for a drop-down menu,
the first choice in the menu is used. However, when the HTML doesn’t explicitly specify
a default choice for a set of radio buttons, no choice is used as a default.

To ensure that one of a set of radio buttons is chosen in a well-behaved web browser,

give the default choice a checked="checked" attribute. In the following code, toast is
the default:

// Defaults
Sdefaults['food'] = 'toast';
// Generating the radio buttons
$choices = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam',
'coffee' => 'Piping Hot Coffee');
foreach (Schoices as $key => Schoice) {
echo "<input type='radio' name='food' value='Skey'";
if (Skey == $defaults['food']) {
echo ' checked="checked"';

}

echo "/> Schoice \n";

286 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

// Then, later, validating the radio button submission
if (! array_key_exists($_POST['food'], $choices)) {
echo "You must select a valid choice.";

}

In addition, to guard against missing values in hand-crafted malicious requests, use
filter_has_var() to ensure that something was submitted for the radio button, as
described in Recipe 9.2.

See Also

Recipe 9.2 for information on validating required fields; documentation on ar
ray_key_exists().

9.7 Validating Form Input: Checkboxes

Problem

You want to make sure only valid checkboxes are checked.

Solution

For a single checkbox, ensure that if a value is supplied, it’s the correct one. If a value
isn't supplied for the checkbox, then the box wasn’t checked. Example 9-13 figures out
whether a checkbox was checked, unchecked, or had an invalid value submitted.

Example 9-13. Validating a single checkbox

// Generating the checkbox
Svalue = 'yes';
echo "<input type='checkbox' name='subscribe' value='yes'/> Subscribe?";

// Then, later, validating the checkbox
if (filter_has_var(INPUT_POST, 'subscribe')) {
// A value was submitted and it's the right one
if ($_POST['subscribe'] == $value) {
Ssubscribed = true;
} else {
// A value was submitted and it's the wrong one
$subscribed = false;
print 'Invalid checkbox value submitted.';
}
} else {
// No value was submitted
$subscribed = false;

9.7 Validating Form Input: Checkboxes | 287

www.it-ebooks.info

http://www.php.net/array_key_exists
http://www.php.net/array_key_exists
http://www.it-ebooks.info/

if ($subscribed) {
print 'You are subscribed.';
} else {
print 'You are not subscribed';

}

For a group of checkboxes, use an array of values to generate the checkboxes. Then, use
array_1intersect() to ensure that the set of submitted values is contained within the
set of acceptable values, as shown in Example 9-14.

Example 9-14. Validating a group of checkboxes

// Generating the checkboxes
Schoices = array('eggs' => 'Eggs Benedict',
'toast' => 'Buttered Toast with Jam',
'coffee' => 'Piping Hot Coffee');
foreach (Schoices as $key => Schoice) {
echo "<input type='checkbox' name='food[]' value='$key'/> $choice \n";

}

// Then, later, validating the radio button submission
if (array_intersect($_POST['food'], array_keys(Schoices)) != $_POST['food']) {
echo "You must select only valid choices.";

}

Discussion

For PHP to handle multiple checkbox values properly, the checkboxes’ name attribute
must end with [], as described in Recipe 9.17. Those multiple values are formatted in
$_POST as an array. Since the checkbox name in Example 9-14 is food[],
$_POST['food'] holds the array of values from the checked boxes.

The array_intersect() function finds all of the elements in $_POST[' food'] that are
also in array_keys($choices). That is, it filters the submitted choices
($_POST['food']), only allowing through values that are acceptable—keys in the
$chotices array. If all of the values in $_POST[' food'] are acceptable, then the result of
array_intersect($_POST['food'], array_keys($choices)) is an unmodified copy
of $_POST['food"']. So if the result isn’t equal to $_POST['food"'], something invalid
was submitted.

Checkboxes have the same issues with default values as do radio buttons. So just as with
radio buttons, use the rules in Recipe 9.2 to determine that something was submitted
for the checkbox before proceeding with further validation.

288 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Recipe 9.2 for information about validating required fields; documentation on ar
ray_intersect().

9.8 Validating Form Input: Dates and Times

Problem

You want to make sure that a date or time a user entered is valid. For example, you want
to ensure that a user hasn’t attempted to schedule an event for the 45th of August or
provided a credit card that has already expired.

Solution

If your form provides month, day, and year as separate elements, plug those values into
checkdate(), as in Example 9-15. This tells you whether or not the month, day, and
year are valid.

Example 9-15. Checking a particular date

if (! checkdate($_POST['month'], $_POST['day'], $_POST['year'])) {
print "The date you entered doesn't exist!";

}

To check that a date is before or after a particular value, convert the user-supplied values
to a timestamp, compute the timestamp for the threshhold date, and compare the two.
Example 9-16 checks that the supplied credit card expiration month and year are suf-
ficiently in the future.

Example 9-16. Checking credit card expiration

// The beginning of the month in which the credit card expires
Sexpires = mktime(0, 0, 0, $_POST['month'], 1, $_POST['year']);
// The beginning of the previous month
$lastMonth = strtotime('last month', S$expires);
if (time() > S$lastMonth) {

print "Sorry, that credit card expires too soon.";

}

Discussion

The checkdate() function is handy because it knows about leap year and how many
days are in each month, saving you from tedious comparisons of each component of
the date. For range validations—making sure a date or time is before, after, or between
other dates or times—it’s easiest to work with epoch timestamps.

9.8 Validating Form Input: Dates and Times | 289

www.it-ebooks.info

http://www.php.net/array_intersect
http://www.php.net/array_intersect
http://www.it-ebooks.info/

See Also

Chapter 3 discusses the finer points of date and time handling.

9.9 Validating Form Input: Credit Cards

Problem

You want to make sure a user hasn’t entered a bogus credit card number.

Solution

The is_valid_credit_card() function in Example 9-17 tells you whether a provided
credit card number is syntactically valid.

Example 9-17. Validating a credit card number

function is_valid_credit_card($s) {
// Remove non-digits and reverse
$s = strrev(preg_replace('/[~\d]/',"'",$s));
// compute checksum
Ssum = 0;
for ($1 = 0, $j = strlen($s); $1 < $3; Si++) {
// Use even digits as-is
if (($1 % 2) == 0) {
$val = $s[$i];
} else {
// Double odd digits and subtract 9 if greater than 9
$val = $s[$i] * 2;
if (Sval > 9) { Sval -= 9; }
}
$sum += Sval;
}
// Number is valid if sum is a multiple of ten
return (($Ssum % 10) == 0);
}

if (! is_valid_credit_card($_POST['credit_card'])) {
print 'Sorry, that card number is invalid.';

}

Discussion

Credit cards use the Luhn algorithm to prevent against accidental error. This algorithm,
which the is_valid_credit_card() function in Example 9-17 uses, does some ma-
nipulations on the individual digits of the card number to tell whether the number is
acceptable.

290 | Chapter9:Forms

www.it-ebooks.info

http://www.it-ebooks.info/

Validating a credit card is a bit like validating an email address. Syntactic validation—
making sure the provided value is a sequence of characters that matches a standard—
is relatively easy. Semantic validation, however, is trickier. The credit card number 4111
1111 1111 1111 sails through the function in Example 9-17 but isn’t valid. It’s a well-
known test number that looks like a Visa card number. (And, as such, is handy for using
in books when one needs an example.)

Just as strong email address validation requires external verification (usually by sending
a message to the address with a confirmation link in it), credit card validation requires
external validation by submitting the credit card number to a payment processor along
with associated account info (cardholder name and address) and making sure you get
back an approval.

Syntactic validation is good protection against inadvertent user typos but, obviously, is
not all you need to do when checking credit card numbers.

See Also

Recipe 9.4 for information about validating email addresses; for information about the
Luhn algorithm.

9.10 Preventing Cross-Site Scripting

Problem

You want to securely display user-entered data on an HTML page. For example, you
want to allow users to add comments to a blog post without worrying that HTML or
JavaScript in a comment will cause problems.

Solution

Pass user input through htmlentities() before displaying it, as in Example 9-18.

Example 9-18. Escaping HTML

print 'The comment was: ';
print htmlentities($_POST['comment']);

Discussion

PHP has a pair of functions to escape HTML entities. The most basic is htmlspecial
chars(), which escapes four characters: < > " and & Depending on optional parameters,
it can also translate ' instead of or in addition to ". For more complex encoding, use
htmlentities(); it expands on htmlspecialchars() to encode any character that has
an HTML entity. Example 9-19 shows htmlspecialchars() in action.

9.10 Preventing Cross-Site Scripting | 291

www.it-ebooks.info

http://en.wikipedia.org/wiki/Luhn
http://www.it-ebooks.info/

Example 9-19. Escaping HTML entities

$html = "Stew's favorite movie.\n";

print htmlspecialchars($html); // double-quotes

print htmlspecialchars($html, ENT_QUOTES); // single- and double-quotes
print htmlspecialchars(Shtml, ENT_NOQUOTES); // neither

Example 9-19 prints:

Stew's favorite movie.
Stew's favorite movie.
Stew's favorite movie.

By default, both htmlentities() and htmlspecialchars() use the UTF-8 character
set (as of PHP 5.4.0. Before that, the default was ISO-8859-1). To use a different character
set, pass the character set as a third argument. For example, to use BIG5, call htmlenti
ties($Sstring, ENT_QUOTES, "BIG5").

See Also

Recipes 18.4 and 19.12; documentation on htmlentities() and htmlspecialchars().

9.11 Processing Uploaded Files

Problem

You want to process a file uploaded by a user. For example, you're building a photo-
sharing website and you want to store user-supplied photos.

Solution

Use the $_FILES array to get information about uploaded files. Example 9-20 saves an
uploaded file to the /tmp directory on the web server.

Example 9-20. Uploading a file

<?php if ($_SERVER['REQUEST METHOD'] == 'GET') { 7>
<form method="post" action="<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>"
enctype="multipart/form-data">
<input type="file" name="document"/>
<input type="submit" value="Send File"/>
</form>
<?php } else {
if (isset($_FILES['document']) &&
($_FILES['document']['error'] == UPLOAD_ERR_OK)) {
SnewPath = '/tmp/' . basename($_FILES['document']['name']);
if (move_uploaded_file($_FILES['document']['tmp_name'], SnewPath)) {
print "File saved in SnewPath";
} else {

292 | Chapter9: Forms

www.it-ebooks.info

http://www.php.net/htmlentities
http://www.php.net/htmlspecialchars
http://www.it-ebooks.info/

print "Couldn't move file to $newPath";

}
} else {
print "No valid file uploaded.";
}
}
Discussion

Uploaded files appear in the $_FILES superglobal array. For each file element in the
form, an array is created in $_FILES whose key is the file element’s name. For example,
the form in Example 9-20 has a file element named document, so $_FILES['docu
ment'] contains the information about the uploaded file. Each of these per-file arrays
has five elements:

name
The name of the uploaded file. This is supplied by the browser so it could be a full
pathname or just a filename.

type

The MIME type of the file, as supplied by the browser.
size

The size of the file in bytes, as calculated by the server.

tmp_name
The location in which the file is temporarily stored on the server.

error
An error code describing what (if anything) went wrong with the file upload.

The possible values of the error element are:

UPLOAD_ERR_OK (0)
Upload succeeded (no error).

UPLOAD_ERR_INI_SIZE (1)
The size of the uploaded file is bigger than the value of the upload_max_filesize
configuration directive.

UPLOAD_ERR_FORM_SIZE (2)
The size of the uploaded file is bigger than the value of the form’s MAX_FILE_SIZE
element.

UPLOAD_ERR_PARTIAL (3)
Only part of the file was uploaded.

UPLOAD_ERR_NO_FILE (4)
There was no file uploaded.

9.11 Processing Uploaded Files | 293

www.it-ebooks.info

http://www.it-ebooks.info/

UPLOAD_ERR_NO_TMP_DIR (6)
The upload failed because there was no temporary directory to store the file.

UPLOAD_ERR_CANT_WRITE (7)
PHP couldn’t write the file to disk.

UPLOAD_ERR_EXTENSION (8)
Upload stopped by a PHP extension.

The is_uploaded_file() function confirms that the file you're about to process is a
legitimate file resulting from a user upload. Always check the tmp_name value before
processing it as any other file. This ensures that a malicious user can't trick your code
into processing a system file as an upload.

You can also move the file to a permanent location; use move_uploaded_file(), as in
Example 9-20. It also does a check to make sure that the file being moved is really an
uploaded file. Note that the value stored in tmp_name is the complete path to the file,
not just the base name. Use basename() to chop off the leading directories if needed.

Be sure to check that PHP has permission to read and write to both the directory in
which temporary files are saved (set by the upload_tmp_dir configuration directive)
and the location to which you're trying to copy the file. PHP is often running under a
special username such as nobody or apache, instead of your personal username.

Processing files can be a subtle task because not all browsers submit the same informa-
tion. It's important to do it correctly, however, or you open yourself up to security prob-
lems. You are, after all, allowing strangers to upload any file they choose to your machine;
malicious people may see this as an opportunity to crack into or crash the computer.

Asaresult, PHP hasanumber of features that allow you to place restrictions on uploaded
files, including the ability to completely turn off file uploads altogether. So if youre
experiencing difficulty processing uploaded files, check that your file isn't being rejected
because it seems to pose a security risk.

To do such a check, first make sure file_uploads is set to On inside your configuration
file. Next, make sure your file size isn’t larger than upload_max_filesize; this defaults
to 2 MB, which stops someone from trying to crash the machine by filling up the hard
drive with a giant file. Additionally, there’s a post_max_size directive, which controls
the maximum size of all the post data allowed in a single request; its initial setting is
8 MB.

From the perspective of browser differences and user error, if you don’t see what you
expect in $_FILES, make sure you add enctype="multipart/form-data" to the form’s
opening tag. PHP needs this to process the file information properly.

Also, if no file is selected for uploading, PHP sets tmp_name to the empty string. To be
sure a file was uploaded and isn't empty (although blank files may be what you want,

294 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

depending on the circumstances), you need to make sure tmp_name is set and size is
greater than 0. Last, not all browsers necessarily send the same MIME type for a file;
what they send depends on their knowledge of different file types.

See Also

Documentation on handling file uploads and on basename().

9.12 Working with Multipage Forms

Problem

You want to use a form that displays more than one page and preserves data from one
page to the next. For example, your form is for a survey that has too many questions to
put them all on one page.

Solution

Use session tracking to store form information for each stage as well as a variable to
keep track of what stage to display. Example 9-21 displays the four files for a two page-
form and showing the collected results.

Example 9-21. Making a multipage form
The “deciding what to do” logic (stage.php):

// Turn on sessions
session_start();

// Figure out what stage to use

if (($_SERVER['REQUEST_METHOD'] == 'GET') || (! isset($_POST['stage']))) {
$stage = 1;
} else {

$stage = (int) $_POST['stage'];
}

// Make sure stage isn't too big or too small
$stage = max($stage, 1);
$stage = min($stage, 3);

// Save any submitted data
if (Sstage > 1) {
foreach ($_POST as $key => S$Svalue) {
$_SESSION[$key] = S$value;
}
}

include _ DIR__ . "/stage-$stage.php";

9.12 Working with Multipage Forms | 295

www.it-ebooks.info

http://www.php.net/features.file-upload
http://www.php.net/basename
http://www.it-ebooks.info/

The first page of the form (stage-1.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post's>

Name: <input type='text' name='name'/>

Age: <input type='text' name='age'/>

<input type='hidden' name='stage' value='<?= S$stage + 1 7>'/>
<input type='submit' value='Next'/>
</form>

The second page of the form (stage-2.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post'>

Favorite Color: <input type='text' name='color'/>

Favorite Food: <input type='text' name='food'/>

<input type='hidden' name='stage' value='<?= $stage + 1 ?>'/>
<input type='submit' value='Done'/>

The displaying-results page (stage-3.php):

Hello <?= htmlentities($_SESSION['name']) ?>.

You are <?= htmlentities($_SESSION['age']) ?> years old.

Your favorite color is <?= htmlentities($_SESSION['color']) ?>
and your favorite food is <?= htmlentities($_SESSION['food']) ?>.

Discussion

At the beginning of each stage in Example 9-21, all the submitted form variables are
copied into $_SESSION. This makes them available on subsequent requests, including
the code that runs in stage 3, which displays everything that’s been saved.

PHP’s sessions are perfect for this kind of task since all of the data in a session is stored
on the server. This keeps each request small—no need to resubmit stuff that’s been
entered on a previous stage—and reduces the validation overhead. You only have to
validate each piece of submitted data when it’s submitted.

See Also

Recipe 11.1 for information about session handling.

9.13 Redisplaying Forms with Inline Error Messages

Problem

When there’s a problem with data entered in a form, you want to print out error messages
alongside the problem fields, instead of a generic error message at the top of the form.

296 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

You also want to preserve the values the user entered in the form, so they don’t have to
redo the entire thing.

Solution

As you validate, keep track of form errors in an array keyed by element name. Then,
when it’s time to display the form, print the appropriate error message next to each
element. To preserve user input, use the appropriate HTML idiom: a value attribute
(with entity encoding) for most <input/> elements, a checked="checked' attribute for
radio buttons and checkboxes, and a selected="'selected' attribute on <option/>
elements in drop-down menus. Example 9-22 displays and validates a form with a text
box, a checkbox, and a drop-down menu.

Example 9-22. Redisplaying a form with error messages and preserved input

The main logic and validation function:

// Set up some options for the drop-down menu
$flavors = array('Vanilla', 'Chocolate', 'Rhinoceros');

// Set up empty defaults when nothing is chosen.

$defaults = array('name' => ''",

‘age' => ',

'flavor' => array());
foreach ($flavors as $flavor) {

$defaults['flavor'][$flavor] = '';

}

if (S_SERVER['REQUEST_METHOD'] == 'GET'") {
Serrors = array();
include _ DIR__ . '/show-form.php';

} else {

// The request is a POST, so validate the form
Serrors = validate_form();
if (count($Serrors)) {
// If there were errors, redisplay the form with the errors,
// preserving defaults
if (isset($_POST['name'])) { Sdefaults['name'] = $_POST['name']; }
if (isset($_POST['age'])) { Sdefaults['age'] = "checked='checked'"; }
foreach ($flavors as $flavor) {
if (isset($_POST['flavor']) && ($_POST['flavor'] == $flavor)) {
Sdefaults['flavor'][$flavor] = "selected='selected'";
}
}
include _ DIR__ . '/show-form.php';
} else {
// The form data was valid, so congratulate the user. In "real life"
// perhaps here you'd redirect somewhere else or include another
// file to display
print 'The form is submitted!';

9.13 Redisplaying Forms with Inline Error Messages | 297

www.it-ebooks.info

http://www.it-ebooks.info/

}

function validate_form() {
global $flavors;

// Start out with no errors
Serrors = array();

// name is required and must be at least 3 characters
if (! (isset($_POST['name']) && (strlen($_POST['name']) > 3))) {

Serrors['name'] = 'Enter a name of at least 3 letters';
}
if (isset($_POST['age']) && (S_POST['age'] !'= '1')) {
$errors['age'] = 'Invalid age checkbox value.';
}

// flavor is optional but if submitted must be in Sflavors
if (isset($_POST['flavor']) && (! in_array($_POST['flavor'], $flavors))) {

$Serrors['flavor'] = 'Choose a valid flavor.';
}
return $errors;
}
The form (show-form.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post's>
<dl>
<dt>Your Name:</dt>
<?php if (isset(S$errors['name'])) { 7>

<dd class="error"><?= htmlentities($errors['name']) ?></dd>
<?php } 7>
<dd><input type='text' name='name'

value='<?= htmlentities($defaults['name']) ?>'/></dd>

<dt>Are you over 18 years old?</dt>
<?php if (isset(S$errors['age'])) { 7>

<dd class="error"><?= htmlentities($errors['age']) ?></dd>
<?php } 7>
<dd><input type='checkbox' name='age' value='1'

<?= Sdefaults['age'] ?>/> Yes</dd>

<dt>Your favorite ice cream flavor:</dt>
<?php if (isset(Serrors['flavor'])) { 7>

<dd class="error"><?= htmlentities($errors['flavor']) ?></dd>
<?php } 7>
<dd><select name='flavor'>
<?php foreach ($flavors as S$flavor) { 7>
<option <?= isset($defaults['flavor'][$flavor]) ?

Sdefaults['flavor'][$flavor] :
"" ?>><?= htmlentities($flavor) ?></option>

<?php } 7>

</select></dd>

</dl>

<input type='submit' value='Send Info'/>
</form>

298 | Chapter9: Forms

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

When a form is submitted with invalid data, it's more pleasant for the user if the form
is redisplayed with error messages in appropriate places rather than a generic the form
is invalid message at the top of the form. The validate_form() function in
Example 9-22 builds up an array of error messages that the form display code uses to
print the messages in the right places.

Extending Example 9-22 is a matter of expanding the checks in validate_form() to
handle the appropriate validation needs of your form and including the correct HTML
generation in show-form.php so that the form includes the input elements you want.

See Also

Recipes 9.2 to 9.9 for various form validation strategies.

9.14 Guarding Against Multiple Submissions of the Same
Form

Problem

You want to prevent a user from submitting the same form more than once.

Solution

Include a hidden field in the form with a unique value. When validating the form, check
if a form has already been submitted with that value. If it has, reject the submission. If
ithasn’t, process the form and record the value for later use. Additionally, use JavaScript
to disable the form Submit button once the form has been submitted.

Example 9-23 uses the unigid() and md5() functions to insert a unique ID field in a
form. It also sets the form’s onsubmit handler to a small bit of JavaScript that disables
the Submit button once the form’s been submitted.

Example 9-23. Insert a unique ID into a form

<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"
onsubmit="document.getElementById('submit-button').disabled = true;">

<!-- insert all the normal form elements you need -->

<input type='hidden' name='token' value='<?= md5(uniqid()) ?>'/>

<input type='submit' value='Save Data' id='submit-button'/>

</form>

Example 9-24 checks the submitted token against saved data in an SQLite database to
see if the form has already been submitted.

9.14 Guarding Against Multiple Submissions of the Same Form | 299

www.it-ebooks.info

http://www.it-ebooks.info/

Example 9-24. Checking a form for resubmission

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
$db = new PDO('sqlite:/tmp/formjs.db");
$db->beginTransaction();
$sth = $db->prepare('SELECT * FROM forms WHERE token = ?');
$sth->execute(array($_POST['token']));
if (count($sth->fetchAll())) {
print "This form has already been submitted!";
$db->rollBack();
} else {
/* Validation code for the rest of the form goes here --
* validate everything before inserting the token */
$sth = $db->prepare('INSERT INTO forms (token) VALUES (?)');
$sth->execute(array($_POST['token']));
$db->commit();
print "The form is submitted successfully.";

}

Discussion

For a variety of reasons, users often resubmit a form. Usually it’s a slip-of-the-mouse:
double-clicking the Submit button. They may hit their web browser’s Back button to
edit or recheck information, but then they rehit Submit instead of Forward. It can be
intentional: they’re trying to stuff the ballot box for an online survey or sweepstakes.
Our Solution prevents the non-malicious mistake and can slow down the malicious
user. It won't, however, eliminate all fraudulent use: more complicated work is required
for that such as adding a CAPTCHA or other verification question to the form.

The Solution does prevent your database from being cluttered with too many copies of
the same record. By generating a token that’s placed in the form, you can uniquely
identify that specific instance of the form, even when cookies are disabled. The unigid()
function generates an acceptable one-time token. The md5() function doesn’t add any
additional randomness to the token, but restricts the characters that could be in it. The
results of unigqid() can be a mix of different letters and other characters. The results of
md5() consist only of digits and the letters abcdef. For English-speaking users at least,
this ensures that the token doesn’t contain any naughty words.

It’s tempting to avoid generating a random token and instead use a number one greater
than the number of records already in your database table. There are (at least) two
problems with this method. First, it creates a race condition. What happens when a
second person starts the form before the first person has completed it? The second form
will then have the same token as the first, and conflicts will occur. This can be worked
around by creating a new blank record in the database when the form is requested, so
the second person will get a number one higher than the first. However, this can lead
to empty rows in the database if users opt not to complete the form.

300 | Chapter9:Forms

www.it-ebooks.info

http://www.it-ebooks.info/

The other reason not do this is because it makes it trivial to edit another record in the
database by manually adjusting the ID to a different number. Depending on your se-
curity settings, a fake get or post submission allows the data to be altered without
difficulty. A random token, however, can’t be guessed merely by moving to a different
integer.

See Also

Recipe 18.9 for more details on verifying data with hashes; documentation on unigid()
and on md5(). An easy to implement CAPTCHA is available from Google.

9.15 Preventing Global Variable Injection

Problem

You are using an old version of PHP and want to access form input variables without
allowing malicious users to set arbitrary global variables in your program.

Solution

The easiest solution is to use PHP version 5.4.0 or later. Starting with that version, the
register_globals configuration directive—the source of this global variable injection
problem—is removed.

If you're using an earlier version of PHP, disable the register_globals configuration
directive and access variables only from the $_GET, $_POST, and $_COOKIE arrays to make
sure you know exactly where your variables are coming from.

To do this, make sure register_globals = Off appears in your php.ini file. If you do
not have permission to write to your php.int file and it has register_globals turned
on, then you need to have a serious conversation with your system administrator or find
a new hosting provider that is not relying on incorrect settings which are more than a
decade old. If you are using PHP with Apache and Apache is configured to use per-
directory .htaccess files, you can turn register_globals by adding php_flag reg
ister_globals off to your .htaccess file.

Discussion

When register_globals is set to on, external variables, including those from forms
and cookies, are imported directly into the global namespace. This is a great conve-
nience, but it can also open up some security holes if youre not very diligent about
checking your variables and where they’re defined. Why? Because there may be a vari-
able you use internally that isn’t supposed to be accessible from the outside but has its
value rewritten without your knowledge.

9.15 Preventing Global Variable Injection | 301

www.it-ebooks.info

http://www.php.net/uniqid
http://www.php.net/md5
http://www.google.com/recaptcha/
http://www.it-ebooks.info/

Example 9-25 contains a simple example: imagine you have a page in which a user enters
a username and password. If they are validated, you return her user identification num-
ber and use that numerical identifier to look up and print out her personal information.

Example 9-25. Insecure register_globals code

Susername = Sdbh->quote($_GET['username']);
$password = $dbh->quote($_GET['password']);

$sth = $dbh->query("SELECT id FROM users WHERE username = $Susername AND
password = $password");

if (1 == Ssth->numRows()) {
$row = $sth->fetchRow(DB_FETCHMODE_OBJECT);
$1d = $row->id;

} else {
"Print bad username and password";

}

if (lempty($id)) {
$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");
}

Normally, $1d is set only by your program and is a result of a verified database lookup.
However, if someone alters the query string, and passes in a value for $1d, you’ll have
problems. With register_globals enabled, your script could still execute the second
database query and return results even after a bad username and password lookup.
Without register_globals, $id remains unset because only $_REQUEST['id'] and
$_GET['id'] are set.

Of course, there are other ways to solve this problem, even when using register_glob
als. You can restructure your code not to allow such a loophole. One way to do this is
in Example 9-26.

Example 9-26. Avoiding register_globals problems

$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND
password = $password");

if (1 == $sth->numRows()) {
Srow = $sth->fetchRow(DB_FETCHMODE_OBJECT);
$1d = $row->id;
if (lempty($id)) {
$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");
}
} else {
"Print bad username and password";

}

302 | Chapter9:Forms

www.it-ebooks.info

http://www.it-ebooks.info/

In Example 9-26 $1d has a value only when it’s been explicitly set from a database call.
Sometimes, however, it is difficult to do this because of how your program is laid out.
Another solution is to manually unset() or initialize all variables at the top of your
script. This removes the bad $1d value before it gets a chance to affect your code. How-
ever, because PHP doesn’t require variable initialization, it’s possible to forget to do this
in one place; a bug can then slip in without a warning from PHP.

For all of these reasons, it’s best to just turn register_globals off.

See Also

Documentation on register_globals.

9.16 Handling Remote Variables with Periods in Their
Names

Problem

You want to process a variable with a period in its name, but when a form is submitted,
you can't find the variable in $_GET or $_POST.

Solution

Replace the period in the variable’s name with an underscore. For example, if you have
a form input element named hot.dog, you access it inside PHP as the variable
$_GET['hot_dog'] or $_POST['hot_dog'].

Discussion

During PHP’s pimply adolescence when register_globals was on by default, a form
variable named hot.dog couldn’t become $hot.dog—periods aren’t allowed in variable
names. To work around that, the . was changed to _. While $_GET['hot.dog'] and
$_POST['hot.dog"'] don't have this problem, the translation still happens for legacy and
consistency reasons, no matter your register_globals setting.

You usually run into this translation when there’s an element of type image in a form
that’s used to submit the form. For example, a form element such as <input type="im
age" name="locations" src="locations.gif" />, when clicked, submits the form.
The x and y coordinates of the click are submitted as locations.x and locations.y.
So in PHP, to find where a user clicked, you need to check $_POST[' locations_x'] and
$_POST['locations_y'].

9.16 Handling Remote Variables with Periods in Their Names | 303

www.it-ebooks.info

http://www.php.net/security.globals
http://www.it-ebooks.info/

See Also

Documentation on variables from outside PHP.

9.17 Using Form Elements with Multiple Options

Problem

You have form elements that let a user select multiple choices, such as a drop-down
menu or a group of checkboxes, but PHP sees only one of the submitted values.

Solution

End the form element’s name with a pair of square brackets ([]). Example 9-27 shows
a properly named group of checkboxes.

Example 9-27. Naming a checkbox group

<input type="checkbox" name="boroughs[]" value="bronx"> The Bronx

<input type="checkbox" name="boroughs[]" value="brooklyn"> Brooklyn

<input type="checkbox" name="boroughs[]" value="manhattan"> Manhattan

<input type="checkbox" name="boroughs[]" value="queens"> Queens

<input type="checkbox" name="boroughs[]" value="statenisland"> Staten Island

Then, treat the submitted data as an array inside of $_GET or $_POST, as in Example 9-28.

Example 9-28. Handling a submitted checkbox group

print 'I love ' . join(' and ', $_POST['boroughs']) . "!';

Discussion

Putting [] at the end of the form element name tells PHP to treat the incoming data as
an array instead of a scalar. When PHP sees more than one submitted value assigned
to that variable, it keeps them all. If the first three boxes in Example 9-27 were checked,
it’s as if you'd written the code in Example 9-29 at the top of your program.

Example 9-29. Code equivalent of a multiple-value form element submission

$_POST['boroughs'][]
$_POST['boroughs'][]
$_POST['boroughs'][]

"bronx";
"brooklyn";
"manhattan";

A similar syntax also works with multidimensional arrays. For example, you can have
a checkbox such as <input type="checkbox" name="population[NY][NYC]" val
ue="8336697">. If checked, this form element sets $_POST['population']['NY"']
['NYC'] to 8336697.

304 | Chapter9:Forms

www.it-ebooks.info

http://www.php.net/language.variables.external
http://www.it-ebooks.info/

See Also

The introduction to Chapter 4 for more on arrays.

9.18 Creating Drop-Down Menus Based on the Current
Date

Problem

You want to create a series of drop-down menus that are based automatically on the

current date.

Solution

Create a DateTime object and then loop through the days you care about, modifying the

object with its modify() method.

Example 9-30 generates <option/> values for today and the six days that follow. In this

case, ‘today’ is April 8, 2013.

Example 9-30. Generating date-based drop-down menu options

Soptions = array();

Swhen = new DateTime();

// print out one week's worth of days

for ($1 = 0; $1 < 7; ++$1) {
Soptions[$when->getTimestamp()] = Swhen->format("D, F j, Y");
Swhen->modify("+1 day");

}

foreach (Soptions as $value => $label) {
print "<option value='$value'>$label</option>\n";

}
When run on April 8, 2013, Example 9-30 prints:

<option value='1365450257"'>Mon, April 8, 2013</option>
<option value='1365536657"'>Tue, April 9, 2013</option>
<option value='1365623057"'>Wed, April 10, 2013</option>
<option value='1365709457"'>Thu, April 11, 2013</option>
<option value='1365795857"'>Fri, April 12, 2013</option>
<option value='1365882257"'>Sat, April 13, 2013</option>
<option value='1365968657"'>Sun, April 14, 2013</option>

9.18 Creating Drop-Down Menus Based on the Current Date

www.it-ebooks.info

305

http://www.it-ebooks.info/

Discussion

In Example 9-30 we set the value for each date as its Unix timestamp representation
because we find this easier to handle inside our programs. Of course, you can use any
format you find most useful and appropriate.

Using DateTime#modify() and DateTime#format() frees you from any concerns about
time zone math. Whatever the appropriate summer time transitions are for the relevant
time zone will be handled properly.

See Also

Chapter 3, particularly Recipe 3.9; documentation on DateTime.

306 | Chapter9:Forms

www.it-ebooks.info

http://www.php.net/class.datetime
http://www.it-ebooks.info/

CHAPTER 10
Database Access

10.0 Introduction

Databases are central to many web applications. A database can hold almost any col-
lection of information you may want to search and update, such as a user list, a product
catalog, or recent headlines. One reason why PHP is such a great web programming
language is its extensive database support. PHP can interact with just about any database
you can think of, some relational and some not. It also has ODBC support, so even if
your favorite database isn’t in the list, as long as it supports ODBC, you can use it with
PHP.

DBM databases, discussed in Recipe 10.1, are simple, robust, and efficient flat files but
limit the structure of your data to key/value pairs. If your data can be organized as a
mapping of keys to values, DBM databases are a great choice.

PHP really shines, though, when paired with an SQL database. This combination is used
for most of the recipes in this chapter. SQL databases can be complicated, but they are
extremely powerful. To use PHP with a particular SQL database, PHP must be explicitly
told to include support for that database when it is compiled. If PHP is built to support
dynamic module loading, the database support can also be built as a dynamic module.

The SQL database examples in this chapter use PHP 5’s PDO database access layer. With
PDO, you use the same PHP functions no matter what database engine you're talking
to. Although the syntax of the SQL may differ from database to database, the PHP code
remains similar. In this regard, PDO offers data access abstraction, not total database
abstraction. There are other libraries that attempt to solve the total database abstraction
problem—they hide the implementation details of different databases such as date han-
dling and column types behind a layer of code. Although this sort of abstraction can
save you some work if you're writing software that is intended to be used with lots of
different types of databases, it can cause other problems. When you write SQL focused

307

www.it-ebooks.info

http://www.it-ebooks.info/

on a particular type of database, you can take advantage of that database’s features for
maximum performance.

PHP 5 comes bundled with SQLite, a powerful database that doesn’t require a separate
server. It’s a great choice when you have a moderate amount of traffic and don’t want to
deal with the hassles of running a database server. Recipe 10.2 discusses the ins and outs
of SQLite.

Many SQL examples in this chapter use a table of information about zodiac signs. The
table’s structure is shown in Example 10-1. The data in the table is shown in
Example 10-2.

Example 10-1. Sample table structure

CREATE TABLE zodiac (
id INT UNSIGNED NOT NULL,
sign CHAR(11),
symbol CHAR(13),
planet CHAR(7),
element CHAR(5S),
start_month TINYINT,
start_day TINYINT,
end_month TINYINT,
end_day TINYINT,
PRIMARY KEY(id)

)

Example 10-2. Sample table data

INSERT INTO zodiac VALUES (1,'Aries','Ram','Mars','fire',3,21,4,19);

INSERT INTO zodiac VALUES (2, 'Taurus','Bull','Venus','earth',4,20,5,20);

INSERT INTO zodiac VALUES (3, 'Gemini','Twins', 'Mercury','air',5,21,6,21);
INSERT INTO zodiac VALUES (4, 'Cancer','Crab','Moon','water',6,22,7,22);

INSERT INTO zodiac VALUES (5, 'Leo','Lion','Sun','fire',7,23,8,22);

INSERT INTO zodiac VALUES (6,'Virgo','Virgin', 'Mercury','earth',8,23,9,22);
INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);

INSERT INTO zodiac VALUES (8, 'Scorpio','Scorpion','Mars', 'water',10,24,11,21);
INSERT INTO zodiac VALUES (9, 'Sagittarius','Archer','Jupiter','fire',11,22,12,«
21);

INSERT INTO zodiac VALUES (10, 'Capricorn','Goat','Saturn','earth',12,22,1,19);
INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,«
18);

INSERT INTO zodiac VALUES (12, 'Pisces','Fishes', 'Neptune', 'water',2,19,3,20);

Recipes 10.3 through 10.8 cover the basics of connecting to a database server, sending
queries and getting the results back, as well as using queries that change the data in the
database. Because Recipe 10.3 discusses how to connect to a database, the code in the
subsequent recipes omits those lines so they can focus on the specifics of queries and
result handling.

308 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

Typical PHP programs capture information from HTML form fields and store that
information in the database. Some characters, such as the apostrophe and backslash,
have special meaning in SQL, so you have to be careful if your form data contains those
characters.

Versions of PHP prior to 5.4.0 have a feature called magic quotes that attempts to make
this easier. When the configuration setting magic_quotes_gpc is on, variables coming
from get requests, post requests, and cookies have single quotes, double quotes, back-
slashes, and nulls escaped with a backslash. You can also turn on magic_quotes_run
time to automatically escape quotes, backslashes, and nulls from external sources such
as database queries or text files. For example, if magic_quotes_runtime is on and you
read a file into an array with file(), the special characters in that array are backslash-
escaped.

Unfortunately, magic quotes usually turns out to be more like annoying quotes. If you
want to use submitted form data in any other context than an SQL query (for example,
displaying it in a page), you need to undo the escaping so the page looks right. If you're
using a version of PHP before 5.4.0, set the various magic quotes-related configuration
directives mentioned to of f. The right way to handle proper escaping of user input for
database queries is discussed in Recipe 10.7, which explains PDO’s bound parameters
support. Additionally, Recipe 10.9 discusses escaping special characters in queries in
more detail. General debugging techniques you can use to handle errors resulting from
database queries are covered in Recipe 10.10.

The next set of recipes cover database tasks that are more involved than just simple
queries. Recipe 10.11 shows how to automatically generate unique ID values you can
use as record identifiers. Recipe 10.12 covers building queries at runtime from a list of
fields. This makes it easier to manage INSERT and UPDATE queries with a lot of columns.
Recipe 10.13 demonstrates how to display links that let you page through a result set,
displaying a few records on each page. To speed up your database access, you can cache
queries and their results, as explained in Recipe 10.14.

Recipe 10.15 shows techniques for managing access to a single database connection
from multiple places in a large program. Then, Recipe 10.16 ties together some of the
topics discussed in the chapter in a complete program that stores a threaded message
board in a database.

In addition to SQL databases, PHP can work with a large number of so-called NoSQL
databases—data stores that offer different models of how you organize and query for
your information. There are too many NoSQL databases out there to cover them all
here, so we talk about one, Redis, in Recipe 10.17.

10.0 Introduction | 309

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 Using DBM Databases

Problem

You have data that can be easily represented as key/value pairs, want to store it safely,
and have very fast lookups based on those keys.

Solution

Use the DBA abstraction layer to access a DBM-style database, as shown in
Example 10-3.

Example 10-3. Using a DBM database
$dbh = dba_open(__DIR__ . '/fish.db','c','db4') or die($php_errormsg);

// retrieve and change values

if (dba_exists('flounder',$dbh)) {
$flounder_count = dba_fetch('flounder',$dbh);
Sflounder_count++;
dba_replace(' flounder',$flounder_count, $dbh);
print "Updated the flounder count.";

} else {
dba_1insert('flounder',1, $dbh);
print "Started the flounder count.";

}

// no more tilapia
dba_delete('tilapia',$dbh);

// what fish do we have?

for ($key = dba_firstkey($dbh); $key !== false; S$key = dba_nextkey($dbh)) {
Svalue = dba_fetch($key, $dbh);
print "Skey: S$value\n";

}

dba_close($dbh);

Discussion

PHP can support many DBM backends, such as GDBM, NDBM, QDBM, DB2, DB3,
DB4, DBM, and CDB. The DBA abstraction layer lets you use the same functions on
any DBM backend. All these backends store key/value pairs. You can iterate through all
the keys in a database, retrieve the value associated with a particular key, and find if a
particular key exists. Both the keys and the values are strings.

The program in Example 10-4 maintains a list of usernames and passwords in a DBM
database. The username is the first command-line argument, and the password is the
second argument. If the given username already exists in the database, the password is

310 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

changed to the given password; otherwise, the user and password combination are
added to the database.

Example 10-4. Tracking users and passwords with a DBM database

Suser = $argv[1];
$password = Sargv[2];

S$data_file = '/tmp/users.db';
$dbh = dba_open(S$data_file,'c','db4') or die("Can't open db $data_file");

if (dba_exists(S$user,$dbh)) {

print "User Suser exists. Changing password.";
} else {

print "Adding user Suser.";

}

dba_replace($user,Spassword,$dbh) or die("Can't write to database $data_file");
dba_close($dbh);

The dba_open() function returns a handle to a DBM file (or false on error). It takes
three arguments. The first is the filename of the DBM file. The second argument is the
mode for opening the file. A mode of r opens an existing database for read-only access,
and w opens an existing database for read-write access. The ¢ mode opens a database
for read-write access and creates the database if it doesn’t already exist. Last, n does the
same thing as ¢, but if the database already exists, n empties it. The third argument to
dba_open() is which DBM handler to use; this example uses db4.

To find what DBM handlers are compiled into your PHP installation, use the dba_han
dlers() function. It returns an array of the supported handlers.

To find if a key has been set in a DBM database, use dba_exists(). It takes two argu-
ments: a string key and a DBM file handle. It looks for the key in the DBM file and
returns true ifit finds the key (or falseifit doesn't). The dba_replace() function takes
three arguments: a string key, a string value, and a DBM file handle. It puts the key/
value pair into the DBM file. If an entry already exists with the given key, it overwrites
that entry with the new value.

To close a database, call dba_close(). A DBM file opened with dba_open() is auto-
matically closed at the end of a request, but you need to call dba_close() explicitly to
close persistent connections created with dba_popen().

You can use dba_firstkey() and dba_nextkey() to iterate through all the keys in a
DBM file and dba_fetch() to retrieve the values associated with each key. The program
in Example 10-5 calculates the total length of all passwords in a DBM file.

10.1 Using DBM Databases | 311

www.it-ebooks.info

http://www.it-ebooks.info/

Example 10-5. Calculating password length with DBM

$data_file = '/tmp/users.db';

Stotal_length = 0;

$dbh = dba_open(S$data_file,'r','db4');

$dbh or die("Can't open database $data_file");

$k = dba_firstkey($dbh);

while ($k) {
Stotal_length += strlen(dba_fetch($k,$dbh));
$k = dba_nextkey($dbh);

}

print "Total length of all passwords is $total_length characters.";
dba_close($dbh);

The dba_firstkey() function initializes $k to the first key in the DBM file. Each time
through the while loop, dba_fetch() retrieves the value associated with key $k and
$total_length is incremented by the length of the value (calculated with strilen()).
With dba_nextkey(), $k is set to the next key in the file.

One way to store complex data in a DBM database is with serialize(). Example 10-6
stores structured user information in a DBM database by serializing the structure before
storing it and unserializing when retrieving it.

Example 10-6. Storing structured data in a DBM database
$dbh = dba_open('users.db','c','db4') or die(Sphp_errormsg);

// read in and unserialize the data

Sexists = dba_exists($_POST['username'], $dbh);

if (Sexists) {
$serialized_data = dba_fetch($_POST['username'], $dbh) or die($php_errormsg);
$data = unserialize($serialized_data);

} else {
$data = array();

}

// update values
if (S$_POST['new_password']) {

$data['password'] = $_POST['new_password'];
}

$data['last_access'] = time();

// write data back to file
if (Sexists) {

dba_replace($_POST['username'],serialize($data), $dbh);
} else {

dba_1insert($_POST['username'],serialize($data), $dbh);
}

312 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

dba_close($dbh);

Though Example 10-6 can store multiple users’ data in the same file, you can't search
for, for example, a user’s last access time, without looping through each key in the file.
If you need to do those kinds of searches, put your data in an SQL database.

Using a DBM database is a step up from a plain-text file but it lacks most features of an
SQL database. Your data structure is limited to key/value pairs, and locking robustness
varies greatly depending on the DBM handler. Still, DBM handlers can be a good choice
for heavily accessed read-only data.

See Also

Recipe 5.7 discusses serializing data; documentation on the DBA functions; for more
information on the DB4 DBM handlers, see the Oracle website.

10.2 Using an SQLite Database

Problem

You want to use a relational database that doesn’t involve a separate server process.

Solution

Use SQLite. This robust, powerful database program is easy to use and doesn’t require
running a separate server. An SQLite database is just a file. Example 10-7 creates an
SQLite database, populates it with a table if it doesn’t already exist, and then puts some
data into the table.

Example 10-7. Creating an SQLite database

<programlisting>$db = new PDO('sqlite:/tmp/zodiac');

// Create the table and insert the data atomically
$db->beginTransaction();
// Try to find a table named 'zodiac'
$q = $db->query("SELECT name FROM sqlite_master WHERE type = 'table'" .
" AND name = 'zodiac'");
// If the query didn't return a row, then create the table
// and insert the data
if ($q->fetch() === false) {
$db-8>exec(<<&1t;_SQL_
CREATE TABLE zodiac (
id INT UNSIGNED NOT NULL,
sign CHAR(11),
symbol CHAR(13),
planet CHAR(7),

10.2 Using an SQLite Database | 313

www.it-ebooks.info

http://www.php.net/dba
http://bit.ly/1kIIkS6
http://www.it-ebooks.info/

element CHAR(5S),
start_month TINYINT,
start_day TINYINT,
end_month TINYINT,
end_day TINYINT,
PRIMARY KEY(id)

)
SQL
);

// The individual SQL statements

$sql=&1t;<&Llt;_SQL_

INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
SQL;

/1

foreach

}

INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac
INTO zodiac

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

(1,'Aries','Ram', 'Mars','fire',3,21,4,19);
(2,'Taurus','Bull', 'Venus', 'earth',4,20,5,20);

(3,'Gemini', 'Twins', 'Mercury', 'air',5,21,6,21);
(4,'Cancer','Crab', 'Moon"', 'water',6,22,7,22);
(5,'Leo','Lion','Sun','fire',7,23,8,22);

(6,'Virgo', 'virgin', 'Mercury', 'earth',8,23,9,22);
(7,'Libra','Scales','Venus', 'air',9,23,10,23);
(8,'Scorpio','Scorpion', 'Mars"', 'water',10,24,11,21);

(9, 'Sagittarius', 'Archer', 'Jupiter','fire',11,22,12,<?pdf-cr?>21);
(10, 'Capricorn', 'Goat', 'Saturn','earth',12,22,1,19);

(11, 'Aquarius', 'Water Carrier','Uranus','air',1,20,2,<?pdf-cr?>18);
(12, 'Pisces','Fishes', 'Neptune', 'water',2,19,3,20);

Chop up each line of SQL and execute it

(explode("\n",trim($sql)) as $q) {

$db->exec(trim($q));

$db->commit();

} else

{

// Nothing happened, so end the transaction
$db->rollback();
}</programlisting>

Discussion

Because SQLite databases are just regular files, all the precautions and gotchas that apply
to file access in PHP apply to SQLite databases. The user that your PHP process is
running as must have permission to read from and write to the location where the SQLite
database is. It is an extremely good idea to make this location somewhere outside your
web server’s document root. If the database file can be read directly by the web server,
then a user who guesses its location can retrieve the entire thing, bypassing any restric-
tions you've built into the queries in your PHP programs.

In PHP, the sqlite extension provides regular SQLite access as well as a PDO driver
for SQLite version 2. The pdo_sqlite extension provides a PDO driver for SQLite
version 3. If you're starting from scratch, use the PDO driver for SQLite 3, because it’s

314 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

faster and has more features. If you already have an SQLite 2 database, consider using
the PDO drivers to migrate to SQLite 3.

The sqlite_master table referenced in Example 10-7 is special system table that holds
information about other tables—so it’s useful in determining whether a particular table
exists yet. Other databases have their own ways of providing this sort of system metadata.

See Also

Documentation on SQLite and on sqlite_master.

10.3 Connecting to an SQL Database

Problem

You want access to a SQL database to store or retrieve information. Without a database,
dynamic websites aren’t very dynamic.

Solution

Create a new PDO object with the appropriate connection string. Example 10-8 shows
PDO object creation for a few different kinds of databases.

Example 10-8. Connecting with PDO

// MySQL expects parameters in the string

$mysql = new PDO('mysql:host=db.example.com', $Suser, $password);

// Separate multiple parameters with ;

$mysql = new PDO('mysql:host=db.example.com;port=31075"', $Suser, $password);

$mysql = new PDO('mysql:host=db.example.com;port=31075;dbname=food"', $user,
$password);

// Connect to a local MySQL Server

$mysql = new PDO('mysql:unix_socket=/tmp/mysql.sock', Suser, Spassword);

// PostgreSQL also expects parameters in the string

$pgsql = new PDO('pgsql:host=db.example.com', Suser, Spassword);

// Separate multiple parameters with ' ' or ;

$pgsql = new PDO('pgsql:host=db.example.com port=31075', Suser, $password);

$pgsql = new PDO('pgsql:host=db.example.com;port=31075;dbname=food', S$user,
S$password);

// You can put the user and password in the DSN if you like.

$pgsql = new PDO("pgsql:host=db.example.com port=31075 dbname=food user=$user
password=$password");

// Oracle

// If a database name is defined in tnsnames.ora, just put that in the DSN
// as the value of the dbname parameter

$oci = new PDO('oci:dbname=food', Suser, $password);

// Otherwise, specify an Instant Client URI

10.3 Connecting to an SQL Database | 315

www.it-ebooks.info

http://www.sqlite.org/docs.html
http://www.sqlite.org/faq.html#q7
http://www.it-ebooks.info/

$oci = new PDO('oci:dbname=//db.example.com:1521/food', Suser, Spassword);

// Sybase (If PDO is using Sybase's ct-lib library)

$sybase = new PDO('sybase:host=db.example.com;dbname=food', Suser, $password);
// Microsoft SQL Server (If PDO is using MS SQL Server libraries)

s$mssql = new PDO('mssql:host=db.example.com;dbname=food', Suser, $password);
// DBLib (for FreeTDS)

$dblib = new PDO('dblib:host=db.example.com;dbname=food', Suser, $password);

// ODBC -- a predefined connection

$odbc = new PDO('odbc:food');

// ODBC -- an ad-hoc connection. Provide whatever the underlying driver needs

$odbc = new PDO('odbc:Driver={Microsoft Access Driver
(*.mdb)};DBQ=C:\\data\\food.mdb;Uid=Chef"');

// SQLite just expects a filename -- no user or password
$sqlite = new PDO('sqlite:/usr/local/zodiac.db');
$sqlite = new PDO('sqlite:c:/data/zodiac.db');

// SQLite can also handle in-memory, temporary databases
$sqlite = new PDO('sqlite::memory:');

// SQLite v2 DSNs look similar to v3

$sqlite2 = new PDO('sqlite2:/usr/local/old-zodiac.db');

Discussion

If all goes well, the PDO constructor returns a new object that can be used for querying
the database. If there’s a problem, a PDOException is thrown.

Asyou can see from Example 10-8, the format of the DSN is highly dependent on which
kind of database you're attempting to connect to. In general, though, the first argument
to the PDO constructor is a string that describes the location and name of the database
you want and the second and third arguments are the username and password to con-
nect to the database with. Note that to use a particular PDO backend, PHP must be built
with support for that backend. Use the output from the PDO::getAvailableDriv
ers() method to determine what PDO backends your PHP setup has.

See Also

Recipe 10.4 for querying an SQL database; Recipe 10.6 for modifying an SQL database;
documentation on PDO.

10.4 Querying an SQL Database

Problem

You want to retrieve some data from your database.

316 | Chapter 10: Database Access

www.it-ebooks.info

http://www.php.net/PDO
http://www.it-ebooks.info/

Solution

Use PDO: :query() to send the SQL query to the database, and then a foreach loop to
retrieve each row of the result, as shown in Example 10-9.

Example 10-9. Sending a query to the database

$st = $db->query('SELECT symbol,planet FROM zodiac');
foreach (Sst->fetchAll() as $row) {

print "{Srow['symbol']} goes with {$row['planet']}
\n";
}

Discussion

The query() method returns a PDOStatement object. Its fetchAll() method provides
a concise way to operate on each row returned from a query.

The fetch() method returns a row at a time, as shown in Example 10-10.

Example 10-10. Fetching individual rows

$rows = $db->query('SELECT symbol,planet FROM zodiac ORDER BY planet');
$firstRow = Srows->fetch();

print "The first results are that {$firstRow['symbol']} goes with «
{$firstRow['planet']}";

Each call to fetch() returns the next row in the result set. When there are no more
rows available, fetch() returns false.

By default, fetch() returns an array containing each column in the result set row twice
—once with an index corresponding to the column name and once with a numerical
index. That means that the $firstRow variable in Example 10-10 has four elements:
SfirstRow[0] is Archer, $SfirstRow[1] is Jupiter, $firstRow['symbol'] is Archer,
and $firstRow['planet'] is Jupiter.

To have fetch() return rows in a different format, pass a PDO: : FETCH_* constant to
query() as a second argument. You can also pass one of the constants as the first argu-
mentto fetch(). The allowable constants and what they make fetch() return are listed
in Table 10-1.

Table 10-1. PDO::FETCH_* constants

Constant Row format

PDO::FETCH_BOTH Aray with both numeric and string (column names) keys. The default format.
PDO: : FETCH_NUM Array with numeric keys.

PDO: : FETCH_ASSOC Array with string (column names) keys.

PDO: : FETCH_OBJ] Object of class stdClass with column names as property names.

10.4 Querying an SQL Database | 317

www.it-ebooks.info

http://www.it-ebooks.info/

Constant Row format

PDO: :FETCH_LAZY Object of class PDORow with column names as property names. The properties aren’t populated until
accessed, so this is a good choice if your result row has a lot of columns. Note that if you store the
returned object and fetch another row, the stored object is updated with values from the new row.

In addition to the choices in Table 10-1, there are other ways a row can be structured.
These other ways require more than just passing a constant to query() or fetch(),
however.

In combination with bindColumn(), the PDO: : FETCH_BOUND fetch mode lets you set up
variables whose values get refreshed each time fetch() is called. Example 10-11 shows
how this works.

Example 10-11. Binding result columns

$row = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_BOUND);
// Put the value of the 'symbol' column in Ssymbol
$row->bindColumn('symbol', $symbol);
// Put the value of the second column ('planet') in Splanet
$row->bindColumn(2, $planet);
while ($row->fetch()) {

print "$symbol goes with $planet.
\n";
}

In Example 10-11, each time fetch() is called, $symbol and $planet are assigned new
values. Note that you can use either a column name or number with bindColumn().
Column numbers start at 1.

When used with query(), the PDO: : FETCH_INTO and PDO: : FETCH_CLASS constants put
result rows into specialized objects of particular classes. To use these modes, first create
a class that extends the built-in PDOStatement class. Example 10-12 extends PDOState
ment with a method that reports the average length of all the column values and then
sets up a query to use it.

Example 10-12. Extending PDOStatement

class AvgStatement extends PDOStatement {
public function avg() {
Ssum = 0;
$Svars = get_object_vars(S$this);
// Remove PDOStatement's built-in 'queryString' variable
unset($vars['queryString']);
foreach ($vars as $var => Svalue) {
Ssum += strlen(Svalue);
}
return $sum / count(Svars);
}
}

$row = new AvgStatement;
Sresults = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_INTO, $row);

318 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

// Each time fetch() is called, Srow is repopulated
while ($results->fetch()) {
print "$row->symbol belongs to $row->planet (Average: {$row->avg()})

\n";
}
In Example 10-12, the second and third arguments to query() tell PDO “each time you
fetch a new row, stuff the values into properties of the $row variable” Then, inside the
while() loop, the properties of $row are available, as well as the newly defined avg()
method.

PDO: : FETCH_INTO is useful when you want to keep data around in the same object, such
as whether you're displaying an odd- or even-numbered row, throughout all the calls to
fetch(). But when you want a new object for each row, use PDO: : FETCH_CLASS. Pass it
toquery() like PDO: : FETCH_INTO, but make the third argument to query() a classname,
notan objectinstance. The class name you provide with PDO: : FETCH_CLASS must extend
PDOStatement.

See Also

Recipe 10.5 for other ways to retrieve data; Recipe 10.6 for modifying an SQL database;
Recipe 10.7 for repeating queries efficiently; documentation on PDO.

10.5 Retrieving Rows Without a Loop

Problem

You want a concise way to execute a query and retrieve the data it returns.

Solution

Use fetchAll() to get all the results from a query at once, as shown in Example 10-13.

Example 10-13. Getting all results at once

$st = $db->query('SELECT planet, element FROM zodiac');
Sresults = $st->fetchAll();
foreach ($results as $1 => Sresult) {
print "Planet $1 is {Sresult['planet']}
\n";
}

Discussion

The fetchAll() method is useful when you need to do something that depends on all
the rows a query returns, such as counting how many rows there are or handling rows
out of order. Like fetch(), fetchAll() defaults to representing each row as an array

10.5 Retrieving Rows Withoutaloop | 319

www.it-ebooks.info

http://www.php.net/PDO
http://www.it-ebooks.info/

with both numeric and string keys and accepts the various PDO: : FETCH_* constants to
change that behavior.

fetchAll() also acceptsa few other constants that affect the results it returns. To retrieve
just a single column from the results, pass PDO: : FETCH_COLUMN and a second argument,
the index of the column you want. The first column is 0, not 1.

See Also

Recipe 10.4 for querying an SQL database and more information on fetch modes;
Recipe 10.6 for modifying an SQL database; Recipe 10.7 for repeating queries efficiently;
documentation on PDO.

10.6 Modifying Data in an SQL Database

Problem

You want to add, remove, or change data in an SQL database.

Solution

Use PDO::exec() to send an INSERT, DELETE, or UPDATE command, as shown in
Example 10-14.

Example 10-14. Using PDO::exec()

$db->exec("INSERT INTO family (id,name) VALUES (1,'Vito')");
$db->exec("DELETE FROM family WHERE name LIKE 'Fredo'");
$db->exec("UPDATE family SET is_naive = 1 WHERE name LIKE 'Kay'");

You can also prepare a query with PDO::prepare() and execute it with PDOState
ment: :execute(), as shown in Example 10-15.

Example 10-15. Preparing and executing a query
$st = $db->prepare('INSERT INTO family (id,name) VALUES (?,?)');
$st->execute(array(1,'Vito'));

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));

$st = $db->prepare('UPDATE family SET is_naive = ? WHERE name LIKE ?');
$st->execute(array(1, 'Kay'));

320 | Chapter 10: Database Access

www.it-ebooks.info

http://www.php.net/PDO
http://www.it-ebooks.info/

Discussion

The exec() method sends to the database whatever it’s passed. For INSERT, UPDATE, and
DELETE queries, it returns the number of rows affected by the query.

The prepare() and execute() methods are especially useful for queries that you want
to execute multiple times. Once you've prepared a query, you can execute it with new
values without repreparing it. Example 10-16 reuses the same prepared query three
times.

Example 10-16. Reusing a prepared statement

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));

$st->execute(array('Sonny'));

$st->execute(array('Luca Brasi'));

See Also

Recipe 10.7 for information on repeating queries; documentation on PDO: :exec(), on
PDO: :prepare(), and on PDOStatement: :execute().

10.7 Repeating Queries Efficiently

Problem

You want to run the same query multiple times, substituting in different values each
time.

Solution

Set up the query with PDO: :prepare() and then run it by calling execute() on the
prepared statement that prepare() returns. The placeholders in the query passed to
prepare() are replaced with data by execute(), as shown in Example 10-17.

Example 10-17. Running prepared statements

// Prepare
$st = $db->prepare("SELECT sign FROM zodiac WHERE element LIKE 2");
// Execute once
$st->execute(array('fire'));
while ($row = $st->fetch()) {
print $Srow[0] . "
\n";
}
// Execute again
$st->execute(array('water'));
while ($row = $st->fetch()) {

10.7 Repeating Queries Efficiently | 321

www.it-ebooks.info

http://bit.ly/1mfhEqO
http://bit.ly/UEU3u7
http://bit.ly/1qGJovZ
http://www.it-ebooks.info/

print $row[0] . "
\n";
}

Discussion

The values passed to execute() are called bound parameters—each value is associated
with (or “bound to”) a placeholder in the query. Two great things about bound param-
eters are security and speed. With bound parameters, you don't have to worry about
SQL injection attacks. PDO appropriately quotes and escapes each parameter so that
special characters are neutralized. Also, upon prepare(), many database backends do
some parsing and optimizing of the query, so each call to execute() is faster than calling
exec() or query() with a fully formed query in a string you've built yourself.

In Example 10-17, the first execute() runs the query SELECT sign FROM zodiac WHERE
element LIKE 'fire'.Thesecond execute() runs SELECT sign FROM zodiac WHERE
element LIKE 'water'.

Each time, execute() substitutes the value in its second argument for the ? placeholder.
If there is more than one placeholder, put the arguments in the array in the order they
should appear in the query. Example 10-18 shows prepare() and execute() with two
placeholders.

Example 10-18. Multiple placeholders

$st = $db->prepare(
"SELECT sign FROM zodiac WHERE element LIKE ? OR planet LIKE ?");

// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('earth', 'Mars'));

In addition to the ? placeholder style, PDO also supports named placeholders. If you've
got a lot of placeholders in a query, this can make them easier to read. Instead of ?, put
a placeholder name (which has to begin with a colon) in the query, and then use those
placeholder names (without the colons) as keys in the parameter array you pass to
execute(). Example 10-19 shows named placeholders in action.

Example 10-19. Using named placeholders

$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE :element OR planet LIKE :planet");
// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('planet' => 'Mars', 'element' => 'earth'));

Srow = $st->fetch();

With named placeholders, your queries are easier to read and you can provide the values
to execute() in any order. Note, though, that each placeholder name can only appear
in a query once. If you want to provide the same value more than once in a query, use

322 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

two different placeholder names and include the value twice in the array passed to
execute().

Aside from ? and named placeholders, prepare() offers a third way to stuff values into
queries: bindParam(). This method automatically associates what’s in a variable with a
particular placeholder. Example 10-20 shows how to use bindParam().

Example 10-20. Using bindParam()
$pairs = array('Mars' => 'water',
'Moon' => 'water',
'Sun' => 'fire');
$st = $db->prepare(
"SELECT sign FROM zodiac WHERE element LIKE :element AND planet LIKE
:planet");
$st->bindParam(':element', Selement);
$st->bindparam(':planet', $planet);
foreach ($pairs as $planet => $element) {
// No need to pass anything to execute() --
// the values come from Selement and Splanet
$st->execute();
var_dump($st->fetch());
}

In Example 10-20, there’s no need to pass any values to execute(). The two calls to
bindParam() tell PDO “whenever you execute $st, use whatever’s in the $element
variable for the :element placeholder and whatever’s in the $planet variable for
the : planet placeholder” The values in those variables when you call bindParam() don’t
matter—it’s the values in those variables when execute() is called that counts. Because
the foreach statement puts array keys in $planet and array values in $element, the keys
and values from $patirs are substituted into the query.

If you use ? placeholders with prepare(), provide a placeholder position as the first
argument to bindParam() instead of a parameter name. Placeholder positions start at
1, not 0.

bindParam() takes its cue on how to deal with the provided value based on that value’s
PHP type. Force bindParam() to treat the value as a particular type by passing a type
constant as a third argument. The type constants that bindParam() understands are
listed in Table 10-2.

Table 10-2. PDO::PARAM_* constants

Constant Type

PDO: : PARAM_NULL NULL
PDO: : PARAM_BOOL boolean
PDO: :PARAM_INT integer

10.7 Repeating Queries Efficiently | 323

www.it-ebooks.info

http://www.it-ebooks.info/

Constant Type

PDO: :PARAM_STR string
PDO: :PARAM_LOB “large object”

The PDO: : PARAM_LOB type is particularly handy because it treats the parameter as a
stream. It makes for an efficient way to stuff the contents of files (or anything that can
be represented by a stream, such as a remote URL) into a database table. Example 10-21
uses glob() to slurp the contents of all the files in a directory into a database table.

Example 10-21. Putting file contents into a database with PDO::PARAM_LOB

$st = $db->prepare('INSERT INTO files (path,contents) VALUES (:path,:contents)');
$st->bindParam(':path',Spath);
$st->bindParam(':contents',$fp,PDO: :PARAM_LOB);
foreach (glob('/usr/local/*') as S$path) {
// Get a filehandle that PDO::PARAM_LOB can work with
$fp = fopen(Spath,'r');
$st->execute();

}

Using PDO: : PARAM_LOB effectively depends on your underlying database. For example,
with Oracle your query must create an empty LOB handle and be inside a transaction.
The “Inserting an image into a database: Oracle” example of the PDO manpage shows
the proper syntax to do this.

See Also

Check out the documentation on PDO: : prepare(), on PDOStatement: :execute(), on
PDOStatement: :bindParam(), and on PDO: : PARAM_LOB in the Large Objects section.

10.8 Finding the Number of Rows Returned by a Query

Problem

You want to know how many rows a SELECT query returned, or you want to know how
many rows an INSERT, UPDATE, or DELETE query changed.

Solution

If you're issuing an INSERT, UPDATE, or DELETE with PDO: :exec(), the return value from
exec() is the number of modified rows.

If you're issuing an INSERT, UPDATE, or DELETE with PDO: :prepare() and PDOState
ment::execute(), call PDOStatement::rowCount() to get the number of modified
rows, as shown in Example 10-22.

324 | Chapter 10: Database Access

www.it-ebooks.info

http://www.php.net/pdo.lobs
http://bit.ly/UEU3u7
http://bit.ly/1qGJovZ
http://bit.ly/1pIEgpo
http://bit.ly/1v1e7BQ
http://www.it-ebooks.info/

Example 10-22. Counting rows with rowCount()

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));

print "Deleted rows: " . $st->rowCount();
$st->execute(array('Sonny'));

print "Deleted rows: " . $st->rowCount();
$st->execute(array('Luca Brasi'));

print "Deleted rows: " . $st->rowCount();

If youre issuing a SELECT statement, the only foolproof way to find out how many rows
are returned is to retrieve them all with fetchAll() and then count how many rows
you have, as shown in Example 10-23.

Example 10-23. Counting rows from a SELECT

$st = $db->query('SELECT symbol,planet FROM zodiac');
$all= $st->fetchALL(PDO: :FETCH_COLUMN, 1);
print "Retrieved ". count($all) . " rows";

Discussion

Although some database backends provide information to PDO about the number of
rows retrieved by a SELECT, so that rowCount() can work in those circumstances, not
all do. So relying on that behavior isn't a good idea.

However, retrieving everything in a large result set can be inefficient. As an alternative,
ask the database to calculate a result set size with the COUNT(*) function. Use the same
WHERE clause as you would otherwise, but ask SELECT to return COUNT(*) instead of a
list of fields.

See Also

Documentation on PDOStatement: : rowCount and on PDO: :exec().

10.9 Escaping Quotes

Problem

You need to make text or binary data safe for queries.

Solution

Write all your queries with placeholders so that prepare() and execute() can escape
strings for you. Recipe 10.7 details the different ways to use placeholders.

10.9 Escaping Quotes | 325

www.it-ebooks.info

http://www.php.net/pdostatement.rowcount
http://www.php.net/pdo.exec
http://www.it-ebooks.info/

If you need to apply escaping yourself, use the PDO: :quote() method. The rare cir-
cumstance you might need to do this could be if you want to escape SQL wildcards
coming from user input, as shown in Example 10-24.

Example 10-24. Manual quoting

$safe = $db->quote($S_GET['searchTerm']);
$safe = strtr($safe,array('_" => "_', '"%" => "\%'));
$st = $db->query("SELECT * FROM zodiac WHERE planet LIKE $safe");

Discussion

The PDO: : quote() method makes sure that text or binary data is appropriately quoted,
but you may also need to quote the SQL wildcard characters % and _ to ensure that
SELECT statements using the LIKE operator return the right results. If $_GET['search
Term'] is set to Melm% and Example 10-24 doesn’t call strtr(), its query returns rows
with planet set to Melmac, Melmacko, Melmacedonia, or anything else beginning with
Melm.

Because % is the SQL wildcard meaning match any number of characters (like * in shell
globbing) and _ is the SQL wildcard meaning match one character (like ? in shell glob-
bing), those need to be backslash-escaped as well.

strtr() must be called after PDO::quote(). Otherwise, PDO::quote() would
backslash-escape the backslashes strtr() adds. With PDO: :quote() first, Melm_ is
turned into Melm_, which is interpreted by the database to mean the string “M e I m
followed by a literal underscore character” With PDO: : quote() after strtr(), Melm_is
turned into Melm_, which is interpreted by the database to mean the string “Melm
followed by a literal backslash character, followed by the underscore wildcard.” This is
the same thing that would happen if we escaped the SQL wildcards and then used the
resulting value as a bound parameter.

Quoting of placeholder values happens even if magic_quotes_gpc or
magic_quotes_runtimeisturnedon. Similarly,ifyoucall PDO: : quote() onavalue when
magic quotes are active, the value gets quoted anyway. For maximum portability, remove
the magic quotes—supplied backslashes before you use a query with placeholders or call
PDO: :quote(). Example 10-25 shows this check.

Example 10-25. Checking for magic quotes

// The behavior of magic_quotes_sybase can also affect things
if (get_magic_quotes_gpc() && (! ini_get('magic_guotes_sybase'))) {
$fruit = stripslashes($_GET['fruit']);
} else {
$fruit = $_GET['fruit'];
}
$st = $db->prepare('UPDATE orchard SET trees = trees - 1 WHERE fruit = ?');
$st->execute(array($fruit));

326 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

If you have any control over your server, turn magic quotes off and
make your life a lot easier. However, if you're trying to write maxi-
mally portable code that could run in an environment you don’t con-
trol, you need to look out for this problem.

See Also

Documentation on PDO: :quote() and on magic quotes.

10.10 Logging Debugging Information and Errors

Problem

You want access to information to help you debug database problems. For example,
when a query fails, you want to see what error message the database returns.

Solution

Use PDO: :errorCode() or PDOStatement: :errorCode() after an operation to get an
error code if the operation failed. The corresponding errorInfo() method returns
more information about the error. Example 10-26 handles the error that results from
trying to access a nonexistent table.

Example 10-26. Printing error information

$st = $db->prepare('SELECT * FROM imaginary_table');
if (! $st) {

Serror = $db->errorInfo();

print "Problem ({$error[2]})";
}

Discussion

The errorCode() method returns a five-character error code. PDO uses the SQL 92
SQLSTATE error codes. By that standard, #0000 means “no error,” so a call to error
Code() that returns 00000 indicates success.

The errorInfo() method returns a three-element array. The first element contains the
five-character SQLSTATE code (the same thing that errorCode() returns). The second
element is a database backend-specific error code. The third element is a database
backend-specific error message.

Make sure to call errorCode() or errorInfo() on the same object on which you called
the method that you're checking for an error. In Example 10-26, the prepare() method
is called on the PDO object, so errorInfo() is called on the PDO object. If you want to

10.10 Logging Debugging Information and Errors | 327

www.it-ebooks.info

http://www.php.net/PDO.quote
http://bit.ly/1iZ6GUQ
http://www.it-ebooks.info/

check whether a fetch() called on a PDOStatement object succeeded, call error
Code() or errorInfo() on the PDOStatement object.

One exception to this rule is when creating a new PDO object. If that fails, PDO throws
an exception. It does this because otherwise there’d be no object on which you could
call errorCode() or errorInfo(). The message in the exception details why the con-
nection failed.

To have PDO throw exceptions every time it encounters an error, call setAttri
bute(PDO: :ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) on your PDO object after it’s
created. This way, you can handle database problems uniformly instead of larding your
code with repeated calls to errorCode() and errorInfo(). Example 10-27 performs a
series of database operations wrapped inside a try/catch block.

Example 10-27. Catching database exceptions

try {
$db = new PDO('sqlite:/tmp/zodiac.db");
// Make all DB errors throw exceptions
$db->setAttribute(PDO: : ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$st = $db->prepare('SELECT * FROM zodiac');
$st->execute();
while ($row = $st->fetch(PDO::FETCH_NUM)) {
print implode(',',$row). "
\n";
}
} catch (Exception $Se) {
print "Database Problem:

. $Se->getMessage();
}

Handling PDO errors as exceptions is useful inside of transactions, too. If there’s a
problem with a query once the transaction’ started, just roll back the transaction when
handling the exception.

Similar to the exception error mode is the “warning” error mode. setAttri
bute(PDO: :ATTR_ERRMODE, PDO: :ERRMODE_WARNING) tells PDO to issue warnings
when a database error is encountered. If you prefer to work with regular PHP errors
instead of exceptions, this is the error mode for you. Set up a custom error handler with
set_error_handler() to handle E_WARNING level events and you can deal with your
database problems in the error handler.

Whatever the error mode, PDO throws an exception if the initial PDO object creation
fails. When using PDO, it’s an extremely good idea to set up a default exception handler
with set_exception_handler (). Without a default exception handler, an uncaught ex-
ception causes the display of a complete stack trace if display_errors is on. If an ex-
ception is thrown when connecting to the database, this stack trace may contain sensitive
information, including database connection credentials.

328 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Documentation on PDO: :errorCode(), on PDO: :errorInfo(), on PDOStatement::er
rorCode(), on PDOStatement: :errorInfo(), on set_exception_handler(), and on
set_error_handler(). Page 619 of the SQL 92 standard contains the SQLSTATE error
codes that PDO knows about is available, but some database backends may raise errors
other than the ones listed.

10.11 Creating Unique Identifiers

Problem

You want to assign unique IDs to users, articles, or other objects as you add them to
your database.

Solution

Use PHP’s uniqid() function to generate an identifier. To restrict the set of characters
in the identifier, pass it through md5(), which returns a string containing only numerals
and the letters a through f. Example 10-28 creates identifiers using both techniques.

Example 10-28. Creating unique identifiers

$st = $db->prepare('INSERT INTO users (id, name) VALUES (?,2)');
$st->execute(array(uniqid(), 'Jacob'));
$st->execute(array(md5(unigid()), 'Ruby'));

You can also use a database-specific method to have the database generate the ID. For
example, SQLite 3 and MySQL support AUTOINCREMENT columns that automatically
assign increasing integers to a column as rows are inserted.

Discussion

uniqid() uses the current time (in microseconds) and a random number to generate a
string that is extremely difficult to guess. md5() computes a hash of whatever you give
it. It doesn’t add any randomness to the identifier, but restricts the characters that appear
in it. The results of md5() don’t contain any punctuation, so you don’t have to worry
about escaping issues. Plus, you can’t spell any naughty words with just the first six letters
of the alphabet (in English, at least).

If you'd rather give your database the responsibility of generating the unique identifier,
use the appropriate syntax when creating a table. Example 10-29 shows how to create a
table in SQLite with a column that gets an auto-incremented integer ID each time a new
row is inserted.

10.11 Creating Unique Identifiers | 329

www.it-ebooks.info

http://bit.ly/1nEbmDV
http://bit.ly/1wxUT9x
http://bit.ly/Vo2o61
http://bit.ly/Vo2o61
http://bit.ly/1lQ81D3
http://bit.ly/1ryZ3v0
http://bit.ly/TjyjT4
http://bit.ly/14R3PYK
http://www.it-ebooks.info/

Example 10-29. Creating an auto-increment column with SQLite

// the type INTEGER PRIMARY KEY AUTOINCREMENT tells SQLite
// to assign ascending IDs
$db->exec(<<<_SQL_
CREATE TABLE users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(255)
)
SQL
);

// No need to insert a value for 'id' -- SQLite assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

// These rows are assigned 'id' values
foreach (array('Jacob','Ruby') as $name) {
$st->execute(array($name));

}
Example 10-30 shows the same thing for MySQL.

Example 10-30. Creating an auto-increment column with MySQL

// the AUTO_INCREMENT tells MySQL to assign ascending IDs
// that column must be the PRIMARY KEY
$db->exec(<<<_SQL_
CREATE TABLE users (
id INT NOT NULL AUTO_INCREMENT,
name VARCHAR(255),
PRIMARY KEY(id)
)
SQL
);

// No need to insert a value for 'id' -- MySQL assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

// These rows are assigned 'id' values
foreach (array('Jacob','Ruby') as $name) {
$st->execute(array(Sname));

}

When the database creates ID values automatically, the PDO: : lastInsertId() method
retrieves them. Call lastInsertId() on your PDO object to get the auto-generated ID
of the last inserted row. Some database backends also let you pass a sequence name to
lastInsertId() to get the last value from the sequence. Some database backends don’t
support PDO: : lastInsertId() atall. In that case, PDO: : lastInsertId() causes an er-
ror with SQLSTATE set to IMOO1.

330 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

See Also

Documentation on uniqid(), on md5(), on PDO: :lastInsertId(), on SQLite and AU
TOINCREMENT, and on MySQL and AUTO_INCREMENT.

10.12 Building Queries Programmatically

Problem

You want to construct an INSERT or UPDATE query from an array of field names. For
example, you want to insert a new user into your database. Instead of hardcoding each
field of user information (such as username, email address, postal address, birthdate,
etc.), you put the field names in an array and use the array to build the query. This is
easier to maintain, especially if you need to conditionally INSERT or UPDATE with the
same set of fields.

Solution

To construct an UPDATE query, build an array of field/value pairs and then implode()
together each element of that array, as shown in Example 10-31.

Example 10-31. Building an UPDATE query

// A list of field names
$fields = array('symbol','planet','element');

Supdate_fields = array();

Supdate_values = array();

foreach ($fields as S$field) {
Supdate_fields[] = "$field = ?";
// Assume the data is coming from a form
Supdate_values[] = $_POST[$field];

}

$st = $db->prepare("UPDATE zodiac SET " .
implode(',"', Supdate_fields) .
'"WHERE sign = ?');

// Add 'sign' to the values array
$update_values[] = $_GET['sign'];

// Execute the query
$st->execute(Supdate_values);

For an INSERT query, do the same thing, although the SQL syntax is a little different, as
Example 10-32 demonstrates.

10.12 Building Queries Programmatically | 331

www.it-ebooks.info

http://www.php.net/uniqid
http://www.php.net/md5
http://www.php.net/PDO.lastInsertId
http://www.sqlite.org/autoinc.html
http://www.sqlite.org/autoinc.html
http://bit.ly/1kS760t
http://www.it-ebooks.info/

Example 10-32. Building an INSERT query

// A list of field names

$fields = array('symbol', 'planet','element');

$placeholders = array();

Svalues = array();

foreach ($fields as $field) {
// One placeholder per field
$placeholders[] = '?';
// Assume the data is coming from a form
Svalues[] = $_POST[S$field];

}

$st = $db->prepare('INSERT INTO zodiac (' .
implode(',"',$flelds) .
') VALUES (' .

implode(',"', $placeholders) .

DIDH
// Execute the query
$st->execute($values);

Discussion

Placeholders make this sort of thing a breeze. Because they take care of escaping the
provided data, you can easily stuff user-submitted data into programatically generated

queries.

Ifyou use sequence-generated integers as primary keys, you can combine the two query-
construction techniques into one function. That function determines whether a record
exists and then generates the correct query, including a new ID, as shown in the

build_query() function in Example 10-33.

Example 10-33. build_query()

function build_query($db,Skey_field,S$fields,S$table) {

Svalues = array();
if (! empty(S_POST[Skey_field])) {
$update_fields = array();
foreach ($fields as S$field) {
Supdate_fields[] = "$field = ?";

// Assume the data is coming from a form

Svalues[] = $_POST[$field];
}

// Add the key field's value to the Svalues array

Svalues[] = $_POST[Skey_field];

$st = $db->prepare("UPDATE Stable SET " .
implode(',', Supdate_fields) .

"WHERE $key field = ?");
} else {
// Start values off with a unique ID

// If your DB is set to generate this value, use NULL instead

$values[] = md5(unigid());

332

| Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

$placeholders = array('?');
foreach ($fields as $field) {
// One placeholder per field
Splaceholders[] = '?';
// Assume the data is coming from a form
Svalues[] = $_POST[$field];
}
$st = $db->prepare("INSERT INTO Stable ($key_field," .
implode(',"',$fields) . ') VALUES ('.
implode(',"',Splaceholders) .')');
}
$st->execute($values);
return $st;

}

Using this function, you can make a simple page to edit all the information in the zodiac
table, shown in Example 10-34.

Example 10-34. A simple add/edit record page

// The file where build_query() is defined
include _ DIR__ . '/buildquery.php';

$db = new PDO('sqglite:/tmp/zodiac.db");
$db->setAttribute(PDO: : ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$fields = array('sign','symbol','planet','element',
'start_month','start_day', 'end_month','end_day');

$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';

switch (Scmd) {
case 'edit':
try {
$st = $db->prepare('SELECT ' . implode(',',S$fields) .
' FROM zodiac WHERE id = ?');
$st->execute(array($_GET['1d']));
Srow = $st->fetch(PDO: :FETCH_ASSOC);
} catch (Exception Se) {
Srow = array();

}
case 'add':
print '<form method="post" action=""'
htmlentities($_SERVER['PHP_SELF']) . '">';
print '<input type="hidden" name="cmd" value="save">';

print '<table>';
if ('edit' == $cmd) {
printf('<input type="hidden" name="1d" value="%d">',
$_GET['id']);
}
foreach (S$fields as $field) {
if ('edit' == $cmd) {

10.12 Building Queries Programmatically | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Svalue = htmlentities($row[$field]);
} else {
Svalue = '';
}
printf('<tr><td>%s: </td><td><input type="text" name="%s" value="%s">"',
Sfield,S$field,Svalue);
printf('</td></tr>");
}
print '<tr><td></td><td><input type="submit" value="Save'"></td></tr>';
print '</table></form>';
break;
case 'save':
try {
$st = build_query($db, 'id',$fields, 'zodiac');
print 'Added info.';
} catch (Exception $e) {

print "Couldn't add info: " . htmlentities(Se->getMessage());
}
print '<hr>';
case 'show':
default:

S$self = htmlentities($_SERVER['PHP_SELF']);

print '';

foreach ($db->query('SELECT id,sign FROM zodiac') as $row) {

printf(' %s",

Sself,Srow['id'],htmlentities($row['sign']));

}

print '<hr> Add New';

print '';

break;

}

The switch statement controls what action the program takes based on the value of

$_REQUEST['cmd']. If $_REQUEST['cmd'] is add or edit, the program displays a form
with text boxes for each field in the $fields array, as shown in Figure 10-1. If $_RE
QUEST['cmd'] is edit, values for the row with the supplied $id are loaded from the
database and displayed as defaults. If $_REQUEST['cmd'] is save, the program uses
build_query() to generate an appropriate query to either INSERT or UPDATE the data
in the database. After saving (or if no $_REQUEST['cmd'] is specified), the program
displays a list of all zodiac signs, as shown in Figure 10-2.

334 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

[php.cookbook:9876/7cm: — || php.cookbook:9876/7cme %
+ €' [Y php.cookbook:9876/7cmd=e... ¢) = | & - € [} php.cookbook:9876/72cmd=add 57| =
sign: [iba] sign:
symbol: [scales | symbol:
planet: [venus | planet:
element: [mr | element:
start_month: 3| start_month:
start_day: 23| start_day:
end_month: 10 | end_month:
end_day: [23 | end_day:

A

Figure 10-1. Editing and adding a record

|'" php.cookbook:9876 x

& - C [Y php.cookbook:9876 =

Sagittarius

Figure 10-2. Listing records

Whether build_query() builds an INSERT or UPDATE statement is based on the presence
of the request variable $_REQUEST['id"'] (because id is passed in Skey_field). If $_RE
QUEST['id'] is not empty, the function builds an UPDATE query to change the row with
that ID. If $_REQUEST['id'] is empty (or it hasn’t been set at all), the function generates
anew ID and uses that new ID in an INSERT query that adds a row to the table. To have

10.12 Building Queries Programmatically | 335

www.it-ebooks.info

http://www.it-ebooks.info/

build_query() respect a database’s AUTOINCREMENT setting, start $values off with null
instead of md5(unigid()).

See Also

Recipe 10.7 for information about placeholders, prepare(), and execute(); documen-
tation on PDO: : prepare() and on PDOStatement: :execute().

10.13 Making Paginated Links for a Series of Records

Problem

You want to display a large dataset a page at a time and provide links that move through
the dataset.

Solution

Use database-appropriate syntax to grab just a section of all the rows that match your
query. Example 10-35 shows how this works with SQLite.

Example 10-35. Paging with SQLite

// Select 5 rows, starting after the first 3
foreach ($db->query('SELECT * FROM zodiac ' .
'ORDER BY sign LIMIT 5 ' .
'"OFFSET 3') as Srow) {
// Do something with each row

}

The indexed_links() and print_link() functions in this recipe assist with printing
paging information. Example 10-36 shows them in action.

Example 10-36. Displaying paginated results

Soffset = isset(S_GET['offset']) ? intval($_GET['offset']) : 1;

if (! Soffset) { Soffset = 1; }

$per_page = 5;

Stotal = $db->query('SELECT COUNT(*) FROM zodiac')->fetchColumn(0);

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .
"LIMIT Sper_page OFFSET " . (Soffset-1);
$lastRowNumber = S$Soffset - 1;

foreach ($db->query($limitedSQL) as Srow) {

$lastRowNumber++;

print "{Srow['sign']}, {Srow['symbol']} ({Srow['id']})
\n";
}

indexed_links(Stotal,Soffset,$per_page);

336 | Chapter 10: Database Access

www.it-ebooks.info

http://www.php.net/PDO.prepare
http://www.php.net/PDOStatement.execute()
http://www.it-ebooks.info/

print "
";
print "(Displaying Soffset - $lastRowNumber of $total)";

Discussion

print_link() is shown in Example 10-37 and indexed_links() is shown in
Example 10-38.

Example 10-37. print_link()

function print_link($inactive,S$text,Soffset="") {
if ($inactive) {
print "Stext";
} else {
print "".
"<a href="" . htmlentities($_SERVER['PHP_SELF']) .
"?0ffset=$Soffset'>$text";

}

Example 10-38. indexed_links()

function indexed_links($total,S$offset,Sper_page) {
$separator = ' | ';

// print "<<Prev" link
print_link($offset == 1, '<< Prev', max(1l, Soffset - $per_page));

// print all groupings except last one
for ($start = 1, $end = S$Sper_page;
Send < Stotal;
$start += $per_page, $end += S$Sper_page) {
print $separator;
print_link($offset == $start, "$start-Send", $start);
}

/* print the last grouping -
* at this point, Sstart points to the element at the beginning
* of the last grouping
*/

/* the text should only contain a range if there's more than
* one element on the last page. For example, the last grouping
* of 11 elements with 5 per page should just say "11", not "11-11"
*/

$end = (Stotal > $start) ? "-Stotal" : '';

print $separator;
print_link($offset == $start, "$start$end", S$start);

// print "Next>>" link
print $separator;

10.13 Making Paginated Links for a Series of Records | 337

www.it-ebooks.info

http://www.it-ebooks.info/

print_link($offset == $start, 'Next >>',S$offset + Sper_page);
}

To use these functions, retrieve the correct subset of the data using appropriate PDO
functions and then print it out. Call indexed_links() to display the indexed links.

After connecting to the database, you need to make sure $offset has an appropriate
value. $offset is the beginning record in the result set that should be displayed. To start
at the beginning of the result set, $offset should be 1. The variable $per_page is set to
how many records to display on each page, and $total is the total number of records
in the entire result set. For this example, all the zodiac records are displayed, so $to
tal is set to the count of all the rows in the entire table.

The SQL query that retrieves information in the proper order is:

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .
"LIMIT $per_page OFFSET " . (Soffset-1);

The LIMIT and OFFSET keywords are how you tell SQLite to return just a subset of all
matching rows.

The relevant rows are retrieved by $db->query($limitedSQL), and then information
is displayed from each row. After the rows, indexed_links() provides navigation links.
The output when $offset is not set (or is 1) is shown in Figure 10-3.

| 1 php.cookbook:9876 x

« C [php.cookbook: 9876 el =

Aries, Ram (1)

Taurus, Bull (2)

Gemini, Twins (3)

Cancer, Crab (4)

Leo, Lion (3)
<<Prev!|1-516-10111-12 | Next >>
(Displaying 1 -50f 12)

Figure 10-3. Paginated results with indexed_links()

338 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

In Figure 10-3, “6-10,” “11-12,” and “Next >>” are links to the same page with adjusted
$offset arguments. “<< Prev” and “1-5” are grayed out, because what they would link
to is what's currently displayed.

See Also

A discussion of paging in the Solar framework and information on different database
paging syntaxes.

10.14 Caching Queries and Results

Problem

You don’t want to rerun potentially expensive database queries when the results haven’t
changed.

Solution

Use PEAR’s Cache_L1ite package. It makes it simple to cache arbitrary data. In this case,
cache the results of a SELECT query and use the text of the query as a cache key.
Example 10-39 shows how to cache query results with Cache_L1ite.

Example 10-39. Caching query results

require_once 'Cache/Lite.php';

Sopts = array(
// Where to put the cached data
'cacheDir' => '/tmp/',
// Let us store arrays in the cache
'automaticSerialization' => true,
// How long stuff lives in the cache
"lifeTime' => 600 /* ten minutes */);

// Create the cache
$cache = new Cache_Lite($opts);

// Connect to the database
$db = new PDO('sqlite:/tmp/zodiac.db');

// Define our query and its parameters
$sql = 'SELECT * FROM zodiac WHERE planet = ?';
$params = array($_GET['planet']);

// Get the unique cache key
Skey = cache_key($sql, Sparams);

// Try to get results from the cache

10.14 Caching Queries and Results | 339

www.it-ebooks.info

http://bit.ly/TwXYYZ
http://bit.ly/1sFg4YH
http://bit.ly/1sFg4YH
http://www.it-ebooks.info/

$results = S$cache->get(Skey);

if (Sresults === false) {
// No results found, so do the query and put the results in the cache
$st = $db->prepare($sql);
$st->execute($params);
Sresults = $st->fetchAll();
Scache->save($results);

}

// Whether from the cache or not, Sresults has our data
foreach ($results as $result) {

print "S$result[id]: S$result[planet], Sresult[sign]
\n";
}

function cache_key($sql, $params) {
return md5($sql .
implode('|',array_keys($params)) .
implode('|',$params));
}

Discussion

Cache_L1ite is a generic, lightweight mechanism for caching arbitrary information. It
uses files to store the information it's caching. The Cache_L1ite constructor takes an
array of options that control its behavior. The two most important ones in
Example 10-39 are automaticSerialization, which makes it easier to store arrays in
the cache, and cacheDir, which defines where the cache files go. Make sure cacheDir
ends with a /.

The cache is just a mapping of keys to values. It’s up to us to make sure that we supply
a cache key that uniquely identifies the data we want to cache—in this case, the SQL
query and the parameters bound to it. The cache_key function computes an appropriate
key. After that, Example 10-39 just checks to see if the results are already in the cache.
If not, it executes the query against the database and stuffs the results in the cache for
next time.

Note that you can’t put a PDO or PDOStatement object in the cache—you have to fetch
results and then put the results in the cache.

By default, entries stay in the cache for one hour. You can adjust this by passing a different
value (in seconds) as the 1ifeTime option when creating a new Cache_L1ite object. Pass
in null if you don’t want data to automatically expire.

The cache isn't altered if you change the database with an INSERT, UPDATE, or DELETE
query. If there are cached SELECT statements that refer to data no longer in the database,
youneed to explicitly remove everything from the cache with the Cache_Lite: :clean()

340 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

method. You can also remove an individual element from the cache by passing a cache
key to Cache_Lite: :remove().

The cache_key() function in Example 10-39 is case sensitive. This means that if the
results of SELECT * FROM zodiac are in the cache, and you run the query SELECT *
from zodiac, the results aren’t found in the cache and the query is run again. Main-
taining consistent capitalization, spacing, and field ordering when constructing your
SQL queries results in more efficient cache usage.

A benefit of PHP-layer solutions such as Cache_L1ite is that they are database agnostic.
However, depending on the database you’re using you may be able to take advantage of
database-specific query caching mechanisms. These kinds of caches, because they are
more tightly integrated into the database, are able to be smarter about expiring cached
data when it has changed. For example, you can read about how to enable MySQULs
query cache.

See Also

Documentation on Cache_L1ite.

10.15 Accessing a Database Connection Anywhere in Your
Program

Problem

You've got a program with lots of functions and classes in it, and you want to maintain
a single database connection that’s easily accessible from anywhere in the program.

Solution

Use a static class method that creates the connection if it doesn’t exist and returns the
connection (see Example 10-40).

Example 10-40. Creating a database connection in a static class method

class DBCxn {
// What DSN to connect to?
public static $dsn = 'sqlite:c:/data/zodiac.db';
public static Suser = null;
public static S$pass = null;
public static SdriverOpts = null;

// Internal variable to hold the connection
private static $db;

// No cloning or instantiating allowed
final private function __construct() { }

10.15 Accessing a Database Connection Anywhere in Your Program | 341

www.it-ebooks.info

http://bit.ly/1fQaVYo
http://bit.ly/1fQaVYo
http://bit.ly/1huOJxS
http://www.it-ebooks.info/

final private function _ _clone() { }

public static function get() {
// Connect if not already connected
if (is_null(self::S$db)) {
self::5db = new PDO(self::$dsn, self::Suser, self::$pass,
self::$driverOpts);
}
// Return the connection
return self::$db;

}

Discussion

The DBCxn: :get() method defined in Example 10-40 accomplishes two things: you can
call it from anywhere in your program without worrying about variable scope and it
prevents more than one connection from being created in a program.

To change what kind of connection DBCxn::get() provides, alter the $dsn, $user,
$pass,and $driverOpts properties of the class. If you need to manage multiple different
database connections during the same script execution, change $dsn and $db to an array
and have get() acceptan argument identifying which connection to use. Example 10-41
shows a version of DBCxn that provides access to three different databases.

Example 10-41. Handling connections to multiple databases

class DBCxn {
// What DSNs to connect to?
public static $dsn =
array('zodiac' => 'sqlite:c:/data/zodiac.db',
'users' => array('mysql:host=db.example.com', 'monty','7f2iuh'),
'stats' => array('oci:statistics', 'statsuser','statspass'));

// Internal variable to hold the connection
private static $db = array();

// No cloning or instantiating allowed
final private function _ construct() { }
final private function __clone() { }

public static function get(Skey) {
if (! isset(self::Sdsn[Skey])) {
throw new Exception("Unknown DSN: Skey");
}
// Connect if not already connected
if (! isset(self::$db[Skey])) {
if (is_array(self::$dsn[Skey])) {

$c = new ReflectionClass('PDO"');
self::$db[Skey] = $c->newInstanceArgs(self::$dsn[$key]);

342 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

} else {
self::$db[$key] = new PDO(self::$dsn[$key]);
}
}

// Return the connection
return self::$db[$key];

}

In Example 10-41, you must pass a key to DBCxn: :get() that identifies which entry in
$dsn to use. The code inside get() is a little more complicated, too, because it has to
handle variable numbers of arguments to the PDO constructor. Some databases, such
as SQLite, just need one argument. Others may provide two, three, or four arguments.
Example 10-41 uses the ReflectionClass: :newInstanceArgs() method to concisely
call a constructor and provide arguments in an array.

See Also

Documentation on PDO::__construct() and on ReflectionClass::newInstan
ceArgs().

10.16 Program: Storing a Threaded Message Board

Storing and retrieving threaded messages requires extra care to display the threads in
the correct order. Finding the children of each message and building the tree of message
relationships can easily lead to a recursive web of queries. Users generally look at a list
of messages and read individual messages far more often then they post messages. With
a little extra processing when saving a new message to the database, the query that
retrieves a list of messages to display is simpler and much more efficient.

Store messages in a table structured like this:

CREATE TABLE message (
id INTEGER PRIMARY KEY AUTOINCREMENT,
posted_on DATETIME NOT NULL,
author CHAR(255),
subject CHAR(255),
body MEDIUMTEXT,
thread_id INT UNSIGNED NOT NULL,
parent_id INT UNSIGNED NOT NULL,
level INT UNSIGNED NOT NULL,
thread_pos INT UNSIGNED NOT NULL
);
The primary key, id, is a unique integer that identifies a particular message. The time
and date that a message is posted is stored in posted_on, and author, subject, and body
are (surprise!) a message’s author, subject, and body. The remaining four fields keep
track of the threading relationships between messages. The integer thread_1id identifies

10.16 Program: Storing a Threaded Message Board | 343

www.it-ebooks.info

http://www.php.net/PDO.__construct
http://www.php.net/language.oop5.reflection
http://www.php.net/language.oop5.reflection
http://www.it-ebooks.info/

each thread. All messages in a particular thread have the same thread_1id. If a message
is a reply to another message, parent_1id is the id of the replied-to message. level is
the position of the message in a thread. The first message in a thread has level 0. A reply
to that level message has level 1, and a reply to that level 1 message has level 2. Multiple
messages in a thread can have the same level and the same parent_1id. For example,
if someone starts off a thread with a message about the merits of BeOS over CP/M, the
angry replies to that message from CP/M’s legions of fans all have level 1 and a par
ent_1id equal to the id of the original message.

The last field, thread_pos, is what makes the easy display of messages possible. When
displayed, all messages in a thread are ordered by their thread_pos value.

Here are the rules for calculating thread_pos:

o The first message in a thread has thread_pos = 0.

o For a new message N, if there are no messages in the thread with the same parent
as N, N's thread_pos is one greater than its parent’s thread_pos.

o For a new message N, if there are messages in the thread with the same parent as N,
N’s thread_pos is one greater than the biggest thread_pos of all the messages with
the same parent as N.

o After new message N’s thread_pos is determined, all messages in the same thread
with a thread_pos value greater than or equal to N’s have their thread_pos value
incremented by 1 (to make room for N).

The message board program, message.php, shown in Example 10-42 saves messages and
properly calculates thread_pos. Sample output is shown in Figure 10-4.

344 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

|'" php.cookbook:9876/7cmc %

€ > C[a =

Message List

Why Do Fools Fall In Love? by Frankie Lymon @ 1955-10-20 12:20 (740 bytes)
Re: Why Do Fools Fall In Love? by Beach Boys @ 1964-02-03 14:09 (1479 bytes)
Re: Why Do Fools Fall In Love? by Diana Ross @ 1981-05-10 19:32 (2112 bytes)
Re: Why Do Fools Fall In Love? by Joni Mitchell @ 1980-09-14 22:45 (393 bytes)
Who Let the Dogs Out? by Baha Men @ 2000-07-25 10:53 (490 bytes)
Re: Who Let the Dogs Out? by Asta @ 2000-07-25 11:29 (594 bytes)
I Let the Dogs Out! by Scooby Doo @ 2000-07-29 04:33 (872 bytes)

Start a New Thread

Figure 10-4. A threaded message board

Example

10-42. message.php

$board = new MessageBoard();
$board->go();

class
p
p
p

public function

}

MessageBoard {

rotected $db;

rotected $form_errors = array();
rotected $inTransaction = false;

__construct() {
set_exception_handler(array($this, 'logAndDie'));
Sthis->db = new PDO('sqlite:/tmp/message.db');

$this->db->setAttribute(PDO: :ATTR_ERRMODE,PDO: : ERRMODE_EXCEPTION);

public function go() {

// The value of S_REQUEST['cmd'] tells us what to do
Scmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';
switch (Scmd) {
case 'read': // read an individual message
$this->read();
break;
case 'post': // display the form to post a message
Sthis->post();
break;
case 'save': // save a posted message

10.16 Program: Storing a Threaded Message Board

www.it-ebooks.info

345

http://www.it-ebooks.info/

if (Sthis->valid()) { // if the message is valid,
S$this->save(); // then save it
$this->show(); // and display the message list
} else {
$this->post(); // otherwise, redisplay the posting form
}
break;
case 'show': // show a message list by default
default:
Sthis->show();
break;

}

// save() saves the message to the database
protected function save() {

$parent_1id = isset($_REQUEST['parent_1id']) ?
intval($_REQUEST['parent_id']) : 0;

// Make sure message doesn't change while we're working with 1it.
$this->db->beginTransaction();
Sthis->inTransaction = true;

// is this message a reply?
if ($parent_1id) {
// get the thread, level, and thread_pos of the parent message
Sst = $this->db->prepare("SELECT thread_id,level,thread_pos
FROM message WHERE id = ?");
Sst->execute(array($Sparent_id));
Sparent = $st->fetch();

// a reply's level is one greater than its parent's
Slevel = S$parent['level'] + 1;

/* what's the biggest thread pos in this thread among messages

with the same parent? */

Sst = $this->db->prepare('SELECT MAX(thread_pos) FROM message
WHERE thread_id = ? AND parent_id = ?');

$st->execute(array($parent['thread_id'], S$Sparent_id));

Sthread_pos = $st->fetchColumn(0);

// are there existing replies to this parent?

if ($thread_pos) {
// this thread_pos goes after the biggest existing one
Sthread_pos++;

} else {
// this is the first reply, so put it right after the parent
Sthread_pos = Sparent['thread_pos'] + 1;

}

/* increment the thread pos of all messages in the thread that

346

Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

come after this one */

Sst = $this->db->prepare('UPDATE message SET thread_pos = thread_pos
+ 1 WHERE thread_id = ? AND thread_pos >= ?');

$st->execute(array($parent['thread_id'], $thread_pos));

// the new message should be saved with the parent's thread_id
Sthread_id = $parent['thread_id'];
} else {
// the message is not a reply, so it's the start of a new thread
Sthread_id = $this->db->query('SELECT MAX(thread_id) + 1 FROM
message')->fetchColumn(0);
// If there are no rows yet, make sure we start at 1 for thread_id
if (! Sthread_id) {
Sthread_id = 1;
}
Slevel = 0;
Sthread_pos = 0;
}

/* insert the message into the database. Using prepare() and execute()
makes sure that all fields are properly quoted */
$st = $this->db->prepare("INSERT INTO message (id,thread_id,parent_id,
thread_pos,posted_on,level,author,subject,body)
VALUES (?7,?7,2,2,2,2,2,2,20");

$st->execute(array(null,Sthread_id,$parent_1id,S$thread_pos,
date('c'),$level,$_REQUEST['author'],
$_REQUESTI['subject'],$_REQUEST['body']1));

// Commit all the operations
Sthis->db->commit();
$this->inTransaction = false;

}

// show() displays a list of all messages
protected function show() {
print '<h2>Message List</h2><p>';

/* order the messages by their thread (thread_id) and their position
within the thread (thread_pos) */
Sst = $this->db->query("SELECT id,author,subject, LENGTH(body)
AS body_length,posted_on,level FROM message
ORDER BY thread_1id,thread_pos");
while ($row = $st->fetch()) {
// indent messages with level > 0
print str_repeat(' ',4 * Srow['level']);
// print out information about the message with a link to read it
Swhen = date('Y-m-d H:1', strtotime(Srow['posted_on']));
print "<a href='" . htmlentities($_SERVER['PHP_SELF']) .
"?cmd=read&id={$row['id']}'>" .
htmlentities($row['subject']) . ' by '
htmlentities($row['author']) . ' @ '

10.16 Program: Storing a Threaded Message Board | 347

www.it-ebooks.info

http://www.it-ebooks.info/

htmlentities(Swhen) .
" ({Srow['body_length']} bytes)
";
}

// provide a way to post a non-reply message

print "<hr/><a href="" .
htmlentities($_SERVER['PHP_SELF']) .
"?cmd=post'>Start a New Thread";

}

// read() displays an individual message
public function read() {

/* make sure the message id we're passed is an integer and really
represents a message */
if (! isset($_REQUEST['id'])) {

throw new Exception('No message ID supplied');

}
$id = intval($_REQUEST['id']);
$st = $this->db->prepare("SELECT author,subject,body,posted_on

FROM message WHERE id = ?");
$st->execute(array($id));
Smsg = Sst->fetch();
if (! $msg) {
throw new Exception('Bad message ID');

}

/* don't display user-entered HTML, but display newlines as
HTML line breaks */
$body = nl2br(htmlentities($msg['body']));

// display the message with links to reply and return to the message list
$self = htmlentities($_SERVER['PHP_SELF']);

$subject = htmlentities(Smsg['subject']);

Sauthor = htmlentities($msg['author']);

print<<<_HTML_

<h2>$subject</h2>
<h3>by S$author</h3>
<p>$body</p>
<hr/>
Reply

List Messages
HTML;
}

// post() displays the form for posting a message
public function post() {
Ssafe = array();
foreach (array('author','subject','body') as $field) {
// escape characters in default field values
if (isset($_POST[sfield])) {

348 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

$safe[$field]
} else {
Ssafe[$field] = '';

htmlentities($_POST[$field]);

}

// make the error messages display in red
if (isset($this->form_errors[$field])) {

Sthis->form_errors[$field] = '<span style="color: red"s'
Sthis->form_errors[$field] . '
';
} else {
Sthis->form_errors[$field] = '';

}
}

// 1s this message a reply
if (isset($_REQUEST['parent_id']) &&
$parent_1id = intval($_REQUEST['parent_id'])) {

// send the parent_id along when the form is submitted
$parent_field =
sprintf('<input type="hidden" name="parent_id" value="%d" />',
Sparent_1id);

// if no subject's been passed in, use the subject of the parent
if (! strlen($safe['subject'])) {
$st = $this->db->prepare('SELECT subject FROM message WHERE
id=7");
$st->execute(array($Sparent_id));
$parent_subject = $st->fetchColumn(0);

/* prefix 'Re: ' to the parent subject if it exists and
doesn't already have a 'Re:' */
$safe['subject'] = htmlentities($parent_subject);
if ($parent_subject && (! preg_match('/~re:/i',$parent_subject))) {
$safe['subject'] = "Re: {S$safe['subject']}";
}
}
} else {
Sparent_field = '';
}

// display the posting form, with errors and default values
$self = htmlentities($_SERVER['PHP_SELF']);
print<<<_HTML_
<form method="post" action="$self">
<table>
<tr>
<td>Your Name:</td>
<td>{$this->form_errors['author']}
<input type="text" name="author" value="{$safe['author']}" />
</td>
<tr>

10.16 Program: Storing a Threaded Message Board | 349

www.it-ebooks.info

http://www.it-ebooks.info/

<td>Subject:</td>
<td>{$this->form_errors['subject']}
<input type="text" name="subject" value="{$safe['subject']}" />
</td>
<tr>
<td>Message:</td>
<td>{$this->form_errors['body']}
<textarea rows="4" cols="30" wrap="physical"
name="body">{$safe['body']}</textarea>
</td>
<tr><td colspan="2"><input type="submit" value="Post Message" /[></td></tr>
</table>
$parent_field
<input type="hidden" name="cmd" value="save" />
</form>
_HTML;

}

// validate() makes sure something is entered in each field
public function valid() {
$this->form_errors = array();
if (! (isset($_POST['author']) && strlen(trim($_POST['author'])))) {
Sthis->form_errors['author'] = 'Please enter your name.';

}
if (! (isset($_POST['subject']) && strlen(trim($_POST['subject'])))) {
Sthis->form_errors['subject'] = 'Please enter a message subject.';

}
if (! (isset($_POST['body']) && strlen(trim($_POST['body']1)))) {
Sthis->form_errors['body'] = 'Please enter a message body.';

}

return (count($this->form_errors) == 0);

}

public function logAndDie(Exception Se) {
print 'ERROR: ' . htmlentities(Se->getMessage());
if (Sthis->db && S$this->db->inTransaction()) {
Sthis->db->rollback();

}
exit();

}

To properly handle concurrent usage, save() needs exclusive access to the msg table
between the time it starts calculating the thread_pos of the new message and when it
actually inserts the new message into the database. We've used PDO’s beginTransac
tion()and commit() methodstoaccomplish this. Note that logAndDie(), the exception
handler, rolls back the transaction when appropriate if an error occurred inside the
transaction. Although PDO always calls rollback() at the end of a scriptifa transaction

350 | Chapter 10: Database Access

www.it-ebooks.info

http://www.it-ebooks.info/

was started, explicitly including the call inside logAndDie() makes clearer what’s hap-
pening to someone reading the code.

The level field can be used when displaying messages to limit what you retrieve from
the database. If discussion threads become very deep, this can help prevent your pages
from growing too large. Example 10-43 shows how to display just the first message in
each thread and any replies to that first message.

Example 10-43. Limiting thread depth

$st = $this->db->query(

"SELECT * FROM message WHERE level <= 1 ORDER BY thread_id,thread_pos");
while ($row = $st->fetch()) {

// display each message
}

If you're interested in having a discussion group on your website, you may want to use
one of the existing PHP message board packages. Two popular ones are FUDForum
and Vanilla Forums.

10.17 Using Redis

Problem

You want to use the Redis key-value store from your PHP program.

Solution

If you can install PECL extensions, install the redis extension and then use it as follows:

$redis = new Redis();
$redis->connect('127.0.0.1");
Sredis->set('counter', 0);
$redis->incrBy('counter', 7);
Scounter = $redis->get('counter');
print $counter;

If you can't, use the Predis library:

require 'Predis/Autoloader.php';
Predis\Autoloader: :register();

Sredis = new Predis\Client(array('host' => '127.0.0.1'));
$redis->set('counter', 0);

$redis->incrBy('counter', 7);

Scounter = $redis->get('counter');

print Scounter;

10.17 Using Redis | 351

www.it-ebooks.info

http://fudforum.org/forum/
http://vanillaforums.org/
https://github.com/nrk/predis
http://www.it-ebooks.info/

Discussion

Although the redis extension and Predis library differ in how they are installed and
how you connect to a server, they behave similarly in many respects. Each gives you an
object representing a connection to a Redis server (or a pool of Redis servers) and that
object has methods corresponding to the different operations you can send to the serv-
er(s).

To install the redis extension, use the pecl command:
pecl install redis
To install Predis, use pear:

pear channel-discover pear.nrk.io
pear install nrk/Predis

If you are using the Composer package manager, install Predis with a dependency string
of "predis/predis".

See Also

The Redis server itself is available online. Check out the PECL page for the redis
extension and its documentation. Documentation for the Predis library is on GitHub.
Get more information about Composer at the Composer website.

352 | Chapter 10: Database Access

www.it-ebooks.info

http://redis.io
http://pecl.php.net/package/redis
https://github.com/nicolasff/phpredis
https://github.com/nrk/predis
http://getcomposer.org/
http://www.it-ebooks.info/

CHAPTER 11
Sessions and Data Persistence

11.0 Introduction

As web applications have matured, the need for statefulness has become a common
requirement. Stateful web applications, meaning applications that keep track of a par-
ticular visitor’s information as he travels throughout a site, are now so common that
they are taken for granted.

Given the prevalence of web applications that keep track of things for their visitors—
such as shopping carts, online banking, personalized home page portals, and social
networking community sites—it is hard to imagine the Internet we use every day
without stateful applications.

HTTP, the protocol that web servers and clients use to talk to each other, is a stateless
protocol by design. However, PHP gives you a convenient set of session management
functions that makes the challenge of implementing statefulness much easier. This
chapter focuses on several good practices to keep in mind while developing stateful
applications.

Sessions are focused on maintaining visitor-specific state between requests. Some ap-
plications also require an equivalent type of lightweight storage of nonvisitor-specific
state for a period of time at the server-side level. This is known as data persistence.

Recipe 11.1 explains PHP’s session module, which lets you easily associate persistent
data with a user as he moves through your site. Recipe 11.2 and Recipe 11.3 explore
session hijacking and session fixation vulnerabilities and how to avoid them.

Session data is stored in flat files in the server’s /tmp directory by default. Recipe 11.4
and Recipe 11.5 explain how to store session data in alternate locations, such as
Memcached and a database, and discuss the pros and cons of these different approaches.

353

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 11.6 demonstrates how to use shared memory for more than just session data
storage, and Recipe 11.7 illustrates techniques for longer-term storage of summary in-
formation that has been gleaned from logfiles.

11.1 Using Session Tracking

Problem

You want to maintain information about a user as she moves through your site.

Solution

Use the sessions module. The session_start() function initializes a session, and ac-
cessing an element in the superglobal $_SESSION array tells PHP to keep track of the
corresponding variable:

session_start();
if (! isset($_SESSION['visits'])) {
$_SESSION['visits'] = 0;

}
$_SESSION['visits']++;
print 'You have visited here '.$_SESSION['visits'].' times.';

Discussion

The sessions module keeps track of users by issuing them cookies with randomly gen-
erated session IDs.

By default, PHP stores session data in files in the /tmp directory on your server. Each
session is stored in its own file. To change the directory in which the files are saved, set
the session.save_path configuration directive to the new directory in php.ini or with
ini_set(). You can also call session_save_path() with the new directory to change
directories, but you need to do this before starting the session or accessing any session
variables.

To start a session automatically on each request, set session.auto_start to 1 in
php.ini. With session.auto_start, there’s no need to call session_start(), so if you
have the ability to change your php.ini file, this is easiest.

With the session.use_trans_sid configuration directive turned on, if PHP detects
that a user doesn’t accept the session ID cookie, it automatically adds the session ID to
URLs and forms. For example, consider this code that prints a URL:

print 'Take the A Train';

If sessions are enabled, but a user doesn’t accept cookies, what’s sent to the browser is
something like:

354 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

«
Take the A Train

In this example, the session name is PHPSESSID and the session ID name is
2eb89f3344520d11969a79aea6bd2fdd. PHP adds those to the URL so they are passed
along to the next page. Forms are modified to include a hidden element that passes the
session ID.

Due to a variety of security concerns relating to embedding session IDs in URLSs, this
behavior is disabled by default. To enable transparent session IDs in URLs, you need to
turn on session.use_trans_sid in php.ini or through the use of ini_set('ses
sion.use_trans_sid', true) in your scripts before the session is started.

Although session.use_trans_sidisconvenient, it can cause you some security-related
headaches. Because URLs have session IDs in them, distribution of such a URL lets
anybody who receives the URL act as the user to whom the session ID was given. A user
who copies a URL from his web browser and pastes it into an email message sent to
friends unwittingly allows all those friends (and anybody else to whom the message is
forwarded) to visit your site and impersonate him.

What’s worse, when a user clicks a link on your site that takes him to another site, the
user’s browser passes along the session ID-containing URL as the referring URL to the
external site. Even if the folks who run that external site don’t maliciously mine these
referrer URLs, referrer logs are often inadvertently exposed to search engines. Search
for “PHPSESSID referer” on your favorite search engine, and you’ll probably find some
referrer logs with PHP session IDs embedded in them.

Separately, redirects with the Location header aren’t automatically modified, so you
have to add a session ID to them yourself using the SID constant:

$redirect_url = 'http://www.example.com/airplane.php';
if (defined('SID') && (!isset($S_COOKIE[session_name()]))) {
$redirect_url .= '?' . SID;

}
header("Location: $redirect_url");

The session_name() function returns the name of the cookie that stores the session ID,
so this code appends the SID constant to $redirect_url if the constant is defined, and
the session cookie isn’t set.

See Also

Documentation on session_start() and session_save_path(). The session module
has a number of configuration directives that help you do things like manage how long
sessions can last and how they are cached. These options are detailed in the “Sessions”
section of the online manual.

11.1 Using Session Tracking | 355

www.it-ebooks.info

http://www.php.net/session-start
http://www.php.net/session-save-path
http://www.php.net/session
http://www.it-ebooks.info/

11.2 Preventing Session Hijacking

Problem

You want make sure an attacker can’t access another user’s session.

Solution

Allow passing of session IDs via cookies only, and generate an additional session token
that is passed via URLs. Only requests that contain a valid session ID and a valid session
token may access the session:

ini_set('session.use_only_cookies', true);
session_start();

$salt = 'YourSpecialValueHere';
Stokenstr = strval(date('W')) . $salt;
Stoken = md5($tokenstr);

if (!isset(S_REQUEST['token']) || $_REQUEST['token'] != Stoken) {
// prompt for login
exit;

}

$_SESSION['token'] = S$token;
output_add_rewrite_var('token', $token);

Discussion

This example creates an auto-shifting token by joining the current week number with
a salt string of your choice. With this technique, tokens will be valid for a reasonable
period of time without being fixed. The salt prevents someone from calculating their
own MD?5 hash of a date far in the future and using it to extend a session. Without
knowing the particular salt you've chosen, someone can't easily produce a valid token.

We then check for the token in the request, and if it's not found, we prompt for a new
login. If it is found, it needs to be added to generated links. output_add_re
write_var() does this easily.

Note that this mechanism won’t defeat an attacker who can sniff all of the traffic between
a user and your server (for example, on an unencrypted WiFi network). Running your
site over SSL is the best way to prevent that kind of attack.

See Also

Recipes 18.1 and 11.3 for more information on regenerating IDs to prevent session
fixation.

356 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 Preventing Session Fixation

Problem

You want to make sure that your application is not vulnerable to session fixation attacks,
in which an attacker forces a user to use a predetermined session ID.

Solution

Require the use of session cookies without session identifiers appended to URLs, and
generate a new session ID frequently:

ini_set('session.use_only_cookies', true);
session_start();
if (!isset($_SESSION['generated'])
|| $_SESSION['generated'] < (time() - 30)) {
session_regenerate_1id();
$_SESSION['generated'] = time();
}

Discussion

In this example, we start by setting PHP’s session behavior to use cookies only. This
ensures PHP won't pay attention to a session ID if an attacker has put one in a URL.

Once the session is started, we set a value that will keep track of the last time a session
ID was generated. By requiring a new one to be generated on a regular basis—every 30
seconds in this example—the opportunity for an attacker to obtain a valid session ID is
dramatically reduced.

These two approaches combine to virtually eliminate the risk of session fixation. An
attacker has a hard time obtaining a valid session ID because it changes so often, and
because sessions IDs can only be passed in cookies, a URL-based attack is not possible.
Finally, because we enabled the session.use_only_cookies setting, no session cookies
will be left lying around in browser histories or in server referrer logs.

See Also

“Session Fixation Vulnerability in Web-based Applications”; Recipe 18.1 for informa-
tion about regenerating session IDs on privilege escalation.

11.3 Preventing Session Fixation | 357

www.it-ebooks.info

http://bit.ly/1wtGgoN
http://www.it-ebooks.info/

11.4 Storing Sessons in Memcached

Problem

You want to store session data somewhere that’s fast and can be accessed by multiple
webservers.

Solution

Use the session handler built into the memcached extension to store your sessions in one
or more Memcached servers. With the memcached extension installed, set the ses
sion.save_handler configuration directive to memcached and then set ses
sion.save_path to the host and port of your Memcached server. For example, if your
Memcached server is running on port 11211 of host 10.5.7.12, set ses
sion.save_path to 10.5.7.12:11211. If you are using multiple Memcached servers,
make session.save_path a comma-separated list of the host:port values.

Once you specify the appropriate session.save_handler and session.save_path that
tells PHP to store your session info in Memcached, you don’t have to do anything to
your $_SESSION-using code to make it work properly. Because the session persistence
backend is so easily pluggable, you can just change the configuration and it works.

If you are using consistent hashing with multiple Memcached servers to distribute your
values across servers, set the configuration directive memcached.sess_consis
tent_hash to on. This ensures that your session data is also spread across the multiple
Memcached servers.

Note that apart from the memcached PHP extension, there is also a memcache (no d on
the end) PHP extension. It also has a built-in session handler. To use that session handler,
set session.save_handler to memcache. The session.save_path configuration direc-
tive is used to indicate your Memcached servers, but the syntax is slightly different than
the memcached extension. You need to prefix the hostname with the appropriate protocol
(e.g., tcp://) and you can add query string-style name=value pairs to set any option
that Memcache::addServer() accepts. For example, you could set ses
sion.save_path to tcp://10.5.7.12:11211?weight=3,tcp://10.5.7.13:11211?
weight=5 to specify two servers—10.5.7.12 and 10.5.7.12—each running on port 11211
but weighted differently.

Both extensions can capably store sessions in Memcache. The memcached extension
supports some different compression schemes for storing large pieces of data in Memc-
ache. Thememcache extension has a few less features but does not depend on any external
libraries.

358 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

Note that a Memcached server itself does not persist the data it stores across restarts—
itonlyholdsitin memory whileit’s running. That means that session datain Memcached
could disappear if one of your Memcached servers crashes or is restarted.

See Also

Documentation on how to configure the memcached extension and on how to configure
the memcache extension; information about Memcached itself.

11.5 Storing Sessions in a Database

Problem

You want to store session data in a database instead of in files. If multiple web servers
all have access to the same database, the session data is then mirrored across all the web
servers.

Solution

Use a class in conjunction with the session_set_save_handler() function to define
database-aware routines for session management. For example, Example 11-1 shows a
class that uses PDO to store session information in a database table.

Example 11-1. Database-backed session handler

/** Implementing SessionHandlerInterface is mandatory as of PHP 5.4
* and will fail in previous versions.
*/

class DBHandler implements SessionHandlerInterface {
protected $dbh;

public function open(S$save_path, $name) {
try {
Sthis->connect($save_path, Sname);
return true;
} catch (PDOException $e) {
return false;
}
}

public function close() {
return true;

}

public function destroy($session_id) {
Ssth = Sthis->dbh->prepare("DELETE FROM sessions WHERE session_id = ?");
$sth->execute(array($session_id));

11.5 Storing Sessions in a Database | 359

www.it-ebooks.info

http://www.php.net/memcached.configuration
http://www.php.net/memcache.ini
http://memcached.org
http://www.it-ebooks.info/

return true;

}

public function gc(Smaxlifetime) {
$sth = $this->dbh->prepare("DELETE FROM sessions WHERE last_update < ?");
$sth->execute(array(time() - $maxlifetime));
return true;

}

public function read($session_id) {
$sth = $this->dbh->prepare("SELECT session_data FROM sessions WHERE
session_id = ?");
$sth->execute(array($session_id));
Srows = $sth->fetchAl1(PDO: : FETCH_NUM);
if (count($rows) == 0) {
return '';
} else {
return $rows[0][0];
}
}

public function write($session_id, $session_data) {
Snow = time();
$sth = $this->dbh->prepare("UPDATE sessions SET session_data = ?,
last_update = ? WHERE session_id = ?");
$sth->execute(array($session_data, now, Ssession_id));
if ($sth->rowCount() == 0) {
$sth2 = $this->dbh->prepare('INSERT INTO sessions (session_id,
session_data, last_update)
VALUES (2,2,2)');
$sth2->execute(array($session_1id, $session_data, Snow));

}

public function createTable($save_path, $name, $connect = true) {
if (Sconnect) {
Sthis->connect($save_path, Sname);
}
$sql=<<<_SQL_
CREATE TABLE sessions (
session_1id VARCHAR(64) NOT NULL,
session_data MEDIUMTEXT NOT NULL,
last_update TIMESTAMP NOT NULL,
PRIMARY KEY (session_id)
)
SQL;

$this->dbh->exec($sql);
}

protected function connect($save_path) {
/* Look for user and password in DSN as "query string" params */
$parts = parse_url(S$save_path);

360 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

if (isset($parts['query'])) {
parse_str($parts['query'], $query);
Suser = isset(Squery['user']) ? Squery['user'] : null;
Spassword = isset($query['password']) ? $query['password'] : null;
Sdsn = Sparts['scheme'] . ':';
if (isset($parts['host'])) {
Sdsn .= '//"' . $parts['host'];
}
Sdsn .= $parts['path'];
Sthis->dbh = new PDO($dsn, Suser, Spassword);
} else {
$this->dbh = new PDO($save_path);

}
$this->dbh->setAttribute(PDO: : ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// A very simple way to create the sessions table if it doesn't exist.

try {

$this->dbh->query('SELECT 1 FROM sessions LIMIT 1');
} catch (Exception $e) {

Sthis->createTable($save_path, NULL, false);
}

}

Discussion

One of the most powerful aspects of the session module is its abstraction of how sessions
get saved. The session_set_save_handler() function tells PHP to use different func-
tions for the various session operations such as saving a session and reading session
data.

In PHP 5.4 and later, you give session_set_save_handler() aninstance of a class that
implements the SessionHandlerInterface interface. In earlier versions, there’s no ex-
plicit interface, but the methods to define are the same: the public methods open(),
close(), destroy(), gc(), read(), and write() are called from PHP’s internal session
handling code when necessary. To use this session handler, instantiate the class and pass
it to session_set_save_handler():

include _ DIR__ . '/db.php';

ini_set('session.save_path', 'sqlite:/tmp/sessions.db');
session_set_save_handler(new DBHandler);

session_start();
if (! isset($_SESSION['visits'])) {
$_SESSION['visits'] = 0;
}
$_SESSION['visits']++;
print 'You have visited here '.$_SESSION['visits'].' times.';

This code block assumes that the DBHandler class is defined in a file called db.php in
the same directory as itself. Once session.save_pathisset to the PDO DSN describing

11.5 Storing Sessions in a Database | 361

www.it-ebooks.info

http://www.it-ebooks.info/

the database that holds the sessions table, session_set_save_handler(new DBHan
dler) is all thats necessary to wire up PHP to the handler. From then on, your session-
using code is the same as if you were using PHP’s default handler.

In Example 11-1, the additional public createTable() method is provided as a conve-
nient way to create the table into which session data is stored. The connect() method
calls it if it can’t find a sessions table to use.

The createTable() and open() functions are also passed the session name as a separate
variable. The default value for this is PHPSESSID. It is used as the cookie name by PHP
when setting a cookie containing the session ID. If you need to distinguish between
differently named sessions that might be assigned to the same user, modify the DBHan
dler class to incorporate the $name argument into the database table name or as an
additional column in the sessions table.

See Also

Documentation on session_set_save_handler() and on SessionHandlerInterface.

11.6 Storing Arbitrary Data in Shared Memory

Problem

You want a chunk of data to be available to all server processes through shared memory.

Solution

If you want to share data only amongst PHP processes, use APC, as described in
Recipe 5.6. If you want to share data with other processes as well, use the pc_Shm class
shown in Example 11-2.

For example, to store a string in shared memory, use the pc_Shm: :write() method,
which accepts a key, a length, and a value:

$shm = new pc_Shm();

$secret_code = 'land shark';
$shm->write('mysecret', strlen($secret_code), S$secret_code);

Discussion

The pc_Shm class is shown in Example 11-2.

Example 11-2. Storing arbitrary data in shared memory

class pc_Shm {

protected $tmp;

362 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://bit.ly/1hCMhpv
http://bit.ly/Siqj4I
http://www.it-ebooks.info/

public function __construct($tmp = '') {
if (!function_exists('shmop_open')) {
trigger_error('pc_Shm: shmop extension is required.', E_USER_ERROR);

return;

}

if (Stmp != '' && is_dir(Stmp) && is_writable($tmp)) {
Sthis->tmp = $tmp;

} else {
Sthis->tmp = '/tmp';

}

}

public function read(id, Ssize) {
$shm = $this->open($id, S$size);
$data = shmop_read($shm, 0, Ssize);
$this->close($shm);
if (!$data) {
trigger_error('pc_Shm: could not read from shared memory block',
E_USER_ERROR);
return false;

}

return $data;

public function write($id, $size, Sdata) {
$shm = $this->open($id, $size);
Swritten = shmop_write(shm, SSdata, 0);
$this->close($shm);
if (Swritten != strlen($data)) {
trigger_error('pc_Shm: could not write entire length of data',
E_USER_ERROR);
return false;
}

return true;

public function delete($id, $size) {
$shm = $this->open($id, S$size);
if (shmop_delete($shm)) {
Skeyfile = $this->getKeyFile($id);
if (file_exists(Skeyfile)) {
unlink(Skeyfile);
}
}
return true;

}

protected function open($id, $size) {

11.6 Storing Arbitrary Data in Shared Memory | 363

www.it-ebooks.info

http://www.it-ebooks.info/

$key = Sthis->getKey($id);
$shm = shmop_open($key, 'c', 0644, $size);
if (!$shm) {
trigger_error('pc_Shm: could not create shared memory segment',
E_USER_ERROR);
return false;
}
return $shm;

}

protected function close($shm) {
return shmop_close($shm);

}

protected function getKey($id) {
Skeyfile = $this->getKeyFile($1d);
if (! file_exists(Skeyfile)) {
touch(Skeyfile);

}
return ftok(Skeyfile, 'R');

}

protected function getKeyFile($id) {
return $this->tmp . DIRECTORY_SEPARATOR . 'pcshm_' . $id;
}
}

Because pc_Shm uses standard system functions for accessing shared memory, other
programs (no matter what language they’re written in) can access that data as well. For
example, Example 11-3 shows a short C program that can read data written by pc_Shm.

Example 11-3. Reading shared memory data from C

#include <sys/ipc.h>
#include <sys/shm.h>

#include <stdio.h>

int main(int argc, char **argv) {
char *id;
size_t size;

if (argc != 3) {
fprintf(stderr, "Usage: %s ID SIZE\n", argv[0]);
return -1;

}

id = argv[1];
size = atoi(argv[2]);

char *path;
asprintf(&path, "/tmp/pcshm_%s", id);

364 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

key_t token = ftok(path, (int) 'R');
int shmid = shmget(token, size, 0);
void *ptr = shmat(shmid, 0, SHM_RDONLY);
printf("%*s\n", (int) size, (char *) ptr);
shmdt(ptr);
free(path);

}

Compiling that program and then invoking it with arguments mysecret and 10 (or any
sufficiently long length) will print the data inserted into shared memory by the PHP
code.

It's important to remember that, unlike setting a key/value pair in a regular PHP array,
the shmop functions need to allocate a specific amount of space that the data stored there
is expected to consume. That is why the read and write operations require a size to be
passed to them.

See Also

Recipe 5.6 has more information on how to use APC to share memory among PHP
processes; documentation on PHP’s shmop functions.

11.7 Caching Calculated Results in Summary Tables

Problem

You need to collect statistics from log tables that are too large to efficiently query in real
time.

Solution

Create a table that stores summary data from the complete log table, and query the
summary table to generate reports in nearly real time.

Discussion

Let’s say that you are logging search queries that website visitors use on search engines
like Google and Yahoo! to find your website, and tracking those queries in MySQL. Your
search term tracking log table has this structure:

CREATE TABLE searches

(
searchterm VARCHAR(255) NOT NULL, -- search term determined from
-- HTTP_REFERER parsing
dt DATETIME NOT NULL, -- request date
source VARCHAR(15) NOT NULL -- site where search was performed
)

11.7 Caching Calculated Results in Summary Tables | 365

www.it-ebooks.info

http://www.php.net/shmop
http://www.it-ebooks.info/

If you are fortunate enough to be logging thousands or tens of thousands of visits from
the major search engines per hour, the searches table could grow to an unmanageable
size over a period of several months.

You may wish to generate reports that illustrate trends of search terms that have driven
traffic to your website over time from each major search engine so that you can deter-
mine which search engine to purchase advertising with.

Create a summary table that reflects what your report needs to display, and then query
the full dataset hourly and store the result in the summary table for speedy retrieval
during report generation. Your summary table would have this structure:

CREATE TABLE searchsummary

(
searchterm VARCHAR(255) NOT NULL, -- search term
source VARCHAR(15) NOT NULL, -- site where search was performed
sdate DATE NOT NULL, -- date search performed
searches INT UNSIGNED NOT NULL, -- number of searches
PRIMARY KEY (searchterm, source, sdate)
)

Your report generation script can then use PDO to query the searchsummary table, and
if results are not available, collect them from the searches table and cache the result in
searchsummary:

$st = $db->prepare('SELECT COUNT(*)
FROM
searchsummary
WHERE
sdate = ?');
$st->execute(array(date('Y-m-d', strtotime('yesterday'))));

Srow = $st->fetch();

// no matches in cache
if (Srow[0] == 0) {
$st2 = $db->prepare('SELECT
searchterm,
source,
date(dt) AS sdate,
COUNT(*) as searches
FROM
searches
WHERE
date(dt) = ?');
$st2->execute(array(date('Y-m-d', strtotime('yesterday'))));

$stInsert = $Sdb->prepare('INSERT INTO searchsummary
(searchterm,source,sdate,searches)
VALUES (?,2,2,2)');

while (Srow = $st2->fetch(PDO::FETCH_NUM)) {

366 | Chapter 11: Sessions and Data Persistence

www.it-ebooks.info

http://www.it-ebooks.info/

$stlnsert->execute(Srow);
}
}

Using this technique, your script will only incur the overhead of querying the full log
table once, and all subsequent requests will retrieve a single row of summary data per
search term.

See Also

Recipe 10.6 for information about PDO: :prepare() and PDOStatement: :execute().

11.7 Caching Calculated Results in Summary Tables | 367

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12
XML

12.0 Introduction

XML isa popular data-exchange, configuration, and message-passing format. Although
JSON has displaced XML for many basic situations, XML still plays an important role
in a developer’s life. With the help of a few extensions, PHP lets you read and write XML
for every occasion.

XML provides developers with a structured way to mark up data with tags arranged in
a tree-like hierarchy. One perspective on XML is to treat it as CSV on steroids. You can
use XML to store records broken into a series of fields. But instead of merely separating
each field with a comma, you can include a field name, a type, and attributes alongside
the data.

Another view of XML is as a document representation language. For instance, this book
was written using XML. The book is divided into chapters; each chapter into recipes;
and each recipe into Problem, Solution, and Discussion sections. Within any individual
section, we further subdivide the text into paragraphs, tables, figures, and examples. An
article on a web page can similarly be divided into the page title and headline, the authors
of the piece, the story itself, and any sidebars, related links, and additional content.

XML content looks similar to HTML. Both use tags bracketed by < and > for marking
up text. But XMLis both stricter and looser than HTML. It’s stricter because all container
tags must be properly closed. No opening elements are allowed without a corresponding
closing tag. It’s looser because youre not forced to use a set list of tags, such as <a>,
, and <h1>. Instead, you have the freedom to choose a set of tag names that best
describe your data.

Other key differences between XML and HTML are case sensitivity, attribute quoting,
and whitespace. In HTML, and are the same bold tag; in XML, theyre two

369

www.it-ebooks.info

http://www.it-ebooks.info/

different tags. In HTML, you can often omit quotation marks around attributes; XML,
however, requires them. So you must always write:

<element attribute="value'">

Additionally, HTML parsers generally ignore whitespace, so a run of 20 consecutive
spaces is treated the same as one space. XML parsers preserve whitespace, unless ex-
plicitly instructed otherwise. Because all elements must be closed, empty elements must
end with />. For instance, in HTML, the line break is
, whereas in XHTML, which
is HTML that validates as XML, it’s written as
.!

There is another restriction on XML documents. When XML documents are parsed
into a tree of elements, the outermost element is known as the root element. Just as a
tree has only one trunk, an XML document must have exactly one root element. In the
previous book example, this means chapters must be bundled inside a book tag. If you
want to place multiple books inside a document, you need to package them inside a
bookcase or another container. This limitation applies only to the document root. Again,
just like trees can have multiple branches off of the trunk, it’s legal to store multiple
books inside a bookcase.

This chapter doesn’t aim to teach you XML; for an introduction to XML, see Learning
XML by Erik T. Ray (O'Reilly). A solid nuts-and-bolts guide to all aspects of XML is
XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O’Reilly).

Now that we’ve covered the rules, here’s an example. If you are a librarian and want to
convert your card catalog to XML, start with this basic set of XML tags:

<book>
<title>PHP Cookbook</title>
<author>Sklar, David and Trachtenberg, Adam</author>
<subject>PHP</subject>

</book>

From there, you can add new elements or modify existing ones. For example, <au
thor> can be divided into first and last name, or you can allow for multiple records so
two authors aren’t placed in one field.

PHP has a set of XML extensions that:

o Work together as a unified whole

o Are standardized on a single XML library: 1ibxm12
o Fully comply with W3C specifications

o Efficiently process data

1. This is why n12br () outputs
 by default; that output is XHTML compatible.

370 | Chapter12: XML

www.it-ebooks.info

http://www.it-ebooks.info/

« Provide you with the right XML tool for your job

Additionally, following the PHP tenet that creating web applications should be easy,
there’s an XML extension that makes it simple to read and alter XML documents. The
aptly named SimpleXML extension allows you to interact with the information in an
XML document as though these pieces of information are arrays and objects, iterating
through them with foreach loops and editing them in place merely by assigning new
values to variables.

The first two recipes in this chapter cover parsing XML. Recipe 12.1 shows how to write
XML without additional tools. To use DOM extension to write XML in a standardized
fashion, see Recipe 12.2.

The complement to writing XML is parsing XML. That’s the subject of the next three
recipes. They’re divided based upon the complexity and size of the XML document
you're trying to parse. Recipe 12.3 covers how to parse basic XML documents. If you
need more sophisticated XML parsing tools, move onto Recipe 12.4. When your XML
documents are extremely large and memory intensive, turn to Recipe 12.5. If this is your
first time using XML, and youre unsure which recipe is right for you, try them in order,
because the code becomes increasingly complex as your requirements go up.

XPath is the topic of Recipe 12.6. It's a W3C standard for extracting specific information
from XML documents. We like to think of it as regular expressions for XML. XPath is
one of the most useful, yet unused parts of the XML family of specifications. If you
process XML on a regular basis, you should be familiar with XPath.

With XSLT, you can take an XSL stylesheet and turn XML into viewable output. By
separating content from presentation, you can make one stylesheet for web browsers,
another for mobile phones, and a third for print, all without changing the content itself.
This is the subject of Recipe 12.7.

After introducing XSLT, the two recipes that follow show how to pass information back
and forth between PHP and XSLT. Recipe 12.8 tells how to send data from PHP to an
XSLT stylesheet; Recipe 12.9 shows how to call out to PHP from within an XSLT style-
sheet.

As long as your XML document abides by the structural rules of XML, it is known as
well-formed. However, unlike HTML, which has a specific set of elements and attributes
that must appear in set places, XML has no such restrictions.

Yet, in some cases, it’s useful to make sure your XML documents abide by a specification.
This allows tools, such as web browsers, RSS readers, or your own scripts, to easily
process the input. When an XML document follows all the rules set out by a specifica-
tion, it is known as valid. Recipe 12.10 covers how to validate an XML document.

One of PHP’s major limitations is its handling of character sets and document encod-
ings. PHP strings are not associated with a particular encoding, but all the XML exten-

12.0 Introduction | 371

www.it-ebooks.info

http://www.it-ebooks.info/

sions require UTF-8 input and emit UTF-8 output. Therefore, if you use a character set
incompatible with UTF-8, you must manually convert your data both before sending it
into an XML extension and after you receive it back. Recipe 12.11 explores the best ways
to handle this process.

The chapter concludes with a number of recipes dedicated to reading and writing a
number of common types of XML documents, specifically RSS and Atom. These are
the two most popular data syndication formats, and are useful for exchanging many
types of data, including blog posts, podcasts, and even mapping information.

PHP Cookbook also covers RESTful APIs. This topicis so important, it gets two dedicated
chapters of its own. Chapter 14 describes how to consume RESTful APIs, and Chap-
ter 15 tells how to implement RESTful APIs of your very own.

12.1 Generating XML as a String

Problem

You want to generate XML. For instance, you want to provide an XML version of your
data for another program to parse.

Solution
Loop through your data and print it out surrounded by the correct XML tags:
header('Content-Type: text/xml');

print '<?xml version="1.0"?>' . "\n";
print "<shows>\n";

$shows = array(array('name' => 'Modern Family',
'channel' => 'ABC',
'start' => '9:00 PM',

'duration' => '30'),

array('name’ => 'Law & Order: SWU',
'channel' => 'NBC',
'start’ => '9:00 PM',

'duration' => '60'));

foreach ($shows as $show) {
print " <show>\n";
foreach($show as $tag => $data) {
print " <Stag>" . htmlspecialchars($data) . "</Stag>\n";
}

print

</show>\n";

}

print "</shows>\n";

372 | Chapter12: XML

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion

Printing out XML manually mostly involves lots of foreach loops as you iterate through
arrays. However, there are a few tricky details. First, you need to call header () to set the
correct Content-Type header for the document. Because you're sending XML instead
of HTML, it should be text/xml.

Next, depending on your settings for the short_open_tag configuration directive, try-
ing to print the XML declaration may accidentally turn on PHP processing. Because the
<?of <?xml version="1.0"?>is the short PHP open tag, to print the declaration to the
browser you need to either disable the directive or print the line from within PHP. We
do the latter in the Solution.

Last, entities must be escaped. For example, the & in the show Law & Order needs to be
&. Call htmlspecialchars() to escape your data.

The output from the example in the Solution is shown in Example 12-1.

Example 12-1. Tonight’s TV listings

<?xml version="1.0"?>
<shows>
<show>
<name>Modern Family</name>
<channel>ABC</channel>
<start>9:00 PM</start>
<duration>30</duration>
</show>
<show>
<name>Law & Order: SVU</name>
<channel>NBC</channel>
<start>9:00 PM</start>
<duration>60</duration>
</show>
</shows>

See Also
Recipe 12.2 for generating XML using DOM; documentation on htmlspecialchars().

12.2 Generating XML with DOM

Problem

You want to generate XML but want to do it in an organized way instead of using print
and loops.

12.2 Generating XMLwithDOM | 373

www.it-ebooks.info

http://www.php.net/htmlspecialchars
http://www.it-ebooks.info/

Solution

Use the DOM extension to create aDOMDocument object. After building up the document,
call DOMDocument: :save() or DOMDocument::saveXML() to generate a well-formed
XML document:

// create a new document
$dom = new DOMDocument('1.0");

// create the root element, <book>, and append it to the document
$book = $dom->appendChild($dom->createElement('book'));

// create the title element and append it to Sbook
Stitle = Sbook->appendChild($dom->createElement('title'));

// set the text and the cover attribute for Stitle
S$title->appendChild($dom->createTextNode('PHP Cookbook'));
Stitle->setAttribute('edition', '3");

// create and append author elements to Sbook

$sklar = $book->appendChild($dom->createElement('author'));
// create and append the text for each element
$sklar->appendChild($dom->createTextNode('Sklar'));

$trachtenberg = $book->appendChild($dom->createElement('author'));
$trachtenberg->appendChild($dom->createTextNode('Trachtenberg'));

// print a nicely formatted version of the DOM document as XML
$dom->formatOutput = true;
echo $dom->saveXML();

<?xml version="1.0"?>

<book>
<title edition="3">PHP Cookbook</title>
<author>Sklar</author>
<author>Trachtenberg</author>

</book>

Discussion

The DOM methods follow a pattern. You create an object as either an element or a text
node, add and set any attributes you want, and then append it to the tree in the spot it
belongs.

Before creating elements, create a new document, passing the XML version as the sole
argument:

$dom = new DOMDocument('1.0");

Now create new elements belonging to the document. Despite being associated with a
specific document, nodes don’t join the document tree until appended:

374 | Chapter12: XML

www.it-ebooks.info

http://www.it-ebooks.info/

$book_element = $dom->createElement('book');

Sbook = $dom->appendChild($book_element);
Here a new book element is created and assigned to the object $book_element. To create
the document root, append $book_element as a child of the $dom document. The result,
$book, refers to the specific element and its location within the DOM object.

All nodes are created by calling a method on $dom. Once a node is created, it can be
appended to any element in the tree. The element from which we call the append
Child() method determines the location in the tree where the node is placed. In the
previous case, $book_element is appended to $dom. The element appended to $dom is
the top-level node, or the root node.

You can also append a new child element to $book. Because $book is a child of $dom, the
new element is, by extension, a grandchild of $dom:

S$title_element = $dom->createElement('title');
Stitle = Sbook->appendChild($title_element);

By calling $book - >appendChild(), this code places the $title_element element under
the $book element.

To add the text inside the <title></title> tags, create a text node using createText
Node() and append it to Stitle:

Stext_node = $dom->createTextNode('PHP Cookbook');
Stitle->appendChild($text_node);

Because $title is already added to the document, there’s no need to reappend it to
$book.

The order in which you append children to nodes isn't important. The following four
lines, which first append the text node to $title_element and then to $book, are equiv-
alent to the previous code:

Stitle_element = $dom->createElement('title');
Stext_node = $dom->createTextNode('PHP Cookbook');

Stitle_element->appendChild($text_node);
Sbook->appendChild(Stitle_element);

To add an attribute, call setAttribute() upon a node, passing the attribute name and
value as arguments:

Stitle->setAttribute('edition', '3');
If you print the title element now, it looks like this:
<title edition="3">PHP Cookbook</title>

Once you're finished, you can output the document as a string or to a file:

12.2 Generating XMLwithDOM | 375

www.it-ebooks.info

http://www.it-ebooks.info/

// put the string representation of the XML document in Sbooks
$books = $dom->saveXML();

// write the XML document to books.xml
$dom->save('books.xml");

By default, these methods generate XML output in one long line without any whitespace,
including indentations and line breaks. To fix this, set the formatOutput attribute of
your DOMDocument to true:

// print a nicely formatted version of the DOM document as XML
Sdom->formatOutput = true;

This causes the DOM extension to generate XML like this:

<?xml version="1.0"?>
<book>

<title cover="soft"sPHP Cookbook</title>
</book>

See Also

Recipe 12.1 for writing XML without DOM; Recipe 12.4 for parsing XML with DOM;
documentation on DOMDocument and the DOM functions in general; more information
about the underlying 1ibxml2 C library.

12.3 Parsing Basic XML Documents

Problem

You want to parse a basic XML document that follows a known schema, and you don't
need access to more esoteric XML features, such as processing instructions.

Solution
Use the SimpleXML extension. Here’s how to read XML from a file:

$sx = simplexml_load_file(__DIR__ . '/address-book.xml');

foreach ($sx->person as $person) {
S$firstname_text_value = $person->firstname;
$lastname_text_value = $person->lastname;

print "$firstname_text_value S$lastname_text_value\n";

}

David Sklar
Adam Trachtenberg

376 | Chapter12:XML

www.it-ebooks.info

http://www.php.net/domdocument
http://www.php.net/dom
http://xmlsoft.org/
http://www.it-ebooks.info/

Discussion

SimpleXML has been described as “the mostest bestest thing ever” Though it’s hard to
live up to such grand praise, SimpleXML does do a remarkable job of making it—dare
we say—simple to interact with XML. When you want to read a configuration file written
in XML, parse an RSS feed, or process the result of a REST request, SimpleXML excels
at these tasks. It doesn’t work well for more complex XML-related jobs, such as reading
a document where you don’t know the format ahead of time or when you need to access
processing instructions or comments.

SimpleXML turns elements into object properties. The text between the tags is assigned
to the property. If more than one element with the same name lives in the same place
(such as multiple <people>s), then theyre placed inside a list.

Element attributes become array elements, where the array key is the attribute name
and the key’s value is the attribute’s value.

To access a single value, reference it directly using object method notation. Let’s use this
XML fragment as an example:

<firstname>David</firstname>

If you have this in a SimpleXML object, $firstname, here’s all you need to do to access
David:

$firstname
SimpleXML assumes that when you have anode that contains only text, you're interested

in the text. Therefore, print $firstname does what you expect it to: it prints David.

Iteration methods, like foreach, are the best choice for cycling through multiple ele-
ments. Code for this is shown in later examples.

Attributes are stored as array elements. For example, this prints out the id attribute for
the first person element:

$ab = simplexml_load_file(__DIR__ . '/address-book.xml');

// the id attribute of the first person
print $ab->person['id'] . "\n";

which gives you:
1

Here’s a more complete example based on this simple address book in XML. It’s used in
the code examples that follow.

<?xml version="1.0"?>
<address-book>
<person id="1">
<!--David Sklar-->

12.3 Parsing Basic XML Documents | 377

www.it-ebooks.info

http://www.it-ebooks.info/

<firstname>David</firstname>

<lastname>Sklar</lastname>

<city>New York</city>

<state>NY</state>

<email>sklar@php.net</email>
</person>

<person id="2">
<!--Adam Trachtenberg-->
<firstname>Adam</firstname>
<lastname>Trachtenberg</lastname>
<city>San Francisco</city>
<state>CA</state>
<email>amt@php.net</email>

</person>

</address-book>

Use SimpleXML to pull out all the first and last names:

$sx = simplexml_load_file(__DIR__ . '/address-book.xml');

foreach ($sx->person as $person) {
S$firstname_text_value = $person->firstname;
$lastname_text_value = $person->lastname;

print "$firstname_text_value S$lastname_text_value\n";

}

David Sklar

Adam Trachtenberg
When you use SimpleXML, you can directly iterate over elements using foreach. Here,
the iteration occurs over $sx->person, which holds all the person nodes.

You can also directly print SimpleXML objects:

foreach ($sx->person as $person) {
print "S$Sperson->firstname S$person->lastname\n";

}

David Sklar
Adam Trachtenberg

PHP interpolates SimpleXML objects inside of quoted strings and retrieves the text
stored in them.

See Also

Recipe 12.4 for parsing complex XML documents; Recipe 12.5 for parsing large XML
documents; documentation on SimpleXML; more information about the underlying
1ibxm12 C library.

378 | Chapter12: XML

www.it-ebooks.info

http://www.php.net/simplexml
http://xmlsoft.org/
http://www.it-ebooks.info/

12.4 Parsing Complex XML Documents

Problem

You have a complex XML document, such as one where you need to introspect the
document to determine its schema, or you need to use more esoteric XML features, such
as processing instructions or comments.

Solution

Use the DOM extension. It provides a complete interface to all aspects of the XML
specification:

// Snode is the DOM parsed node <book cover="soft">PHP Cookbook</book>
Stype = $node->nodeType;

switch(Stype) {

case XML_ELEMENT_NODE:
// I'm a tag. I have a tagname property.
print $node->tagName; // prints the tagname property: "book"
break;

case XML_ATTRIBUTE_NODE:
// I'm an attribute. I have a name and a value property.
print $node->name; // prints the name property: "cover"
print $node->value; // prints the value property: "soft"
break;

case XML_TEXT_NODE:
// I'm a piece of text inside an element.
// I have a name and a content property.
print $node->nodeName; // prints the name property: "#text"
print $node->nodeValue; // prints the text content: "PHP Cookbook"
break;

default:
// another type
break;

}
book

Discussion

The W3C’s DOM provides a platform- and language-neutral method that specifies the
structure and content of a document. Using DOM, you can read an XML document
into a tree of nodes and then maneuver through the tree to locate information about a
particular element or elements that match your criteria. This is called tree-based parsing.

Additionally, you can modify the structure by creating, editing, and deleting nodes. In
fact, you can use the DOM functions to author a new XML document from scratch; see
Recipe 12.2.

12.4 Parsing Complex XML Documents | 379

www.it-ebooks.info

http://www.it-ebooks.info/

One of the major advantages of DOM is that by following the W3C’s specification, many
languages implement DOM functions in a similar manner. Therefore, the work of
translating logic and instructions from one application to another is considerably sim-
plified.

DOM is large and complex. For more information, read the specification or pick up a
copy of XML in a Nutshell.

DOM functions in PHP are object oriented. To move from one node to another, access
properties such as $node->childNodes, which contains an array of node objects, and
$node->parentNode, which contains the parent node object. Therefore, to process a
node, check its type and call a corresponding method, as shown:

// Snode is the DOM parsed node <book cover="soft">PHP Cookbook</book>
S$type = $node->nodeType;

switch(Stype) {

case XML_ELEMENT_NODE:
// I'm a tag. I have a tagname property.
print $node->tagName; // prints the tagname property: "book"
break;

case XML_ATTRIBUTE_NODE:
// I'm an attribute. I have a name and a value property.
print $node->name; // prints the name property: "cover"
print $n