The
Complete HWis

Reterence

HTML

& CSS

Fifth Edition

Design standards-based Web pages
Learn markup and CSS best practices

- Deliver optimum client-side experiences

Thomas A.
Powell

G

HTML & CSS:
The Complete Reference,
Fifth Edition

About the Author

Thomas A. Powell (tpowell@pint.com) is a long-time
industry veteran. After an early stint at CERFnet in the
early ‘90s, he founded Powell Internet Consulting (later
renamed PINT) in 1994, a Web design and consulting services
firm. Today, PINT (pint.com) provides Web development,
design, and consulting services to large and small corporations
all over the United States in a variety of industries.

Beyond his involvement at PINT, Thomas is heavily
involved in the academic community. He developed the
University of California, San Diego Extension Web Publishing
program in the late 1990s and continues to teach classes there
in Web development and design. He is also an instructor for
the UCSD Computer Science Department, where he teaches
classes in Web development and the theory of programming
languages.

Mr. Powell is well published, and his work has appeared
in numerous trade publications. He continues to publish
regularly in Network World. He also has published numerous
books on Web technology and design, including Ajax: The
Complete Reference, JavaScript: The Complete Reference, and
many others. His books have been translated into over
12 languages and are used around the world both in industry
and college settings.

About the Technical Editor

James H. (Jim) Pence is a full-time writer, editor, speaker,
singer, and performance chalk artist. Jim broke into book
publishing in 2001 with How to Do Everything with HTML,

a how-to book on Web authoring, written “by a nontechie for
nontechies,” and published by McGraw-Hill Professional. He
followed this book the same year with another book for
McGraw-Hill: Cascading Style Sheets: A Beginner’s Guide.
McGraw-Hill published a second edition of Jim’s HTML
book, re-titled How to Do Everything with HTML & XHTML,
in 2003.

Jim is also a published novelist. He is the author of Blind
Sight (Tyndale, 2003), a suspense/thriller novel set in the
mind-control cults, and The Angel (Kregel, 2006), set against
the backdrop of the euthanasia and physician-assisted suicide
movements. Jim moved into “true crime” writing with his
latest book, Terror by Night (Tyndale, 2009). Terror by Night is
the true story of the brutal 2008 murders of the Caffey family
in Emory, Texas. You can learn more about Jim’s books and
other creative projects at his Web site: www.jamespence.com.

HTML & CSS:
The Complete Reference,
Fifth Edition

Thomas A. Powell

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill Companies i

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-174170-5
MHID: 0-07-174170-4
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-149629-2, MHID: 0-07-149629-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and ~ The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of
the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Part |

Part I

4
5
6

Part I

mIN =

Contents at a Glance

Core Markup

Traditional HTML and XHTMLot iiiiiiiiiiiinnnennnnnns 3
Introducing HTML5 ...ttt ittt iiiineneeeeens 55
HTML and XHTML Element Referencecccoiiiiiennn.nn. 133
Core Style

Introduction to CSS ... i i i it it e 429
CSS Syntax and Property Referencecooiviiiiiiiiineonn. 521
CSS3 Proprietary and Emerging Features Reference 613
Appendixes

Character Entitiesiiiiiiiiniiienttneenneneenanaanaannns 727
0 751
(@0 10 ¢ PP 765
RS i iiiiitit it ittt it iieteentnsneessesasseossasassnsnsassssnsns 783
Reading a Document Type Definitiono, 801
IndeX oot e e ettt it e e e e 809

This page intentionally left blank

Part |

Contents

Acknowledgmentsl Xxi
Introduction xxiii

Core Markup

Traditional HTML and XHTMLoiiiiiiiiiiiiiiinneiinnn. 3
First Lookat HTML and XHTML 3
Hello HTML and XHTML World o oo o oL, 6
Viewing Markup Locally L. 8
Viewing Markup with a Web Server 10
HTML and XHTML: Version History 14
HTML and XHTML DTDs: The Specifications Up Close 16
Document Type Statements and Language Versions 18
(X)HTML Document Structure ouuiiinniiineinennenn. 20
The Document Head 23
The Document Body il 28
Browsers and (X)HTML i 31
Validation i i 37
The Doctype Switch and Browser Rendering Modes 39
The Rules of X)HTML oo e 41
HTML Is Not Case Sensitive, XHTMLIs 41
Attribute Values May Be Case Sensitive 42
(X)HTML Is Sensitive to a Single Whitespace Character 42
(X)HTML Follows a Content Model 43
Elements Should Have Close Tags Unless Empty 43
Unused Elements May Minimize 43
Elements Should Nest 43
Attributes Should Be Quoted 44
Entities Should Be Used for Special Characters 44
Browsers Ignore Unknown Attributes and Elements 44
Major Themes of X)HTML 45
Logical and Physical Markup, 45
Standards vs. Practice i ool 46
Myths and Misconceptions About HTML and XHTML 47
The Future of Markup—Two Paths? 49
XHTML: Web Page Markup XML Style 49
HTMLS: Back tothe Future 52
Summary ... 53
Introducing HTML5 it i iiiieae e 55
Hello HTMLS ... e 55
Loose Syntax Returns L. 58
XHTMLS o 60

Vi HTML & CSS: The Complete Reference

HTMLS5: Embracing the Reality of Web Markup 62
Presentational Markup Removed and Redefined 63
Out with the Old Elements 64
In with the New Elements 66
Sample of New Attributes for HTML5 66
HTMLS Document Structure Changes 69
Adding Semantics ... o i 75
Marking Text 75
Indicating Dates and Time 76
Inserting Figures i 76
Specifying Navigation i il 77
HTMLS5’s Open Media Effort 78
VIdEO> L 78
<audio> ... 80
Media Considerations i 82
Client-Side Graphics with <canvas> 82
Drawing and Styling Lines and Shapes 85
Drawing Arcs and Curves o ool 90
Scaling, Rotating, and Translating Drawings 93
Using Bitmaps in Drawings i, 97
Text Support forcanvaso o ool 98
<canvas> Conclusions i 101
HTMLS Form Changes i i i i, 101
New Form Field Types 101
Validating Data Entry o il 104
Autocomplete Lists oo i il 105
Miscellaneous Usability Improvements 105
Emerging Elements and Attributes to Support Web Applications 106
menu Element Repurposed o ool 106
command Element L 108
meter and progress Elements o o ool 109
details Element i 109
outputElement i i il 110
The Uncertain Future of Frames 110
The draggable Attribute and the Drag and Drop API 112
contenteditable Attribute o oL 114
spellcheck Attribute o i il 115
Internationalization Improvements o ool 116
HTMLS Metadata Changes 116
data-X Attributes 116
Microdata 117
HTMLS5: Beyond Markup i i il 120
defer Attribute 121
HTML, JavaScript, and the DOM Renewed 121
Standardizing and Extending Ad Hoc JavaScript Conventions 125
Major HTML5 Themes i i o .. 126
HTMLS Today or Tomorrow? 126
HTML5asa Catch-All i 130
HTML5: Web Politicsas Usual 131
HTMLS: Imperfect Improvement 131

Summary ... 132

Contents

3 HTML and XHTML Element Referencecciiiiiiiiienennnnn 133
Flavors of HTML and XHTML i 133
Core Attributes Reference ... 135
ClaSS o 136

I 136

style ..o 137

e 138
Language Attributes Reference o ool 138
AIr 138

lang ... 139

Other Common Attributes Reference 139
accesskey ... 139

align .. 140
contenteditable 140
datafld ... 141
dataformatas 141
datasrC . 141
disabled ... 141
height 141
hidefocus ... o 141
hspace 141
language 141
tabindex ... 142
unselectable 142
VSPACE oottt ettt e 142

width 142
Common HTMLS5 Attributes Reference 142
accesskey ... 142
contenteditable 143
CONEEXEIMEIIUL oottt e e e e 143
data-X (Custom Data Attributes) oiiii.. 143
draggable 144
hidden ... 144
itemid 144
itemprop ... 144
temref 145
itemscope 145
itemtype 146
spellcheck i 146
tabindex ... 146

Event Attributes Reference 146
HTMLS EVENts ..ottt e e e e e 146
Internet Explorer’s Extended Event Attributes 147
HTML Element Referenceo i 154
<l--> (Comment) oo 155
<l-[]..-> (Conditional Comment)c...... 155
<IDOCTYPE> (Document Type Definition) 157

<a> (ANchor) ... 158
<abbr> (Abbreviation) i 164

<acronym> (ACIONYIMN) ...ttt 166

)

X HTML & CSS: The Complete Reference

<address> (AdAress) ... 168
<applet> (JavaApplet) 169
<area> (ImageMapArea)l 171
<article> (Article) e 175
<aside> (Aside) 176
<audio> (AudiO) ..o 177
 (Bold) ..o 179
<base> (Base URL) ...t 181
<basefont> (BaseFont) 182
<bdo> (Bidirectional Override) iiiinn.... 183
<bgsound> (Background Sound) 185
<big> (BigFont) 186
<blink> (Blinking Text) 187
<blockquote> (Block Quote)l 188
<body> (DocumentBody) il 190

 (LineBreak) i 193
<button> (Form Button) 195
<canvas> (Canvas for Drawing) 198
<caption> (Table Caption), 208
<center> (Center Alignment) 210
<cite> (Citation)ci i 211
<code> (CodelListing)coiiiiiiiiiiiiii 213
<col> (TableColumn)oiiniiiiiiiiiininennnn. 214
<colgroup> (Table Column Group) 216
<command> (Command)c..iiiiiiinirninnennnn.. 219
<comment> (Comment Information) 220
<datalist> (List of Prefill Data)c.ivvun.... 220
<dd> (Definition Description in a Definition List

or Content in Details or Figure) 222
 (Deleted Text)ot 224
<details> (Additional Details)c.ccviiiiiniinn.... 227
<dfn> (Definition)oiiiiii i 228
<dir> (Directory List)l 230
<div> (DiviSion) ..o e 231
<dl> (Definition List) it 233
<dt> (Term in a Definition List or

Caption in Figure or Details) 236
 (Emphasis) 238
<embed> (Embedded Object) 240
<fieldset> (Form Field Grouping) 242
<figure> (Figure) 244
 (FontDefinition) i, 246
<footer> (Footer)c.iiiiiiiii i 248
<form> (Form for UserInput) 249
<frame> (Window Region) 252
<frameset> (Frameset Definition) 255
<hl1> through <h6> (Headings) 258
<head> (DocumentHead) i, 260
<header> (Header)ciiiiiiiiiiiiiiiiinnnnnn. 261

<hgroup> (Header Group) 263

Contents
<hr> (HorizontalRule) 265
<html> (HTMLDocument)ccuiiiiiiinnennn... 267
<i> (Italic) ... 269
<iframe> (Inline Frame) 270
<ilayer> (Inflow Layer) 274
 (Image) i 276
<input> (Input Form Control) 279
<ins> (Inserted Text)oiiniiiiiiiii i, 287
<isindex> (IndexPrompt) 289
<kbd> (Keyboard Input) 291
<keygen> (Key Pair Generation) 292
<label> (Form ControlLabel) 294
<layer> (Positioned Layer) 296
<legend> (Descriptive Legend) 298
 (ListItem)oiiiii i e 300
<link> (Link to External Files or Set Relationships) 303
<listing> (CodelListing) 311
<map> (Client-Side ImageMap) 312
<mark> (Marked Text)o, 314
<marquee> (Marquee Display) 316
<menu> (Menu List or Command Menu) 318
<meta> (Meta-Information), 320
<meter> (Scalar Gauge)l 323
<multicol> (Multiple Column Text) 325
<nav> (Navigation) il 326
<nobr> (NoLineBreaks) iiiiiiiiiin... 327
<noembed> (No Embedded Media Support) 328
<noframes> (No Frame Support Content) 329
<noscript> (No Script Support Content) 330
<object> (Embedded Object) 331
 (Ordered List)ccouiiiii i 335
<optgroup> (Option Grouping) 338
<option> (Optionin Selection List) 339
<output> (Form Output) 341
<p> (Paragraph) 343
<param> (Object Parameter) 345
<plaintext> (Plain Text) 347
<pre> (Preformatted Text), 348
<progress> (Progress Indicator) 350
<@> (Quote) .. 351
<rp> (RubyParentheses) 353
<rt> (Ruby Text)o i 355
<ruby> (Ruby Annotation) 357
<s> (Strikethrough) 359
<samp> (Sample Text) 360
<script> (Scripting) ... 362
<section> (Secton) ... 365
<select> (SelectionList)ot 366
<small> (Small Text) ... i 369

<SOUTCE> (SOUTCE) vt ti ettt ettt et eens 371

Xi

Xii

HTML & CSS: The Complete Reference

<spacer> (ExtraSpace)l
 (TextSpan)
<strike> (Strikeout Text) i
 (Strong Emphasis)l
<style> (Style Information)l
<sub> (Subscript) ...
<sup> (SUperscript) ...
<table> (Table)c.o it
<tbody> (TableBody) il
<td> (TableData)o,
<textarea> (Multiline TextInput)
<tfoot> (TableFooter)
<th> (Table Header)cc i,
<thead> (TableHeader) iiiiiiiininn....
<time> (Time) ...t e
<title> (DocumentTitle) i,
<tr> (Table ROW) ..ot e
<tt> (Teletype Text)
<u> (Underline)ccoiiiiiii i
 (Unordered List)ccoiiiiiiiiiiiiinnnnnnnn.
<var> (Variable)c. i
<video> (VIdeO) ..ottt
<wbr> (Word Break)
<xml> (XMLDatalsland),
<xmp> (Example)

Part Il Core Style

4 Introduction to CSS .. ittt it i ittt i ittt
Presentational HTML e
The Slow Rise of CSS ..ot e
First Look at CSS . ..o i
Hello CSSWorld ... e
CSS VEISIONS oottt e e e

Proprietary CSS
CSS Relationship with Markup ,
The Specification of CSS
CSSError Handling o i il
Validating CSS o
Breaking the Rules Purposefully?
Applying Style toa Documentl
LinkingtoaStyleSheet i il
Embedding Style Sheets L
Importing Style Sheets L
InlineStyles il
Media Typeso o
Printer-Specific CSS o o il
Alternative Styles i i i
User Styles

Contents

Document Structure and CSS Inheritance 468
limportant Override i 470
Selectors 470
Element Selectors i i il 471

id Selectors 471
classRules i 473
Contextual Selection i il 476
Attribute Selectors ... i il 479
Pseudo-Element Selectors o o il 484
Pseudo-Class Selectors i il 487

CSS Properties Preview i 500
Measurements and Values o o il 502
CSS and (X)HTML Elements Fundamentals 506
Physical Markup and Overriding Expected Results 506

Are <div> and the Most Popular Tags? 507
Changing Element Types with display 508
Controlling White Space il 512

Major Themes of CSS 513
Separation of Structureand Style o oo ool 514

CSS: More Appropriate and Powerful for Presentation 516
Cross-Browser CSSMadness 517
Myths and Misconceptions Related to CSS 517
Summary ... 519
CSS Syntax and Property Referenceo, 521
CSS Versions ... 521
CSS BasiCs ..ttt 521
Style Inclusion Methods i 524
Linked Styles i i 524
Embedded Styles i 526
Imported Styles—@import 526
InlineStyles 527
CSSMeasurementsoiiiiiiiiiiii 527
CSS Strings and Keywords ... 529
Counters 530
CSSColor Values 530
CSSSelectors ... 533
Miscellaneous CSS Constructs i i oL, 539
/X comments ¥/ L 539
@charset 540
@font-face ... 540
@media ... 541
@PAge .. 541
limportant 542

CSS1 and CSS 2.1 Properties ... 542
background 543
background-attachment oo 543
background-color il 544
background-image i 544

background-position oo oo 545

Xiii

Xiv

HTML & CSS: The Complete Reference

background-repeat i 546
border 547
border-bottom 547
border-bottom-color 548
border-bottom-style 548
border-bottom-width 548
border-collapse 549
border-color 549
border-left 550
border-left-color —....... 551
border-left-style 551
border-left-width 552
border-right 552
border-right-color 552
border-right-style 553
border-right-width 553
border-spacing ... 553
border-style 554
border-top ... 556
border-top-color 556
border-top-style ... 557
border-top-width 557
border-width 557
bottom ... 559
caption-side 559
clear .. 560
cip 560
color . 561
content ... 562
counter-increment 564
counter-reset ... 564
CUISOT oottt ettt e e ettt et e et 565
direction 567
display ... 568
empty-cells ... 570
float ... 571
font . 572
font-family ... 572
font-size ... 573
font-style 574
font-variant ... 575
font-weight ... 575
height ... 576
left 577
letter-spacing i 578
line-height 578
list-style 579
list-style-image i il 579
list-style-position i il 579

list-style-type 580

Contents

4= 1 4 e 581
margin-bottom ... o o 582
margin-left ... 582
margin-right 583
Margin-top ... 583
max-height 584
max-width ... 584
min-height ... o 585
min-width ... 585
orphans 586
outline 586
outline-color 588
outline-style 589
outline-width i 590
overflow ... 590
padding ... 591
padding-bottom o oo oo 593
padding-left 593
padding-right 594
padding-top ... 594
page-break-after i i il 595
page-break-before il 595
page-break-inside o o o i ool 596
POSItion ... 596
QUOLES oo 597
right .o 598
table-layout 598
text-align ... 599
text-decoration il 599
text-indent ... 600
text-transform ... 600
O 601
unicode-bidi 602
vertical-align o o i i 602
visibility ... 603
white-space ... 604
WIdows ... 604
width oo 605
WOrd-spacing i 606
z-index ..o 607
CSS2 and CSS 2.1 Aural Style Properties 607
6 CSS3 Proprietary and Emerging Features Reference 613
The State of CSS3 613
CSS3 Selectors ... o 613
CSS3-Introduced Values and Units 621
CSS3 Color Values ... i i 622
Namespaces i 624
Media QUETIES ..ottt 625
Web Fonts ... 626

Miscellaneous CSS3 Changes 629

Xvi HTML & CSS: The Complete Reference

Implemented CSS3 and Browser-Specific Features 629
@keyframesl i il 630
accelerator 631
animation 632
animation-delay o i i il 633
animation-direction o oo ool 634
animation-duration o oo o oiiiilillllllllllL 635
animation-iteration-count o ool 636
animation-name i 637
animation-timing-function o o ool 638
backface-visibility 640
background-clip ... 641
background-origin 642
background-position-x ... 643
background-position-y ... 644
background-size 644
behavior 645
binding 649
border-bottom-left-radius 650
border-bottom-right-radius 651
border-image 651
border-radius ... 653
border-top-left-radius 654
border-top-right-radius i 655
box-reflect 655
box-shadow 656
DOX-SIZING ... 658
column-break-after o i ool 659
column-break-before o o ool 659
column-count i il il 660
column-gap 661
column-rule 661
column-rule-color i i il 662
column-rule-style i il 663
column-rule-width o o i il 664
column-width 665
columns ... 665
filter ... 666
gradient ... 671
image-rendering i i il 673
ime-mode 673
interpolation-mode ool 674
layout-grid ... 674
layout-grid-char i i il 675
layout-grid-line i il 675
layout-grid-mode i il 676
layout-grid-type 676
line-break 677

marquee-direction o i i il 677

Contents
marquee-play-count o o o ool 678
marquee-speed i i 679
marquee-style ... 680
mask ... 681
mask-attachment o oo i il 682
mask-box-image i i il 682
mask-clip ... 683
mask-composite ... 684
mask-image 684
mask-origin ... 685
mask-position ... o i i 685
mask-position-x ... o o i 686
mask-position-y ... 687
mask-repeat 687
mask-size 688
OPaCItY .. 690
outline-offset i i 690
outline-radius i i il 691
overflow-style i il 691
overflow-x ... 692
overflow-y ... 693
perspective 693
perspective-origin 694
TESIZE .o 695
ruby-align ... 696
ruby-overhango il 697
ruby-position ... i 698
scrollbar-3dlight-color o i il 698
scrollbar-arrow-color il 699
scrollbar-base-color o ool 699
scrollbar-darkshadow-color o i iiiiiiiL. 700
scrollbar-face-color i il 701
scrollbar-highlight-color 701
scrollbar-shadow-color o ool 702
scrollbar-track-color i o il 703
BIZ@ 703
text-align-last il 704
text-autospace 704
text-fill-color 705
textjustify ... 705
text-kashida-space i il 706
text-overflow 707
text-rendering ... il i 708
text-shadow 708
text-stroke ... 710
text-stroke-colorl 710
text-stroke-width oo i ool 711
text-underline-position oo o ool 711

ransSformM ... 712

Xvii

Xviii HTML & CSS: The Complete Reference

transform-origin o i il il 715
transform-style i i il 716
transition ... 717
transition-delay o i il 717
transition-duration o o oo ool 718
transition-property 719
transition-timing-function o oo ool 719
user-select ... 720
word-break ... 721
WOId-WTaP . ooot ittt 722
writing-mode ... 722

77670 5 1 e 724

Part Il Appendixes

A Character Entitiesciiiiiiiiiiiiiii i 727
Encoding Quirks and Considerations 728
Traditional HTML Entities i i, 731
HTML 4.x and XHTML 1.x Character Entities 740
Latin Extended-A 741

Latin Extended-B 741
Spacing Modifier Letters 741
General Punctuation o o ool 741

Greek .o 743
Letter-like Symbols o o ool 744
ATTOWS oo 745
Mathematical Operators 746
Technical Symbols i il 747
GeometricShapes o o ool 748
Miscellaneous Symbols L 748
Embracing Unicode i il 748
B Fonts ... e e et i, 751
Specifying Fonts i 751
Fonts for Windows Platform and Browsers 752

Fonts for Macintosh System and Browsers 755

PC Mac Font Similarity oo il 757
Downloadable Fonts i i il 760
Microsoft’s Dynamic Fonts o L. 760
Standard Downloadable Fonts 761
Cross-Browser Downloadable Fonts 761

Font Replacement with Images 763
sIFR and Other Text Replacement Techniques 764
O 1) [0 - 765
(X)HTML COLOTS .« . vttt e et ettt e e e e e e e e e e 765
Nonstandard Color Names and Numerical Equivalents 765

(X)HTML Elements Supporting Color 772

Contents

CSSColor Values 773
CSS Color-Related Properties 776
Browser-Safe Colors i il 779
L8 2 X U 783
BasicConcepts 783
Server Addressl 784
Directory 786
Filename 787
Fragment Identifier i il 788
Protocol 788

Other Featuresof URLs 789

Data URIS ... 791
Other Emerging URLForms 794
Relative URLs 795
Using the <base>Tago .. 795

URL Challenges ... 796
Unclear Case Sensitivity i L. 797
Unclear Length Limits 797
Persistence Concerns —.............coiiiiiiiiiiiiiii 797

Long, Dirty URLs 797

Short, Cryptic URLs i i i 797
Location, NotMeaning i 798
Beyond URLs 798
New Addressing Schemes: URNs, URCs,and URIs 798
Reading a Document Type Definition oiiiio.. 801
Element Type Declarations 801
Occurrence Indicators i 802
Logical Connectors i 803
SGML Content Exclusion and Inclusion 804
Attribute Declarations i 804
SGML and XML Keywords i 805
Parameter Entities 806
Comments ... 806
The DTDSs ... 807

Xix

This page intentionally left blank

Acknowledgments

The HTMLS5 specification marks a return to past ideas and an explosion of future

ideas. It took a great deal of work to put this new edition together. Given the amount
of effort required, I want to make sure that all those that helped are given their due. First, I
want to acknowledge the numerous fixes and improvements that came from the feedback
from both my students at UCSD and readers around the world. I write these books for you,
and I am glad you are putting this information to good use.

I would also like to show my appreciation to the many staff members at PINT who
helped on this book project in some direct or indirect way. I can’t specifically thank and
mention the dozens of employees we have at PINT and my other firm Port80 Software who
keep the lights on, but I'll call a few out who warrant some extra kudos.

Christie Sorenson once again helped this time with heavy lifting particularly in the CSS
effort, and I can safely say that she has learned, relearned, and even forgotten more about
Web development than probably anyone I know, besides maybe myself. Looking forward to
more project fun in the future, Christie!

Plenty of other PINTsters helped. Rob McFarlane, Andrew Simpkins, and Bryan Sleiter
helped out with imagery. The project managers, particularly Mine Okano, Robin Nobel,
Matt Plotner, and Olivia Chen, gave me moral support and occasional pity as I toiled away
upstairs. Glenn Dawson addressed my many server changes and helped debug some
annoying aspects of HTML5. Dan Whitworth assisted on a few chapters here and there and
probably had nightmares about getting a call to really dive in.

Joe Lima listened to some of my verbal nonsense and helped guide me to some deeper
insights than I could have ever arrived at on my own.

Daisy Bhonsle kept up a very long-standing proofing relationship, and I am very glad
she always helps out. The student certainly has become the master.

The folks at McGraw-Hill Professional are always a pleasure to work with. Meghan
Riley helped guide me along, and Megg Morin didn’t lose faith, at least not completely.
Thanks for being my patron the last decade, Megg!

My technical editor, James Pence, probably wondered when this project was going to
finish, and somehow he finished a nontechnical book of his own during the project.

I I The fifth edition of this book might as well be the first edition of a brand-new book.

XXi

XXii

HTML & CSS: The Complete Reference

Finally, to my friends and family who tried to give me space to write this thing, you
deserve the biggest thanks. My children, Graham, Olivia, and Desmond, had to put up
with a grouchy dad and far too many absent weekends, so we now return you to our
regularly scheduled weekends! Cecilia, you provided a lot of help as well that made
things a bit easier on all of us, so thank you for that. Finally, Sylvia, you always support
my online efforts, as hard as they may be. I know you, more than anyone, appreciate the
importance of this project, considering the role HTML has played in our lives.

Thomas A. Powell
tpowell@pint.com
October 2009

Introduction

address HTMLS5. The book is similar to the previous edition in maybe a third of the

content; otherwise, it is an all-new effort. Most obviously, as compared to the previous
editions, which focused mainly on XHTML and HTML 4, this edition focuses on HTMLS5,
which represents both a return to the markup past and the unveiling of an exciting future of
Web applications. However, we do retain some information from previous editions because
in order for this work to be truly complete, we must not focus only on the future but also
present all the elements supported in browsers today, including the archaic, proprietary, and
standard (X)HTML tags. These will still be encountered for years to come, and we want this
book to provide the reference you need in addressing their syntax.

CSS coverage has been expanded greatly to fully cover CSS 2.1 as well as every proprietary
and emerging CSS 3 property supported in one or more popular shipping browsers circa 2009.
No value judgment is made; if Internet Explorer has supported a proprietary CSS feature for
the last decade, it’s included. However, we do avoid presenting CSS features that are truly
speculative in great depth, but where appropriate, we summarize or present pointers to the
emerging syntax.

The ramification of the increased markup and CSS coverage is simply the book doesn’t
have space left to do everything it did before. Teaching nearly everything about HTML and
CSS in prose form and then presenting a complete syntax reference for the technologies
would have produced a book well over 2,000 pages. We were well on the way to that when
we adjusted our efforts to create what you have in your hands, a solid reference book that
may be used for years to come. This isn’t to say that learning material is not present at all.
There are very solid introductory chapters for the markup and CSS sections, which should
succinctly address details and standards issues. There just isn’t a step-by-step cookbook for
each element or property. Given the maturity of the Web industry, we aimed not for the
complete tutorial, but instead for the complete reference.

It should go without saying that more markup changes to HTML and CSS are inevitable.
HTMLS5, in particular, is a complete moving target, and rather than punting on it, we took
the best shot at its first release version as it settled in late 2009. Because of the inevitable
changes given HTML5’s rapid evolution, the support Web site, http://htmlref.com, should
be considered an important bookmark for readers looking for updates or the unavoidable
correction.

I I The fifth edition of this book represents a significant change in structure and content to

XXiii

This page intentionally left blank

PART

Core Markup

CHAPTER 1
Traditional HTML
and XHTML

CHAPTER 2

Introducing HTML5
CHAPTER 3

HTML and XHTML
Element Reference

This page intentionally left blank

CHAPTER
Traditional HTML and XHTML

Markup languages are ubiquitous in everyday computing. Although you may not

realize it, word processing documents are filled with markup directives indicating

the structure and often presentation of the document. In the case of traditional
word processing documents, these structural and presentational markup codes are more
often than not behind the scenes. However, in the case of Web documents, markup in the form
of traditional Hypertext Markup Language (HTML) and its Extensible Markup Language
(XML)-focused variant, XHTML, is a little more obvious. These not-so-behind-the-scenes
markup languages are used to inform Web browsers about page structure and, some might
argue, presentation as well.

First Look at HTML and XHTML

In the case of HTML, markup instructions found within a Web page relay the structure of
the document to the browser software. For example, if you want to emphasize a portion of
text, you enclose it within the tags and , as shown here:

This is important text!

4

Part I: Core Markup

When a Web browser reads a document that has HTML markup in it, it determines how
to render it onscreen by considering the HTML elements embedded within the document:

Welcome to the world of HTML! «—

Welcome to the world of HTML! v

So, an HTML document is simply a text file that contains the information you want to
publish and the appropriate markup instructions indicating how the browser should
structure or present the document.

Markup elements are made up of a start tag, such as , and typically, though not
always, an end tag, which is indicated by a slash within the tag, such as . The tag
pair should fully enclose any content to be affected by the element, including text and other
HTML markup.

NOTE There is a distinction between an element (for example, strong) and the tags (
and) that are used by the element. However, you will likely often find the word
“tag” used in place of “element” in many if not most discussions about HTML markup. This
observation even includes historically relevant documents discussing HTML' written by Tim
Berners-Lee, the founding father of the Web. Fortunately, despite any imprecision of word choice
that people may exhibit when discussing markup, meaning is usually well understood and this
should not be a tremendous concern.

Under traditional HTML (not XHTML), the close tag for some elements is optional
because their closure can be inferred. For example, a <p> tag cannot enclose another <p>
tag, and thus the closing </p> tag can be inferred when markup like this is encountered:

<p>This is a paragraph.
<p>This is also a paragraph.

Such shortened notations that depend on inference may be technically correct under the
specification, but stylistically they are not encouraged. It is always preferable to be precise,
so use markup like this instead:

<p>This is a paragraph.</p>
<p>This is also a paragraph.</p>

! Historic intro to HTML that clearly uses the term tag instead of element www.w3.org/History/19921103-
hypertext/hypertext/ WWW /MarkUp /Tags.html

Chapter 1: Traditional HTML and XHTML

There are markup elements, called empty elements, which do not enclose any content, thus
need no close tags at all, or in the case of XHTML use a self-close identification scheme. For
example, to insert a line break, use a single
 tag, which represents the empty br element,
because it doesn’t enclose any content and thus has no corresponding close tag:

However, in XML markup variants, particularly XHTML, an unclosed tag is not allowed, so
you need to close the tag

</br>
or, more commonly, use a self-identification of closure like so:

The start tag of an element might contain attributes that modify the meaning of the tag.
For example, in HTML, the simple inclusion of the noshade attribute in an <hr> tag, as
shown here:

<hr noshade>

indicates that there should be no shading applied to this horizontal rule. Under XHTML,
such style attributes are not allowed, because all attributes must have a value, so instead
you have to use syntax like this:

<hr noshade="noshade" />

As the preceding example shows, attributes may require values, which are specified with an
equal sign; these values should be enclosed within double or single quotes. For example,
using standard HTML syntax,

<img src="dog.gif" alt="Angus-Black Scottish Terrier" height="100"
width="100">

specifies four attributes for this tag that are used to provide more information about
the use of the included image. Under traditional HTML, in the case of simple alphanumeric
attribute values, the use of quotes is optional, as shown here:

<p class=fancy>

Regardless of the flexibility provided under standard HTML, you should always aim to
use quotes on all attributes. You will find that doing so makes markup more consistent,
makes upgrading to stricter markup versions far easier, and tends to help reduce errors
caused by inconsistency.

6 Partl: Core Markup

A graphical overview of the HTML markup syntax shown so far is presented here:

Tag Attribute Attribute
Name Name Value

Lo |

<hl class=‘“primary”>Example Heading</hl>

Attribute —, L J\\ J
Start Tag Affected Content End

Tag

HTML Element

Hello HTML and XHTML World

Given these basics of HTML syntax, it is best now to look at an example document to see its
application. Our first complete example written in strict HTML 4 is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML 4 World</title>

<!-- Simple hello world in HTML 4.01 strict example -->
</head>

<body>

<hl>Welcome to the World of HTML</hl>

<hr>

<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/htmldhelloworld.html

A simple modification of the initial <!DOCTYPE> line is really all that is necessary to
make this an HTML5 example, the comment and text is changed so you can keep the
examples straight:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>

<!-- Simple hello world in HTML5 example -->
</head>

<body>

<hl>Welcome to the Future World of HTMLS5</hl>
<hr>

<p>HTML5 really isn't so hard!</p>

Chapter 1: Traditional HTML and XHTML

<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/html5helloworld. html

In the case of XHTML, which is a form of HTML that is based upon the syntax rules of
XML, we really don’t see many major changes yet in our example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Hello XHTML World</title>

<!-- Simple hello world in XHTML 1.0 strict example -->
</head>

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/xhtmlhelloworld.html

The preceding examples use some of the most common elements used in (X)HTML
documents, including;:

¢ The <!DOCTYPE> statement, which indicates the particular version of HTML
or XHTML being used in the document. The first example uses the strict 4.01
specification, the second uses a reduced form for HTML5 the meaning of which
will be explained a bit later on, and the final example uses the XHTML 1.0 strict
specification.

* The <html>, <head>, and <body> tag pairs are used to specify the general structure
of the document. The required inclusion of the xmlns attribute in the <html> tag is
a small difference required by XHTML.

¢ The <meta> tag used in the examples indicates the MIME type of the document and
the character set in use. Notice that in the XHTML example, the element has a trailing
slash to indicate that it is an empty element.

* The <title> and </title> tag pair specifies the title of the document, which
generally appears in the title bar of the Web browser.

¢ A comment is specified by <! -- --5, allowing page authors to provide notes for
future reference.

1

8 Partl: Core Markup

¢ The <hl>and </hl> header tag pair indicates a headline specifying some important
information.

* The <hr> tag, which has a self-identifying end tag (<hr />) under XHTML, inserts
a horizontal rule, or bar, across the screen.

® The <p> and </p> paragraph tag pair indicates a paragraph of text.

¢ A special character is inserted using a named entity (s¢hearts;), which in this case
inserts a heart dingbat character into the text.

* The and tag pair surrounds a small piece of text to emphasize which a
browser typically renders in italics.

There are numerous other markup elements that may be employed, all of which will be
explored throughout the book, but for now this sampling is enough to get our first example
rendered in a browser.

NoTE Examples in the book will generally be presented in HTML5. Syntax specific to particular
browsers, older HTML variants, or XHTML will always be noted when used.

Viewing Markup Locally
Using a simple text editor, type in either one of the previous examples and save it with a
filename such as helloworld.html or helloworld.htm; you can choose which file extension to
use, .htmor .html, but whichever you pick for development, aim to be consistent. This
book uses .html for all of the files.

After you save the example file on your local file system, open it in your Web browser
by opening the File menu and choosing Open, Open Page, or Open File, depending on your
browser:

=

8 Mozilla Firefox Start Page refc & Blank Page - Intemet Bxplorer

([Eile] Edit View History Bookmarks To &) - [E) sboutblonk

New Window Ctrl+N Dht JEIY st View Favorites Tools Help

Mew Tab Chrl+T MNew Tab Ctrl+T
New Wind, Chel+N

Open Location.., Ctrl+L L Sl !
Open... h Ctrl+0

Open File... l} Ctrl+0 Edit

Close Window Ctrl+Shift+W Save Ctrl+S
Save As...

Close Tab Ctrl+W
Close Tab CtrisW

e T Do R Crlet

Chapter 1: Traditional HTML and XHTML

Once your browser reads the file, it should render a page like the one shown here:

& Hello HTML World - Moxilla Firefox [£34]

LX)
File Edit View History Bookmarks Tools Help

BICIX AN | > -|I[C-s

sle O

Welcome to the World of HTMI.

HTML really isn't so hard!
Soon vou will ¥ using HTML.

Yom can prt lots of text here f yon want We conld go on and an with fake text
for you to read, but let's get back to the book.

If for some reason you didn’t save your file with the appropriate extension, the browser
shouldn’t attempt to interpret the HTML markup. For example, notice here what happens
when you try to open the content with a . txt extension:

'EvhﬂhFhwm E:]IE'!Z!
File Edit View History Bookmarks Tools Help
@ e c ﬁ I | http://htmiref.com/chl/helloworld. bt T | |'| Google Pl

<!DOCTYPE HIML PUBLIC "-//W3C//DID HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dcd">
<html:>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!—— Simple hello world in HIML 4.01 strict example —-3>
</head>

<body>

<hl>Welcome to the World of HTML</hl>

<hr>

<p>HTML really isn't so hard!</p>

<p>Soon you will ghearts; using HIML.</p>

<p>You can put lots of text here if you want.

We could go on and on with fake text for you

to read, but let's get back to the book.</p>

</body>

</html>

If you want to make a change to the document, you could update the markup, save the
file, go back to the browser, and click the Reload or Refresh button. Sometimes the browser
will still reload the page from its cache; if a page does not update correctly on reload, hold
down the sHiFT key while clicking the Reload button, and the browser should refresh the page.

As you write markup, keeping the browser and editor open simultaneously is a very
good idea to avoid constantly reopening one or the other. Many Web editors will assist you
in loading your Web pages into various browsers or even preview the visualization of the

markup directly. Figure 1-1 shows this process in Adobe’s popular Dreamweaver program
(www. dreamweaver.com).

9

10 PartI: Core Markup

mﬁhidh View Inset Modify Format Commands Site Window Help | Elx @+ A | DEsiGNER v | = B x

ahimihelloworld.htmi® x Path: Clinetpubivwensrootichiwhimihellowordd himl

[[Loofcode [oT5R] sjDeson| | [#]uveview |« | 7] Title: Hebo KHIML Werld 0 & O [E B, b2 cedeage |
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" -

"http://www.w3.org/TR/xhtmll/DTD/xhtmli-strict .dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta htop-equiv="Content-Type" content="text/html; charset=ucf-g" />

<title>Hello XHTML World</title>

</head>

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't sc hard either!</p>

<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>

</body> Ly

</html>

=)

WO =] N bW

Q0 Bx@ &« [sorst

[_..

Welcome to the World of XHTML

XHIML really wa't so hard either!

There me some diffevences between XHTML and HTML but with some precise makup vou'll see such differences ae casly addiessed.

) 9 [100% +] 1096 % 200~ 1] 1 sec Linkcode (UTF-B)

PROVERTRS
Fomat [tone | O o ~ B (EiSuau@ e 1 ®
£ 2 Ried ~ ~l@go Teoet --

[Pogeproverben... } | Lotien

Figure 1-1 Improved markup editing in Dreamweaver

Once you get the hang of markup production, you'll see that, at this raw level, it is
much like the edit, compile, and run cycle so familiar to programmers. However, this
manual process certainly isn’t the way that you want to develop Web pages, because it can
be tedious, error prone, and inefficient when thinking of page structure and visual design.
For our current illustrative purposes to learn the language however, it works fine.

Viewing Markup with a Web Server

Ideally, you should aim to test your Web pages as delivered off a Web server instead of just
reading them off a local file system. Not only is this more representative of how your users
will actually experience the page, but it prepares you for later construction of Web pages
that contain server-side programming technologies.

There are many options for employing a Web server. You may decide to run your own
local development Web server on your desktop system or use some hosted server instead.
In either case, you need to get the files somewhere under the Web server’s document root
folder so that they can be served out. Very often this directory has a common name like
inetpub, htdocs, site, or www, but it really could be just about anything, so make sure you
check the server you end up using.

Chapter 1: Traditional HTML and XHTML

To make your files available via the server, you might use a process of uploading a
file from your system to a remote server via an FTP (File Transfer Protocol) program, as
shown here:

fle [dit View Tools Leip

[TR - [@ a m] ol]
Connect.. | Discondect Connection Wizard NewLocsl View | Options.. Views | DipenPGP Made | Loeal Search Nwﬂackmjnbl
Address g 5 tes/himlied - UserlD tpuweell Passward " an

m R Mm@

Worhepuse. sty Mannger Add Sawr cl.m!

: " «d © B @ © @ i
Dot el Up Falders Up Folders Cancel Transfer Maode

(4] L] : = & & B & : (9] 2] E s P
Change Folder New Folder Ve fit Docutefile Rifiesh Maname Delets | Changs Folder NewFolder View Tdit Docutefie Refresh franame Delete
Hame | Size | Tupe | Modiied | Harns | Size| Type | Modfied | aniutes |
4 _notes | Fe.. ENZ20B1ZE. 8] heboora bl 675 Feel., ENZ200B1ZIPM mesne
8] oo il a5 el RAZOORESS | A | Pelevandd 1t 5 Tet RANINRIZERM mwewny
| | hesonorid b ARl Test ENZAIEITG A QMHIMM H5 Feed BA2ANE 12N P LR
8] okl Hird S5 el GAZIEIZE. A _,a
4 object(s) - 1 KB + Cannected to himbrel.com 3 objectis) - 1 KB

Information Window

Many Web editors also allow you to synchronize files between a local directory and
your remote server. For example, a snippet of the synchronization facility provided in
Dreamweaver is shown here:

file Ecit View Inset Modify Format Commands Sie Window Help | B+ v &~

<!DOCTYFE htm

JR ey e8|

v][Remuteview

hellovorld. bl 1KE Fircfos 0., 6/12/2008 12:35 MM

£=Y

<mela hllp—ey

Remote St ciza|Type [Modified Ched Pt File(2) | :
|Bemote s |_siee : I hes ! | e Strict//EN"
ahout Falder HfYfULL 12U AM - = "http:// www.w
aspret_client Folder /92006 12:00 AM - o1 t.dcd">
coi-bin Folder /92006 12:00 AM - =i 2 <html =mlns="
_b :}n Frlder AH17}20NR 17:35 BM - ..; 2 <head>
w
&

helloworld.txt 6/ 122008 12:35 P "teut / html il
md xhtmibellowosld. html B 5 o e[}He 1la °
chapters 8/9/2006 12:00 &M - G </head>
8i9/2006 12:00 &M -
8/9/2006 12:00 AM - &l 7 <body>
examples gf9fz006 12:00 AM - = 8 <hl>Welcoms €
Hash /972006 12:00 &M - g | <hr />
imanes 8/9/2006 12:00 AM - =IPEOT <p>XHTML

1

12

Part I: Core Markup

On the Web server, you most likely will use the .html or . htm file extension for your
files. When HTML files are placed in the appropriate directory, the user would issue a URL
in their browser like

http://yoursitename/sitepath/helloworld.html

and that will then return the file in question. However, note that when a marked-up
document is delivered over the network, it is not the file extension that indicates to the
browser that the content is HTML, but rather the Content -Type : header found in the
network stream:

T . g p
/& Hello XHTML World - Intemnet Explorer [=1
@‘O 7 |E, http://www.htmiref.com/chl/xhtmihelloworid.htmi i j s | A | ||G Google
T.-:? Favorites i{\ |§‘ Hello ¥HTML ‘World |_| Emulate [E7 ﬁ X ool a@ > _;} Page » :@-Toods - E

Welcome to the World of XHTML

HHTML really isn't so hard either!

There arc some differences betweon ZHTML and HTML but with seme procizc markup yvouw'll sce such differences arc casily addresacd.

4

X @n [Stop] Clear [77] View ~ £3 Summary & Find ~ Y Fiker ~ [Save ~ 20 llelp ~
Started - Time Chart Tine: Sent Recetved Method Fesult Type URL

nnonenn.omn - [TR a.m3 AR a0 G 7m trectjhtml bt jun

< (I

el

| e i e | Time Chart | Hearers | Cnnkies | Carhe |Qupry Sring | POST Data f:nnfpnfi Skream i
816 bytes sent to 209,245.121.191:80 Q Find [.gp Export 850 bytes received by 10.0.0.196:57500 Q Find I1-

|[cET sonlsvnemlnalloworld heul HITP/L.1 [ETTR I 1 zoo o

Accopt: image/gif, image/u-ibitmap, image/jpeg, |[Content-Lengsh: E4E

[Cunlenn—Type. Leal/hiwl]

|UR-CPIT: xX&6 |Content-Locaclon: KTTp: /WM. htmlret. comschl/xhtmlhelloworld. henl
|hccept-Encoding: gzip, deflate |Last-Modified: Thu, 1Z Jun Z008 19:35:Z1 GMT

|User-Agent: Mozilla/4.0 {compatible; MSIE 2.0; U| Accept-Ranges: bytes

|Host: www. htmlref.com |ETag: "d84a073c3cccBl:5d8"

Conmection: Keep-Alive |Server: Microsofo-IIS/6.0

Cookie: _ utma=14616174_ 1614078274, 1210622012, 12| ¥-Powered-By: ASP.NET
:Data: Cat, 14 Jun 2002 Z0:25:Z1 CHT

Avcepl-Luugusgs . eo-us

|
[<!DOCTYPE hiwml PUBLIC "—//W3C//DTD XHTML 1.0 3LricvL//EN" “"hiip. s fwuw
shtml XWInsS="hCTp:/ /W w3 orgs1l333/xhcnl =~

<head>

The browser then takes the header and maps it to the action of parsing the document as
HTML. In some older browsers, the mapping between MIME type or file extension and

browser action is obvious:

Preferences

LCategony:

= Appearance

=1+ Mavigator
Languages

- Applications

.. Smart Browsing

Chapter 1:

.=different file types

Dezcription

FutureSplash Player =l MHew Tupe... |
GIF Image -

Help File = Edit...

HTHML application

g

Traditional HTML and XHTML

E- Mail & Newsgroups HyperT erminal File Remove
B Roaming Access ‘Hypertest Markup Language
[Compager HyperTest Style Sheet
- Offline iCalendar File
- Advanced Image Composer Documnent H
— File type datail
@ Extension: HTML HTHM SHTHML STH

MIME Type: testhiml

Handled By: Metscape [intemall

e

Cancel | Help |

This Preferences dialog box shows that the extension or header is what triggers the action
by the browser. The goal here is simply to illustrate that there is something different going
on between reading locally and remotely.

Before wrapping up this brief introductory example, it should be noted that in some
cases when you have configured the wrong file extension or MIME type, some browsers may
“sniff out” the content type and parse any HTML found within. For example, in Figure 1-2
you can see that many versions of Internet Explorer® render a file with a . txt extension as
HTML while Firefox does not. We have to pay attention to details even in the simplest
examples if we want to avoid headaches from questionable browser practices and plain old
bugs. HTML5 will aim to remove such problems in the distant future, but for now let’s get

down to the most important details, starting first by enumerating all of the versions of
(X)HTML that we might need to know about.

2 Internet Explorer 8 introduces some changes to avoid sniffing; you can set X-Content - Type-Options:

nosniff as a response header to disable Internet Explorer’s permissive behavior, though this only works
in IE8 and beyond.

14 Part1: Core Markup

Internet Explorer reads the txt file, interprets the
code in the page, and renders as if it were an html file.

" & Hello HTML World - Intemet Explorer = ch!
@O - |E http://www.htmiref.com/chl/helloworld.tet - | “}I X ”[Gl Google

Ly Favorites 5 | 2 Hello HTML World | EEmulatele7 &p v B + [deh ~ [+ Page v G Tools ¥

Welcome to the World of HTML

HTML really isn't so hard!

You can put lots of text here if you want. We could go on and on with fake text for you to read, but let's get back to
the book

Firefox recognizes the file type and renders the
text rather than interpret the code as html.

" @ Mozilla Firefox =@

File Edit View History Bookmarks Tools Help

E-2-& {2 | nttpy//wann htmiref.com/chUhelloworld.bt [~ [] [Q=] 50091e

<!DOCTYPE HTHML PUBLIC "-//W3C//DTD HTML 4.01//EN" "hrcp://wuw.w3.org/TR/html4/strict.dcd"”
<html>

<head>

<meta hrtp-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Hello HTML World</title>

</head>

<body>

<hi>Velcome to the World of HTHL</hi>

<hr>

Ficure 1-2 Irregularities with browsers handling MIME types and file extensions

HTML and XHTML: Version History

Since its initial introduction in late 1991, HTML (and later its XML-based cousin, XHTML)
has undergone many changes. Interestingly, the first versions of HTML used to build the
earliest Web pages lacked a rigorous definition. Fortunately, by 1993 the Internet Engineering
Task Force (IETF) began to standardize the language and later, in 1995, released the first real
HTML standard in the form of HTML 2.0. You will likely encounter more than just the latest
style of markup for many years to come, so Table 1-1 presents a brief summary of the version
history of HTML and XHTML.

Chapter 1: Traditional HTML and XHTML

HTML or XHTML Version

Description

HTML 2.0

Classic HTML dialect supported by browsers such as Mosaic. This
form of HTML supports core HTML elements and features such as
tables and forms, but does not consider any of the browser innovations
of advanced features such as style sheets, scripting, or frames.

HTML 3.0

The proposed replacement for HTML 2.0 that was never widely
adopted, most likely due to the heavy use of browser-specific markup.

HTML 3.2

An HTML finalized by the W3C in early 1997 that standardized most of
the HTML features introduced in browsers such as Netscape 3. This
version of HTML supports many presentation-focused elements such
as font, as well as early support for some scripting features.

HTML 4.0 Transitional

The 4.0 transitional form finalized by the W3C in December of 1997
preserves most of the presentational elements of HTML 3.2. It
provides a basis of transition to Cascading Style Sheets (CSS) as
well as a base set of elements and attributes for multiple-language
support, accessibility, and scripting.

HTML 4.0 Strict

The strict version of HTML 4.0 removes most of the presentation
elements from the HTML specification, such as font, in favor of using
CSS for page formatting.

4.0 Frameset

The frameset specification provides a rigorous syntax for framed
documents that was lacking in previous versions of HTML.

HTML 4.01 Transitional/
Strict/Frameset

A minor update to the 4.0 standard that corrects some of the errors in
the original specification.

HTML5

Addressing the lack of acceptance of the XML reformulation of HTML
by the mass of Web page authors, the emerging HTML5 standard
originally started by the WHATWGS group and later rolled into a W3C
effort aimed to rekindle the acceptance of traditional HTML and
extend it to address Web application development, multimedia, and
the ambiguities found in browser parsers. Since 2005, features now
part of this HTML specification have begun to appear in Web browsers,
muddying the future of XHTML in Web browsers.

XHTML 1.0 Transitional

A reformulation of HTML as an XML application. The transitional
form preserves many of the basic presentation features of HTML 4.0
transitional but applies the strict syntax rules of XML to HTML.

XHTML 1.0 Strict

A reformulation of HTML 4.0 Strict using XML. This language is rule
enforcing and leaves all presentation duties to technologies like CSS.

XHTML 1.1

A restructuring of XHTML 1.0 that modularizes the language for easy
extension and reduction. It is not commonly used at the time of this
writing and offers minor gains over strict XHTML 1.0.

> Web Hypertext Application Technology Working Group (www.whatwg.org).

TaBLe 1-1 Description of Common HTML Versions

15

16

Part I: Core Markup

HTML or XHTML Version Description

XHTML 2.0 A new implementation of XHTML that will not provide backward

compatibility with XHTML 1.0 and traditional HTML. XHTML 2 will
remove all presentational tags and will introduce a variety of new
tags and ideas to the language.

XHTML Basic 1.0 A variation of XHTML based upon the modularization of XHTML (1.1)
designed to work with less-powerful Web clients such as mobile
phones.

XHTML Basic 1.1 An improvement to the XHTML Basic specification that adds more

features, some fairly specific to the constrained interfaces found in
mobile devices.

TaBLe 1-1 Description of Common HTML Versions (continued)

Beyond the standard forms of markup described in Table 1-1, there are of course various
nonstandard forms in play. For example, the browser vendors introduced various extensions
to HTML and, interestingly, continue to do so. We also have to contend with the ad hoc use
of markup that doesn’t really conform fully to any particular standard other than to what
usually renders in common Web browsers. Such a “tag soup” is certainly not the best way
to approach building Web pages, regardless of whether browsers accept it. Standards for all
forms of markup exist and should be adhered to whenever possible.

HTML and XHTML DTDs: The Specifications Up Close

Contrary to the markup some Web developers seem to produce, both HTML and XHTML
have very well-defined syntax. All (X)HTML documents should follow a formal structure
defined by the World Wide Web Consortium (W3C; www.w3.o0rg), which is the primary
organization that defines Web standards. Traditionally, the W3C defined HTML as an
application of the Standard Generalized Markup Language (SGML). SGML is a technology
used to define markup languages by specifying the allowed document structure in the form
of a document type definition (DTD). A DTD indicates the syntax that can be used for the
various elements of a language such as HTML.

A snippet of the HTML 4.01 DTD defining the P element, which indicates a paragraph,
is shown here:

<l--=================== Paragraphs =====================================-->
<!ELEMENT P - O (%inline;)* -- paragraph -->
<!ATTLIST P

%$attrs; -- %$coreattrs, %118n, %events --

>

The first line is a comment indicating what is below it. The second line defines the p
element, indicating that it has a start tag (<P>), as shown by the dash, and an optional close
tag (</P>), as indicated by the 0. The type of content that is allowed to be placed within a
P element is defined by the entity $inline, which acts here as a shorthand for various other
elements and content. This idea of only allowing some types of elements within other

Chapter 1: Traditional HTML and XHTML

elements is called the content model. If you further explore the specification to see what that
%$inline entity maps out to, you will see that it contains numerous other elements, such as
EM, STRONG, and so on, as well as regular typed text. The final line defines the attributes for
a <P> tag as indicated by the entity $attrs which then expands to a number of entities like
$core, $118n, and $coreevents which finally expand into a variety of attributes like ig,
class, style, title, lang, dir, onclick, ondbleclick, and many more. The full syntax
of the P element can be found in the reference in Chapter 3; the aim here is for you to
understand the syntax of SGML in a basic sense to support your understanding of how Web
browsers treat markup.

As another example, look at the HTML 4.01 DTD'’s definition of the HR element:

<l--=================== Horizontal Rule ================================-->
<!ELEMENT HR - O EMPTY -- horizontal rule -->
<!ATTLIST HR

%$attrs; -- %$coreattrs, %118n, %events --

>

From this syntax fragment, note that the HR element has a start tag but does not require a
close tag. More interestingly, the element does not enclose any content, as indicated by the
EMPTY designation. It turns out to have the same set of attributes as the P element, as
defined by the %attrs entity.

As mentioned in the previous section on the history of HTML, in 1999 the W3C rewrote
HTML as an application of XML and called it XHTML. XML, in this situation, serves the
same purpose as SGML: a language in which to write the rules of a language. In fact, XML is
in some sense just a limited form of SGML. XML and SGML can be used to write arbitrary
markup languages, not just HTML and XHTML. These would be called applications or, maybe
more appropriately, application languages. Numerous markup languages have been defined
with SGML and XML, and you could even define your own if you like. The relationship
between the various markup technologies is shown here:

Languages
Defined by

Example
Application
Languages

DocBook

TEI
HTML

The DTD defined in XML for the XHTML language is actually quite similar to the DTD
for traditional HTML. For example, consider the XHTML DTD entries for the two elements
previously presented:

<!ELEMENT p %Inline;>
<!ATTLIST p

%attrs;

>

17

18

Part I: Core Markup

<!ELEMENT hr EMPTY>
<!ATTLIST hr
%attrs;
>

As you can see, there is some case changing (lowercase elements), a lack of optional close
tags, and a general cleanup of syntax, but otherwise things are pretty much the same.

Properly constructed (X)HTML documents should reference a DTD of some sort and it
is important to know what this means as browsers and Web quality assurance tools actually
consult the doctype directives. Hopefully, this brief introduction has given you a sense of
the underlying specification of (X)YHTML and its degree of detail. Appendix E presents
complete coverage of how to read the (XYHTML DTDs.

NotE Interestingly, HTML5 does not use SGML or XML definitions, but instead relies on an
English prose specification combined with some formalism. Chapter 3 discusses this change and
some other aspects of the HTML5 language and specification that is different from the older
markup languages.

Document Type Statements and Language Versions

(X)HTML documents should begin with a <! DOCTYPE> declaration. This statement
identifies the type of markup that is supposedly used in a document. For example,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

indicates that we are using the transitional variation of HTML 4.01 that starts with a root
element html. In other words, an <html> tag will serve as the ultimate parent of all the
content and elements within this document.

A <1DOCTYPE> declaration might get a bit more specific and specify the URI (Uniform
Resource Identifier) of the DTD being used as shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

In the case of an XHTML document, the situation really isn’t much different:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

However, do note that the root html element here is lowercase, which hints at the case
sensitivity found in XHTML.

There are numerous doctype declarations that are found in HTML and XHTML
documents, as shown in Table 1-2.

NOTE On occasion you might see other HTML document type indicators, notably one for the 3.0
standard that was never really adopted in the Web community.

Chapter 1: Traditional HTML and XHTML

HTML or XHTML Version

'DOCTYPE Declaration

HTML 2.0

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

HTML 3.2

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

HTML 4.0 Transitional

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/html4 /loose.dtd">

HTML 4.0 Frameset

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN"
"http://www.w3.0rg/TR/html4 /frameset.dtd">

HTML 4.0 Strict

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"
"http://www.w3.0rg/TR/html4 /strict.dtd" >

HTML 4.01 Transitional

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4 /loose.dtd">

HTML 4.01 Frameset

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.0rg/TR/html4 /frameset.dtd">

HTML 4.01 Strict

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4 /strict.dtd" >

HTML5

<IDOCTYPE html>

XHTML 1.0 Transitional

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Strict

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmI1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Frameset

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd" >

XHTML 1.1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtmI11/DTD/xhtml11.dtd">
XHTML 2.0 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN"

"http://www.w3.org/MarkUp/DTD/xhtm|2.dtd">

XHTML Basic 1.0

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

XHTML Basic 1.1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.1//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd">

TaBLeE 1-2 Common HTML Doctype Declarations

While there are many different versions of (X)HTML, the good news is that the rough
document structure defined for each is pretty similar; of course, the bad news is that
little details will be different from version to version, so you need to be precise with your

syntax.

19

20 Partl: Core Markup

(X)HTML Document Structure

The DTDs define the allowed syntax for documents written in that version of (X)HTML.
The core structure of these documents is fairly similar. Given the HTML 4.01 DTD, a basic
document template can be derived from the specification, as shown here:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8"> Head contains
<title>Page Title</title> info about page
</head> Root HTML
element
encloses
entire doc
Body

Filename: template.html

In this graphical representation, the <! DOCTYPE> indicator, which, as previously
mentioned, shows the particular version of HTML being used, in this case 4.01 Transitional.
Within a root html element, the basic structure of a document reveals two elements: the head
and the body. The head element contains information and tags describing the document, such
as its title, while the body element houses the document itself, with associated markup
required to specify its structure. HTMLS5 follows the same core structure but introduces
differences, which is covered in depth in Chapter 2.

Chapter 1: Traditional HTML and XHTML

The structure of an XHTML document is pretty much the same with the exception of a
different < ! DOCTYPE> indicator and an xmlns (XML name space) attribute added to the
html tag so that it is possible to intermix XML more easily into the XHTML document:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtmll/DTD/
txhtmll-strict.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8" /> Head contains
<title>Page Title</title> info about page

</head>

Root HTML
element
encloses
entire doc

Body

Filename: template.html

Alternatively, in either HTML or XHTML (but not in HTML5), we can replace the
<body> tag with a <frameset> tag, which encloses potentially numerous <£rame> tags
corresponding to individual portions of the browser window, termed frames. Each frame in
turn would reference another HTML/XHTML document containing either a standard
document, complete with <html>, <head>, and <body> tags, or perhaps yet another
framed document. The <frameset> tag also should include a noframes element that
provides a version of the page for browsers that do not support frames. Within this element,

il

22 Partl: Core Markup

a <body> tag should be found for browsers that do not support frames. A visual
representation of this idea is shown here:

Doctype statement indicates type of document

|

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Frameset//EN" "http://www.w3.org/TR/html4
frameset.dtd">

<head>
<meta http-equip="Content-Type"
content="text/html; charset=utf-8"> Head contains
<title>Page Title</title> info about page
</head> Root HTML
element
encloses
<frameset> entire doc
<frame />
<frame /> Frameset
</frameset>
<noframes>
<body>
Body

</body>
</noframes>

Filename: template.html

HTML5 does not support standard frames, though it does preserve inline frames.
Chapter 2 addresses that HTML5-specific change; for now, we’ll concentrate on a typical
document structure and drill into each element until we reach the very characters displayed.

Roughly speaking, the structure of a non-framed (X)HTML document breaks out like so:

Some <!DOCTYPE> statement

Chapter 1: Traditional HTML and XHTML 23

The following sections drill into each of the document structuring markup elements and
explore what’s contained inside.

The Document Head

The information in the head element of an (X)HTML document is very important because it
is used to describe or augment the content of the document. The element acts like the front
matter or cover page of a document. In many cases, the information contained within the
head element is information about the page that is useful for visual styling, defining
interactivity, setting the page title, and providing other useful information that describes or
controls the document.

The title Element

Asingle title element is required in the head element and is used to set the text that most
browsers display in their title bar. The value within a title is also used in a browser’s
history system, recorded when the page is bookmarked, and consulted by search engine
robots to help determine page meaning. In short, it is pretty important to have a
syntactically correct, descriptive, and appropriate page title. Thus, given

<title>Simple HTML Title Example</title>

you will see something like this:

(@ Simple HTML Title Exampl®> Mozilla Fircfox

File Edit View History Bookmarks Tools He

-

When a title is not specified, most browsers display the URL path or filename instead:

[badtitle.html (=) @ |
[& file://localhost/C:finetpub/wwwroot/chl/badtitlehtml - Opera [S=]EE]
[@& Mozilla Firefox E=EE]]
[/€ Chinetpub\wwwioot\chl\badtitle.htm - Internet Explorer r=lE]] 1

Only one title element should appear in every document, and most user agents will
ignore subsequent tag instances. You should be quite careful about making sure a title
element is well formed because omitting the close tag can cause many browsers to not load
the document. A recent version of Opera reveals what is likely happening in this situation:

&S Danger unclosed title here!@ <style tyle="text/css" media="screen"> boi
File Edit View Bookmarks Widgets Tools Help

Here it appears that the markup and rest of the document are used as the contents of the
unclosed title element, and thus nothing is rendered in the browser. It should be noted that
this particular rendering may vary because some browsers fix an unclosed title.

A

Part I: Core Markup

A document title may contain standard text, but markup isn’t interpreted ina <title>
tag, as shown here:

@) This Simple HTML Title Example is&atrang>great</strang> SMa

File Edit View History Bookmarks Tools Help

However, character entities such as © (or, alternatively, ©), which specifies a
copyright symbol, are allowed in a title:

<title>Simple HTML Title Example, © 2010 WebMonopoly, Inc.</title>

@ Simple HTML Title Example, @ 2008 WebMenopoly, Inc
Eile Edit Miew History Bookmarks Tools Help

For an entity to be displayed properly, you need to make sure the appropriate character
set is defined and that the browser supports such characters; otherwise, you may see boxes
or other odd symbols in your title:

@@Waming Character Plthems@— Mozilla Firefox
File Edit View History Bookmarks Tools Hel

To set the appropriate character set, you should include a <meta> tag before the page
title even though traditionally title is considered the first element.

NOTE Beyond character set concerns, think twice before using a special character such as a colon
(:), slash (/), or backslash (\) in a document title. An operating system might have a problem
with such a title if the document is saved to the local system. For example, the colon isn’t allowed
within Macintosh filenames, and slashes generally aren’t allowed within filenames, because they
indicate directories. Most modern browsers remove such special characters and reduce them to
spaces during the Save process. To be on the safe side, use dashes to delimit items in a page title.

<meta>: Specifying Content Type, Character Set, and More

A <meta> tag has a number of uses. For example, it can be used to specify values that are
equivalent to HTTP response headers. For example, if you want to make sure that your
MIME type and character set for an English-based HTML document is set, you could use

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">
Because meta is an empty element, you would use the trailing-slash syntax shown here:

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

Chapter 1: Traditional HTML and XHTML

Most people would agree that using the UTF-8 character set is probably a good idea for
Western-language page authors because it gives them access to international character
glyphs when needed without causing them any trouble:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >

Deciding which MIME type to use isn’t as straightforward. For standard HTML, the
MIME type is always text/html. However, when XHTML is in play, confusion and
browser problems ensue. Numerous pundits bemoan the fact that most XHTML is served as
text /html, particularly because it doesn’t give you the strict parsing that XML tends to
afford. In the use of XHTML, you may choose from text/html, text/xml, application/
xml, and application/xhtml+xml as potential MIME types. Given the potential for
compatibility and even rendering problems, for better or worse, the MIME type text/html
will be used for nearly all (X)HTML examples in this book so that browser rendering is
ensured. This hedge will be explored a bit more later in the chapter when addressing the
implications of XHTML. In summary at the point of writing this edition, it is recommend
specifying a Content-Type of text/html and the UTF-8 character set, and doing so as
your first element within the head, like so:

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" >
<title>Page title here</title>

</head>

NOTE The meta element also has many other uses beyond defining character set and MIME type.
It is also used to set arbitrary name-content pairs to provide meta-information about a document
for purposes like search engine optimization (for example, <meta name="keywords"
content="Keywordl,...Keyword N" >). Other uses of <metas tags will be covered in
the reference section of Chapter 3.

Other Elements in the head

In addition to the title and meta elements, under the HTML 4.01 and XHTML 1.0 strict
DTDs, the elements allowed within the head element include base, 1ink, object, script,
and style. Comments are also allowed. A brief discussion of the other head elements and
comments follows. Complete information is available in the element reference found in

Chapter 3.

<base> A <base> tag specifies an absolute URL address that is used to provide server
and directory information for partially specified URL addresses, called relative links, used
within the document:

<base href="http://htmlref.com/basexeample" >

Because of its global nature, a <base> tag is often found right after a <title> tag as it
may affect subsequent <scripts, <link>, <style>, and <object> tag referenced URIs.

25

26

Part I: Core Markup

<link> A <link> tag specifies a special relationship between the current document and
another document. Most commonly, it is used to specify a style sheet used by the document
(as discussed in Chapter 4):

<link rel="stylesheet" media="screen" href="global.css" type="text/css" >

However, the <1ink> tag has a number of other interesting possible uses, such as to set
up navigation relationships and to hint to browsers about pre-cacheable content. See the
element reference in Chapter 3 for more information on this.

<object> An <object> tag allows programs and other binary objects to be directly
embedded in a Web page. Here, for example, a nonvisible Flash object is being referenced
for some use:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="0" height="0" id="HiddenFlash" >
<param name="movie" value="flashlib.swf" />
</object>

Using an <object> tag involves more than a bit of complexity, and there are numerous
choices of technology, including Java applets, plug-ins, and ActiveX controls.

<script> A <script> tag allows scripting language code to be either directly embedded
within,

<script type="text/javascript">
alert ("Hi from JavaScript!");
/* more code below */
</script>

or, more appropriately, linked to from a Web page:
<script type="text/javascript" href="ajaxtcr.js"></script>

Nearly always, JavaScript is the language in use, though other languages such as VBScript
are possible.

<style> Acstyle> tagis used to enclose document-wide style specifications, typically
in Cascading Style Sheet (CSS) format, relating to fonts, colors, positioning, and other
aspects of content presentation:

<style type="text/css" media="screen">

hl {font-size: xx-large; color: red; font-style: italic;}
/* all hl elements render as big, red and italic */
</style>

The use of this tag will be discussed in Chapter 4.

Comments Finally, comments are often found in the head of a document. Following SGML
syntax, a comment starts with <! - - and ends with - -> and may encompass many lines:

<!l-- Hi I am a comment -->
<!-- Author: Thomas A. Powell

Chapter 1: Traditional HTML and XHTML

Book: HTML: The Complete Reference
Edition: 5

Comments can contain just about anything except other comments and are particularly
sensitive to — symbols. Thus

<l------ THIS ISN'T A SYNTACTICALLY CORRECT COMMENT! ---->

NOTE Correct usage of comments goes well beyond syntax, because they may inherently expose
security concerns on public-facing sites. You'll also find that comments are used not only for
development notes but also to mask some types of content from browsers.

The complete syntax of the markup allowed in the head element under strict (X)HTML
is shown here:

head

mandatory

single occurrence
and generally early

Following is an example XHTML document with a head element that contains common
usage of elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Sample Head Element</title>

<!-- Some example meta tags -->

<meta name="keywords" content="Fake, Head Example, HTML Ref" />

<meta name="description" content="A simple head example that shows a number
of the elements presented in action." />

<meta name="author" content="Thomas A. Powell" />

21

28

Part I: Core Markup

<!-- Set a global URI stem for all references -->
<base href="http://htmlref.com/baseexample" />

<!-- Linked and document specific styles -->

<link rel="stylesheet" href="screen.css" media="screen" />
<link rel="stylesheet" href="printer.css" media="print" />
<style type="text/css">
<!--

hl {font-size: xx-large; color: red; font-style: italic;}
-2

</style>

<!-- Embedded and linked scripts -->
<script type="text/javascript">
<!--
var globalDebug = true;
//-->
</script>
<script src="ajaxtcr.js" type="text/javascript"></script>
<script src="effects.js" type="text/javascript"></script>
</head>
<body>
<p>Some body content here.</p>
</body>
</html>

The various details of the tags within the document head are all presented in the
element reference in Chapter 3; the aim here was to show you the organization of the head
element and how it supports the body. Now let’s move on to see the content in the
document body itself.

The Document Body

After the head section, the body of a document is delimited by <body> and </body>. Under
the HTML 4.01 specification and many browsers, the body element is optional, but you
should always include it, particularly because it is required in stricter markup variants.
Only one body element can appear per document.

Within the body of a Web document is a variety of types of elements. For example, block-
level elements define structural content blocks such as paragraphs (p) or headings (h1-h6).
Block-level elements generally introduce line breaks visually. Special forms of blocks, such
as unordered lists (ul), can be used to create lists of information.

Within nonempty blocks, inline elements are found. There are numerous inline elements,
such as bold (b), italic (1), strong (strong), emphasis (em), and numerous others. These
types of elements do not introduce any returns.

Chapter 1: Traditional HTML and XHTML

Other miscellaneous types of elements, including those that reference other objects such
as images (img) or interactive elements (object), are also generally found within blocks,
though in some versions of HTML they can stand on their own.

Within block and inline elements, you will find textual content, unless the element is
empty. Typed text may include special characters that are difficult to insert from the
keyboard or require special encoding. To use such characters in an HTML document, they
must be “escaped” by using a special code. All character codes take the form &code;, where
code is a word or numeric code indicating the actual character that you want to put
onscreen. For example, when adding a less-than symbol (<) you could use &1t ; or <.
Character entities also are discussed in depth in Appendix A.

Finally, just as in the head, you may include comments in the body element.

A visual overview of all the items presented in the body is shown here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/htmld/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML 4.01 strict example --> 4— Comment
</head>
<body>
<hl>{elcome to the World of HTML</hl>

< Block Elements
<hr>
P>HTML really isn't so hard!</p> I—InlineElements

<p>Soon you will &heartf; using HTML.</p>

<p>You can put lots of text here if you want. Character Entity

We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>
</html>

29

30 Partl: Core Markup

The full syntax of the elements allowed in the body element is a bit more involved than
the full syntax of the head. This diagram shows what is directly included in the body:

h1, h2, h3, h4, h5, h6

it

blockquote

-

fieldset

il

AT

Chapter 1: Traditional HTML and XHTML 3

Going deeper into the full syntax in a single diagram is unreasonable to present. Just as
an example, take the p element and continue to expand, keeping in mind that these
elements will also loop back on each other and expand out as well:

Tk

(*) when the element is ultimately a descendent of a form element

While it might be difficult to meaningfully present the entire syntax of HTML
graphically in a diagram, the diagram presented here should drive home the point that
HTML is quite structured and the details of how elements may be used are quite clear. Now
that you have some insight into the syntax of markup, the next section discusses how
browsers deal with it.

Browsers and (X)HTML

When a browser reads a marked-up document, such as the “hello world” example
repeated here,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML 4.01 strict example -->

</head>

<body>

<hl>Welcome to the World of HTML</hl>

32

Part I: Core Markup

<hr>

<p>HTML really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

it builds a parse tree to interpret the structure of the document, possibly like this:

o

~— <!-- simple hello world in HTML 4.01 strict example -->

Legend

HTML ELEMENT

<!-- comment -->

Chapter 1: Traditional HTML and XHTML 33

These parse trees, often called DOM (Document Object Model) trees, are the browsers’
interpretation of the markup provided and are integral to determining how to render the
page visually using both default (X)HTML style and any CSS attached. JavaScript will also
use this parse tree when scripts attempt to manipulate the document. The parse tree serves
as the skeleton of the page, so making sure that it is correct is quite important, but sadly
we'll see very often it isn’t.

NOTE The syntax trees presented earlier look very similar to the parse trees, and they should,
because any particular parse tree should be derivable from the particular markup language’s
content model.

Browsers are actually quite permissive in what they will render. For example, consider
the following markup:

<TITLE>Hello HTML World</title>

<!-- Simple hello malformed world -- example -->
</head>

<body>

<hl>Welcome to the World of HTML</H1>

<hr />

<p>HTML really isn't so hard!

<P>Soon you will ♥ using HTML.

<p>You can put lots of text here if you want.

We could go on and on with fake text for you

to read, <foo>but</foo> let's get back to the book.
</html>

This example misses important tags, doesn’t specify encoding types, has a malformed
comment, uses inconsistent casing, doesn’t close tags, and even uses some unknown
element foo. However, this will render exactly the same visually as the correct markup
previously presented, as shown in Figure 1-3.

34

Part I: Core Markup

@& Hello HTML Warld - Mozilla Firefox =R SRS

"." Google p|

File Edit View History Bookmarks Tools Help
Well-formed

@- + @ X Ay [|http//himiref.com/chl/helloworld.html T7 -
Markup

Welcome to the World of HTML —

HTML really isn't so hard!
Soon you will ¥ using HTML.

You can put lots of text here if you want. We could go on and on with fake text for you to read, but let's
get back to the book.

& Hello HTML World - Mozilla Firefox =
File Edit View History Bookmarks Tools Help

@ " R c A ﬁ [\ |http:.-",-"www.htmlref.com_fchlfmalformedl birdi ".l' Google p|

Malformed
Welcome to the World of HTML Markup
HTML really isn't so hard!
Soon you will ¥ using HTML.

You can put lots of text here if yon want. We could go on and on with fake text for you to read, but let's
get back to the book.

Ficure 1-3 Malformed markup works!?

Chapter 1: Traditional HTML and XHTML 35

Now if you look at the parse tree formed by the browser, you will note that many of the
mistakes appear to be magically fixed by the browser:

File [dit View listory Bookmarks Tools Lielp
i gy C X o http://htmiref.com/chl/hellownrid html

% -] (iG] gt »|

Welcome to the World of HI'ML

HITML really isn't so hard!
Soon you will ¥ using HTML.

Yom can pur lors of text here if you want We could go on and on with fake text for yon to read, bur ler's get hack o the hook

#° Inspect Edit | Kl - body < html & (Al]
Consnle | HTMI r“ vrlp-l m.ll m . - = aphun:-l‘?lyr I.‘ym.n I'];']Il

5] <himi

This clement has no

style rules.
<mela cuntent="test/himl;

charsel=uLl-8" hitp-equiv="Cuntent-Type™/>
titla>Helln HTML Harld</titlay

= <bady>
<hlrWelcume to the World of HIML</hl>
<hr/>
= <pr
RTHI.
<om> really</om>
isn’t so hard!
</p>
€p» Doon you will ¥ using u'mL

<p>¥ou ean put Ints Af taxt hers 1f you WART We rould gn on And An wWith fake text for you to read,
but let's get back to tha book.</p>

</hrml>

Of course, the number of assumptions that a browser may make to fix arbitrary
syntactical mistakes is likely quite large and different browsers may assume different
“fixes.” For example, given this small fragment of markup

<p>Making malformed HTML really isn't so hard!</p>

leading browsers will form their parse trees a bit differently, as shown in Figure 1-4.

36 Partl: Core Markup

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/htmld/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">
<title>Malformed HTML<Z/title>

</head>

<body>

<p>Making malformed HTML really

isn’t so hard!</p>

</body>

</html>

&% Inspect Edit | body < html
Cnnsolc|l’|'ml.im Script DOM Net

ISl <html>

= <head>

<mata content="text/html; charsec=ucf-8" http-equiv="Content-Type"/>
<title>Malformed HIML </title>
</head>
= <body>
= <p>
Making malformed HIML
=l
=
really
B
 isn't so hard!

=/p>
</body>
T v 5] Developer Tools

[} 45 [View Outline
HTML |css | script |
=

= <HEAD/>
L. <TITLE>Malformed HTML</TITLE>
- <META content=text/html; charset=utf-8 http-equiv=Content-Type></META>
=-<BODY/>
=-<P/>
-~ Making malformed HTML
8-
-
-really
B
- isn't so hard!</P>

Ficure 1-4 Same markup, different parse, as shown in Firefox 3 (above) and Internet Explorer 8 (below)

Chapter 1: Traditional HTML and XHTML 3

Simply put, it is quite important to aim for correct markup as a solid foundation for a
Web page and to not assume the markup is correct just because it appears to render
correctly in your favorite browser.

Validation

As shown earlier, a DTD defines the actual elements, attributes, and element relationships
that are valid in documents. Now you can take a document written in (X)YHTML and then
check whether it conforms to the rules specified by the DTD used. This process of checking
whether a document conforms to the rules of the DTD is called validation.

The < 1DOCTYPE> declaration allows validation software to identify the HTML DTD
being followed in a document, and verify that the document is syntactically correct—in
other words, that all tags used are part of a particular specification and are being used
correctly. An easy way to validate a document is simply to use an online service such as the
W3C Markup Validation Service, at http:/ /validator.w3.org. If the malformed example
from the previous section is passed to this service, it clearly shows that the page has errors:

e oo e e e S —— e
Eile Edit View History Bookmarks Tools Help :
Gw_;— ¥y X N ii| tpe//validator w3 org/cheekiun=http =3 A%k Sk htmiret. com®e2rehl %k mattorm Rl | (0 A4 REEeT S 2

-

Markup Validation Service

L

m

Jump To: Potential Issues Validation Output

This page is not Valid (no Doctype found)!
Result: Failed validation, 8 Crrors

Address : http://htmlret. com/chl/maltormedhelloworld. html
Encoding : ut-8 {detoct automatically) -
Doctype : (no Doctype found) (detact automatically) -

Root Element: title

Options
D snow source [C1show Outiine @ List Messages Sequentially © Group Error Messages by type
Cvangate error pages [verpose Output [CIciean up markup with HTML Tidy

Halp an the aptinns is availshls Revalidate

Potential Issues

38

Part I: Core Markup

Pass the URL to the service yourself by using this link in the address bar:

http://validator.w3.org/check?uri=http%3A%2F%2Fhtmlref.com%2Fchl%2Fmalforme
dhelloworld.html

By reading the validator’s messages about the errors it detected, you can find and
correct the various mistakes. After all mistakes are corrected, the document should validate
cleanly:

'9—,_::‘ C X & ['._!_é_i_ﬂlrf}ﬁvnlidnlm.w'l?{y:'_hff?mi_hnp%'ln%?r com2Fchl i bl
WSC‘ Markup Validation Service
Jump To: Congratulations lcons
This Page Is Valid HTML 4.01 Strict!
Result: 1a: validation
Address : http://htmlzef.com/chl/helloworld, html
Encoding : ull-8 {dotoct automatically) -
Doctype: HIML 4.01 Stnct (detect automatically) - 4
Root Element: HIML
Options
IZlsnow Source | enow Outling @ List Messages Sequentialy © Group Error Messages by type
[Tl validate error pages ClVerbose Qutput ElClean up Markup with HTML Tidy
Lialg o the options i available Revalidate
Congratulations
The document located at <hitp:/himiref com/ch1/helloworld himl> was checked and found to be valid HTML 4.01 Strict. This means that the
resource in queshon identihied itsalf as "HIML 4 01 Stnct” and that we successtully pertormed a formal validation using an SGML or XML

Web developers should aim to start with a baseline of valid markup before trying to
address various browser quirks and bugs. Given that so many Web pages on the Web are
poorly coded, some developers opt to add a “quality” badge to a page to show or even
prove standards conformance:

HTML XHTML
%C 4.01 * %C 1.0 J

Chapter 1: Traditional HTML and XHTML 39

Whether users care about such things is debatable, but the aim for correctness is
appropriate. Contrast this to the typical effort of testing a page by viewing it in various
browsers to see what happens. The thought is, if it looks right, then it is right. However, this
does not acknowledge that the set of supported or renderable pages a browser may handle
is a superset of those which are actually conforming to a particular specification:

Conforming
Markup

Supported Malformed Markup

Unsupported Markup

It is an unfortunate reality that browsers support a multitude of incorrect things and
that developers often use a popular browser as an acceptance engine based upon some page
rendering for better or worse. Such an approach to markup testing might seem reasonable
in the short term, but it will ultimately lead to significant developer frustration, particularly
as other technologies are added, such as CSS and JavaScript, and newer browsers are
introduced. Unfortunately, given the browsers’ current method of allowing garbage yet
preferring standards, there is little reason for some developers to care until such a price is
realized.

The Doctype Switch and Browser Rendering Modes

Modern Web browsers generally have two rendering modes: quirks mode and standards
compliance mode. As their names suggest, quirks mode is more permissive and standards
compliance mode is stricter. The browser typically chooses in which mode to parse a
document by inspecting the <! DOCTYPE> statement, if there is one. This process typically is

40 Part1: Core Markup

dubbed the “doctype switch.” When a browser sees a known standards-focused doctype
indicator, it switches into a standards compliant parse:

0 Hello HTML World - Mozilla Firefox
File Edit View History Bookmarks Tools Help

E\ C 0 & (| httpy/himiref.com/chl/helloworld.html w7 | |[Gl-] Googte

Welcome to the World of HTTML

& PageInfo - http://Rtmiref.com/chl/helloword.htmi ===

o t A

General Permissions Security
<head>
Hello HTML World: teX] <meta http-eguiv="Content-Type" content
Address: http://htmiref.com/chl/helloworld.html <title>Hello HTML World</title>
Type: text/himl :‘.:];é _d"—.‘irnpie hello wvorld 1n HTML 4.01 st
a
Render Mode: Standards compliance mode <bod
Encoding: HEEE <hi>Welcome to the World of HTML</h1>
Size: 0.56 KB (575 bytes]| JEE

Strict DTD Present

However, if the <! DOCTYPE> statement is missing, references a very old version like 3.2,

or is unknown, the browser will enter into quirks mode. Browsers may provide an indication
of the rendering mode via an entry in page info:

@ Hello HTML Werld - Meuills Firefon

fit/helloworldnodtd.htm B

Welcome to the World of HTML

[— T
1 & Page Info - http com/ehl/ mml [= @8] Souree of: httpe//htr ref.co
i ile Edit
i E o e Eile Er :Iﬂr Help
e = <htmls
General Permissi Security <heady
“meta http-egquiv=" Type" cexc/html; cha £-8">
| Hello HTML Warld: <LitlesHello HTML Worlde/titles
Address httpe//htmleef.cam/chl /helloworldnadtd html F 1o Simple hello world in HTML 4.01 strict example —-3
</head>
Types tot/html ik
P M <hi>Welcome to the World of HTML</his
Encading UTF-8 e
Size 0.47 KB (483 bytes) <pYHIHL really isn't ao hard!</p>

DTD Missing

Chapter 1: Traditional HTML and XHTML iy |

In other cases, you may need to use a tool to determine the parse mode:

€ Hello HTML Warld - Tnternet Explarer provided by Dell [E=RER
@\ -;J I] hitp:/ Mimiret.com/chl hellowarldnadtd htm + [4| % | [[G] Googte P~
File Fdit View Favorites Tools Help G Soaght - 121
i Favorites 5 | Hello HTML Workd Emulate 7. £ = = [e v |- = Page = ([} Took » v o =
Debugar v502 =
oo [HiTeés) | sat | Hcneds| o Welcome to the World of HTML
Information Vahoe
i Main page UL bt fotmived.comjch 1 velcrmor dnedtd, bl
i Page tite Hisfio HTML Workd
ol Mai pege Size 483 HTML realiy isn't so hard?
U5 & e imeges (<im... O
B0 Sz e knapes (<., O Soon you will ¥ using HTMIL
{Downioad time [
(JRendenngPage Tme 0 7 3 . X 3
B o it e You can put bots of text bere if you want. We could go on and on with fake text for vou to read, but let's get back to
JMime Type Firefox Document the book.
ool HyperText Transfer Prosocsl
T o>

Web developers should aim for a solid markup foundation that is parsed in a
predictable manner. The number of rendering oddities that will still be encountered even
with such a solid footing is not inconsequential, so it’s best not to tempt fate and instead to
try to follow the “rules” of markup.

The Rules of (X)HTML

(X)HTML does have rules, of course, though in some versions the rules are somewhat loose.
Similarly, as previously discussed, these “rules” really don’t seem like rules because most
browsers pretty much let just about anything render. However, quite certainly, you should
follow these rules, because malformed documents may have significant downsides, often
exposed only after other technologies like CSS or JavaScript are intermixed with the
markup. The reality is that most (X)HTML, whether created by hand or a tool, generally lies
somewhere between strict conformance and no conformance to the specification. This
section gives you a brief tour of some of the more important aspects of (X)HTML syntax
that are necessary to understand to produce well-formed markup.

HTML Is Not Case Sensitive, XHTML Is

These markup examples are all equivalent under traditional HTML:

Go boldly
Go boldly
Go boldly
Go boldly

In the past, developers were highly opinionated about how to case elements. Some designers
pointed to the ease of typing lowercase tags as well as XHTML's requirement for lowercase
elements as reasons to go all lowercase. HTMLS5 reverts back to case-insensitive markup and
thus we may see a return to uppercase tags by standards aware developers.

2

Part I: Core Markup

Attribute Values May Be Case Sensitive

Consider and . Under traditional HTML,
these are equivalent because the tag and the src attribute are not case sensitive.
However, given XHTML, they should always be lowercase. However, just because attribute
names are not case sensitive under traditional HTML, this doesn’t mean every aspect of
attributes is case insensitive.

Regardless of the use of XHTML or HTML, the actual attribute values in some tags may
be case sensitive, particularly where URLs are concerned. So and
 do not necessarily reference the same image. When referenced
from a UNIX-based Web server, where filenames are case sensitive, test.gif and TEST.GIF
would be two different files, whereas on a Windows Web server, where filenames are not
case sensitive, they would reference the same file. This is a common problem and often
hinders the ability to easily transport a Web site from one server to another.

(X)HTML Is Sensitive to a Single Whitespace Character

Any white space between characters displays as a single space. This includes all tabs, line
breaks, and carriage returns. Consider this markup:

T e s t o £ s p a ¢ e s

T e s t o £ S p ac e s

T

e s

tofsp a ¢ e s

As shown here, all the spaces, tabs, and returns are collapsed to a single element:

Testofspaces
Testofspaces
Testofspaces

However, it is possible to force the whitespace issue. If more spaces are required, it is
possible to use the nonbreaking space entity, or . Some consider this the duct tape of
the Web—useful in a bind when a little bit of spacing is needed or an element has to be kept
from collapsing. Yet using markup such as

 Look, I'm spaced out!

would add space to the output, the question is, exactly how far? In print, using spaces to
format is dangerous given font size variability, so text rarely lines up. This is no different on
the Web.

Further note that in some situations, (X)HTML does treat whitespace characters differently.
In the case of the pre element, which defines a preformatted block of text, white space is
preserved rather than ignored because the content is considered preformatted. It is also
possible to use the CSS property white-space to change default whitespace handling.

Because browsers will ignore most white space, Web page authors often format their
documents for readability. However, the reality is that browsers really don’t care one way or
another, nor do end users. Because of this, some sites have adopted a markup optimization
idea, often called crunching or minification, to save bandwidth.

Chapter 1: Traditional HTML and XHTML

(X)HTML Follows a Content Model

All forms of markup support a content model that specifies that certain elements are
supposed to occur only within other elements. For example, markup like this

<p>What a simple way to break the content model!</p>

which often is used for simple indentation, actually doesn’t follow the content model for the
strict (XYHTML specifications. The tag is only supposed to contain <1i> tags. The <p>
tag is not really appropriate in this context. Much of the time, Web page authors are able to
get away with this, but often they can’t. For example, in some browsers, the <input> tag
found outside a <form> tag is simply not displayed, yet in other browsers it is.

Elements Should Have Close Tags Unless Empty

Under traditional HTML, some elements have optional close tags. For example, both of the
paragraphs here are allowed, although the second one is better:

<p>This isn't closed
<p>This is</p>

However, given the content model, the close of the top paragraph can be inferred since its
content model doesn’t allow for another <p> tag to occur within it. HTML5 continues to
allow this, as discussed in Chapter 2.

A few elements, like the horizontal rule (hr) and line break (br), do not have close tags
because they do not enclose any content. These are considered empty elements and can be
used as is in traditional HTML. However, under XHTML you must always close tags, so
you would have to write
</br> or, more commonly, use a self-closing tag format with
a final “/” character, like so:
.

Unused Elements May Minimize

Sometimes tags may not appear to have any effect in a document. Consider, for example,
the <p> tag, which specifies a paragraph. As a block tag, it induces a return by default, but
when used repeatedly, like so,

<p></p><p></p><p></p>

does this produce numerous blank lines? No, since the browser minimizes the empty p
elements. Some HTML editors output nonsense markup such as

<p> </p><p> </p><p> </p>

to deal with this. If this looks like misused markup to you, you're right!

Elements Should Nest

A simple rule states that tags should nest, not cross; thus

<i>is in error as tags cross</i>

43

44

Part I: Core Markup

whereas
<i>is not since tags nest</i>

and thus is syntactically correct. All forms of markup, traditional HTML, XHTML, and
HTMLS, follow this rule, and while crossing tags may seem harmless, it does introduce
some ambiguity in parse trees. To be a well-formed markup, proper nesting is mandatory.

Attributes Should Be Quoted

Under traditional HTML as well as under HTMLS5, simple attribute values do not need to be
quoted. If the attribute contains only alphanumeric content, dashes, and periods, then the
quotes can safely be removed; so,

would work fine in most browsers and would validate. However, the lack of quotes can
lead to trouble, especially when scripting is involved. Quotes should be used under
transitional markup forms and are required under strict forms like XHTML; so,

would be the correct form of the tag. Generally, it doesn’t matter whether you use single or
double quotes, unless other quotes are found within the quotes, which is common with
JavaScript or even with CSS when it is found in an attribute value. Stylistically, double
quotes tend to be favored, but either way you should be consistent.

Entities Should Be Used for Special Characters
Markup parsers are sensitive to special characters used for the markup itself, like < and >.
Instead of writing these potentially parse-dangerous characters in the document, they should
be escaped out using a character entity. For example, instead of <, use &1t ; or the numeric
equivalent < . Instead of >, use > ; or >. Given that the ampersand character has
special meaning in an entity, it would need to be escaped as well using & or &.
Beyond escaping characters, it is necessary to insert special characters for special quote
characters, legal symbols like copyright and trademark, currency, math, dingbats, and a
variety of other difficult-to-type symbols. Such characters are also inserted with entities. For
example, to insert the Yen symbol (¥), you would use ¥ or ¥. With Unicode in
play, there is a vast range of characters to choose from, but unfortunately there are
difficulties in terms of compatibility, all of which is discussed in Appendix A.

Browsers Ignore Unknown Attributes and Elements

For better or worse, keep in mind that browsers will ignore unknown elements and
attributes; so,

<bogus>this text will display on screen</bogus>
and markup such as

<p id="myPara" obviouslybadattribute="TRUE">will also render fine.</p>

Chapter 1: Traditional HTML and XHTML

Browsers make best guesses at structuring malformed content and tend to ignore code
that is obviously wrong. The permissive nature of browsers has resulted in a massive number
of malformed HTML documents on the Web. Oddly, from many people’s perspective, this
isn’t an issue, because the browsers do make sense out of the “tag soup” they find. However,
such a cavalier use of the language creates documents with shaky foundations at best. Once
other technologies such as CSS and JavaScript are thrown into the mix, brazen flaunting of the
rules can have repercussions and may result in broken pages. Furthermore, to automate the
exchange of information on the Web, collectively we need to enforce stricter structure of our
documents. The focus on standards-based Web development and future development of
XHTML and HTMLS brings some hope for stability and structure of Web documents.

Major Themes of (X)HTML

The major themes addressed in this section are deep issues that you will encounter over and
over again throughout the book.

Logical and Physical Markup

No introduction to (X)YHTML would be complete without a discussion of the logical
versus physical markup battle. Physical markup refers to using a markup language such
as (X)HTML to make pages look a particular way; logical markup refers to using (X)HTML
to specify the structure or meaning of content while using another technology, such as CSS,
to designate the look of the page. We begin a deeper exploration of CSS in Chapter 4.

Physical markup is obvious; if you want to highlight something that is important to the
reader, you might embolden it by enclosing it within a tag;:

This is important!

This simple approach fits with the WYSIWYG (what you see is what you get) world of programs
such as Microsoft Word.

Logical markup is a little less obvious; to indicate the importance of the phrase, it should
be enclosed in the logical strong element:

This is important.

Interestingly, the default rendering of this would be to embolden the text. Given the
difference, it seems the simpler, more obvious approach of using a tag is the way to go.
However, actually the semantic meaning of strong provides a bit more flexibility and is
preferred. Remember, the tag is used to say that something is important content,
not to indicate how it looks. If a CSS rule were defined to say that important items should
be big, red, and italic

<style="text/css">
strong {font-size: xx-large; color: red; font-style: italic;}
</style>

confusion would not necessarily ensue, because we shouldn’t have a predisposed view of
what strong means visually. However, if we presented a CSS rule to make tags act
as such, it makes less sense because we assume that the meaning of the tag is simply to
embolden some text.

45

46

Part I: Core Markup

HTML unfortunately mixes logical and physical markup thinking. Even worse, common
renderings are so familiar to developers that tags that are logical are assumed physical. What
does an <h1> tag do? Most Web developers would say it defines a big heading. However,
that is assuming a physical view; it is simply saying that the enclosed content is a level one
heading. How such a heading looks is completely arbitrary. While many of HTML's logical
elements are relatively underutilized, others, such as headings and paragraphs (<p>), are
used regularly though they are generally thought of as physical tags by most HTML users.
Consider that people generally consider <h1> a large heading, <h2> a smaller heading, and
predict that <p> tags cause returns and you can see that, logical or not, the language is physical
to most of its users. However, does that have to be the case? No, these are logical elements and
the renderings, while common, are not required and CSS easily can change them.

The benefits of logical elements might not be obvious to those comfortable with physical
markup. To understand the benefits, it’s important to realize that on the Web, many browsers
render things differently. In addition, predicting what the viewing environment will be is
difficult. What browser does the user have? What is his or her monitor’s screen resolution?
Does the user even have a screen? Considering the extreme of the user having no screen at
all, how would a speaking browser render a tag? What about a tag? Text
tagged with might be read in a firm voice, but boldfaced text might not have an
easily translated meaning outside the visual realm.

Many realistic examples exist of the power of logical elements. Consider the
international aspects of the Web. In some countries, the date is written with the day first,
followed by the month and year. In the United States, the date generally is written with
the month first, and then the day and year. A <date> or a <time> tag, the latter of which
is actually now part of HTML5, could tag the information and enable the browser to
localize it for the appropriate viewing environment. In short, separation of the logical
structure from the physical presentation allows multiple physical displays to be applied
to the same content. This is a powerful idea which, unfortunately, even today is rarely
taken advantage of.

Whether you subscribe to the physical (specific) or logical (general) viewpoint,
traditional HTML is neither purely physical nor purely logical, at least not yet. In other
words, currently used HTML elements come in both flavors, physical and logical, though
users nearly always think of them as physical. This is likely not going to get settled soon;
the battle between logical and physical markup predates HTML by literally decades.
HTML5 will certainly surprise any readers who are already logical markup fans, because
it fully preserves traditional presentational tags like and <i>, given their common
use, though jumps through some interesting mental hoops to claim meaning is changed.
Further, the new specification promotes media- and visual-focused markup like
<canvas> and <video> and introduces tremendously powerful navigational and
sectioning logical-focused tags. If recent history is any guide, then HTMLS5 is likely going
to pick up many fans.

Standards vs. Practice

Just because a standard is defined doesn’t necessarily mean that it will be embraced. Many
Web developers simply do not know or care about standards. As long as their page looks
right in their favorite browser, they are happy and will continue to go on abusing HTML
tags like <table> and using various tricks and proprietary elements. CSS has really done

Chapter 1: Traditional HTML and XHTML

little to change this thinking, with the latest browser hacks and filters as popular as the pixel
tricks and table hacks of the generation before. Developers tend to favor that which is easy
and seems to work, so why bother to put more time in, particularly if browsers render the
almost right markup with little complaint and notice?

Obviously, this “good enough” approach simply isn’t good enough. Without standards,
the modern world wouldn’t work well. For example, imagine a world of construction in
which every nut and bolt might be a slightly different size. Standards provide needed
consistency. The Web needs standards, but standards have to acknowledge what people
actually do. Declaring that Web developers really need to validate, use logical markup, and
separate the look from the structure of the document is great but it doesn’t get them to do
so. Standards are especially pointless if they are never widely implemented.

Web technologies today are like English—widely understood but poorly spoken. However,
at the same time they are the Latin of the Web, providing a strong foundation for development
and intersecting with numerous technologies. Web standards and development practices
provide an interesting study of the difference between what theorists say and what people
want and do. HTMLS5 seems a step in the right direction. The specification acknowledges that,
for better or worse, traditional HTML practices are here for now, and thus attempts to make
them solid while continuing to move technology forward and encourage correct usage.

Myths and Misconceptions About HTML and XHTML

The amount of hearsay, myths, and complete misunderstandings about HTML and XHTML
is enormous. Much of this can be attributed to the fact that many people simply view the
page source of sites or read quick tutorials to learn HTML. This section covers a few of the
more common misconceptions about HTML and tries to expose the truth behind them.

Misconception: WYSIWYG Works on the Web

(X)HTML isn’t a specific, screen- or printer-precise formatting language like PostScript.
Many people struggle with HTML on a daily basis, trying to create perfect layouts using
(X)HTML elements inappropriately or using images to make up for HTML's lack of screen
and font-handling features. Interestingly, even the concept of a visual WYSIWG editor
propagates this myth of HTML as a page layout language. Other technologies, such as CSS,
are far better than HTML for handling presentation issues and their use returns HTML to its
structural roots. However, the battle to make the end user see exactly what you see on your
screen is likely to be a futile one.

Misconception: HTML Is a Programming Language

Many people think that making HTML pages is similar to programming. However, HTML
is unlike programming in that it does not specify logic. It specifies the structure of a
document. The introduction of scripting languages such as JavaScript into Web documents
and the confusing terms Dynamic HTML (DHTML) and Ajax (Asynchronous JavaScript
and XML) tacked on may lead many to overestimate or underestimate the role of markup in
the mix. However, markup is an important foundation for scripting and should be treated
with the same syntactical precision that script is given.

Misconception: XHTML Is the Only Future
Approaching its tenth birthday, XHTML still has yet to make much inroads in the widespread
building of Web pages. Sorry to say, most documents are not authored in XHTML, and many

Y|

48

Part I: Core Markup

of those that are, are done incorrectly. Poor developer education, the more stringent syntax
requirements, and ultimately the lack of obvious tangible benefit may have kept many from
adopting the XML variant of HTML.

Misconception: XHTML Is Dead

Although XHTML hasn’t taken Web development by storm, the potential rise of HTML5
does not spell the end of XHTML. In fact, you can write XML-style markup in HTML,
which most developers dub XHTML 5. For precision, XHTML is the way to go, particularly
when used in an environment that includes other forms of XML documents. XHTML's
future is bright for those who build well-formed, valid markup documents.

Myth: Traditional HTML Is Going Away

HTML is the foundation of the Web; with literally billions of pages in existence, not every
document is going to be upgraded anytime soon. The “legacy” Web will continue for years,
and traditional nonstandardized HTML will always be lurking around underneath even the
most advanced Web page years from now. Beating the standards drum might speed things
up a bit, but the fact is, there’s a long way to go before we are rid of messed-up markup.
HTMLS5 clearly acknowledges this point by documenting how browsers should act in light
of malformed markup.

Having taught HTML for years and having seen how both HTML editors and people
build Web pages, I think it is very unlikely that strictly conforming markup will be the norm
anytime soon. Although (X)HTML has had rules for years, people have not really bothered to
follow them; from their perspective, there has been little penalty for failing to follow the
rules, and there is no obvious benefit to actually studying the language rigorously. Quite
often, people learn markup simply through imitation by viewing the source of existing
pages, which are not necessarily written correctly, and going from there. Like learning a
spoken language, (X)HTML's loosely enforced rules have allowed many document authors
to get going quickly. Its biggest flaw is in some sense its biggest asset and has allowed
millions of people to get involved with Web page authoring. Rigor and structure is coming,
but it will take time, tools, and education.

Myth: Someday Standards Will Alleviate All Our Problems

Standards are important. Standards should help. Standards likely won't fix everything.
From varying interpretations of standards, proprietary additions, and plain old bugs, there
is likely never going to be a day where Web development, even at the level of (X)HTML
markup, doesn’t have its quirks and oddities. The forces of the market so far have proven
this sentiment to be, at the very least, wishful thinking. Over a decade after first being
considered during the writing of this book’s first edition, the wait for some standards
nirvana continues.

Myth: Hand-Coding of HTML Will Continue Indefinitely

Although some people will continue to craft pages in a manner similar to mechanical
typesetting, as Web editors improve and produce standard markup perfectly, the need to
hand-tweak HTML documents will diminish. Hopefully, designers will realize that knowledge
of the “invisible pixel” trick or the CSS Box Model Hack is not a bankable resume item and
instead focus on development of their talents along with a firm standards-based understanding
of markup, CSS, and JavaScript.

Chapter 1: Traditional HTML and XHTML 19

Myth: (X)HTML Is the Most Important Technology Needed to Create Web Pages

Whereas (X)HTML is the basis for Web pages, you need to know a lot more than markup to
build useful Web pages (unless the page is very simple). However, don’t underestimate
markup, because it can become a bit of a challenge itself. Based on the simple examples
presented in this chapter, you might surmise that mastering Web page creation is merely a
matter of learning the multitude of markup tags, such as <h1>, <p>, , and so on, that
specify the structure of Web documents to browsers. While this certainly is an important
first step, it would be similar to believing you could master the art of writing by simply
understanding the various commands available in Microsoft Word. There is a tremendous
amount to know in the field of Web design and development, including information
architecture, visual design, client- and server-side programming, marketing and search
engines, Web servers and delivery, and much, much more.

The Future of Markup—Two Paths?

Having followed markup for well over a decade in writing editions of this book and
beyond, it is still quite difficult to predict what will happen with it in the future, other than
to say the move towards strict markup will likely be a bit slower than people think and
probably not ideal. The sloppy syntax from the late 1990s is still with us and is likely to be
so for some time. The desire to change this is strong, but so far the battle for strict markup is
far from won. We explore here two competing, or potentially complementary, paths for the
future of markup.

XHTML: Web Page Markup XML Style

A new version of HTML called XHTML became a W3C recommendation in January 2000.
XHTML, as discussed earlier in the chapter, is a reformulation of HTML using XML that
attempts to change the direction and use of HTML to the way it ought to be. So what does
that mean? In short, rules now matter. As you know, you can feed a browser just about
anything and it will render. XHTML would aim to end that. Now if you make a mistake, it
should matter.

Theoretically, a strictly XHTML-conforming browser shouldn’t render a page at all if it
doesn’t conform to the standard, though this is highly unlikely to happen because browsers
resort to a backward-compatibility quirks mode to display such documents. The question is,
could you enforce the strict sense of XML using XHTML? The short answer is, maybe not
ideally.

To demonstrate, let’s reformulate the xhtmlhelloworld. html example slightly by adding
an XML directive and forcing the MIME type to be XML. We’ll then try to change the file
extension to . xml to ensure that the server gets the browser to really treat the file as XML data.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/xml; charset=utf-8" />
<title>Hello XHTML World</title>

<!-- Simple hello world in XHTML 1.0 strict example -->

</head>

Part I: Core Markup

<body>

<hl>Welcome to the World of XHTML</hl>

<hr />

<p>XHTML really isn't so hard either!</p>
<p>Soon you will ♥ using XHTML too.</p>
<p>There are some differences between XHTML

and HTML but with some precise markup you'll

see such differences are easily addressed.</p>
</body>

</html>

ONLINE http://htmlref.com/ch1/xhtmlasxml.html
http://htmlref.com/chl/xhtmlasxml.xml

Interestingly, most browsers, save Internet Explorer, will not have a problem with this.
Internet Explorer will treat the apparent XML acting as HTML as normal HTML markup,
but if we force the issue, it will parse it as XML and then render an XML tree rather than a
default rendering:

— : ——— L R e
TR oy Bos (e i rerr— Talx G e
[ie b Yew Higory Bookmars ook Help Giouh 5
@T c ¥ 'ﬁ b e et & :G_ Gosele p o Fovetes 3 e bt ok Dimint G- B -0 @~
o0 TePa e (i S o Al
pracibistionlibrhatetpalihes ('
J i | o-::::' TTP-EQUD =Y Wpe" CONTENT = i
Welcome to the World of XHTML ek
<head>
) ﬁ:;ﬁ*_hlhwﬂmlc.n:>
NHTML rely st o b e .
oo emally <l
F .HI'IWMM
Sm}m‘i'mmm gii;ﬂnm'.-mmklnﬂ.b'})
€m}wﬂmmu|::mlnu ot weith sune precise markup ool
There are some difirences betwween NHTML 2nd HTML bt with some precise markap jou'l see sach ferences e o
e edyadised '
Core e - :
L Correct Render L Parse Tree

To get the benefit of using XML, we need to explore if syntax checking is really enforced.
Turns out that works if the browser believes markup to be XML, but not if the browser gets
the slightest idea that we mean for content to be HTML. See for yourself when you try the
examples that follow. You should note it properly fails when it assumes XML and not when
it suspects HTML.

Chapter 1: Traditional HTML and XHTML

ONLINE http://htmlref.com/chl/xhtmlasxmlmalformed.html
http://htmlref.com/chl/xhtmlasxmlmalformed.xml

GG B e e e 5 ooy | o {I g D+
S
iy € X & pimdondlimheminifometimt (7) Grlasgs P g e S At 050 i o v
The XML page cannot be displayed
XML Parsing Error: mismatched tag, Expecled: <lem>. e e
Location: http:ftmiref.comichifxhtmiasxmimalformed.xmi oy ooy .
Line Number 12, Column 46: e
Ol et Gy

!
N b ML s

I e e

ERROR! YL parsing faked |
m’*w.mmm'mm AR pariny tabel ayier e Line 10 Chaecie #4) I
errer o2 line 12 at eelems 146: Opesing a=d esdiag tag missateh: em lise 0 and Pegers dovered m ML
Below is a rendering of the page up to the first error. S, i ree'e) /WP s
Welcome to the World of XHTML
XHTML really
L

4 S R

Four Examples of Errors Caught

NOTE The example presented is quite simple and meant to show the possibility of XHTML if it
were fully realized. Note that as soon as you start adding markup with internal CSS and
JavaScript, the amount of work to get rendering working in browsers increases substantially.

In summary, if a browser really believes it is getting XML, it will enforce parsing rules
and force well-formedness. Regardless of whether rules are enforced or not, without
Internet Explorer rendering markup visually, it would appear that we have to deliver

XHTML as standard HTML, as mentioned earlier in the chapter, which pretty much makes
the move to an XML world pointless.

NOTE As this edition of the book was wrapped up, the future of XHTML 2 became murky because
the W3C announced that it was letting the XHTML2 Working Group’s charter expire. This,

however, should not be taken to indicate that XML applied to HTML is dead; it does indeed live
on under HTML5.

a1

32

Part I: Core Markup

HTML5: Back to the Future

Starting in 2004, a group of well-known organizations and individuals got together to form a
standards body called the Web Hypertext Application Technology Working Group, or
WHATWG (www.whatwg.org), whose goal was to produce a new version of HTML. The exact
reasons and motivations for this effort seem to vary depending on who you talk to—slow
uptake of XHTML, frustration with the lack of movement by the Web standards body, need for
innovation, or any one of many other reasons—but, whatever the case, the aim was to create a
new, rich future for Web applications that include HTML as a foundation element. Aspects of
the emerging specification such as the canvas element have already shown up in browsers
like Safari and Firefox, so by 2008, the efforts of this group were rolled into the W3C and drafts
began to emerge. Whether this makes HTML5 become official or likely to be fully adopted is
obviously somewhat at the mercy of the browser vendors and the market, but clearly another
very likely path for the future of markup goes through HTMLS5. Already we see Google
adopting it in various places, so its future looks bright.

NOTE While HTMLDS5 stabilized somewhat around October 2009, with a W3C final candidate
recommendation goal of 2012, you are duly warned that the status of HTML5 may change.
Because of the early nature of the specification, specific documentation of HTMLS5 focuses more on
what works now than on what may make it into the specification later.

HTMLS5 is meant to represent a new version of HTML along the HTML 4 path. The
emerging specification also suggests that it will be a replacement for XHTML, yet it ends up
supporting most of the syntax that end users actually use, particularly self-identifying
empty elements (for example,
). It also reverses some of the trends, such as case
sensitivity, that have entered into markup circles, so it would seem that the HTML styles of
the past will be fine in the future. In most ways, HTML5 doesn’t present much of a
difference, as you saw earlier in the chapter’s introductory example, shown again here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML World</title>

<!-- Simple hello world in HTML5 example -->
</head>

<body>

<hl>Welcome to the Future World of HTML5</hl>
<hr>

<p>HTML5 really isn't so hard!</p>
<p>Soon you will ♥ using HTML.</p>
<p>You can put lots of text here if you want.
We could go on and on with fake text for you
to read, but let's get back to the book.</p>
</body>

</html>

ONLINE http://htmlref.com/ch/helloworldhtml5.html

Chapter 1: Traditional HTML and XHTML

All that is different in this example is that the < 1 DOCTYPE> statement is much simpler. In
fact, the specific idea of using SGML and performing validation does not apply to HTMLS5.
However, the syntax checking benefits of validation lives on and is now being called
conformance checking and for all intents and purposes is the same. Interestingly, because
of the statement in its shortened form, browsers will correctly enter into a standards
compliance mode when they encounter an HTML5 document:

- (& Page Info - hitp://htmiref.com/chl/helloworldhtmiS.html [[=-|[E|[=

o ti &

General Permissions Security

Hello HTML World:

Address: ttp://htmiref.com/chl/helloworldhtmi5.html
Type: tedt/html

Render Mode: (Gtandards compliance mode

Encoding: UTF-8

Size: 0.49 KB (501 hytes)

In the next chapter, we'll see that HTMLS5 is quite a bit different than HTML 4 despite what
our “hello world” example suggests. There are many new tags and there is a tremendous
emphasis on interactivity and Web application development. However, probably the most
interesting aspect of HTMLS5 is the focus on defining what browsers—or, more widely, user
agents in general—are supposed to do when they encounter ill-formed markup. HTML5, by
defining known outcomes, makes it much more likely that today’s “tag soup” will be parsed
predictably by tomorrow’s browsers. Unfortunately, read another way; it provides yet more
reasons for those who create such a mess of markup not to change their bad habits.

Likely, the future of markup has more than one possible outcome. My opinion is that
those who produce professional-grade markup or who write tools to do so will continue to
embrace standards, XML or not, while those who dabble with code and have fun will
continue to work with little understanding of the rules they break and will have no worries
about doing so. The forgiveness that HTML allows is both the key to its popularity and,
ultimately, the curse of the unpredictability often associated with it.

Summary

HTML is the markup language for building Web pages and traditionally has combined
physical and logical structuring ideas. Elements—in the form of tags such as and
—are embedded within text documents to indicate to browsers how to render pages.
The rules for HTML are fairly simple and compliance can be checked with a process called
validation. Unfortunately, these rules have not been enforced by browsers in the past.
Because of this looseness, there has been a great deal of misunderstanding about the
purpose of HTML, and a good portion of the documents on the Web do not conform to any
particular official specification of HTML. Stricter forms of HTML, and especially the
introduction of XHTML, attempt to impose a more rigid syntax, encourage logical markup,
and leave presentational duties to other technologies such as Cascading Style Sheets. While
very widespread, use of strict markup has yet to occur on the Web. Web developers should
aim to meet standards to future-proof their documents and more easily address all the
various issues that will certainly arise in getting browsers to render them properly.

This page intentionally left blank

CHAPTER
Introducing HTMLS

he HTMLS5 specification not only embraces the past, by supporting traditional
I HTML- and XHTML-style syntax, but also adds a wide range of new features.

Although HTML5 moves forward from HTML 4, it also is somewhat of a retreat and
an admission that trying to get every Web developer on the Internet to write their markup
properly is a futile effort, particularly because few Web developers are actually formally
trained in the technology. HTMLS5 tries to bring order to chaos by codifying common
practices, embracing what is already implemented in browsers, and documenting how
these user agents (browsers or other programs that consume Web pages) should deal with
our imperfect markup.

HTMLS5'’s goals are grand. The specification is sprawling and often misunderstood.
Given the confusion, the goals of this chapter are not only to summarize what is new about
HTMLS5 and provide a roadmap to the element reference that follows, but to also expose
some of the myths and misconceptions about this exciting new approach to markup.

NOTE Perhaps just to be new, HTML5 omits the space found commonly between (X)HTML and its
version number, as in HTML 4 or XHTML 1. We follow this style generally in the book, but note
even the specification has not been stringent on this point.

Hello HTML5

The syntax of HTML5 should be mostly familiar. As shown in the previous chapter, a simple
HTML5 document looks like this:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello HTML5 World</title>
</head>

<body>

<hl>Hello HTML5</hl>

<p>Welcome to the future of markup!</p>
</body>

</html>

95

Part I: Core Markup

ONLINE http://htmlref.com/ch2/helloworld.html

For all practical purposes, all that is different from standard HTML in this example is
the < 1DOCTYPE> statement. Given such minimal changes, of course, basic HTML5 will
immediately render correctly in browsers, as demonstrated in Figure 2-1.

As indicated by its atypical < !DOCTYPE> statement, HTMLD5 is not defined as an SGML
or XML application. Because of the non-SGML /XML basis for HTML, there is no concept of
validation in HTMLS5; instead, an HTML5 document is checked for conformance to the
specification, which provides the same practical value as validation. So the lack of a formal
DTD is somewhat moot. As an example, consider the following flawed markup:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Hello Malformed HTML5 World</title>

</head>

<body>

<!-- note bad close tag below -->

<hl>Hello Malformed HTML5<hl>

<!-- unknown tag found here -->

<p>Welcome to the <danger>future</danger> of markup!</p>

<!-- missing </body> -->

</html>

r-iﬂellu HTMLY World - Mezitls Firefeo 35 Beta1 8 Hello HTMLS World - Internet Explorer provided by Dell (= | ==
e frbt. e T @()v) hitp/htenirel.comych2hellowerid tmi v [55] 49 | X | |2 Googie P -
g_’—v c oo | ittpe/itmiref.comich/helloworld html 17 - Edit) — S
| Hello HTMLS World [ik Faverites | @ Hello HTMLS Waorld v B - 0 #m v Page~ Sefety+

Hello HTMLS

Welcome to the fistare of markup!

Hello HTMLS

Welcome to the fiture of markup!

& Hella HTMLS Warld - Opera
Fike Edit View Bookmarks Widgets Tools

Y Hello HTMLS World
Helg -

Hello HTMLS World x « C || %% hitpy//htmiref.com/ch2/hellowarld htm » O~ F-
NIRE IR N IRE- JNE. T H hng:‘.fl-';kmlld.:nm_':hzhc » 2(IC] o
Lt St “55 Hello HTMLS
Hello Hr]:‘h‘-[l-l5 Welcome to the fomre of markup!

Welcome to the future of markup!

Ficure 2-1 HTMLS5 is alive.

Chapter 2: Introducing HTML5S

ONLINE http://htmlref.com/ch2/conformancecheck.html

When checked with an HTML5 conformance checker, such as the W3C Markup
Validation Service used in this chapter (available at http:/ /validator.w3.org), you see the
expected result:

€ 9| C | ¢ httpy/validatorw3.org/check?uri=http://htmiref.com/ch2/conformancecheck htmi&charset=(d| » [~ S~

&

Markup Validation Service

Jump To: Notes and Potential Issues Validation Output

Errors found while checking this document as HTMLS5!

Result: 3 Errors, 3 warning(s) 3

Address : |http://htmlref. com/ch2/cont heck. html
Encoding: uti-8 (detact automatically) =l
Doctype: HTMLS (detect automatically) [=]

Root Element: himl

Later, with errors corrected, a clean check is possible:

[[Valid] Markup Validation...

€ 9 C #| % hittp//validatorw3.org/check?uri=http://htmiref.com/ch2/conformancecheckfixed html&charst| » [+ S~

»

Markup Validation Service
Jump To: MNotes and Potential Issues Congratulations - lcons
=
This document was successfully checked as HTML5!
Result: Passed 1 warning(s)
Address : http://htmlref.com/ch2/cont heckfixed.html
Encoding: uf-8 | (detect automatically) B
Doctype: HTMLS -_(-detect amom.aima}_l.:,l;_ E

RootElement: himi

o1

38

Part I: Core Markup

NOTE Given the currently fluid nature of HTML5, developers are warned that, at least for now,
HTMLS5 conformance may be a bit of a moving target.

If you are wondering what mode the browser enters into because of the divergent
<1DOCTYPE> used by HTMLS5, apparently it is the more standards-oriented mode:

@ Page Info - hitp://htmlref.com/ch2/conformancecheck.html [-= |- =)

= ' f)
E i) -1":‘-- B2

General Permissions Security

Hello Malformed HTML 5 World:
Address: http://htmiref.com/ch2/conformancecheck.html
Type: te}_rt.a’html
I Render Mode: Standards compliance model I
Encoding: UTF-8
Size: 0.35 KB (354 bytes)
Modified: Saturday, July 11, 2009 12:40:02 PM

Employing the more standards-oriented parsing mode might seem appropriate, but it is
somewhat odd given the point of the next section.

Loose Syntax Returns

An interesting aspect of HTMLS5 is the degree of syntax variability that it allows. Unlike its
stricter markup cousin, XHTML, the traditional looseness of HTML is allowed. To demonstrate,
in the following example, quotes are not always employed, major elements like html, head,
and body are simply not included, the inference of close of tags like </p> and </1i>is
allowed, case is used variably, and even XML-style self-identifying close syntax is used at will:

<!DOCTYPE html>
<!-- I have no html, head, or body as they are actually optional -->
<meta http-equiv=Content-Type content="text/html; charset=utf-8">
<title>HTML5 Tag Soup Test</title>
<hl title="more sloppy markup ahead!">HTML5</H1>
<p id=pl>Back to the future of loose markup!?
<p>Yes it looks that way

optional elements
case is no problem
<li id=noquotes>quotes optional in many cases
<lis>inferred close tags

<p>0Oh my

<p>Intermixing markup styles!
<!-- ok that's enough let's stop now -->

ONLINE http://htmlref.com/ch2/loosesyntax.html

Chapter 2: Introducing HTML5 §9

This example, at least currently, conforms to the HTMLS5 specification:

I [vahid] Markup Validahon... %

* - c “ v hrtpefvalidatorw3.arg/checkTuri=hrtp://himiref.com/ch?/loosesyntax. himl&charser=(detect+: | » O~ k-~

wsc* Markup Validation Service

Web documents

Jump To: Notes and Polenlial lssues Comgratulalions - lcons

This document was successfully checked as HTMLS5!

Result: | Passed, 1 warning(s)

Address : |htrp://htmlref. com/ch?/ 1onaeayntax. html
Encoding: utf-8 [{detect automatically) =]
Doctype: HIMLS _-{deteck automatically) B =

Root Element: html

Do not interpret the previous example to mean that HTMLS5 allows a markup free-for-all.
Understand that these “mistakes” are actually allowed under traditional HTML and thus
are allowed under HTML5. To ensure that you conform to the HTMLS5 specification, you
should be concerned primarily about the following:

e Make sure to nest elements, not cross them; so
<i>is in error as tags cross</i>
whereas
<i>is not since tags nest</i>.
* Quote attribute values when they are not ordinal values, particularly if they contain
special characters, particularly spaces; so
<p id=pl>Fine with no quotes</p>
because it is a simple attribute value, whereas
<p title=trouble here with no quotes>Not ok without quotes</p>
is clearly messed up.

¢ Understand and follow the content model. Just because one browser may let you
use a list item anywhere you like,

<1i>I should be in a list!</1li>

it isn’t correct. Elements must respect their content model, so the example should
read instead as

All is well I am in a list!

because it follows HTML5’s content model.

60

Part I: Core Markup

¢ Do not use invented tags unless they are included via some other markup language:

<p>I <danger>shouldn't</danger> conform unless I am defined in
another specification and use a name space</p>

¢ Encode special characters, particularly those used in tags (< >), either as an entity
of a named form, such as &1t ;, or as a numeric value, such as < ;. Appendix A
covers this topic in some depth.

This brief list of what you should do might seem familiar; it is pretty much the list of
recommendations for correct markup from the previous chapter returned to the traditional
markup styles of HTML. What this means is that if you have been writing markup correctly
in the past, HTML5 isn’t going to present much of a change. In fact, in many cases, just by
changing a valid document’s doctype to the new simple HTML5 < !DOCTYPE html>, the
result should be an HTML5—conforming document.

XHTMLS

For those with a heavy investment in a strict XHTML syntax worldview, HTML5 might
seem like a slap in the face. However, such a reaction is a bit premature; HTML5 neither
makes the clean markup you write non-conforming nor suggests that you shouldn’t author
markup this way. If you want to pursue an “XMLish” approach to your document, HTML5
allows it. Consider, for example, a strict XHTML example that is now HTMLS5:

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>Hello XHTML5 World</title>

<!-- Simple hello world in XHTML5 -->

</head>

<body>

<hl>Welcome to the World of XHTMLS5</hl>

<hr />

<p>XHTML5 really isn't so hard either!</p>
<p>HTML5 likes XML syntax too.</p>

<p>Make sure to serve it with the correct MIME type!</p>

<!-- IE users you will get a render error.
Please read on to learn why. -->

</body>

</html>

ONLINE http://htmlref.com/ch2/xhtml5helloworld.xhtml

NoOTE When using XML syntax with HTMLS according to HTMLS5 specification, this should be
termed XHTMLS.

Chapter 2:

Introducing HTMLS

61

Notice that the previous example uses an .xhtml file extension. XHTML5 usage clearly
indicates that an HTML5 document written to XML syntax must be served with the MIME
type application/xhtml+xml or application/xml. The previous example was served
with the former MIME type. You can find the same example served with latter XML MIME
type at http:/ /htmlref.com/ch2/xhtml5helloworld.xml.

Unfortunately, although HTML5 supports XML, the real value of XHTML—the true
strictness of XML—has not been realized, at least so far, because of a lack of browser
support. As of this edition’s writing, Internet Explorer browsers (up to version 8) will not
render XHTML served with the appropriate application/xhtml+xml MIME type and
will take the raw XML form and render it as a parse tree. Other browsers, fortunately, don’t
do this (see Figure 2-2), which is little solace given Internet Explorer’s widespread usage.

You can write XMLish markup and serve it as text /html but it won't provide the
benefit of strict syntax conformance. In short, HTMLS5 certainly allows you to try to
continue applying the intent of XHTML in the hopes that someday it becomes viable.

@ Hielio XHTMLS World - Mozitia Firefox 36 Beta 1 I

Pt T

| Hello XHTMLS World |+

| hatp/ihmiref.com/ch2 tmiShelloworld: 17 - [&= Google

Welcome to the World of XHTMLS

XHTMLS really isn't so hard either!
HTMLS kes XML symtax foo

Make sure to serve it with the comect MIME type!

-

= T
¥ D Hella XHTMLS Worid

<titfe >Hallo XHTML 5 World </btla >
ot il o e s g

<emsreally < ems
t so hard elther!

€ C & | hips/htmivelcomych2/xhimiShelioworidxhtm

b O k-
Welcome to the World of XHTMLS

NHTMLS really isn't so berd either!
HIMLS likes XML syntax too
Make sure to serve it with the correct MIME type!

& Hello XHTMLS Warkd - Opers P =

File Edit View Bookmaeks Widgets Tooks Help
B oo GTMLS Word X

Mellal =+ 0 A § B i it comchish 2 LG Googie z

Welcome to the World of XHTMLS

NHTMLS really sn't so hard either!
HTMLS Bees XML syniaz too
Malce sure to serve it with the comect MIME typel

) =R

g

<.D' HTML 5 likes XML syntax too. </ps

</body>
</html=

Done o' Trusted sites | Protected Mode: OF

B8 Mg el bry Dl | =
G'-ﬁ_) w [B nipmirel.comch/ntmiShelloword, » | 53 | 43| % | |80 Google P
W Favorites | 8 hepd himdeed comy/chi. fif * B - = 8 ~ Pagev falety~
<taml version="1,0" encoding="UTF-§" 7>
chtml xmins="http:/ /www.wl.org/ 1999 /xhtmi®>
<head:

po¥et now you have to serve it with the correct MIME type! </

Gav 0w -

P

#8 Diank Page - Internet Explorer prowded by Dell

8 Blenk Poge

K3 (/= &) Htpmamirer comichantmisheliawardshtml = & | % || &9 Googie

SiEiE
5 vl

71 Ay mac bedorm opesring this typa of fis

Intemel i
the s, da nol

|9-

" rguter 1y
tirr i Fi, Wt L

i Favarites B+ B =00 o+ Dager Sefetyw
Do you want to open or save this file?
" Mama' shtwiShelioworid shimi
| Topw: Firefox Detument, 433 bytes
From. himbel.com
(== -

Dane & Iternet | Protected Mede: O

v Wox -

Ficure 2-2 XHTML5 works, but Internet Explorer support lags.

62 Partl: Core Markup

HTML5: Embracing the Reality of Web Markup

Given the looseness HTML5 supports and its de-emphasis of the XML approach to markup,
you might assume that HTMLS5 is a retreat from doing things in the right way and an
acceptance of “tag soup” as legitimate markup. The harsh reality is that, indeed, valid
markup is more the exception than the rule online. Numerous surveys have shown that in
the grand scheme of things, few Web sites validate. For example, in a study of the Alexa
Global Top 500 in January 2008, only 6.57 percent of the sites surveyed validated.! When
sample sizes are increased and we begin to look at sites that are not as professional, things
actually get worse. Some validation results from Opera’s larger MAMA (Metadata Analysis
and Mining Application) study are shown here*:

Study Date Passed validation Total validated Percentage
Parnas Dec. 2001 14,563 2,034,788 0.71%
Saarsoo Jun. 2006 25,890 1,002,350 2.58%
MAMA Jan. 2008 145,009 3,509,180 4.13%

Fig 5-1: Validation pass rate studies

Interestingly, Google has even larger studies, and while they don’t focus specifically on
validation, what they indicate on tag usage indicates clearly that no matter the sample size,
clean markup is more the exception than the rule.

Yet despite the markup madness, the Web continues to work. In fact, some might say the
permissive nature of browsers that parse junk HTML actually helps the Web grow because it
lowers the barrier to entry for new Web page authors. Certainly a shaky foundation to build
upon, but the stark reality is that we must deal with malformed markup. To this end, HTML5
makes one very major contribution: it defines what to do in the presence of markup syntax
problems.

The permissive nature of browsers is required for browsers to fix markup mistakes. HTML5
directly acknowledges this situation and aims to define how browsers should parse both well-
formed and malformed markup, as indicated by this brief excerpt from the specification:

This specification defines the parsing rules for HTML documents, whether they
are syntactically correct or not. Certain points in the parsing algorithm are said
to be parse errors. The error handling for parse errors is well-defined: user agents
must either act as described below when encountering such problems, or must
abort processing at the first error that they encounter for which they do not wish
to apply the rules described below.

While a complete discussion of the implementation of an HTML5-compliant browser
parser is of little interest to Web document authors, browser implementers now have a
common specification to consult to determine what to do when tags are not nested, simply
left open, or mangled in a variety of ways. This is the part of the HTML5 specification that

! Brian Wilson, “MAMA W3C Validator Research,” subsection “Interesting Views of Validation Rates, part 2:
Alexa Global Top 500,” Dev.Opera, October 15, 2008, http://dev.opera.com/articles/view /mama-w3c-
validator-research-2 /?page=2#alexalist.

2Ibid., subsection “How Many Pages Validated?” http:/ /dev.opera.com/articles/view /mama-w3c-
validator-research-2 /#validated.

Chapter 2: Introducing HTML5S

will likely produce the most good, because obtaining consensus among browser vendors to
handle markup problems in a consistent manner is a more likely path to an improved Web

than defining some strict syntax and then attempting to educate document authors around
the world en masse to write good markup.

HTMLY5’s aim to bring order to the chaos of sloppy markup is but one of the grand
aims of the specification. It also aims to replace traditional HTML, XHTML, and DOM
specifications, and to do so in a backward-compatible fashion. In its attempt to do this, the
specification is sprawling, addressing not just what elements exist but how they are used
and scripted. HTML5 embraces the fact that the Web not only is composed of documents
but also supports applications, thus markup must acknowledge and facilitate the building
of such applications. More of the philosophy of HTMLS5 will be discussed later in the
chapter when addressing some strong opinions, myths, and misconceptions surrounding
the specification; for now, take a look at what markup features HTML5 actually changes.

Presentational Markup Removed and Redefined
HTMLS5 removes a number of elements and attributes. Many of the elements are removed
because they are more presentational than semantic. Table 2-1 presents the elements
currently scheduled for removal from HTML5.

NotEe Although these elements are removed from the specification and should be avoided in favor of
CSS, they likely will continue to be supported by browsers for some time to come. The specification
even acknowledges this fact.

Looking at Table 2-1, you might notice that some elements that apparently should be
eliminated somehow live on. For example, <small> continues to be allowed, but <big> is
obsolete. The idea here is to preserve elements but shift meaning. For example, <small> is
no longer intended to correspond to text that is just reduced in size, similar to 0r , butinstead is intended to
represent the use of small text, such as appears in fine print or legal information. If you
think this decision seems a bit preposterous, join the crowd. Some of the other changes to
element meaning seem even a bit more preposterous, such as the claim that a tag now
represents inline text that is stylistically offset from standard text, typically using a different

Removed HTML Element | CSS Equivalent

<basefont> body {font-family: family; font-size: size;}
<big> font-size: larger

<center> text-align: center ormargin: auto depending on context
 font-family, font-size, or font

<s>, <strike> text-decoration: strike

<tt> font-family: monospace

<u> text-decoration: underline

TaBLe 2-1 HTML 4 Elements Removed from HTML5

63

64

Part I: Core Markup

type treatment. So apparently tags are not necessarily bold, but rather convey some
sense that the text is “different” (which likely means bold). Unlikely to be thought of in such
a manner by mere markup mortals, we simply say tags live on, as do a number of other
presentational elements. Table 2-2 presents the meaning-changed elements that stay put in
HTMLS5 and their new meaning.

The meaning of some of these items might not be immediately clear, but don’t worry
about that now, because each will be demonstrated later in the chapter and a full reference
presented in Chapter 3.

Like the strict variants of (X)HTML, HTMLS5 also removes numerous presentation-
focused attributes. Table 2-3 summarizes these values and presents CSS alternatives.

Out with the Old Elements

A few elements are removed from the HTMLS5 specification simply because they are archaic,
misunderstood, have usability concerns, or have a function that is equivalent to the function
of other elements. Table 2-4 summarizes some of the elements that have been removed from
the HTMLS specification.

NoOTE While frames are mostly removed from HTMLS5, inline frames live on. See the section “The
Uncertain Future of Frames,” later in the chapter, for more information.

Table 2-4 is not a complete list of non-conforming elements, just the ones that are supported
by recent HTML 4 and XHTML 1.x specifications. Discussing the fact that ancient tags like
<listing>and <plaintext> continue not to be supported or that all the presentational tags

HTML Element | New Meaning in HTML5

 Represents an inline run of text that is different stylistically from normal
text, typically by being bold, but conveys no other meaning of importance.

<dd> Used with HTML5’s new details and figure elements to define the
contained text. Was also used with a dialog element which was later
removed from the HTML5 specification.

<dt> Used with HTML5’s new details and £igure element to summarize the
details. Was also used with a dialog element which was later removed
from the HTML5 specification.

<hr> Represents a thematic break rather than a horizontal rule, though that is
the likely representation.

<i> Represents an inline run of text in an alternative voice or tone that is
supposed to be different from standard text but that is generally presented
in italic type.

<menu> Redefined to represent user interface menus, including context menus.

<smalls> Represents small print, as in comments or legal fine print.

 Represents importance rather than strong emphasis.

TaBLE 2-2 HTML 4 Elements Redefined in HTML5

Chapter 2: Introducing HTML5S

Attribute Removed | Elements Effected CSS Equivalent
align caption, col, colgroup, div, | text-align or in some block element
iframe, hl, h2, h3, h4, h5, cases float
h6, hr, img, input, legend,
object, p, table, tbody, td,
tfoot, th, thead, tr
alink body body a:active {color: color-
value; }
background body background-image or background
bgcolor body, table, td, th, tr background-color
border img, object, table border-width and/or border
cellpadding table padding
cellspacing table margin
char col, colgroup, table, tbody, | N/A
td, tfoot, th, thead, tr
charoff col, colgroup, table, tbody, | N/A
td, tfoot, th, thead, tr
clear br clear
compact dl, menu, ol, ul margin properties
frame table border properties
frameborder iframe border properties
height td, th height
hspace img, object margin properties
link body body a:link {color: color-
value; }
marginheight iframe margin properties
marginwidth iframe margin properties
noshade hr border-style or border
nowrap td, th overflow
rules table border properties
scrolling iframe overflow
size hr width
text body body {color: color-value;}
type 1i, o1, ul list-style-type and list-style
valign col, colgroup, tbody, td, vertical-align
tfoot, th, thead
vlink body body a:visited {color: color-
value; }
width col, colgroup, hr, pre, width
table, td, th

TaBLE 2-3

HTML 4 Attributes Removed in HTML5

65

66 Part1: Core Markup

Removed Element | Reasoning Alternatives

acronym Misunderstood by many Web Use the abbr element.
developers.

applet Obsolete syntax for Java applets. | Use the object element.

dir Rarely used, and provides similar | Use the ul element.

functionality to unordered lists.

frame Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

frameset Usability concerns. Use fixed-position elements with
CSS and/or object elements with
sourced documents.

isindex Archaic and can be simulated Use the input element to create
with typical form elements. text field and button and back up with
appropriate server-side script.

noframes Since frames are no longer N/A
supported, this contingency
element is no longer required.

TaBLE 2-4 Elements Removed by HTML5

like and proprietary tags like <spacer>, <marquee>, and <blink> should be off limits
is somewhat redundant and does not build on the specifications. However, the reference in
Chapter 3 covers compliance points completely, so when in doubt check the appropriate
element’s entry.

In with the New Elements

For most Web page authors, the inclusion of new elements is the most interesting aspect of
HTMLS5. Some of these elements are not yet supported, but already many browsers are
implementing a few of the more interesting ones, such as audio and video, and others can
easily be simulated even if they are not directly understood yet, as you will see later in the
chapter. Table 2-5 summarizes the elements added by HTMLS5 at the time of this edition’s
writing, and the sections that follow illustrate their use. Again, Chapter 3 provides

a complete element syntax discussion.

Sample of New Attributes for HTML5

One quite important aspect of HTMLS5 is the introduction of new attributes. There are quite
a few attributes that are global and thus found on all elements. Table 2-6 provides a brief
overview of these attributes. We'll take a look at many of these in upcoming sections and

a complete reference for all is found in the next chapter.

The element reference in Chapter 3 provides the full syntax for the various HTML5
attributes that may have been added to specific elements. Some of them, such as reversed
for use on ordered lists (<o1>), are a long time in coming, while others simply add polish, or
address details that few page authors may notice.

Chapter 2: Introducing HTML5S

New Element | Description

article Encloses a subset of a document that forms an independent part of a document,
such as a blog post, article, or self-continued unit of information.

aside Encloses content that is tangentially related to the other content in an enclosing
element such as section.

audio Specifies sound to be used in a Web page.

canvas Defines a region to be used for bitmap drawing using JavaScript.

command Located within a menu element, defines a command that a user may invoke.

datalist Indicates the data items that may be used as quick choices in an input element of
type="1list".

details Defines additional content that can be shown on demand.

figure Defines a group of content that should be used as a figure and may be labeled by a
legend element.

footer Represents the footer of a section or the document and likely contains
supplementary information about the related content.

header Represents the header of a section or the document and contains a label or other
heading information for the related content.

hgroup Groups heading elements (h1-h6) for sectioning or subheading purposes.

mark Indicates marked text and should be used in a similar fashion to show how a
highlighter is used on printed text.

meter Represents a scalar measurement in a known range similar to what may be
represented by a gauge.

nav Encloses a group of links to serve as document or site navigation.

output Defines a region that will be used to hold output from some calculation or form
activity.

progress Indicates the progress of a task toward completion, such as displayed in a progress
meter or loading bar.

rp Defines parentheses around ruby text defined by an rt element.

rt Defines text used as annotations or pronunciation guides. This element will be
enclosed within a ruby element.

ruby This is the primary element and may include rt and rp elements. A ruby element
serves as a reading or pronunciation guide. It is commonly used in Asian languages,
such as in Japanese to present information about Kanji characters.

section Defines a generic section of a document and may contain its own header and
footer.

source Represents media resources for use by audio and video elements.

time Encloses content that represents a date and/or time.

video Includes a video (and potentially associated controls) in a Web page.

TaBLE 2-5 Elements Added by HTML5

67

68 Part I:

Core

Markup

New Attribute

Description

accesskey

Defines the accelerator key to be used for keyboard access to an element.

contenteditable

When set to true, the browser should allow the user to edit the content of
the element. Does not specify how the changed content is saved.

contextmenu

Defines the DOM id of the menu element to serve as a context menu for
the element the attribute is defined on.

data-X

Specifies user-defined metadata that may be put on tags without concern of
collision with current or future attributes. Use of this type of attribute avoids
the common method of creating custom attributes or overloading the class
attribute.

draggable

When specified, should allow the element and its content to be dragged.

hidden

Under HTMLD5, all elements may have hidden attribute which when placed
indicates the element is not relevant and should not be rendered. This
attribute is similar to the idea of using the CSS display property set to a
value of none.

itemid

Sets a global identifier for a microdata item. This is an optional attribute, but
if it is used, it must be placed in an element that sets both the itemscope
and itemtype attributes. The value must be in the form of a URL.

itemprop

Adds a name/value pair to an item of microdata. Any child of a tag with an
itemscope attribute can have an itemprop attribute set in order to add a
property to that item.

itemref

Specifies a list of space-separated elements to traverse in order to find
additional name/value pairs for a microdata item. By default, an item

only searches the children of the element that contains the itemscope
attribute. However, sometimes it does not make sense to have a single
parent item if the data is intermingled. In this case, the itemref attribute
can be set to indicate additional elements to search. The attribute is
optional, but if it is used, it must be placed in an element that sets the
itemscope attribute.

itemscope

Sets an element as an item of microdata (see “Microdata” later in the
chapter).

itemtype

Defines a global type for a microdata item. This is an optional attribute,
but if it is used, it must be placed in an element that sets the itemscope
attribute. The value must be in the form of a URL.

spellcheck

Enables the spell checking of an element. The need for this attribute globally
may not be clear until you consider that all elements may be editable at
page view time with the contenteditable attribute.

tabindex

Defines the element-traversal order when the keyboard is used for navigation.

TaBLE 2-6 Key Attributes Added by HTML5

Chapter 2: Introducing HTMLS 69

HTML5 Document Structure Changes

As you have seen, the HTML5 document structure seems pretty much the same as in HTML
4 save a slightly different <! DOCTYPE> statement. However, if you look closer, there are a
few important differences in HTML5 that show the document structure has in fact been
expanded quite a bit.

HTML5 documents may contain a header element, which is used to set the header
section of a document and thus often contains the standard h1 to hé heading elements:

<header>

<hl>Welcome to the Future World of HTML5.</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

Similarly, a footer element is provided for document authors to define the footer
content of a document, which often contains navigation, legal, and contact information:

<footer>
<p>Content of this example is not under copyright</p>
</footer>

The actual content to be placed in a <footers> tag is, of course, up to you and may be
enclosed in div, p, or other block elements, as illustrated by this simple example:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 header and footer example</title>
</head>

<body>

<header>

<hl>Welcome to the Future World of HTML5.</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

<p>Some body content here.</p>

<p>Some more body content here.</p>

<footer>

<p>Content of this example is not under copyright.</p>
</footer>

</body>

</html>

ONLINE http://htmlref.com/ch2/headerfooter.html

The HTMLS5 structural element with the most possible uses is the section element. A
particular <section> tag can be used to group arbitrary content together and may contain
further <section> tags to create the idea of subsections. Traditionally, we are familiar with
sections; just as this book is broken into chapters and various main and secondary sections,

10

Part I: Core Markup

so too could a Web document be structured in this way. The example here illustrates the
basic use of HTMLS5 sections:

<section>
<hl>Chapter 2</hl>
<p>New HTMLS5 elements.</p>
<section>
<h2>HTML5's section Element</h2>
<p>These elements are useful to create outlines.</p>
<section>
<h3>Nest Away!</h3>
<p>Nest your sections but as you nest you might want to indent.</p>
</section>
</section>
<p>0Ok that's enough of that.</p>
</section>

ONLINE http://htmlref.com/ch2/section.html

It may not be obvious but a section element may contain header and footer elements

of its own:

<section>
<header>
<hl>I am Section Heading</hl>
</header>
<h2>I am outside the section header I'm just a plain headline.</h2>
<p>Some more section content might go here.</p>
<footer>
<p>Hi from the footer of this section.</p>
</footer>
</section>

HTMLS5 uses headings and newly introduced elements like the section element for
outlining purposes. For example, the expanded example here shows a number of sections
with headers, footers, headlines, and content:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 expanded section example</title>
</head>

<body>

<header>

<hl>Welcome to the Future World of HTMLS5</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

Chapter 2: Introducing

<!-- assume chapter 1 before -->
<section id="chapter2">
<header>
<hl>Chapter 2</hl>
</header>

<p>Intro to chapter 2 here...</p>
<section id="newStrucreElements">
<header>

<h2>New Structural Elements</h2>
</header>

<h3>header Element</h3>

<p>Discussion of header element.</p>

<h3>footer Element</h3>
<p>Discussion of footer element.</p>

<h3>section Element</h3>
<p>Discussion of section element</p>
</section>

<section id="newFormElements">
<header>
<h2>New Form Elements</h2>
</header>
<h3>input type=date</h3>
<p>Discussion here...</p>
<footer>
<p>These ideas are from WebForms specification.</p>
</footer>
</section>
</section>

<section id="chapter3">
<header>
<h2>Chapter 3</h2>
</header>
<p>Massive element reference...</p>
</section>
<footer>
<p>Content of this example is not under copyright</p>
</footer>

</body>
</html>

HTMLS

ONLINE http://htmlref.com/ch2/sectionoutline.html

[J!

12

Part I: Core Markup

HTML5-compliant browsers should take this markup and define an outline based upon
the use of headers, like so:

1. Welcome to the Future World of HTML5
1. Chapter 2
1. New Structural Elements
1. header Element
2. footer Element
3. section Element
2. New Form Elements
1. input type=date
2. Chapter 3

In theory, user agents could take the outlining semantics and derive meaning or even
provide an alternative browser interface, although that is quite speculative at this point. It is
clear, however, that if you introduce such outlining ideas, issues may arise. For example, the
first header really was not two levels of sectioning but simply one with a subhead. To
address this outlining, you would take this markup

<header>

<hl>Welcome to the Future World of HTML5</hl>
<h2>Don't be scared it isn't that hard!</h2>
</header>

and then join the subhead to the headline with an hgroup element like so:

<header>

<hgroup>

<hl>Welcome to the Future World of HTML5</hl>
<h2>Don't be scared it isn't that hard!</h2>

</hgroup>
</header>
1. Welcome to the Future World of HTML5 | 1. Welcome to the Future World of HTML 5
1. Don't be scared it isn't that hard! 1. Chapter 2
2. Chapter 2 1. New Structural Elements
1. Introduction to HTML 5 1. header Element
2. New Structural Elements 2. footer Element
1. header Element 3. section Element
2. footer Element 2. New Form Elements
3. section Element 1. input type=date
3. New Form Elements 2. Chapter 3
1. input type=date
3. Chapter 3
No hgroup hgroup

elements used elements used

Chapter 2: Introducing HTMLS 73

A complete example to explore can be found online, though you may find that a browser
does not do anything of interest and that you need an outline simulator to see the difference
between using <hgroup> tags or not.

ONLINE http://htmlref.com/ch2/hgroup.html

Given these semantics, it is clear that HTMLS5 sectioning elements are not just a
formalization of <div> tags with appropriate class values. For example, you might
consider

<div class="header">
<!-- header here -->
</div>
<div class="section">
<div class="header">
<h2>Section Heading</h2>
</div>
<p>Content of section.</p>
</div>
<div class="footer">
<!-- footer here -->
</div>

to be roughly the same as the previously introduced elements. To some degree this is true,
but clearly the names of the class values aren’t defined by a standard nor is any outlining
algorithm defined.

Beyond sectioning, HTMLS5 introduces a number of other structural elements. For
example, the article element is used to define a discrete unit of content such as a blog
post, comment, article, and so on. For example, the following defines a few individual blog
posts in a document:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 article example</title>

</head>

<body>

<header>
<hgroup>
<hl>Welcome to the Future World of HTML5 Blog</hl>
<h2>Don't be scared it isn't that hard!</h2>
</hgroup>
</header>
<section id="articleList">
<h2>Latest Posts</h2>

<article id="article3">
<h2>HTML5 Here Today!</h2>
<p>Article content here...</p>
</article>

[

Part I: Core Markup

<article id="article2">

<h2>HTML5 Widely Misunderstood</h2>
<p>Article content here...</p>
</article>

<article id="articlel">
<h2>Discovering the article element</h2>
<p>Article content here...</p>
</article>
</section>

<footer>
<p>This fake blog example is not real.</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/article.html

The idea of defining these discrete content units specially is that you might wish to
extract them automatically, so again, having defined elements as opposed to some ad hoc
use of class names on <div> tags is preferred.

NoTE Under early HTMLS5 drafts, the article element provided for cite and pubdate
attributes, which may make the usage of the content more meaningful by outside sites; however,
these were later dropped and use of <time> tags was encouraged.

HTMLS5 also introduces an aside element, which may be used within content to
represent material that is tangential or, as the element name suggests, an aside:

<p>Here we explore the various HTML5 elements. I would write
some real content here but you are busy reading the book anyway.
</p>

<aside>
<h2>Pointless Aside</h2>
<p>0Oh by the way did you know that the author lives in San Diego?
It is completely irrelevant to the discussion but he seems
to like the weather there as opposed to rainy New Zealand.</p>
</aside>

<p>So as we continue to discuss the various HTML5 elements we must
remember to stay focused as there is much to learn.
</p>

ONLINE http://htmlref.com/ch2/aside.html

Chapter 2: Introducing HTML5S

You may have noted that an <h2> tag was used in the aside. While not required, it is
useful as a reminder to readers that aside elements serve as outline sectioning elements, as
shown here:

1. HTML 5 Examples
1. Exploring the aside Element
1. Pointless Aside
2. Exploring Other Elements

NOTE If a heading is not provided in an aside, you may see an outline mechanism add “Untitled
Section” or potentially even make up one based upon the start of the element content.

Adding Semantics

Many of the elements that HTML5 adds that can be used right away are semantic in nature.
In this sense, HTML5 continues the appropriate goal of separating structure from style. In
this section, you will see a number of repurposed elements as well as some that are all new.
At first you won't see much value in using them other than to add semantics, but toward
the end of the chapter we will explore how to make the elements understandable to most
modern browsers and how to apply some simple styling for end users.

Marking Text
The new HTML5 element mark was introduced for highlighting content similarly to how

a highlighter pen might be used on important text in a book. The following example wraps
a few important words:

<p>Here comes <mark>marked text</mark> was it obvious?</p>

Unfortunately, you won't necessarily see anything with such an example:

Here comes marked text was it obvious?

You would need to apply a style. Here, inline styles are used just to show the idea:

<p>The new HTML5 specification is in the works. While <mark
style="background-color: red;">many features are not currently
implemented or even well defined</mark> yet, <mark
style="background-color: green;">progress is being made</mark>.

Stay tuned to see more new HTML elements added to your Web documents
in the years to come.</p>

The new HTMLS specification is in the works. While [SaN SR e O EAy DI eR e GREen
yet, _ Stay tuned to see more new HTML elements added to your Web
documents in the years to come.

ONLINE http://htmlref.com/ch2/mark.html

16

Part I: Core Markup

After seeing such an example, you might wonder what the point is of this element,
because a tag or maybe even an tag could be used instead. Again, semantics is
the key to this element. It makes the meaning of HTML documents more obvious.

Indicating Dates and Time

Another semantic inline element, time, was introduced by HTML5 to indicate content that
is a date, time, or both. For example,

<p>Today it is <time>2009-07-08</time> which is an interesting date.</p>
as well as

<p>An interesting date/time for SciFi buffs is <time>1999-09-13T09:15:00
</time>!</p>

would both be valid. The element should contain a date/time value that is in the format
YYYY-MM-DDThh:mm: ssTZD, where the letters correspond to years, months, days, hours,
minutes, and seconds, T is the actual letter “T,” and zD represents a time zone designator of
either z or a value like +hh :mm to indicate a time zone offset. However, it seems reasonable
that the time element would contain values that may not be in a common format but are
recognized by humans as dates. If you try something like

<p>Right now it is <time>6:15</time>.</p>

it may be meaningful to you but it does not conform to HTMLS5. To provide both human-
and machine-friendly date/time content, the element supports a datetime attribute, which
should be set to the previously mentioned date format of YYYY-MM-DDThh : mm: ssTZD. So,
the following example is meaningful because it provides both a readable form and a
machine-understood value:

<p>My first son was born on <time datetime="2006-01-13">Friday the 13th
</time> so it is my new lucky day.</p>

ONLINE http://htmlref.com/ch2/time.html

Similar to mark, the time element has no predefined rendering, though you could
certainly define a look using CSS.

Inserting Figures

It is often necessary to include images, graphs, compound objects that contain text and
images, and so on in our Web documents, all of which usually are called figures. Long ago,
HTML 3 tried to introduce the fig element to represent such constructs; HTML5
reintroduces the idea with the more appropriately named f£igure element. A simple
example illustrates this new element’s usage:

<figure id="figl">
<dd>
<img src="figure.png" height="100" width="100"

Chapter 2: Introducing HTML5S

alt="A screen capture of the figure element in action">
<p>This mighty <figure> tag has returned from HTML 3 to haunt your
dreams.</p>
</dd>
<dt>Figure Ex-1</dt>
</figure>

ONLINE http://ntmlref.com/ch2/figure.html

Acting as a semantic element, £igure simply groups items within an enclosed <dd>
tag, though it may associate them with a caption defined by a <dt> tag as shown in the
example. You may desire to style a <€igure> tag by placing a stroke around its visual
rendering or display it in some other appropriate manner; of course, that is the duty of CSS.
You should also note that the use of id on a <figure> will likely be useful to target using
links, as figures may be positioned away from the content that references them.

NOTE In early drafts of the HTMLS5 specification, the <1egend> was used instead of <dt> and no
special tag was required for content enclosure.

Specifying Navigation

One new HTML5 element that is long overdue is the nav element. The purpose of this
element is to encapsulate a group of links that serves as a collection of offsite links,
document navigation, or site navigation:

<nav>

<h2>0ffsite Links</h2>

W3C

Book site

Author's Firm

</nav>

Conventionally, many Web developers have used and <1i> tags to encapsulate
navigation and then styled the elements appropriately as menu items. This seems to
introduce quite a bit of ambiguity in markup because it may be difficult to determine the
difference between a list that has links in it and a list that is simply navigation. The
semantics defined by HTMLS5 for a <nav> tag eliminate this confusion. Interestingly, there is
no requirement to avoid using and <1i> tags within navigation, so if you are a CSS
aficionado who is comfortable with that approach, it is fine to use markup like this:

<nav id="mainNav">

About
Services
Contact
Home</1li>

</nav>

ONLINE http://htmlref.com/ch2/nav.html

18 Part1: Core Markup

HTML5’s Open Media Effort

An interesting aspect of HTMLS5 that is reminiscent of the previous efforts of Netscape and
Microsoft is the support for tag-based multimedia in HTML documents. Traditionally,
multimedia has been inserted with the embed and object elements, particularly when
inserting Adobe Flash, Apple QuickTime, Windows Media, and other formats. However,
there was a time when tags specifically to insert media were supported; interestingly, some
of those features, such as the dynsrec attribute for tags, lived on until just recently.
HTMLS5 brings this concept of tag-based multimedia back.

<video>

To insert video, use a <video> tag and set its src attribute to a local or remote URL containing
a playable movie. You should also display playblack controls by including the controls
attribute, as well as set the dimensions of the movie to its natural size. This simple demo shows
the use of the new element:

<video src="http://htmlref.com/ch2/html 5.mp4"

width="640" height="360" controls>
HTML5 video element not supported
</video>

&) HTML 5 video example

File Edit View History Bookmarks Develop Window Help

| 4| » || + |@ http://htmiref.com/ch2/video.html ¢

[&= SunSpider..rk Results Apple Amazon eBay Yahoo! MNews(31) v

Simple Video Examples

HTML 5

<video> Demo!

4>) a

Chapter 2: Introducing HTML5 79

NortE If you are using XHTMLS5, given that controls is an occurrence style attribute, use
controls="controls" to be conforming.

You should note the included content in the tag that nonsupporting browsers fall back
to. The following shows Internet Explorer displaying the alternative content:

video example - 1 Explorer provided by Dell

L |£ http://htmlref.com/ch2/video.html v| @

File Edit View Favorites Tools Help
<o Favorites [@HTML‘;videommme [| & -8

Simple Video Examples

HTMLS video element not supported

However, even if a browser supports the video element, it might still have problems
displaying the video. For example, Firefox 3.5 won't load this particular media format directly:

v C X &y ([nttp/htmicef.com/ch2/video html =

| || HTML5 video example x | #§ iGoogle x

Simple Video Examples

HTMLS5 open video has, as it currently stands, brought back the madness of media
codec support that Flash solved, albeit in a less than stellar way. To address the media
support problem, you need to add in alternative formats to use by including a number of
<source> tags:

<video width="640" height="360" controls poster="loading.png">

<source src="html 5.mp4" type="video/mp4">
<source src="html 5.ogv" type="video/ogg">

HTML5 video element not supported
</video>

80

Part I: Core Markup

Also note in the preceding snippet the use of the poster attribute, which is set to display an
image in place of the linked object in case it takes a few moments to load. Other video element—
specific attributes like autobuf fer can be used to advise the browser to download media
content in the background to improve playback, and autoplay, which when set, will start the
media as soon as it can. A complete example of the video element in action is shown here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 video example</title>

</head>

<body>

<hl>Simple Video Examples</hl>
<video src="http://htmlref.com/ch2/html 5.mp4"
width="640" height="360" controls>

HTML5 video element not supported
</video>

<video width="640" height="360" controls poster="loading.png">
<source src="http://htmlref.com/ch2/html 5.mp4" type="video/mp4">
<source src="http://htmlref.com/ch2/html 5.ogv" type="video/ogg">
HTML5 video element not supported

</video>

</body>
</html>

ONLINE http://htmlref.com/ch2/video.html

The reference section in Chapter 3 shows the complete list of attributes for the video
element supported as of late 2009. Be warned, though, that if the various media markup
efforts of the late 1990s repeat themselves, it is quite likely that there will be an explosion of
attributes, many of which may be specific to a particular browser or media format.

<audio>

HTMLS5’s audio element is quite similar to the video element. The element should support
common sound formats such as WAV files:

<audio src="http://htmlref.com/ch2/music.wav"></audio>

In this manner, the audio element looks pretty much the same as Internet Explorer’s
proprietary bgsound element. Having the fallback content rely on that proprietary tag
might not be a bad idea:

<audio>
<bgsound src="http://htmlref.com/ch2/music.wav">
</audio>

Chapter 2: Introducing HTML5 81

If you want to allow the user to control sound play, unless you have utilized JavaScript
to control this, you may opt to show controls with the same named attribute. Depending on
the browser, these controls may look quite different, as shown next.

<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

As with the video element, you also have autobuffer and autoplay attributes for the
audio element. Unfortunately, just like video, there are also audio format support issues,
so you may want to specify different formats using <sources> tags:

<audio controls autobuffer autoplay>

<source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
<source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
</audio>

A complete example is shown here:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTMLS5 audio examples</title>

</head>

<body>

<hl>Simple Audio Examples</hl>

<h2>wav Format</h2>
<audio src="http://htmlref.com/ch2/music.wav" controls></audio>

<h2>09g Format</h2>
<audio src="http://htmlref.com/ch2/music.ogg" controls></audio>

<h2>Multiple Formats and Fallback</h2>
<audio controls autobuffer autoplay>

<source src="http://htmlref.com/ch2/music.ogg" type="audio/ogg">
<source src="http://htmlref.com/ch2/music.wav" type="audio/wav">
<!--[if IE]>

<bgsound src="http://htmlref.com/ch2/music.wav">

<! [endif]-->
</audio>

</body>
</html>

ONLINE http://htmlref.com/ch2/audio.html

82

Part I: Core Markup

Media Considerations

An interesting concern about “open” media formats is whether or not they really are open.
As the HTMLS5 specification emerges, fissures are already forming in terms of how these
elements are implemented, what codecs will be supported by what browser vendors, and
whether HTML5 will require a particular codec to be supported by all HTML5—compliant
browsers. Valid concerns about so-called “submarine” patents surfacing and torpedoing the
open media effort are real and hotly debated.

Unfortunately, given this media codec chaos, at the time of this edition’s writing, getting
an example to work in all browsers can be quite a chore and Flash and/or QuickTime support
must be added to address older browsers. Simply put, for all its possibilities, so far HTML5
media is a messy solution at best. The following adds in a fallback within the previous video
example for Flash:

<video width="640" height="360" controls poster="loading.png">
<source src="http://htmlref.com/ch2/html 5.mp4" type="video/mp4">
<source src="http://htmlref.com/ch2/html 5.ogv" type="video/ogg">

<object data="html 5.swf" type="application/x-shockwave-flash"
width="640" height="360" id="player">
<param name="movie" value="html 5.swf"/>
Error: No video support at all
</object>
</video>

Given the example, I think it isn’t much of a stretch to imagine a <source> tag being set to
a Flash type eventually; making the direction this is going even more confusing.

So while the potential benefits of open media formats can be debated endlessly, there is
also the pragmatic concern of how long it will take before HTML5’s open media movement
becomes viable. Getting to the stable media playback world provided by Flash took many
years, and it seems unlikely that HTMLS5 solutions will move much faster.

NOTE The current state of the HTMLS specification before press suggests that no codec is official.
While the neutrality is welcome, the reality that implementations vary considerably still continues.

Client-Side Graphics with <canvas>

The canvas element is used to render simple graphics such as line art, graphs, and other custom
graphical elements on the client side. Initially introduced in the summer of 2004 by Apple in its
Safari browser, the canvas element is now supported in many browsers, including Firefox 1.5+,
Opera 9+, and Safari 2+, and as such is included in the HTMLS5 specification. While Internet
Explorer does not directly support the tag as of yet, there are JavaScript libraries® that emulate
<canvas> syntax using Microsoft’s Vector Markup Language (VML).

From a markup point of view, there is little that you can do with a <canvas> tag. You
simply put the element in the page, name it with an id attribute, and define its dimensions
with height and width attributes:

? Circa late 2009, the most popular IE <canvas> emulation library is explorercanvas, available at http://
code.google.com/p/explorercanvas/.

Chapter 2: Introducing HTML5 83

<canvas id="canvas" width="300" height="300">
Canvas Supporting Browser Required
</canvas>

Note the alternative content placed within the element for browsers that don’t support
the element.

After you place a <canvas> tag in a document, your next step is to use JavaScript to
access and draw on the element. For example, the following fetches the object by its id
value and creates a two-dimensional drawing context:

var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

NortE 3D drawing is coming to <canvas> but is not currently defined outside of extensions.

Once you have the drawing context, you might employ various methods to draw on it.
For example, the strokeRect (x, y, width, height) method takes x and y coordinates and
height and width, all specified as numbers representing pixels. For example,

context.strokeRect (10,10,150,50) ;

would draw a simple rectangle of 150 pixels by 50 pixels starting at the coordinate 10,10
from the origin of the placed <canvas> tag. If you wanted to set a particular color for the
stroke, you might set it with the strokeStyle () method, like so:

context.strokeStyle = "blue";
context.strokeRect (10,10,150,50) ;

Similarly, you can use the £il1Rect (x, y, width, height) method to make a rectangle,
but this time in a solid manner:

context.fillRect (150,30,75,75) ;

By default, the fill color will be black, but you can define a different fill color by using
the fillcolor () method. As a demonstration this example sets a light red color:

context.fillStyle = "rgb(218,0,0)";

You can use standard CSS color functions, which may include opacity; for example, here
the opacity of the reddish fill is set to 40 percent:

context.fillStyle = "rgba(218,112,214,0.4)";
A full example using the first canvas element and associated JavaScript is presented here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas example</title>
<script type="text/javascript">
window.onload = function()
var canvas = document.getElementById("canvas") ;

84

Part I: Core Markup

var context = canvas.getContext ("2d") ;

context.strokeStyle = "orange";
context.strokeRect (10,10,150,50) ;
context.fillStyle = "rgba(218,0,0,0.4)"

context.fillRect (150,30,75,75) ;
}
</script>
</head>
<body>
<hl>Simple Canvas Examples</hl>

<canvas id="canvas" width="300" height="300">
Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvas.html
In a supporting browser, the simple example draws some rectangles:

@ HTML 5 canvas example - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help

' B c ,'n': @ ",_i http:/fwww.htmliref.com/ch2/canvas.html

_| || HTML 5 canvas example |T|

Simple Canvas Examples

Unfortunately, Internet Explorer up to version 8 will not be able to render the example
without a Compatibility library:

HTMLS canvas I Explorer Dell
F P p

@O - |@, http://htmlref.com/ch2/canvas.html v| bt |

File Edit View Favorites Tools Help

5.7 Favorites |@HTML‘S canvas example |_ & - i

Simple Canvas Examples

Canvas Supporting Browser Required

Chapter 2: Introducing HTML5S

Reworking the example to add just such a library makes things work just fine:

" & HTMLS canvas ple-Tr Explorer provided by Dell
@ Q - |§, http:-'-'htmIref.corq-'ch2-'can'-,-'asie.html - | b | 5 |
File Edit View Favorites Tools Help
7.q Favorites E@ HTMLS canvas example . i - -=

Simple Canvas Examples

ONLINE http://htmlref.com/ch2/canvasie html

Drawing and Styling Lines and Shapes

HTMLS5 defines a complete API for drawing on a canvas element, which is composed of
many individual sub-APIs for common tasks. For example, to do some more complex
shapes, the path API must be used. The path API stores a collection of subpaths formed by
various shape functions and connects the subpaths viaa £111 () or stroke () call. To begin
a path, context .beginPath () is called to reset the path collection. Then, any variety of
shape calls can occur to add a subpath to the collection. Once all subpaths are properly
added, context.closePath () can optionally be called to close the loop. Then £i11 () or
stroke () will also display the path as a newly created shape. This simple example draws
a V shape using 1ineTo ():

context .beginPath() ;
context.lineTo (20,100) ;
context.lineTo(120,300) ;
context.lineTo(220,100) ;
context.stroke () ;

Now, if you were to add context .closePath () before context.stroke (), the V
shape would turn into a triangle, because closePath () would connect the last point and
the first point.

Also, by calling £111 () instead of stroke (), the triangle will be filled in with whatever
the fill color is, or black if none is specified. Of course, you can call both £111 () and
stroke () on any drawn shape if you want to have a stroke around a filled region. Thus, to

85

86

Part I: Core Markup

style the drawing, you can specify the £i11Style and strokeStyle and maybe even
define the width of the line using 1inewidth, as shown in this example:

context.strokeStyle = "blue";
context.fillStyle = "red";

context.lineWidth = 10;
context .beginPath() ;
context.lineTo(200,10) ;
context.lineTo (200,50) ;
context.lineTo(380,10) ;
context.closePath() ;
context.stroke () ;
context.fil11() ;

[—

As you saw in a few previous examples, you can change color by setting the fillColor
property. In addition to the CSS color values, you can also set the fil1Color to a gradient
object. A gradient object can be created by using createLinearGradient () or
createRadialGradient ().

The following example creates a simple linear gradient that will be applied to a rectangle
using the createLinearGradient (x1,y1,x2,y2) method. The gradient is positioned at
10,150 and is set to go 200 pixels in both directions.

var lg = context.createlLinearGradient (10,150,200,200) ;

Next, the gradient colors are added using the addColorStop () method. This specifies
a color and the offset position in the gradient where the color should occur. The offset must
be between 0 and 1.

lg.addColorStop (0, "#B03060") ;
lg.addColorStop(0.75, "#4169E1") ;
lg.addColorStop (1, "#FFE4E1") ;

Of course, you could use the rgba CSS function to create a gradient with transparency
as well. Finally, the £illColor is set to the gradient. Here is the complete code snippet,
followed by a visual example:

var lg = context.createlLinearGradient (10,150,200,200) ;
lg.addColorStop (0, "#B03060") ;
lg.addColorStop (0.5, "#4169E1") ;

lg.addColorStop (1, "#FFE4E1") ;

context.fillStyle = 1g;

context.beginPath() ;

context.rect (10,150,200,200) ;

context.fi11 () ;

Chapter 2: Introducing HTML5 §F

Note that before you draw the shape, you reset the path to ensure that you do not apply
these changes to previously rendered parts of the drawing.

To create a radial gradient using createRadialGradient (x1,y1,rl,x2,y2,r2),you
must set the position and radius of two circles to serve as the gradient. You add color stops
in the same manner as the linear gradient, so the code looks quite similar otherwise:

var rg = context.createRadialGradient (350,300,80,360,250,80);
rg.addColorStop (0, "#A7D30C") ;

rg.addColorStop (0.9, "#019F62") ;
rg.addColorStop (1, "rgba(l,159,98,0) ");

context.fillStyle = rg;

context .beginPath() ;
context.fillRect (250,150,200,200) ;

The complete example, drawing a few different shapes with fills and styles, is presented
here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 canvas lines and shapes example</title>
<script type="text/javascript">
window.onload = function()
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

context.strokeStyle = "blue";
context.fillStyle = "red";
context.lineWidth 10;

context .beginPath () ;
context.lineTo (200,10) ;

88

Part I: Core Markup

context.lineTo (200,50) ;
context.lineTo (380,10) ;
context.closePath() ;
context.stroke () ;
context.fill () ;

var lg = context.createlLinearGradient (10, 150, 200, 200);
lg.addColorStop (0, "#B03060") ;

lg.addColorStop (0.5, "#4169E1") ;

lg.addColorStop (1, "#FFE4El");

context.fillStyle =
context .beginPath () ;

context.rect (10, 150, 200, 200);
context.fill () ;

1g;

var rg = context.createRadialGradient (50,50,10,60,60,50) ;
rg.addColorStop (0, "#A7D30C") ;

rg.addColorStop (0.9, "#019Fe2") ;

rg.addColorStop (1, "rgba(l,159,98,0)");

context.fillStyle = rg;
context .beginPath () ;
context.fillRect (0,0,130,230) ;

context .beginPath () ;
context.lineTo(250,150) ;
context.lineTo(330,240) ;
context.lineTo(410,150) ;
context.stroke () ;

}

</script>

</head>

<body>

<hl>Simple Shapes on canvas Example</hl>

<canvas id="canvas" width="500" height="500">
Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvaslinesandshapes.html

Applying Some Perspective

As the context is specified as 24, it is no surprise that everything you have seen so far has
been two-dimensional. It is possible to add some perspective by choosing proper points and
shades. The 3D cube shown in Figure 2-3 is created using nothing more than several
moveTo () and lineTo () calls. The 1ineTo () call is used to create three sides of the cube,
but the points set are not straight horizontal and vertical lines as we see when we make 2D
squares. Shading is applied to give the illusion of dimensionality because of the application
of a light source. While the code here is pretty simple, you can see that using canvas

Chapter 2: Introducing HTML5 89

File Edit View History Bookmarks Develop Window Help
{ < | >] [+ |e http://htrlref.com/ch2/canvascube.html c] [Q.' Google] O~ £~

[T & SunSpider..rk Results Apple Amazon eBay Yahoo! News (55) v

Ficure 2-3 Faking 3D with perspective

properly is often a function more of what you may know about basic geometry and drawing
than anything else.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Cube Example</title>
<style type="text/css" media="screen">

body {background-color: #E67B34;}
</style>
<script type="text/javascript">
window.onload = function () {

var context = document.getElementById("canvas") .getContext ("2d") ;

context.fillStyle = "#fff";
context.strokeStyle = "black";
context .beginPath() ;
context.moveTo(188,38) ;
context.lineTo(59,124) ;

Part I:

context.
context.
context.
context.
L£111 () ;
context.

context

context

context
context

context

context.
context.
.closePath() ;
LE111 () ;
.stroke () ;

context
context
context

context.
context.
.beginPath () ;

.moveTo (59,289) ;

context
context

context.
.lineTo (212,197
context.
context.
context.
LE111()
context.

context

context

}

</script>
</head>
<body>

Core Markup

lineTo(212,197) ;
lineTo(341,111);
lineTo(188,38) ;
closePath () ;

stroke () ;

.fillStyle = "#ccc";
context.
.beginPath () ;
.moveTo(341,111)
context.)
.1lineTo(212,362) ;
)
)

strokeStyle = "black";

7

7

lineTo (212,197

7

lineTo (341,276
lineTo (341,111

7

fillstyle =
strokeStyle =

"#999";
"black";

lineTo(59,124) ;

)
lineTo(212,362);
lineTo (59,289) ;
closePath() ;

stroke () ;

<hl>Canvas Perspective</hl>

<canvas id="canvas" width="400" height="400">
Canvas Supporting Browser Required

</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvascube.html

Drawing Arcs and Curves
Drawing on canvas isn’t limited to simple lines; it is also possible to create curved lines
using arc (), arcTo (), quadraticCurveTo (), and bezierCurveTo (). To illustrate these
methods, this section shows how to draw a simple face.

You can use the arc (x, y, radius, startAngle, endAngle, counterclockwise)
method to draw circles and parts of circles. Its location is defined by the point of its center

Chapter 2: Introducing HTMLS 91

(x,y) as well as the circle’s radius. How much of the circle is drawn is defined by
startAngle and endAngle, in radians. The direction of the curve is set by a Boolean value,
which is the final parameter specified by counterclockwise. If it is set to true, the curve
will move counterclockwise; otherwise, it will move clockwise. If your math is a bit rusty, to
make a full circle, the start angle should be set to 0 and the end angle should be 2x. So to
start your face drawing, use arc () to draw the head as a circle:

context.arc(150,150,100,0,Math.PI*2, true) ;

Use the quadraticCurveTo (cpx, cpy, x, y) method to draw the nose and the mouth.
This function starts at the last point in the path and draws a line to (x,y). The control point
(cpx,cpy) is used to pull the line in that direction, resulting in a curved line. However, you
call moveTo () first to set the last point in the path. In the following snippet, a line was
drawn from (155,130) to (155,155). Because the x-coordinate of the control point (130,145)
is to the left, the line is pulled in that direction. Because the y-coordinate is in between the
y-coordinates, the pull is roughly in the middle.

context.moveTo (155,130) ;
context.quadraticCurveTo(130,145,155,155) ;
context.moveTo (100,175) ;
context.quadraticCurveTo (150,250,200,175) ;

You call bezierCurveTo (cplx, cply, cp2x, cp2y, x,y) to draw the eyes. This function
is similar to quadraticCurveTo () except that it has two control points and has a line that is
pulled toward both of them. Again, moveTo () is used to set the start point of the line:

context.moveTo (80,110) ;
context .bezierCurveTo (95,85,115,85,130,110) ;
context.moveTo (170,110) ;
context .bezierCurveTo (185,85,205,85,220,110) ;

Lastly, use arcTo (x1, y1,x2,y2, radius) to draw a frame around the face. Unfortunately,
foreshadowing some issues with the canvas API, we note that arcTo () is not currently
supported properly in all browsers, so it may render oddly. When it does work, it creates
two lines and then draws an arc with the radius specified and containing a point tangent to
each of the lines. The first line is drawn from the last point in the subpath to (x1,y1) and
the second line is drawn from (x1,vy1) to (x2,y2).

context .moveTo (50, 20) ;
context.arcTo(280,20,280,280,30) ;
context.arcTo(280,280,20,280,30) ;
context.arcTo(20,280,20,20,30) ;
context.arcTo(20,20,280,20,30) ;

The complete example is shown next. Note that, given layering, you draw and fill the
frame and face and then draw the features last. Also note that you reset the paths with the
beginPath () method. Commonly, people forget to do this, which can produce some
interesting drawings. A rendering of the face example is shown in Figure 2-4.

Part I: Core Markup

& Canvas Face Example [E=H EoH |
File Edit View History Bookmarks Develop Window Help

| « : > | | + & http://htmiref.com/ch2/canvasface.html G| I.Q' Google | B' *'
[0 =8 SunSpider..rk Results Apple Amazon eBay Yahoo! MNews(55) v

Smile you're on canvas

Ficure 2-4 Drawing a canvas smiley

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Canvas Face Example</title>
<script type="text/javascript">
window.onload = function () {
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;
context.strokeStyle = "black";
context.lineWidth = 5;

/* create a frame for our drawing */
context.beginPath() ;
context.fillStyle = "blue";

context .moveTo (50, 20) ;
context.arcTo(280,20,280,280,30) ;
context.arcTo(280,280,20,280,30) ;
context.arcTo(20,280,20,20,30) ;
context.arcTo(20,20,280,20,30) ;
context.stroke () ;

context.fill () ;

Chapter 2: Introducing HTMLS 93

/* draw circle for head */

context .beginPath() ;

context.fillStyle = "yellow";
context.arc(150,150,100,0,Math.PI*2, true) ;
context.f111 () ;

/* draw the eyes, nose and mouth */
context.beginPath() ;
context.moveTo (80,110) ;
context.bezierCurveTo (95,85,115,85,130,110) ;
context.moveTo(170,110) ;
context .bezierCurveTo (185,85,205,85,220,110) ;
context .moveTo (155,130) ;
context.quadraticCurveTo(130,145,155,155) ;
context.moveTo (100,175) ;
context.quadraticCurveTo (150,250,200,175) ;
context.moveTo (50,20) ;
context.stroke () ;

}

</script>

</head>

<body>

<hl>Smile you're on canvas</hl>

<canvas id="canvas" width="300" height="300">

Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvasface.html

Scaling, Rotating, and Translating Drawings

You now have looked at the basic shapes and styling, but there is much more that you can
do to customize a drawing through transformations. The canvas API provides a number of
useful methods that accomplish the common tasks you will likely want to perform. First
let’s explore the scale (x, y) function, which can be used to scale objects. The x parameter
shows how much to scale in the horizontal direction and the y parameter indicates how
much to scale vertically.

/* scale tall and thin */
context.scale(.5,1.5);
writeBoxes (context) ;

/* move short and wide */
context.scale(1.75,.2);
writeBoxes (context) ;

94 PartI: Core Markup

Simple Scale

ONLINE http://htmlref.com/ch2/canvasscale.html

Next up is the rotate (angle) method, which can be used to rotate a drawing in a
clockwise direction by an angle defined in radians:

/* rotate to the right */
context.rotate (Math.PI/8) ;
writeBoxes (context) ;

/* rotate to the left */

context.rotate (-Math.PI/8) ;
writeBoxes (context) ;

Simple Rotation

ONLINE http://htmlref.com/ch2/canvasrotate.html

Chapter 2: Introducing HTMLS 95

The translate (x, y) function is a handy function to use to change the origin from
(0,0) to another location in the drawing. The following example moves the origin to
(100,100). Then, when the start coordinates of the rectangle are specified at (0,0), it really
starts at (100,100).

context.translate(100,100) ;
context.fillRect (0,0,100,100) ;

A simple example of moving some boxes around is shown here:

Simple Translation

ONLINE http://htmlref.com/ch2/canvastranslate.html

All the methods presented so far are conveniences to help us use an underlying
transform matrix associated with paths. All paths have an identity matrix as their default
transform. As an identity, this transform matrix does nothing, but it is certainly possible to
adjust this matrix in a few ways. First, it can be directly modified by calling setTransform
(ml1l,ml2,m21,m22,dx,dy), which resets the matrix to the identity matrix and then
calls transform() with the given parameters. Or you can do this directly by using
transform(mll,ml2,m21,m22,dx,dy), which multiplies whatever the current matrix is
with the matrix defined by

mll m21 dx
ml2 m22 dy
0 0 1

The problem with the method should be obvious: unless you understand more than a
bit about matrix math, this can be a bit daunting to use. On the bright side, with the
method, you can do just about anything you want. Here a simple example skews and
moves some simple rectangles. The result is shown in Figure 2-5.

96

Part I: Core Markup

[canvas transform() EBxam... »

€ 5 C M ¥ htp//ntmiref.com/ch2/canvastransform.html P O~ &~

Simple Transforms

Ficure 2-5 Transforming a rectangle

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>canvas transform() Example</title>

<style type="text/css">

canvas {border: 1px solid black;}

</style>

<script type="text/javascript">

window.onload = function () {
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;

context.fillStyle = "rgba(255,0,0,.4)";
context.rect (0,0,100,100) ;
context.fill () ;

context.setTransform(1,1,1,0,0,0);
context.beginPath() ;

context.fillStyle = "rgba(0,255,0,.4)";
context.rect (75,75,100,100) ;
context.fill () ;

context.setTransform(0,.5,1,.8,0,0);
context .beginPath () ;

Chapter 2: Introducing HTMLS 97

context.fillStyle = "rgba(0,0,255,.4)";
context.rect (50,50,100,100) ;
context.fill () ;

}

</script>

</head>

<body>

<hl>Simple Transforms</hl>

<canvas id="canvas" width="400" height="300">

Canvas Supporting Browser Required

</canvas>

</body>

</html>

ONLINE http://htmlref.com/ch2/canvastransform.html

Using Bitmaps in Drawings
A very interesting feature of canvas is the ability to insert images into the drawing There
are several ways to do this, but let’s start with the most basic, drawImage (img, x, y), which
takes an image object and the coordinates for where the image should be placed. The image
will be its natural size when called in this manner. You can use drawImage (img, x, y, w, h)
if you need to modify the image size and set the width and height.

The actual image passed in to the drawImage () method can come from a few places.
It can be

¢ Animage already loaded on the page

¢ Dynamically created through the DOM

* Another canvas object

* Animage created by setting its src to a data: URL

The important thing to remember is that the image must be loaded by the time canvas
is ready to access it. This may require use of the onload function for the image:

var img = new Image() ;
img.onload = function(
(

context .drawImage

img.src = "dog.jpg";

{

)
img, 0,0,400,400) ;

The last way that drawImage (img, sx, sy, sw, sh, dx, dy, dw, dh) may be called allows
a part of the image to be cut out and drawn to the canvas. The (sx,sy) coordinates are the
location on the image, and sw and sh are the width and height, respectively. The rest of the
parameters prefixed with d are the same as in the previous form of the method.

var img = document.getElementById("imagel") ;
/* slices a 100px square from imagel at location (200, 75)

Places on the canvas at (50,50) and stretches it to 300px square. */
context .drawImage (img,200,75,100,100,50,50,300,300) ;

98

Part I: Core Markup

However you decide to place it, once an image is on the canvas, it is then possible to
draw on it. The following example loads an image and draws a region in preparation for
eventually adding a caption:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>canvas drawImage () Example</title>
<style type="text/css">
canvas {border: 1px solid black;}
</style>
<script type="text/javascript">
window.onload = function()
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;
var img = new Image() ;
img.src = "dog.jpg";
img.onload = function() {
context.lineWidth = 5;
context .drawImage (img, 0,0,400,400) ;
context .beginPath () ;
context.lineWidth = 5;
context.fillStyle = "orange";
context.strokeStyle = "black";
context.rect (50,340,300,50) ;
context.fill () ;
context.stroke () ;
} }
</script>
</head>
<body>
<canvas id="canvas" width="400" height="400">
Canvas Supporting Browser Required
</canvas>
</body>
</html>

ONLINE http://htmlref.com/ch2/canvasimage.html

Text Support for canvas

In browsers that supported early forms of the canvas element, text was not well supported
in a drawing, if at all. Per HTMLS5, text functions should now be supported by the canvas
API, and several browsers already do support it. You can write text by using £i11Text
(text,x,y [,maxWidth]) or strokeText (text,x,y [,maxWidth]).Both functions
take an optional last parameter, maxwidth, that will cut the text off if the width is longer
than specified. Often, both £i11Text () and strokeText () will be utilized to display an
outline around the text. Here we set a fill color of blue and then write the phrase “Canvas is
great!” with a black stroke around the letters.

Chapter 2: Introducing HTMLS 99

context.fillStyle = "rgb(0,0,255)";
context.strokeStyle = "rgb(0,0,0)";
context.fillText ("Canvas is great!",10,40);

context.strokeText ("Canvas is great!",10,40);

To get more-customized text, you can use the font property, which you set identically
to a CSS font property. You can use textAlign and textBaseline to set the horizontal
and vertical alignment of the text string. The textAlign property has the possible values of
start, end, left, right, and center. The textBaseline property can be set to top,
hanging, middle, alphabetic, ideographic, and bottom.

context.font = "bold 30px sans-serif";
context.textAlign = "center";
context.textBaseline = "middle";

You can add shadows to shapes simply by setting the shadow properties, shadowOf fsetX,
shadowOf fsetY¥, shadowBlur, and shadowColor. The offsets simply set how far the shadow
should be offset from the image. A positive number would make the shadow go to the right
and down. A negative number would make it go to the left and up. The shadowBlur property
indicates how blurred the shadow will be, and the shadowColor property indicates the color.
This code fragment demonstrates setting a shadow.

context.shadowOffsetX = 10;
context .shadowOffsetY = 5;

context .shadowColor = "rgba(255,48,48,0.5)";
context.shadowBlur = 5;
context.fillStyle = "red";

context.fillRect (100,100,100,100) ;

All the concepts from this and the last section can be put together as follows to caption
an image with some shadowed text, as shown in Figure 2-6.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>canvas Text Example</title>
<style type="text/css">
canvas {border: 1px solid black;}
</style>
<script type="text/javascript">
window.onload = function() {
var canvas = document.getElementById("canvas") ;
var context = canvas.getContext ("2d") ;
var img = new Image () ;
img.src = "dog.jpg";
img.onload = function() {
context.lineWidth = 5;
context.drawImage (img,0,0,400,400) ;
context .beginPath() ;
context.lineWidth = 5;
context.fillStyle = "orange";
context.strokeStyle = "black";

100 Part1: Core Markup

context.rect (50,340,300,50) ;
context.fill () ;
context.stroke () ;

context.lineWidth = 2;

context.font = '40px sans-serif';
context.strokeStyle = "black";
context.fillStyle = "white";

context.fillText ("Canvas is great!",60,375);
context.shadowOffsetX 10;
context .shadowOffsetY = 5;

context .shadowColor = "rgba(0,48,48,0.5)";
context.shadowBlur = 5;
context.strokeText ("Canvas is great!",60,375);
1

}

</script>

</head>

<body>

<canvas id="canvas" width="400" height="400">
Canvas Supporting Browser Required
</canvas>

</body>
</html>

[canvas Text Example *

<« C A | % hitp//htmiref.com/ch2/canvastext.html > O~ F~

Ficure 2-6 Even dogs love <canvas>.

Chapter 2: Introducing HTMLS 101

ONLINE http://htmlref.com/ch2/canvastext.html

<canvas> Conclusions

We have just scratched the surface of the canvas API. A full listing of the API can be found
in the reference in Chapter 3. However, a reference is simply that; be warned that the use of
the canvas element can get quite involved, and you should not reasonably expect to use it
if you don’t have significant JavaScript knowledge. Even if you know JavaScript, there are
challenges ahead because implementations vary between browsers and, for now, Internet
Explorer requires a compatibility library even for basic support. Scripting canvas-based
drawings for interactivity is a bit clunky, and text support is far from stellar. Accessibility
concerns also abound. However, don’t let the challenges dissuade you; HTML5’s canvas
APl is quite powerful and warrants your exploration. The purpose of this section was to
introduce you to the element and show you what is possible to accomplish with it. Consult
the Web for the latest changes in canvas support.

HTML5 Form Changes

Besides starting the HTML5 specification, the Web Hypertext Application Technology
Working Group (WHATWG) has been busy over the years considering the future of the
Web and went so far as to develop a specification called Web Forms that aimed to bring
HTML forms into the modern age. The specification added a number of form widgets,
validation facilities, and some accessibility improvements. Few browsers save Opera
implemented any of these features, and some in the industry complained about the
complexity of the specification. However, most of the Web Forms specification has been
incorporated into HTML5 and more and more of its features are now being implemented
in browsers. In this section we take a quick tour of these exciting features but place more of
a focus on what is already being implemented in current browsers.

New Form Field Types
Traditionally, the HTML input element is used to define most form fields. The particular
type of form field of interest is defined with the type attribute, which is set to text,
password, hidden, checkbox, radio, submit, reset, image, or button. HTML5 adds
quite a number of other values, which we will briefly explore here.

First, setting the type equal to color should create a color picker:

<p><label>color:<input type="color" name="favColor"></label></p>

As of the time of this edition’s writing, no implementation existed for this control, but it
might look something like this:

color: EBTNRE

u’l

102 Part1: Core Markup

A variety of date controls can now be directly created by setting the type attribute to
date, datetime, datetime-local, month, week, or time. Several of these controls are
demonstrated here:

<p><label>date:
<input type="date" name="date">
</label></p>

<p><label>datetime:
<input type="datetime" name="datetime">
</label></p>

<p><label>datetime-local:
<input type="datetime-local" name="datetime2">

</label></p>
<p><label>time:
<input type="time" name="time">
</label></p>
<p><label>month:
<input type="month" name="month">
</label></p>
<p><label>week:
<input type="week" name="week">
</label></p>
Pick a Date b Pick a Date and Time; 2020-02-04 ~ 01:00 |
< July » [|2009)%] 4| February > ||2020] 3
Week Mon Tue Wed Thu Fri Sat Sun Week Mon Tue Wed Thu Fri Sat Sun
1.2 3 4 11z
3 4 887 8 8
10 11 12 13 14 15 18
17 18 19 20 21 22 23
24 25 26 27 28 29
Today None Today None
Pick a Date and Tmme (local): v 2 month; 2009-10 | =
.| July » 20092
weelc 2009-W43 | =
Wesk Mon Tue Wed The Fri Sat Sun
12 3 4 &5

& 5 W gl time; 23:52 5

13 14 15 18 17

Today J None

It should be possible to restrict the dates chosen, but currently any restrictions must be
controlled with script.

Chapter 2: Introducing HTML5 103

Setting type to number gives you a numeric spin box in conforming browsers:
<p><label>number:<input type="number" name="number"></label></p>

3

When unconstrained, the spin box will be able to move up and down arbitrarily with no
limits. However, it is possible to define allowed values. For example, the max attribute can
be set to limit the maximum value, min to limit the smallest value, and even step to
indicate how values may be modified. For example,

<input type="number" name="number2" min="-5" max="25" step="5">

would create a numeric spin box that ranges from -5 to 25 in increments of 5.
A similar form of control can be created using a range control:

<input type="range" name="range" max="100" min="1" step="5">

This control presents itself as a slider, which so far has a varied appearance in browsers:

Like the number picker, the min, max, and step attributes all can be set to limit values:

<p><label>range (1-100 step 5):
<input type="range" name="range" max="100" min="1" step="5">
</label></p>

<p><label>range (-1000-1000 step 100):
<input type="range" name="range" max="1000" min="-1000" step="100">
</label></p>

It is also possible to further define semantic restrictions by setting an <input> tag’s
type attribute to tel, email, or url:

<p><label>Telephone Number: <input type="tel" name="telno"></label></p>
<p><label>Email: <input type="email" name="email"></label></p>
<p><label>URL: <input type="url" name="url"></label></p>

A browser may then specify some indications of the appropriate data type:
Semantic Field Types
Telephone Number: | 555-1212
Email: [~ tpowell@pint.com
URL: [http:/iwww. pin|
http://www.pint.com/ PINT

http://www.pint.com/classes/PINT: Classes
http://www.pint.com/classes/inde...Classes

104 Part1: Core Markup

It is also possible to set type to search, which may eventually have an associated pick
list. Currently, some browsers provide some controls for clearing a search field:

Searc_h.| HTML Examples| — x |

Validating Data Entry

We have already seen a number of HTML5 changes that allow us to restrict the type of data
entered into a form. It is also possible to force the user to enter data, without resorting to
JavaScript, in an HTML5-compliant browser by setting the required attribute for a form
control:

<input type="text" name="firstname" id="firstname" required>

A browser may then set an error style on the field and present a message if there is a
problem:

First Name: ||

You have to
specify a value

The pattern attribute also can be employed to force the entered data to conform to a
supplied regular expression:

<label for="phonenum" class="required">Phone Number:</label>
<input type="text" name="phonenum" id="phonenum" required

pattern=""\ (\d{3}\) \a{3}-\d{4}s">

Phone Number: ([l

bad is not in the
format this page
requires!

If a title is specified when patterns are applied, the browser may display this advisory
information:

<label for="phonenum" class="required">Phone Number:</label>
<input type="text" name="phonenum" id="phonenum" required
pattern=""\ (\d{3}\) \d{3}-\d{4}s"

title="Phone number of form (xxx) xXX-XXXX required">

Phone Number: ([l

bad is not in the format
this page requires!
Phone number of form
(3o0¢) xooeoon required

However, in some cases, you can not only apply a pattern but also employ the
appropriate semantic type value like email, though it isn’t clear if these elements will apply
their own implied validation pattern matches simply by setting them as required:

Chapter 2: Introducing HTML5 105

<label for="email" class="required">E-mail:</label>
<input type="text" name="email" id="email" required

pattern=""\w+ ([\.-12\w+) *@\w+ ([\.-12\w+) *\. (\w{2}| (com|net|org|edu|i
nt|mil|gov|arpa|biz|aero|name|coop|info|pro|museum))$" title="E-mail format
required">

The specification indicates that the presentation of fields in error can be controlled by
using the CSS pseudo-class : invalid in HTML5—compliant browsers.

A full example for you to test out basic HTML5 required and pattern usage in a
browser can be found at the book’s support Web site.

ONLINE http://htmlref.com/ch2/requiredpattern.html

NOTE Because validation is under browser control, HTML5 provides a formnovalidate
attribute that can be set on controls or the form to disable validation.

Autocomplete Lists

Under HTMLD5, the input element’s 1ist attribute is used to set the DOM id of a
datalist element used to provide a predefined list of options suggested to the user for
entry:

<p><label>Favorite Dog: <input type="text" list="dogs"></label></p>
<datalist id="dogs">

<option>Angus</option>

<option>Tucker</option>

<option>Cisco</option>

<option>Sabrina</option>
</datalist>

Favorite Dog:

Angus
Tucker
Cisco

Sabrina

This is similar to the autocomplete attribute discussed in the next section, but it allows
you to specify the default data rather than relying on what may have been entered in the
browser previously.

Miscellaneous Usability Improvements
Commonly, Web page authors use the value attribute to populate some text in a form field:

<input type="text" name="firstname" id="firstname" value="Thomas">
Quite often, people put placeholder or advisory text here, like so:

<input type="text" name="middlename" id="middlename"
value="Enter your middle name here">

106

Part I: Core Markup

However, using the value attribute in this manner is somewhat inappropriate, because the
purpose of the attribute is not to supply instructions for the field’s use but rather to supply
a potential value for the user to submit to the server. HTML5 introduces the placeholder
attribute to use instead for this duty:

<input type="text" name="firstname" id="firstname"
placeholder="Enter your name here">

HTMLS5 also introduces the autofocus attribute, which when placed on a field should
cause a supporting browser to immediately focus this field once the page is loaded:

<label>Search:<input type="search" name="query"
id="searchBox" autofocus></label>

Also under HTMLS5, it should be possible to advise the browser to display the
autocomplete suggestions provided for fields if similar field names have been used in the
past:

<input type="text" name="firstname" id="firstname"
placeholder="Enter your name here" autocomplete>

Interestingly, this particular attribute has been supported in Internet Explorer browsers for
some time.

Other form improvements likely will be added to the HTML5 specification. The aim
here is to give you a sense of the changes the HTMLS5 specification intends to bring to
Web-based data collection.

Emerging Elements and Attributes to Support Web Applications

Akey theme of the HTMLS5 specification is the emphasis on supporting Web applications.
A number of elements and attributes have been introduced in the specification to continue
the migration from Web pages to Web applications. However, most of these features are not
implemented in browsers, and some are controversial enough that their inclusion in later
versions of the specification is far from certain. Thus, you are warned that the elements
presented here should be considered only illustrative of the kinds of changes HTMLS5 tends
to encourage and that some of them may be changed or removed. As of yet, no native
implementation of these elements exists, so we simulated their possible renderings using

a JavaScript library. Given the speculative nature of these new elements, you should consult
the specification for the latest information on support.

menu Element Repurposed

One element that will be implemented in browsers but might not perform the actions defined
in HTMLS5 is the menu element. Traditionally, this element was supposed to be used to create
a simple menu for choices, but most browsers simply rendered it as an unordered list:

<menu type="list" id="oldStyle">
Ttem 1</1li>
Item 2</1li>

Chapter 2: Introducing HTML5 107

Ttem 3</1li>
Item 4

</menu>
o Jtem 1

+ Ttem 2
+ Ttem 3
+ JTtem 4

Under HTML5 the menu element has been returned to its original purpose. A new
attribute, type, is introduced that takes a value of toolbar, context, or 1ist (the default).
This example sets up a simple File menu for a Web application:

<menu type="toolbar" id="fileMenu" label="File">
New</1li>
Open</1li>
Close

<hr>
Save</1li>
Save as...
<hr>
Exit</1li>
</menu>

Using CSS and JavaScript, this menu might render like so:

| File »|| Main Menu * Details

New

Open
Close
Save

Save as...

Exit

Again, this is completely speculative and is just meant to illustrate a possibility.
With menu, it would also be possible to define a context menu, usually invoked by a
right-click:

<menu type="context" id="simpleMenu">
Add</1li>
Edit</1li>
Delete</1li>
</menu>

This could render something like this:

Add
Edit

Delete

108

Part I: Core Markup

The global contextmenu attribute is used to define an element’s context menu, which is
generally the menu invoked upon a right-click. The attribute’s value should hold a string
that references the id of a <menu> tag found in the DOM. For example,

<div contextmenu="simpleMenu">Widget</div>

would reference the previously defined menu via a right-click. If there is no element found
or no value, then the element has no special context menu and the user agent should show
its default menu. Internet Explorer and many other browsers support an oncontextmenu
attribute that could be used to implement the idea of this emerging attribute.

Again, all of this is completely speculative and meant to illustrate the concept; so far, no
browser natively implements this functionality, though it wouldn’t be a stretch to have
JavaScript emulate this.

command Element

The menu element may contain not just links but also other interactive items, including the
newly introduced command element. This empty element takes a 1abel and may have

an icon decoration as well. The command element has a type attribute, which may be set

to command, radio, or checkbox, though when radio is employed there needs to be

a radiogroup indication. A simple example here with the repurposed menu element should
illustrate the possible use of this element:

<menu type="command" label="Main Menu">
<command type="command" label="Add" icon="add.png">
<command type="command" label="Edit" icon="edit.png">
<command type="command" label="Delete" icon="delete.png">
<hr>
<menu type="command" label="Skin" id="skinMenu">
<command type="radio" radiogroup="skin" label="Classic">
<command type="radio" radiogroup="skin" label="Modern" checked>
<command type="radio" radiogroup="skin" label="Neo">
</menu>
<hr>
<command type="checkbox" label="Secure Mode">
</menu>

Such a menu might look like the following:

| Main Menu = | Details
© Add
Edit
9 Delete

Skin b Classic

@® Modern

But again, this is just illustrative and in this case, I am somewhat skeptical about the
command element because it seems to share many of the aspects of traditional form field
controls, so why more elements are needed is unclear.

Chapter 2: Introducing HTML5 109

meter and progress Elements

Two fairly similar elements have been introduced in HTML5 to show current status. First,
the meter element defines a scalar measurement within a known range, similar to what
might be represented by a gauge. The following example is a reading of velocity for some
fantastically fast space vessel:

<p>Warp Drive Output: <meter min="0" max="10" low="3" optimum="7" high="9"
value="9.5" title="Captain she can't take much more of this!"></meter></p>

A potential rendering could look like

~Warp Drive~
4 gs5 "

| Scotty says:
| I dinna know how much more she can take, captain

More likely, it will look like a simple meter, but this speculation does illustrate just how
variable presentation may be. Using script, it is probably possible to simulate this element
right now even though browsers don’t support it.

Slightly different from meter is the progress element, which defines completion
progress for some task. Commonly, this element might represent the percentage from
0 percent to 100 percent of a task, such as loading to be completed:

<p>Progress: <progress id="progressBar" max="100.00" value="33.1">
33.1%</progress></p>

l-—-_—'-- Progress 33.1% |

Of course, the range and values provided here are purely arbitrary and the rendering
shown is similarly just illustrative of the idea of the progress element.

details Element

The new details element is supposed to represent some form of extra details, such as

a tooltip or revealed region that may be shown to a user. The details element can contain
one dt element to specify the summary of the details as well as one dd element to supply
the actual details.The attribute open can be set to reveal the details or can be changed
dynamically, as shown in this example:

<details onclick="this.open='open'">

<dt>Help?</dt>

<dd>This could give you help with HTML5 but we need more
implementations to prove how things will work.</dd>

</details>

110

Part I: Core Markup

Here is an example of how the details element might appear:

Help?
This could give you help with HTMLS but we need more
| implementations to prove h_ow things will work.

output Element

The final stop on this speculative tour is the output element, which is used to define a
region that will be used as output from some calculation or form control. Here I imagine
using the calendar picker and having the eventual release date of HTML5 being revealed in
an output element:

<form action="#" method="get" id="testform">
<p><input type="date" id="year">

<p>HTML5 released in the year

<output for="year"> </output></p>
</form>

Script could certainly be used to perform this action:

08/11/2011] [

HTMLS released in the year: 2011

In this case, it is doubtful we need to concern ourselves too much with the likely
representation of this yet-to-be supported element, because, as defined, output is just
a semantic element and could be simulated in traditional HTML using a <div>.

The Uncertain Future of Frames

The introduction of frames with Netscape 2 heralded some of the first markup changes to
support Web applications. Interestingly, the HTMLS5 specification drops <frameset>,
<frame>, and <noframes> because “their usage affected usability and accessibility for the
end user in a negative way®.” Despite dropping it from support, the specification does still
offer rendering rules for the frame and frameset elements. This is more evidence that the
HTMLS specification tries to account for anything a Web developer may design even if it is
not according to the specification.

Given the fairly widespread use of frames, some online pundits have suggested that this
frame elimination can be worked around by using an HTML 4 frameset to pull in HTML5
documents. In this spirit, we may validate all around but not really address the concerns of
the W3C and others. It would seem from these possible changes from HTMLS5 that the days
of frames are numbered, or are they?

HTML5 continues to support <iframe>; in fact, it not only supports it but extends the
tag. The inline frame has plenty of life left if the HTML5 vision comes true because it will be
used to include new content and functionality in pages from remote sources and may even
be used in intra-document communication. So, the future of frames as far as HTMLS5 is
concerned isn’t set.

* Quoted from http:/ /www.w3.org/ TR /html5-diff circa 2009.

Chapter 2: Introducing HTML5S

HTMLS5 proposes two new attributes for the i frame element: seamless and sandbox.
The seamless attribute effectively renders the i frame as an inline include, which allows
the parent document’s CSS to affect the contents of the i frame:

<iframe src="content.html" name="thisframe" width="200"
height="300" seamless">[alternate content]</iframe>

Here is the same example using XHTML style syntax:

<iframe src="content.htm" name="thisframe" width="200"
height="300" seamless="seamless">[alternate content]</iframe>

The sandbox attribute “sandboxes” the iframe, essentially preventing it from pulling in
content from any source other than the i frame itself. Used without attributes, sandbox has
the following effects on the i frame:

¢ New windows cannot be created from within the i frame.

® Plug-ins are prohibited; embed, object, and applet will not function in
a sandboxed iframe.

¢ Nested inline frames are prohibited.

¢ A completely sandboxed iframe is considered, in essence, a new subdomain on the
client side. Access to JavaScript is not allowed; cookies can’t be read or written.

¢ A completely sandboxed inline frame cannot submit forms or run scripts.
These prohibitions can be “turned off” using a number of attributes:

* allow-same-origin allows the i frame to pull in content from elsewhere in the
same domain.

* allow-forms permits the submission of forms in the sandboxed iframe.

* allow-scripts allows the sandboxed iframe to run scripts from the same domain.

These attributes can be used separately, or together as space-separated values. The order of
the attributes does not affect any functionality.

<iframe src="content.htm" sandbox="allow-same-origin
allow-forms allow-scripts">
<iframe src="content.htm" sandbox="allow-forms">

HTMLS5 drops presentational i frame attributes such as frameborder, scrolling,
marginwidth, and marginheight. The attributes name, height, width, and the all-
important srec remain part of the specification. HTML5 also adds global attributes to all
HTMLS5 tags, including <i frames. See Chapter 3 for an in-depth discussion of these
attributes.

Under HTMLS5, the <iframe> tag can also be written XHTML style, with a closing slash:

<iframe src="content.htm" height="200" width="200"
sandbox="allow-same-origin" />

112

Part I: Core Markup

Unfortunately, this syntax does not allow the inclusion of alternative content as shown here:

<iframe src="content.htm" height="200" width="200"
sandbox="allow-same-origin">

Your browser does not support iframes or its new HTML5 attributes.

You should be able to get a browser that does this in a few years.

</iframe>

It is still preferable to use traditional HTML-style markup to insert an i £rame into an
HTML5 document.

At the time of this writing, HTML5 changes to <i frame> are not supported by any
browsers; however, Internet Explorer’s security attribute is quite similar to the intent of
HTML5’s sandbox attribute.

The draggable Attribute and the Drag and Drop API

HTMLS introduces drag and drop natively to the browser. Drag and drop has long been
implemented with JavaScript code that was not designed specifically for that purpose. Now
the logic is made much easier and cleaner as the HTMLS5 specification includes an attribute
and events that are intended exclusively for drag and drop.

In order to drag an item, the element must have the draggable attribute set to true:

<div id="dragme" class="box" draggable="true">I am a draggable div</div>

Everything else must be configured through JavaScript. There are several new events for
drag and drop. These are attached to HTML elements just as any other event using
addEventListener () or attachEvent ().

The following events are attached to the item that will be dragged:

* dragstart The drag hasbegun.
e drag The element is being moved.

* dragend The drag has completed.
The rest of the events are attached to the drop area:

¢ dragenter The element is dragged into the drop area.

¢ dragover The element is dragged into the drop area. The default behavior here is
to cancel the drop, so it is necessary to hook up this event and then return false or
call preventDefault () to cancel the default behavior.

® dragleave The element is dragged out of the drop area.

¢ drop The element is dropped in the drop area.
Here we use JavaScript to hook up some of these events on a draggable box and a drop area:
var drag = document.getElementById ("dragbox") ;

drag.addEventListener ("dragstart",dragstart, false) ;
drag.addEventListener ("dragend", dragend, false) ;

var d
drop.
drop.
drop.
drop.

Chapter 2: Introducing HTML5 113

rop = document.getElementById ("dropzone") ;
addEventListener ("dragenter",dragenter, false) ;
addEventListener ("dragleave",dragleave, false) ;
addEventListener ("dragover",dragover, false) ;
addEventListener ("drop",drops, false) ;

Each of these events contains a new event property called dataTransfer. This property is

used t

o customize the drag and drop and to pass data from the drag element to the drop

element. It supports the following properties itself:

dropEffect Indicates the type of drag and drop expected for the drop zone. If it
does not match the effectAllowed set in the drag element, then the drop will be
canceled. The options are none, copy, 1ink, and move; for example:
e.dataTransfer.dropEffect = "copy";

effectAllowed Indicates the types of drag and drop that the dragging element
will allow. If it does not match the dropEffect in the drop zone, then the drop will
be canceled. The options are none, copy, copyLink, copyMove, 1ink, linkMove,
move, all, and uninitialized; for example:

e.dataTransfer.effectAllowed = "move";

types Presents a list of content types that the draggable data contains:

if (e.dataTransfer.types.contains ("text/html")) {
//do something;
1

clearData() Resets the data in the drag element.
e.dataTransfer.clearData() ;

setData (format,data) Sets data to be sent to the drop zone. The format field
expects a string to indicate the format of the data being passed.

e.dataTransfer.setData ("text/plain", "Simple String") ;
e.dataTransfer.setData ("text/html", "HTML String") ;

getData (format) Fetches the data set by the drag item. Only returns the data
that matches the format type.

e.dataTransfer.getData ("text/html"); //returns HTML String</
strong>

setDragImage (element, x,y) When an item is being dragged, it is possible for
the drag shadow to be set to any element. It can be an element on the page, an image,
a newly created element, or even a canvas drawing. The x,y coordinates indicate
where the mouse should attach to the shadow.

e.dataTransfer.setDragImage (document .getElementById ("shadowimage", 10,
10));

With the methods and properties exposed in the dataTransfer property, the drag
and drop is quite powerful. One exceptional feature is the ability to drag anything
into a drop zone and retrieve the content via getData () . This includes URLs from
the address bar, HTML from other pages, and text from Notepad documents.

114

Part I: Core Markup

A simple example using a few of the drag and drop API properties and methods can be
found online at the book support site.

ONLINE http://htmlref.com/ch2/draggable.html

contenteditable Attribute

First introduced by Internet Explorer, the proprietary contenteditable attribute is
supported by most browsers today. HTML5 standardizes the use of this attribute globally
on all elements. The basic sense of the attribute is that if you set it to true, the browser
should allow you to modify the text directly when you click the element:

<p contenteditable="true">This paragraph of text is editable. Click it
and you will see. Of course there is no sense of saving it with code to
transmit the information to the server. This paragraph of text is editable.
Click it and you will see. Of course there is no sense of saving it with
code to transmit the information to the server.</p>

The browser may or may not present a style change to show you are in “edit mode.”

This paragraph of text is editable. This browser shows an edit model Click it and you will

see. Of course there is no sense of saving it with code to transmit the information to the Style change
server. This paragraph of text is editable. Click it and you will see. Of course there is no upon edit
sense of saving it with code to transmit the information to the server.

versus

This paragraph of text is editable. Click it and you will see. This browser is not showing
an editing style changel Of course there is no sense of saving it with code to transmit the No style change
information to the server. This paragraph of text is editable. Click it and you will see. Of

upon edit
course there is no sense of saving it with code to transmit the information to the server.

This paragraph uses some simple script to be editable. Double click the text to begin
editing.

It is possible to use JavaScript to enable content editing by changing the corresponding
contentEditable property for the element. For example, the following changes this
property and updates the class name to reflect a style change when in edit mode.

<p ondblclick="this.contentEditable=true;this.className='inEdit';"
onblur="this.contentEditable=false;this.className="'"';">This paragraph
uses some simple script to be editable. Double-click the text to
begin editing.</p>

Chapter 2: Introducing HTMLS 115

ONLINE http://htmlref.com/ch2/contenteditable.html

NoTtE Without sending the modified content to the server, any text changed when in edit mode will
be lost when the page is exited.

spellcheck Attribute

HTMLS5 defines a spellcheck attribute globally for elements. Interestingly, some browsers
such as Firefox have supported spell checking of form fields and elements in content editing
mode using the contenteditable attribute for some time. HTML5 makes this attribute
standard.

Enabling the spell checking of element content is a matter of setting the spellcheck
attribute to true:

<p spellcheck="true">Spellcheck on: There is a tyyypooo here.
Did the browser spot it?</p>

Testing in supporting browsers shows that indication on content editable regions appears
when there is a spelling error. However, there is unclarity in the specification whether the
user must be in edit mode before the indication should be displayed.

Spelicheck on: There s o MW,
2pelic CCK on ereis a i

typhoon
typography
topology

typeset
Add word

Commonly, this attribute is a bit more useful on form fields, given their interactive nature:

<label>Text field: (spellcheck on)
<input type="text" name="textfield" spellcheck="true" value="There is a
tyyypoo here. Did the browser spot it?"></label>

Given the application of single-line text fields, it is far more useful to set this attribute
on multiline text fields defined by a <textarea> tag, like so:

<label>Text area: (spellcheck on) <textarea name="comments"
spellcheck="true">There is a tyyypooo here. Did the browser spot it?
</textarea></label>

Text area: (spellcheck on) BEr-w sDid The e

ONLINE http://htmlref.com/ch2/spellcheck.html

NoTE Some browsers may invoke spell checking on elements—particularly the textarea
element—regardless of the presence and value of a spellcheck attribute.

116

Part I: Core Markup

Internationalization Improvements

While there are not many internationalization-supporting changes in the HTMLS5 specification,
it does make standard the ruby, rp, and rt elements, which were initially supported by the
Internet Explorer browsers to associate a reading text with a base text for certain East Asian
languages like Japanese. The base text that the annotation is associated with should be enclosed
in a <ruby> tag; the annotation, enclosed in a <rt> tag, will appear as smaller text above the
base text, and optionally an <rp> tag can be used to wrap content to delimit ruby text for
browsers that do not support this formatting:

<p>
<!-- The Kanji for Japanese language with the romanji above it or within
parens for non ruby aware browsers -->
<ruby>
HAFE <rp>(</rp><rt>nihongo</rt><rp>)</rp>
</ruby>
</p>

b

=
Al g
bl P

HTML5 Metadata Changes

The next generation of Web sites will be loaded with metadata. Such “data about the data”
is needed to enable the semantic Web and to power emerging Web applications. HTML5
adds numerous attributes and defines metadata values that should assist the trend.

data-X Attributes

HTMLS defines a standard way to include developer-defined data attributes in tags, often
for the consumption by scripts. The general idea is to use the prefix data- and then pick
a variable name to include some non-visual data on a tag. For example, here an author
variable has been defined as custom data:

<p id="pl" data-author="Thomas A. Powell">This is a data-X example</p>

This value could then be read either by using the standard DOM getAttribute ()
method,

<form>

<input type="button" value="Show Author" onclick="alert (document.
getElementById('pl') .getAttribute('data-author')); ">

</form>

or by using new HTML5 DOM objects and properties for accessing such data:

<form>

<input type="button" value="Show Author" onclick="alert (document.
getElementById('pl') .dataset.author) ;">

</form>

Chapter 2: Introducing HTMLS 17

These attribute values should not be used by a user agent to style the page and are
solely for developer use. In many ways, the attribute is the direct consequence of people just
inventing attributes and forgoing validation,

<p id="pl" author="Thomas A. Powell">This is a fake attribute example</p>
or using class values in a similar manner:
<p id="pl" class="author-Thomas-A.-Powell">This is a class data example</p>

This inappropriate use of markup is common since it is often useful to bury configuration
data in an element. Now, with the data- style attributes, we have a standard way of doing this
that will validate and hopefully reduce the conclusions that often ensue when overloading the
class attribute.

Microdata

HTMLS5 adds the concept of microdata, which adds the ability to annotate content in such
a way that a custom program will be able to parse the HTML page and retrieve items
consisting of name/value pairs of desired data. To create an item, the attribute i temscope
is added to a parent tag:

<div itemscope>

Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: July 22

Dog's Picture:
</div>

Simply creating an item doesn’t do much without any name/value pairs. The attribute
itemprop is used to create the name/value pairs on the desired data. The itemprop
attribute is set to the name of the pair, and the value depends on what type of element
itemprop is set on. If the element is an audio, embed, i frame, img, source, or video
element, then the value is set to the src of that tag. If the element is an a, area, or 1ink tag,
then the value is set to the href of that tag. If the element is a time tag, then the value is set
to the datetime attribute of that tag. If the element is a meta tag, then the value is set to the
content attribute of that tag. Otherwise, the value is set to the text of the tag.

As an example,

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
<meta itemprop="entryID" content="498274">
</div>

would set the following name/value pairs:

name: Angus

age: 7

birthday: 2002-07-22
picture:angus.jpg
entryID: 498274

118

Part I: Core Markup

It is also possible to have an itemprop be another item by setting the itemscope
attribute in the same tag as the one in which the i temprop attribute is set. This creates a
hierarchy of data:

<div itemscope>

Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2004-07-22">July 22</

time>

Dog's Picture:

<meta itemprop="entryID" content="498274">

Current Points:

<div itemprop="points" itemscope>

Appearance: 10

Obedience: 8

Talent: 7.5

</div>

</div>

In this example, the following hierarchy is added:

points:
appearance: 10
obedience: 8
talent: 7.5

It is also possible to have multiple items at the top level. We could simply create two
separate blocks of data:

<div itemscope>
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
<meta itemprop="entryID" content="498274">
</div>

<div itemscope>
Dog's Name: Kaylee

Dog's Age: 13

Dog's Birthday: <time itemprop="birthday" datetime="1995-11-26">November
26</time>

Dog's Picture:
<meta itemprop="entryID" content="472391">
</div>

However, it might be necessary to intermingle data. If so, the i temref attribute can be
set on the parent item to a list of space separated IDs to indicate additional elements that
should be traversed to find name/value pairs for this item.

<div id="angus" itemscope itemref="introangus pictureangus"></div>
<div id="kaylee" item scope itemref="introkaylee picturekaylee"></div>
<p>There are two dogs in the competition today. <brs>

Chapter 2: Introducing HTML5 119

First we have Angus who
is 7 years old.

Next, we have Kaylee
who is 13 years old.

Photos:

Angus:

Kaylee:

</p>

In the previous examples, there is no way of saying what type of item each item block is,
which would prevent useful collection of the data. In order to specify a type, the i temtype
attribute is set in the parent element. This value must be in the form of a URL:

<div itemscope itemtype="http://htmlref.com/dogs">
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:
<meta itemprop="entryID" content="498274">
</div>

Here the itemprop attribute was still set to a string as we have seen in all previous
examples. However, it is also possible to set the value to be a URL value. In this case, the
value can be collected outside of the realm of the item. This might be useful in order to fetch
all email addresses or phone numbers despite what the itemtype is set to.

<div itemscope itemtype="http://htmlref.com/dogs">
Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="http://htmlref.com/importantdates/birthday"
datetime="2002-07-22">July 22</time>

Dog's Picture: <img itemprop="http://htmlref.com/images/picture"
src="angus.jpg">

<meta itemprop="http://htmlref.com/contest/entryID" content="498274">
</div>

In these examples, a name/value pair has been used to set the entryID. However, if the
item is associated with a globally known ID, this ID can be set using the itemid attribute
on the parent element. This value must also be in the form of a URL.

<div itemscope itemtype="http://htmlref.com/dogs" itemid="http://htmlref.
com/dogs/entries/498274">

Dog's Name: Angus

Dog's Age: 7

Dog's Birthday: <time itemprop="birthday" datetime="2002-07-22">July 22</
time>

Dog's Picture:

</div>

So far, we have just been making up metadata, which is okay as long as you are the
primary target user of the data. However, for outside consumption, there are a number of
predefined types online that have defined vocabularies such as vCard, vEvent, BibTeX,

120

Part I: Core Markup

and RDE. If one of these metadata types is used, it is necessary to abide by the defined set of
itemprop values that can be used. As an example, the following defines a vCard in HTML5
using microdata attributes:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<h2 itemprop="fn">William Adama</h2>

Rank: Admiral</
span>

Nicknames:

Bill

Location:

Earth

</div>

It is possible to have duplicate entries with the same i temprop name and different values:

<div itemscope itemtype="http://microformats.org/profile/hcard">
<h2 itemprop="fn">William Adama</h2>

Nicknames:

Bill

0ld Man

Husker

</div>

It is also possible to have an itemprop with multiple names:

<div itemscope itemtype="http://microformats.org/profile/hcard">

<h2 itemprop="fn">William Adama</h2>

Rank: Admiral

</div>

The HTMLS5 specification defines extensions to the DOM to support microdata. This
topic is outside the scope of our discussion, but note that these extensions are not required
to use microdata today because standard DOM methods and traversal schemes should be
able to access any added data.

HTML5: Beyond Markup

One quite controversial aspect of the HTMLS5 specification is its “kitchen sink” approach to
solving all the woes and inconsistencies of Web development. HTMLS5 does not just define
markup and how it should be handled by browsers; instead, it addresses in a fair amount of
depth, the intersection of markup and other technologies like CSS and JavaScript, discussing
correct usage, addressing networking issues, exposing security concerns, proposing metadata
applications, and more. In this sense, HTML5 can be criticized for being a bit unfocused at
times and reminds the author of past grand solution efforts in computing, most of which

Chapter 2:

Introducing HTMLS

unfortunately failed. However, to be fair, past HTML specifications have not adequately
considered the context of markup usage. The reality is that Web development technologies
must live together, so it makes sense that HTMLS5 discusses the intersection between HTML
and other technologies. This section provides a brief overview of some of the interesting
aspects of HTMLS5 that are not limited to markup.

defer Attribute

HTMLS5 standardizes the defer attribute, long supported by Internet Explorer, to help
improve page rendering. In the presence of a defer attribute on a script element, or
defer="defer" in the case of markup using XML-like syntax, a supporting browser
should delay executing, and even loading (in the case of linked scripts) to a future time.
As a simple example, the following are two inline scripts, the first with a defer attribute
and the second without:

<script defer type="text/javascript" defer>

alert ("Deferred
</script>
<script type="text/
alert ("Immediat
</script>

Script") ;

javascript">
e Script ");

In supporting browsers, the first script would actually fire after the second. This
postponing of execution should also hold for external files and DOM inserted scripts as
well. Unfortunately, at the time of this edition’s writing, the actual execution pattern for
deferred scripts is variable in browsers:

@ script defer Test - Moezilla Firefox

@

|| script defer Test

Y

& sripl defer Test - Internel Explorer

¢ Favorites & script defer Test

- L 'E_ http://htmiref.com

/ [script defer Test | R

- C A T huws//himl

Scrpt 1 (inline mmediate)
Script 2 (inline deferred)

Serpt 1 (inline mmediate)
Seript 3 (infine immediare)
Seript 5 (external mmediate)
Seript 2 (infine deferrad)
Script 4 (external deferred)

defer su

Sampt 1 (mine mmmediate)
Seript 3 (inline immediate)
Script 2 (inline deferred)
Seript 5 (external immediate)
Script 4 (cxternal deferred)

pported

but varies

Script 3 (inline immediate)
Script 4 (external deferred)
Saipt 5 (cateinal mmnediate)

a scnpt defer Test - [Ipera
File Edit View Bookmarks Wid

EE script defer Tect X l

L NG INE INE I JNE.

Lty

Seript 1 (inline immediate)
Script 2 (inline deferred)
Script 3 (joline immediate)
Script 4 (external deferred)
Script 5 (extemal immediate)

No defer
support

HTML, JavaScript, and the DOM Renewed

The W3C’s DOM specifications (www.w3.org/DOM) provide the interface between
(X)HTML and JavaScript. These APIs allow Web developers to programmatically change
the very markup and style of Web pages, creating what is often dubbed dynamic HTML
(DHTML). While JavaScript hooks to markup and style are widely used, many browser-
specific features have been introduced and many workarounds have been invented because
the specifications have stayed static for a number of years. HTML5 codifies many of these

practices.

121

122 Part1: Core Markup

NOTE The term DHTML is more of a concept of using JavaScript a certain way with HTML and
CSS than a particular technology.

The DOM specifications have now been retired and the DOM bindings are specified
inside of the HTMLS5 specification itself. The HTMLS5 specification intermixes the definition
of an element’s markup with its script interface. All HTML elements have a basic interface
called HTMLElement, reproduced here:

interface HTMLElement : Element
// DOM tree accessors
NodeList getElementsByClassName (in DOMString classNames) ;

// dynamic markup insertion
attribute DOMString innerHTML;
attribute DOMString outerHTML;
void insertAdjacentHTML (in DOMString position, in DOMString text) ;

// metadata attributes
attribute DOMString id;
attribute DOMString title;
attribute DOMString lang;
attribute DOMString dir;
attribute DOMString className;
readonly attribute DOMTokenList classList;
readonly attribute DOMStringMap dataset;

// microdata

attribute boolean itemScope;

attribute DOMString itemType;

attribute DOMString itemId;

attribute DOMString itemRef;
[PutForwards=value] readonly attribute DOMSettableTokenList itemProp;
readonly attribute HTMLPropertiesCollection properties;

attribute any itemvalue;

// user interaction
attribute boolean hidden;

void click () ;

void scrollIntoView () ;

void scrollIntoView(in boolean top) ;
attribute long tabIndex;

void focus() ;

void blur() ;
attribute DOMString accessKey;

readonly attribute DOMString accessKeyLabel;
attribute boolean draggable;
attribute DOMString contentEditable;

readonly attribute boolean isContentEditable;
attribute HTMLMenuElement contextMenu;
attribute DOMString spellcheck;

// command API

Chapter 2: Introducing HTML5 123

readonly attribute DOMString commandType;
readonly attribute DOMString label;
readonly attribute DOMString icon;
readonly attribute boolean disabled;
readonly attribute boolean checked;

// styling
readonly attribute CSSStyleDeclaration style;

// event handler DOM attributes
attribute Function onabort;
attribute Function onblur;
attribute Function oncanplay;
attribute Function oncanplaythrough;
attribute Function onchange;
attribute Function onclick;
attribute Function oncontextmenu;
attribute Function ondblclick;
attribute Function ondrag;
attribute Function ondragend;
attribute Function ondragenter;
attribute Function ondragleave;
attribute Function ondragover;
attribute Function ondragstart;
attribute Function ondrop;
attribute Function ondurationchange;
attribute Function onemptied;
attribute Function onended;
attribute Function onerror;
attribute Function onfocus;
attribute Function onformchange;
attribute Function onforminput;
attribute Function oninput;
attribute Function oninvalid;
attribute Function onkeydown;
attribute Function onkeypress;
attribute Function onkeyup;
attribute Function onload;
attribute Function onloadeddata;
attribute Function onloadedmetadata;
attribute Function onloadstart;
attribute Function onmousedown;
attribute Function onmousemove;
attribute Function onmouseout;
attribute Function onmouseover;
attribute Function onmouseup;
attribute Function onmousewheel;
attribute Function onpause;
attribute Function onplay;
attribute Function onplaying;
attribute Function onprogress;
attribute Function onratechange;
attribute Function onreadystatechange;

124

Part I: Core Markup

attribute Function onscroll;
attribute Function onseeked;
attribute Function onseeking;
attribute Function onselect;
attribute Function onshow;
attribute Function onstalled;
attribute Function onsubmit;
attribute Function onsuspend;
attribute Function ontimeupdate;
attribute Function onvolumechange;
attribute Function onwaiting;

Vi

As you can see, this interface defines common attributes like id, title, lang, dir, and
so on. It also defines numerous event handlers like onclick, onscroll, onselect, and so
on that are associated with functions. Numerous methods are also defined.

Specific elements will inherit these scripting hooks and add to them. For example, note
the interface for the new HTML5 time element:

interface HTMLTimeElement : HTMLElement {
attribute DOMString dateTime;
attribute boolean pubDate;
readonly attribute Date valueAsDate;

Vi

This takes all the features of HTMLElement and adds to them dateTime, pubDate, and
valueAsDate properties.

As you look closely at the HTMLS5 script bindings, you’ll notice that the difference
between an HTMLS5 element’s attributes and the corresponding script properties is minimal.
In general, if an element has an attribute, its property will be the same, with two exceptions:

¢ If the name of an HTML attribute is composed of multiple words, the first letter of
the all but the first word is uppercase when the name is used as a scriptable
property name. For example, the time element has a pubdate attribute; following
the previous rule, the corresponding DOM property is pubDate.

e If the name of the attribute is a reserved word in JavaScript, it will be redefined
somehow. The most common attribute this rule is applied to is the class attribute,
which is widely used. The word “class” can’t be used as a scriptable property name
because keyword class is reserved for future versions of JavaScript. Thus, to
change the class attribute via JavaScript, use className instead.

As long as you are aware of these two rules, the mappings between markup and script
are actually pretty straightforward.

We certainly don’t expect you to become familiar with the DOM here; a sister book,
JavaScript: The Complete Reference, of nearly the same page count covers JavaScript and its
usage with HTML and CSS. However, we do want to make it clear that the HTML5
specification combines the DOM and markup specifications together, so from here on out
the two ideas should stay more in harmony. This is generally a good thing, though it does
make the specification quite a bit larger.

Chapter 2: Introducing HTML5 125

Standardizing and Extending Ad Hoc JavaScript Conventions

One important aspect of the HTMLS5 specification is that a number of the messy aspects of
JavaScript and its usage within a Web browser finally have a specification. Various
JavaScript objects like Navigator, History, and more are not really part of any standard
other than an ad hoc one. In many cases, proprietary JavaScript objects, properties, and
methods are documented, but only by the originating vendors, and other implementations
that may or may not conform to this proprietary specification may exist.

Probably the most famous of the proprietary turned common features in JavaScript is
Microsoft’s innerHTML property, which allows for quick creation of new markup in
documents. This property is commonly used by Web developers who accept that it is
widely implemented and quite useful compared to standard DOM techniques. As a
demonstration, consider the code needed to insert the following markup:

<p>This is just a test.</p>
into a named div element:

<div id="divli"></div>

Using the DOM, the code might look like this:

var strl,str2,str3;

var ell,el2;

ell = document.createElement ('p');

strl = document.createTextNode ('This is ');
ell.appendChild(strl) ;

el2 = document.createElement ('strong') ;
str2 = document.createTextNode ('just') ;
el2.appendChild(str2) ;
ell.appendChild(el2) ;

str3 = document.createTextNode ('a test.');
el.appendChild(stx3) ;

document .getElementById ('divl') .appendChild(ell) ;

Using chaining, it is possible to jam statements together, but the task is much easier
using Microsoft’s innerHTML property. Simply make a string like so

var newElements = "<p>This is <strongs>just a test.</p>";
and then set the contents of the div to this string:
document .getElementById('divl') .innerHTML = newElements;

By setting the innerHTML property, in effect, the browser’s parser is invoked, and it creates
elements from the string provided.

Given the wordiness of DOM methods, many developers prefer Microsoft’s innerHTML
scheme and thus it has been widely copied and put into other browsers. However, HTML5
does not cover all of Microsoft’s other, related properties like innerText and outerText,
though outerHTML for now appears to be covered.

126

Part I: Core Markup

It is interesting that many developers are quite okay with the use of innerHTML but are
quick to deride the use of JavaScript’s eval () statement. In many ways, these are the same
concepts: the former provides direct access to the markup parser and the latter provides
direct access to the JavaScript interpreter. Regardless of the consistency of Web developers’
thinking patterns, the codification of innerHTML is quite a welcome change.

The embrace of common practices by HTMLS5 isn’t limited to innerHTML; the specification
supports all sorts of features, such as designMode features that allow for browser-based
WYSIWYG editing, commonly used DOM workarounds like insertAdjacentHTML (),
emerging DOM methods like getElementsByClassName (), more-esoteric DOM
specifications like ranges and selections, and more.

The specification also provides APIs for what it introduces. We explored just such an
API earlier in the chapter when we experimented with canvas scripting. Similarly, elements
like audio and video expose a number of properties such as volume and methods such as
play ().

There is much to be discovered when reading the HTMLS5 specification closely. Consider,
for example, how browsers handle runaway script code. There really is nothing online that
defines how or when this is done, but the HTMLS5 specification actually starts to address
such problems (section 6.5.3.4):

User agents may impose resource limitations on scripts, for example, CPU quotas,
memory limits, total execution time limits, or bandwidth limitations. When a
script exceeds a limit, the user agent may either throw a QUOTA_EXCEEDED_
ERR exception, abort the script without an exception, prompt the user, or throttle
script execution.

If you take the time to read the specification, you will find many passages such as this
that offer hope that someday troubling corner cases in Web development will be reduced or
even eliminated. However, you might also get a sense that the aims of the specification are
a bit too grand. You can find bits and pieces of half-baked ideas about undo-redo handling;
subtle hints about important architectural changes, such as the management of history for
supporting Ajax applications; discussion of offline features and storage schemes; and
documentation of a variety of communication schemes, from interframe message posting to
full-blown Web Socket communication. In some cases, these diversion APIs will spawn their
own documents, but in other cases they just clutter the specification. The critics really do
have a point here.

Major HTML5 Themes

As we wind down the chapter, we need to take a look at some of the major themes of HTMLS5.
These are deep issues that you will encounter over and over again in the Web development
community. These are presented mostly to spur your thinking rather than to offer a definitive
answer, because HTMLS5 is quite a moving target.

HTML5 Today or Tomorrow?

The simple question that you must have about HTMLS5 is, can I use it yet? The answer is
yes. You can embrace the future just by adopting the simple <!DOCTYPE html> statement.
Of course, that isn’t very interesting, so your question really is, can I use any of the new

Chapter 2: Introducing HTML5S 127

features now? The answer is again yes, but this time with some caution. To demonstrate
why caution is required, the following is a simple example of the use of HTML sectioning
elements, introduced toward the start of the chapter, but now with some style applied to the
new HTMLS5 elements used:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>HTML5 Today?</title>
<style type="text/css">
/* style up a few of the new elements */
article, aside, figure, footer, header,
hgroup, menu, nav, section { display: block;}

body > header {background-color: #930; color: white;}
body > footer {border-top: solid 5px black;}

h2 {margin-top: 0; font-style: italic;}

h3 {font-variant: small-caps;}

p {margin-left: 1.5em;}

section {border-top: dashed 2px black; padding-top: lem;}

section > section h3 {margin-left: 2em;}
section > section p {margin-left: 3em;}

body > footer > p {text-align: right;

font-style: italic;
font-size: smaller;}

</style>

</head>

<body>

<header>

<hl>Welcome to the Future World of HTML5</hl>

<h2>Don't be scared it isn't that hard!</h2>

</header>

<!-- assume chapter 1 before -->

<section id="chapter2">

<header>

<hl>Chapter 2</hl>
</header>
<p>Intro to chapter here...</p>
<section id="newStrucreElements">
<header>

<h2>New Structural Elements</h2>
</header>

<h3>header Element</h3>
<p>Discussion of header element.</p>
<h3>footer Element</h3>
<p>Discussion of footer element.</p>
<h3>section Element</h3>

128

Part I: Core Markup

<p>Discussion of section element</p>
</section>

<section id="newFormElements">
<header>

<h2>New Form Elements</h2>
</header>

<h3>input type=date</h3>
<p>Discussion here...</p>

<footer>
<p>These ideas are from WebForms specification.</p>
</footer>
</section>
</section>

<section id="chapter3">
<header>
<h2>Chapter 3</h2>
</header>
<p>Massive element reference...</p>
</section>

<footer>
<p>Content of this example is not under copyright</p>
</footer>

</body>
</html>

ONLINE http://htmlref.com/ch2/htmi5today.html

Figure 2-7 shows the rendering of the example in two common browsers. Note that
Internet Explorer 8 and earlier has some trouble with the new elements.

To address Internet Explorer’s lack of support, we can introduce a small script that
creates the new HTML5 elements using the DOM createElement () method. Once IE
recognizes them as elements, it renders the markup and style fine, as shown in Figure 2-8.

<!--[if IE]>
<script type="text/javascript">

var html5elements = "abbr,article,aside,audio,canvas,datalist,details,
figure, footer, header, hgroup, mark, menu, meter, nav, output, progress, section,
time,video".split (', ') ;

for (var i = 0; i < html5elements.length; i++)
document .createElement (html5elements [i]) ;
</script>

<! [endif]-->

ONLINE http://htmlref.com/ch2/htmi5todayie. html

Chapter 2: Introducing HTML5S

8 HTMUS Today? - Intemet Explorer provided by Dell
@\J w [] hitpe//htmiret.com/ch2/htmiStodey bt -T [_';.] "I.".

o Favorites | g HTMLS Today?

’__}-..1

|

qﬁ]rmrrw-‘mmasmr. . =~ L
File Edit Yiew Higtory Bookmarks Jook Help

€ . -C X i
| HTMLS Today? | = =

| hitgi/ hemiref.com/ch2/htmiStoday.htmi 7 <) (20~ L5outlining P

Welcome to the Future World

Don't be scared it isn't that hard!

Chapter 2

Intro to chapter 2 here
New Structural Elements
HEADER ELEMENT

Discussion of header element
FOOTER ELEMENT

Discussion of footer element
SECTION ELEMENT

Drscussion of section element
New Form Elements
INPUT TYPE-DATE

Diiscussion here

These ideas are from WebForms specification
Chapter 3

Massive element reference

Contents of this example is not under copynight

Velcome to the Future World of HTMLS

on't be scared it isn't that hard!

Chapter 2

Intro to chapter 1 here

New Structural Elements
HEADER ELEMENT
Discussion of header element
FOOTER ELEMENT
Discussion of footer element
SECTION ELEMENT

Discussion of section element

New Form Elements
INPUT TYPE=DATE
Discussion here..

These ideas are from WebForms specification.

Chapter 3

Massive element reference.

Contents of this example is #ot under copyright

Dane " Trusted sites | Protectsd Mode: Off]

Done o

Ficure 2-7 HTML5 works straightaway in many browsers, but not IE.

NOTE Because the preceding “shim” s

cript uses condition comments to make it work in Internet

Explorer, it will not validate well. There are ways around this if you want to use browser
detection. The point of the script is to illustrate the ability to make HTML5 work everywhere.

You can expect that the code will ch

ange over time or other hacks will be introduced.

When moving beyond simple HTML5 semantic elements to interactive features, the
situation is a bit dicier. Certainly JavaScript can be used to simulate many features, but until

such features are solidly supported,

you should proceed with caution.

Opponents of HTMLS5 throw out an estimated final version date of 2012 or even 2022 as

a reason to avoid the technology for

now. Yes, indeed, some timelines suggest that HTML5

won’t be completely final until maybe 2022. Of course, plenty aspects of HTML5 are

129

130 PartI: Core Markup

£ HTMLS Todsy Even in 1L - Internet Dxplorer provided by Dell 'ﬁ HTMLS Today Even in IE - Mozills Firefox 36 Beta 1 I?HUl
@Qv !g_ hitp:/mieef.com/ch2/htmiStodayie.htm| vl ;_‘_l‘pl K| Eile it !'M Higey.. fackmarks Jacis.. Hep

it T ; o C X Ay ([nepmemied.comich2hmbBtodayientml 77 - | |2~ L5 cutlining 2
wr Favarites | @& HTMLS Todey Even in IE - = [0 |] uTMLS Today fven in IF [+

Velcome to the Future World fWelcome to the Future World of HTMLS

Don't be scared it isn't that hard! Don't be scared it isn't that hard!

Chapter 2 Chapter 2
Intro to chapter 2 heve... Tntra to chapter 2 here
New Structural Elements New Structural Elements
HEADER ELEMENT HEADER ELEMENT
Discussion of header element. Dizenscion of header slament
FOOTER ELEMENT FOOTER ELEMENT
Discussion of footer element. Discussion of footer element.
SECTION ELEMENT SECTION ELEMENT
Discussion of section element Discnssion of secton element

New Form Elements New Form Elements

INPUT TYPE=DATE INPUT TYPE-DATE

Discussion here... Discussion here. ..
These ideas are from Webl omms specification. These ideas are from WebFomms specification

Chaprer 3 Chapter 3
Massive slement refersnce Massive clement reference.
S Conterts of this excmple i rot under cogyright
Dane / Trusted sites | Protected Mode Off| | Dene o]

Figure 2-8 Much of HTML5 can work everywhere!

implemented today, and it is more likely that preliminary versions of the specification will
be accepted at the time you read this. If you want to avoid using a specification until it is
100 percent complete, you should note that even HTML 4 has some open implementation
and testing concerns, so you might want to head back to earlier versions. Seriously, what
really should matter with a specification like HTMLS5 is whether you can use many of its
features. The answer to that question is clearly yes.

HTML5 as a Catch-All

HTML is part of a bigger world. A modern Web site or application really needs much more
than markup and must address style, script, media elements, network concerns, security
issues, user capabilities, and much more. Because of the environment in which it is found,

Chapter 2: Introducing HTML5S

the HTMLS specification seems to touch all manner of topics. In this sense, its critics have a
point about its “everything and the kitchen sink” nature. However, it is impossible for
markup to live in a vacuum, so some overlap and environmental considerations are to be
expected.

Unfortunately, given that it looks like a catch-all specification, many people misunderstand
the technology and use the idea of HTML5 simply to refer to anything that is new in a Web
browser. HTML5 doesn’t talk about CSS properties. HTML5 doesn’t define Web fonts.
HTMLS5 doesn’t change HTTP. While the specification is huge, there is plenty outside of it,
so why is there such a misconception that it covers everything? Well, that’s the politics of
the Web at work.

HTML5: Web Politics as Usual

The Web is an interesting place technology-wise because the mob tends to rule. Very often,
well-defined specifications will be built only to be avoided or replaced by ad hoc specifications
that appear to spring out of nowhere. HTMLS5 tries to tame the mob and bring a bit of order
to the chaos, but that doesn’t come easily, particularly when politics and competition are
involved.

On the Web, there are those who promote openness, and those who promote new
proprietary features for their own browsers. Some will label such organizations good or
bad, and declare their technology the one true way over others. Such promotion of us
versus them can create loyal followers, but the author finds some of the discussion more
than a bit disingenuous.

Web technologies that were once maligned as proprietary Microsoft features, such as
innerHTML, contenteditable, Ajax XMLHt tpRequest object, and more, have been quietly
absorbed into the open Web community. Other capabilities such as CSS transformations,
behaviors, Web fonts, and animations found in Internet Explorer—in many cases for the better
part of a decade—are also maligned as proprietary only to be reintroduced with slight syntax
differences by other browser vendors to hails of the progress of the open Web. “Today
proprietary, tomorrow standard” seems to be the rule of Web standards, and it would seem
that now HTMLS5 is doing its part to continue politics as usual.

Google has already begun a tremendous push to promote HTML5. The problem is the term
is basically being used as a comparison as to what a major competitor is not supporting, more
than a lucid discussion of the emerging technology. Unfortunately, from my observations,
when most people speak of HTMLS5, it is more as a code for open Web or even anti-Microsoft,
which reminds me of other misused terms of the last browser battles. Let’s hope that cool
heads prevail in the standards fights that will likely ensue.

HTML5: Imperfect Improvement
HTMLS is an imperfect improvement for an imperfect Web world. We simply can’t force the
masses to code their markup right. HTML5 doesn’t try to accomplish this fool’s errand but
instead finds a reasonable path of defining what to do with such malformed markup at the
browser level.

The HTMLS5 specification is too big. It’s a sprawling specification and covers many
things. However, it tries to document that which is ad hoc and make decisions about issues
left unsolved. Something is better than nothing.

131

132

Part I: Core Markup

The HTMLS5 specification is a work in progress. Writing a book about such a moving
target is more than a bit of a challenge. However, like the specification itself, something had
to be done. It will take too long to finish the specification, and in the meantime people want
to use some of the new elements that are already supported.

HTMLS5 will change the Web, but the old Web will likely live on. Thinking that HTML5
is going to take the world by storm, co-opting standard practices and usurping technologies
like Flash in short order, is fanciful. The old ways will continue to live on and it will be quite
some time before HTMLS5 ideas are even commonplace.

HTML5 won't solve all the problems you encounter as a Web developer. In fact, a safe
prediction is that it will introduce even more trouble, particularly as we transition from the
old ways to the new. And although the standard is evolving quickly, there are bound to be
fights among browser vendors, multiple interpretations of the standards, and the typical
dance between innovation and specification conformance.

Summary

HTMLS is the future. Working with the messed-up markup that dominates the Web and
providing a definition of how user agents should parse the mess is a tremendous
improvement in Web development. Yet HTML5 doesn’t simply embrace the past; it extends
the language with many more elements and continues the move to more semantic markup.
While some markup purists may bemoan the resurgence of HTML traditions, the XML
future is not destroyed by HTMLS5. If you want to use lowercase, quote all attributes, and
self-close empty elements, go right ahead—that conforms to HTML5 as well. However,
HTMLS5 isn’t just about markup; it is also about metadata, media, Web applications, APIs,
and more. It's a sprawling specification that will continue to evolve, but much of it is here
today, so get busy and embrace the future of markup now.

CHAPTER

HTML and XHTML
Element Reference

XHTML 1.0 specifications. All known HTMLS5 elements at the time of this edition’s

writing are covered as well, but given the fluid nature of the specification, some
elements may have been omitted or syntax may have changed by the time of publication.
You are encouraged to proceed with caution when considering the HTMLS5 information
because, again at the time of this writing, the specification is in flux and few of the elements
discussed work natively in browsers. Proprietary features discussed in this reference also
should be treated with some caution. All the browser-specific elements and attributes
supported by Internet Explorer, Firefox, Safari, Chrome, Netscape, and Opera are presented.
Some elements presented in the reference might be deprecated, but they are included
nevertheless either because browser vendors continue to support them or because they may
still be found in use.

I I This chapter provides a complete reference for the elements in the HTML 4.01 and

Flavors of HTML and XHTML

There are many versions of HTML and XHTML in existence (see Table 3-1). In the early
days, the specification of HTML was somewhat fluid, and browser vendors of all sizes
added their own elements. First the Internet Engineering Task Force (IETF) and later the
World Wide Web Consortium (W3C) set standards for HTML and its cousin XHTML.

133

134 Part I:

Core Markup

Version

Specification URL

Description

HTML 2.0

www.w3.org/MarkUp/
html-spec/html-spec_toc.html

Classic HTML dialect supported by browsers
such as Mosaic. This form of HTML supports
core HTML elements and features such as
tables and forms, but does not consider any of
the browser innovations of advanced features
such as style sheets, scripting, or frames.

HTML 3.0

www.w3.org/MarkUp/htmI3/
Contents.html

The proposed replacement for HTML 2.0 that
was never widely adopted, most likely due to
the heavy use of browser-specific markup.

HTML 3.2

www.w3.org/TR/REC-htmI32

This version of HTML finalized by the W3C in
early 1997 standardized most of the HTML
features introduced in browsers such as
Netscape 3. This speficifcation supports many
presentation elements, such as font, as well
as early support for some scripting features.

HTML 4.0
Transitional

www.w3.org/TR/html4/

The 4.0 transitional form finalized by the
W3C in December of 1997 preserves most
of the presentational elements of HTML 3.2.
It provides a basis of transition to Cascading
Style Sheets (CSS) as well as a base set of
elements and attributes for multiple-language
support, accessibility, and scripting.

HTML 4.0 Strict

www.w3.org/TR/html4/

The strict version of HTML 4.0 removes most
of the presentation elements from the HTML
specification, such as font, in favor of using
CSS for page formatting.

4.0 Frameset

www.w3.0rg/TR/html4/

The frameset specification provides a rigorous
syntax for framed documents that was lacking
in previous versions of HTML.

HTML 4.01
Transitional/
Strict/Frameset

www.w3.org/TR/html401/

A minor update to the 4.0 standard that
corrects some of the errors in the original
specification.

HTML5

www.w3.org/TR/htmI5/

Addressing the lack of acceptance of the XML
reformulation of HTML by the mass of Web
page authors, the emerging HTML5 standard
originally started by the WHATWG group and
later rolled into a W3C effort aimed to rekindle
the acceptance of traditional HTML and extend
it to address Web application development,
multimedia, and the ambiguities found in
browser parsers. Since 2005, features now
part of this HTML specification have begun to
appear in Web browsers, muddying the future
of XHTML.

TasLE 3-1

(X)HTML Specifications Overview

Chapter 3:

HTML and XHTML Element Reference

Version Specification URL Description
XHTML 1.0 www.w3.org/TR/xhtml1/ A reformulation of HTML as an XML
Transitional application. The transitional form preserves

many of the basic presentation features of
HTML 4.0 transitional but applies the strict
syntax rules of XML to HTML.

XHTML 1.0 Strict

www.w3.org/TR/xhtml1/

A reformulation of HTML 4.0 Strict using XML.
This language is rule enforcing and leaves all
presentation duties to technologies like CSS.

XHTML 1.1

www.w3.org/TR/xhtml11/

A restructuring of XHTML 1.0 that modularizes
the language for easy extension and reduction.
It is not commonly used at the time of this
writing and offers minor gains over strict
XHTML 1.0.

XHTML 2.0

www.w3.org/TR/xhtml2/

A new implementation of XHTML that will not
provide backward compatibility with XHTML 1.0
and traditional HTML. XHTML 2 will remove all
presentational tags and will introduce a variety
of new tags and ideas to the language. Beyond
this brief description, which may certainly be
wrong by the time you read it, little can be said
about XHTML 2 with certainty other than, given
HTMLS5, its future is somewhat questionable.

XHTML Basic 1.0

www.w3.org/TR/2000/REC-
xhtml-basic-20001219/

A variation of XHTML based upon the
modularization of XHTML (1.1) designed to
work with less-powerful Web clients such as
mobile phones.

XHTML Basic 1.1

www.w3.0rg/TR/xhtml-basic/

An improvement to the XHTML Basic
specification that adds more features, some
fairly specific to the constrained interfaces
found in mobile devices.

TaBLe 3-1 (X)HTML Specifications Overview (continued)

Core Attributes Reference
The HTML and XHTML specifications provide four main attributes that are common to

nearly all elements and have much the same meaning for all elements. These attributes are

class, id, style, and title. Rather than replicating this information throughout the
chapter, it is summarized here.

135

136

Part I: Core Markup

class

This attribute indicates the class or classes that a particular element belongs to. A class name
might be used by a style sheet to associate style rules with multiple elements or for script
access using the getElementsByClassName () method. As an example, you could associate
a special class name called “fancy” with all elements that should be rendered with a
particular style named as such in a style sheet. Class values are not unique to a particular
element, so both <strong class="fancy">and <p class="fancy"> could be used in
the same document. It also is possible to have multiple values for the class attribute
separated by white space; <strong class="fancy special expensive">would define
three classes for the particular strong element.

id
This attribute specifies a unique alphanumeric identifier to be associated with an element.
Naming an element is important to being able to access it with a style sheet, a link, or a
scripting language. Names should be unique to a document and should be meaningful;
although id="x1" is perfectly valid, id="Paragraphl" might be better. Values for the id
attribute must begin with a letter (A-Z or a—z) and may be followed by any number of
letters, digits, hyphens, or periods. However, practically speaking, a period character
should not be used within an id value given the use of these values in scripting languages
and possible confusion with class names.

Once elements are named with id, they should be easy to manipulate with a scripting
language. Commonly they are referenced using the DOM method getElementById ().

Like the class attribute, the id attribute is also used by style sheets for accessing a
particular element. For example, an element named Paragraphl can be referenced by a
style rule in a document-wide style by using a fragment identifier:

#Paragraphl {color: blue;}

Once an element is named using id, it also is a potential destination for an anchor. In
the past, an a element was used to set a destination; now, any element can be a destination,
for example:

Skip to content
<div id="mainContent">This is the content of the page.</div>

One potential problem with the id attribute is that, for some elements, particularly form
controls and images, the name attribute already serves its function. You should be careful
when using both name and id together, especially when using older element syntax with
newer styles. For example, from a linking point of view, the following markup might be
used to set a link destination:

At some other point in the document, an id with the same named value might exist, like so:
<p id="anchorPoint">I am the same destination?</p>

There is some uncertainty, then, about what this link would do:

Where do I go?

Chapter 3: HTML and XHTML Element Reference 137

Would it go to the first link defined or would it go to the last? Would it favor the element
using the id over the name regardless of position in the document? It’s better not to leave
such issues to chance but rather to assume that name and id are in the same namespace, at
least when linking is concerned.

With form elements, the choice of using name and id can be more confusing. The name
attribute lives on and must be used to specify name/value pairs for form data:

<input type="text" name="username">

However, the id attribute also is applied to form controls for style purposes and overlap
for scripting duties, so it is not uncommon to see name and id used together with the same
value:

<input type="text" name="username" id="username">

Generally, this is an acceptable practice except when the purpose of name serves secondary
duty, such as in the case of radio buttons:

<label>Yes:

<input type="radio" name="yesno" id="yesno" value="yes">
</label>

<label>No:

<input type="radio" name="yesno" id="yesno" value="no">
</label>

In the preceding markup, the radio buttons must share the name value, but the id values
should be unique for CSS and JavaScript usage. A simple rewrite like this makes it work, but
shows that name and id are not quite synonymous:

<label>Yes:

<input type="radio" name="yesno" id="yesno-yeschoice" value="yes">
</label>

<label>No:

<input type="radio" name="yesno" id="yesno-nochoice " value="no">
</label>

Given such chance for confusion, you are encouraged to pick a naming strategy and use
it consistently.

style

This attribute specifies an inline style associated with an element, which determines the
rendering of the affected element. Because the style attribute allows style rules to be used
directly with the element, it gives up much of the benefit of style sheets that divide the
presentation of a markup document from its structure. An example of this attribute’s use is
shown here:

<strong style="font-family: Arial;
font-size: 18px;">Important text

138

Part I: Core Markup

title

The title attribute is used to provide advisory text about an element or its contents. Given

<p title="Hey look I am a title tooltip!">
This is the first paragraph of text.
</p>

the title attribute sets some message on this first paragraph. Browsers generally display this
advisory text in the form of a tooltip, as shown here:

This is the first paracranh of text
ey lookIam a title tooltip!]

In some cases, such as when applied to the a element, the title attribute can provide
additional help in bookmarking. Like the title for the document itself, title attribute
values such as advisory information should be short, yet useful. For example, <p title="a
paragraph"> provides little information of value, whereas <p title="HTML: The
Complete Reference - Title Example"> provides much more detail. The attribute can
take an arbitrary amount of text, but the wrapping and presentation of larger titles will
likely vary.

NOTE As of the writing of this edition, no formatting can be applied within advisory text, though
the HTMLS5 specification does indicate that Unicode linefeeds (\u0004) should eventually be
supported.

When combined with scripting, this attribute can provide facilities for automatic index
generation.

Language Attributes Reference

The use of other languages in addition to English in a Web page might require that the text
direction be changed from left to right or right to left or might require other localization
modifications. Once supporting non-ASCII languages becomes easier, it might be more
common to see documents in mixed languages. Thus, there must be a way to indicate the
language in use and its formatting. The basic language attributes are summarized here to
avoid redundancy.

dir

The dir attribute sets the text direction as related to the 1ang attribute. The accepted values
under the HTML 4.01 specification are 1tr (left to right) and rt1 (right to left). It should be
possible to override whatever direction a user agent sets by using this attribute with the bdo
element:

<div>

Standard text running left to right in most cases.

<bdo dir="rtl"sNapoleon never really said <g>Able was I ere
I saw Elba.</g></bdo> More standard text.

</div>

Chapter 3: HTML and XHTML Element Reference 139

lang

The lang attribute indicates the language being used for the enclosed content. The language
is identified using the ISO standard language abbreviations, such as fr for French, en for
English, and so on. RFC 1766 (www.ietf.org/rfc/rfc1766.txt) describes these codes and their
formats.

Other Common Attributes Reference

The are a number of common attributes found on elements. Microsoft in particular
introduced a number of new proprietary attributes starting with the Internet Explorer 4
browser. Recently, with the introduction of Internet Explorer 8, proprietary features have
become less common. Interestingly, many of these features are supported by other browsers,
given the desire of their developers to emulate IE, the currently most popular browser. The
attributes continue to be supported and, in some cases, such as contenteditable, have
approached de facto standard and in some cases attributes have become part of HTML5.
Given their ubiquity, these attributes are summarized here to avoid redundancy when
presenting the various elements.

accesskey

Microsoft applied this W3C attribute to a wider variety of elements than form elements. The
accesskey attribute specifies a keyboard navigation accelerator for the element. Pressing
ALT or a similar key (depending on the browser and operating system) in association with
the specified key selects the anchor element correlated with that key.

If access keys are employed, Web page authors are cautioned to be aware of predefined
key bindings in the browsing environment, a sampling of which is detailed in Table 3-2.

NoTE If you take into consideration some older and esoteric browsers, there are even more preset
keys to avoid.

TasLe 3-2 Browser

Reserved Accelerator Key Binding
Keys F File menu
E Edit menu
v View menu
G Widgets menu (Opera), older Mozilla Go menu

History menu (Safari)

Bookmarks menu (Mozilla, Safari)

Favorites menu (Internet Explorer)

Tools or Tasks menu

History or Search menu depending on browser

Window menu (Safari and older Mozilla)

Favorites menu (Internet Explorer only)

I|>|s 0v|ld|> | w

Help menu

140

Part I: Core Markup

Also note that the UK government has recommended that, for accessibility, certain key
bindings should be predefined in UK Web sites. These suggested values are found in Table 3-3.

Page authors are also encouraged to consider styling or providing script-based schemes
to reveal accesskey bindings because they may not be obvious to users even when a
convention like the UK bindings is employed.

align

Many browsers define the align attribute on elements. Transitional versions of (X)HTML
do as well. This attribute generally takes a value of 1eft, right, or center, which
determines how the element and its contents are positioned in a table or the window. The
value of 1eft is usually the default. In some cases, a value of justify is also supported.
CSS properties like text -align and margin should be used instead of this attribute when
possible.

contenteditable

This proprietary Microsoft attribute, now part of the HTMLS5 specification, allows users to
directly edit content in a browser. Values are false, true, and inherit. A value of false
prevents content from being edited by users; true allows editing. The default value,
inherit, applies the value of the affected element’s parent element. In addition to Internet
Explorer, all recent major browsers, such as Firefox 3+, Safari 3+, and Opera 9.5+, also
support this attribute.

Access Key Suggested Destination

Skip navigation

Home page

What's new

Site map

Search

Frequently Asked Questions (FAQ)

Help

Complaints procedure

Terms and conditions

Feedback form

Q|| N/ O || WMLV

Access key details (information on these and other keys plus usage)

TaBLe 3-3 UK Government Suggested accesskey Bindings

Chapter 3: HTML and XHTML Element Reference M

datafld

This attribute specifies the column name from the data source object that supplies the
bound data. This attribute is specific to Microsoft’s data binding.

dataformatas

This Internet Explorer-specific attribute indicates whether the bound data is plain text or
HTML.

datasrc

This attribute indicates the name of the data source object that supplies the data that is
bound to this element. This attribute is specific to Microsoft’s data binding.

disabled

Again, Microsoft has applied an existing W3C attribute to a range of elements not associated
with it in the W3C specifications. Elements with the disabled attribute set may appear
faded and will not respond to user input. Values under the Microsoft implementation are
true and false. When the attribute is present, the default value is true, so IE 5.5 and
higher will read disabled as “on,” even without a value set for the attribute.

height
This attribute specifies the height, in pixels, needed by an embedded object, image, iframe,
applet, or any other embeddable item.

hidefocus

This proprietary attribute, introduced with Internet Explorer 5.5, hides focus on an
element’s content. Focus will generally be represented with a dotted outline, but elements
with this attribute set to true will not show such an indication.

hspace
This attribute specifies additional horizontal space, in pixels, to be reserved on either side of
an embedded item like an iframe, applet, image, and so on.

language

In the Microsoft implementation, this attribute specifies the scripting language to be used
with an associated script bound to the element, typically through an event handler attribute.
Possible values might include javascript, jscript, vbs, and vbscript. Other values
that include the version of the language used, such as JavasScriptl.1, might also be
possible. The reason this feature is supported is that it is possible in Internet Explorer to

run multiple script languages at the same time, which requires that you indicate on
element-level event handlers which scripting language is in play, as demonstrated here:

<p onclick="alert('Hi from JavaScript');" language="JavaScript">
Click me (JavaScript)</p>

<p onclick="MsgBox('Hi from VBScript')" language="VBScript">
Click me (VBScript)</p>

122

Part I: Core Markup

tabindex

This attribute uses a number to identify the object’s position in the tabbing order for
keyboard navigation using the TaB key. While tabindex is defined for some elements as
part of W3C standards, IE 5.5 added support for this attribute to a wider range of elements.
Under IE 5.5 or higher, this focus can be disabled with the hidefocus attribute.

unselectable

This proprietary Microsoft attribute can be used to prevent content displayed from being
selected. Testing suggests that this might not work consistently. Values are of £ (selection
permitted) and on (selection not allowed).

vspace

This attribute specifies additional vertical space, in pixels, to be reserved above and below
an embedded object, image, iframe, applet, or any other embeddable item.

width

This attribute specifies the width, in pixels, needed by an embedded object, image, iframe,
applet, or any other embeddable item.

Common HTMLS5 Attributes Reference

HTMLS introduces a number of common attributes to many elements. Some of these have
been discussed in the previous section, while others are all new. For the sake of avoiding
repetition in entries, each is discussed here and then shown only in the syntax list later. As
you were warned at the beginning of the chapter, this information is based upon the draft
HTMLS specification and is subject to change. Check the HTMLS5 specification at www
.w3.org/TR/html5 for updates and changes. Further note that while some of these attributes
are already implemented in Internet Explorer (such as contenteditable) or other modern
browsers, many are not yet implemented, so their usage may be somewhat speculative.

NOTE One interesting aspect of these attributes is that while they are defined in the HTML5
specification on all elements, their meaning is unclear or suspect in certain cases. For example,
spell checking images or using interface conventions like accelerators or context menus on
nonvisible elements, particularly those in the head (like meta), simply don’t make sense. What
the spec says and what will actually be implemented or used will likely vary.

accesskey

Under HTMLS5, the accesskey attribute specifies a keyboard navigation accelerator for the
element. The main differences between this and the commonly supported attribute are that
it can be applied, in theory, to any element in the specification and that it takes a space-
separated list of key choices. For example,

<form>
<input type="button" value="Show Author" accesskey="t a p">
</form>

Chapter 3: HTML and XHTML Element Reference 143

allows you to accelerate this button simply by pressing a special key like ALT in conjunction
with the character values present in the attribute. There is some discussion about the
attribute eventually supporting words rather than just individual keys.

contenteditable

Initially a proprietary Microsoft attribute, this HTMLS5 attribute when set allows users to
directly edit content rendered in the browser. Values are false, true, and inherit. A
value of £alse prevents content from being edited by users; true allows editing. The
default value, inherit, applies the value of the affected element’s parent element.

contextmenu

The contextmenu attribute is used to define an element’s context menu, which is generally
the menu invoked upon a mouse right-click. The attribute’s value should hold a string that
references the id value of a <menu> tag found in the DOM. If there is no element found or
no value, then the element has no special context menu and the user agent should show its
default menu. Internet Explorer and many other browsers support an oncontextmenu
attribute that could be used to implement the idea of this emerging attribute.

data-X (Custom Data Attributes)

HTMLS5 defines a standard way to include developer-defined data attributes in tags, often
for the consumption by script. The general idea is to use the prefix data- and then pick a
variable name to include some nonvisual data on a tag. For example, here an author
variable has been defined as custom data:

<p id="pl" data-author="Thomas A. Powell">This is a data-X example</p>
This value could then be read using the standard DOM getAttribute () method,

<form>

<input type="button" value="Show Author" onclick="alert (document.
getElementById('pl') .getAttribute('data-author')); ">

</form>

or using new HTML5 DOM objects and properties for accessing such data:

<form>

<input type="button" value="Show Author" onclick="alert (document.
getElementById('pl') .dataset.author) ;">

</form>

These attribute values should not be used by a user agent to style when rendering and
are solely for developer use. In many ways, the attribute is the direct consequence of people
just inventing attributes and forgoing validation,

<p id="pl" data-author="Thomas A. Powell">This is a fake attribute example</p>

144

Part I: Core Markup

or using class values in a similar manner:

<p id="pl" class="author-Thomas-A.-Powell">This is a class data example</p>

NOTE Special characters, particularly colons, should not be used in the data- names here. You are
also encouraged to keep the names lowercase for consistency.

draggable

This attribute is used to set whether or not an element is draggable. If the attribute is set to
true, the element is draggable. A value of auto sets images and links with an href to be
draggable and all other items to not be draggable. A false value turns off dragging.

<p draggable="true">Drag me</p>
<p draggable="false">Sorry no drag</p>

Real integration with elements with draggable attributes requires JavaScript usage (see
Chapter 2 for an example).

hidden

This attribute is a Boolean, or presence-based, attribute that does not require a value. If
you're using XHTML5, you should use the value of hidden, as attributes must have values
with XML syntax.

<p hidden>I'm hidden</p>
<p hidden="hidden">I'm hidden XML syntax style</p>

When this attribute is specified on an element, the element is not currently relevant and
thus the user agent should not render it. The exact meaning of the attribute is a bit unclear.
It would appear to be similar to the semantics of the CSS property display :none, but the
specification hints that elements that are hidden are active and thus it also is somewhat
different from this common construct. Once browsers implement this attribute, the meaning
may be clarified. This attribute was initially called irrelevant in earlier HTML5 drafts.

itemid

This attribute is used to set a global identifier for a microdata item. This is an optional
attribute, but if it is used, it must be placed in an element that sets both the i temscope and
itemtype attributes. The value must be in the form of a URL.

<div itemscope itemtype="http://ssa.gov/People"
itemid="http://ssa.gov/SSN/123456789">

Joe

Smith

</div>

itemprop
This attribute is used to add a name/value pair to a microdata item. Any child of a tag with
an itemscope attribute can have an itemprop attribute set in order to add a property to

Chapter 3: HTML and XHTML Element Reference

that item. The name of the property is the value set for the i temprop attribute. The value
depends on what type of element the attribute is added to. If the element is an audio,
embed, iframe, img, source, or video tag, then the value is set to the src of that tag

If the element is an a, area, or 1ink tag, then the value is set to the href of that tag. If
the element is a time tag, then the value is set to the datetime attribute of that tag. If the
element is a meta tag, then the value is set to the content attribute of that tag. Otherwise,
the value is set to the textContent of the tag. A brief example is shown here.

<div itemscope>

<time itemprop="gameday" datetime="2010-06-22">June 22</time>:
The Giants at

A's.

<meta itemprop="city" content="Oakland">

</div>

If the itemis set to one of the predefined types, then there is a specific set of values that is
allowed for the itemprop.

itemref

This attribute is set to indicate what additional elements should be traversed to look for
name/value pairs for the item. By default, only the children are searched. However,
sometimes it does not make sense to have a single parent item if the data is intermingled.

In this case, i temref can be set to a space-separated list of additional elements to traverse:

<div itemscope itemref="parentname parentfood"></div>

<div itemscope itemref="childname childfood"></div>

Thomas has a
daughter named Olivia
.
Thomas' favorite food is sushi
 and Olivia's is French Fries!

itemscope
This attribute is used to set an element as an item of microdata (see Chapter 2 for more

information on microdata). An element with an itemscope attribute creates a new item that

contains a group of name/value pairs defined by enclosed elements with itemprop
attributes. For example,

<div itemscope>

Thomas
Powell
</div>

sets name/value pairs of firstname: Thomas and lastname: Powell for the item
declared in the <div>.

145

146

Part I: Core Markup

itemtype

This attribute is used in conjunction with the itemscope attribute in order to define a type
for the microdata item. This is an optional attribute, but if used, it must be placed in the
same element that sets the itemscope attribute. The value must be in the form of a URL:

<div itemscope itemtype="http://scores.sports.com/baseball"></div>

spellcheck
This attribute is set to either true or false and indicates whether the content enclosed by
the element should be spelling and grammar checked:

<p spellcheck="true">How do you spell potatoe? A man named Dan may never
know.</p>

If it has no value, the assumed value is true unless it inherits false from an enclosing
parent. The attribute is meaningful on elements that are interactive for text entry, such as
form fields, or elements that have contenteditable=true.

tabindex

This attribute, like the tabindex attribute initially defined by Internet Explorer, uses a
number to identify the object’s position in the tabbing order for keyboard navigation using
the taB key. The attribute should be set to a numeric value. User agents will generally move
through fields with tabindex set in increasing numeric order, skipping any elements with 0
or a negative value. After moving over all tabindex values, any 0 valued fields will be
navigated in order, but negative values will continue to be skipped. Nonnumeric values will
generally result in the browser applying its normal focusing algorithm.

Event Attributes Reference

In preparation for a more dynamic Web, the W3C has defined a set of core events that

are associated with nearly every (X)HTML element via an event attribute of the style
oneventname (for example, onclick). Most of these events cover simple user interaction,
such as the click of a mouse button or the press of a keyboard key. A few elements, such as
form controls, have some special events associated with them. For example, form events
might indicate that the field has received focus from the user or that the form was
submitted. Intrinsic events, such as a document loading and unloading, are also defined. All
the W3C-defined event attributes are described in Table 3-4.

This event model is commonly extended and is not complete. It will certainly change as
HTMLS5 is implemented and the Document Object Model (DOM) is extended. More
information about the DOM can be found at www.w3.org/DOM. Browser vendors are
already busy paving the way with their own events.

HTML5 Events

The event model defined by HTMLS5 is still emerging, but the common event-handling
attributes are fairly clear and match most of the HTML 4 events, with some interesting new

Chapter 3: HTML and XHTML Element Reference

Event Attribute | Event Description

onblur Occurs when an element loses focus, meaning that the user has moved focus to
another element, typically either by clicking the mouse or tabbing.

onchange Signals that the form control has lost user focus and its value has been modified
during its last access.

onclick Indicates that the element has been clicked.

ondblclick Indicates that the element has been double-clicked.

onfocus Indicates that an element has received focus; namely, it has been selected for
manipulation or data entry.

onkeydown Indicates that a key is being pressed down with focus on the element.

onkeypress Describes the event of a key being pressed and released with focus on the
element.

onkeyup Indicates that a key is being released with focus on the element.

onload Indicates the event of a window or frame set finishing the loading of a document.

onmousedown | Indicates the press of a mouse button with focus on the element.

onmousemove | Indicates that the mouse has moved while over the element.

onmouseout Indicates that the mouse has moved away from an element.

onmouseover | Indicates that the mouse has moved over an element.

onmouseup Indicates the release of a mouse button with focus on the element.

onreset Indicates that the form is being reset, possibly by the click of a reset button.

onselect Indicates the selection of text by the user, typically by highlighting the desired text.

onsubmit Indicates a form submission, generally by clicking a submit button.

onunload Indicates that the browser is leaving the current document and unloading it from
the window or frame.

TaBLe 3-4 W3C-Defined Core Events

additions. Some of the newer features are already implement in Internet Explorer or other
browsers but many are not. Table 3-5 summarizes all the events you may see on the various

previewed HTMLS elements in this chapter. As all things concerning HTMLS5, the
specification (www.w3.org/TR/html5) is the best place to go for the latest information.

Internet Explorer’s Extended Event Attributes

Most browsers support events other than those defined in the W3C specifications. Microsoft,
in particular, has introduced a variety of events to capture more-complex mouse actions such

as dragging, element events such as the bouncing of marquee text, data-binding events

signaling the loading of data into an object, and fine-grained event control to catch events

141

148 Part I:

Core Markup

Event Attribute Event Description

onabort Invoked generally by the cancellation of an image load but may happen
on any communication that aborts (for example, Ajax calls). Abort events
do not have to target the element directly because any abort event that
bubbles through an element can be caught.

onafterprint Called after a print event. Found only on the body element.

onbeforeprint Called before a print event. Found only on the body element.

onbeforeunload Invoked just before a page or object is unloaded from the user agent.

onblur Occurs when an element loses focus, meaning that the user has moved
focus to another element, typically either by clicking the mouse or by tabbing.

oncanplay Fires when a media element can be played but not necessarily
continuously for its complete duration without potential buffering.

oncanplaythrough Fires when a media element can be played and should play its complete
duration uninterrupted.

onchange Signals that the form control has lost user focus and its value has been
modified during its last access.

onclick Indicates that the element has been clicked.

oncontextmenu Called when a context menu is invoked generally by right-click. Can be
fired by direct targeting of the element or the event bubbling up.

ondblclick Indicates that the element has been double-clicked.

ondrag Fires as a draggable element is being dragged around the screen.

ondragend Occurs at the very end of the drag-and-drop action (should be after ondrag).

ondragenter Fires when an item being dragged passes on the element with this event
handler—in other words, when the dragged item enters into a drop zone.

ondragleave Fires when an item being dragged leaves the element with this event
handler—in other words, when the dragged item leaves a potential drop zone.

ondragover Fires when an object that is being dragged is over some element with this
handler.

ondragstart Occurs on the very start of a drag-and-drop action.

ondrop Fires when an object being dragged is released on some drop zone.

ondurationchange Fires when the value indicating the duration of a media element changes.

onemptied Fires when a media element goes into an uninitialized or emptied state,
potentially due to some form of a resource reset.

onended Fires when a media element’s playback has ended because the end of the
data resource has been reached.

onerror Used to capture various events generally related to communication using
Ajax, though may apply to arbitrary URL loading using media elements like
images, audio, and video. This attribute is also used for catching script-
related errors.

TaBLe 3-5 HTML5 Event Preview

Chapter 3: HTML and XHTML Element Reference

Event Attribute Event Description

onfocus Indicates that an element has received focus; namely, it has been
selected for manipulation or data entry.

onformchange Fires when any element of the form changes.

onforminput Fires when input is made in a form element.

onhashchange Fires when the URL’s hash identifier value changes. Changing this value is
commonly performed in Ajax applications to indicate a state change and
support browser back-button activity.

oninput Fires when input is made to form elements.

oninvalid Fires when a form field is specified as invalid according to validation rules
set via HTML5 attributes such as pattern, min, and max.

onkeydown Indicates that a key is being pressed down with focus on the element.

onkeypress Describes the event of a key being pressed and released with focus on
the element.

onkeyup Indicates that a key is being released with focus on the element.

onload Indicates the event of a window or frame set finishing the loading of a
document.

onloadeddata Fires when the user agent can play back the media data at the current
play position for the first time.

onloadedmetadata Fires when the user agent has the media’s metadata describing the
media’s characteristics.

onloadstart Fires when the user agent begins to fetch media data, which may include
the initial metadata.

onmessage Fires when a message hits an element. HTML5 defines a message
passing system between client and server as well as between documents
that this handler can monitor.

onmousedown Indicates the press of a mouse button with focus on the element.

onmousemove Indicates that the mouse has moved while over the element.

onmouseout Indicates that the mouse has moved away from an element.

onmouseover Indicates that the mouse has moved over an element.

onmouseup Indicates the release of a mouse button with focus on the element.

onmousewheel Fires when the mouse wheel is used on the element or bubbles up from
some descendent element.

onoffline Fires when the user agent goes offline. Found only on the body element.

ononline Fires when the user agent goes back online. Found only on the body
element.

onpagehide Fires when a page is suspended though not necessarily fully unloaded.

TaBLe 3-5 HTML5 Event Preview (continued)

149

150 PartI: Core Markup

Event Attribute Event Description

onpageshow Fires when a suspended page is shown again.

onpause Fires when a media element pauses by user or script control.

onplay Fires when a media element starts to play, commonly after a pause has
ended.

onplaying Fires when a media element’s playback has just started.

onpopstate Fires when the session state changes for the window. This may be due to

history navigation or may be triggered programmatically.

onprogress Indiciates the user agent is fetching data. Generally applies to media
elements, but Ajax syntax has used a similar event.

onratechange Fires when the playback rate for media changes.

onreadystatechange | Fires whenever the ready state for an object has changed. May move
through various states as network-fetched data is received.

onredo Triggered when an action redo is fired.

onreset Indicates that the form is being reset, possibly by the click of a reset
button.

onresize Fires when a resize event is triggered on the element or bubbles up from
some descendent element.

onscroll Fires when a scroll event is triggered on the element or bubbles up from
some descendent element.

onseeked Indicates the user agent has just finished the seeking event.

onseeking Indicates the user agent is attempting to seek a new media position, and
has had time to fire the event as the media point of interest has not been
reached.

onselect Indicates the selection of text by the user, typically by highlighting the
desired text.

onshow Fires when a context menu is shown. The event should remain until the
context menu is dismissed.

onstalled Fires when the user agent attempts to fetch media data but, unexpectedly,
nothing arrives.

onstorage Fires when data is committed to the local DOM storage system.

onsubmit Indicates a form submission, generally by clicking a submit button.

onsuspend Fires when a media stream is intentionally not being fetched but is not yet
fully loaded.

ontimeupdate Fires when the time position of the media updates either in the standard

course of playing or in a seek or jump.

TaBLe 3-5 HTML5 Event Preview (continued)

Chapter 3: HTML and XHTML Element Reference
Event Attribute Event Description
onundo Fires when an undo is triggered.
onunload Indicates that the browser is leaving the current document and unloading
it from the window or frame. There may be another possible use for this
event when elements bind to remote data sources and unload.
onvolumechange Fires when the volume attribute or mute attribute value of a media
element like audio or video changes generally via script or the user’s
interaction with any shown controls.
onwaiting Fires when media element play stops but new data is expected shortly.

TaBLe 3-5 HTML5 Event Preview (continued)

just before or after they happen. Table 3-6 briefly summarizes the basic meaning of the
various extended event attributes mostly found in Internet Explorer but commonly partially
implemented in other browsers.

CAUTION With events documentation, errors might exist. The event model changes rapidly, and
the browser vendors have not stopped innovating in this area. While the events were tested for
accuracy, but for the latest, up-to-date event model for Internet Explorer in particular, visit the
Microsoft Developer Network (MSDN), at http://msdn.microsoft.com.

Event Attribute Description

onabort Triggered by the user aborting the image load with a stop button or
similar effect.

onactivate Fires when the object is set as the active element.

onafterprint Fires after the user prints a document or previews a document for printing.

onafterupdate Fires after the transfer of data from the element to a data provider,
namely a data update.

onbeforeactivate Fires immediately before the object is set as the active element.

onbeforecopy Fires just before selected content is copied and placed in the user’s
system clipboard.

onbeforecut Fires just before selected content is cut from the document and added to
the system clipboard.

onbeforedeactivate | Fires immediately before the active element is changed from one object
to another.

TaBLe 3-6 Microsoft’s Extended Event Model (continued)

151

152 Part I:

Core Markup

Event Attribute Description

onbeforeeditfocus Fires before an object contained in an editable element is focused for editing.

onbeforepaste Fires before the selected content is pasted into a document.

onbeforeprint Fires before the user prints a document or previews a document for printing.

onbeforeunload Fires just prior to a document being unloaded from a window.

onbeforeupdate Triggered before the transfer of data from the element to the data
provider. Might be triggered explicitly, or by a loss of focus or a page
unload forcing a data update.

onbounce Triggered when the bouncing contents of a marquee touch one side or
another.

oncontextmenu Triggered when the user right-clicks (invokes the context menu) on an
element.

oncontrolselect Fires when the user makes a control selection of the object.

oncopy Fires when selected content is pasted into a document.

oncut Fires when selected content is cut from a document and added to the
system clipboard.

ondataavailable Fires when data arrives from data sources that transmit information
asynchronously.

ondatasetchanged Triggered when the initial data is made available from a data source or

when the data changes.

ondatasetcomplete

Indicates that all the data is available from the data source.

ondeactivate Fires when the active element is changed to another object.

ondrag Fires continuously during a drag operation.

ondragend Fires when the user releases during a drag operation.

ondragenter Fires when the user drags an object onto a valid drop target.

ondragleave Fires when the user drags the object off a valid drop target.

ondragover Fires continuously when the object is over a valid drop target.

ondragstart Fires when the user begins to drag a highlighted selection.

ondrop Fires when the mouse is released during a drag-and-drop operation.

onerror Fires when the loading of an object causes an error. For scripting it can
be associated with JavaScript’s Window object to capture general script
errors.

onerrorupdate Fires if a data transfer has been canceled by the onbeforeupdate
event handler.

onfilterchange Fires when a page filter changes state or finishes.

TaBLe 3-6 Microsoft’'s Extended Event Model (continued)

Chapter 3: HTML and XHTML Element Reference

Event Attribute Description

onfinish Triggered when a looping marquee finishes.

onfocusin Fires just before an object receives focus.

onfocusout Fires when an object is losing focus.

onhashchange Fires when the current document’s URL changes its hash value. Commonly
used for addressing state changes in Ajax applications. Also will be defined
under HTML5.

onhelp Triggered when the user presses the r1 key or a similar help button in the
user agent.

onlayoutcomplete Fires when the print or print preview process finishes.

onlosecapture Fires when the object loses mouse capture.

onmouseenter Fires when the user moves the mouse pointer into the object.

onmouseleave Fires when the user moves the mouse pointer away from the object.

onmousewheel Fires when the mouse scroll wheel is used.

onmove Triggered when the user moves a window.

onmoveend Fires when an object stops moving.

onmovestart Fires when an object starts moving.

onpaste Fires when selected content is pasted into a document.

onprogress Fires to indicate that some data is available for consumption. Generally
used in Ajax requests to access responses in progress.

onpropertychange Fires when a property changes on an object.

onreadystatechange

Fires whenever the ready state for an object has changed. May move
through various states as network-fetched data is received.

onresize Triggered whenever an object is resized.

onresizeend Fires when the user finishes changing the dimensions of an object.

onresizestart Fires when the user begins to change the dimensions of an object.

onrowenter Indicates that a bound data row has changed and new data values are
available.

onrowexit Fires just prior to a bound datasource control changing the current row.

onrowsdelete Fires when dataset rows are about to be deleted.

onrowsinserted Fires when dataset rows are inserted.

onscroll Fires when a scrolling element is repositioned.

onselectionchange Fires when the selection state of a document changes.

onselectstart Fires when the user begins to select information by highlighting.

TaBLe 3-6 Microsoft’s Extended Event Model (continued)

153

154 Part1: Core Markup

Event Attribute Description

onstart Fires when a looped marquee begins or starts over.

onstop Fires when the user clicks the stop button in the browser.

onstorage Fires when local DOM storage is changed by setting or removing an item
(IE 8+ only).

onstoragecommit Fires when local DOM storage is committed to disk (IE 8+ only).

ontimeerror Fires whenever a time-specific error occurs, usually as a result of setting
a property to an invalid value.

ontimeout Fires when a network event exceeds a defined timeout value generally set
in JavaScript (IE 8+ only).

TaBLe 3-6 Microsoft’'s Extended Event Model (continued)

HTML Element Reference

The element entries that follow generally include the following information:

¢ Brief summary Brief summary of the element’s purpose

¢ Standard syntax HTML 4.01, HTMLS5, or XHTML 1.0 syntax for the element,
including attributes and event handlers defined by the W3C specification

* Attributes defined by browser Additional syntax defined by different browsers

¢ Standard events Descriptions of event handler attributes for the element

¢ Events defined by browser Additional event attributes introduced by other
browsers, primarily by Internet Explorer

¢ Examples Examples using the element

¢ Compatibility The element’s general compatibility with HTML and XHTML
specifications and browser versions

e Notes Additional information about the element

All attributes that are not defined in a particular listing are common attributes that can
be found in the previous sections.

NortE Listings of attributes and events defined by browser versions assume that these attributes
and events generally remain associated with later versions of that browser. For example,
attributes defined by Internet Explorer 4 are valid for Internet Explorer 5 and higher, and
attributes defined for Netscape 4 remain valid for Netscape browsers as well as Firefox. Safari
information focuses on Safari 2 and 3. The Google Chrome browser is not always directly called
out in this book, but, given its reliance on the WebKit engine, you should assume Safari entries
will apply to this browser. Compatibility pre-Opera 4 is determined via research not testing; in
cases of uncertainity we assume support from Opera 4. Of course, reasonably this is more for
historical accuracy and will simply not affect modern Web developers.

Chapter 3: HTML and XHTML Element Reference

Tip The support site www.htmlref.com has this reference online and may have updates or fixes to
this information.

<l--...--> (Comment)

This construct encloses text comments that will not be displayed by the browser. It may be
used for informational messages for developers as well as to mask content from user agents
that do not support a particular technology. No attributes or events are associated with this
construct.

Standard Syntax

<l-- ... -=->

Examples

<!-- This is an informational comment that can occur
anywhere in an HTML document. The next few examples
show how style sheets and scripts are "commented out" to prevent
older browsers from misinterpreting the content.

-=>

<style type="text/css">
<!--
hl {color: red; font-size: 40px;}
-->
</style>

<script type="text/javascript">
<!--

document .write ("hello world") ;
/] -->

</script>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

e Comments often are used to exclude content from older browsers, particularly those
that do not understand client-side scripting or style sheets.

¢ Page developers should be careful when commenting markup to ensure that other
comments are not included or that two dashes (--) are not embedded in the content
commented.

<I-- []..--> (Conditional Comment)

This Internet Explorer—specific comment style can be used to mask or include content,
depending on the browser in play.

155

156 PartI: Core Markup

Standard Syntax

Hide content if not supported:

<!--[if expression]> HTML <! [endif]-->

Show content if not supported:

<! [if expression]> HTML <! [endif]>

The expression language supported by conditional comments is relatively simple, consisting
of browser type and version identifier, less-than and greater-than operators, and basic
Boolean operators. The syntax is briefly overviewed in Table 3-7.

Examples

<!--[if IE 5]>
<link rel="stylesheet" href="ie5.css" type="text/css" media="screen">
<! [endif]-->

<!--[if 1t IE 7]<p>You are using an old IE! Please upgrade.</p><![endif]-->

<!--[if gte IE 7]><p>Great, you are using IE 7 or greater.</p><![endif]-->

Item Description

IE The only currently available value to match is the string "IE", corresponding to Internet
Explorer.

number An integer or floating-point value corresponding to the version of the browser.

true The Boolean constant value of true.

false The Boolean constant value of false.

It Less-than operator; returns true if the first argument is less than the second argument.

Ite Less-than or equal operator; returns true if the first argument is less than or equal to the
second argument.

gt Greater-than operator; returns true if the first argument is greater than the second
argument.

gte Greater-than or equal operator; returns true if the first argument is greater than or equal
to the second argument.

() Subexpression operators; used to put in parentheses individual components of a more
complex expression that uses Boolean operators.

& The Boolean AND operator returns true if all subexpressions evaluate to true.

| The Boolean OR operator returns true if any of the subexpressions evaluates to true.

! Not operator reverses the Boolean meaning of any expression.

TaBLe 3-7 Microsoft’s Conditional Comment Syntax

Chapter 3: HTML and XHTML Element Reference 157

Compatibility

No standards support Internet Explorer 5+

Note

¢ Conditional comments are often used to link special Internet Explorer—specific style
sheets or to include scripts solely for these browsers.

<IDOCTYPE> (Document Type Definition)

This SGML construct specifies the document type definition corresponding to the
document. There are no attributes or events associated with this element.

Standard Syntax

<!DOCTYPE "DTD IDENTIFIER">

Examples
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TRANSITIONAL//EN">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 TRANSITIONAL//EN">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www
.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtmlll.dtd">

<!DOCTYPE html>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ The <!DOCTYPE> statement should be used as the first line of all documents.

¢ Validation programs might use this construct when determining the correctness of
an HTML document.

¢ While HTML5 does not follow the SGML /XML concept of validation, the
<!DOCTYPE> is still used. HTML5 does however provide for syntax checking
currently dubbed conformance checking. Note though that conformance checking
does not rely on XML/SGML grammar.

* Modern browsers may determine what rendering mode to use depending on the
<!DOCTYPE> statement. This is dubbed the doctype switch. An incorrect < ! DOCTYPE>
that does not correspond to appropriate markup usage may result in inaccurate
display.

158

Part I: Core Markup

<a> (Anchor)
This element defines a hyperlink, the named target destination for a hyperlink, or both.

Standard Syntax

<a
accesskey="key"
charset="character code for language of linked

resource"

class="class name(s)"
coords="comma-separated list of numbers"
dir="1ltr | rtl"
href="URL"
hreflang="language code"
id="unique alphanumeric identifier"
lang="language code"
name="name of target location"
rel="comma-separated list of relationship values"
rev="comma-separated list of relationship values"
shape="default | circle | poly | rect"
style="style information"
tabindex="number"
target="frame or window name | _blank | _parent | _self | _top"
title="advisory text™"
type="content type of linked data"s>

Attributes Introduced by HTML5

contenteditable="true | false | inherit"
contextmenu="id of menu "

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

hreflang="language code"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
media="media-type"

ping="URL list"

rel="comma-separated list of relationship values"
spellcheck="true | false"

tabindex="number"

type="MIME type of linked data"

Attributes Defined by Internet Explorer

contenteditable="false | true | inherit" (5.5)
datafld="name of column supplying bound data" (4)
datasrc="id of data source object supplying data" (4)
disabled="false | true" (5.5)

Chapter 3: HTML and XHTML Element Reference 159

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
methods="http-method" (4)

unselectable="off | on" (5.5)

urn="URN string" (4)

HTML 4 Event Attributes

onblur, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onblur, onclick,
oncontextmenu, oncontrolselect, oncopy, oncut, ondblclick, ondeactivate,
ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress,
onkeyup, onlosecapture, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel, onmove,
onmoveend, onmovestart, onpaste, onpropertychange, onreadystatechange,
onresize, onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

charset This attribute defines the character encoding of the linked resource. The value is a
space- and/or comma-delimited list of character sets as defined in RFC 2045.

coords For use with object shapes, this attribute uses a comma-separated list of numbers to
define the coordinates of the object on the page.

href This is the single required attribute for anchors defining a hypertext source link. It
indicates the link target—either a URL or a URL fragment, which is a name preceded by a
hash mark (#) specifying an internal target location within the current document. URLs are
not restricted to Web-based (http) documents. URLs might use any protocol supported by
the browser. For example, file, ftp, and mailto work in most user agents.

hreflang This attribute is used to indicate the language of the linked resource and should
be set to whichever language is specified in the core 1ang attribute. Browsers will likely not
annotate links appropriately with language information, but style sheet rules using attribute
selectors could be used to do this.

160

Part I: Core Markup

media The draft HTMLS5 specification suggests the value should be used to indicate
whether a destination is appropriate for screen, print, PDA, and so on. This is an advisory
property and does not restrict action.

methods The value of this attribute provides information about the functions that might be
performed on an object. The values generally are given by the HTTP protocol when it is
used; as for the title attribute, it might be useful to include advisory information in
advance in the link. For example, the browser might choose a different rendering of a link as
a function of the methods specified; something that is searchable might get a different icon,
or an outside link might render with an indication of leaving the current site. This attribute
is neither well understood nor supported, even by the defining browser, Internet Explorer.

name This attribute is required in an anchor defining a target location within a page. A value
for name is similar to a value for the id core attribute, and it should be an alphanumeric
identifier unique to the document. Under the HTML and XHTML specifications, id and name
both can be used with an <a> tag as long as they have identical values. HTMLS5 directly states
page authors should not use name even though it may be supported in browsers and id
values should be used instead.

ping This HTML5-specific attribute is used to specify the URL(s) that will be notified
when a link is activated. If more than a single URL is specified, the addresses should be
separated by spaces. Despite some early Firefox dablings with this attribute by late 2009, no
browser implements this feature, and privacy concerns about this attribute may keep it
from ever being widely adopted.

rel For anchors containing the href attribute, this attribute specifies the relationship of the
target object to the link object. The value is a comma-separated list of relationship values.
The values and their semantics will be registered by some authority that might have
meaning to the document author. The default relationship, if no other is given, is void. The
rel attribute should be used only when the href attribute is present. Table 3-8 lists possible
rel values defined in HTMLS5 for <a> tags.

rev This attribute specifies a reverse link, the inverse relationship of the rel attribute. It is
useful for indicating where an object came from, such as the author of a document.

shape This attribute is used to define a selectable region for hypertext source links
associated with a figure in order to create an image map. The values for the attribute are
circle, default, polygon, and rect. The format of the coords attribute depends on the
value of shape. For circle, the value is x,y,, where x and y are the pixel coordinates for
the center of the circle and r is the radius value in pixels. For rect, the coords attribute
should be x,y,w,h. The x,y values define the upper-left corner of the rectangle, while w and /
define the width and height, respectively. A value of polygon for shape requires
x1,y1,x2,y2,... values for coords. Each of the x,i pairs defines a point in the polygon, with
successive points being joined by straight lines and the last point joined to the first. The value
of default for shape requires that the entire enclosed area, typically an image, be used.

NOTE It is advisable to use the usemap attribute for the img element and the associated map
element to define hotspots instead of the shape attribute.

page that provides an
index for the current
document.

rel="index" />

Chapter 3: HTML and XHTML Element Reference
Relationship
Value Explanation Example Notes
alternate The link references an <a href="frenchintro.html"
alternate version of the rel="alternate"
document that the link lang="fr">
is in. For example, this Version Francais
might be a translated
version of the document,
as suggested by the
lang attribute.
archives The link provides <a href="/history.php"
a reference to rel="archives">
document(s) of Document History
historical interest.
author The link provides a <a href="/tap.html"
reference to information rel="author">
about the document’s Thomas Powell
author.
bookmark The link references a <a href="index.html"
document that serves as rel="bookmark"
a bookmark; the title title="permalink">
attribute can be used to Section Permalink
name the bookmark.
external The link indicates the <a href="http://ajaxref Likely such links
referenced document .com/" need visual
is not local to the rel="external author"> indication as well
current document, Ajax Book (offsite) to indicate they
organizationally or are off site.
server-wise.
first The link is a reference to | <a href="pagel.html"
the first document in a rel="first">Start
collection.
help The link references a <a href="help.html"
help document for the rel="help">Help
current document or
site.
index The link references a <link href="docindex.html"

TaeLe 3-8 Possible rel Values (continued)

161

162 Part I: Core Markup
Relationship
Value Explanation Example Notes
last The link is a reference to | <a href="pagelO.html"
the last document in a rel="last">Last
collection.
license The link is a reference <a href="/legal.html"
to the legal or copyright rel="license">
information for the Legal Terms
current document’s
content. Similar to the
copyright value.
next The link references the <a href="page2.html"
next document to visit rel="next">Next Page
in a linear collection
of documents. It can
be used, for example,
to “prefetch” the next
page, and is supported
in some browsers such
as MSN TV and Mozilla-
based browsers.
nofollow This value provides an <a href="legal.html™"
indication that the link rel="nofollow license">
should not be followed Legal Info
by automatically
traversing user agents
such as search bots.
noreferrer | This value indicates the <a href="https://bank.com" | Would require
browser should not send rel="noreferrer"> browser support.
the Referrer header Banking
when following this link.
prev The link references the <a href="pagel.html"
previous document in rel="previous">
a linear collection of Previous
documents.
search This value indicates that | <a href="search/"
the link references a rel="search">Search
search facility used in Site
a site.

TaBLe 3-8 Possible rel Values (continued)

Chapter 3: HTML and XHTML Element Reference
Relationship
Value Explanation Example Notes
sidebar This value specifies <a href="instructions Assumes that

.html"»
rel="gidebar">

a URL that should be
displayed in a browser

browsers support
this interface

sidebar. Load Instructions style.
(Sidebar)

This value specfies a <a href="html5.html" Specification

tag that applies to the rel="tag">HTML5 unclear on usage.

document. Current read
suggests tag
word used within
“tagcloud.”

This value provides <a href="/main/index.html"

a link to a document
or section “up” from
the current document,
usually the parent or
index document for the
current URL.

rel="up">Index Page

TaLe 3-8 Possible rel Values (continued)

target This attribute specifies the target window for a hypertext source link that references
frames. The information linked to target will be displayed in the named window. Frames
and windows must be named to be targeted if they do not correspond to a special name
value, which include blank, which indicates a new window; parent, which indicates the
parent frame set containing the source link; _self, which indicates the frame containing the
source link; and _top, which indicates the full browser window.

type This attribute specifies the media type in the form of a MIME type for the link target.
Generally, this is provided strictly as advisory information; however, in the future a browser
might add a small icon for multimedia types. For example, a browser might add a small
speaker icon when type is set to audio/wav. For a complete list of recognized MIME types,
see www.w3.org/TR/html4/references.html#ref-MIMETYPES.

urn This supposedly Internet Explorer—supported attribute has some origins in HTML 3.2
and it relates a uniform resource name (URN) with the link. While it is based on standards
work going years back, the meaning of URNS is still not well defined nor has it been
demonstrated that this attribute does anything despite its occurrence in MSDN
documentation.

163

164 Part1: Core Markup

Examples
<!-- anchor linking to external file -->

External Link

<!-- anchor linking to file on local file system -->
local file link

<!-- anchor invoking anonymous FTP -->

Anonymous FTP
link

<!-- anchor invoking FTP with password -->

FTP with password

<!-- anchor invoking mail -->
Send mail

<!-- anchor used to define target destination within document -->
Jump target

<!-- anchor linking internally to previous target anchor -->
Local jump within document

<!-- anchor linking externally to previous target anchor -->

Remote jump to a position within a document

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

* If you use the accesskey attribute with this element page, be wary of reserved
bindings. See the section “accesskey” under “Other Common Attributes Reference”
earlier in the chapter for a full discussion of this concern.

¢ The target attribute is not defined in browsers that do not support frames, such as
Netscape 1-generation browsers. Furthermore, target is not allowed under strict
variants of XHTML but instead is limited to frameset or transitional form. This
attribute, however, does regain its functionality under HTML5.

* See Appendix D for a complete discussion of the URL syntax, which is used as the
value of the srec attribute.

<abbr> (Abbreviation)

This element allows authors to clearly indicate a sequence of characters that defines an
abbreviation for a word (such as Mr. instead of Mister, or Calif instead of California).

Chapter 3: HTML and XHTML Element Reference 165

Standard Syntax

<abbr
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</abbr>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

166

Part I: Core Markup

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onhelp, onkeydown,
onkeypress, onkeyup, onlosecapture, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart

Examples
<p><abbr title="California">Calif</abbr></p>

<p>Isn't <abbr>WWW</abbr> an acronym? Oh what trouble!</p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 7+,
XHTML 1.0, 1.1, Basic Netscape 6+, Opera 6+, Safari 1+
Notes

* This tag is commonly confused with <acronym>. Debate about just what constitutes
an acronym as compared with an abbreviation is common among very detail-oriented
Web standards experts. While Web developers appear to use an <acronym> tag more
often than an <abbr> tag, the former is deprecated under HTML5! The confusion
continues.

¢ When the title attribute is set on this element, browsers may render a dotted
underline, which is useful to indicate the presence of a tooltip that might contain the
expansion for the abbreviation.

Calf
R

Califonia

¢ According to the HTMLS5 specification, the title attribute should be set to the
expansion of the abbreviation.

¢ The disabled attribute is not currently documented for this element at MSDN,
though it continues to work in Internet Explorer browsers.

e The MSDN documentation for this element may have errors regarding the extent of
its event support, because many events that are not listed as supported actually
worked when tested.

¢ Because there is typically no markup-oriented presentation for this element, it is
primarily used in conjunction with style sheets and scripts.

<acronym> (Acronym)
This element allows authors to clearly indicate a sequence of characters that composes an
acronym (XML, WWW, and so on).

Chapter 3: HTML and XHTML Element Reference

Standard Syntax

<acronym
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</acronym>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown, onkeypress,
onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmove, onmoveend, onmovestart,
onreadystatechange, onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p><acronym title="Extensible Markup Language">XML</acronym>

<acronym lang="fr" title="Société Nationale de Chemins de
Fer">SNCF</acronym></p>

Compatibility

HTML 4, 4.01 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1, Basic Netscape 6+, Opera 6+, Safari 1+
Notes

¢ This tag is often confused with <abbr> and is not included in HTMLS5 as of late 2009.

¢ As with an <abbr> tag, most browsers will render a dotted underline when the title
attribute is present.

¢ Errors may occur in the MSDN documentation for this element; for example,
disabled continues to be supported and many events not documented will work.

167

168 Part I: Core Markup

<address> (Address)

This block element marks up text indicating authorship or ownership of information. It
generally occurs at the beginning or end of a Web document and usually is rendered in
italics in the absence of CSS.

Standard Syntax

<address
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</address>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
contenteditable="inherit | false | true" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,

Chapter 3: HTML and XHTML Element Reference 169

onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart, ontimeerror

Example

<address>PINT, Inc.

2105 Garnet Ave.

San Diego, CA 92109

U.S.A.</address>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

e Under HTML 2.0 and 3.2, there are no attributes for <address>.

* An <address> tag may not contain another <address> tag.

<applet> (Java Applet)

This element identifies the inclusion of a Java applet. The strict HTML 4.01 definition does
not include this element; it has been deprecated in favor of <object>.

Standard Syntax (HTML 4.01 Transitional Only)

<applet
align="bottom | left | middle | right | top"
alt="alternative text"
archive="comma-separated list of URLs pointing to archive files"
class="class name(s)"
code="URL of Java class file"
codebase="URL for base referencing"
height="pixels™"
hspace="pixels"
id="unique alphanumeric identifier"
name="unique name for scripting reference"
object="serialized representation of applet state"

170

Part I: Core Markup

style="style information"
title="advisory text™"
vspace="pixels"
width="pixels">

</applet>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

datafld="name of column supplying bound data" (4)
datasrc="id of data source object supplying data" (4)
hidefocus="true | false" (5.5)

lang="language used for the applet" (4)
language="javascript | jscript | vbs | vbscript" (4)
src="URL" (4)

tabindex="number" (5.5)

unselectable="off | on" (5.5)

Attributes Defined by Netscape
mayscript (4)

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, oncellchange, onclick,
oncontextmenu, oncontrolselect, oncut, ondataavailable, ondatasetchanged,
ondatasetcomplete, ondblclick, ondeactivate, onfocus, onfocusin,

onfocusout, onhelp, onkeydown, onkeypress, onkeyup, onload, onlosecapture,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onrowenter,
onrowexit, onrowsdelete, onrowsinserted, onscroll

Element-Specific Attributes

alt This attribute causes a descriptive text alternative to be displayed in browsers that do
not support Java. Web designers should also remember that content enclosed within an
<applet> tag may also be rendered as alternative text.

archive This attribute refers to the URL of an archived or compressed version of the applet
and its associated class files, which might help reduce download time.

code This attribute specifies the URL of the applet’s class file to be loaded and executed.
Applet filenames are identified by a . class filename extension. The URL specified by code
might be relative to the codebase attribute.

codebase This attribute gives the absolute or relative URL of the directory where applets’
.class files referenced by the code attribute are stored.

mayscript In the Netscape implementation, this attribute allows access to an applet by a
scripting language.

Chapter 3: HTML and XHTML Element Reference

name This attribute assigns a name to the applet so that it can be identified by other
resources, particularly scripts.

object This attribute specifies the URL of a serialized representation of an applet.

src As defined for Internet Explorer 4 and higher, this attribute specifies a URL for an
associated file for the applet. Its meaning and use are unclear and it is not part of the HTML
standard.

Example

<applet code="atarigame.class" align="1left" archive="game.zip"
height="250" width="350">
<param name="difficulty" value="easy">
Sorry, you need Java to play this game.
</applet>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 4+,
XHTML 1.0 (transitional) Netscape 2+, Opera 4+, Safari 1+

Notes

¢ The W3C specification does not encourage the use of <applet> and prefers the use
of the <object> tag. Under the strict definition of HTML 4.01, this element is
deprecated and it is cited as obsolete under HTMLS5, though currently it still appears
in many versions of the specification. Despite the strong desire of standard bodies to
remove this from common use, it is still often used.

¢ The HTML 4 specification does not show event-handling attributes for this element,
though you may find that they work. However, given that an applet may include an
interactive object, the sense of capturing events with it as compared to within the
applet can be a bit confusing.

<area> (Image Map Area)

This element defines a hotspot region on an image and associates it with a hypertext link.
This element is used only within a <map> tag.

Standard Syntax

<area
accesskey="character"
alt="alternative text"
class="class name(s)"
coords="comma-separated list of values"
dir="1ltr | rtl"
href="URL"
id="unique alphanumeric identifier"
lang="language code"
nohref="nohref"
shape="circle | default | poly | rect"

11

172

Part I: Core Markup

style="style information"

tabindex="number"

target="frame or window name | _blank | _parent | _self |
_top" (transitional or frameset only)

title="advisory text"s>

Attributes Introduced by HTML5

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

hreflang="language code"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
media="media-type"

ping="URL list"

rel="comma-separated list of relationship values"
spellcheck="true | false"

tabindex="number"

type="MIME type of linked data"

Attributes Defined by Internet Explorer

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onclick, oncontextmenu, oncontrolselect,
oncopy, oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocusin, onfocusout,

Chapter 3: HTML and XHTML Element Reference

onhelp, onkeydown, onkeypress, onkeyup, onlosecapture, onmouseenter,
onmousedown, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

alt This attribute contains a text string alternative to display in browsers that cannot
display images.

coords This attribute contains a set of values specifying the coordinates of the hotspot
region. The number and meaning of the values depend upon the value specified for the
shape attribute. For a rect or rectangle shape, the coords value is two x,y pairs: 1eft,
top, right, and bottom. For a circ or circle shape, the coords value is x,y,7, where x,y
is a pair specifying the center of the circle and r is a value for the radius. For a poly or
polygon shape, the coords value is a set of x,y pairs for each point in the polygon:
x1,y1,x2,y2,x3,y3, and so on.

href This attribute specifies the hyperlink target for the area. Its value is a valid URL.
Either this attribute or the nohre€£ attribute must be present in the element.

hreflang This attribute, introduced by HTMLS5, is used to indicate the language of the
linked resource in an image map and should be set to whichever language is specified in
the core 1ang attribute. Browsers will likely not annotate links appropriately with language
information, but style sheet rules using attribute selectors could be used to do this. The
absence of this attribute in previous HTML versions is a clear oversight.

media This HTMLS5 attribute specifies the media format the link destination was defined
for. It is advisory information, and the value should be used to suggest if a destination is
appropriate for screen, print, PDA, and so on.

name This attribute is used to define a name for the clickable area so that it can be scripted
by older browsers.

nohref This attribute indicates that no hyperlink exists for the associated area. Either this
attribute or the href attribute must be present in the element. Under XHTML, this attribute
will have a value of "nohref"; under standard HTML, no value is required.

ping This HTML5-specific attribute is used to specify the URL(s) that will be notified
when a link is activated. If more than a single URL is specified, the addresses should be
separated by spaces. Circa early 2009, no browser implements this feature, and privacy
concerns about this attribute may keep it from ever being widely adopted.

rel HTMLS5 introduces this attribute to specify link relationships on image maps. The lack

of this attribute in previous specifications was clearly an oversight. For image map areas
containing the href attribute, this attribute specifies the relationship of the target object to the
link object. The value is a comma-separated list of relationship values. The values and their
semantics will be registered by some authority that might have meaning to the document
author. The default relationship, if no other is given, is void. The rel attribute should be used
only when the href attribute is present because it makes no sense with nohref.

173

174

Part I: Core Markup

NoOTE HTMLS defines a number of rel values for <areas. See the earlier “<a> (Anchor)” section
for a list of the values used with the rel attribute.

shape This attribute defines the shape of the associated hot spot. HTML 4 defines the
values rect, which defines a rectangular region; circle, which defines a circular region;
poly, which defines a polygon; and default, which indicates the entire region beyond any
defined shapes. Many browsers, notably Internet Explorer 4 and higher, support alternate
values for shapes, including circ, polygon, and rectangle.

target This attribute specifies the target window for hyperlink-referencing frames. The
value is a frame name or one of several special names. A value of _blank indicates a new
window. A value of _parent indicates the parent frame set containing the source link.
Avalue of _self indicates the frame containing the source link. A value of _top indicates
the full browser window.

type This attribute specifies the media type in the form of a MIME type for the link target.
Generally, this is provided strictly as advisory information; however, in the future a browser
might add a small icon for multimedia types. For example, a browser might add a small
speaker icon when type is set to audio/wav. For a complete list of recognized MIME types,
see www.w3.org/TR/html4/references. html#ref-MIMETYPES. The attribute is commonly
understood for the a element but was introduced by HTML5 to image maps.

Examples

<map id="primary" name="primary">
<area shape="circle" coords="200,250,25" href="another.html">
<area shape="default" nohref>

</map>

<!-- XHTML syntax -->

<map id="secondary" name="secondary">
<area shape="rect" coords="10,10,100,100" href="another.html" />
<area shape="default" nohref="nohref" />

</map>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1 Netscape 1+, Opera 4+, Safari 1+
Notes

¢ Asan empty element under XHTML or when using XML-style syntax for HTMLS5,
a trailing slash is required for this element: <area />.

e HTMLS5 does not define rev attribute for <area> tags.

¢ Netscape 1-level browsers do not understand the target attribute as it relates to
frames.

e HTML 3.2 defines only alt, coords, href, nohref, and shape.

Chapter 3: HTML and XHTML Element Reference

<article> (Article)

This HTML5 block element defines a subset of a document’s content that forms an
independent part of the document, such as a blog post, article, or other self-contained
unit of information, that may be linked to or included in some other content body.

HTML5 Standard Syntax

<article
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

</article>

HTML5S Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<p>There are other things in this page.</p>

<article id="articlel">

<header>

<hl>HTML5 is Coming Soon!</hl>

<p><time pubdate datetime="2009-10-31T12:30-11:00"></time></p>
</header>

175

176

Part I: Core Markup

<p>The new HTML5 specification is in the works. While many features are
not currently implemented or even well defined yet, progress is being made.
Stay tuned to see more new HTML elements added to your Web documents in the
years to come.</p>

</article>

<p>There are other things in this page.</p>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but can be addressed with a custom element.

Notes

* Early versions of this tag supported pubdate and cite attributes but these were
removed later in favor of nested <time> tags.

¢ Itis possible to nest <articles> tags and the relationship should logically relate to
the parent <article> subject matter.

¢ This element is not directly implemented in any browser. However, given that most
browsers can handle custom elements, it is easy enough to simulate the idea of it
and even apply a CSS display property for it.

<aside> (Aside)

This HTMLS5 element defines a section of a document that encloses content that is
tangentially related to the other content the element may be associated with. A simple
example of this element in action might be to specify sidebar content.

HTML5 Standard Syntax

<aside
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="1itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

</aside>

Chapter 3: HTML and XHTML Element Reference 171

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<p>This is the main point I am trying to make.</p>

<aside>This is an aside I don't really know how important it is to make,
but I love to make asides.</aside>

<p>0k now back to the point I was making.</p>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but can be addressed with a custom element.

Notes

¢ This element is not yet directly implemented in any browser. However, given that
most browsers can handle custom elements, it is easy enough to simulate the idea of
it and even apply a CSS display property for it.

¢ This element will affect HTML5’s outlining algorithm; see Chapter 2 for an example
of this scheme.

<audio> (Audio)

This HTMLS5 element includes audio in a document.

HTML5 Standard Syntax

<audio
accesskey="spaced list of accelerator key(s)"
autobuffer="autobuffer"
autoplay="autoplay"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
controls="controls"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

178

Part I: Core Markup

itemtype="microdata type in URL format"
lang="language code"

loop="1loop"

spellcheck="true | false"

src="URL of audio"

style="style information"
tabindex="number"

title="advisory text"s>

</audio>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

autobuffer This Boolean attribute indicates whether or not the browser should begin
buffering audio right away. It is often set when it is believed that the audio will be played.
This is valuable when autoplay is not set, but the attribute has no meaning if autoplay is
set since the browser will play the audio as soon as it can.

autoplay This Boolean attribute indicates the browser should begin playing the audio as
soon after page load once it has loaded enough of the audio to avoid pausing.

controls This Boolean attribute is set to indicate whether or not the browser should present
the controls for audio, such as playback, pause, volume, and seek. If not present, no controls
will be shown and it will be up to the developer to script the control of the media playback.
When no controls are present, the audio element will not be visually presented.

loop This Boolean attribute, if present, indicates that the audio should loop.
src This attribute is set to the URL of the audio to show.

Examples

<audio src="music.ogg" autoplay>
<p>No support for HTMLS5 <code>audio</code> element.</p>
</audio>

<audio src="music.ogg" loop controls>
<p>No support for HTML5 <code>audio</code> element.</p>
</audio>

Chapter 3: HTML and XHTML Element Reference 179

<audio id="audio3">

<source src="music.ogg" type="audio/ogg">

<source src="music.mp3">

<p>No support for HTML5 <code>audio</code> element.</p>
</audio>

<!-- Trick to make sound in IE browsers -->
<audio src="music.wav">

<bgsound src="music.wav">
</audio>

Compatibility

HTML5 Firefox 3.5+, Safari 3.1+

Notes

¢ Alternate content should be placed inside of the audio element for browsers that do
not support it.

¢ Having the correct MIME types on hosted media files is key for playback. You
should also make sure the media types used work in the browsers targeted, because
currently this varies even when the audio element is supported.

¢ Flash will often be used to avoid cross-browser audio concerns. Until this element is
widely supported, developers are advised to continue to use Flash or to rely on
elements like bgsound.

 (Bold)

This inline element indicates that the enclosed text should be displayed in boldface.

Standard Syntax

<b
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"

180

Part I: Core Markup

itemscope="itemscope"
itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart, ontimeerror

Example

<p>This text is bold for some reason.</p>
Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,

XHTML 1.0, 1.1 Netscape 1+, Opera 2.1+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 181

Notes
e HTML 2 and 3.2 do not define any attributes for this element.

* Modern markup specifications encourage developers to use a tag
instead of .

<base> (Base URL)

This empty element found within the head element specifies the base URL stem to be used
for all relative URLs contained within a document.

Standard Syntax

<base
href="URL"
target="frame or window name | _blank | _parent | _self |
_top" (transitional only) >

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

id="unique alphanumeric identifier" (4)

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

182

Part I: Core Markup

Element-Specific Attributes

href This attribute specifies the base URL to be used throughout the document for relative
URL addresses.

target For documents containing frames, this attribute specifies the default target window
for every link that does not have an explicit target reference. Aside from named frames or
windows, several special values exist. A value of _blank indicates a new window. A value
of _parent indicates the parent frame set containing the source link. A value of _sel£
indicates the frame containing the source link. A value of _top indicates the full browser
window.

Examples

<!-- standard HTML syntax --->
<base href="http://www.htmlref.com/">

<-- XHTML syntax -->
<base href="http://www.htmlref.com/" />

<!-- with frames -->
<base target=" blank" href="http://www.htmlref.com/">

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ This element should only occur within the head element.
¢ HTML 2.0 and 3.2 define only the href attribute.

¢ Under XHTML variants and HTML5 using XML-syntax, this empty element requires
a trailing slash: <base />.

e HTML5'’s current draft specification specifies all common attributes and events, but
frankly many of these make little sense for this element. HTML 4 did not define
them for good reason, so it is likely this may be modified back to a syntax closer to
that of the HTML 4 specification.

<basefont> (Base Font)

This element establishes a default font size for a document. Font size then can be varied
relative to the base font size by using the font element.

Standard Syntax (Transitional Only)

<basefont
color="color name | #RRGGBB"
face="font name(s)"
id="unique alphanumeric identifier"
size="1-7 | +/-int">

Chapter 3: HTML and XHTML Element Reference 183

Attributes Defined by Internet Explorer

id="unique alphanumeric identifier" (4)

Events Defined by Internet Explorer

onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange
Element-Specific Attributes

color This attribute sets the text color using either a named color or a color specified in the
hexadecimal #RRGGBB format.

face This attribute contains a list of one or more font names. The document text in the
default style is rendered in the first font face that the client’s browser supports. If no font
listed is installed on the local system, the browser typically defaults to the proportional or
fixed-width font for that system.

size This attribute specifies the font size as either a numeric or relative value. Numeric
values range from 1 to 7, with 1 being the smallest and 3 the default. Relative values start
with + or -, followed by a digit, and modify the current size appropriately. Resulting values
above 7 become 7 and below 1 become 1.

Example

<!-- Standard HTML syntax -->
<basefont color="#ff0000" face="Helvetica" size="+2">

<!-- XHTML style syntax -->
<basefont color="#£f£f0000" face="Helvetica" size="+2" />

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 1+, Opera 4+, Safari 1+

Notes
e HTML 3.2 supports the basefont element but only with the size attribute.
e The (X)HTML strict and HTMLS5 specifications do not support this element.
¢ This element can be imitated with a CSS rule on the body element.

¢ Transitional XHTML 1.0 requires a trailing slash for this empty element:
<basefont />.

<bdo> (Bidirectional Override)
This element is used to override the current directionality of text.

184

Part I: Core Markup

Standard Syntax

<bdo
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</bdo>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="inherit | false | true" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript | xml" (5.0)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onbeforeupdate,
onblur, oncellchange, oncontextmenu, oncontrolselect, onclick, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onscroll, onselectstart

Example

<!-- Switch text direction -->
<p>Some other text here <bdo dir="rtl">This text will go right to left in
a browser that supports this element</bdo> some more text here.</p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 5+,
XHTML 1.0, 1.1 Netscape 6+, Opera 7+, Safari 2+
Note

¢ The HTML 4 specification did not specify events for this element; they were added
later, so this likely was simply an oversight.

<bgsound> (Background Sound)

This Internet Explorer element associates a background sound with a page.

Common Syntax (Defined by Internet Explorer)

<bgsound
balance="number"
id="unique alphanumeric identifier"
loop="number"
src="URL of sound file"
volume="number">

Events Defined by Internet Explorer

onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

Element-Specific Attributes

balance This attribute defines a number between —10,000 and +10,000 that determines how
the volume will be divided between the speakers.

loop This attribute indicates the number of times a sound is to be played and has either a
positive numeric value or -1 to specify that it will continuously loop. The keyword
infinite is also supported in many Internet Explorer implementations.

185

186

Part I: Core Markup

src This attribute specifies the URL of the sound file to be played, which must be one of
the following types: .wav, .au, or .mid.

volume This attribute defines a number between —10,000 and 0 that determines the
loudness of a page’s background sound. Oddly, 0 is full volume and —10,000 is none.

Examples

<!-- assume examples are in different pages -->
<bgsound src="soundl.mid">

<bgsound src="sound2.au" loop="infinite">

<bgsound src="sound3.wav" loop="3" volume="-2000">

Compatibility

No standards support Internet Explorer 2+, Opera 4+

Notes

¢ Similar functionality can be achieved in older versions of Netscape using the
<embed> tag to invoke an audio player as well as using HTML5’s <audio> tag in
supporting browsers.

* You could write bgsound with a self-closing tag <bgsound />. However, since this
element is not part of a standard, making it XHTML-like will not make it validate.

<big> (Big Font)
This inline element indicates that the enclosed text should be displayed in a larger font
relative to the current font.

Standard Syntax

<big
class="class name(s)"
dir="ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</big>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

Chapter 3: HTML and XHTML Element Reference

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<p>This text is regular size. <big>This text is larger.</big> Now back to
regular size.</p>

Compatibility

HTML 3, 3.2, 4, 4.01 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1.1+, Opera 2.1+, Safari 1+
Notes

¢ This element was originally introduced in HTML 3 and moved to HTML 3.2.

¢ The effect of this element is easily mimicked using the CSS rule font-size:
larger or under older browsers using .

¢ Although HTML5 marks this element as obsolete, interestingly, it currently doesn’t
mark the small element as such but rather recasts its meaning instead. With the
strict (X)HTML variants supporting this element, this element’s status may change.

<blink> (Blinking Text)

This Netscape-specific element causes the enclosed text to flash slowly.

Syntax (Defined by Netscape)

<blink
class="class name(sg)"
id="unique alphanumeric identifier"
lang="language code"
style="style information">

</blink>

Example

<blink>Annoying, isn't it?</blink>

187

188

Part I: Core Markup

Compatibility

No standards support Firefox 1+, Netscape 1+, Opera 7+

Notes

e The attributes class, id, and style were added during the Netscape 4 release;
lang was added from Netscape 6.

* Browsers will generally support the inclusion of the element and allow core
attributes for applying style and scripting this element regardless of the lack of
blinking text.

<blockquote> (Block Quote)

This block element indicates that the enclosed text is an extended quotation. Usually, this is
rendered visually by indentation.

Standard Syntax

<blockquote
cite="URL of source information"
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</blockgquote>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)

tabindex="number" (5.5)
unselectable="off | on" (5.5)

Chapter 3: HTML and XHTML Element Reference 189

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

cite The value of this attribute should be a URL for the document in which the information
cited can be found.

Example

<blockquote cite="http://www.loc.gov/rr/program/bib/ourdocs/DeclarInd.html">
We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable rights,

that among these are life, liberty and the pursuit of happiness.
</blockquote>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

e HTML 2.0 and 3.2 do not support any attributes for this element.

e Some archaic browsers like WebTV understand the <bg> shorthand notation.

190 Part1: Core Markup

<body> (Document Body)

This sectional element encloses a document’s displayable content.

Standard Syntax

<body
alink="color name | #RRGGBB" (transitional only)
background="URL of background image" (transitional only)
bgcolor="color name | #RRGGBB" (transitional only)
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
link="color name | #RRGGBB" (transitional only)
style="style information"

text="color name | #RRGGBB" (transitional only)

title="advisory text"

vlink="color name | #RRGGBB"> (transitional only)
</body>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)
bgproperties="fixed" (4)
bottommargin="pixels" (4)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
leftmargin="pixels" (4)

nowrap="false | true" (4)

rightmargin="pixels" (4)
scroll="no | yes" (4)
tabindex="number" (5.5)
topmargin="pixels" (4)
unselectable="off | on" (5.5)

Chapter 3: HTML and XHTML Element Reference 191

Attributes Defined by Netscape

marginheight="pixels" (4)
marginwidth="pixels" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onload, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onunload

HTML5 Event Attributes

onabort, onafterprint, onbeforeprint, onbeforeunload, onblur, oncanplay,
oncanplaythrough, onchange, onclick, oncontextmenu, ondblclick, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
ondurationchange, onemptied, onended, onerror, onformchange, onforminput,
oninput, oninvalid, onhashchange, onkeydown, onkeypress, onkeyup, onload,
onloadeddata, onloadedmetadata, onloadstart, onmessage, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel, onoffline,
ononline, onpause, onplay, onplaying, onpopstate, onprogress, onratechange,
onreadystatechange, onredo, onresize, onscroll, onseeked, onseeking,
onselect, onshow, onstalled, onstorage, onsubmit, onsuspend, ontimeupdate,
onundo, onunload, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterprint, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeprint, onbeforeunload,
oncontextmenu, oncontrolselect, oncut, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onfilterchange,
onfocusin, onfocusout, onlosecapture, onmouseenter, onmouseleave,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresizeend, onresizestart, onscroll, onselect,
onselectstart

Element-Specific Attributes

alink This attribute sets the color for active links within the document. Active links
represent the state of a link as it is being clicked. The value of the attribute can be either a
named color like red or a color specified in the hexadecimal #RRGGBB format like
#FF0000. The CSS pseudo-class a: active should be used instead.

background This attribute contains a URL for an image file, which will be tiled to provide
the document background. The CSS background- image property should be used instead.

bgcolor This attribute sets the background color for the document. Its value can be either a
named color like red or a color specified using the hexadecimal #RRGGBB format like
#FF0000. The CSS background-color property should be used instead.

bgproperties This attribute, first introduced in Internet Explorer 2, has one value, fixed,
which causes the background image to act as a fixed watermark and not to scroll. The CSS
property background-attachment provides similar functionality.

192

Part I: Core Markup

bottommargin This attribute specifies the bottom margin for the entire body of the page and
overrides the default margin. When set to 0 or ", the bottom margin is the bottom edge of
the window or frame the content is displayed in. CSS margin properties should be used
instead.

leftmargin This Internet Explorer—specific attribute sets the left margin for the page, in
pixels, overriding the default margin. When set to 0 or ", the left margin is the left edge of
the window or the frame. CSS margin properties should be used instead.

link This attribute sets the color for hyperlinks within the document that have not yet been
visited. Its value can be either a browser-dependent named color or a color specified using
the hexadecimal #RRGGBB format. The CSS pseudo-class a: 1ink should be used instead.

marginheight This Netscape-specific attribute sets the top margin for the document, in

pixels. If set to 0 or "", the top margin will be exactly on the top edge of the window or
frame. It is equivalent to combining the Internet Explorer attributes bot tommargin and
topmargin. CSS margin properties should be used instead.

marginwidth This Netscape-specific attribute sets the left and right margins for the page, in
pixels, overriding the default margin. When set to 0 or ", the left margin is the left edge of
the window or the frame. It is equivalent to combining the Internet Explorer attributes
leftmargin and rightmargin. CSS margin properties should be used instead.

nowrap This Internet Explorer-specific attribute is used to control the wrapping of text
body width. If set to yes, text should not wrap. The default is no.

rightmargin This Internet Explorer—specific attribute sets the right margin for the page in
pixels, overriding the default margin. When set to 0 or " ", the right margin is the right edge
of the window or the frame. CSS margin properties should be used instead.

scroll This Internet Explorer—specific attribute turns the scroll bars on or off. The default
value is yes.

text This attribute sets the text color for the document. Its value can be either a named
color like red or a color specified using the hexadecimal #RRGGBB format. The CSS
property color should be used on the body element instead of this attribute.

topmargin This Internet Explorer-specific attribute sets the top margin for the document, in
pixels. If set to 0 or "", the top margin will be exactly on the top edge of the window or
frame. CSS margin properties should be used instead.

vlink This attribute sets the color for hyperlinks within the document that have already
been visited. Its value can be either a browser-dependent named color or a color specified
using the hexadecimal #RRGGBB format. The CSS pseudo-class a: visited should be used
instead.

Examples

<body background="checkered.gif™"
bgcolor="white"
alink="red"

Chapter 3: HTML and XHTML Element Reference 193

link="blue"

vlink="red"

text="black"> ... </body>
<body onload="myLoadFunction()"> ... </body>
<body> ... </body>

Compatibility

HTML 2, 3.2, 4, 4.01, 5+ Firefox 1+, Internet Explorer 2+
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

This empty element forces a line break.

When defining text colors, it is important to be careful to specify both foreground
and background explicitly so that they are not masked out by browser defaults set
by the user.

Under the strict HTML and XHTML definitions as well as HTML5, CSS should be
used in place of presentation attributes like alink, background, bgcolor, link,
text, and vlink.

This element must be present in all documents except those declaring a frame set.
Under XHTML, the closing </body> tag is mandatory.
HTMLS returns to the old style of making the element optional.

HTMLS5 currently defines all common attributes for this element, though the meaning
of some in the context of the entire document is a bit unclear.

(Line Break)

Standard Syntax

<br

class="class name(s)"

clear="all | left | none | right" (transitional only)
id="unique alphanumeric identifier"

style="style information"

title="advisory text"s>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"
draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"

194

Part I: Core Markup

itemscope="itemscope"
itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onlayoutcomplete, onlosecapture, onreadystatechange

Element-Specific Attributes

clear This attribute forces the insertion of vertical space so that the tagged text can be
positioned with respect to images. A value of left clears text that flows around left-aligned
images to the next full left margin; a value of right clears text that flows around right-aligned
images to the next full right margin; and a value of al1 clears text until it can reach both full
margins. The default value according to the transitional HTML and XHTML specifications is
none, but its meaning generally is supported as just introducing a return and nothing more.
The CSS clear property is preferred over using this attribute.

Examples

<p>This text will be broken here
and continued on a new line.</p>
<p>XHTML
syntax!</p>

<address>

PINT Inc.

2105 Garnet Ave

San Diego, CA 92109

</address>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

e This is an empty element. A closing tag is illegal under all HTML specifications. For
XHTML compatibility, a closing slash is required:
.

¢ Under the strict (X)HTML specifications and HTMLS5, the clear attribute is not valid.
The CSS property clear provides the same functionality as the clear attribute.

Chapter 3: HTML and XHTML Element Reference

¢ HTMLS5 currently defines common attributes for this element that are not defined in
HTML 4 and make little sense given that it is empty. Consult the latest specification
for clarity.

* Many developers opt to use margin-related CSS properties to perform the course
formatting duties that this element performed. It is arguable that degradation in the
absence of style sheets may actually favor the br element’s continued use.

<button> (Form Button)

This element defines a rich button that may contain arbitrary content to augment what the
standard <input type="button"> provides.

Standard Syntax

<button
accesskey="key"
class="class name(s)"
dir="1ltr | rtl"
disabled="disabled"
id="unique alphanumeric identifier"
lang="language code"
name="button name"
style="style information"
tabindex="number"
title="advisory text™"
type="button | reset | submit"
value="button value">

</button>

Attributes Introduced by HTML5

autofocus="autofocus"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
draggable="true | false | auto"
enctype="mimetype" (for type submit)
form="id of related form element"
formaction="URL of form action"
formenctype="MIME type of form encoding"
formmethod="GET | POST | PUT | DELETE"
formnovalidate="true | false"
formtarget="name of target frame, region or window"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

type="add | remove | move-down | move-up"

195

196 Part1: Core Markup

Attributes Defined by Internet Explorer

contenteditable="false | true | inherit" (5.5)
datafld="name of column supplying bound data" (4)
dataformatas="html | text" (4)

datasrc="1id of data source object supplying data" (4)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeupdate, oncontextmenu, onclick,
oncontrolselect, oncut, ondblclick, ondeactivate, ondragenter, ondragleave,
ondragover, ondrop, onerrorupdate, onfilterchange, onfocusin, onfocusout,
onhelp, onkeydown, onkeypress, onkeyup, onlosecapture, onmousedown,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart

Element-Specific Attributes

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It takes an attribute value of autofocus when using the XML-style syntax
for XHTMLS.

form This HTMLS attribute should be set to a string that corresponds to the id of the form
element that the button is associated with. This allows form elements in one form to trigger
actions in others.

formaction This HTMLS attribute specifies a URL to target when the button is clicked,
similar to the use of the action attribute on a form element.

formenctype Under HTMLS5 this attribute is set to the MIME type for how data should be
transmitted to the URL specified in the action attribute. Common values include

Chapter 3: HTML and XHTML Element Reference 197

application/x-www-form-urlencoded (the default value when not specified),
multipart/formdata, and text/plain

formmethod This HTMLS5 attribute indicates how form information should be transferred
to the server using a particular HTTP method. A get value in the attribute indicates that
form data should be appended to the URL specified by the action attribute creating a
query string. This approach is quite simple but imposes a size limitation that is difficult to
gauge (may be as low as 2 kilobytes or even ~300 characters in real situations). A value of
post for this attribute transfers the data of the form in the message body using the HTTP
pOST method, which imposes no data size limitation. Browsers may allow for other HTTP
methods like delete or put, as suggested by the HTMLS5 specification, but so far such
usage is rare. The post value must be used when file attachments are used in a form.

formnovalidate This HTMLS5 Boolean attribute is used to indicate a form should not be
validated during submission. It is false by default but may be controlled either on the
button directly or on a containing or related form. Initially this was simply known as
novalidate.

formtarget This HTMLS5 attribute is set to the name of a window or frame that the button
action will target the result of action, similar to the target attribute on <a> and <form>
tags. Initially, this attribute was simply target in early drafts of HTML5.

name This attribute is used to define a name for the button so that it can be scripted by
older browsers or used to provide a name for submit buttons when a page has more than
one. The id attribute is preferred for scripting purposes.

type This attribute defines the action of the button. Possible values include button, reset,
and submit, which are used to indicate that the button is a plain button, form reset button,
or form submission button, respectively. The XHTML specification indicates submit is the
default, but browsers may not enforce this in practice.

value

This attribute defines the value that is sent to the server when the button is clicked. This
might be useful when using multiple submi t buttons that perform different actions, to
indicate to the handling server-side program which button was clicked.

Examples

<button name="Submit"
value="Submit"
type="Submit">Submit Request</button>

<button type="button"
onclick="doSomething() ;">Click This Button</button>

<button type="button">
</button>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 5+, Safari 1+

198

Part

Notes

I: Core Markup

It is not appropriate to associate an image map with an tag that appears as
the content of a button element.

HTML5 may eventually add new values to the type attribute. Already many new
type values have been proposed in different forums, such as add, remove, move-up,
and move-down. These may produce predefined button styles, including icons in
some user agents, but so far their inclusion is far from certain.

The HTML 4.01 specification reserves the data-binding attributes dataf1d,
dataformatas, and datasrc for future use. Internet Explorer does support them.

The default type of a <buttons> is submit under Internet Explorer 8’s standards
mode, and is button under IE 8’s compatibility mode.

Under Internet Explorer 8, the value of a submitted button depends on the
compatibility mode of the browser. In IE 8 standards mode, the contents of the
attribute value is sent, as compared to IE 8 compatibility mode, where the
innerText value of the <button> tag used is sent.

<canvas> (Canvas for Drawing)

This element defines a region in the document to be used as a bitmap canvas where script
code can be used to render graphics interactively. It should be noted that the markup syntax
of this element is a relatively minor portion of what is required to effectively utilize the

drawing technology found within.

HTML5 Standard Syntax

<canvas

accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"

dir="1ltr | rtl"

draggable="true | false | auto"
height="pixels"

hidden="hidden"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"

spellcheck="true | false"

style="style information"
tabindex="number"

title="advisory text"

width="pixels">

</canvas>

Chapter 3:

HTML5 Event Attributes

onabort, onblur,
oncontextmenu,

oncanplay, oncanplaythrough,
ondblclick, ondrag, ondragend,

HTML and XHTML Element Reference

onchange, onclick,
ondragenter, ondragleave,

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,

onerror, onfocus, onformchange, onforminput,
onkeypress, onkeyup, onload, onloadeddata,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay,

API Reference

A brief overview of the canvas scripting APl is provided in Tables 3-9 through 3-21. Selected

oninput, oninvalid, onkeydown,
onloadedmetadata, onloadstart,

onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect,
onsuspend, ontimeupdate, onvolumechange,

examples of use can be found in Chapter 2.

Example

onshow, onstalled, onsubmit,
onwaiting

<canvas id="canvasl" height="400" width="400">
<p class="error">Canvas-Supporting Browser Required</p>

</canvas>

<script type="text/javascript">

var canvas =

var context =

document .getElementById ("canvasl") ;
canvas.getContext ("2d") ;

/* draw simple figure of red and green squares */
context.fillStyle = "rgb(255,0,0)";
context.fillRect (0,0,100,100) ;
context.fillStyle = "rgb(0,255,0)";
context.fillRect (25,25,50,50) ;

</script>

Name

Description

Example

getContext
(contextId)

Returns an object that exposes
the API necessary for accessing
the drawing functions. Currently,
the only contextIdis '24d"

var context = canvas
.getContext ('2d"') ;

toDataUrl ([typel)

Returns a data: URL of the
canvas image as a file of the
specified type or a PNG file by
default.

var dataurl = canvas
.toDataUrl () ;

Default value is 300.

height Height of the canvas element. var canvas = document
Default value is 150. .getElementById("canvasl") ;
canvas.height = 300;
width Width of the canvas element. var canvas = document

.getElementById ("canvasl") ;
canvas.width = 600;

TaBLe 3-9 Primary canvas Methods and Properties

200 Partl: Core Markup

Name Description Example
addColorStop (offset, | Adds a new stop to the gradient. | 1g.addColorStop (0,
color) offset must be a number "#B03060") ;
between O and 1. color must lg.addColorStop (0.5,
be a CSS color. "H#4169E1") ;
lg.addColorStop (1,
"HFFE4EL") ;

TaBLe 3-10 CanvasGradient Methods

Name Description Example

restore () Retrieves the last state saved by the save () context.restore () ;
function and resets settings to that state.

save () Adds the current state to the drawing state stack. context.save () ;

TaBLe 3-11 canvas State Preservation Methods

Name Description Example
rotate (angle) Adds a clockwise rotation specified context.rotate (Math
by angle transformation to the .P1/8);

transformation matrix.

scale (x, y) Adds the scaling transformation to the | context.scale(2, 2);
transformation matrix. x and y define
how much to stretch on the x and y
axis respectively.

setTransform (mll, Resets the transformation matrix context.setTransform
ml2, m21, m22, dx, to the identity matrix and then calls (1, 1, 1,0, 0, 0);
dy) transform (mll, ml2, m21,

m22, dx, dy).

transform(mll, ml2, | Multiplies the current transformation var sin = Math

m21l, m22, dx, dy) matrix by the matrix defined by: .sin(Math.PI/6) ;
mll m21 dx var cos = Math
ml2 m22 dy .cos (Math.PI/6) ;
0 0 1 context.transform(sin,
cos, -cos, sin, 0, 0);
translate (x, y) Adds the translation transformation to | context.translate

the current transformation matrix. The | (100, 100);
transformation moves the origin to the
location specified by (x, vy).

TaBLe 3-12 Primary canvas Transformation Methods

images are written to the
canvas. See Table 3-14 for

Chapter 3: HTML and XHTML Element Reference
Name Description Example
globalAlpha The default alpha value for context.globalAlpha = .6;
all fills and strokes. Value
must be between 0 and 1.
The defaultis 1.0.
globalCompositeOperation Sets how shapes and context.

globalCompositeOperation

= "destination-over";
the various options. Ais the
object being written (source)
and B is the current canvas
drawing (destination). The
default is source-over.

TaBLE 3-13

canvas Compositing Properties

Compositing Operation Keyword

Description

copy

Displays only A.

destination-atop

Displays B where A and B overlap. Displays A where they do not
overlap. Does not display B where they do not overlap.

destination-in

Displays B only in the region that A and B overlap. No A is
displayed.

destination-out

Displays B only in the region that A and B do not overlap. No A is
displayed.

destination-over

Displays all of B and displays A where they do not overlap.

lighter

In overlapping regions, displays the sum of A and B. In
nonoverlapping regions, A and B appear normally.

source-atop

Displays A where A and B overlap. Displays B where they do not
overlap. Does not display A where they do not overlap.

source-in

Displays A only in the region that A and B overlap. No B is
displayed.

source-out

Displays A only in the region that A and B do not overlap. No B is
displayed.

source-over

Displays all of A and displays B where they do not overlap.

Xor

In overlapping regions, nothing is displayed. In nonoverlapping
regions, A and B appear normally.

TaBLe 3-14 canvas Compositing Options

201

202 Part I:

Core Markup

Name

Description

Example

createlLinearGradient
(x0, y0, x1, vy1)

Creates a new
CanvasGradient object with
the start point (x0,y0) and the
end point (x1,y1).

var lg = context
.createlLinearGradient
(0, 0, 300, 200);

createPattern
(image, repetition)

Creates a CanvasPattern that
can be used as a £fillstyle

or strokeStyle. The pattern
starts with the specified image
and then repeats according

to repetition. Options are
repeat, repeat-x, repeat-y,
and no-repeat.

pattern = context
.createPattern (img,
"repeat") ;
context.fillStyle =
pattern;

createRadialGradient
(x0, y0, ro, x1,
yl, rl)

Creates a RadialGradient
with the start circle at origin
(x0,y0) with radius r0 and the
end circle at origin (x1,y1) with
radius r1.

var rg = context
.createRadialGradient
(105,105,40,112,120,70) ;

fillStyle

The color or style applied on

an invocation of £i11 (). The
value can be a CSS color, a
CanvasGradient as created

by createRadialGradient ()
and
createLinearGradient (), or
a CanvasPattern as created
by createPattern (). The
default fill style is black.

context.fillStyle =
"rgb (166,42,42)";

strokeStyle

The color or style applied on the
invocation of stroke (). The
value can be a CSS color value,

a CanvasGradient as created
by createRadialGradient ()
and
createlLinearGradient (), or
a CanvasPattern as created
by createPattern (). The
default stroke style is black.

context.strokeStyle =
"rgba (218, 112, 214,
0.4)";

TaBLe 3-15 canvas Color and Style Properties and Methods

Chapter 3: HTML and XHTML Element Reference 203

Name Description Example
lineCap Sets the type of endings that are put on lines. The | context.lineCap =
choices are butt, round, and square. A value "round";

of butt indicates that there is a flat edge at the
end of the specified line. A value of round adds
a semicircle with a diameter the width of the line
to the end of the line. A value of square adds a
rectangle with a width half of the line’s width and
a length equal to the line’s width at the end of the
line. The default is butt.

lineJoin Sets the type of corners that occur when two context.lineJoin =
lines meet. The choices are miter, bevel, and "round";

round. On all joins, a filled triangle connecting the
two lines is connected. A value of bevel uses only
this filled triangle. A value of miter indicates that
in addition to the triangle, a second filled triangle
is created. The second triangle consists of a line
that connects the two lines as well as the two lines
themselves extended until they meet. A value of
round indicates that corners should be rounded
when lines meet. The arc has a diameter equal to
the width of the line. The default is miter.

lineWidth Sets the width of the lines. The default value is 1. context.lineWidth = 5;

miterLimit | Sets the max length that a line will be extended if context.miterLimit = 1;
lineJoin is set to miter. If the length necessary
to join the lines is greater than the miterLimit,
the join will not occur. The default is 10.

TaBLe 3-16 canvas Line Properties

Name Description Example
shadowBlur Sets the size of the blurring effect. context.shadowBlur = 4;
The default value is 0.
shadowColor Sets the color of the shadow. The context.shadowColor =
default is transparent black. "rgba (255, 48, 48, 0.5)";
shadowOffsetX Sets the distance that the shadow will | context.shadowOffsetX = 5;
be offset in the horizontal direction.
The default value is 0.
shadowOffsetY Sets the distance that the shadow context.shadowOffsetY = -10;

will be offset in the vertical direction.
The default value is 0.

TaBLE 3-17 canvas Shadow Properties

204 Part1: Core Markup

Name Description Example
clearRect Clears the pixels of the specified rectangle context.fillRect
(x, vy, w, h) with starting point (x,y) and width w and (100, 100, 100, 100);
height h. context.clearRect (125,
125, 50, 50);
fillRect Fills the rectangle defined by the starting context.fillRect
(x, y, w, h) point (x,y) and the width w and height h. (100, 100, 100, 100);

Uses the £111Style to determine how the
fill should appear.

strokeRect Draws the outline for the rectangle defined context.strokeRect
(x, vy, w, h) by the starting point (x,y) and the (50, 100, 200, 100);
width w and height h. Uses 1inewWidth,
lineCap, linedoin, miterLimit, and
strokeStyle to determine how the stroke
should appear.

TaBLE 3-18 canvas Rectangle Methods

Name Description Example

arc (x, y, radius, Draws an arc between two context.arc(115,120,5,0,
startAngle, endAngle, | points that has an origin set Math.PI*2, true) ;
anticlockwise) to (x,y) and a radius set as

defined by radius. The start
point is defined as the point
on the arc where the angle is
startAngle, and the end
point is the point on the arc
where the angle is endAngle.
The actual arc is drawn along
the circumference between the
two points either clockwise or
counterclockwise depending on

the setting.
arcTo (x1, yl, x2, Draws an arc with the radius context.moveTo (80, 50);
y2, radius) radius and that goes context.arcTo (250, 50,
between two points that are 250, 250, 30);

determined by getting tangent
points on two lines. The first
line is drawn from the last
point in the subpath to (x1,
y1). The second line is drawn
from (x1, y1) to (x2, y2).

TaBLe 3-19 canvas Path APl Methods

by intersecting the current
clipping region with the area
defined in the current path.

Chapter 3: HTML and XHTML Element Reference

Name Description Example
beginPath () Sets the subpath list to 0. Any | context.beginPath() ;

paths set and undrawn at this

point will not be displayed.
bezierCurveTo Connects the last point in context.moveTo (50,50) ;
(cplx, cply, cp2x, the subpath to (x,y) using context.bezierCurveTo (65,
cp2y, X, Y) (cplx, cply) and (cp2x, 25, 85, 25, 100, 50);

cp2y) as control points for a

cubic Bézier curve.
clip() Creates a new clipping region context

.arc(150,150,100,0,Math
.PI*2,true) ;
context.clip() ;

closePath()

Closes the last subpath and
creates a new subpath that
has the previous subpath’s
last point as its first point.

context.closePath() ;

£i11 ()

Fills any open subpaths and
then closes them. Uses the
fillstyle to determine how
the fill should appear.

context.lineTo(100,100) ;
context.lineTo (0,200) ;
context.lineTo(100,300) ;
context.fill () ;

lineTo(x, V)

Draws a line from the last point
in the subpath to the point
defined by (x, v).

context.lineTo(100,100) ;

moveTo (x, y)

Creates a new subpath with
the point (x, y) added to it.

context.moveTo (150,50) ;

quadraticCurveTo
(cpx, cpy, x, V)

Connects the last point in
the subpath to (x,y) using
(cpx, cpy) as the control
point for a quadratic Bézier
curve.

context.moveTo (50,150) ;
context
.quadraticCurveTo (125,
225, 200, 150);

rect (x, y, w, h)

Creates a new subpath
containing the rectangle
defined by starting point (x,
y) with width w and height h.

context.rect (50, 50, 100,
100) ;

stroke ()

Draws the strokes of the
current path and display based
on the settings specified

by lineWidth, lineCap,
lineJoin, miterLimit, and
strokeStyle.

context .moveTo
context.lineTo
context.lineTo
context.lineTo
context.lineTo
context.stroke

50, 250);
0, 200);
50, 150);
0,100) ;

50, 50);

(
(
(
(
(
()i

TaeLe 3-19 canvas Path APl Methods (continued)

205

206 Part I:

Core Markup

Name

Description

Example

fillText (text, x,
y [, maxWidth])

Writes text at location
(x,y) and fills it according
to the fillstyle. The
text is written according

to the values set for

context.font =
sans-serif";
context.fillStyle = "
(0, 255, 0, .5)";

"30px

rgba

context.fillText ("Canvas is

for that object is width.

("I love Canvas") ;
var width = tm.width;

font, textAlign, and great!", 10, 40);
textBaseline

font Sets the font for a text context.font = "bold 20px
string. Must be in the same Courier New";
format as CSS fonts. The
default is 10px sans-
serif.

measureText (text) Returns a TextMetrics context.font = "bold 20px
object for the given text. Verdana";
Currently, the only property tm = context.measureText

strokeText (text,

X,V
[, maxWidth])

Writes text at location
(x,y) according to the
strokeStyle. The
text is written according
to the values set for
font, textAlign, and
textBaseline.

context.font =
sans-serif';
context.strokeStyle =

'30px

"orange";

context.strokeText ('Canvas is

great!', 10, 40);

textAlign

Sets the alignment of

a text string. The x, y
points specified will line

up according to the option
chosen. The options are
start, end, left, right,
and center. The default
value is start.

context.textAlign = "

end";

textBaseline

Sets the text baseline for
a text string. The options
are top, hanging,
middle, alphabetic,
ideographic, and
bottom. The default value
is alphabetic.

context.textBaseline
"ideographic";

TaeLe 3-20 canvas Text APl Methods and Properties

Chapter 3:

HTML and

XHTML Element Reference

Name

Description

Example

createImageData(w, h)
createImageData
(imagedata)

Instantiates a new blank
ImageData object with the
width w and height h or with
the same dimensions as
imagedata

context.createlImageData
(100,200) ;

drawImage (image, dx, dy)
drawImage (image, dx, dy,
dw, dh)

drawImage (image, sx, sy,
sw, sh, dx, dy, dw, dh)

Draws an image specified by
image onto the canvas. The
image is placed at (dx, dy).
If dw and dh are specified, the
image will have that width and
height, respectively. In the last
case, the section of the image
to be placed on the canvas

is specified by the rectangle
defined by sx, sy, sw, and sh.

context .drawImage
(img,200,75,100,100,50,
50,300,300) ;

context .drawImage
(img,0,0,400,400) ;

getImageData (sx, sy,
sw, sh)

Returns an ImageData object
that contains the pixel data
for the rectangle that starts at

var img = context
.getImageData (0, O,
100, 100);

(sx, sy) with a width sw and
height sh.
putImageData (imagedata, |Writes the specified ImageData |context.putImageData
dx, dyl[, dirtyX, to the canvas. (img, 75, 75);
dirtyY, dirtyWidth,
dirtyHeight])
data Represents the pixels in the alert (img.data.length) ;
image.
height Height of the image in pixels. alert (img.height) ;
width Width of the image in pixels. alert (img.width) ;

TaBLe 3-21 canvas ImageData APl Methods and Properties

Compatibility
HTML5 Firefox 1.5+,
Opera 9+, Safari 2+
Notes

¢ When this element was initially introduced in 2004 by Apple, it caused some degree
of controversy in the Web community because developers assumed that it would
open the floodgates to vendor-specific extensions.

¢ Under some Safari implementations, the close </canvas> tag is not required or

understood.

201

208

Part I: Core Markup

¢ User agents that do not understand <canvas> should render the contents of the
element instead.

¢ It is possible to simulate the <canvas> tag under Internet Explorer using one of
numerous libraries such as Google’s ExplorerCanvas (http://excanvas.sourceforge
.net/). Such libraries rely on the use of IE’s proprietary VML (Vector Markup
Language) technology and are likely going to operate slowly given the required
translation as compared to a native <canvas> implementation.

¢ Chapter 2 has a discussion of <canvas> and its use with JavaScript.

<caption> (Table Caption)

This element is used within the table element to define a caption.

Standard Syntax

<caption
align="bottom | left | right | top" (transitional only)
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</captions>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
contenteditable="false | true | inherit" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

valign="bottom | top" (4)

Chapter 3: HTML and XHTML Element Reference

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute specifies the alignment of the caption. HTML 4 defines bottom, left,
right, and top as legal values. Internet Explorer also supports center. Because this
attribute does not provide the possibility to combine vertical and horizontal alignments,
Microsoft has introduced the valign attribute for the caption element.

valign This Internet Explorer—specific attribute specifies whether the table caption appears
at the top or bottom. The default is top.

Example

<table border="1">
<caption align="top">Our High-Priced Menu</caption>
<tr>
<td>Escargot</td>
<td>Filet Mignon</td>
<td>Big Mac</td>
</tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1, Basic Netscape 3+, Opera 4+, Safari 1+

209

210

Part I: Core Markup

Notes
¢ There should be only one caption per table.

e HTML 3.2 defines only the align attribute with values of bottom and top. No
other attributes are defined prior to HTML 4.

<center> (Center Alignment)

This element causes the enclosed content to be centered within the margins currently in
effect. Margins are either the default page margins or those imposed by overriding elements
such as tables. The element is considered deprecated or obsolete, and CSS properties such as
text-align and margin should be used instead.

Standard Syntax (Transitional Only)

<center
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</center>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Chapter 3: HTML and XHTML Element Reference

Examples

<center>This is in the center of the page.</center>

<center>
<p>Larry</p>
<p>Curly</p>
<p>Moe</p>

</center>

Compatibility

HTML 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 1+, Opera 4+, Safari 1+
Notes

® The center element defined by the W3C is a shorthand notation for <div
align="center">. The content model for this element is odd, as the <center> tag
is often found enclosing large sections of content or fragments. Typically, it has been
noted that page authors who tend to use the element don’t care about the content
model and use tags out of context freely.

¢ The strict versions of HTML and XHTML do not include the center element, but it
is easily imitated with the text-align CSS property.

e HTMLS5 defines the center element as obsolete.

e HTML 3.2 does not support any attributes for this element.

<cite> (Citation)
This element indicates a citation from a book or other published source and usually is
rendered in italics by a browser.

Standard Syntax

<cite
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</cite>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

21

212

Part I: Core Markup

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Example

<p>This example is taken from <cite>HTML & CSS: The Complete
Reference</cite> a book by Thomas Powell.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 213

Note
e HTML 2 and 3.2 do not indicate any attributes for this element.

<code> (Code Listing)

This element indicates that the enclosed text is source code in a programming language.
Usually it is rendered in a monospaced font.

Standard Syntax

<code
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</code>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,

214

Part I: Core Markup

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresizeend,
onresizestart, onselectstart, ontimeerror

Example

<p>To increment a variable <var>count</var>, use

<code> count++ </code> or <code> count = count + 1 </code>.</p>
Compatibility

HTML 2, 3.2, 4, 4.01,5 Firefox 1+, Internet Explorer 2+,

XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+

Notes

¢ This element is best used for short code fragments because it does not preserve
white space.

¢ HTML 2.0 and 3.2 do not support any attributes for this element.

¢ Internet Explorer documentation does not list accesskey or tabindex for this
element. This is likely an oversight, as it is found on nearly all other elements in the
IE object model.

<col> (Table Column)

This element defines a column within a table and is used for grouping and alignment
purposes. It is always found within a colgroup element.

Standard Syntax

<col
align="center | char | justify | left | right"
char="character"
charoff="number"
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
span="number"
style="style information"

Chapter 3: HTML and XHTML Element Reference 215

title="advisory text"
valign="baseline | bottom | middle | top"
width="column width specification">

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
bgcolor="color name | #RRGGBB" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer

onreadystatechange

Element-Specific Attributes

bgeolor This Internet Explorer—specific attribute sets the background color for the column.
Its value can be either a browser-dependent named color or a color specified using the
hexadecimal #RRGGBB format.

char This attribute is used to set the character on which the cells in a column should be
aligned. A typical value for this is a period (.) for aligning numbers or monetary values.

216

Part I: Core Markup

charoff This attribute is used to indicate the number of characters by which the column
data should be offset from the alignment characters specified by the char value.

span When present, this attribute applies the attributes of the col element to additional
consecutive columns.

valign This attribute specifies the vertical alignment of the text within the cell. Possible
values for this attribute are baseline, bottom, middle, and top.

width This attribute specifies a default width for each column in the current column group.
In addition to the standard pixel and percentage values, this attribute might take the special
form 0*, which means that the width of each column in the group should be the minimum
width necessary to hold the column’s contents. Relative widths, such as 0.5%*, also can be
used.

Example

<table border="1" width="400">
<colgroup>
<col align="center" width="150" />
<col align="right" />
</colgroup>
<td>This column is aligned to the center.</td>
<td>This one is aligned to the right.</td>
</td>
<tr><tds>!</td><td>?</td></tr>

<tr><tds>!</td><td>?</td></tr>
</table>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 7+, Safari 1+
Notes

¢ Under XHTML 1.0 and XHTMLS5, <col> requires a trailing slash: <col />.

¢ This element should appear within a colgroup element, and, like that element, it is
somewhat of a convenience feature used to set attributes with one or more table
columns. In practice, few developers seem to use it.

<colgroup> (Table Column Group)

This element creates an explicit group of table columns containing col elements to provide
for table column-level scripting or formatting.

Standard Syntax

<colgroup
align="center | char | justify | left | right"
char="character"

Chapter 3: HTML and XHTML Element Reference Ni

charoff="number"

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

span="number"

style="style information"

title="advisory text"

valign="baseline | bottom | middle | top"
width="column width specification">

col elements only
</colgroup>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

bgcolor="color name | #RRGGBB" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer

onreadystatechange

218

Part I: Core Markup

Element-Specific Attributes

align This attribute specifies horizontal alignment of the contents of the cells in the column
group. The values of center, 1left, and right have obvious meanings. A value of justify
for the attribute attempts to justify all the column’s contents. A value of char attempts to
align the contents based on the value of the char attribute in conjunction with charoff.

bgcolor This Internet Explorer—specific attribute sets the background color for the columns
in the column group. Its value can be either a browser-dependent named color or a color
specified using the hexadecimal #RRGGBB format.

char This attribute is used to set the character on which the cells in a column should be
aligned. A typical value for this attribute is a period (.) for aligning numbers or monetary
values.

charoff This attribute is used to indicate the number of characters by which the column
data should be offset from the alignment characters specified by the char value.

span When present, this attribute specifies the default number of columns in this group.
Browsers should ignore this attribute if the current column group contains one or more
<col> tags. The default value of this attribute is 1.

valign This attribute specifies the vertical alignment of the contents of the cells within the
column group.

width This attribute specifies a default width for each column and its cells in the current
column group. In addition to the standard pixel and percentage values, this attribute can
take the special form 0%, which means that the width of each column in the group should be
the minimum width necessary to hold the column’s contents.

Examples

<colgroup span="2" align="char" char=":" valign="center">
<col /><col /><col />

</colgroup>

<colgroup style="background-color: green;">
<col align="left" />

<col align="center" />

</colgroup>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 7+, Safari 1+
Notes

¢ Each column group defined by a <colgroup> tag can contain zero or more <col>
tags.

e Under XHTML 1.0, the closing </colgroup> tag is mandatory.

Chapter 3: HTML and XHTML Element Reference 219

<command> (Command)
This HTML5 element represents a command a user can invoke and is found within a menu
element. Commands may be simple actions or toggles among various states or options.

HTML5 Standard Syntax

<command
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
default="default"
dir="1ltr | rtl"
disabled="disabled"
draggable="true | false | auto"
hidden="hidden"
icon="URL for image to use with command"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
label="descriptive string for command"
lang="language code"
radiogroup="radiogroup name"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text describing command"
type="checkbox | command | radio"s

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<menu>
<command label="Add" type="Command" icon="plus.png">

<command label="Edit" type="Command" default>

<command label="Delete" type="Command" disabled>

<hr>

<command label="Sort Ascending" type="radio" radiogroup="sort">
<command label="Sort Descending" type="radio" radiogroup="sort">
</menu>

220

Part I: Core Markup

Compatibility

HTML5 Not currently supported by any browser, but addressed with
a custom element combined with JavaScript.

Note

¢ This element is currently in extremely raw form and without implementations its
usage should be considered speculative.

<comment> (Comment Information)

This nonstandard Internet Explorer element treats enclosed text as comments. This element
should not be used.

Syntax Defined by Internet Explorer

<comment
data="URL" (6)
id="unique alphanumeric identifier" (4)
lang="language code" (4)
title="advisory text"> (4)

</comment >
Event Defined by Internet Explorer
onlayoutcomplete

Element-Specific Attribute

data This attribute references a URL that contains the comment information.

Example
<comment>This is not the proper way to form
comments!!!</comment>

Compatibility

No standards support Internet Explorer 4, 5, 5.5, 6
Notes
¢ Itis better to use standard <!--. . .-->comment rather than this tag.

* Because the comment element is not supported by all browsers, commented text
done in this fashion will appear in other browsers.

<datalist> (List of Prefill Data)

This HTMLS5 element contains option elements that populate an input element with
type="1list". These listed items would be considered the quick choices for the field, not
a limitation of what can be entered, which would be the functionality of a select menu.

Chapter 3: HTML and XHTML Element Reference 221

HTML5 Standard Syntax

<datalist
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text"s>

option elements only

</datalists>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Datalist Test</title>
</head>
<body>
<form action="#" method="get">
<p><label>Drinks: <input list="soda"></label></p>
<datalist id="soda">
<option>Coke</option>
<option>Pepsi</option>
<option>Dr. Pepper</option>

222

Part I: Core Markup

<option>Mr. Pibb</option>
<option>Mt. Dew</option>
<option>7-Up</option>
</datalist>
</form>
</body>
</html>

Compatibility

HTML5 Opera 9.5+

Note

¢ This element could be simulated with other browsers using script, custom elements,
and careful use of CSS.

<dd> (Definition Description in a Definition List

or Content in Details or Figure)

This element indicates the definition of a term within a list of defined terms (<dt>) enclosed
by a definition list (<d1>). Under HTMLD5, the element is also found with details and
figure elements enclosing the content of the element.

Standard Syntax

<dd
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</dd>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Chapter 3: HTML and XHTML Element Reference 223

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
nowrap="no | yes" (4)

tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

nowrap This Internet Explorer—specific attribute is used to control the wrapping of text
within a <dd> tag. If set to yes, text should not wrap. The default is no. CSS rules should be
used instead of this attribute.

Examples

<dl>
<dt>D0OG</dt>
<dd>A domesticated animal that craves attention all the time</dd>
<dt>CAT</dt>
<dd>An animal that would just as soon ignore you until it
gets hungry</dds>
</dl>

2

Part I: Core Markup

<!-- HTML5 Example -->

<details>

<dt>Important Note</dt>

<dd>This tag seems to be reused too much under HTML5!<dd>
</details>

<figure>

<dt>Moose Baby!</dt>

<dd>

<p>A photo of Desmond circa 2010.</p>

</dd>

</figure>

Compatibility

HTML 2, 3.2, 4, 4.01,5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

¢ Under HTML specifications, including HTML5, the closing tag for this element is
optional, though using it is encouraged when it will help make the list more
understandable.

¢ Under XHTML 1.0, the closing </dd> tag is mandatory.

¢ This element occurs within a list of defined terms enclosed by a <d1> tag. Typically
associated with it is the term it defines, indicated by the <dt> tag that precedes it,
though it doesn’t have to match because there are not correspondence requirements
for definition lists.

¢ Under HTMLS, this element has an overloaded meaning and may also be used to
enclose the content within <details> and <figure> tags.

¢ In early versions of HTMLS5, this element occurred within a <dialog> tag for
indication of dialog.

e HTML 2 and 3.2 define no attributes for this element.

 (Deleted Text)

This element is used to indicate that text has been deleted from a document. A browser
might render deleted text as strikethrough text.

Standard Syntax

<del
cite="URL"
class="class name(s)"
datetime="date"
dir="1ltr | rtl"
id="unique alphanumeric identifier"

Chapter 3: HTML and XHTML Element Reference

lang="language code"
style="style information"
title="advisory text"s>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onbeforeeditfocus, onblur, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onfocus, onkeydown, onkeypress, onkeyup,
onreadystatechange, onselectstart, ontimeerror

225

226

Part I: Core Markup

NOTE MSDN documentation for this element appears incorrect for event handlers. Not all core
events are listed, but during testing they all worked. Other extended events like onbeforecopy,
oncopy, oncontextmenu, and more were also verified as functional under Internet Explorer 8.

Element-Specific Attributes

cite The value of this attribute is a URL that designates a source document or message that
might explain why the information was deleted.

datetime This attribute is used to indicate the date and time the deletion was made. The value
of the attribute is a date in a special format as defined by ISO 8601. The basic date format is

YYYY-MM-DDThh : mm: ssTZD
where the following is true:

YYYY=four-digit year such as 1999

MM=two-digit month (0l=January, 02=February, and so on.)
DD=two-digit day of the month (01 through 31)

hh=two-digit hour (00 to 23) (24-hour clock, not AM or PM)
mm=two-digit minute (00 through 59)

ss=two-digit second (00 through 59)

TZD=time zone designator

The time zone designator is either z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh: mm, which indicates that the time is a local
time that is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be -hh: mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 1999-10-6T09:15:00-05:00, which corresponds to October 6, 1999, 9:15 a.Mm.,
U.S. Eastern Standard Time.

Example

<p><del cite="http://www.democompany.com/changes/oct.html"
datetime="2008-10-06T09:15:00-05:00">

The penalty clause applies to client lateness as well.

 <ins>No more penalties</ins></p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 7+, Safari 1+
Notes

* Browsers can render deleted () text in a different style to show the changes
that have been made to the document. Internet Explorer renders the deleted text as
strikethrough text. Eventually, a browser could have a way to show a revision
history on a document.

Chapter 3: HTML and XHTML Element Reference

¢ User agents that do not understand or <ins> will show the information
anyway, so there is no harm in adding information—only in deleting it. Because of
the fact that -enclosed text might show up, it might be wise to comment it out
within the element, as shown here:

<!-- This is old information. -->

<details> (Additional Details)

This HTML5 element represents additional information or interactive elements that can be
shown on demand.

HTML5 Standard Syntax

<details
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
open="true | false"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

dt or dd elements and other content or controls

</details>
Element-Specific Attribute

open This Boolean attribute indicates whether details should be shown to the user. If not
they are not shown, and would likely be exposed via a script event.

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,

221

228

Part I: Core Markup

onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<details onclick="this.open='open';">

<dt>Help?</dt>

<dd>

<p>This could give you help with HTML5 but we need more implementations to
prove how things will work.</p>

</dd>

</details>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

¢ This element may contain one dt element describing the caption of the detailed
content, and one dd element, which contains the content to show.

¢ In early drafts of HTMLS5 specification, the 1egend element was used instead of the
dt and dd elements added later.

<dfn> (Definition)
This inline logical element encloses the defining instance of a term. It usually is rendered as
bold or bold italic text.

Standard Syntax

<dfn
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</dfn>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"

Chapter 3: HTML and XHTML Element Reference

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, Onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onselectstart

Example

<p>The <dfn>dfn</dfn> element is an element which is used to set off the
defining instance of a term. Now that's a self-contained example!</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 6+, Opera 4+, Safari 1+

229

230

Part I: Core Markup

Notes
e HTML 2 and 3.2 defined no attributes for this element.

e HTMLS5 suggests that the section or content grouping nearest an occurrence of a dfn
element must contain the actual definition.

<dir> (Directory List)
This element encloses a list of brief, unordered items, such as might occur in a menu or
directory. It is deprecated or obsolete under most specifications.

Standard Syntax (Transitional Only—Deprecated)

<dir
class="class name(s)"
compact="compact"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

1i elements only
</dir>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Chapter 3: HTML and XHTML Element Reference 231

Element-Specific Attribute

compact This attribute reduces the white space between list items.

Example

<dir>
Header Files
Code Files
Comment Files</1li>
</dir>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 1+, Opera 2.1+, Safari 1+

Notes

Because the <dir> tag is supposed to be used with short lists, the items in the list
should have a maximum width of 20 characters. This is rarely if ever respected.

The HTML and XHTML strict specifications do not support this element, and the
HTMLS specification has marked it as obsolete and suggests using a tag
instead.

Most browsers will not render a <dir> tag any differently from the tag.
HTML 2 and 3.2 define only the compact attribute.
Most browsers will not render the compact list style.

For XHTML transitional compatibility, the compact attribute must have a value:
<dir compact="compact"s>.

<div> (Division)
This element indicates a generic block of content that should be treated as a logical unit for
scripting or styling purposes.

Standard Syntax

<div

align="center | justify | left | right" (transitional only)
class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"

lang="language code"

style="style information"

title="advisory text">

</divs>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

232

Part I: Core Markup

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
datafld="name of column supplying bound data" (4)
dataformatas="html | text" (4)

datasrc="id of data source object supplying data" (4)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
nowrap="no | yes" (4)

tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, oOnmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Chapter 3: HTML and XHTML Element Reference 233

Element-Specific Attribute

nowrap This Internet Explorer—specific attribute is used to control the wrapping of text
within a <div> tag. If set to yes, text should not wrap. The default is no. CSS rules should
be used instead of this attribute.

Examples
<div align="justify">
<!-- IE syntax -->
All text within this division will be justified
</div>

<div class="special" id="div1l" style="background-color: yellow;">
Divs are useful for setting arbitrary style
</div>

<div class="container">
<div class="wrapper">
<div class="content"><p>I have divitis</p></div>
</div>
</div>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 2+, Opera 4+, Safari 1+
Notes

* A <div> tagis a generic block tag and is very useful for binding scripts or styles to
an arbitrary section of a document. It complements , which is used inline.

* Excessive use of <div> tags is almost as bad as excessive use of tables, particularly
when structuring page content.

¢ The HTML 4 specification specifies that the datafld, dataformatas, and datasrc
attributes are reserved for <div> and might be supported in the future. They were
removed from XHTML, but Internet Explorer supports them for data binding.

* Under the HTML 4.01 strict specification, the align attribute is not supported.
¢ HTML 3.2 supports only the align attribute.

<dI> (Definition List)
This element encloses a list of terms and definitions. A common use for this element is to
implement a glossary.

Standard Syntax

<dl
class="class name(s)"
compact="compact" (transitional only)

234

Part I: Core Markup

dir="ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

style="style information"
title="advisory text"s>

dt and dd elements only

</dl>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference 235

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

compact This attribute reduces the white space between list items.

Examples
<dl>
<dt>Cat</dt>
<dd>A domestic animal that likes fish.</dd>
<dt>Skunk</dt>
<dd>A wild animal that needs deodorant.</dd>
</dl>
<!-- Terms definitions don't have to pair match -->
<dl>
<dt>Cat</dt>
<dt>Fritz</dt>
<dt>Sylvester</dt>
<dd>A domestic animal that likes fish.</dd>
<dt>Skunk</dt>

<dt>Pepe Le Pew</dt>
<dd>A wild animal that needs deodorant.</dd>
<dt>Tasmanian Devil</dt>
</dl>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

¢ The items in the list comprise two parts: the term, indicated by the dt element, and
its definition, indicated by the dd element. However, there is no requirement to
match these elements, alternate them, or anything else, at least syntax-wise.

¢ Some page designers might use a <d1> tag or tag to create text indention.
Although this is a common practice on the Web, it is not advisable because it
confuses the meaning of the element by making it a physical layout device rather
than a list. A CSS property like margin or position should be used instead.

236

Part I: Core Markup

¢ HTML 2 and 3.2 support only the compact attribute for this element.

¢ For XHTML compatibility, the compact attribute must be expanded:
<dl compact="compact"> under the transitional form. It is deprecated under the
strict specification. In practice, regardless of whether it is indicated, the compact
attribute generally has no effect.

<dt> (Term in a Definition List or Caption in Figure or Details)

This element identifies a definition list term in a list of terms and definitions. Under
HTMLS, the element is also used within <details> and <figures> tags to represent a
caption for content.

Standard Syntax

<dt

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

style="style information"
title="advisory text">

</dt>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
nowrap="true | false" (5.5)

tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Chapter 3: HTML and XHTML Element Reference 237

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

nowrap This Internet Explorer—specific attribute is used to control the wrapping of text
within a <dt> tag. If set to yes, text should not wrap. The default is no. CSS properties
should be used instead of this attribute.

Examples
<!-- Typical definition list usage -->
<dl>
<dt>Vole</dt>
<dd>Small creature related to the weasel</dd>
<dt>Weasel</dt>
<dd>Small creature related to the vole</dd>
</dl>
<!-- HTML5 examples -->
<details>

<dt>Important Notes</dt>
<dd>This tag seems to be reused too much under HTML5!<dd>
</details>

<figure>

<dt>Moose Baby!</dt>

<dd>

<p>A photo of Desmond circa 2010.</p>

</dd>

</figure>

238 Partl: Core Markup

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

Traditionally, this element occurs within a list of defined terms enclosed by a <d1>
tag. It is generally used in conjunction with a <dd> tag, which indicates its
definition. However, <dt> tags do not require a one-to-one correspondence with
<dd> tags.

HTMLS5 overloads the meaning of this element so that it also serves as the caption of
content enclosed within <details> and <figure> tags.

Under early drafts of HTMLS5,this element is also found within <dialog> tags and
defines the speakers of particular statements. When used within such tags, it must
be paired with <dd> tags in a one-to-one fashion. That syntax was eventually
dropped.

The close tag for the element is optional under older versions of HTML as well as
HTMLS5, but including it is suggested, especially when it will make things clearer,
particularly with multiple-line definitions.

Under XHTML 1.0, the closing </dt> tag is mandatory.
HTML 2 and 3.2 support no attributes for this element.

(Emphasis)

This inline element indicates emphasized text, which many browsers will display as italic text.

Standard Syntax

<em

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"
style="style information"

title="advisory text"s>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"

Chapter 3: HTML and XHTML Element Reference

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, Onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<p>This is the important point to consider, not this other less
exciting point.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+

239

240

Part I: Core Markup

Notes

e As alogical element, em is a prime candidate to bind style information to. For
example, to define emphasis to mean a larger font size in the Impact font instead of
italics, you might use a CSS rule like the following in a document-wide style sheet:

em {font-size: larger; font-family: Impact; font-style: normal;}

¢ HTML 2 and 3.2 support no attributes for this element.

<embed> (Embedded Object)

This widely supported nonstandard element specifies an object, typically a multimedia
element, to be embedded in an HTML document. The syntax can be somewhat variable
given the plug-in-specific attributes found, so the reference covers those commonly found.

Proprietary Syntax (Commonly Supported)

<embed
accesskey="key"
align="absbottom | absmiddle | baseline | bottom |
left | middle | right | texttop | top" (4)
alt="alternative text"
border="pixelsg"
class="class name(s)"
code="filename"
codebase="URL"
height="pixels"
hspace="pixels"
id="unique alphanumeric identifier" (4)
language="javascript | jscript | vbs | vbscript | xml" (5.5)
name="string"
palette="background | foreground" (4)
pluginspage="URL"
src="URL"
style="style information"
title="advisory text"
type="mime type"
units="em | pixels"
unselectable="on | off"
vspace="pixelg"
width="pixels">

</embed>

Attributes Introduced by HTML5

contenteditable="true | false | inherit"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"

Chapter 3: HTML and XHTML Element Reference

itemscope="itemscope"
itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate, onbeforepaste,
onblur, oncontextmenu, oncontrolselect, oncut, ondeactivate, onfocus,
onfocusin, onfocusout, onhelp, onload, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onmove, onmoveend, onmovestart, onpaste,
onpropertychange, onreadystatechange, onresize, onresizeend, onresizestart,
onscroll

Element-Specific Attributes

align This attribute controls the alignment of adjacent text with respect to the embedded
object. The default value is 1eft.

alt This attribute indicates the text to be displayed if the embedded object cannot be
executed.

border This attribute specifies the size, in pixels, of the border around the embedded
object.

code This attribute specifies the name of the file containing the compiled Java class if the
embed element is used to include a Java applet. This is a strange alternative form of Java
inclusion documented by Microsoft.

codebase This specifies the base URL for the plug-in or potential applet in the case of the
alternative form under Internet Explorer.

name This attribute specifies a name for the embedded object, so that it can be referenced
by client-side programs in an embedded scripting language.

palette This attribute is used only on Windows systems to select the color palette used for
the plug-in and might be set to background or foreground. The default is background.

pluginspage This attribute contains the URL of instructions for installing the plug-in
required to render the embedded object.

24

242

Part I: Core Markup

src This attribute specifies the URL of source content for the embedded object.

type This attribute specifies the MIME type of the embedded object. It is used by the
browser to determine an appropriate plug-in for rendering the object. It can be used instead
of the sre attribute for plug-ins that have no content or that fetch it dynamically.

units This Netscape 4+-specific attribute is used to set the units for measurement for the
embedded object in pixels or as a relative em value.

vspace This attribute specifies, in pixels, the size of the top and bottom margins between
the embedded object and surrounding text.

Example

<!-- embed with a close tag -->

<embed src="testmovie.mov" height="150" width="150">
<noembed>

</noembed>
</embed>

Compatibility

No standard initially, but widely supported | Firefox 1+, Internet Explorer 4+,
HTML5 Netscape 2+, Opera 4+, Safari 1+

Notes

¢ Historically, it has been unclear whether or not the close tag for <embed> is required.
Many sites tended not to use it, and documentation is not consistent. A close </embed>
tag should be required and should surround any alternative content in a noembed
element.

¢ This element was supposed to be phased out in favor of the object element, but so
far its usage seems to have diminished only slightly.

® The embed element is not favored by the W3C and was dropped by (X)HTML
specifications previous to HTMLS5.

¢ Embedded objects are multimedia content files of arbitrary type that are rendered by
browser plug-ins. The type attribute uses a file’s MIME type to determine an
appropriate browser plug-in. Any attributes not defined are treated as object-specific
parameters and are passed through to the embedded object. Consult the plug-in or
object documentation to determine these.

<fieldset> (Form Field Grouping)

This element allows form designers to group thematically related controls together. The
element usually contains a 1egend element, which labels the grouped form controls.

Standard Syntax

<fieldset
class="class name(s)"
dir="1ltr | rtl"

Chapter 3: HTML and XHTML Element Reference

id="unique alphanumeric identifier"
lang="language code"

style="style information"
title="advisory text"s>

</fieldset>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"
disabled="disabled"

draggable="true | false | auto"

form="1id of related form"

hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="char" (5.5)

align="center | left | right" (4)
contenteditable="false | true | inherit" (5.5)
datafld="name of column supplying bound data" (4)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)
HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

243

244

Part I: Core Markup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<fieldset>

<legend>Customer Identification</legend>

<label>Customer Name:

<input type="text" id="CustName" size="25">
</label>

</fieldset>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 4+, Safari 1+
Notes

¢ Grouping controls makes it easier for users to understand the purposes of the
controls while simultaneously facilitating tabbing navigation for visual user agents
and speech navigation for speech-oriented user agents. The proper use of this
element makes documents more accessible to users with disabilities.

e The full set of data-binding attributes likely needs to be bound to this element but is
missing from MSDN documentation.

¢ The caption for a <fieldset> tag can be defined by the 1egend element. There
should only be a single 1egend element within the element.

<figure> (Figure)

This HTMLS element represents a group of content enclosed in a dd element, often with a
caption defined by a dt element, that can be moved away from the main flow of the
document. The way in which this element is implemented is similar to how the figures in
this book are presented—not necessarily directly adjacent to the text discussing them.

HTML5 Standard Syntax

<figure
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"

Chapter 3: HTML and XHTML Element Reference 215

draggable="true | false | auto"
hidden="hidden"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"

spellcheck="true | false"

style="style information"
tabindex="number"

title="advisory text"s>

</figure>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Figure It Out</title>
</head>
<body>
<header><hl>Welcome to the Example</hl></header>
<p>Yes it is another boring example. In this case we would like you
to review Figure Ex-1l</p>
<p>More and more text is found until eventually the figure is
located.</p>
<figure>
<dd>
<img src="screensnap.png"
alt="A screen capture of the Figure Element in action">
<p>The mighty fig tag has returned from HTML 3 as figure to haunt
your dreams.</p>
</dd>
<dt>Figure Ex-1</dt>
</figure>

<p>Maybe some more content here.</p>
</body>
</html>

246

Part I: Core Markup

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

¢ While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

¢ Early drafts of HTML5 suggested using a <legend> tag for captioning; later, the
<dt> and <dd> tags were introduced for containing figure caption and figure
content, respectively.

 (Font Definition)

This element allows specification of the size, color, and font of the text it encloses.

Standard Syntax (Transitional Only)

<font
class="class name(s)"
color="color name | #RRGGBB"
dir="1ltr | rtl"
face="font name"
id="unique alphanumeric identifier"
lang="language code"
size="1 to 7 | +1 to +6 | -1 to -6"
style="style information"
title="advisory text"s>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off"(5.5)

Attributes Defined by Netscape

point-size="point size for font" (4)
weight="100 | 200 | 300 | 400 | 500
600 | 700 | 800 | 900" (4)

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

Chapter 3: HTML and XHTML Element Reference 211

Element-Specific Attributes

color This attribute sets the text color using either a browser-dependent named color or a
color specified in the hexadecimal #RRGGBB format.

face This attribute contains a list of one or more font names separated by commas. The
user agent looks through the specified font names and renders the text in the first font that
is supported.

point-size This Netscape 4-specific attribute specifies the point size of text and is used with
downloadable fonts. It is listed for historical purposes only and is easily mimicked using the
font-size CSS property.

size This attribute specifies the font size as either a numeric or relative value. Numeric
values range from 1 to 7, with 1 being the smallest and 3 the default. The relative values, +
and -, increment or decrement the font size relative to the current size. The value for
increment or decrement should range only from +1 to +6 or -1 to -6.

weight Under Netscape 4, this attribute specifies the weight of the font, with a value of 100
being lightest and 900 being heaviest. This is listed primarily for historical purposes; such
visual changes are best implemented using the font -weight CSS property.

Example

<p>
Relatively large red text in Helvetica or Times.
</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 1.1+, Opera 4+, Safari 1+

Notes

¢ Use of this element is not encouraged, as it is not part of strict HTML and XHTML
specifications. HTML5 defines this element as obsolete. CSS properties like
font-face, color, and font-size provide a richer way of providing the same
functionality as this element.

¢ Interestingly, the transitional specification for some reason does not define core
events for this element. In practice, they are supported by major browsers.

* The default text size for a document can be set using the size attribute of the
basefont element.

¢ The HTML 3.2 specification supports only the color and size attributes for this
element.

¢ HTMLS5 appears to define all the common attributes for this element, but does not
define those which are important to perform its stated task.

248

Part I: Core Markup

<footer> (Footer)

This HTMLS5 element represents the footer section of a document or a section element it is
contained within. Like a typical document footer in print, it should contain supplementary
information about the related content.

HTML5 Standard Syntax

<footer
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

</footers>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Document Footer</title>

</head>

<body>

<header><hl>Welcome to the Example</hl></header>

<p>Yes it is another boring example.</p>

<footer><p>© 2010 Boring Examples, Inc.</p></footer>

Chapter 3: HTML and XHTML Element Reference 249

</body>
</html>

<!-- Simple section footer -->
<section>

<header>

<hl>Section Heading</hl>

</header>

<p>Section Body</p>

<p>More Body</p>

<footer>

<p>Boring Example © 2010</p>
</footer>

</section>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

¢ While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

¢ A footer element should be included in the HTML5 outlining process.

<form> (Form for User Input)
The element defines a fill-in form that can contain labels and form controls, such as menus
and text entry boxes that might be filled in by a user.

Standard Syntax

<form

accept-charset="1list of supported character sets"

action="URL"

class="class name(s)"

dir="1ltr | rtl"

enctype="application/x-www-form-urlencoded |
multipart/form-data | text/plain |
Media Type as per RFC 2045"

id="unique alphanumeric identifier"

lang="language code"

method="get | post"

name="form's name for scripting"

style="style information"

target="_blank | frame name | _parent | _self |
_top" (transitional only)

title="advisory text">

</form>

250

Part I: Core Markup

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
autocomplete="on | off"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
novalidate="novalidate"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

autocomplete="yes | no" (5.0)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup, onreset, onsubmit

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onreset
onresizeend, onresizestart, onselectstart, onsubmit, ontimeerror

Chapter 3: HTML and XHTML Element Reference

Element-Specific Attributes

accept-charset This attribute specifies the list of character encodings for input data that
must be accepted by the server processing the form. The value is a space- or comma-
delimited list of character sets as defined in RFC 2045. The default value for this attribute is
the reserved value unknown.

action This attribute contains the URL of the server program that will process the contents
of the form. Some browsers also might support a mailto URL, which can mail the results to
the specified address. Otherwise, the delivery of the data in the form is defined by the
method attribute.

autocomplete This Microsoft proprietary attribute, introduced in Internet Explorer 5.0 and
redefined under HTMLS5, will automatically finish filling in information that the user has
previously input into an input field. Auto-filled information will likely be stored locally on
the end-user’s system by some program, typically the browser itself.

enctype This attribute indicates how form data should be encoded before being sent to the
server. The default is application/x-www- form-urlencoded. This encoding replaces
blank characters in the data with a plus character (+) and all other nonprinting characters
with a percent sign (%) followed by the character’s ASCII HEX representation. The
multipart/form-data option does not perform character conversion and transfers the
information as a compound MIME document. This must be used when using <input
type="£file">. It also might be possible to use another encoding, such as text/plain
with a mailed form, but in general you should be cautious about changing the enctype.

method This attribute indicates how form information should be transferred to the server
using a particular HTTP method. A get value in the attribute indicates that form data
should be appended to the URL specified by the action attribute, thus creating a query
string. This approach is quite simple but imposes a size limitation that is difficult to gauge
(may be as low as 2 kilobytes in real situations). A value of post for this attribute transfers
the data of the form in the message body using the HTTP PoST method which imposes no
data size limitation. Browsers may allow for other HTTP methods like delete or put as
suggested by the HTMLS5 specification, but so far such usage is rare. The POST method must
be used when file attachments are used in a form.

name This attribute specifies a name for the form and was traditionally used by JavaScript
or other client-side programming technologies to reference forms and their contained
elements. Since HTML 4, the core id attribute can be used instead with DOM methods such
as document .getElementById ().

novalidate This HTML5 Boolean attribute determines whether or not form validation
should be applied on the elements within. By default, validation is enforced unless
overridden by this attribute on the form level or a formnovalidate attribute is found on a
form element.

target In documents containing frames, this attribute specifies the target frame that will
display the results of a form submission. In addition to named frames, several special
values exist. The blank value indicates a new window. The parent value indicates

251

252

Part I: Core Markup

the parent frame set containing the source link. The _sel£ value indicates the frame
containing the source link. The _top value indicates the full browser window. HTML5 may
allow for targeting of nonframed regions of the page.

Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Form Test</title>
</head>
<body>
<form action="dosomething.php"
method="post" name="testform" onsubmit="return validate() ;">

<div>

<label>Username:

<input type="text" name="username">

</label>

<label>Comments:

<textarea name="comments" cols="30" rows="8"></textarea>

</label>

<input type="submit" value="send">

<input type="reset" value="clear">
</div>
</form>
</body>
</html>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ Form content is defined using the <button>, <input>, <select>, and <textarea>
tags, as well as other HTML formatting and structuring elements. However, they
may not contain other form elements.

* Special grouping elements, such as fieldset, label, and legend, are provided to
structure form fields, but more often tags like <div> and <tables> are used to
improve form layout.

e HTML 2 and 3.2 support only the action, enctype, and method attributes for the
form element.

<frame> (Window Region)

This element defines a nameable window region, known as a frame, that can independently
display its own content.

Chapter 3: HTML and XHTML Element Reference 253

Standard Syntax

<frame
class="class name(s)"
frameborder="0 | 1"

id="unique alphanumeric identifier"
longdesc="URL of description"
marginheight="pixels"
marginwidth="pixels"

name="frame name"
noresize="noresize"

scrolling="auto | no | yes"
src="URL" of frame contents"
style="style information"
title="advisory text">

Attributes Defined by Internet Explorer

allowtransparency="no | yes" (5.5)

application="no | yes" (5)

bordercolor="color name | #RRGGBB" (4)

datafld="name of column supplying bound data" (4)
datasrc="id of data source object supplying data" (4)

frameborder="no | yes | 0 | 1" (4)
height="pixels" (4)
hidefocus="true | false" (5.5)

lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
security="restricted" (6)

tabindex="number" (5.5)

unselectable="on | off" (5.5)

width="pixels" (4)

Events Commonly Supported

onblur, onclick, ondblclick, onfocus, onload

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforedeactivate, onbeforeupdate, onblur,
onclick, oncontrolselect, ondblclick, ondeactivate, onerrorupdate,
onfocus, onload, onmove, onmoveend, onmovestart, onresize, onresizeend,
onresizestart, onselectstart

Element-Specific Attributes

allowtransparency This Internet Explorer—specific attribute determines whether the contents
of the <frame> is transparent or opaque. The default value is f£alse, which means it is
opaque.

application This Internet Explorer—specific attribute is used to indicate whether the content
of a <frame> is to be considered an HTML application (HTA). HTAs are applications that
use HTML, JavaScript, and Internet Explorer, but are not limited to the typical type of

254

Part I: Core Markup

security considerations of a Web page. Given its security implications, this attribute should
only be set if the developer is familiar with HTAs.

bordercolor This attribute sets the color of the frame’s border using either a named color or
a color specified in the hexadecimal #RRGGBB format.

frameborder This attribute determines whether the frame is surrounded by an outlined
three-dimensional border. The HTML specification prefers the use of 1 for the frame border
on, and 0 for off; most browsers also acknowledge the use of no and yes.

longdesc This attribute specifies the URL of a document that contains a long description of
the frame’s content. This attribute should be used in conjunction with the title element.

marginheight This attribute sets the height, in pixels, between the frame’s content and its
top and bottom borders.

marginwidth This attribute sets the width, in pixels, between the frame’s content and its left
and right borders.

name This attribute assigns a name to the frame so that it can be the target destination of
hyperlinks as well as a possible candidate for manipulation via a script.

noresize This attribute overrides the default ability to resize frames and gives the frame a
fixed size.

scrolling This attribute determines whether the frame has scroll bars. A yes value forces
scroll bars, a no value prohibits them, and an auto value lets the browser decide. When not
specified, the default value of auto is used. Authors are recommended to leave the value as
auto. If you turn off scrolling and the contents end up being too large for the frame (due to
rendering differences, window size, and so forth), the user will not be able to scroll to see
the rest of the contents. If you turn scrolling on and the contents all fit in the frame, the
scroll bars will needlessly consume screen space. With the auto value, scroll bars appear
only when needed.

security This attribute sets the value indicating whether the source file of a frame has
security restrictions applied. The only allowed value is restricted.

src This attribute contains the URL of the contents to be displayed in the frame. If it is
absent, nothing will be loaded in the frame.

Example

<frameset rows="20%,80%">
<frame src="controls.html" name="controls" noresize scrolling="no">
<frame src="content.html" name="body">
<noframes>
<p>Error: No frame support</p>
</noframes>
</frameset>

Chapter 3: HTML and XHTML Element Reference

Compatibility

HTML 4, 4.01 Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (frameset DTD only) Netscape 2+, Opera 4+, Safari 1+
Notes

XHTML 1.0 requires a trailing slash for this element: <frame />.

A frame must be declared as part of a frame set, as set by using the <frameset> tag,
which specifies the frame’s relationship to other frames on a page. A frame set
occurs in a special HTML document, in which the frameset element replaces the
body element. Another form of frames called independent frames, or floating frames,
also is supported. Floating frames can be directly embedded in a document without
belonging to a frame set. These are defined with the i frame element.

Many browsers do not support frames and require the use of the <noframes> tag.

Frames introduce potential navigation difficulties; their use should be limited to
instances in which they can be shown to help navigation rather than hinder it.

HTMLS5 currently does not include support for frames beyond <iframe> tags, but
even if the specification continues to avoid them, developers undoubtedly will
continue to use them.

<frameset> (Frameset Definition)

This element is used to define the organization of a set of independent window regions,
known as frames, as defined by the £rame element. This element replaces the body element
in framing documents.

Standard Syntax

<frameset
class="class name(s)"
cols="1list of columns"
id="unique alphanumeric identifier"
rows="1list of rows"
style="style information"
title="advisory text">

</frameset>

Attributes Defined by Internet Explorer

border="pixels" (4)

bordercolor="color name | #RRGGBB" (4)
frameborder="no | yes | 0 | 1" (4)
framespacing="pixels" (4)

lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
hidefocus="true | false" (5.5)

tabindex="number" (5.5)

unselectable="on | off" (5.5)

255

256

Part I: Core Markup

Standard Events

onload, onunload

Events Defined by Internet Explorer

onactivate, onafterprint, onbeforedeactivate, onbeforeprint, onbeforeunload,
onblur, oncontrolselect, ondeactivate, onfocus, onload, onmove, onmoveend,
onmovestart, onresizeend, onresizestart, onunload

Element-Specific Attributes

border This attribute sets the width, in pixels, of frame borders within the frame set.
Setting the value to 0 eliminates all frame borders. This attribute is not defined in the HTML
or XHTML specification but is widely supported.

bordercolor This attribute sets the color for frame borders within the frame set using either
anamed color or a color specified in the hexadecimal #RRGGBB format.

cols This attribute contains a comma-delimited list that specifies the number and size of
columns contained within a set of frames. List items indicate columns from left to right.
Column size is specified in three formats, which might be mixed. A column can be assigned
a fixed width, in pixels. It also can be assigned a percentage of the available width, such as
50 percent. Finally, a column can be set to expand to fill the available space by setting the
value to *, which acts as a wildcard.

frameborder This attribute controls whether or not frame borders should be displayed.
Netscape supports no and yes values. Microsoft uses 1 and 0 as well as no and yes.

framespacing This attribute indicates the space between frames, in pixels.

rows This attribute contains a comma-delimited list that specifies the number and size of
rows contained within a set of frames. The number of entries in the list indicates the number
of rows. Row size is specified with the same formats used for columns.

Examples

<!-- This example defines a frame set of three columns. The middle column
is 50 pixels wide. The first and last columns fill the remaining space.
-->

<frameset cols="*,50,*">
<frame src="columnl.html">
<frame src="column2.html">
<frame src="column3.html">
</frameset>

<!-- This example defines a frame set of two columns, one of which is 20%
of the screen, and the other, 80%. -->

Chapter 3: HTML and XHTML Element Reference 251

<frameset cols="20%, 80%">
<frame src="controls.html" name="controls">
<frame src="display.html" name="body">

<noframes>
<p>Error: No frame support</p>
</noframes>
</frameset>
<!-- This example defines two rows, one of which is 10% of the screen,
and the other, whatever space is left. -->

<frameset rows="10%, *">
<frame src="adbanner.html" name="ad frame">
<frame src="contents.html" name="content frame">

</frameset>
Compatibility
HTML 4 and 4.01 (frameset DTD) Firefox 1+, Internet Explorer 3+,
XHTML 1.0 (frameset DTD) Netscape 2+,
Opera 4+, Safari 1+
Notes

¢ The content model says that the <frameset> tag contains one or more <frame>
tags, which are used to indicate the framed contents. A <frameset> tag also might
contain a <noframes> tag, whose contents will be displayed by browsers that do
not support frames.

e HTMLS5 currently does include support for frames beyond the inline frame defined
by an <iframe> tag.

¢ The <frameset> tag replaces the <body> tag in a framing document, as shown
here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-frameset.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Frame Demo</title>
</head>
<frameset cols="*,50,*">
<frame src="columnl.html" name="coll" />
<frame src="column2.html" name="col2" />
<frame src="column3.html" name="col3" />
<noframes>
<body>
<p>Please visit our no frames site.</p>
</body>
</noframes>
</frameset>
</html>

258

Part I: Core Markup

<h1> through <h6> (Headings)

These logical block tags implement six levels of document headings; <h1> is the most
prominent and <h6> is the least prominent.

Standard Syntax

<hl

align="center | justify | left | right"
(transitional only)

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"

lang="language code"

style="style information"

title="advisory text">

</hl>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
data-X="user-defined data"

contenteditable="true | false | inherit"
contextmenu="id of menu"
draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,

Chapter 3: HTML and XHTML Element Reference 259

onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<hl align="justify">This is a Major Document Heading</hl>

<h2 align="center=">Second heading, aligned to the center</h2>

<h3 align="right">Third heading, aligned to the right</h3>

<h4>Fourth heading</hé4>

<h5 style="font-size: 20px;">Fifth heading with style information</h5>
<h6>The least important heading</hé6>

<!-- HTML5 example -->
<section>
<header>
<hl>Section Heading</hl>
<h2>Section Sub-head</h2>
</header>
<p>Section body</p>
</section>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ In most implementations, heading numbers correspond inversely with the six font
sizes supported by the font element. For example, <h1> corresponds to . The default font size is 3. However, this approach to layout is not
encouraged, and page designers should consider using styles to set even relative
sizes. Interestingly, the HTMLS5 specification also clearly indicates the font size of
various headings like h1 (2em), h2 (1.5em), and so on, which is really not any
different from the relative nature of older tags.

e HTML 3.2 supports only the align attribute. HTML 2 does not support any
attributes for headings.

260

Part I: Core Markup

¢ The strict definitions of HTML 4 and XHTML do not include support for the align
attribute. Style sheet properties like text -align should be used instead.

¢ Under HTMLS5, these heading elements are used to form an outline of the document.

<head> (Document Head)

This element indicates the document head, which contains descriptive information about
the HTML document as well as other supplementary information, such as style rules or
scripts.

Standard Syntax

<head
dir="1ltr | rtl"
lang="language code"
profile="URL">

title, base, script, style, meta, link and object elements

</heads>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
class="class name(s)"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
id="unique alphanumeric identifier"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

id="unique alphanumeric identifier"
class="class name(s)"

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference 261

Events Defined by Internet Explorer

onlayoutcomplete, onreadystatechange

Element-Specific Attribute

profile This attribute specifies a URL for a meta-information dictionary. The specified
profile should indicate the format of allowed metadata and its meaning.

Examples

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Demo Company Home Page</title>

<base href="http://www.democompany.com">

<meta name="Keywords" content="DemoCompany, SuperWidget">

</head>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head profile="http://www.democompany.com/metadict.xml">

Compatibility

HTML 2, 3.2, 4, 4.01, 5+ Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

¢ Under the XHTML 1.0 specification, the head element no longer can be implied, but
rather must be used in all documents and must have a close tag. Under standard,
older HTML specifications as well as HTMLS5, the element is actually optional.

¢ Often, a <metas> tag specifying the character set in play should be found as the first
child of the head element, particularly if the document’s title element contains
special characters.

¢ The meaning of the profile attribute is somewhat unclear, and no browsers appear
to support it in any meaningful way.

¢ HTML 2 and 3.2 support no attributes for this element.

<header> (Header)

This HTMLS5 element represents the header section of a document or a section element it is
contained within. Like a typical document header in print, it should contain title and
heading information about the related content.

262 Partl: Core Markup

HTML5 Standard Syntax

<header
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text"s>

</header>

HTML5 Event Attributes

onabort, onbeforeunload, onblur, onchange, onclick, oncontextmenu,
ondblclick, ondrag, ondragend, ondragenter, ondragleave, ondragover,
ondragstart, ondrop, onerror, onfocus, onhashchange, onkeydown, onkeypress,
onkeyup, onload, onmessage, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onresize, onscroll, onselect,
onstorage, onsubmit, onunload

Examples

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Document Header</title>
</head>
<body>
<header>
<hl>Welcome to the Example</hl>
<h2>The more exciting subheading</h2>
</header>
<p>Yes it is yet another boring example.</p>
<footer><p>© 2010 Boring Examples, Inc.</p></footer>
</body>
</html>

Chapter 3: HTML and XHTML Element Reference 263

<!-- Simple section header -->
<section>
<header>
<p>It was a dark and story night...</p>
<h1>The Spooky Heading</hl>
</header>
<p>A fantastic story that is spooky would be found here.
If I weren't so busy writing HTML5 examples.</p>
<footer>
<p><cite>HTML: The Complete Reference</cite> © 2010</p>
</footer>
</section>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes
¢ Under HTMLS, this element may be used for automatic document outlining.

¢ While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

<hgroup> (Header Group)
This HTML5 element represents a grouping of heading elements (h1-h6). It may be used to
cluster headings and subheadings together.

HTML5 Standard Syntax

<hgroup
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text"s>

</hgroup>

264

Part I: Core Markup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>hgroup Example</title>
</head>
<body>
<header>
<hgroup>
<hl>Welcome to the Example</hl>
<h2>Clearly the best example you've seen</h2>
</hgroup>

<nav>

Link
Link
Link
Link

</nav>

</header>

<hgroup>
<hl>Section head</hl>
<h2>A subhead</h2>
</hgroup>

<p>0k here we go some content here.</p>
<p>More content goes here and here.</p>

<footer><p>© 2010 Boring Examples, Inc.</p></footer>

</body>
</html>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

<hr>

Chapter 3: HTML and XHTML Element Reference 265

The hgroup element is used to control the HTML5 sectioning algorithm. Its primary
purpose is to collapse elements that would normally add outline entries into a
single entry. For example, when multiple headings (h1-h6) are used, they will
individually add items to the outline. By containing headings together in the
hgroup element, they form only a single entry in an outline. As demonstrated in the
preceding example, the need for this element is mostly to support subheadings.

This element was added much later than many other HTMLS5 elements, and there is
some controversy over what it should be called.

While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

(Horizontal Rule)

This element is used to insert a horizontal rule to visually or thematically separate
document sections. Rules usually are rendered as a raised or etched line.

Standard Syntax

<hr

align="center | left | right" (transitional only)
class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"

lang="language code"id="unique alphanumeric identifier"
noshade="noshade " (transitional only)

size="pixels" (transitional only)

style="style information"

title="advisory information"

width="percentage | pixels"> (transitional only)

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
color="color name | #RRGGBB" (4)
language="javascript | jscript | vbs | vbscript" (4)

266

Part I: Core Markup

hidefocus="true | false" (5.5)

tabindex="number" (5.5)
unselectable="on | off" (5.5)
HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

color This attribute sets the rule color using either a named color or a color specified in the
hexadecimal #RRGGBB format. This attribute currently is supported only by Internet
Explorer.

noshade This attribute causes the rule to be rendered as a solid bar without shading.
size This attribute indicates the height, in pixels, of the rule.

width This attribute indicates how wide the rule should be, specified either in pixels or as a
percent of screen width, such as 80%.

Examples

<!-- transitional rules -->
<hr align="left" noshade="noshade" size="1" width="420">
<hr align="center" width="100%" size="3" color="#000000" />

<!-- simple XHTML style -->
<hr />

Chapter 3: HTML and XHTML Element Reference 267

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1 Netscape 1+, Opera 4+, Safari 1+
Notes

e The HTML 4.01 strict and HTMLS5 specifications remove support for the align,
noshade, size, and width attributes for horizontal rules. These effects are possible
using style sheets.

* Asan empty element under XHTML or when using XML-style syntax for HTML5, a
trailing slash is required for this element: <hr />.

<html> (HTML Document)
This element identifies an HTML or XHTML document.

Standard Syntax

<html
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
xmlns="http://www.w3.0rg/1999/xhtml | some other name space"s>

</html>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
class="class name(s)"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
manifest="URL"

spellcheck="true | false"

style="style information"

tabindex="number"

title="advisory text™"

Attributes Defined by Internet Explorer

class="class name(s)" (4)
scroll="yes | no | auto" (6)
version="version info" (6)

268

Part I: Core Markup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onlayoutcomplete, onmouseenter, onmouseleave, onreadystatechange

Element-Specific Attributes

manifest This HTMLS5 attribute is set to the document’s application cache manifest, which
is used to describe the various components the page relies upon. It is generally used to
support offline access.

scroll This attribute is used to set whether or not scroll bars should show for the
document. The default value of auto puts in scroll bars as needed. This attribute, while
documented by Microsoft, does not appear to work properly and should be avoided.

xmins This attribute declares a namespace for XML-based custom tags in the document.
For XHTML, this value is always http://www.w3.0org/1999/xhtml, though it could be
some other value in the case of some custom language or mixture of languages.

version This Internet Explorer 6—specific attribute was used to indicate the version of
HTML being used. It is no longer used because it is redundant of what is provided by the
< !DOCTYPE> statement.

Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en">

<head>

<title>Minimal Document</title>

<meta http-equiv="content-type" content="text/html; charset=IS0-8859-1" />

</head>

<body>

<p>Hello world!</p>

</body>

</html>

Compatibility

HTML 2, 3.2, 4, 4.01,5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 269

Notes

<i>

¢ The html element is the first element in a document. Except for comments, the only
tags it directly contains are <head> followed by either <body> or <framesets>.

* Because it is the outermost tag in a document, the html element is called the root
element.

¢ The <html> tag and its closing tag </html> are both mandatory under XHTML.
Under other specifications, including HTML5, the element is actually optional
because it is implied unless a comment is found as the first item within the
document.

(Italic)

This element indicates that the enclosed text should be displayed in an italic typeface.

Standard Syntax

<i

</i>

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

style="style information"
title="advisory text"s>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)

tabindex="number" (5.5)
unselectable="off | on" (5.5)

210

Part I: Core Markup

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some <i>italicized</i> text.

This is also <i style="color:red;" id="myItalic">italic</i></p>

Compatibility
HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+

<iframe> (Inline Frame)

This element indicates a floating frame, an independently controllable content region that
can be embedded in a page, making it useful for including remote assets and gadgets.

Standard Syntax (Transitional and Frameset Only)

<iframe
align="bottom | left | middle | right | top"
class="class name(s)"
dir="1ltr | rtl"
frameborder="1 | 0"
height="percentage | pixels"
id="unique alphanumeric identifier"
lang="language code"

Chapter 3: HTML and XHTML Element Reference m

longdesc="URL of description"
marginheight="pixels"
marginwidth="pixels"
name="string"

scrolling="auto | no | yes"
src="URL of frame contents"
style="style information"
title="advisory text"
width="percentage | pixels"s>

</iframe>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"

contenteditable="true | false | inherit"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"

itemscope="itemscope"

itemtype="microdata type in URL format"

sandbox="comma-separated list of allow-same-origin | allow-forms
allow-scripts"

seamless="seamless"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

allowtransparency="false | true" (5.5)
application="yes" (5)

border="pixels" (4)

bordercolor="color name | #RRGGBB" (4)

datafld="name of column supplying bound data" (4)
datasrc="id of data source object supplying data" (4)

frameborder="no | yes | 0 | 1" (4)

hidefocus="true | false" (5.5)

hspace="pixels" (4)

language="javascript | jscript | vbs | vbscript" (4)

security="restricted" (6)
tabindex="number" (5.5)
unselectable="on | off" (5.5)
vspace="pixels" (4)

Standard Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

212

Part I: Core Markup

Events Defined by HTML5

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforedeactivate, onbeforeupdate, onblur,
oncontrolselect, ondeactivate, onerrorupdate, onfocus, onload, onmove,
onmoveend, onmovestart, onreadystatechange, onresizeend, onresizestart,
ontimeerror

Element-Specific Attributes

allowtransparency This Internet Explorer-specific attribute determines whether the content
of an <iframe> is transparent or opaque. The default value is £alse, which means it is
opaque.

application This Microsoft-specific attribute is used to indicate whether the contents of an
<iframes> are to be considered an HTML application (HTA). HTAs are applications that use
HTML, JavaScript, and Internet Explorer but are not limited to the typical type of security
considerations of a Web page. Given its security implications, this attribute should only be
set if the developer is familiar with HTAs.

border This attribute specifies the thickness of the border, in pixels.
bordercolor This attribute specifies the color of the border.

frameborder This attribute determines whether the iframe is surrounded by a border. The
HTML 4 specification defines 0 to be off and 1 to be on. The default value is 1. Internet
Explorer also defines the values no and yes.

framespacing This attribute creates additional space between the frames.

longdesc This attribute specifies the URL of a document that contains a long description of
the frame’s contents.

marginheight This attribute sets the height, in pixels, between the floating frame’s content
and its top and bottom borders.

marginwidth This attribute sets the width, in pixels, between the floating frame’s content
and its left and right borders.

name This attribute assigns a name to the floating frame so that it can be the target
destination of hyperlinks.

Chapter 3: HTML and XHTML Element Reference

sandbox This HTMLS5 attribute constrains the abilities of any iframed content. It may
contain a space-separated list of exceptions on included iframe content. Currently supported
values include allow-same-origin, allow-scripts, and allow-forms. By default, the
included content will be highly restricted, but each allow value will extend the sandbox to
allow the included content to talk to its origin domain (allow-same-origin), invoke
scripting (allow-scripts), or post forms (allow- forms).

scrolling This attribute determines whether the frame has scroll bars. A yes value forces
scroll bars; a no value prohibits them. The default value is auto, in which case scroll bars
appear only as needed.

seamless This HTML5 Boolean attribute is set to make the i frame be rendered in such a
way that it appears to be part of the primary browsing context.

security This attribute sets the value indicating whether the source file of an iframe has
security restrictions applied. The only allowed value is restricted.

src This attribute contains the URL of the content to be displayed in the floating frame. If
absent, the frame is blank.

Examples

<iframe src="http://www.democompany.com" height="150" width="200"
name="FloatingFramel">

Sorry, your browser doesn't support inline frames.

</iframe>

<!-- HTML5 example highly restricted -->

<iframe src="http://www.fakewebgadets.com/gadget" height="200" width="200"
id="chat" sandbox>

</iframe>

<!-- HTML5 example less restricted -->

<iframe src="http://www.fakewebgadets.com/gadget2" height="200" width="200"
id="weather" sandbox="allow-same-origin allow-scripts" seamless>

</iframe>

Compatibility

HTML 4 (transitional), 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0 (transitional or frameset) Netscape 6+, Opera 5+, Safari 1+

Notes

* Under the HTML 4 strict specification, the i frame element is not defined. However,
under XHTML transitional and XHTML frameset, i frame is allowed. XHTML 1.1
does not allow it either. Floating frames can be imitated using the div element and
CSS positioning facilities.

¢ Iframes are useful for not only including content from within a site or beyond, but
also as a communication mechanism similar to Ajax.

213

214

Part I: Core Markup

e HTML5 includes the iframe but does not include standard frames.

* When a browser does not understand an <iframes> tag, it displays the text included
within it as an alternate rendering.

<ilayer> (Inflow Layer)

This Netscape 4-specific element allows the definition of overlapping content layers that
can be positioned, hidden or shown, rendered transparent or opaque, reordered front to
back, and nested. An inflow layer is a layer with a relative position that appears where it
would naturally occur in the document, in contrast to a general layer, which might be
positioned absolutely, regardless of its location in a document. The functionality of layers is
available using CSS positioning, and page developers are advised not to use this element. It
is presented solely for historical purposes in support of existing pages.

Syntax (Netscape 4 Only)

<ilayer
above="layer"
background="URL of image"
below="layer"
bgcolor="color name | #RRGGBB"
class="class name(s)"
clip="x1, y1l, x2, y2"
height="percentage | pixels"
id="unique alphanumeric identifier"
left="pixels"
name="string"
pagex="pixels"
pagey="pixels"
src="URL of layer contents"
style="style information"
top="pixels"
visibility="hide | inherit | show"
width="percentage | pixels"
z-index="number" >

</ilayer>
Element-Specific Attributes

above This attribute contains the name of the layer to be rendered above the current layer.
background This attribute contains the URL of a background image for the layer.

below This attribute contains the name of the layer to be rendered below the current layer.

bgeolor This attribute specifies a layer’s background color. Its value can be either a named
color or a color specified in the hexadecimal #RRGGBB format.

clip This attribute specifies the clipping region or viewable area of the layer. All layer
content outside that rectangle will be rendered as transparent. The c1ip rectangle is defined

Chapter 3: HTML and XHTML Element Reference 215

by two x,y pairs: top x, left y and bottom x, and right y. Coordinates are relative to the
layer’s origin point, 0,0, in its top-left corner.

height This attribute specifies the height of a layer, in pixels or as a percentage value.

left This attribute specifies, in pixels, the horizontal offset of the layer. The offset is relative
to its parent layer, if it has one, or to the left page margin if it does not.

name This attribute assigns to the layer a name that can be referenced by programs in a
client-side scripting language. The id attribute also can be used.

pagex This attribute specifies the horizontal position of the layer relative to the browser
window.

pagey This attribute specifies the vertical position of the layer relative to the browser
window.

src This attribute is used to set the URL of a file that contains the content to be loaded into
the layer.

top This attribute specifies, in pixels, the top offset of the layer. The offset is relative to its
parent layer, if it has one, or the top page margin if it does not.

visibility This attribute specifies whether a layer is hidden, shown, or inherits its visibility
from the layer that includes it.

width This attribute specifies a layer’s width, in pixels.

z-index This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with 1 indicating the bottommost layer.

Example

<p>Content comes before.</p>

<ilayer name="background" bgcolor="green">
<p>Layered information goes here.</p>

</ilayer>

<p>Content comes after.</p>

Compatibility

No standards support Netscape 4, 4.5-4.8

Note

¢ Page developers are strongly encouraged not to use this element but instead use
<div> tags with CSS relative positioning. Netscape dropped this element for
browser versions 6.0 and higher. Its inclusion in this book is for support of existing
documents only.

216

Part I: Core Markup

 (Image)

This element indicates a media object to be included in an (X)HTML document. Usually, the
object is a bitmap graphic image, but some implementations support movies, vector
formats, and animations.

Standard Syntax

<img

align="bottom | left | middle | right | top" (transitional only)
alt="alternative text"
border="pixels" (transitional only)
class="class name(s)"

dir="1ltr | rtl"

height="pixels"

hspace="pixels" (transitional only)
id="unique alphanumeric identifier"
ismap="1ismap"

lang="language code"

longdesc="URL of description file"
name="unique alphanumeric identifier"
src="URL of image"

style="style information"
title="advisory text™"

usemap="URL of map file"
vspace="pixels" (transitional only)
width="pixels">

Other Common Attributes

align="absbottom | absmiddle | baseline | texttop"
lowsrc="URL of low-resolution image"
tabindex="number"

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
datafld="name of column supplying bound data" (4)
datasrc="id of data source object supplying data" (4)

Chapter 3: HTML and XHTML Element Reference

dynsrc="URL of movie" (4)

galleryimg="yes | no | true | false" (6)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
loop="infinite | number" (4)

start="fileopen | mouseover" (5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onabort, onactivate, onafterupdate, onbeforeactivate, onbeforecopy,
onbeforecut, onbeforedeactivate, onbeforeeditfocus, onbeforepaste,
onbeforeupdate, onblur, onclick, oncontextmenu, oncontrolselect, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange, onfocus,
onfocusin, onfocusout, onhelp, onload, onlosecapture, onmousedown,
onmouseenter, onmouseleave, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart,
ontimeerror

Element-Specific Attributes

align This attribute controls the horizontal alignment of the image with respect to the page.
The default value is 1eft. Many browsers, such as Netscape and Internet Explorer
implementations, support the absbottom, absmiddle, baseline, and texttop values. This
attribute is deprecated under strict variants of (X)HTML as well as HTML5.

alt This attribute contains a string to be displayed instead of the image for browsers that
cannot display images.

border This attribute indicates the width, in pixels, of the border surrounding the image.
HTMLS suggests the element should not be used other than to set a value of 0, as CSS
should be used instead.

21

218

Part I: Core Markup

dynsrc In the Microsoft implementation, this attribute indicates the URL of a movie file and
is used instead of the src attribute. Common formats used here are .avi (Audio-Visual
Interleaved), . mov (QuickTime), and .mpg and .mpeg (Motion Picture Experts Group). Be
careful, because support of this attribute beyond Internet Explorer 6 is suspect and security
settings may restrict it.

galleryimg This Microsoft attribute is used to control whether the gallery image menu should
appear when the mouse pointer hovers over an image. The default value is true or yes. A value
of no or false suppresses the menu. Ameta tag like <meta http-equiv="imagetoolbar"
content="no"> can be used to suppress the image toolbar document-wide. This attribute is
rendered obsolete in later versions of Internet Explorer (7+).

ismap This attribute indicates that the image is a server-side image map. User mouse
actions over the image are sent to the server for processing.

longdesc This attribute specifies the URL of a document that contains a long description of
the image. This attribute is used as a complement to the alt attribute.

loop In the Microsoft implementation, this attribute is used with the dynsre attribute to
cause a movie to loop. Its value is either a numeric loop count or the keyword infinite.
Later versions of Internet Explorer suggest using -1 to indicate infinite. Since it is related to
dynsrc, the use of to play movies does not work past Internet Explorer 6 unless
security settings are modified.

lowsrc This nonstandard attribute, supported in most browsers, contains the URL of an
image to be initially loaded. Typically, the lowsrc image is a low-resolution or black-and-
white image that provides a quick preview of the image to follow. Once the primary image
is loaded, it replaces the lowsrc image.

name This common attribute is used to bind a name to the image. Older browsers
understand the name field, and, in conjunction with scripting languages, it is possible to
manipulate images by their defined names to create effects such as “rollover” buttons.
Under modern versions of HTML and XHTML, the id attribute should be used as an
element identifier for scripting and style application. The name attribute can still be used for
backward compatibility.

src This attribute indicates the URL of an image file to be displayed. Most browsers will
display .gif, .jpeg, and .png files directly. Older formats like .bmp, .xpm (X Bitmap), and
.xpm (X Pixelmap) are also commonly supported, though their use is never recommended.
Some modern browsers may support . svg (Scalable Vector Graphics) files as well with the
img element.

start In the Microsoft implementation, this attribute is used with the dynsrc attribute to
indicate when a movie should play. The default value, if no value is specified, is to play the
video as soon as it has finished loading. This can be explicitly set with a value of £ileopen.
Alternatively, a value of mouseover can be set to play the move once the user has moved
their mouse over the video. This, like other dynsrc features, may not work past Internet
Explorer 6 browsers because of security changes.

Chapter 3: HTML and XHTML Element Reference

usemap This attribute makes the image support client-side image mapping. Its argument is
a URL specifying the map file, which associates image regions with hyperlinks. The URL is
generally a fragment identifier that references a location in the current document rather
than a remote resource.

Examples

<img src="olivia.jpg" lowsrc="loading.jpg" border="0" height="50%"
width="50%" alt="Picture of Olivia" longdesc="olivia-bio.html">

<img src="homebutton.png" width="50" height="20"
alt="Link to Home Page" />

<!-- xhtml style syntax -->

<img src="hugeimagemap.gif" usemap="#mainmap" border="0" height="200"
width="200" alt="Image Map Here" />

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

¢ Typically, when you use the usemap attribute, the URL is a fragment, such as
#mapl, rather than a full URL. Some browsers do not support external client-side
map files. HTML5 makes this statement more strongly than in other specifications.

¢ Under the strict HTML and XHTML definitions, the tag does not support
align, border, height, hspace, vspace, and width. The functionality of these
attributes should be possible using style sheet rules.

* Whereas the HTML 4 specification reserves data-binding attributes such as dataf1d
or datasrc for many elements, they are not specified for ; however, Internet
Explorer provides support for these attributes.

* As an empty element under XHTML or when using XML-style syntax for HTMLS5,
a trailing slash is required for this element: .

¢ Under future versions of XHTML such as 2, may be dropped in favor of
<objects>.

¢ It should be noted that some core attributes for HTMLS5, most noticably
spellcheck, make little sense within the meaning of this element.

<input> (Input Form Control)

This element specifies an input control for a form. The type of input is set by the type
attribute and can be a variety of different types, including single-line text field, password
field, hidden, check box, radio button, or push button. HTML5 extends the possibilities of
this form greatly and adds a number of features for browser-based validation without using
JavaScript.

219

280 Partl: Core Markup

Standard Syntax

<input
accept="MIME types"
accesskey="character"
align="bottom | left | middle | right | top" (transitional only)
alt="text"
checked="checked"
class="class name(s)"
dir="1ltr | rtl"
disabled="disabled"
id="unique alphanumeric identifier"
lang="language code"
maxlength="maximum field size"
name="field name"
readonly="readonly"
size="field size"
src="URL of image file"
style="style information"
tabindex="number"
title="advisory text™"
type="button | checkbox | file | hidden | image |
password | radio | reset | submit | text"
usemap="URL of map file"
value="field value">

Attributes Introduced by HTML5

autocomplete="on | off"

autofocus="autofocus"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

form="id of related form element"

formaction="URL of form action"

formenctype="MIME type of form encoding"
formmethod="get | post | put | delete"
formnovalidate="true | false"

formtarget="name of target frame, region, or window"
height="pixels"

hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

list="id of datalist element to get suggestions from"
max="maximum value (number)"

min="minimum value (number)"

multiple="true | false"

pattern="validation pattern as regular expression"
placeholder="placeholder text"

required="required"

Chapter 3: HTML and XHTML Element Reference 281

spellcheck="true | false"

step="float"

type= older type values from above| color | date | datetime |
datetime-local | email | list | number | month | range |
tel | time | url | search | week

width="pixels"

Attributes Defined by Internet Explorer

autocomplete="off | on" (5) (password, text types only)
dynsrc="URL of movie" (3) (image type only)

language="javascript | jscript | vbs | vbscript" (4)
disabled="false | true" (4) (all types except for hidden)
hidefocus="true | false" (5.5)

height="pixels" (3) (image type only)
hspace="pixels or percentage" (3)

loop="number" (4) (image type only)

lowsrc="URL of low-resolution image" (4) (image type only)
unselectable="off | on" (5.5)

vspace="pixels or percentage" (3) (image type only)

width="pixels" (3) (image type only)

Standard Event Attributes

onchange, onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onselect

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate (checkbox, hidden, password, radio, text),
onbeforeactivate (all types except hidden), onbeforecut (all types except hidden),
onbeforedeactivate, onbeforeeditfocus, onbeforepaste (all types excepthidden),
onbeforeupdate (checkbox, hidden, password, radio, text), onblur (athpes
except hidden), oncontextmenu (all types except hidden), oncontrolselect, oncut
(all types except hidden), ondeactivate, ondrag (all types except hidden), ondragend
(all types except hidden), ondragenter (all types except hidden), ondragleave (all
types except hidden), ondragover (all types except hidden), ondragstart (all types
except hidden), ondrop (all types except hidden), onerrorupdate (checkbox,
hidden, password, radio, text), onfilterchange (athpesexcepthidden)
onfocus, onfocusin (all types except hidden), onfocusout (all types except hidden),
onhelp (all types except hidden), onlosecapture, onmouseenter (all types except
hidden), onmouseleave (all types except hidden), onmousewheel (all types except
}ﬂddenL onmove, onmoveend, onmovestart, onpaste (athpesexcept}ﬂddenL

282

Part I: Core Markup

onpropertychange, onreadystatechange, onresize (button, file, image,
password, reset, submit, text), onresizeend, onresizestart, onselectstart
(all types except hidden), ontimeerror

Element-Specific Attributes

accept This attribute is used to list the MIME types accepted for file uploads when using a
file upload control (<input type="file"s).

align With image form controls (type="image"), this attribute aligns the image with
respect to surrounding text. The HTML 4.01 transitional specification defines bottom, left,
middle, right, and top as allowable values. Netscape and Microsoft browsers might also
allow the use of attribute values such as absbottom or absmiddle. Like other presentation-
specific aspects of HTML, the align attribute is dropped under the strict HTML 4.01
specification.

alt This attribute is used to display an alternative description of image buttons for text-
only browsers. The meaning of alt for forms of <input> beyond type="input" is not
defined.

autocomplete This Microsoft-specific attribute is used to indicate whether or not the form
field should be automatically filled in. The default value is no. HTMLS5 also supports this
attribute.

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTMLS5. It is not defined for <input type="hidden">.

checked The checked attribute should be used only for check box (type="checkbox")
and radio (type="radio") form controls. The presence of this attribute indicates that the
control should be displayed in its checked state.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor will they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also might gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value.

dynsrc In the Microsoft implementation, this attribute indicates the URL of a movie file and
is used instead of the src attribute for <input type="image">.

form This HTMLS5 attribute should be set to a string that corresponds to the id of the form
element that an interactive control such as a button is associated with. This allows form
elements in one form to trigger actions in others.

formaction This HTMLS attribute specifies a URL to target when the button is clicked,
similar to the use of the action attribute on a form element.

formenctype This attribute indicates how form data should be encoded before being sent to
the server. The default is application/x-www-form-urlencoded. This encoding replaces

Chapter 3: HTML and XHTML Element Reference 283

blank characters in the data with a plus character (+) and all other nonprinting characters
with a percent sign (%) followed by the character’s ASCII HEX representation. The
multipart/form-data option does not perform character conversion and transfers the
information as a compound MIME document. This must be used when using <input-
type="file">. It also might be possible to use another encoding, such as text/plain
with a mailed form, but in general you should be cautious about changing the enctype.

formmethod This HTMLS5 attribute indicates how form information should be transferred
to the server using a particular HTTP method. A get value in the attribute indicates that
form data should be appended to the URL specified by the action attribute thus creating a
query string. This approach is quite simple but imposes a size limitation that is difficult to
gauge (may be as low as 2 kilobytes in real situations). A value of post for this attribute
transfers the data of the form in the message body using the HTTP PoST method, which
imposes no data size limitation. Browsers may allow for other HTTP methods like delete
or put, as suggested by the HTMLS5 specification, but so far such usage is rare. The POST
method must be used when file attachments are used in a form.

formnovalidate This HTML5 Boolean attribute is used to indicate a form should not be
validated during submission. It is false by default but may be controlled either on the
button directly or on a containing or related form. Initially this was simply known as
novalidate.

formtarget This HTMLS5 attribute is set to the name of a window or frame that the button
will target the result of action; in other words, where the result should appear. This action is
similar to the target attribute on <a> and <form> tags. Initially, this attribute was simply
target in early drafts of HTMLS5.

height Defined under HTML5, though commonly supported in older browsers, this
attribute is used to size an input element particularly when images are used as in <input
type="image">. CSS properties are preferred.

hspace This Internet Explorer-specific attribute indicates the horizontal space, in pixels,
between the image and surrounding text when using <input type="image">.

list The HTML5 1ist attribute is used to set the id of a datalist element used to
provide a predefined list of options suggested to the user for entry.

loop In the Microsoft implementation, this attribute is used with <input type="image">
and the dynsrc attribute to cause a movie to loop. Its value is either a numeric loop count
or the keyword infinite. Later versions of Internet Explorer suggest using -1 to indicate
infinite.

lowsrc This Microsoft-supported attribute contains the URL of an image to be initially
loaded when using <input type="image">. Typically, the lowsrc image is a low-
resolution or black-and-white image that provides a quick preview of the image to follow.
Once the primary image is loaded, it replaces the lowsrc image.

max This HTMLS5 attribute should be set to a numeric value that is the high range allowed
in the form control. The min attribute sets the low range.

284

Part I: Core Markup

maxlength This attribute indicates the maximum content length that can be entered in a
text form control (type="text"). The maximum number of characters allowed differs from
the visible dimension of the form control, which is set with the size attribute.

min This HTMLS5 attribute should be set to a numeric value that is the low range allowed
in the form control. The max attribute sets the high range.

multiple This HTML5 Boolean attribute, when set to true, indicates that multiple values
are allowed for the field.

name This attribute allows a form control to be assigned a name to set as the name/value
pair value sent to the server. Traditionally, this value was also used for reference by a
scripting language, but using the id value is more appropriate. However, given that
browsers sometimes favor the older syntax, both may often be used and set to the same
value, with some limitations, particularly with radio buttons.

pattern This HTMLS attribute specifies a regular expression against which the field should
be validated. The title attribute should be provided when this attribute is used, to give an
indication of what is an acceptable pattern and what isn't.

placeholder This HTMLS5 attribute specifies a short bit of text that is used to help the user
figure out what type of information to fill in for a form control. Likely, the text will be
placed in the field and cleared upon focus.

readonly This attribute prevents the form control’s value from being changed. Form
controls with this attribute set might receive focus from the user but not permit the user to
modify the value. Because it receives focus, a readonly form control will be part of the
form’s tabbing order. The control’s value will be sent on form submission. This attribute can
be used only with <input> when type is set to text or password. The attribute also is
used with the textarea element.

required The presence of this HTML5 Boolean attribute indicates that the form field must
be set in order for form submission to proceed. User agents that understand this should set
the CSS pseudo-class : invalid when the field goes into error.

size This attribute indicates the visible dimension, in characters, of a text form control
(type="text"). This differs from the maximum length of content, which can be entered in a
form control set by the maxlength attribute.

src This attribute is used with image form controls (type="image") to specify the URL of
the image file to load.

step This HTMLS5 attribute defines the step in which values can take; for example, by twos
(2,4,6...) or tens (10, 20, 30...). It is generally used in range controls.

tabindex This attribute takes a numeric value that indicates the position of the form control
in the tabbing index for the form. Tabbing proceeds from the lowest positive tabindex
value to the highest. Negative values for tabindex will leave the form control out of the
tabbing order. When tabbing is not explicitly set, the browser tabs through items in the

Chapter 3: HTML and XHTML Element Reference 285

order they are encountered. Disabled form fields will not be part of the tabbing index,
although read-only controls will be.

type This attribute specifies the type of the form control. A value of button indicates a
general-purpose button with no well-defined meaning. However, an action can be
associated with the button by using an event handler attribute, such as onclick. A value of
checkbox indicates a check box control. Check box form controls have a checked and
unchecked setting, but even if these controls are grouped together, they allow a user to
select multiple check boxes simultaneously. In contrast, a value of radio indicates a radio
button control. When grouped, radio buttons allow only one of the many choices to be
selected at a given time.

A form control type of hidden indicates a field that is not visible to the viewer but is
used to store information. A hidden form control often is used to preserve state information
between pages.

Avalue of £ile for the type attribute indicates a control that allows the viewer to
upload a file to a server. The filename can be entered in a displayed field, or a user agent
might provide a special browse button that allows the user to locate the file. A value of
image indicates a graphic image form control that a user can click on to invoke an
associated action. (Most browsers allow the use of img-associated attributes such as height,
width, hspace, vspace, and alt when the type value is set to image.) A value of
password for the type attribute indicates a password entry field. A password field will not
display text entered as it is typed; it might instead show a series of dots. Note that
password-entered data is not transferred to the server in any secure fashion. A value of
reset for the type attribute is used to insert a button that resets all controls within a form
to their default values. A value of submit inserts a special submission button that, when
clicked, sends the contents of the form to the location indicated by the action attribute of
the enclosing <form> tag. Lastly, a value of text (the default) for the type attribute
indicates a single-line text input field.

HTMLS5 expands greatly on this attribute’s possible values, specifying search, url,
email, tel, datetime, date, month, week, time, datetime-local, number, range, and
color as well. Likely there will be others. Many of these ideas derived from the Web
Forms 2.0 specification, which Opera implements partially. WebKit also implements a select
number of these form field types. Likely other browsers will quickly follow suit.

usemap This HTML 4.0 attribute is used to indicate the map file to be associated with an
image when the form control is set with type="image". The value of the attribute should
be a URL of a map file but generally will be in the form of a URL fragment referencing a
map file within the current file.

value This attribute has two different uses, depending on the value for the type attribute.
With data-entry controls (type="text" and type="password"), this attribute is used to
set the default value for the control. When used with check box or radio button form
controls, this attribute specifies the return value for the control. If it is not set for these fields,
a default value of on will be submitted when the control is activated.

vspace This Internet Explorer-specific attribute indicates the vertical space, in pixels,
between the image and surrounding text when using <input type="image">.

286

Part I: Core Markup

width This attribute, initially supported by many browsers such as Internet Explorer for
image buttons and now defined under HTMLS5, is used to set the size of the form control, in
pixels. This should be controlled with CSS instead.

Examples

<form action="#" method="get">
<fieldset>
<legend>Basics</legend>
<p>Enter your name: <input type="text" maxlength="35" size="20">

Enter your password: <input type="password" maxlength="35" size="20">
</p>
</fieldset>
<p><label>Which is your favorite food?</label>
<input type="radio" name="favorite" value="Mexican">Mexican
<input type="radio" name="favorite" value="Russian">Russian
<input type="radio" name="favorite" value="Japanese">Japanese
<input type="radio" checked name="favorite" wvalue="Other">Other
</p>
<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</p>
</form>

<!-- HTML5 snippets -->
<p><label> Three Letter Acronyms:
<input pattern="[A-Z]{3}" name="threeletter"

title="Enter an upper case three letter combination."/>
</label></p>
<p><label>Name: <input type="text" name="fullname" placeholder="Thomas A.
Powell"></label></p>

<p><input type="range" name="slider"></p>
<p><input type="date" oninput="year.value = valueAsDate.getYear();">
<p>HTML5 finalized in the year <output output="year"> </output></p>

<p><label> Favorite Dog: <input list="dogs"></label></p>
<datalist id="dogs">
<option>Angus</option>
<option>Tucker</option>
<option>Cisco</option>
<option>Sabrina</option>
</datalist>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 287

Notes

e The HTML 2.0 and 3.2 specifications support only the align, checked, maxlength,
name, size, src, type, and value attributes for the input element.

¢ The HTML 4.01 specification also reserves the use of the datafld, dataformatas,
and datasrc data-binding attributes. They were not included in the XHTML
specification but are supported by Internet Explorer.

¢ Use of autocomplete may have security implications. Use with caution.

¢ Under the strict HTML and XHTML specifications, the align attribute is not
allowed.

* As an empty element under XHTML or when using XML-style syntax for HTMLS5,
a trailing slash is required for this element: <input />.

¢ Safari running on the iPhone extends this element with autocorrect and
autocapitalize attributes. Given the difficulty of filling in forms on small-factor
devices, it is likely there may be other proprietary changes that are device specific.

<ins> (Inserted Text)

This element is used to indicate that text has been added to the document. Inserted text is
generally styled with an underline.

Standard Syntax

<ins
cite="URL"
class="class name(s)"
datetime="date"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</ins>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

288

Part I: Core Markup

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable=" false | true | inherit " (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncontrolselect,
ondeactivate, onfocus, onmove, onmoveend, onmovestart, onreadystatechange,
onresizeend, onresizestart, ontimeerror

NOTE MSDN documentation for this element appears incorrect for event handlers. Not all core
events are listed, but during testing they all worked. Other extended events like onbeforecopy,
oncopy, oncontextmenu, and more were also verified as functional under Internet Explorer 8.

Element-Specific Attributes

cite The value of this attribute is a URL that designates a source document or message for
the information inserted. This attribute is intended to point to information explaining why
the text was changed.

datetime This attribute is used to indicate the date and time the insertion was made. The
value of the attribute is a date in a special format as defined by ISO 8601. The basic date
format is

yyyy-mm-ddthh:mm: ssTZD

where the following is true:

yyyy=four-digit year such as 2010
mm=two-digit month (0l=January, 02=February, and so on)
dd=two-digit day of the month (01 through 31)

Chapter 3: HTML and XHTML Element Reference

hh=two-digit hour (00 to 23) (24-hour clock not AM or PM)
mm=two-digit minute (00 to 59)

ss=two-digit second (00 to 59)

tzd=time zone designator

The time zone designator is either Z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh: mm, which indicates that the time is a local
time that is ik hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be -hh: mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 2009-10-6T09:15:00-05:00, which corresponds to October 6, 2010, 9:15 a.Mm.,
U.S. Eastern Standard Time.

Example

<p>We have the lowest prices in the galaxy! <ins cite="http://www

.democompany.com/changes/janl0.html"
date="2010-05-01T09:15:00-05:00">

New rates are effective in 2010.

</ins></p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 4+, Safari 1+
Note

* Browsers can render inserted (<ins>) or deleted () text in a different style to
show the changes that have been made to the document. Typically, newly inserted
entries are underlined and deletions appear with strikethrough. In theory, a browser
could have a way to show a revision history on a document, but generally this is left
up to scripting or the environment the page is built in.

<isindex> (Index Prompt)

This element indicates that a document has an associated searchable keyword index. When
a browser encounters this element, it inserts a query entry field at that point in the
document. The viewer can enter query terms to perform a search. This element is
deprecated under the strict HTML and XHTML specifications and should not be used.

Standard Syntax (Transitional Only)

<isindex
class="class name(s)"
dir="1ltr | rtl"
href="URL" (nonstandard but common)
id="unique alphanumeric identifier"
lang="language code"
prompt="string"
style="style information"
title="advisory text" />

289

290

Part I: Core Markup

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
action="URL to send query" (3)

contenteditable=" false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on| off" (5.5)

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncontrolselect,
ondeactivate, onfocus, onmove, onmoveend, onmovestart, onreadystatechange,
onresize, onresizeend, onresizestart

Element-Specific Attributes

action This attribute specifies the URL of the query action to be executed when the viewer
presses the ENTER key. Although this attribute is not defined under any HTML specification,
it is common to many browsers, particularly Internet Explorer 3, which defined it.

prompt This attribute allows a custom query prompt to be defined. The default prompt is
“This is a searchable index. Enter search keywords.”

Examples

<isindex action="cgi-bin/search.pl" prompt="Enter search terms">
<!-- very old HTML style syntax below -->

<base href="cgi-bin/search">

<isindex prompt="Enter search terms">

<isindex href="cgi-bin/search" prompt="Keywords:">

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 4+,
XHTML 1.0 (transitional) Netscape 1.1+, Opera 4+, Safari 1+

Notes

* Originally, the W3C intended this element to be used in a document’s header.
Browser vendors have relaxed this usage to allow the element in a document’s body.
Early implementations did not support the action attribute and used a <base> tag
or an href attribute to specify a search function’s URL.

¢ Asan empty element, <isindex> requires no closing tag under HTML specifications.
However, under the XHTML specification, a trailing slash <isindex /> is required.

¢ The HTML 3.2 specification only allows the prompt attribute, whereas HTML 2
expected a text description to accompany the search field.

Chapter 3: HTML and XHTML Element Reference 291

* Netscape 1.1 originated the use of the prompt attribute.

¢ This element is not found at all in newer specifications like HTMLS5.

<kbd> (Keyboard Input)

This inline element logically indicates text as keyboard input. A browser generally renders
text enclosed by this element in a monospaced font.

Standard Syntax

<kbd
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</kbd>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable=" false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

292

Part I: Core Markup

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<p>0On a Linux or Unix based system you can list files by typing
<kbd>1ls</kbd> at a command prompt.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Note

¢ The HTML 2 and 3.2 specifications support no attributes for this element.

<keygen> (Key Pair Generation)

This element is used to control the generation of key pairs in secured communications. On
form submission, the browser will generate a key pair and store the private key in the
browser’s private key storage and send the public key to the server.

HTML5 Standard Syntax

<keygen
accesskey="spaced list of accelerator key(s)"
autofocus="true | false"
challenge="value for generating challenge"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
disabled="disabled"
draggable="true | false | auto"
form="id of enclosing form"
hidden="hidden"

Chapter 3: HTML and XHTML Element Reference

id="unique alphanumeric identifier"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
keytype="enumerated value for type of key (generally rsa)"
lang="language code"

name="field name"

spellcheck="true | false"

style="style information"

tabindex="number"

title="advisory text">

</keygen>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>keygen Example</title>

</head>

<body>

<form method="post" action="makecert.php">
<keygen name="RSA public key" challenge="123456789" keytype="RSA">
<input type="submit" name="createcert" value="Generate">

</form>

</body>

</html>

Compatibility

HTML5 | Browsers such as Netscape, Firefox, Safari, and Opera may have
partial support for this element.

Notes

¢ Asan empty element when using XML-style syntax for HTMLS5, a trailing slash is
required for this element: <keygen />.

293

294 Partl: Core Markup

¢ This element was initially introduced by Netscape and, although it has been poorly
documented, has been formalized for HTML5. There is strong indication that some
browser vendors like Microsoft may not support this element or support it only as a
dummy element.

<label> (Form Control Label)

This element is used to relate descriptions to form controls.

Standard Syntax

<label
accesskey="key"
class="class name(s)"
dir="1ltr | rtl"
for="id of form field"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

</labels>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

contenteditable="false | true | inherit" (5.5)
datafld="column name" (4)

dataformatas="html | text" (4)

datasrc="data source id" (4)

disabled="false | true" (5.5)

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)
HTML 4 Event Attributes

onblur, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

Chapter 3: HTML and XHTML Element Reference

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

for This attribute specifies the id for the form control element the label references. This is
optional when the label encloses the form control it is bound to. In many cases, particularly
when a table is used to structure the form, a <label> tag will not be able to enclose the
associated form control, so the for attribute should be used. This attribute allows more than
one label to be associated with the same control by creating multiple references.

Examples

<form action="search.php" method="get">
<p>
<label id="searclabel">Search:
<input type="text" name="search" id="search">
</label>
</p>
</form>

<form action="tracker.php" method="POST">
<table>
<tr>
<td><label for="username">Name</label></td>
<td><input type="text" id="username"></td>
</tr>
</table>
</form>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1, Basic Netscape 6+, Opera 4+, Safari 1+

295

296

Part I: Core Markup

Notes
e Each <label> must not contain more than one form field.

e The label element should not be nested.

<layer> (Positioned Layer)

This Netscape 4.x—specific element allows the definition of overlapping content layers that can
be exactly positioned, hidden or shown, rendered transparent or opaque, reordered front to
back, and nested. The functionality of layers is available using CSS positioning facilities, and
the 1layer element is listed here purely for historical reasons in case developers come across
pages using them.

Syntax (Defined by Netscape 4 Only)

<layer
above="layer name"
background="URL of background image"
below="layer name"
bgcolor="color value"
class="class name(s)"
clip="clip region coordinates in x1, yl, x2, y2 form"
height="percentage | pixels"
id="unique alphanumeric identifier"
left="pixels"
name="string"
overflow="none | clip"
pagex="horizontal pixel position of layer"
pagey="vertical pixel position of layer"
src="URL of layer's contents"
style="style information"
title="advisory text"
top="pixels"
visibility="hide | inherit | show"
width="percentage | pixels"
z-index="number" >

</layers>
Element-Specific Attributes

above This attribute contains the name of the layer (as set with the name attribute) to be
rendered directly above the current layer.

background This attribute contains the URL of a background pattern for the layer. Like
backgrounds for the document as a whole, the image might tile.

below This attribute specifies the name of the layer to be rendered below the current layer.

bgeolor This attribute specifies a layer’s background color. The attribute’s value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

Chapter 3: HTML and XHTML Element Reference 297

clip This attribute clips a layer’s content to a specified rectangle. All layer content outside
that rectangle will be rendered transparent. The c1ip rectangle is defined by two x,y pairs
that correspond to the top x, left y, and bottom x, right y coordinate of the rectangle. The
coordinates are relative to the layer’s origin point, 0,0, in its top-left corner, and might have
nothing to do with the pixel coordinates of the screen.

height This attribute is used to set the height of the layer, either in pixels or as a percentage
of the screen or region the layer is contained within.

left This attribute specifies, in pixels, the left offset of the layer. The offset is relative to its
parent layer, if it has one, or to the left browser margin if it does not.

name This attribute assigns to the layer a name that can be referenced by programs in a
client-side scripting language. The id attribute also can be used.

overflow This attribute specifies what should happen when the layer’s content exceeds its
rendering box and clipping area. A value of none does not clip the content, while e1ip clips
the content to its dimensions or defined clipping area.

pagex This attribute is used to set the horizontal pixel position of the layer relative to the
document window rather than any enclosing layer.

pagey This attribute is used to set the vertical pixel position of the layer relative to the
document window rather than any enclosing layer.

src This attribute specifies the URL that contains the content to be included in the layer.
Using this attribute with an empty element is a good way to preserve layouts under older
browsers.

top This attribute specifies, in pixels, the top offset of the layer. The offset is relative to its
parent layer, if it has one, or to the top browser margin if it is not enclosed in another layer.

visibility This attribute specifies whether a layer is hidden (hidden), shown (show), or
inherits (inherits) its visibility from the layer enclosing it.

width This attribute specifies a layer’s width, in pixels or as a percentage value of the
enclosing layer or browser width.

z-index This attribute specifies a layer’s stacking order relative to other layers. Position is
specified with positive integers, with 1 indicating the bottommost layer.

Examples

<!-- 90s appropriate example to illustrate this element -->
<layer name="scene" bgcolor="#00FFFF">
<layer name="Shaqg" left="100" top="100">

</layer>
<layer name="Rodman" left="200" top="100"
visibility="hidden">

</layer>
</layer>

298

Part I: Core Markup

<!-- Linked layers -->

<layer src="contents.html" left="20" top="20"
height="80%" width="80%">

</layer>

Compatibility

No standards support Netscape 4, 4.5-4.8

Notes

¢ The functionality of the 1ayer element is easily replicated using a <div> tag and
the CSS property position:absolute. In older Netscape browsers, using this
more appropriate approach did populate the JavaScript document . layers
collection.

* Because this element is specific to Netscape 4, it should never be used and is
discussed only for readers supporting existing <layer>-filled pages they may come
across. The next edition of this book will remove this historical footnote.

e Applets, plug-ins, and other embedded media forms, generically called objects, can
be included in a layer; however, they will float to the top of all other layers, even if
their containing layer is obscured.

<legend> (Descriptive Legend)

This element is used to assign a caption to a set of form fields as defined by a fieldset
element.

Standard Syntax

<legend
accesskey="character"
align="bottom | left | right | top" (transitional only)
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</legend>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

Chapter 3: HTML and XHTML Element Reference 299

itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

Attributes Defined by Internet Explorer

align="center" (4)

contenteditable=" false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

accesskey This attribute specifies a keyboard navigation accelerator for the element.
Pressing ALT or a similar key in association with the specified key selects the form section or
the legend itself. Page designers are forewarned to avoid key sequences already bound to
browsers.

align This attribute indicates where the 1egend value should be positioned within the
border created by a <fieldset> tag. The default position for the legend is the upper-left
corner. It also is possible to position the legend to the right by setting the attribute to right.

300

Part I: Core Markup

The specification defines bottom and top, as well. Microsoft also defines the use of the
value center.

Example

<form action="#" method="get">

<fieldset>
<legend align="top">User Information</legend>
<div>

<label>First Name:
<input type="text" id="firstname" size="20">
</label>

<label>Last Name:
<input type="text" id="lastname" size="20">
</label>

</div>
</fieldset>
</form>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 4+, Safari 1+
Notes

¢ Traditionally, a <1egend> tag should occur only within a <fieldset> tag. There
should be only one 1egend per fieldset element.

¢ Under early drafts of the HTML5 specification, this element is also found in the
figure and details elements. This was later replaced by the dt element.

¢ Some versions of Microsoft documentation show a valign attribute for <legend>
positioning. However, the valign attribute does not appear to work consistently
and has since been dropped from the official documentation.

 (List Item)

This element is used to indicate a list item as contained in an ordered list (<o1>), unordered
list (), or older list styles such as <dir> and <menus>.

Standard Syntax

<li
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"
type="circle | disc | square | a | A | 1 | I | 1" (transitional only)
value="number"> (transitional only)

</1li>

Chapter 3: HTML and XHTML Element Reference

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable=" false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

301

302

Part I: Core Markup

Element-Specific Attributes

type This attribute indicates the bullet type used in unordered lists or the numbering type
used in ordered lists. For ordered lists, a value of a indicates lowercase letters, A indicates
uppercase letters, i indicates lowercase Roman numerals, I indicates uppercase Roman
numerals, and 1 indicates numbers. For unordered lists, values are used to specify bullet types.
Although the browser is free to set bullet styles, a value of disc generally specifies a filled
circle, a value of circle specifies an empty circle, and a value of square specifies a filled
square. This attribute should be avoided in favor of the CSS property 1ist-style-type.

value This attribute indicates the current number of items in an ordered list as defined by
an tag. Regardless of the value of type being used to set Roman numerals or letters,
the only allowed value for this attribute is a number. List items that follow will continue
numbering from the value set. The value attribute has no meaning for unordered lists.
CSS 2 counters can provide much more flexibility than this attribute.

Examples

<li type="circle">First list item is a circle
<li type="square">Second list item is a square
<li type="disc">Third list item is a disc

<li type="i">Roman Numerals
<li type="a" value="3">Second list item is letter C
<li type="a">Continue list in lowercase letters

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

e Under the strict HTML and XHTML definitions, the 1i element loses the type and
value attributes, as these presentation styles can be emulated with CSS properties
like 1ist-item-style and CSS counters.

e HTMLS5 reintroduces the value attribute to list items but CSS should be used
instead.

* Whereas bullet styles can be set explicitly, browsers tend to change styles for bullets
when <uls lists are nested. However, ordered lists generally do not change style
automatically, nor do they support outline-style numbering (1.1, 1.1.1, and so on).
CSS rules, of course, can do this.

¢ The closing tag </11> is optional under HTML specifications, including HTMLS5.
However, it is required under XHTML and should always be used.

Chapter 3: HTML and XHTML Element Reference 303

<link> (Link to External Files or Set Relationships)

This empty element found in the head element specifies relationships between the current
document and other documents. Possible uses for this element include defining a relational
framework for navigation and linking the document to a style sheet.

Standard Syntax

<link
charset="charset list from RFC 2045"
class="class name(s)"
dir="ltr | rtl"
href="URL"
hreflang="language code"
id="unique alphanumeric identifier"
lang="language code"
media="all | aural | braille | print | projection |
screen | other"
rel="relationship value"
rev="relationship value"
style="style information"
target="frame name" (transitional only)
title="advisory information or relationship specific duty"
type="MIME type"s>

Other Common Attributes

disabled="disabled" (from DOM Level 1)
name="unique name" (IE 4+)

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

sizes="any or list of space-separated sizes of form ValxVal"
spellcheck="true | false"

tabindex="number"

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

304

Part I: Core Markup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onload, onreadystatechange
Element-Specific Attributes

charset This attribute specifies the character set used by the linked document. Allowed
values for this attribute are character set names, such as EUC-JP, as defined in RFC 2045.

disabled This DOM Level 1-defined attribute is used to disable a link relationship.
The presence of the attribute is all that is required to remove a linking relationship. In
conjunction with scripting, this attribute could be used to turn on and off various style
sheet relationships.

href This attribute specifies the URL of the linked resource. A URL might be absolute or
relative.

hreflang This attribute is used to indicate the language of the linked resource. See the
“Language Attributes Reference” section earlier in this chapter for information on allowed
values.

media This attribute specifies the destination medium for any linked style information, as
indicated when the rel attribute is set to stylesheet. The value of the attribute might be a
single media descriptor, such as screen, or a comma-separated list. Possible values for this
attribute include all, aural, braille, print, projection, and screen. Other values also
might be defined, depending on the browser.

rel This attribute names a relationship between the linked document and the current
document. Multiple values can be specified and should be separated by spaces. The value
of the rel attribute is simply a text value, which can be anything the author desires.
However, a browser can interpret standardized relationships in a particular way. For
example, a browser might provide special icons or navigation features when the meaning
of a link is understood. Currently, document relationship values are neither widely
understood nor supported by browsers, but the HTML 4.01 and HTMLS5 specifications list
some proposed relationship values, as shown in Table 3-22. Note that these values are not
case sensitive.

document that provides a
glossary of terms for the
current document.

rel="glossary">

Chapter 3: HTML and XHTML Element Reference
Relationship Value | Explanation Example(s) Specification
alternate The link references an <link href="frenchintro HTML 4, 5
alternate version of the .html" rel="alternate"
document that the link lang="fr">
is in. For example, this
might be a translated <link href="secondstyle
version of the document, .css" rel="alternate
as suggested by the 1ang |stylesheet">
attribute.
appendix The link references a <link href="intro HTML 4
document that serves .html" rel="appendix">
as an appendix for a
document or site.
archives A reference to document(s) |<link href="/archives" HTML5
of historical interest. rel="archives">
author A reference to information | <link href="/tap.html" HTML5
about the document’s rel="author">
author.
chapter The link references a <link href="chOl.html" HTML 4
document that is a chapter |rel="chapter">
in a site or collection of
documents.
contents The link references a <link href="toc.html" HTML 4
document that serves rel="contents">
as a table of contents,
most likely for the site,
although it might be for the
document.
copyright The link references a page |<link href="copyright HTML 4
that contains a copyright .html" rel="copyright">
statement for the current
document.
first A reference to the first <link href="pagel.html" HTML5
document in a collection. rel="first">
glossary The link references a <link href="glossary.html" |HTML 4

TaBLE 3-22 Possible rel Values (continued)

305

306 Partl: Core Markup

Relationship Value | Explanation Example(s) Specification
help The link references a help <link href="help.html" HTML 4, 5
document for the current rel="help">
document or site.
icon A reference to an icon <link href="pint.png" HTML5
to represent the current rel="icon">
resource as potentially
for some bookmarking or
saving routine.
index The link references a page |<link href="docindex.html" |HTML 4, 5
that provides an index for rel="index" />
the current document.
last A reference to the last <link href="pagelO.html" HTML5
document in a collection. rel="last">
license A reference to the legal or <link href="/legal.html" HTML5
copyright information for rel="license">
the current document’s
content. Similar to the
copyright value.
next The link references the next | <link href="page2.html" HTML 4, 5
document to visit in a linear |rel="next">
collection of documents. It
can be used, for example,
to “prefetch” the next
page, and is supported in
some browsers such as the
older MSN TV browser and
Mozilla-based browsers like
Firefox.
pingback Provides the URL to “ping” |<link href="http:// HTML5
when the document is htmlref.com/watcher.php" (would
loaded. rel="pingback"> require
browser
support)
prefetch Indication to the user <link href="bigimage.png" |HTML5
agent about object(s) to be rel="prefetch"> (some
preloaded during user idle browsers
time. supported
previously)

TaBLE 3-22 Possible rel Values (continued)

Chapter 3: HTML and XHTML Element Reference
Relationship Value | Explanation Example(s) Specification
prev The link references the <link href="pagel.html" HTML 4, 5
previous document in rel="previous">
a linear collection of
documents.
search Link to a search facility <link href="search/ " HTML5
used in a site. rel="search">
section The link references a <link href="sect07.html" HTML 4
document that is a section |rel="section">
in a site or collection of
documents.
sidebar Specifies a URL that should | <link href="instructions HTMLS
be displayed in a browser .html" rel="sidebar">
sidebar.
start The link references the <link href="begin.html" HTML 4
first document in a set of rel="gtart">
documents.
stylesheet The link references an <link href="style.css" HTML 4, 5
external style sheet. This rel="stylesheet">
is by far the most common
use of <1link> and the
most widely supported in
browsers.
subsection The link references <link href="sect07a.html"™ |HTML 4
a document that is a rel="subsection">
subsection in a collection
of documents.
tag Gives a tag that appliesto | <link href="extag.html" HTML5
the document. rel="tag">
up Provides a link to a <link href="/main/index HTML5
document or section “up” .html" rel="up">
from the current document,
usually the parent or
index document for the
current URL.

TaBLE 3-22 Possible rel Values (continued)

307

308

Part I: Core Markup

Under a few browsers, such as Opera, these link relationship values are recognized and
placed in a special navigation menu. For example, given the example here

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Link Relationship Examples</title>

<link rel="home" href="http://htmlref.com" title="Homepage">

<link rel="toc" href="http://htmlref.com/chapters/toc.html"
title="Table of contents">

<link rel="help" href="http://htmlref.com/help.html" title="Need help?">

<link rel="copyright" href="http://www.htmlref.com/copyright.html"

title="Copyright statement">

<link rel="author" href="http://htmlref.com/about/author.html"
title="About the author">

</head>

<body>

<p>Testing link element rel values</p>

</body>

</html>

when viewed in a supporting browser like Opera, you might have special buttons to
navigate a site:

) Link Relationship Examples - Opera
File Edit View Bookmarks Widgets Tools Help

"',i", > | > lQ Lﬂj : ||_~“|

IHome Index Contents Search Glossary Help First Previous Next Last Up Copyright Authorl

Testing link element rel values

Unfortunately, the reality is that over time fewer browsers have supported these 1ink
element features.

The most commonly used rel values from Table 3-22 are described here in more depth.
Certainly, the most common use of this attribute is to specify a link to an external style
sheet. The rel attribute is set to stylesheet, and the href attribute is set to the URL of an
external style sheet to format the page:

<link rel="stylesheet" type="application/pdf" href="/css/global.css">

The alternate stylesheet relationship, which would allow users to pick from a
variety of styles, also is defined. To set several alternative styles, the title attribute must be
set to group elements belonging to the same style. All members of the same style must have
exactly the same value for title. For example, the following fragment defines a standard

Chapter 3: HTML and XHTML Element Reference

style called basestyle.css, and two alternative styles, titled 640x480 and 1024x768, have been
added; these refer to style sheets to improve layout at various screen resolutions:

<link rel="alternate stylesheet" title="640x480" href="small.css"
type="text/css">

<link rel="alternate stylesheet" title="1024x768" href="big.css"
type="text/css">

<link rel="stylesheet" href="basestyle.css" type="text/css">

A Web browser should provide a method for users to view and pick from the list of
alternative styles, where the title attribute can be used to name each choice.

A rel value is also commonly used to specify the location of a blog feed. Using
markup like

<link rel="alternate" type="application/rss+xml"
title="PINT Blog RSS Feed" href="http://blog.pint.com/feed/">

in the head of a document will cause supporting browsers to put a special subscription icon
in the location bar:

@ PINT Elog - Mozilla Firefox 3.1 Beta 3
File Edit View History Bookmarks Tools Help

. s Vo= N o
r L kﬂ | http:_-‘,."hlog.pint.com_(Ei i:a il i
e

Given that there may be multiple feed formats, there may be a number of 1ink alternate
entries:

<link rel="alternate" type="application/rss+xml"
title="The Blog" href="/rss/index.xml">

<link rel="alternate" type="application/atom+xml"
title="Atom 0.3" href="/atom/index.xml">

So far this syntax is the common method, but things change rapidly in the “blogosphere,”
so checking with the documentation of blogging platforms is probably the best way to
ensure you have the very latest feed syntax for (X)HTML.

Another common use of this attribute is to set a browser location bar icon called a
favicon. These icons are set with the rel attribute using the value of icon or shortcut
icon:

<link rel="icon" href="/favicon.ico" type="image/x-icon">
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">

Browsers commonly place these small images in the URL bar like so:

@ HTML Ref - Mozilla Firefox 3.1 Beta 3
File Edit View History Bookmarks Tools Help

r. c Q (H | http://htmlref.com/

309

310

Part I: Core Markup

Browsers may also use favicons in a bookmark menu. Currently, the favicon image
should be a 16x16 image, though larger image sizes may be supported in other situations.
For example, Apple devices support a relationship of apple-touch-icon to set a larger
57x57 PNG format icon

<link rel="apple-touch-icon" href="/apple-touch-icon.png">

to be used on its mobile devices. This is just an example to illustrate that many browser- or
environment-specific uses of <1links> relationships likely exist.

Finally, in some browsers if the rel attribute is set with the value of next (or, in other
cases, prefetch) along with an href value of some data object, the browser will “prefetch”
the item in question during the idle time of the browser. If the content of the next page is
stored in the browser’s cache, the page loads much faster than if the page has to be
requested from the server.

Mozilla-based browsers support this syntax already with a relation type of either next
or prefetch. For example, you might use <1ink> like this:

<link rel="prefetch" href="/images/product.jpeg">
This would be the same as providing a prefetching hint using an HTTP Link: header:
Link: </images/product.jpeg>; rel=prefetch

It is possible to prefetch a variety of objects in a page during a browser’s idle time.
Consider the following example:

<link rel="prefetch" href="bigflash.swf">
<link rel="prefetch" href="ajaxlibrary.js">
<link rel="next" href="2.html">

While prefetching is only built into some browsers, it is possible using JavaScript to
preload objects as well. Regardless of the prefetch method, be careful not to disrupt the load
or use of a currently viewed page with preloading, and be mindful that you may be wasting
bandwidth on requests that are never used.

rev The value of the rev attribute shows the relationship of the current document to the
linked document, as defined by the href attribute. The attribute thus defines the reverse
relationship compared to the value of the rel attribute. Multiple values can be specified
and should be separated by spaces. Values for the rev attribute are similar to the possible
values for rel. They might include alternate, bookmark, chapter, contents,
copyright, glossary, help, index, next, prev, section, start, stylesheet, and
subsection. HTML5 does not define this attribute—likely with good cause, because its
usage is quite rare and its value nebulous.

sizes This HTMLS attribute is used when the rel attribute has a value of icon to define
the size of the related icon in a HeightxWidth format. The attribute takes a space-separated
list if multiple forms are possible or takes the keyword any if size doesn’t matter. See the
examples that follow for a demonstration.

Chapter 3: HTML and XHTML Element Reference M

target The value of the target attribute defines the frame or window name that has the
defined linking relationship or that will show the rendering of any linked resource.

type This attribute is used to define the type of the content linked to. The value of the
attribute should be a MIME type, such as text/html, text/css, and so on. The common
use of this attribute is to define the type of style sheet linked, and the most common current
value is text/css, which indicates a CSS format.

Examples

<link href="products.html" rel="parent">
<link href="corpstyle.css" rel="stylesheet" type="text/css" media="all">

<!-- XHTML syntax -->
<link href="corpstyle.css" rel="stylesheet" type="text/css" media="all" />

<link href="nextpagetoload.html" rel="next>
<!-- HTML5 icon examples -->
<link rel=icon" href="icon.png" sizes="16x16">

<link rel=icon" href="icon2.png" sizes="16x16 32x32">
<link rel=icon" href="icon3.svg" sizes="any">

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1, Basic Netscape 4+, Opera 4+, Safari 1+
Notes

¢ As an empty element under XHTML, or when using XML-style syntax for HTMLS5,
a trailing slash is required for this element: <link />.

* A <links> tag can occur only in the head element; however, there can be multiple
occurrences of <links.

e HTML 3.2 defines only the href, rel, rev, and title attributes for the 1ink
element.

e HTML 2 defines the href, methods, rel, rev, title, and urn attributes for the
link element. The methods and urn attributes were later removed from the
specifications.

<listing> (Code Listing)

This deprecated element from HTML 2 is used to indicate a code listing; it is no longer part
of the HTML standard. Text tends to be rendered in a smaller size within this element. A
<pre> tag should be used instead of this element.

Standard Syntax (HTML 2 Only; Deprecated)

<listing>
</listing>

312

Part I: Core Markup

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

class="class name(s)" (4)

contenteditable=" false | true | inherit" (5.5)
dir="1ltr | rtl" (5.5)

disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

id="unique alphanumeric string" (4)
lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
style="style information" (4)

tabindex="number" (5.5)

title="advisory text" (4)

unselectable="on | off" (5.5)

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<listing>

This is a code listing. The preformatted text element <PRE>
should be used instead of this deprecated element.

</listing>

Compatibility

HTML 2 Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 6+, Safari 1+

Notes

¢ As a deprecated element, this element should not be used. This element is not
supported by HTML 4, XHTML 1.0, or 1.1. It is still documented and supported by
many browser vendors. The pre element should be used instead of <1isting>.

* Many browsers also make text within <1isting> tags one size smaller than normal
text, probably because the HTML 2 specification suggested that 132 characters fit on
a typical line rather than 80.

<map> (Client-Side Image Map)

This element is used to implement client-side image maps. The element is used to define

a map that associates locations on an image with a destination URL. Each hot spot or
hyperlink mapping is defined by an enclosed area element. A map is bound to a particular

Chapter 3: HTML and XHTML Element Reference

image through the use of the usemap attribute in the img element, which is set to the name
of the map.

Syntax

<map
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
name="unique alphanumeric identifier"
style="style information"
title="advisory text"s>

</map>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

language="javascript | jscript | vbs | vbscript" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5S Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

313

34

Part I: Core Markup

Events Defined by Internet Explorer

onbeforeactivate, onbeforecut, onbeforepaste, onclick, oncut, ondblclick,
ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmouseenter, onmouseleave, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onpaste, onpropertychange,
onreadystatechange, onscroll, onselectstart

Element-Specific Attribute

name Like id, this attribute is used to define a name associated with the element. In the
case of the map element, the name attribute is the common way to define the name of the
image map to be referenced by the usemap attribute within an tag.

Example

<map name="mainmap" id="mainmap">
<area shape="circle" coords="200,250,25"
href="filel.html" />
<area shape="rectangle" coords="50,50,100,100"
href="file2.html#important" />
<area shape="default" nohref="nohref" />
</map>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1 Netscape 1+, Opera 4+, Safari 1+
Notes

e HTML 3.2 supports only the name attribute for the map element.
¢ When the name attribute is used, it should be the same as the id attribute.

* Client-side image maps are not supported under HTML 2. They were first
suggested by Spyglass and later incorporated into Netscape and other browsers.

* Given the usability concerns with image maps, alternate access forms such as
related text links should be provided.

<mark> (Marked Text)

This HTMLS5 element defines a marked section of text. It should be used in a sense similar
to how a highlighter is used on text.

HTML5 Standard Syntax

<mark
accesskey="spaced list of accelerator key(s)"
class="class name(sg)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"

Chapter 3: HTML and XHTML Element Reference 315

dir="ltr | rtl"

draggable="true | false | auto"
hidden="hidden"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"

spellcheck="true | false"

style="style information"
tabindex="number"

title="advisory text"s>

</marks>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Examples

<p>The new HTML5 specification is in the works. While

<mark style="background-color: red;">many features are not currently
implemented or even well defined</mark> yet,

<mark style="background-color: green;">progress is being made</marks>.
Stay tuned to see more new HTML elements added to your Web documents in
the years to come.</p>

<p>This is <mark>marked text</mark> was it yellow?</p>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

* Hints in the HTMLS5 specification suggest text within this element will be black on
a yellow background unless other CSS rules override it.

¢ This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the
idea of it.

316

Part I: Core Markup

<marquee> (Marquee Display)
This proprietary element originally introduced by Internet Explorer specifies a scrolling,
sliding, or bouncing text marquee.

Proprietary Syntax (Defined by Internet Explorer)

<marquee
accesskey="key" (5.5)
behavior="alternate | scroll | slide" (3)
bgcolor="color name | #RRGGBB" (3)
class="class name(s)" (4)
contenteditable=" false | true | inherit" (5.5)

datafld="column name" (4)
dataformatas="html | text" (4)
datasrc="data source id" (4)
direction="down | left | right
dir="ltr | rtl" (5.0)
disabled="false | true" (5.5)
height="pixels or percentage"
hidefocus="true | false" (5.5)
hspace="pixels" (3)

id="unique alphanumeric identifier" (4)
lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
loop="infinite | number" (3)

scrollamount="pixels" (3)

scrolldelay="milliseconds" (3)

style="style information" (4)

tabindex="number" (5.5)

title="advisory text" (4)

truespeed="false | true" (4)

unselectable="on | off" (5.5)

vspace="pixels" (3)

width="pixels or percentage"> (3)

up" (3)

</marquee>

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onbeforeupdate,
onblur, onbounce, onclick, oncontextmenu, oncontrolselect, oncut,
ondblclick, ondeactivate, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, onerrorupdate, onfilterchange, onfinish,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onscroll, onselectstart, onstart, ontimeerror

Element-Specific Attributes

behavior This attribute controls the movement of marquee text across the marquee. The
alternate option causes text to completely cross the marquee field in one direction and

Chapter 3: HTML and XHTML Element Reference 37

then cross in the opposite direction. A value of scroll for the attribute causes text to wrap
around and start over again. This is the default value for a marquee. A value of slide for
this attribute causes text to cross the marquee field and stop when its leading character
reaches the opposite side.

bgcolor This attribute specifies the marquee’s background color. The value for the attribute
can either be a color name or a color value defined in the hexadecimal #RRGGBB format.

direction This attribute specifies the direction in which the marquee should scroll. The
default is 1eft. Other possible values for direction include down, right, and up.

loop This attribute indicates the number of times the marquee content should loop. By
default, a marquee loops infinitely unless the behavior attribute is set to s1lide. It also is
possible to use a value of infinite or -1 to set the text to loop indefinitely.

scrollamount This attribute specifies the width, in pixels, between successive displays of
the scrolling text in the marquee.

scrolldelay This attribute specifies the delay, in milliseconds, between successive displays
of the text in the marquee.

truespeed When this attribute is present, it indicates that the scrolldelay value should
be honored for its exact value. If the attribute is not present, any value less than 60 is
rounded up to 60 milliseconds.

Examples

<marquee behavior="alternate">
SPECIAL VALUE !!! This week only !!!
</marquee>

<marquee id="marqueel" bgcolor="red" direction="right" height="30"
width="80%" hspace="10" vspace="10">

The super scroller scrolls again!!

More fun than a barrel of <BLINK> elements.

</marquee>

Compatibility

No standards support | Firefox 1+, Internet Explorer 3+, Netscape 6+, Opera 7+, Safari 1+

Notes

* This is primarily a Microsoft-specific element, although most browsers support it to
some degree. Do not expect all events and attributes beyond basic animation to be
supported consistently or even at all beyond Internet Explorer.

¢ There is a placeholder in the current HTMLS5 specification that discusses this
element will be found in browsers, so its future is still unclear.

318 Partl: Core Markup

<menu> (Menu List or Command Menu)

This element is used to indicate a short list of items (1i elements) that can occur in a menu
of choices. Traditionally, this looked like an unordered list under HTML 4 and prior
versions; HTMLS5 intends to reintroduce this element as a user interface menu filled with
command elements.

Syntax (Transitional Only, Returns in HTML5)

<menu
class="class name(s)"
compact="compact"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</menus>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
label="string for menu label"
spellcheck="true | false"

tabindex="number"

type="context | toolbar"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable=" false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,

Chapter 3: HTML and XHTML Element Reference 319

onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value under traditional HTML but should be
set to a value of compact under XHTML transitional.

label This HTMLS5 attribute defines a string label for the menu. This will be particularly
useful in the case of a nested menu.

type This HTMLS5 attribute indicates whether the menu should be a standard menu that
a user can interact with (toolbar) or a contextual menu, usually activated by a right-click
(contextmenu).

HTML 4 Example

<h2>Taco List</h2>
<menu>
Fish</1li>
Pork</1i>
Beef</1li>
Chicken</1li>
</menu>

HTML5 Examples

<menu type="menubar">

<command label="Add" type="Command" icon="plus.png">
<command label="Edit" type="Command" default>
<command label="Delete" type="Command" disabled>
</menu>

<menu type="context" label="Actions">
<menu type="context" label="New">

320

Part I: Core Markup

<command label="Document" type="Command" default>
<command label="Link" type="Command">
<command label="Section" type="Command">

</menu>

<hr>

<command label="Sort Ascending" type="radio" radiogroup="sort">
<command label="Sort Descending" type="radio" radiogroup="sort">
</menu>

Compatibility

HTML 2, 3.2, 4, 4.01 (transitional), 5 (new functionality) | Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 1+, Opera 4+, Safari 1+

Notes

Under the strict HTML and XHTML specifications, this element is not defined.
Because most browsers simply render this style of list as an unordered list, using the
 tag instead is preferable.

HTMLS5 keeps the traditional sense of this element, but it also introduces a new
sense as an actual menu of commands. In this new use, the content model is much
different and the element may include list items, anchors, form fields, command
elements, and horizontal rules. At the time of this writing, no browsers support this
extended functionality.

HTMLS5 may also allow menu elements to be referenced by id using the global
contextmenu attribute.

The HTML 2.0 and 3.2 specifications support only the compact attribute, though
most browsers don’t do anything with this attribute anyway.

<meta> (Meta-Information)

This element specifies general information about a document that can be used in document
indexing. It also allows a document to define fields in the HTTP response header when it is
sent from the server.

Standard Syntax

<meta

content="string"

dir="1ltr | rtl"
http-equiv="http header string"
id="unique alphanumeric string"
lang="language code"

name="name of meta-information"
scheme="scheme type">

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
charset="character set"
contenteditable="true | false | inherit"

Chapter 3: HTML and XHTML Element Reference

contextmenu="id of menu"
data-X="user-defined data"
draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
spellcheck="true | false"
tabindex="number"

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Event Defined by Internet Explorer

onlayoutcomplete

Element-Specific Attributes

charset This HTMLS5 attribute is used to set the character encoding for the document like
“UTEF-8”. This approach is an alternative to using the ht tp-equiv method currently
employed.

content This attribute contains the actual meta-information. The form of the meta-information
varies greatly, depending on the value set for name.

http-equiv This attribute binds the meta-information in the content attribute to an
equivalent HTTP response header. If this attribute is present, the name attribute should not
be used.

name This attribute associates a name with the meta-information contained in the
content attribute. If the name attribute is present, the http-equiv attribute should not
be used.

scheme The scheme attribute is used to indicate the expected format of the value of the
content attribute. The particular scheme also can be used in conjunction with the metadata
profile, as indicated by the profile attribute for the head element. This attribute is not
currently defined for inclusion in HTML5.

3

322

Part I: Core Markup

Examples

<!-- Use of the meta element to assist document indexing -->

<meta name="keywords" content="html, meta element, meta">

<meta name="description" content="This is a simple example of the meta
element with a fake description for the page.">

<!-- Use of the meta element to implement client-pull to automatically
load a page using XHTML syntax -->

<meta http-equiv="refresh"
content="3;URL="'http://www.pint.com/'" />

<!-- Use of the meta element to add rating information -->
<meta http-equiv="PICS-Label" content="(PICS-1.1
'http://www.rsac.org/ratingsv0l.html'
1l gen true comment 'RSACi North America
Server' by 'webmaster@democompany.com'
for 'http://www.democompany.com' on
'1999.05.26T13:05-0500"
r (n 0sO0voO01l1))">

<!-- user defined use of meta element -->
<meta name="SiteContentID" content="1l23asdasal324a">

<!-- Traditional Charset and Content-Type setting -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<!-- HTML5 charset example -->
<meta charset="utf-8">

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1.1+, Opera 4+, Safari 1+
Notes

¢ The meta element can occur only in the head element. It can be defined multiple
times.

* As an empty element under XHTML, or when using XML-style syntax for HTML5,
a trailing slash is required for this element: <meta />.

* A common use of the meta element is to set information for indexing tools, such as
search engines. Common values for the name attribute when performing this
function include author, description, and keywords; other attributes also might
be possible.

¢ The http-equiv attribute is often used to create a document that automatically
loads another document after a set time. This is called client-pull. An example of a
client-pull meta element is <meta http-equiv="refresh" content="10;URL="'
nextpage.html'">. Note that the content attribute contains two values: the first
is the number of seconds to wait, and the second is the identifier URL and the URL
to load after the specified time.

Chapter 3: HTML and XHTML Element Reference 323

* The http-equiv attribute is also used for page ratings, cache control, setting
defaults such as language or scripting, and a variety of other tasks. In many cases, it
would be better to set these values via the actual HTTP headers rather than via a
<meta> tag.

¢ The <meta> tag can be used arbitrarily by site owners, search services, and browser
vendors. For example, when defining pages for Apple’s iPhone, the viewport and
format-detection values for a <meta> tag can be set to control presentation on
the device. Google uses a verify-v1 value for approving sites for some
Webmaster-related features. Many more examples can be found online; the point is
that the element is quite flexible and has numerous uses.

e The HTML 2.0 and 3.2 specifications define only the content, http-equiv, and
name attributes.

¢ The meanings of some HTML5 common attributes (particularly those that are
interface-oriented, such as accesskey, dragable, and spellcheck) are quite
unclear. The specification currently puts these attributes everywhere, unlike HTML 4,
which does remove core attributes when context is inappropriate. Do not be
surprised if they are removed from some HTMLS5 elements in future revisions to the
specification.

¢ The HTMLS specification states that the http-equiv attribute should not set
Content -Language values; the 1ang attribute should be used in the document
instead.

<meter> (Scalar Gauge)

This HTMLS5 element defines a scalar measurement within a known range, similar to what
might be represented by a gauge.

HTML5 Standard Syntax

<meter
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
high="float"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
low="float"
max="float"
min="float"

k7.

Part I: Core Markup

optimum="float"
spellcheck="true | false"
style="style information"
title="advisory text"
tabindex="number"
value="float">

</meters>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes
low This attribute holds a float value that indicates the low range of the measurement.

max This attribute holds a float value that indicates the maximum range of the
measurement.

min This attribute holds a float value that indicates the minimum range of the
measurement.

optimum This attribute holds a float value that indicates the optimum range of the
measurement.

value This attribute holds a float value that indicates the current value of the measurement.

Examples

<p>Energy level: <meter>50%</meter></p>
<p>Energy level: <meter>1/2</meter></p>

<p>Warp Drive Output:

<meter min="0" max="10" low="3" optimum="7" high="9" value="9.5"
title="Captain she can't take much more of this!">

</meter>

</p>

Compatibility

HTML5 | Not currently supported by any browsers, but could be simulated in modern browsers
with a custom element and JavaScript.

Chapter 3: HTML and XHTML Element Reference 325

Notes

¢ The assumption is that values are used in the correct sense; for example, a min value
cannot be greater than a max value, a 1ow value can’t be greater than a high value,
an optimum value cannot be greater than a high value, and so on.

* This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it. Using scripting, you might
animate or present some visual representation of the data.

<multicol> (Multiple Column Text)

This Netscape-specific element renders the enclosed content in multiple columns. This
element should not be used; a table is a more standard way to render multiple columns of
text across browsers. CSS properties like column-width and column-count perform the
same function when supported.

Proprietary Syntax (Defined by Netscape)

<multicol
class="class name(s)"
cols="number of columns"
gutter="pixels"
id="unique alphanumeric identifier"
style="style information"
width="pixels">

</multicols>
Element-Specific Attributes

cols This attribute indicates the number of columns in which to display the text. The
browser attempts to fill the columns evenly.

gutter This attribute indicates the width, in pixels, between the columns. The default value
for this attribute is ten pixels.

width This attribute indicates the column width for all columns. The width of each column
is set in pixels and is equivalent for all columns in the group. If the attribute is not specified,
the width of columns will be determined by taking the available window size, subtracting
the number of pixels for the gutter between the columns (as specified by the gutter
attribute), and evenly dividing the result by the number of columns in the group (as set by
the cols attribute).

Example

<multicol cols="3" gutter="20">
Put a long piece of text here....
</multicol>

326

Part I: Core Markup

Compatibility

No standards support Netscape 3, 4, 4.5-4.8

Notes

e Page developers are strongly encouraged not to use this element. Netscape dropped
this element for its own browsers starting with version 6.0. The inclusion in this
book of this element is for support of existing documents only.

* The facilities of this element are better handled using the CSS multicolumn
properties discussed in Chapter 6.

<pav> (Navigation)
This HTML5 element represents a group of links to other locations either inside or outside
of a document.

HTML5 Standard Syntax

<nav
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="1itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

text and elements particularly links

</navs

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,

Chapter 3: HTML and XHTML Element Reference 327

onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example

<nav>

About
Services
Contact
Home

</nav>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Notes

* Links are not restricted to occur solely within <nav> tags. The intent of this element
is that it collects navigation together often as a unit; commonly this would be primary
or secondary site navigation or possibly page-related links.

¢ While this element is not yet supported, it is easily simulated by using a custom tag
or using a <div> tag with a special class.

<nobr> (No Line Breaks)

This proprietary element renders enclosed text without line breaks. Break points for where
text may wrap can be inserted using the wbr element or related workarounds.

Common Syntax

<nobr
class="class name(s)"
id="unique alphanumeric identifier"
style="style information"
title="advisory text"s>

</nobr>

Attributes Defined by Internet Explorer

contenteditable=" false | true | inherit " (5.5)
dir="1ltr | rtl" (5.5)

disabled="false | true" (5.5)

unselectable="on | off" (5.5)

Events Defined by Internet Explorer

onbeforeactivate, onbeforecopy, onbeforecut, onbeforeedit, onbeforepaste,
oncopy, oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover,
ondragstart, ondrop, onfocusin, onfocusout, onhelp, onlosecapture,
onmouseenter, onmouseleave, onmousewheel, onpaste, onpropertychange,
onreadystatechange, onscroll, onselectstart

328

Part I: Core Markup

Examples
<nobr>This really long text ... will not be broken.</nobr>
<nobr>With this element it is often important to hint where a line may

be broken using <wbr>.<wbr> This element acts as a soft return.</
nobr>

Compatibility

No standards support ‘ Firefox 1+, Internet Explorer 4+, Netscape 1.1+, Opera 4+

Notes
¢ While many browsers support this attribute, it is not part of any W3C standard.

* See the “<wbr> (Word Break)” section later in the chapter for a discussion of how to
implement soft-break functionality without the proprietary wbr element.

<noembed> (No Embedded Media Support)

This Netscape-introduced element is used to indicate alternative content to be displayed on
browsers that cannot support an embedded media object. It should occur in conjunction
with the embed element.

Proprietary Syntax (Initially Defined by Netscape)
<noembed

class="class name"

id="unique id"

style="CSS rules"

title="advisory text">

Alternative content for browsers that do not support embed

</noembed>

Element-Specific Attributes

Netscape does not specifically define attributes for this element; however, testing and
documentation suggests that class, id, style, and title might be supported for this
element in many browsers.

Example

<embed src="trailer.mov" height="300" width="300">
<noembed>

<p>This browser is not configured to display video</p>
</noembed>
</embed>

Compatibility

No standards support Netscape 2, 3, 4-4.7

Chapter 3: HTML and XHTML Element Reference 329

Note

e Even if other browsers do not support the tag and render the contents of a
<noembed> tag, it works in the manner it was designed, given how browsers handle
unknown elements.

<noframes> (No Frame Support Content)
This element is used to indicate alternative content to be displayed on browsers that do not
support frames.

Standard Syntax

<noframes
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

Alternative content for browsers that do not support frames

</noframess>

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Event Defined by Internet Explorer

onreadystatechange

Example

<frameset rows="100,*">
<frame name="nav" src="controls.html">
<frame name="body" src="content.html">
<noframes>
<p>Sorry, this browser does not support frames.</p>
</noframes>
</frameset>

Compatibility

HTML 4, 4.01 (transitional and frameset) | Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional and frameset) Netscape 2+, Opera 4+, Safari 1+

Notes
¢ This element should be used within the scope of the frameset element.

¢ This element has no inclusion under HTML5 because standard frames are not
included in that specification.

330 Partl: Core Markup

¢ The benefit of events and sophisticated attributes, such as style, is unclear for
browsers that would use content within <noframes>, given that older browsers
that don’t support frames probably would not support these features.

<noscript> (No Script Support Content)

This element is used to enclose content that should be rendered on browsers that do not
support scripting or that have scripting turned off.

Syntax

<noscript
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"s>

Alternative content for non-script-supporting browsers

</noscripts>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference 331

Event Defined by Internet Explorer

onreadystatechange

Examples
<script type="type/javascript">

<!--
window.location="http://www.pint.com";
//-->
</script>
<noscript>
<p>JavaScript is not supported. Follow this
link instead.</p>
</noscript>

<!-- HTML5 refresh trick -->

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Web Application</title>

<!-- require script on -->

<noscript>

<meta http-equiv="Refresh" content="0;URL=/errors/noscript.html">
</noscript>

<!-- more head content follows -->

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1 Netscape 2+, Opera 4+, Safari 1+
Note

¢ Besides using the noscript element, it may be wise to employ a comment mask
around any script code that is embedded rather than linked. Oddly, under HTML 4
<noscript> is not allowed in the head even though <script> is. Under HTMLS5 it
is allowed, though with a limited set of content within it and is not defined when
XML syntax is used.

<object> (Embedded Object)

This element specifies an arbitrary object to be included in an HTML document. Initially,
this element was used to insert ActiveX controls, but according to the specification, an object
can be any media object, document, applet, interactive control, or even image.

Standard Syntax

<object
align="bottom | left | middle | right | top" (transitional only)
archive="URL"
border="percentage | pixels" (transitional only)

332 Partl: Core Markup

class="class name(s)"

classid="id"

codebase="URL"

codetype="MIME Type"

data="URL of data"

declare="declare"

dir="1ltr | rtl"

height="percentage | pixels"

hspace="percentage | pixels" (transitional only)
id="unique alphanumeric identifier"
lang="language code"

name="unique alphanumeric name"
standby="standby text string"

style="style information"

tabindex="number"

title="advisory text™"

type="MIME Type"

usemap="URL"

vspace="percentage | pixels" (transitional only)
width="percentage | pixels"s>

param elements and alternative rendering
</object>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

Attributes Defined by Internet Explorer

accesskey="character" (4)

align="absbottom | absmiddle | baseline | texttop" (4)
code="URL" (4)

datafld="column name" (4)

datasrc="id for bound data" (4)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Chapter 3: HTML and XHTML Element Reference 333

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, oncellchange,
onclick, oncontrolselect, ondataavailable, ondatasetchanged,
ondatasetcomplete, ondblclick, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onerror,
onfocus, onkeydown, onkeypress, onkeyup, onlosecapture, onmove, onmoveend,
onmovestart, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onrowenter, onrowexit, onrowsdelete, onrowsinserted,
onscroll, onselectstart

Element-Specific Attributes

align This attribute aligns the object with respect to the surrounding text. The default is
left. The HTML specification defines bottom, middle, right, and top, as well. Browsers
might provide an even richer set of alignment values. The behavior of alignment for objects
is similar to images. Under the strict HTML and XHTML specifications, the object element
does not support this attribute.

archive This attribute contains a URL for the location of an archive file. An archive file
typically is used to contain multiple object files to improve the efficiency of access.

border This attribute specifies the width of the object’s borders, in pixels or as a percentage.

classid This attribute contains a URL for an object’s implementation. The URL syntax
depends upon the object’s type. With ActiveX controls, the value of this attribute does not
appear to be a URL but something of the form CLSID: object-id; for example, CLSID:
99B42120-6EC7-11CF-A6C7-00AA00A47DD2.

code Under the old Microsoft implementation, this attribute contains the URL referencing
a Java applet class file. The way to access a Java applet under the HTML/XHTML
specification is to use <object classid="java: classname.class">. The pseudo-URL
java: is used to indicate a Java applet. Microsoft Internet Explorer 4 and beyond support
this style, so code should not be used.

codebase This attribute contains a URL to use as a relative base to access the object
specified by the classid attribute.

codetype This attribute specifies an object’s MIME type. Do not confuse this attribute with
type, which specifies the MIME type of the data the object may use, as defined by the data
attribute.

334

Part I: Core Markup

data This attribute contains a URL for data required by an object.

declare This attribute declares an object without instantiating it. This is useful when the
object will be a parameter to another object. In traditional HTML, this attribute takes no
value; under XHTML, set it equal to declare.

name Under the older forms of HTML, this attribute defines the name of the control so
that scripting can access it. The id attribute should be used if possible.

standby This attribute contains a text message to be displayed while the object is loading.

type This attribute specifies the MIME type for the object’s data. This is different from
codetype, which is the MIME type of the object and not of the data it uses.

usemap This attribute contains the URL of the image map to be used with the object.
Typically, the URL will be a fragment identifier referencing a map element somewhere else
within the file. The presence of this attribute indicates that the type of object being included
is an image.

vspace This attribute indicates the vertical space, in pixels or as a percentage, between the
object and surrounding text.

Examples

<!-- Using XHTML syntax with trailing slashes here -->
<object id="IeLabell" width="325" height="65"
classid="CLSID:99B42120-6EC7-11CF-A6C7-00AA00A47DD2">
<param name="_ ExtentX" value="6879" />
<param name ="_ExtentY" value="1376" />
<param name="Caption" value="Hello World" />
<param name="Alignment" value="4" />
<param name="Mode" value="1" />
<param name="ForeColor" value="#FF0000" />
<param name="FontName" value="Arial" />
<param name="FontSize" value="36" />
Hello World for non-ActiveX users!
</object>

<!-- Standard HTML style -->
<object classid="java:Blink.class"
standby="Here it comes"
height="100" width="300">
<param name="1lbl"
value="Java is fun, exciting, and new.">
<param name="speed" value="2">
This will display in non-Java-aware or -enabled
browsers.
</object>

<!-- pulls in remote content here -->

<object data="pullinthisfile.html">
Data not included!

</object>

Chapter 3: HTML and XHTML Element Reference 335

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1, Basic Netscape 4+, Opera 4+, Safari 1+
Notes

¢ Under the strict HTML and XHTML specifications, the object element loses most
of its presentation attributes, including align, border, height, hspace, vspace,
and width. These attributes are replaced by style sheet rules.

e The HTML 4.01 specification reserves the datafld, dataformatas, and datasrc
attributes for future use. However, these attributes were dropped in XHTML,
though they are well supported by Internet Explorer 4 and beyond.

¢ Alternative content should be defined within an <object> tag after any enclosed
<param> tags.

¢ The object element is still mainly used to include multimedia binaries in pages.
Although the specification defines that it can load in HTML files, insert a variety of
other objects, and create image maps, not every browser supports this, and few
developers are aware of these features. In theory, this very versatile tag should take
over duties from the venerable tag in future specifications, though given the
media-specific element trends of HTML5, this seems unlikely to happen.

(Ordered List)

This element is used to define an ordered or numbered list of items. The numbering style

come
indiv

s in many forms, including letters, Roman numerals, and regular numerals. The
idual items within the list are specified by 11 elements included with the o1 element.

Standard Syntax

<ol

1i

class="class name(s)"

compact="compact" (transitional only)

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

start="number" (transitional versions and HTML5)
style="style information"

title="advisory text"

type="a | A | 1 | T | 1"> (transitional only) >

elements only

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

336

Part I: Core Markup

draggable="true | false | auto"

hidden="hidden™"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

reversed="reversed"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, Onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value under traditional HTML but under
XHTML should be set to compact.

Chapter 3: HTML and XHTML Element Reference 337

reversed This HTML5 Boolean attribute specifies that the counting of the list should go in
reverse order. CSS counters provide much more functionality than this attribute, but it is
useful in the absence of this more complicated syntax.

start This attribute specifies the start value for numbering the individual list items.
Although the ordering type of list elements might be Roman numerals, such as XXXI, or
letters, the value of start is always represented as a number. To start numbering elements
from the letter C, use <ol type="A" start="3">.

type This attribute indicates the numbering type: a indicates lowercase letters, A indicates
uppercase letters, i indicates lowercase Roman numerals, I indicates uppercase Roman
numerals, and 1 indicates numbers. Type set in an ol element is used for the entire list
unless a type attribute is used within an enclosed 1i element.

Examples

<ol type="1">
First step

Watch nested lists
Often closed wrong
</1i>
Second step</1li>
<1li>Third step

<ol compact="compact" type="I" start="30">
Clause 30
Clause 31
Clause 32</1li>

<!-- HTML5 changes -->

<ol start="3" reversed>
...</1li>
...</1li>

...</1li>
Blastoff!

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ Under the strict HTML and XHTML specifications, the ol element no longer
supports the compact, start, and type attributes. These aspects of lists can be
controlled with style sheet rules.

338

Part I: Core Markup

e HTMLS5 returns the start attribute to ordered lists and adds the reversed
attribute.

¢ Under the XHTML 1.0 specification, the compact attribute must have a quoted
attribute value: <ol compact="compact">.

e The HTML 3.2 specification supports only the compact, start, and type attributes.

e The HTML 2.0 specification supports only the compact attribute.

<optgroup> (Option Grouping)

This element specifies a grouping of items in a selection list defined by option elements so
that the menu choices can be presented in a hierarchical menu or similar alternative fashion

to improve access through nonvisual browsers.

Standard Syntax

<optgroup
class="class name(s)"
dir="1ltr | rtl"
disabled="disabled"
id="unique alphanumeric identifier"
label="text description"
lang="language code"
style="style information"
title="advisory text">

option elements
</optgroup>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5S Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

Chapter 3: HTML and XHTML Element Reference 339

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes
disabled Occurrence of this attribute indicates that the enclosed set of options is disabled.

label This attribute contains a short label to use when the selection list is rendered as items
in a hierarchy.

Example

<label>
Where would you like to go for your vacation?
<select>
<option id="choicel" value="Hong Kong">Hong Kong</option>
<optgroup label="South Pacific">
<option id="choice2" label="Australia" value="Australia">
Australia</option>
<option id="choice3" label="Fiji" value="Fiji">
Wakaya (Fiji Islands)</option>
<option id="choice4" value="New Zealand">
New Zealand</option>
</optgroup>
<option id="choice5" value="home" selected>Your backyard</option>
</select>
</label>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 6+,
XHTML 1.0, 1.1 Netscape 6+, Opera 7+, Safari 1+
Notes

* This element should occur only within the context of a select element.

¢ The visual presentation of this element may vary slightly between browsers.

<option> (Option in Selection List)

This element specifies an item in a selection list defined by a select element.

Standard Syntax

<option
class="class name(s)"
dir="1ltr | rtl"
disabled="disabled"
id="unique alphanumeric identifier"

340

Part I: Core Markup

label="text description"
lang="language code"
selected="selected"
style="style information"
title="advisory text"
value="option value">

</option>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attribute Defined by Internet Explorer

language="javascript | jscript | vbs | vbscript" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, ONmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onlayoutcomplete, onlosecapture, onpropertychange, onreadystatechange,
onselectstart, ontimeerror

Element-Specific Attributes

disabled Presence of this attribute indicates that the particular item is not selectable.
Traditional HTML did not require a value for this attribute, but it should be set to disabled
under XHTML.

Chapter 3: HTML and XHTML Element Reference

label This attribute contains a short label that might be more appealing to use when the
selection list is rendered as a hierarchy due to the presence of an optgroup element.

selected This attribute indicates that the associated item is the default selection. If this
attribute is not included, the first item in the selection list is the default. If the select
element enclosing the option elements has the multiple attribute, the selected attribute
might occur in multiple entries. Otherwise, it should occur in only one entry. Under
XHTML, the value of the selected attribute must be set to selected.

value This attribute indicates the value to be included with the form result when the item
is selected.

Example

<p>Which is your favorite dog?:

<select>
<option value="Scottie">Angus"</option>
<option value="Mini Schnauzer" selected>Tucker</option>
<option value="Australian Shepard">Sabrina</option>
<option value="German Shepard">Lucky</option>

</select>

</p>

Compatibility

HTML 2, 3.2. 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

e Under HTML specifications, the closing tag for <option> is optional. However, for
XHTML compatibility, the closing tag </option> is required.

¢ This element should occur only within the context of a select element.

¢ The HTML 2.0 and 3.2 specifications define only the selected and value attributes
for this element.

<output> (Form Output)

This HTMLS5 block element defines a region that will be used to display output from some
calculation or form control.

HTML5 Standard Syntax

<output
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
for="1list of spaced id values of related elements"

|

342

Part I: Core Markup

form="id of related form element"
hidden="hidden"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
lang="language code"

name="element name for submission purposes"
spellcheck="true | false"

style="style information"

tabindex="number"

title="advisory text"s>

</output>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes
for This attribute should be set to the id value(s) of the elements that target this element.

form This attribute should be set to the id value of the form element that the output
element is associated with; otherwise, the nearest parent form is used.

name This attribute should set the name to be used in a name/value pair if the element is
used in form submission.

Examples

" method="get" id="testform">

<p><input type="date" id="year"
oninput="year.value = valueAsDate.getYear()">

<p>HTML5 released in the year

<output for="year"> </output></p>

</form>

<output form="testform" for="year"> </output>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed with a custom element.

Chapter 3: HTML and XHTML Element Reference

Note

¢ This element supports two useful event handlers that are globally defined by
HTMLS5, onformchange and onforminput, if the element will be used to monitor
forms it is associated with rather than forms targeting it.

<p> (Paragraph)

This block element is used to define a paragraph of text.

Standard Syntax

<p
align="center | justify | left | right" (transitional only)
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text">

</p>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)
hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

343

344

Part I: Core Markup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

align This attribute specifies the alignment of text within a paragraph. The default value is
left. The transitional specification of HTML 4.01 also defines center, justify, and
right. However, under the strict HTML and XHTML specifications, text alignment can be
handled through the CSS property text-align.

Examples
<p align="right">A right-aligned paragraph</p>

<p id="paral" class="defaultParagraph"

title="Introduction Paragraph">
This is the introductory paragraph for a very long paper about nothing.
</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

* Because p is a block element, browsers typically insert a blank line, but this
rendering should not be assumed, given the rise of style sheets, which can use the
display property to override this action.

e Under the strict (X)HTML and HTMLS5 specifications, the align attribute is not
supported. Alignment of text can instead be accomplished using CSS properties like
text-align.

Chapter 3: HTML and XHTML Element Reference 345

¢ The closing tag for the <p> tag is optional under the HTML specification; however,
under the XHTML 1.0 specification, the closing tag </p> is required for XHTML
compatibility.

* As alogical element, empty paragraphs are ignored by browsers, so do not try to
use multiple <p> tags in a row, like <p><p><p><p>, to add blank lines to a Web

page.
¢ Often, nonbreaking space entities are used to hold open empty paragraphs, like so:
<p> </p>. The value of this markup is questionable.

¢ The HTML 3.2 specification supports only the align attribute with values of
center, left, and right.

¢ The HTML 2.0 specification supports no attributes for the p element.

<param> (Object Parameter)

This element specifies a parameter to be passed to an embedded object that is specified with
the object or applet element. This element should occur only within the scope of one of
these elements.

Standard Syntax

<param
id="unique alphanumeric identifier"
name="parameter name"
type="mime Type"
value="parameter value"
valuetype="data | object | ref"s>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

datafld="column name" (4)
dataformatas="html | text" (4)
datasrc="data source id" (4)

346

Part I: Core Markup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

name This attribute contains the parameter’s name. The name of the parameter depends
on the particular object being inserted into the page, and it is assumed that the object knows
how to handle the passed data. Do not confuse the name attribute for this element with the
name attribute used for form elements. In the latter case, the name attribute does not have a
similar meaning to id, but rather specifies the name of the data to be passed to an enclosing
<object> tag.

type When the valuetype attribute is set to ref, the type attribute can be used to indicate
the type of information to be retrieved. Legal values for this attribute are in the form of
MIME types, such as text /html.

value This attribute contains the parameter’s value. The actual content of this attribute
depends on the object and the particular parameter being passed in, as determined by the
name attribute.

valuetype This attribute specifies the type of the value attribute being passed in. Possible
values for this attribute include data, object, and ref. A value of data specifies that the
information passed in through the value parameter should be treated just as data. A value
of ref indicates that the information being passed in is a URL that indicates where the data
to be used is located. The information is not retrieved, but the URL is passed to the object,
which then can retrieve the information if necessary. The last value, object, indicates that
the value being passed in is the name of an object as set by its id attribute. In practice, the
data attribute is used by default.

Examples

<applet code="plot.class">

<param name="min" value="5">

<param name="max" value="30">

<param name="ticks" value=".5">

<param name="line-style" value="dotted">
</applet>

<!-- XHTML style here -->

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="swflash.cab#version=2,0,0,0"
height="100" width="100">

Chapter 3: HTML and XHTML Element Reference Ry

<param id="paraml" name="Movie" value="SplashLogo.swf" />
<param id="param2" name="Play" value="True" />
</object>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1, Basic Netscape 4+, Opera 5+, Safari 1+
Notes

e The HTML 3.2 specification supports only the name and value attributes for this
element.

* Asan empty element under XHTML or when using XML-style syntax for HTMLS5, a
trailing slash is required for this element: <param />.

<plaintext> (Plain Text)

This deprecated element from the HTML 2.0 specification renders the enclosed text as plain
text and forces the browser to ignore any enclosed HTML. Typically, information affected by
the <plaintext> tag is rendered in monospaced font. This element is no longer part of the
HTML standard and should never be used.

Syntax (HTML 2; Deprecated Under HTML 4)

<plaintexts>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

class="class name(s)" (4)
contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

dir="1ltr | rtl" (4)

hidefocus="true | false" (5.5)

id="unique alphanumeric identifier" (4)
lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
style="style information" (4)
tabindex="number" (5.5)

title="advisory text" (4)

Example
<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head><title>Plaintext Example</title></head>
<body>

The rest of this file is in plain text.

<plaintext>

Even though this is supposed to be bold, the tags still show.
There is no way to turn plain text off once it is on. </plaintext>
does nothing to help. Even </body> and </html> will show up.

348

Part I: Core Markup

Compatibility

‘ HTML 2 ‘ Firefox 1+, Internet Explorer 2+, Netscape 1+, Opera 4+, Safari 1+

Notes

* No closing tag for this element is necessary because the browser will ignore all tags
after the starting tag.

¢ This element should not be used. Plain text information can be indicated by a file
type, and information can be inserted in a preformatted fashion using the pre
element.

¢ All modern browsers at the time of this edition continue to support this tag despite
documentation to the contrary.

<pre> (Preformatted Text)

This element is used to indicate that the enclosed text is preformatted, meaning that spaces,
returns, tabs, and other formatting characters are preserved. Browsers will, however,
acknowledge most HTML elements that are found within a <pre> tag. Preformatted text
generally will be rendered by the browsers in a monospaced font.

Standard Syntax

<pre
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric value"
lang="language code"
style="style information"
title="advisory text™"
width="number" (transitional only)
xml : space="preserve">

</pre>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Chapter 3: HTML and XHTML Element Reference 349

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

wrap="soft | hard | off" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

width This attribute should be set to the width of the preformatted region. The value of the
attribute should be the number of characters to display. In practice, this attribute is not
supported and is dropped under the strict HTML 4.01 specification.

wrap In some versions of Microsoft browsers, this attribute controls word wrap behavior
within a <pre> tag. The default value of o££ for the attribute forces the element not to wrap
text, so the viewer must manually enter line breaks. A value of hard or soft causes word
wrap and sets different types of line breaks in the wrapped text. Given the nature of the pre
element, the value of this attribute is limited.

xml:space This attribute is included from XHTML 1.0 and is used to set whether spaces need
to be preserved within the element or the default whitespace handling should be employed.

350

Part I: Core Markup

It is curious that an element defined to override traditional whitespace rules would allow
such an attribute, and in practice this attribute is not used by developers.

Example

<pre>
Within PREFORMATTED text ALL formatting IS PRESERVED
NO m a t t e r how wild it is. Remember that some

HTML markup is allowed within the <PRE> element.
</pre>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ The HTML 4.01 and XHTML 1.0 transitional specifications state that the applet,
basefont, big, font, img, object, small, sub, and sup elements should not be used
within a <pre> tag. The strict HTML and XHTML specifications state that only the
<big>, , <object>, <small>, <sub>, and <sup> tags should not be used within
the <pre> tag. The other excluded elements are missing, as they are deprecated from
the strict specification. Although these elements should not be used, it appears that the
more popular browsers will render them anyway.

¢ The strict HTML and XHTML specifications drop support for the width attribute,
which was not well supported anyway.

¢ The HTML 2.0 and 3.2 specifications support only the width attribute for the pre
element.

<progress> (Progress Indicator)

This HTMLS5 element defines completion progress for a task. It is often thought to represent
the percentage from 0 to 100% of some task, such as loading to be completed, though the
range and the unit value are arbitrary.

HTML5 Standard Syntax

<progress
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

Chapter 3: HTML and XHTML Element Reference

itemtype="microdata type in URL format"
lang="language code"

max="positive floating point number"
spellcheck="true | false"

style="style information"
tabindex="number"

title="advisory text"

value="0 or floating point number"s

</progress>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

max The value of this attribute is a positive floating-point number indicating the
maximum value for progress; often it will be 100.

value The value of this attribute is the amount of task complete. This may be a percentage,
but there is no requirement that it be such a measurement.

Example

<p>Progress: <progress id="progl" max="100.00" value="33.1">33.1</
progress>%</p>

<!-- JavaScript would be used to change the value of this element

dynamically -->

Compatibility

HTML5 | Not currently supported by any browsers, but could be simulated in modern browsers
via a custom element and JavaScript.

Notes
¢ There are no units implied for this element.

* This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it. But, without JavaScript changing
value and presentation dynamically, a custom element would have little value.

<g> (Quote)

This element indicates that the enclosed text is a short inline quotation.

351

352

Part I: Core Markup

Standard Syntax

<q
cite="URL of source"
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</q>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attribute

cite The value of this attribute is a URL that designates a source document or message for
the information quoted. This attribute is intended to point to information explaining the
context or the reference for the quote.

Example

<p>If you want to make a great Web site don't follow this

advice: <q style="color: red;" cite="http://democompany.com/ugly.html">
A few green balls and a rainbow bar will give you an exciting Web page
Christmas Tree!</g></p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1, Basic Netscape 6+, Opera 4+, Safari 1+
Notes

¢ This element is intended for short quotations that don’t require paragraphs or larger
structures, as compared to text that would be contained within <blockquotes.

¢ Some browsers, like Internet Explorer 6, may not make any sort of style change for
quotations, but it is possible to apply a style rule to provide some indication of a
change in style.

* Most browsers, including IE 8+, Opera, Safari, and Mozilla-based browsers like
Firefox, will wrap inline quotations in quote marks. These can be controlled by style
rules. Mentions in the HTMLS5 specification suggest that user agents will not put in
quotation marks and this will be left solely to the developer. This seems a highly
dubious possibility.

<rp> (Ruby Parentheses)

This element is used to define parentheses around a ruby text entry defined by an rt
element. This element helps browsers that do not support ruby annotations to keep the
reading hint clear from the text it is associated with.

353

354 Partl: Core Markup

HTML5 Standard Syntax

<rp
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
title="advisory text™"
tabindex="number">

</rp>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Example
<!-- The Kanji for Japanese language with the hiragana above it or
within parens for non ruby aware browsers -->

<p>

<ruby>

HAGE <rp>(</rp><rt>IZiEA J</rt><rp>) </rp>

</ruby>

</p>

Compatibility

HTML5 XHTML 1.1 Internet Explorer 5+

Note

<rt>

Chapter 3: HTML and XHTML Element Reference 355

¢ Other browsers do not position the ruby text element (rt) but instead move the rt
content above the text it is associated with; thus, these browsers are not listed as
supporting rt. The purpose of the rp element is to show the grouping parentheses
in such nonsupporting browsers, so in some sense all browsers support this
element.

Ruby No Ruby
A BEE (Z1ZAC)
oidy SEe H#E3E (nthongo)

(Ruby Text)

This initially Microsoft-specific proprietary element, now part of HTML5 and XHTML 1.1,
is used within a <ruby> tag to create ruby text, or annotations or pronunciation guides for
words and phrases. The base text should be enclosed in a <ruby> tag; the annotation,
enclosed in an <rt> tag, will appear as smaller text above the base text. Ruby parentheses
should be set with <rp> tags to provide fallback for browsers without ruby support.

HTML5 Standard Syntax

<rt

accesskey="spaced list of accelerator key(s)"
class="class name(s)"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

dir="1ltr | rtl"

draggable="true | false | auto"
hidden="hidden™"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
lang="language code"

spellcheck="true | false"

style="style information"

title="advisory text"

tabindex="number">

</rt>

Syntax (Defined by Microsoft)

<rt

accesskey="key" (5)
class="class name(s)" (5)

356

Part I: Core Markup

contenteditable="false | true | inherit" (5.5)
dir="1ltr | rtl" (5)

disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

id="unique alphanumeric identifier" (5)
lang="language code" (5)

language="javascript | jscript | vbs | vbscript" (5)
name="string" (5)

style="style information" (5)
tabindex="number" (5)

title="advisory text" (5)

unselectable="on | off"> (5)

ruby text
</rt>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforepaste,
oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onpaste, onpropertychange, onreadystatechange,
onscroll, onselectstart

Example
<!-- The Kanji for Japanese language with the romanji above it or
within parens for non ruby aware browsers -->
<ruby>
HAGE <rp>(</rp><rt>nihongo</rt><rp>)</rp>
</ruby>
</p>
nibemge

E

1=
Note

¢ The rt element must be used within the ruby element.

Chapter 3: HTML and XHTML Element Reference

Compatibility

‘ HTML5 XHTML 1.1 ‘ Internet Explorer 5+

<ruby> (Ruby Annotation)

This initially Microsoft-specific element, now part of HTMLS5, is used with the rt element to
create annotations or pronunciation guides for words and phrases. The base text should be
enclosed in a <ruby> tag; the annotation, enclosed in an <rt> tag, will appear as smaller
text above the base text. The rp element can be used to wrap content to delimit ruby text
for browsers that do not support this formatting.

HTML5 Standard Syntax

<ruby
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text"s>
base text
<rt>ruby text</rt>
</ruby>

Syntax Defined by Microsoft

<ruby
accesskey="key" (5)
class="class name(s)" (5)
contenteditable="false | true | inherit" (5.5)

dir="1ltr | rtl" (5)

disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

id="unique alphanumeric identifier" (5)
lang="language code" (5)

language="javascript | jscript | vbs | vbscript" (5)
name="string" (5)

style="style information" (5)

357

358 Partl: Core Markup

tabindex="number" (5)
title="advisory text"> (5)

base text
<rt>ruby text</rt>

</ruby>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforepaste,
oncut, ondrag, ondragend, ondragenter, ondragleave, ondragover, ondragstart,
ondrop, onfocusin, onfocusout, onhelp, onlosecapture, onmouseenter,
onmouseleave, onmousewheel, onpaste, onpropertychange, onreadystatechange,
onscroll, onselectstart

Element-Specific Attribute
name This attribute sets a name for the ruby base text.

Examples

<p>

<ruby>This is the base text within the ruby element

<rt>This is the ruby text, which should appear in a smaller font
above the base text in Internet Explorer 5.0 or higher.</rt>

</ruby>

</p>

<p>
<ruby>

HARE <rp>(</rp><rt>lZI1FA J</rt><rp>)</rp>
</ruby>
</p>

<p>
<ruby>

Japanese<rp> (</rp><rt>Don't speak it</rt><rp>)</rp>
</ruby>
</p>

Chapter 3:

& RubyTest

HTML and XHTML Element Reference

Q0 [e

Fle Edit Miew Favontes

¢ Favorites g Ruby Test

Thi ¥ o riby fort which ol sppeari

EE A

HA&

mikomnge
g
Ao

Dovattrpuadis

Tapanese

Compatibility

This 15 the base text within the ruby element

54 oxbigher.

HTML5 XHTML 1.1

Internet Explorer 5+

Notes

¢ This element was introduced in Internet Explorer 5.0 and is now part of the HTML5

specification.

¢ The ruby element must be used in conjunction with the rt element; otherwise, it

will have no meaning.

<s> (Strikethrough)

This element renders the enclosed text with a line drawn through it and is a synonym for

the strike element.

Standard Syntax (Transitional Only)

<s
class="class name(s)"
dir="1ltr | rtl"

id="unique alphanumeric identifier"

lang="language code"
style="style information"
title="advisory text">

</s>

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript"

tabindex="number" (5.5)
unselectable="off | on" (5.5)

359

360

Part I: Core Markup

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

Examples

<p>This line contains a <s>misstake</s>!</p>

<p>strike <s>1</s>...<strike>2</strike>...<s>3</s>...You're out!</
strong></p>

Compatibility

HTML 4, 4.01 transitional Firefox 1+, Internet Explorer 2+,
XHTML 1.0 transitional Netscape 3+, Opera 4+, Safari 1+
Notes

¢ This element should act the same as the strike element.

¢ This HTML 3 element eventually was adopted by Netscape and Microsoft and later
was incorporated into the HTML 4.01 transitional specification.

¢ This element has been deprecated by the W3C. The strict HTML 4.01 specification
does not include the s element or the strike element, and the HTMLS5 specification
indicates it is obsolete as well.

¢ [tis possible to indicate strikethrough text using a style sheet with the
text-decoration property set to 1ine-through.

<samp> (Sample Text)

This logical inline element is used to indicate sample text. Enclosed text generally is
rendered in a monospaced font.

Standard Syntax

<samp
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</samp>

Chapter 3: HTML and XHTML Element Reference 361

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
data-X="user-defined data"

contenteditable="true | false | inherit"
contextmenu="id of menu"
draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforedeactivate, onbeforeeditfocus, onblur, onclick,
oncontrolselect, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfocus, onkeydown,
onkeypress, onkeyup, onhelp, onmousedown, onmouseenter, onmouseleave,
onmousemove, onmouseout, onmouseover, onmouseup, onmove, onmoveend,
onmovestart, onreadystatechange, onresizeend, onresizestart, onselectstart,
ontimeerror

Example

<p>Use the following salutation in all e-mail messages to the boss:
<samp>Please excuse the interruption, oh exalted manager.</samp></p>

362

Part I: Core Markup

Compatibility

HTML 2, 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1+, Opera 4+, Safari 1+

Notes

e As alogical element, samp is useful to bind style rules to.

e The HTML 2.0 and 3.2 specifications support no attributes for this element.

<script> (Scripting)

This element encloses statements in a scripting language for client-side processing. Scripting
statements can either be included inline or loaded from an external file and might be
commented out to avoid execution by browsers that are not scripting-aware.

Standard Syntax

<script

charset="character set"

defer="defer"

id="unique alphanumeric identifier"
language="scripting language name"
src="URL of script code"

type="mime type"
xml : space="preserve">

</scripts>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"

async="async"
class="class name(sg)"

data-X="user-defined data"
contenteditable="true | false | inherit"
contextmenu="id of menu"

dir="1ltr | rtl"

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"

itemscope="1itemscope"

itemtype="microdata type in URL format"

lang="language code"

spellcheck="true | false"
style="style information"

tabindex="number"
title="advisory text"

Attributes Defined by Internet Explorer

event="event name" (3)
for="element id" (3)
lang="language to use"

Chapter 3: HTML and XHTML Element Reference

Events Defined by HTML5

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onload, onpropertychange, onreadystatechange
Element-Specific Attributes

async Presence of this HTMLS5 attribute indicates that the browser might perform the fetch
or execution of the script to be asynchronously from other activity in the page. The meaning
of this attribute versus the defer attribute with remote scripts in particular is quite unclear.

charset This attribute defines the character encoding of the script. The value is a space- and/
or comma-delimited list of character sets as defined in RFC 2045.

defer Presence of this attribute indicates that the browser might defer execution of the
script enclosed by the <seripts> tag. Support for this attribute is inconsistent, though it is
now part of the HTML5 specification.

event This Microsoft-specific attribute is used to define a particular event that the script
should react to. It must be used in conjunction with the for attribute. Event names are the
same as event handler attributes; for example, onclick, ondblelick, and so on.

for The for attribute is used in Microsoft browsers to define the name or id of the element
to which an event defined by the event attribute is related. For example, <script
event="onclick" for="buttonl" language="vbscript"> definesa VBScript that will
execute when a click event is issued for an element named buttoni.

language This common though nonstandard attribute specifies the scripting language being
used. The Netscape implementation supports JavaScript. The Microsoft implementation
supports JScript (a JavaScript clone) as well as VBScript, which can be indicated by either
vbs or vbscript. Other values that include the version of the language used, such as
JavaScriptl.1 and JavaScriptl.2, also might be possible and are useful to exclude
browsers from executing script code that is not supported. The HTML5 specification
indicates that while this attribute may be widely supported it should not be used by page
authors.

src This attribute specifies the URL of a file containing scripting code. Typically, files
containing JavaScript code will have a . j s extension, and a server will attach the appropriate
MIME type; if not, the type attribute might be used to explicitly set the content type of the
external script file. The 1anguage attribute also might be helpful in determining this.

363

364

Part I: Core Markup

type This attribute should be set to the MIME type corresponding to the scripting language
used. For JavaScript, for example, this would be text/javascript. In practice, the
language attribute is more commonly used, but the type attribute is standard. When not
specified, the default value is text/javascript. There is indication that it should actually
be application/javascript, but given that browser support for this value is not
consistent it is dangerous to use. Also, it is possible to indicate version information in the
type attribute for certain browsers; for example, to indicate JavaScript 1.8 you would use
<script type="application/javascript;version=1.8">.

xml:space This attribute is included from XHTML 1.0 and is used to set whether spaces
need to be preserved within the script element or the default whitespace handling should
be employed. In practice, this attribute is not often used by developers.

Examples

<script type="text/javascript">
alert ("Hello World !!!");
</script>

<!-- code in external file -->
<script language="JavaScriptl.2" src="superlib.js"></script>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1 Netscape 2+, Opera 4+, Safari 1+
Notes

¢ Itis common practice to comment out statements enclosed by a <script> tag.
Without commenting, script code can be displayed as page content by user agents
that do not support scripting. The particular comment style might be dependent on
the language being used. For example, in JavaScript, use

<script type="text/javascript">
<!l--
JavaScript code here

/] -->

</script>
In VBScript, use

<script type="text/vbscript">
<!l--

VBScript code here

-->

</script>

XML escapes using CDATA sections are also possible; however, in all cases it is better
to avoid intermixing script code in a markup document and instead to link to it.
¢ The HTML 3.2 specification defined a placeholder script element.

® The event and for attributes are defined under transitional versions of HTML 4.01
but only as reserved values. Later specifications appear to have dropped potential
support for them, though they continue to be supported by Internet Explorer.

Chapter 3: HTML and XHTML Element Reference 365

* Most browsers assume JavaScript when parsing a script element without a set type
or language attribute.

¢ Refer to the <noscripts> tag reference in this reference to see how content might be
identified for browsers that are not scripting-aware.

e HTMLS5 currently specifies all common attributes for a <script> tag, such as
accesskey, spellcheck, and so on, but most of these make little if no sense in the
context of this element.

<section> (Section)
This HTMLS element defines a generic section of a document and it may contain a heading
and footer of its own.

HTML5 Standard Syntax

<section
accesskey="spaced list of accelerator key(s)"
cite="URL of original content source"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="1itemscope"
itemtype="microdata type in URL format"
lang="language code"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

</section>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

366

Part I: Core Markup

Element-Specific Attribute
Examples

<section id="sectionl">
<p>First paragraph.</p>
<p>Second paragraph</p>
</section>

<!-- section example #2 -->

<section id="section2">

<header><hl>Section Heading</hl></header>

<p>First paragraph.</p>

<p>Second paragraph.</p>

<footer><p>© 2010 Fake Examples, Inc.</p></header>
</section>

<!-- nested section example #3 -->
<section>

<hl>Section Heading</hl>
<section>

<h2>Next Section Heading</h2>
</section>
</section>

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but can be addressed with a custom element.

Notes
¢ The section element is included in HTML5’s document outlining process.

¢ This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it and even apply a CSS display property for it.

<select> (Selection List)

This element defines a selection list within a form. Depending on the form of the selection
list, the control allows the user to select one or more list options.

Standard Syntax

<select
class="class name(s)"
dir="1ltr | rtl"
disabled="disabled"
id="unique alphanumeric identifier"
lang="language code"
multiple="multiple"
name="unique alphanumeric name"
size="number"

Chapter 3: HTML and XHTML Element Reference 367

style="style information"
tabindex="number"
title="advisory text"s>

option and optgroup elements only

</select>

Attributes Introduced by HTML5

accesskey="character"
autofocus="autofocus"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
draggable="true | false | auto"

form="id of related form"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
spellcheck="true | false"

Attributes Defined by Internet Explorer

accesskey="character" (4)

align="absbottom | absmiddle | baseline | bottom |
left | middle | right | texttop | top" (4)

datafld="column name" (4)

datasrc="data source id" (4)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onblur, onchange, onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

368

Part I: Core Markup

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onbeforeupdate, onblur, onchange,

onclick, oncontextmenu, oncontrolselect, oncut, ondblclick, ondeactivate,
ondragenter, ondragleave, ondragover, ondrop, onerrorupdate, onfocus,
onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup, onlosecapture,
onmousedown, onmouseenter, onmouseleave, onmouseover, onmouseout, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselectstart

Element-Specific Attributes

align This Microsoft-specific attribute controls the alignment of the image with respect to
the content on the page. The default value is 1eft, but other values such as absbottom,
absmiddle, baseline, bottom middle, right, texttop, and top also might be
supported. The meaning of these values should be similar to those used for inserted objects,
such as images.

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)
is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTMLS5.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor can they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also can gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value under
traditional HTML, but under XHTML variants it should be set to disabled.

form This HTMLS attribute should be set to a string that corresponds to the id of the form
element that the button is associated with. This allows form elements in one form to trigger
actions in others.

multiple This attribute allows the selection of multiple items in the selection list. The
default is single-item selection. Under XHTML, this attribute must have its value set to
multiple.

name This attribute allows a form control to be assigned a name for defining the name/
value pair used in form submission. Traditionally, these values were used by scripting
languages as well, though the standards encourage the use of the id attribute. For
compatibility purposes, both might have to be used.

size This attribute sets the number of visible items in the selection list. When the multiple
attribute is not present, only one entry should show; however, when multiple is present,
this attribute is useful for setting the size of the scrolling list box.

tabindex This attribute takes a numeric value indicating the position of the form control
in the tabbing index for the form. Tabbing proceeds from the lowest positive tabindex
value to the highest. Negative values for tabindex will leave the form control out of the

Chapter 3: HTML and XHTML Element Reference 369

tabbing order. When tabbing is not explicitly set, the browser might tab through items in
the order they are encountered. Form controls that are disabled due to the presence of the
disabled attribute will not be part of the tabbing index.

Examples

<form action="#" method="get">
<p><label>Choose your favorite colors:</label>
<select name="colors" multiple="multiple" size="2">
<option>Red</option>
<option>Blue</option>
<option>Green</option>
<option>Yellow</option>
</select>
</p>

<label>Taco Choices:</label>
<select name="tacomenu" id="tacomenu">
<option value="SuperChicken">Chicken</option>
<option value="Baja">Fish</option>
<option value="TastyPig">Carnitas</option>
</select>
</p>
</form>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

e The HTML 4.01 specification reserves the attributes datafld and datasrc for
future use, but these are removed under XHTML.

¢ Internet Explorer’s variant of the disabled attribute allows values of true and
false, as well as the standard disabled value.

¢ Under traditional HTML, the end tag </option> is often omitted.

¢ Be careful of the name and id attribute problem that may occur, particularly when
setting the multiple attribute. It may be better to have separate values.

e The HTML 2.0 and 3.2 specifications define only multiple, name, and size
attributes.

<small> (Small Text)

This inline element renders the enclosed text one font size smaller than a document’s base
font size, unless it is already set to the smallest size.

Standard Syntax

<small
class="class name(s)"
dir="1ltr | rtl"

310

Part I: Core Markup

id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text"s>

</small>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
data-X="user-defined data"

contenteditable="true | false | inherit"
contextmenu="id of menu"
draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off"

Standard Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,

Chapter 3: HTML and XHTML Element Reference 3

onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some <small>small text</small>.</p>

<p>This element can be applied <small><small><small>multiple
times</small></small></small>to make things even smaller.</p>

Compatibility

HTML 3.2, 4,4.01,5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1 Netscape 2+, Opera 4+, Safari 1+
Notes

¢ This element is equivalent to using font-size: smaller.

* A <small> tag can be used multiple times to decrease the size of text to a greater
degree. Using more than six <small> tags together doesn’t make sense because
browsers currently only support relative font sizes from 1 to 7 or, in CSS, from
xx-small to xx-large.

¢ With style sheets, it would seem this element should be inappropriate, similar to
other obsolete or deprecated elements, including big, which is marked obsolete
under HTML5. However, currently it is included in the specification and is defined
to indicate side comments or small print text, as in legal information.

<source> (Source)

This empty HTMLS5 element is used to specify multiple media resources for media elements
like audio and video.

HTML5 Standard Syntax

<source
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
dir="1ltr | rtl"
draggable="true | false | auto"
height="pixels"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

312

Part I: Core Markup

itemtype="microdata type in URL format"
lang="language code"

media="media type"

spellcheck="true | false"

src="URL of media resource"
style="style information"
tabindex="number"

title="advisory text"

type="MIME type of linked media"s

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Element-Specific Attributes

media This attribute defines the intended media type of the linked media source, to
provide a hint to a user agent as to whether the media referenced is appropriate or how it
might be used. It is similar to the idea of a media attribute in a style sheet specifying print,
screen, projection, or other common values.

src This attribute is set to the URL of the media source to link to.

type This attribute is set to the MIME type of the linked media file specified by the src
attribute. Often it also includes a codecs value to indicate how a media resource is
encoded. However, the use of codecs, as alluded to in Chapter 2, is a bit of a mess under
HTMLS5 so page authors are urged to test carefully.

Examples

<!-- Multiple sources to try -->

<audio>

<source src="angus.ogg">

<source src="angus.mp4" type="audio/mp4">
</audio>

<!-- XHTML style -->

<video>

<source src="angus.mp4" type="video/mp4; codecs='avcl.58A01lE, mp4a.40.2'" />
</video>

Compatibility

HTML5 Firefox 3.5+, Safari 3.1+

Chapter 3: HTML and XHTML Element Reference 373

Notes

* As an empty element, source should be written under XHTML5 with a self-
identifying close tag like so <source />.

* Browsers should use multiple source elements in a fall-through fashion finding the
first appropriate version for playback. Page authors should consider putting in an
appropriate number of media variations to account for browser differences.

<spacer> (Extra Space)
This older, Netscape-proprietary element specifies an invisible region, which is useful for
page layout.

Proprietary Syntax (Netscape 3 and 4 Only)

<spacer
align="absmiddle | absbottom | baseline | bottom
left | middle | right | texttop | top"
height="pixels™"
size="pixels"
type="block | horizontal | vertical"
width="pixels">

Element-Specific Attributes

align This attribute specifies the alignment of the spacer with respect to surrounding text.
It is used only with spacers with type="block". The default value for the align attribute
is bottom. The meanings of the align values are similar to those of the align values used
with the img element.

height This attribute specifies the height of the invisible region, in pixels. It is used only
with spacers with type="block".

size Used with type="block" and type="horizontal™" spacers, this attribute sets the
spacer’s width, in pixels. Used with a type="vertical" spacer, this attribute is used to set
the spacer’s height.

type This attribute indicates the type of invisible region. A horizontal spacer adds
horizontal space between words and objects. A vertical spacer adds space between lines.
Ablock spacer defines a general-purpose positioning rectangle, like an invisible image that
text can flow around.

width This attribute is used only with the type="block" spacer and is used to set the
width of the region, in pixels.

Example

A line of text with two <spacer type="horizontal" size="20">words
separated by 20 pixels. Here is a line of text.

<spacer type="vertical" size="50">

Here is another line of text with a large space between the two

314

Part I: Core Markup

lines.<spacer align="left" type="block" height="100" width="100"> This
is a bunch of text that flows around an invisible block region. You
could have easily performed this layout with a table.

Compatibility

No standards support Netscape 3, 4, 4.5-4.8

Note

¢ This element should not be used, because even newer versions of the Netscape
browser (6 and 7) have dropped support for this element. It is presented for
historical reasons and will be dropped from the reference in the next edition of this
book.

 (Text Span)

This inline element is used to group content so scripting or style rules can be applied to the
enclosed content. As it has no preset or rendering meaning, this is the most useful inline
element for associating style and script with content.

Syntax

<span
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text"s>

</spans>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)
contenteditable="false | true | inherit" (5.5)

Chapter 3: HTML and XHTML Element Reference

datafld="column name" (4)
dataformatas="html | text" (4)
datasrc="data source id" (4)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

Standard Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some very
strange text.</p>

<p><span id="toggletext"
onclick="this.style.color="'red';"
ondblclick="this.style.color="'black';">

Click and Double Click Me

</p>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1, Basic Netscape 4+, Opera 4+, Safari 1+

305

316

Part I: Core Markup

Notes

e The HTML 4.01 specification reserved the datafld, dataformatas, and datasrc
attributes for future use. They were later dropped from XHTML. Internet Explorer 4
and later continue to support these attributes for data binding.

* As a generic element, span, like div, is useful for binding style to arbitrary
content. However, span is an inline element and does not cause a return by
default as div does.

<strike> (Strikeout Text)

This inline element is used to indicate strikethrough text, namely text with a line drawn
through it. The s element provides shorthand notation for this element. Both are deprecated
under strict markup variants and obsolete under HTMLS5.

Syntax (Transitional Only)

<strike
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text"s>

</strike>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Chapter 3: HTML and XHTML Element Reference

Examples

<p>This line contains a spelling <strike>misstake</strike> mistake</p>.

<p>Price: S$<strike style="color: red;">5.00</strike>3.00</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,
XHTML 1.0 (transitional) Netscape 3+, Opera 4+, Safari 1+
Notes

¢ This tag should act the same as the <s> tag.

¢ This element has been deprecated by the W3C. The strict HTML and XHTML
specifications include neither the <strike> tag nor the <s> tag because it is possible
to indicate strikethrough text using the style sheet property text-decoration:
line-through. The HTMLS5 specification also indicates this element as obsolete.

 (Strong Emphasis)

This inline element indicates strongly emphasized text. It usually is rendered in a bold
typeface, but its rendering is not guaranteed because it is a logical element.

Syntax

<strong
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="1itemscope"

itemtype="microdata type in URL format"
tabindex="number"

spellcheck="true | false"

3n

318

Part I: Core Markup

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>It is really important to pay attention.</p>

<p>This is an <strong style="font-size: 4em; color: red;">emergency!
</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

¢ This element generally renders as bold text. As a logical element, however, strong
is useful to bind style rules to.

Chapter 3: HTML and XHTML Element Reference

* As compared to b, this element does have some logical meaning. For example, voice
browsers may speak -enclosed text in a different voice than is used for
text that is enclosed by , though practically such distinction may not hold given
the need of voice browsers to act reasonably with pages not coded for them.

<style> (Style Information)

This element is used to surround style sheet rules for a document. This element should be
found only in the head element, though it appears HTML5 may loosen this restriction. Style
rules directly found within a document’s body generally should be set with the core style
attribute for the particular element of interest.

Syntax

<style
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
media="all | print | screen | others"
title="advisory text™"
type="MIME Type"
xml: space="preserve">

CSS rules
</style>

Common Attributes
disabled="disabled" (DOM Level 1)

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
class="class name(s)"

contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
scoped="scoped"

spellcheck="true | false"

style="CSS rules"

tabindex="number"

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

319

380

Part I: Core Markup

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Introduced by Internet Explorer

onerror, onreadystatechange

Element-Specific Attributes

disabled This initially Microsoft-defined attribute is used to disable a style sheet. The
presence of the attribute is all that is required to disable the style sheet. In conjunction with
scripting, this attribute could be used to turn on and off various style sheets in a document.
While not documented in later versions of Internet Explorer, this attribute is very much
supported and used, since it is part of the DOM standard. Internet Explorer may also
support values of true and false.

media This attribute specifies the destination medium for the style information. The value
of the attribute can be a single media descriptor, such as screen, or a comma-separated list.
Possible values for this attribute include all, aural, braille, print, projection,
screen, and tv. Other values also might be defined, depending on the browser. Internet
Explorer supports all, print, and screen as values for this attribute.

scoped This HTML5 Boolean attribute is used to indicate if the style sheet should be scoped;
in other words, apply only the tree it is enclosed within. For example, here we see a <style>
tag found within a <noscripts> tag.

<noscript>
<style type="text/css" scoped>
hl {color: red;}
</style>
<hl>Error: scripting required</hl>
</noscript>

With the scoped attribute present, the styling rules should be restricted solely to the
elements within the <noscript> tag; thus, other h1 elements would not be colored red.
Given the lack of implementations and some specification unclarity, page authors should
approach this attribute cautiously.

type This attribute is used to define the type of style sheet. The value of the attribute
should be the MIME type of the style sheet language used. The most common current value
for this attribute is text/css, which indicates a CSS format.

xml:space This attribute is included from XHTML 1.0 and is used to specify whether
spaces need to be preserved within the script element or the default whitespace handling
should be employed.

Chapter 3: HTML and XHTML Element Reference 381

Example

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Simple Style Element Example</title>
<style type="text/css">

body {background: black; color: white;

font: 12px Helvetica;}

hl {color: red; font: 1l4px Impact;}
</style>
</head>
<body>
<hl>A 14-pixel red Impact heading on a black
background</hl>
<p>Regular body text, which is 12 pixel white Helvetica.</p>
</body>
</html>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1 Netscape 4+, Opera 4+, Safari 1+
Notes

¢ Style information also can be specified in external style sheets as defined by a
<link> tag.

¢ Style information can also be associated with a particular element using the style
attribute.

¢ Style rules are often comment masked within a <style> tag to avoid interpretation
by nonconforming browsers.

<style type="text/css">
<!--

body {background-color: red;}
-->

</style>

* Internet Explorer’s conditional comments also are useful to address browser
concerns. See the section “<!-- .[].. --> (Conditional Comment)” toward the start of
the reference.

* The meaning of some HTMLS5 global attributes like accesskey, contextmenu,
spellcheck, and style in particular are quite unclear for this element and may be
erroneous.

<sub> (Subscript)

This element renders its content as subscripted text.

382

Part I: Core Markup

Syntax

<sub
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</sub>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some _{subscripted} text.</p>

<p>The secret value of the formula is X_{<small>2</small>}.</p>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 3+,
XHTML 1.0, 1.1, Basic Netscape 2+, Opera 4+, Safari 1+
Notes

¢ The HTML 3.2 specification supports no attribute for the sub element.
¢ The CSS property vertical-align can be used to simulate this element.

* Most browsers may slightly shift text lines below a <sub> tag.

<sup> (Superscript)

This element renders its content as superscripted text.

Syntax

<sup
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</sup>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"

383

384

Part I: Core Markup

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, Onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some ^{superscripted} text.</p>

<p><vars>x</var>² = 4 when <var>x</var> = 2</p>
Compatibility
HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,

XHTML 1.0, 1.1, Basic Netscape 2+, Opera 4+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 385

Notes
e The HTML 3.2 specification supports no attribute for the sup element.
¢ This element can be simulated using the CSS property vertical-align.

* Most browsers may slightly shift text lines above a <sup> tag.

<table> (Table)

This element is used to define a table. Tables should be used to organize data. However,
they are often used to provide structure for laying out pages in the absence of CSS.

Standard Syntax

<table
align="center | left | right" (transitional only)
bgcolor="color name | #RRGGBB" (transitional only)
border="pixels"
cellpadding="pixels"
cellspacing="pixels"
class="class name(s)"
dir="1ltr | rtl"
frame="above | below | border | box | hsides |
lhs | rhs | void | vsides"
id="unique alphanumeric identifier"
lang="language code"
rules="all | cols | groups | none | rows"
style="style information"
summary="summary information"
title="advisory text"
width="percentage | pixels">

caption, col, colgroup, thead, tbody, tfoot, and tr elements only

</table>

Nonstandard Attributes Commonly Supported

background="URL of image" file
bordercolor="color name | #RRGGBB"
cols="number of columns"
height="percentage | pixels"
hspace="pixels"

vspace="pixelg"

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"

386

Part I: Core Markup

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

bordercolordark="color name | #RRGGBB" (4)
bordercolorlight="color name | #RRGGBB" (4)
datapagesize="number of records to display" (4)
datasrc="data source id" (4)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)
unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag, ondragend,
ondragenter, ondragleave, ondragover, ondragstart, ondrop, onfilterchange,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmousewheel, onmove, onmoveend, onmovestart,
onpaste, onpropertychange, onreadystatechange, onresize, onresizeend,
onresizestart, onscroll, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute specifies the alignment of the table with respect to surrounding text.
The HTML 4.01 specification defines center, left, and right. Some browsers also might
support alignment values, such as absmiddle, that are common to block objects.

Chapter 3: HTML and XHTML Element Reference 387

background This nonstandard attribute, which is supported by nearly every browser,
specifies the URL of a background image for the table. The image is tiled if it is smaller than
the table dimensions. Note that some early versions of Netscape display the background
image in each table cell rather than behind the complete table.

bgeolor This attribute specifies a background color for a table. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000.

border This attribute specifies, in pixels, the width of a table’s borders. A value of 0 makes
a borderless table, which is useful for graphics layout.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00. The color
applications may be slightly different in browsers, since Netscape colors only the outer
border of the table. CSS should be used for border styling instead of this attribute.

bordercolordark This Internet Explorer-specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for cell borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.
CSS should be used for border styling instead of this attribute.

bordercolorlight This Internet Explorer-specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for cell borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.
CSS should be used for border styling instead of this attribute.

cellpadding This attribute sets the width, in pixels, between the edge of a cell and its
content.

cellspacing This attribute sets the width, in pixels, between individual cells.

cols This attribute specifies the number of columns in the table and is used to help quickly
calculate the size of the table. This attribute was part of the preliminary specification of
HTML 4.0, but was later dropped. A few browsers, notably Netscape and Internet Explorer,
support it.

datapagesize The value of this Microsoft-specific attribute is the number of records that can
be displayed in the table when data binding is used.

frame This attribute specifies which edges of a table are to display a border frame. A value
of above indicates only the top edge; below indicates only the bottom edge; and border
and box indicate all edges, which is the default when the border attribute is a positive
integer. A value of hsides indicates only the top and bottom edges should be displayed;
1hs indicates the left edge should be displayed; rhs indicates the right edge should be

388

Part I: Core Markup

displayed; vsides indicates the left and right edges both should be displayed; and void
indicates no border should be displayed.

height This attribute specifies the height of the table, in pixels or as a percentage of the
browser window. Be careful, because some browser versions may not support percentage
values for height or may have variations in this calculation when they do support it.

hspace This Netscape-specific attribute indicates the horizontal space, in pixels, between
the table and surrounding content, similar to the same attribute on <imgs>.

rules This attribute controls the display of dividing rules within a table. A value of a1l
specifies dividing rules for rows and columns. A value of cols specifies dividing rules for
columns only. A value of groups specifies horizontal dividing rules between groups of table
cells defined by the thead, tbody, tfoot, or colgroup elements. A value of rows specifies
dividing rules for rows only. A value of none indicates no dividing rules and is the default.

summary This attribute is used to provide a text summary of the table’s purpose and
structure. This element is used for accessibility, and its presence is important for nonvisual
user agents.

vspace This Netscape attribute indicates the vertical space, in pixels, between the table and
surrounding content, similar to the same attribute on .

width This attribute specifies the width of the table, either in pixels or as a percentage of
the enclosing window.

Examples

<table bgcolor="white" border="2">
<tr>
<td>Cell 1</td>
<td>Cell 2</td>
<td>Cell 3</td>
<td>Cell 4</td>
</tr>

<tr>
<td>Cell 5</td>
<td>Cell 6</td>

</tr>

</table>

<table rules="all" bgcolor="yellow">
<caption>Widgets by Area</caption>
<thead align="center" bgcolor="green" valign="middle">
<tr>
<td>Region</td>
<th>Regular Widget</th>
<th>Super Widget</th>
</tr>
</thead>

Chapter 3: HTML and XHTML Element Reference 389

<tfoot align="right" bgcolor="red" valign="bottom">
<tr>
<td>This is part of the footer.</td>
<td>This is also part of the footer.</td>
</tr>
</tfoot>

<tbody>

<tr>
<th>West Coast</th>
<td>10</td>
<td>12</td>

</tr>

<tr>
<th>East Coast</th>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1.1+, Opera 4+, Safari 1+
Notes

¢ In addition to displaying tabular data, tables have been used to support graphics
layout and design. CSS is currently the suggested method for layout, but current
inspection of sites suggests that in 2009 table-based layout is alive and well.

* The HTML 4 specification reserved the attributes datasrc, datafld,
dataformatas, and datapagesize for future versions. However, XHTML dropped
these attributes. They are supported in Internet Explorer 4 and later. Early drafts of
the HTMLS5 specification introduced a datagrid, which seem to revisit these ideas,
but it was later dropped with indications it may return in future versions of HTML.

* At the time of this writing, most browsers have problems with char and charoff
attributes in all table-related tags.

e The HTML 3.2 specification defines only the align, border, cellpadding,
cellspacing, and width attributes for the table element.

¢ The cols attribute might provide an undesirable result under some versions of
Netscape, which assumes the size of each column in the table is exactly the same.

<tbody> (Table Body)

This element is used to group the rows within the body of a table as defined by <tr> tags.

390 Partl: Core Markup

Standard Syntax

<tbody align="center | char | justify | left | right"
char="character"
charoff="offset"
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"
valign="baseline | bottom | middle | top">

tr elements only
</tbody>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

bgcolor="color name | #RRGGBB" (4)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,

Chapter 3: HTML and XHTML Element Reference

onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <tbody> tag.
Common values are center, justify, left, and right. The specification also defines a
value of char. When align is set to char, the attribute char must be present and set to the
character to which cells should be aligned. A common use of this approach would be to set
cells to align on a decimal point. Unfortunately, browsers do not support the char value for
align well.

bgeolor This attribute specifies a background color for the cells within a <tbody> tag. Its
value can be either a named color, such as red, or a color specified in the hexadecimal
#RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset as a positive or negative integer to align characters
as related to the char value. A value of 2 would align characters in a cell two characters to
the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells within a
<tbody> tag. The HTML specification defines baseline, bottom, middle, and top.
Internet Explorer also supports center, which should act like midd1le.

Example
<table rule="all">
<thead>
<tr>
<td>Region</td>

<th>Regular Widget</th>
<th>Super Widget</th>
</tr>
</thead>
<tbody>
<tr>
<th>West Coast</th>

391

392 Partl: Core Markup

<td>10</td>
<td>12</td>
</tr>
<tr>
<th>East Coast</th>
<td>1l</td>
<td>20</td>
</tr>
</tbody>
</table>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 5+, Safari 1+
Notes

¢ This element is found only in a <table> tag and contains one or more table rows, as
indicated by <tr> tags.

¢ For XHTML compatibility, the closing </tbody> tag must be used with this
element; however, it is optional under traditional HTML as well as HTMLS5.

<td> (Table Data)

This element specifies a data cell in a table. The element should occur within a table row as
defined by the tr element.

Standard Syntax

<td
abbr="abbreviation"
align="center | justify | left | right"
axis="group name"
bgcolor="color name | #RRGGBB" (transitional only)
char="character"
charoff="offset"
class="class name"
colspan="number of columns to span"
dir="1ltr | rtl"
headers="space-separated list of associated header
cells' id values"
height="pixels or percentage" (transitional only)
id="unique alphanumeric identifier"
lang="language code"
nowrap="nowrap" (transitional only)
rowspan="number or rows to span"
scope="col | colgroup | row | rowgroup"
style="style information"
title="advisory text™"
valign="baseline | bottom | middle | top"
width="pixels or percentage"> (transitional only)

</td>

Chapter 3: HTML and XHTML Element Reference

Nonstandard Attributes Commonly Supported

background="URL of image file"
bordercolor="color name | #RRGGBB"

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

background="URL of image file" (4)
bordercolor="color name | #RRGGBB" (4)
bordercolordark="color name | #RRGGBB" (4)
bordercolorlight="color name | #RRGGBB" (4)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,

393

394

Part I: Core Markup

onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

abbr The value of this attribute is an abbreviated name for a header cell. This might be
useful when attempting to display large tables on small screens. User agents rarely
implement this feature.

align This attribute is used to align the contents of the cells. Supported values are center,
justify, left, and right.

axis This attribute is used to provide a name for a group of related headers.

background This nonstandard attribute, which is supported by major browsers, specifies
the URL of a background image for the table cell. The image is tiled if it is smaller than the
cell’s dimensions.

bgeolor This attribute specifies a background color for a table cell. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000. Note that some older versions of Netscape Navigator may not render an empty
cell with a colored background unless some content serving as placeholder, such as a
nonbreaking space or transparent pixel-gif, is inserted in the cell.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table cell. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

bordercolordark This Internet Explorer—specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.

bordercolorlight This Internet Explorer—specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, to align
characters as related to the char value. A value of 2, for example, would align characters in
a cell two characters to the right of the character defined by the char attribute.

Chapter 3: HTML and XHTML Element Reference 395

colspan This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful for creating tables with cells of different widths.

headers This attribute takes a space-separated list of id values that correspond to the
header cells related to this cell.

height This attribute indicates the height of the cell, in pixels or as a percentage. Some
browsers may have rendering problems with percentage values.

nowrap This attribute keeps the content within a table cell from automatically wrapping.
The nowrap attribute takes no value under HTML but should be set to the value nowrap
under XHTML.

rowspan This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

scope This attribute specifies the table cells for which the current cell provides header
information. A value of col indicates that the cell is a header for the rest of the column
below it. A value of colgroup indicates that the cell is a header for its current column
group. A value of row indicates that the cell contains header information for the rest of the
row it is in. A value of rowgroup indicates that the cell is a header for its row group. This
attribute might be used in place of the header attribute and is useful for rendering
assistance by nonvisual browsers. This attribute was added very late to the HTML 4
specification, and support for this attribute is still minimal.

valign This attribute is used to set the vertical alignment for the table cell. The specification
defines baseline, bottom, middle, and top. Internet Explorer also supports center,
which should be the same as middle.

width This attribute specifies the width of a cell, in pixels or as a percentage value.

Examples

<table>

<tr>

<td align="left" valign="top" width="100">

Put me in the top left corner.

</td>

<td align="right" bgcolor="red" valign="bottom" width="100">
Put me in the bottom right corner.

</td>

</tr>

</table>

<table border="1" width="80%">
<tr>
<td colspan="3">
A pretty wide cell
</td>
<tr>
<td>Item 2</td>

396

Part I: Core Markup

<td>Item 3</td>
<td>Item 4</td>
</tr>
</table>

Compatibility

HTML 3.2, 4, 4.01, 5
XHTML 1.0, 1.1, Basic

Firefox 1+, Internet Explorer 2+,
Netscape 1.1+, Opera 4+, Safari 1+

Notes

¢ Under the XHTML 1.0 specification, the closing </td> tag ceases to be optional.
e The HTML 3.2 specification defines only align, colspan, height, nowrap,

rowspan, valign, and width attributes.

¢ This element should always be within the tr element.

<textarea> (Multiline Text Input)

This element specifies a multiline text input field contained within a form.

Standard Syntax

<textarea

accesskey="character"

class="class name"

cols="number"

dir="1ltr | rtl"

disabled="disabled"

id="unique alphanumeric identifier"
lang="language code"

name="unique alphanumeric identifier"
readonly="readonly"

rows="number"

style="style information"
tabindex="number"

title="advisory text"s>

</textareas

Attributes Introduced by HTML5

autofocus="autofocus"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
draggable="true | false | auto"
form="related form id"

hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"

itemscope="itemscope"
itemtype="microdata type in URL format"

Chapter 3: HTML and XHTML Element Reference

maxlength="positive number"
pattern="validation pattern"
placeholder="placeholder text"
required="required"
spellcheck="true | false"
tabindex="number"

wrap="hard | soft"

Attributes Defined by Internet Explorer

contenteditable="false | true | inherit" (5.5)
datafld="column name" (4)

datasrc="data source id" (4)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
wrap="off | physical | virtual" (4)

Attribute Defined by Netscape 4
wrap="hard | off | soft"

HTML 4 Event Attributes

onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, Onmouseup,
onselect

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onafterupdate, onbeforeactivate, onbeforecopy, onbeforecut,
onbeforedeactivate, onbeforeeditfocus, onbeforepaste, onclick, onchange,
oncontextmenu, oncontrolselect, oncopy, oncut, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onerrorupdate, onfilterchange, onfocus, onfocusin, onfocusout, onhelp,
onkeydown, onkeypress, onkeyup, onlosecapture, onmousedown, onmouseleave,
onmouseenter, onmousemove, onmouseout, onmouseover, onmouseup,
onmousewheel, onmove, onmoveend, onmovestart, onpaste, onpropertychange,
onreadystatechange, onresize, onresizeend, onresizestart, onselect,
onselectstart, ontimeerror

Element-Specific Attributes

autofocus This HTML5 Boolean attribute is used to indicate that the user agent should
immediately focus this form item once its containing window object (usually the document)

391

398

Part I: Core Markup

is made active. It only takes an attribute value of autofocus when using the XML-style
syntax for HTMLS5.

cols This attribute sets the width, in characters, of the text area. The typical default value
for the size of a <textarea> tag when this attribute is not set is 20 characters.

disabled This attribute is used to turn off a form control. Elements will not be submitted,
nor can they receive any focus from the keyboard or mouse. Disabled form controls will not
be part of the tabbing order. The browser also can gray out the form that is disabled, to
indicate to the user that the form control is inactive. This attribute requires no value.

form This HTMLS5 attribute should be set to a string that corresponds to the id of the form
element that an interactive control such as a button is associated with. This allows form
elements in one form to trigger actions in others.

name This attribute allows a form control to be assigned a name for submitting to the
server the appropriate name/value pair. Previously it was also used so that the field could
be referenced by a scripting language. However, it is more appropriate to use the id
attribute. For compatibility purposes, both attributes might be used and set to the same
value.

pattern This HTMLS attribute specifies a regular expression against which the field should
be validated. The title attribute should be provided when this attribute is used, to give an
indication of what is an acceptable pattern and what isn’t.

placeholder This HTMLS5 attribute specifies a short bit of text that is used to help the user
figure out what type of information to fill in for a form control. Likely, the text will be
placed in the field and cleared upon focus.

readonly This attribute prevents the form control’s value from being changed. Form
controls with this attribute set might receive focus from the user but should not permit the
user to modify the value. Because it receives focus, a readonly form control will be part of
the form’s tabbing order. Finally, the control’s value will be sent on form submission. Under
XHTML, the value of the readonly attribute should be set to readonly.

required The presence of this HTML5 Boolean attribute indicates that the user is required
to provide a value for the <textarea> tag for the form to be submitted. User agents that
understand this should set the CSS pseudo-class : invalid when the field goes into error.

rows This attribute sets the number of rows in the text area. The value of the attribute
should be a positive integer.

wrap In some versions of Netscape (later Firefox) and Microsoft browsers, this attribute
controls word-wrap behavior. A value of of £ for the attribute forces the <textareas> tag
not to wrap text, so the viewer must manually enter line breaks. A value of hard causes
word wrap and includes line breaks in text submitted to the server. A value of soft causes
word wrap but removes line breaks from text submitted to the server. Internet Explorer
supports a value of physical, which is equivalent to Netscape’s hard value, and a value of
virtual, which is equivalent to Netscape’s soft value. If the wrap attribute is not

Chapter 3: HTML and XHTML Element Reference 399

included, text will still wrap under Internet Explorer, but older versions of Netscape,
notably Netscape 4, will scroll horizontally in the text box. Given this problem, even though
it is nonstandard, it may be a good idea to include the wrap attribute. HTMLS5 reintroduces
this attribute with the values of hard and soft. Use of this attribute assumes that the cols
attribute has been set properly.

Examples

<textarea id="CommentBox" cols="40" rows="8">
Default text in field
</textarea>

<textarea name="comment" id="comment" rows="10" cols="40" wrap="hard"

align="center">
</textarea>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ Any text between the <textarea> and </textarea> tags is rendered as the default
entry for the form control. Content within a textarea element is not interpreted, so
white space is preserved and tags themselves are ignored.

¢ The textarea element traditionally lacks a maxlength attribute, which causes a
more obvious security risk. The HTMLS5 specification does introduce a maxlength
value to restrict the number of characters that may be entered. However, it should
be noted that all client-side form validations should be assumed as user
conveniences only and not security, as they may be easily removed by malicious
users.

¢ A <textarea> tag cannot be a descendent of an a (anchor) or button element.

¢ The HTML 4.01 specification reserves the datafld and datasrc attributes for
future use with the textarea element.

e The HTML 2.0 and 3.2 specifications define only the cols, name, and rows
attributes for this element.

<tfoot> (Table Footer)

This element is used to group the rows within the footer of a table so that common
alignment and style defaults can easily be set for numerous cells. This element might be
particularly useful when setting a common footer for tables that are dynamically generated.

Standard Syntax

<tfoot
align="center | char | justify | left | right"
char="character"
charoff="offset"

400

Part I: Core Markup

class="class name(s)"

dir="1ltr | rtl"

id="unique alphanumeric identifier"
lang="language code"

style="style information"

title="advisory text"

valign="baseline | bottom | middle | top">

tr elements only

</tfoot>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

hidefocus="true | false" (5.5)
language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)
valign="center" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference 401

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <t foot> tag.
Common values are center, justify, left, and right. The HTML and XHTML
specifications also define a value of char. When align is set to char, the attribute char
must be present and set to the character to which cells should be aligned. A common use of
this approach would be to set cells to align on a decimal point.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, as a positive or negative integer, for aligning
characters as related to the char value. A value of 2, for example, would align characters in
a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells within a
<tfoot> tag. The specification defines baseline, bottom, middle, and top. Internet
Explorer also supports center, which should be the same as middle.

Example

<table border="1" width="80%">
<tfoot align="center" class="tablefooter"
valign="bottom">
<td>This is part of the footer.</td>
<td>This is also part of the footer.</td>
</tfoot>
<tbody class="tablebody">
<tr>
<td>The contents of the table!</td>
</tr>
</tbody>
</table>

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 5+, Safari 1+

402

Part

Notes

I: Core Markup

This element is contained only by the table element and contains table rows as
delimited by tr elements.

While it would seem that this element should come after a <tbody> tag, it actually
should come before it, within a <table> tag.

¢ Under the XHTML 1.0 specification, the closing </tfoot> tag ceases to be optional.

<th>

(Table Header)

This element specifies a header cell in a table. The element should occur within a table row
as defined by a tr element. The main visual difference between this element and td is that
browsers might render table headers slightly differently, usually bolding and centering
contents. However, the element is logical in nature and should be used to structure tables.

Standard Syntax

<th

</th>

abbr="abbreviation"

align="center | justify | left | right"

axis="group name"

bgcolor="color name | #RRGGBB" (transitional only)

char="character"

charoff="offset"

class="class name"

colspan="number"

dir="1ltr | rtl"

headers="space-separated list of associated header
cells' id values"

height="pixels" (transitional only)

id="unique alphanumeric identifier"

lang="language code"

nowrap="nowrap" (transitional only)
rowspan="number"
scope="col | colgroup | row | rowgroup"

style="style information"

title="advisory text"

valign="baseline | bottom | middle | top"
width="pixels"> (transitional only)

Nonstandard Attributes Commonly Supported

background="URL of image file"
bordercolor="color name | #RRGGBB"

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

Chapter 3: HTML and XHTML Element Reference 403

draggable="true | false | auto"

hidden="hidden"

itemid="microdata id in URL format"

itemprop="microdata value"

itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"

spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

bordercolordark="color name | #RRGGBB" (4)
bordercolorlight="color name | #RRGGBB" (4)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

valign="center" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

abbr The value of this attribute is an abbreviated name for a header cell. This might be
useful when attempting to display large tables on small screens. User agents rarely support
this attribute.

404

Part I: Core Markup

align This attribute is used to align the contents of the cells within a <th> tag. Common
values are center, justify, left, and right.

axis This attribute is used to provide a name for a group of related headers.

background This nonstandard attribute, which is supported by most browsers, specifies the
URL of a background image for the table cell. The image is tiled if it is smaller than the cell’s
dimensions.

bgeolor This attribute specifies a background color for a table cell. Its value can be either a
named color, such as red, or a color specified in the hexadecimal #RRGGBB format, such as
#FF0000.

bordercolor This attribute, supported by Internet Explorer and Netscape, is used to set the
border color for a table cell. The attribute should be used only with a positive value for the
border attribute. The value of the attribute can be either a named color, such as green, or a
color specified in the hexadecimal #RRGGBB format, such as #00FF00.

bordercolordark This Internet Explorer—specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.

bordercolorlight This Internet Explorer-specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

colspan This attribute takes a numeric value that indicates how many columns wide a cell
should be. This is useful for creating tables with cells of different widths.

headers This attribute takes a space-separated list of id values that correspond to the
header cells related to this cell.

height This attribute indicates the height of the cell, in pixels or as a percentage. Some
browsers may have rendering problems with percentage values.

nowrap This attribute keeps the content within a table cell from automatically wrapping.
The nowrap attribute takes no value under HTML but should be set to the value nowrap
under XHTML.

rowspan This attribute takes a numeric value that indicates how many rows high a table
cell should span. This attribute is useful in defining tables with cells of different heights.

Chapter 3: HTML and XHTML Element Reference

scope This attribute specifies the table cells for which the current cell provides header
information. A value of col indicates that the cell is a header for the rest of the column
below it. A value of colgroup indicates that the cell is a header for its current column
group. A value of row indicates that the cell contains header information for the rest of the
row it is in. A value of rowgroup indicates that the cell is a header for its row group. This
attribute can be used in place of the header attribute and is useful for rendering assistance
by nonvisual browsers. This attribute was added very late to the HTML 4.0 specification,
and support for this attribute is still minimal in browsers.

valign This attribute is used to set the vertical alignment for the table cell. The specification
defines baseline, bottom, middle, and top. Internet Explorer also supports center,
which should be the same as middle.

width This attribute specifies the width of a cell, in pixels or as a percentage value.

Example

<table border="1">
<tr>
<th>Names</th>
<th>Apples</th>
<th>Oranges</th>
</tr>
<tr>
<td>Rusty</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Ruby Sue</td>
<td>20</td>
<td>3</td>
</tr>
</table>

Compatibility

HTML 3.2, 4,4.01,5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1.1+, Opera 4+, Safari 1+
Notes

¢ The HTML 3.2 specification defines only align, colspan, height, nowrap,
rowspan, valign, and width attributes.

¢ This element should always be within the tr element.

¢ Under the XHTML 1.0 specification, the closing </th> tag ceases to be optional.

<thead> (Table Header)

This element is used to group the rows within the header of a table so that common alignment
and style defaults can easily be set for numerous cells. This element might be particularly
useful when setting a common head for tables that are dynamically generated.

405

406 Part1: Core Markup

Standard Syntax

<thead
align="center | char | justify | left | right"
char="character"
charoff="offset"
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"
valign="baseline | bottom | middle | top">

tr elements only

</thead>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden™"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="off | on" (5.5)

valign="center" (4)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,

Chapter 3: HTML and XHTML Element Reference

onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within a <thead> tag. Common
values are center, justify, left, and right. The specification also defines a value of
char. When align is set to char, the attribute char must be present and set to the character
to which cells should be aligned. A common use of this approach would be to set cells to
align on a decimal point.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells with a <thead>
tag. The specification defines baseline, bottom, middle, and top. Internet Explorer also
supports center, which should be the same as middle.

Example

<table border="1" width="80%">
<thead align="center" class="footer"
valign="bottom">
<td>This is the Important Table Headline</td>
</thead>

<tbody class="tablebody">
<tr>
<td>The contents of the table!</td>
</tr>
</tbody>
</table>

401

408

Part I: Core Markup

Compatibility

HTML 4, 4.01, 5 Firefox 1+, Internet Explorer 4+,
XHTML 1.0, 1.1 Netscape 6+, Opera 5+, Safari 1+
Notes

¢ This element is contained only by a <table> tag and contains table rows as
delimited by <tr> tags.

¢ Under the XHTML 1.0 specification, the closing </thead> tag ceases to be optional.

<time> (Time)
This inline HTML5 element encloses content that represents a date and/or time.

HTML5 Standard Syntax

<time
accesskey="spaced list of accelerator key(s)"
class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
data-X="user-defined data"
datetime="date-or-time"
dir="ltr | rtl"
draggable="true | false | auto"
hidden="hidden"
id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"
itemtype="microdata type in URL format"
lang="language code"
pubdate="pubdate"
spellcheck="true | false"
style="style information"
tabindex="number"
title="advisory text">

</time>

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Chapter 3: HTML and XHTML Element Reference 409

Element-Specific Attributes

datetime This attribute is used to indicate the date and time of the enclosed content. The
value of the attribute is a date in a special format as defined by ISO 8601. The basic date
format is

YYYY-MM-DDThh:mm: ssTZD
where the following is true:

YYYY=four-digit year such as 1999

MM=two-digit month (0l=January, 02=February, and so on.)
DD=two-digit day of the month (01 through 31)

hh=two-digit hour (00 to 23) (24-hour clock, not AM or PM)
mm=two-digit minute (00 through 59)

ss=two-digit second (00 through 59)

TZD=time zone designator

The time zone designator is either z, which indicates Universal Time Coordinate or
coordinated universal time format (UTC), or +hh: mm, which indicates that the time is a local
time that is hh hours and mm minutes ahead of UTC. Alternatively, the format for the time
zone designator could be - hh: mm, which indicates that the local time is behind UTC. Note
that the letter T actually appears in the string, all digits must be used, and 00 values for
minutes and seconds might be required. An example value for the datetime attribute
might be 1999-10-6T09:15:00-05:00, which corresponds to October 6, 1999, 9:15 a.m.,
U.S. Eastern Standard Time.

pubdate This Boolean attribute, when specified, indicates that the date and time given
by this element should be applied as the publication date of an enclosing article element.
If there is no enclosing article element, the publication date would apply to the entire
document. Under XHTMLS5, the value of the attribute should be pubdate for XML syntax
conformance.

Examples

<p>My son was born on <time datetime="2006-01-13">Friday the 13th</time> so
it is my new lucky day.</p>

<p>Today it is <time>2010-07-08</time> which is an interesting date.</p>

<p>When did the Moon runaway? <time>1999-09-13T09:15:00-05:00</time></p>

<!-- example shows the pubdate application to the enclosing article -->
<article id="articlel" >
<header>

<hl>HTML5 is Coming Soon!</hl>

<p><time pubdate datetime="2009-10-31T12:30-11:00"></time></p>

</header>

<p>The new HTML5 specification is in the works. While many features are
not currently implemented or even well defined yet, progress is being made.
Stay tuned to see more new HTML elements added to your Web documents in the
years to come.</p>

</article>

40

Part I: Core Markup

Compatibility

‘ HTML5 ‘ Not currently supported by any browser, but addressed via a custom element.

Notes

* This element should contain content that is in the correct format unless the
datetime attribute is used. Of course, browsers aren’t going to enforce this, but it is
important if you want correct HTML5 conformance.

¢ This element is not yet implemented in any browser. However, given that most
browsers can handle custom elements, it would be easy enough to simulate the idea
of it directly or use a tag with a custom class.

<title> (Document Title)

This element encloses the title of an HTML document. It must occur within a document’s
head element and must be present in all valid documents. There should be only a single
occurrence of this element. Meaningful titles are very important because they are used for
bookmarking a page, are occasionally used by browsers to label locally saved pages, and
are often used by search engines attempting to index the document.

Standard Syntax

<title
dir="1ltr | rtl"
lang="language code">
</title>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
class="class name(s)"

contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

dir="1ltr | rtl"

draggable="true | false | auto"
hidden="hidden"

id="unique alphanumeric identifier"
itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
lang="language code"

spellcheck="true | false"

style="style information"

tabindex="number"

title="advisory text"

Events Defined by HTML5

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

Chapter 3: HTML and XHTML Element Reference m

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onlayoutcomplete, onreadystatechange

Example
<head><title>Big Company: Products: Super Widget</title></head>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 2.1+, Safari 1+
Notes

e Often, the title is set as the first element found in the head, though it should come
after a character set indication if that is not taken care of by appropriate HTTP
headers.

* Meaningful names should provide information about the document. A poor title
would be something like “My Home Page,” whereas a better title would be “Joe
Smith Home.”

* Browsers can be extremely sensitive to the <title> tag. If the title elementis
malformed or not closed, the page might not even render in the browser.

e The HTML 2.0 and 3.2 specifications define no attributes for the title element.

e Under most browsers, core HTML 4 attribute values like id and c¢lass will work
for DOM access and make some sense for manipulation via JavaScript, but other
attributes for events or style-related features do not.

¢ The title element may contain character entities to set accents or introduce other
special characters, though you should use caution to make sure the appropriate
character set has been defined. Markup may not be included in the title element.

¢ Currently, the HTMLS5 specification defines all the common attributes for the title
element, like accesskey, class, contextmenu, and so on. Their context, however,
seems inappropriate given how browsers work. For example, while it is possible to
imagine a tabbing order or context menu for a browser title, so far such things are
unclear and suggest an over generalization of the HTMLD5 specification when it
comes to global attributes.

<tr> (Table Row)

This block element specifies a row in a table. The individual cells of the row are defined by
the th and td elements.

412 Part1: Core Markup

Syntax

<tr
align="center | justify | left | right | char"
bgcolor="color name | #RRGGBB" (transitional only)
char="character"
charoff="offset"
class="class name(s)"
dir="ltr | rtl"
id="unique alphanumeric identifier"
lang="language code"
style="style information"
title="advisory text"
valign="baseline | bottom | middle | top"s>

td or th elements only

</tr>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="1id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

bordercolor="color name | #RRGGBB" (4)
bordercolordark="color name | #RRGGBB" (4)
bordercolorlight="color name | #RRGGBB" (4)
hidefocus="true | false" (5.5)

language="javascript | javascript | vbs | vbscript" (4)
tabindex="number" (5.5)

valign="center" (4)

Standard Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,

Chapter 3: HTML and XHTML Element Reference

ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforepaste, onblur, onclick, oncontextmenu, oncontrolselect, oncopy,
oncut, ondblclick, ondeactivate, ondrag, ondragend, ondragenter,
ondragleave, ondragover, ondragstart, ondrop, onfilterchange, onfocus,
onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmousemove, onmouseenter, onmouseleave,
onmouseout, onmouseover, onmouseup onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

align This attribute is used to align the contents of the cells within the element. Common
values are center, justify, left, and right. If a value is set to char, alignment is set to
align off the character defined by the char attribute, with offset applied by charoffset.

bgeolor This attribute specifies a background color for all the cells in a row. Its value can be
either a named color, such as red, or a color specified in the hexadecimal #RRGGBB format,
such as #FF0000.

bordercolor This attribute, supported by a number of browsers, including Internet Explorer,
is used to set the border color for table cells in the row. The attribute should be used only
with a positive value for the border attribute. The value of the attribute can be either a
named color, such as green, or a color specified in the hexadecimal #RRGGBB format, such
as #00FF00. CSS should be used instead.

bordercolordark This Internet Explorer—specific attribute specifies the darker of two border
colors used to create a three-dimensional effect for the cell’s borders. It must be used with
the border attribute set to a positive value. The attribute value can be either a named color,
such as blue, or a color specified in the hexadecimal #RRGGBB format, such as #0000FF.
CSS should be used instead.

bordercolorlight This Internet Explorer—specific attribute specifies the lighter of two border
colors used to create a three-dimensional effect for a cell’s borders. It must be used with the
border attribute set to a positive value. The attribute value can be either a named color,
such as red, or a color specified in the hexadecimal #RRGGBB format, such as #FF0000.
CSS should be used instead.

char This attribute is used to define the character to which element contents are aligned
when the align attribute is set to the char value.

a3

44

Part I: Core Markup

charoff This attribute contains an offset, specified as a positive or negative integer, for
aligning characters as related to the char value. A value of 2, for example, would align
characters in a cell two characters to the right of the character defined by the char attribute.

valign This attribute is used to set the vertical alignment for the table cells with a <tr> tag.
The specification defines baseline, bottom, middle, and top. Internet Explorer also
allows center, which should be the same as middle.

Example

<table width="300" border="1">
<tr align="center" valign="middle">
<td>3</td>
<td>5.6</td>
<td>7.9</td>
</tr>
</table>

Compatibility

HTML 3.2, 4,4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1.1+, Opera 4+, Safari 1+
Notes

¢ This tag is contained only in the <table>, <thead>, <tbody>, and <tfoot> tags. It
contains the <th> and <td> tags.

* The HTML 3.2 specification defines only the align and valign attributes for this
element.

¢ Internet Explorer 6 introduced ch and cho££ attributes per a draft standard at the
time, but they do not do anything and later are set as char and charoff.

¢ (SSvisual changes to tables are suggested, but many sites claim that under strict
variants the various attributes like bgcolor no longer work. Testing in modern
browsers (IE 8, Firefox 3) at the time this edition was written does not support these
claims.

e Under the XHTML 1.0 specification, the closing </ tr> tag is required, but under
older HTML and HTMLS, the closing tag is optional.

¢ There are extended DOM methods for table-related tags like <tr>, including
insertRow () and deleteRow ().

<tt> (Teletype Text)

This inline element is used to indicate that text should be rendered in a monospaced font
similar to teletype text. The element is being marked as obsolete or deprecated and should
be avoided in favor of CSS.

Standard Syntax

<tt
class="class name(s)"
dir="1ltr | rtl"

Chapter 3: HTML and XHTML Element Reference

id="unique alphanumeric identifier"
lang="language code"

style="style information"
title="advisory text"s>

</tt>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit"
disabled="false | true" (5.5)

hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,

onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some <tt>monospaced text</tt></p>.

<p>Source code in this tag: <tts>main() { printf ("hello world") ; }</tt></p>

Compatibility

HTML 2, 3.2, 4, 4.01 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1 Netscape 1+, Opera 2.1+, Safari 1+
Note

¢ This element has been deprecated by the W3C under XHTML 1.1 and marked as

obsolete HTML5. However, like other HTML5 obsolete items this element continues to
work in browsers. The look of the tag can be replicated with the font or font -family

CSS property set to a value of monospace or a common fixed-width font name.

<u> (Underline)

This element indicates that the enclosed text should be displayed underlined. It is deprecated or

obsolete in most specifications in favor of the CSS property text-decoration: underline.

415

416

Part I: Core Markup

Standard Syntax (Transitional Only)

<u
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric string"
lang="language code"
style="style information"
title="advisory text">

</u>

Attributes Defined by Internet Explorer
accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Examples

<p>Here is some <u>underlined text</u>.</p>

<p>Be careful with <u>underlined</u> text; it looks like
a link.</p>

<p>If you must underline use
CSS please.</p>

Compatibility

HTML 3.2, 4, 4.01 (transitional) Firefox 1+, Internet Explorer 2+,

XHTML 1.0 (transitional) Netscape 3+, Opera 4+, Safari 1+

Chapter 3: HTML and XHTML Element Reference 417

Notes

¢ This element has been deprecated by the W3C. Under the strict (X)HTML
specifications, the element is not supported, and under HTMLS it is marked
obsolete. The look provided by this element is supported by the CSS property

text-decoration:underline.

¢ Underlining text can be problematic because it looks similar to a link, especially in
a black-and-white environment.

(Unordered List)

This element is used to indicate an unordered list, namely a collection of items that does not

have

a numerical ordering. The individual items in the list are defined by the 1i element,

which is the only allowed element within a tag.

Standard Syntax

<ul

class="class name(s)"

compact="compact" (transitional only)

dir="1ltr | rtl"

id="unique alphanumeric identifier"

lang="language code"

style="style information"

title="advisory text"

type="circle | disc | square"> (transitional only)

List items specified by tags

</uls>

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

48

Part I: Core Markup

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Element-Specific Attributes

compact This attribute indicates that the list should be rendered in a compact style. Few
browsers actually change the rendering of the list, regardless of the presence of this
attribute. The compact attribute requires no value unless it is used with XML-style syntax,
where it takes the value of compact.

type The type attribute is used to set the bullet style for the list. The values defined under
HTML 3.2 and the transitional version of HTML and XHTML are circle, disc, and
square. A user agent might decide to use a different bullet depending on the nesting level
of the list, unless the type attribute is used. The type attribute is dropped under the strict
versions of HTML 4 and XHTML because style sheets can provide richer bullet control
using the 1ist-style-type and list-style-image properties.

Examples

<ul compact="compact" title="Sushi Short List" type="circle">
Maguro
Ebi</1li>
Hamachi</1li>

<!-- Correct list nesting --»>

Chapter 3: HTML and XHTML Element Reference

<ul compact title="Sushi Short List" type="circle">
Ttem 1

Ttem A
Item B
</1i>
Item 2</1i>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

e HTML 2.0 supports only the compact attribute.
¢ The HTML 3.2 specification supports compact and type.

e Under the strict (XYHTML specifications as well as HTML5, the ul element does not
support the compact attribute or the type attribute. Both of these attributes can be
easily replaced with CSS properties.

® Due to XHTML's deprecation of attribute minimization, the compact attribute must
have a quoted attribute when used in the transitional variant:

<ul compact="compact">

e Many Web page designers and page development tools use the tag to indent
text. The only element that should occur within a ul element is 1i, so such markup
does not conform to standards. However, this common practice is likely to continue.

* Since the content model of ul says list items should be the only item within
tags, nested lists should occur within <1i> tags rather than outside them as they are
commonly found.

<var> (Variable)

This logical inline element is used to indicate a variable (an identifier that occurs in a
programming language or a mathematical expression), with any enclosed text generally
rendered in italics.

Standard Syntax

<var
class="class name(s)"
dir="1ltr | rtl"
id="unique alphanumeric value"
lang="language code"
style="style information"
title="advisory text">

</var>

419

420

Part I: Core Markup

Attributes Introduced by HTML5

accesskey="spaced list of accelerator key(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"

data-X="user-defined data"

draggable="true | false | auto"
hidden="hidden"

itemid="microdata id in URL format"
itemprop="microdata value"
itemref="space-separated list of IDs that may contain microdata"
itemscope="itemscope"

itemtype="microdata type in URL format"
spellcheck="true | false"

tabindex="number"

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

contenteditable="false | true | inherit" (5.5)
hidefocus="true | false" (5.5)

language="javascript | jscript | vbs | vbscript" (4)
tabindex="number" (5.5)

unselectable="on | off" (5.5)

HTML 4 Event Attributes

onclick, ondblclick, onkeydown, onkeypress, onkeyup, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup

HTML5 Event Attributes

onabort, onblur, oncanplay, oncanplaythrough, onchange, onclick,
oncontextmenu, ondblclick, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied, onended,
onerror, onfocus, onformchange, onforminput, oninput, oninvalid, onkeydown,
onkeypress, onkeyup, onload, onloadeddata, onloadedmetadata, onloadstart,
onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onmousewheel,
onpause, onplay, onplaying, onprogress, onratechange, onreadystatechange,
onscroll, onseeked, onseeking, onselect, onshow, onstalled, onsubmit,
onsuspend, ontimeupdate, onvolumechange, onwaiting

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecopy, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,

ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Chapter 3: HTML and XHTML Element Reference

Example

<p>In Math the variable <vars>x</var> holds the answer to many

of life's most important questions. It contains the time it takes
two speeding trains to meet when they have left two different
stations travelling at different speeds, the number of lemons you
have left over after trading with people, and all sorts of other
interesting values.</p>

Compatibility

HTML 2, 3.2, 4, 4.01, 5 Firefox 1+, Internet Explorer 2+,
XHTML 1.0, 1.1, Basic Netscape 1+, Opera 4+, Safari 1+
Notes

¢ As alogical element, var is a perfect candidate for style sheet binding.

¢ The HTML 2.0 and 3.2 specifications support no attributes for this element.

<video> (Video)

This HTMLS5 element embeds a video into a document.

HTML5 Standard Syntax

<video
accesskey="spaced list of accelerator key(s)"
autobuffer="true | false"

autoplay="autoplay"

class="class name(s)"
contenteditable="true | false | inherit"
contextmenu="id of menu"
controls="controls"
data-X="user-defined data"

dir="1ltr | rtl"

draggable="true | false | auto"
height="pixels"

hidden="hidden"

id="unique alphanumeric identifier"
lang="language code"

loop="1loop"
poster="URL of preview/standby image"
spellcheck="true | false"

src="URL of video"
style="style information"
tabindex="number"
title="advisory text"
width="pixels">

</video>

HTML5 Event Attributes

onabort, onbeforeunload, onblur, onchange, onclick, oncontextmenu,

ondblclick, ondrag, ondragend, ondragenter, ondragleave, ondragover,

an

422

Part I: Core Markup

ondragstart, ondrop, onerror, onfocus, onhashchange, onkeydown, onkeypress,
onkeyup, onload, onmessage, onmousedown, onmousemove, onmouseout,
onmouseover, onmouseup, onmousewheel, onresize, onscroll, onselect,
onstorage, onsubmit, onunload

Element-Specific Attributes

autobuffer This Boolean attribute indicates the browser should begin buffering a video
right away. This attribute should be used if it is assumed the user will play the video. This
attribute is meaningful only if autoplay is not set, as in that case the browser will play
video as soon as it can, allowing no time for further buffering.

autoplay This Boolean attribute indicates the browser should begin playing a video after
page load once enough content has been received and it is reasonable to play without
interruptions.

controls This Boolean attribute is set to indicate whether or not the browser should present
controls for video, such as playback, pause, volume, and seek. If not present, no controls
will be shown and it will be up to the developer to script the control of the video element.

loop This Boolean attribute, if present, indicates that the video should loop.

poster This attribute is set to the URL of an image that the browser will use in place of the
video before it is loaded and playing.

src This attribute is set to the URL of the video to show.

Examples

<video src="movies/moviel.ogg" autoplay>
<p>No support for HTMLS5 <code>video</code> element.</p>
</video>

<video src="movies/moviel.ogg" poster="coming.png" loop
playcount="3" start="45">
<p>No support for HTMLS5 <code>video</code> element.</p>
</video>

<video>

<source src="movie2.ogg" type="video/ogg">

<source src="movie2.mov">

<p>No support for HTMLS5 <code>video</code> element.</p>
</video>

Compatibility

HTML5 ‘ Firefox 3.5+, Opera 10+, Safari 3.1+

Notes

e Alternate content should be placed inside of the video element for browsers that do
not support it.

Chapter 3: HTML and XHTML Element Reference

* Browsers are quite variable in what codecs they support. For example, Firefox 3.5
supports Theora for video in Ogg containers, while Safari browsers favor
QuickTime movies.

¢ Flash video will often be used to avoid cross-browser rendering concerns. Until this
element is widely supported, developers are advised to continue using Flash video.

<wbr> (Word Break)

This nonstandard element is used to indicate a place where a line break can occur if
necessary. This element is used in conjunction with the nobr element, which is used to keep
text from wrapping. When used this way, wbr can be thought of as a soft line break in
comparison to a
 tag. This element is common to many earlier browsers, though it is
not part of any HTML standard.

Proprietary Syntax

<wbr
id="unique alphanumeric value">

Examples

<nobr>A line break can occur here<wbr>but not elsewhere, even if
the line is really long.</nobr>

<nobr>For comparison a line break cannot occur here even if the
line is really long like this one is.</nobr>

Compatibility

No standards support ‘ Internet Explorer 2-7, Netscape 1.1, 2, 3, 4, 4.5-4.8

Notes

e Early versions of standards-based browsers, such as Mozilla and Opera, do not
support this tag but, oddly, seem to support <nobr>. However, later versions,
including IE 8, correctly ignore this feature.

* To simulate this element’s functionality for setting a soft break in modern browsers
that apply white-space: nowrap to an element, use the tag as a custom tag and
set its style like so: <wbr style="display:inline-block;>. Other schemes
using the ­ and ​ entities may provide useful functionality as well in
some cases.

¢ Documentation for older versions of Internet Explorer defined class, 1anguage,
style, and title for this tag. However, they have little meaning, given this tag’s
purpose, and have since been eliminated from the documentation, though they may
effectively be recognized in some manner by the browser parser.

* Though this is an empty element and should be written as <wbr /> under XHTML,
it does not need to be. It is not standard and will not validate anyway.

423

424

Part I: Core Markup

<xml> (XML Data Island)

This proprietary element introduced by Microsoft can be used to insert fragments of XML
(Extensible Markup Language) data into HTML documents. This idea is generally called
data islands and natively will work only under Internet Explorer 5.0 or later. However, it
can be simulated using JavaScript and careful style sheet applications in other browsers.
Under Internet Explorer, an <xml> tag can be used to reference outside data sources using
the src attribute, or to surround XML data in the (X)HTML document itself.

Internet Explorer Syntax

<xml
id="unique alphanumeric wvalue"
src="URL of XML data file">

. . .embedded XML markup. ..
</xml>

Events Defined by Internet Explorer

ondataavailable, ondatasetchanged, ondatasetcomplete,
onrowenter, onrowexit, onrowsdelete, onrowsinserted

Element-Specific Attribute
src This attribute references an external XML data file.

Examples

onreadystatechange,

<!-- This code embeds XML data directly into a document.
All code between the <xml> tags is not HTML, but a

hypothetical example of XML. -->

<xml id="tasty">
<combomeal>
<burger>
<name>Tasty Burger</name>
<bun bread="white">
<meat />
<cheese />
<meat />
</bun>
</burger>
<fries size="large" />
<drink size="large" flavor="Cola" />

</combomeal>
</xml>
<!-- This code fragment uses the src attribute to reference an
external file containing XML data. -->

<xml src="combomeal.xml"></xml>

Chapter 3: HTML and XHTML Element Reference 425

Compatibility

No standards support Internet Explorer 5+

Note

¢ Native browser support for the <xml> tag is limited to Internet Explorer 5 or later,
though given native support for XML in modern browsers, it is possible to simulate
the idea by defining a custom tag and hiding it using CSS display or visibility
properties. See https:/ /developer.mozilla.org/en/Using XML_Data_Islands_in_
Mozilla for an example.

<xmp> (Example)

This deprecated but still widely supported element indicates that the enclosed text is an
example. Example text generally is rendered in a monospaced font, and the spaces, tabs,
and returns are preserved, as with the pre element.

Syntax (Defined by HTML 2; Deprecated Under HTML 4)

<xXmp>
</xmp>

Attributes Defined by Internet Explorer

accesskey="key" (5.5)

class="class name(s)" (4)

contenteditable="false | true | inherit" (5.5)
dir="1ltr | rtl"

hidefocus="true | false" (5.5)

id="unique alphanumeric value" (4)

lang="language code" (4)

language="javascript | jscript | vbs | vbscript" (4)
style="style information" (4)

tabindex="number" (5.5)
title="advisory text" (4)
unselectable="on | off" (5.5)

Events Defined by Internet Explorer

onactivate, onbeforeactivate, onbeforecut, onbeforedeactivate,
onbeforeeditfocus, onbeforepaste, onblur, onclick, oncontextmenu,
oncontrolselect, oncopy, oncut, ondblclick, ondeactivate, ondrag,
ondragend, ondragenter, ondragleave, ondragover, ondragstart, ondrop,
onfocus, onfocusin, onfocusout, onhelp, onkeydown, onkeypress, onkeyup,
onlosecapture, onmousedown, onmouseenter, onmouseleave, onmousemove,
onmouseout, onmouseover, onmouseup, onmousewheel, onmove, onmoveend,
onmovestart, onpaste, onpropertychange, onreadystatechange, onresize,
onresizeend, onresizestart, onselectstart, ontimeerror

Example

<xmp>This is a large block of text used as an example.

426 Part1: Core Markup

Note that returns
as well as S PACE S are preserved.</xmp>

Compatibility

‘ HTML 2 ‘ Firefox 1+, Internet Explorer 2+, Netscape 1+, Opera 2.1+, Safari 1+

Notes

¢ This element was first deprecated under HTML 3.2, yet all major browsers continue
to support it, and it is well documented and even extended for Internet Explorer.
The <pre> tag or style sheets should be used instead of this tag.

¢ Note that the MSDN documentation does not show oncopy and onbeforecopy
events for this element but testing shows they do work up until IE 8.

PART

Core Style

CHAPTER 4
Introduction to CSS

CHAPTER 5
CSS Syntax and
Property Reference

CHAPTER 6
CSS3 Proprietary and
Emerging Features Reference

This page intentionally left blank

CHAPTER
Introduction to CSS

elements, squarely mixing the concepts of logical and physical markup into the mess

that is classic HTML. Strict variants of (X)YHTML deprecated the elements and attributes
that focused on presentation, providing a clear distinction between the structure provided
by markup and the look dictated by a style sheet written in Cascading Style Sheets (CSS)
syntax. The distinct division of duties between markup and style can provide numerous
production, maintenance, and even performance benefits, making it a far superior
presentation solution to markup alone.

In the past, much of the visual formatting of Web pages was supplied by markup

Presentational HTML

Traditionally, for right or wrong, markup has been used for formatting. For example, many
HTML elements support the align attribute, which provides simple support for text
alignment. Combine these aspects of markup with the assumption of visual rendering, such
as the belief that h1 elements always should make text big, and it would actually seem clear
to some that HTML is meant for formatting, as demonstrated here:

<hl align="center">Big Centered Text!</hl>

Now an argument can be made about the semantic value of the h1 specifying a
headline, but for those solely coming at HTML from a point of view of knowing what a tag
does, the idea that an <h1> tag makes something big wins out. Yet, beyond such
misunderstandings based upon observation rather than the intent of the specification, there
are elements that are strictly presentational, like font, which is part of HTML 3.2, 4.01
transitional, and XHTML 1.0 transitional specifications:

I am big and red!

Further, when looking at browser-specific elements, plenty of presentational markup
can be found. For example, the following markup

<blink>Proprietary HTML Tag Sale: 50% Off for Firefox Users!</blink>

429

430

Part Il: Core Style

creates blinking text in Firefox, while this markup
<marquee>Sale! Sale! Sale! All Presentation Tags Must Go!!!</marquee>

animates text in nearly any browser. History has already been written. Like it or not,
markup has been used to visually present Web pages for well over a decade.

The problem with using HTML for formatting is that it just isn’t really very good at it,
nor was it generally designed for it. For example, just to make some centered red text with a
yellow background, you’d likely resort to using markup like so:

<table align="center" width="100%">
<tr>
<td bgcolor="yellow" align="center">
<font size="7"
color="red"
face="Arial, Helvetica, sans-serif">
Big Red HTML Text

</td>
</tr>
</table>

When using HTML for Web page presentation, we see a tremendous amount of markup
being used to style the page, often filled with complex stacked or even nested tables. Layout
workarounds using invisible pixel images, proprietary elements and attributes, text in images,
and other arcane ideas were, and often still are, required to deliver quality, high-fidelity
design in HTML. Fortunately, for now and the future, there is a better way—style sheets.

The Slow Rise of CSS

Cascading Style Sheets (www.w3.org/Style/CSS/) offers what Web designers have been
clamoring for over the years: more control over layout. Interestingly, the excitement about
CSS has been quite slow to build. CSS1 marked its first appearance as a standard in late
1996 and CSS2 quickly followed in 1998. Early browsers such as Internet Explorer 3 and
Netscape 4 supported some of the technology, but CSS has had trouble gaining widespread
acceptance. Browser support has been quite inconsistent, and significant bugs, particularly
in older of versions of Internet Explorer, have made the use of CSS a lesson in frustration.
For visual proof of this, consider the CSS2 conformance tests called Acid2 (www.acidtests
.org/), which exercises many important features of CSS1 and CSS2. Figure 4-1 shows
Internet Explorer 6 and Firefox 2 both failing this test. However, with the release of Internet
Explorer 8 and Firefox 3 and past conformance of other browsers like Opera and Safari, all
the major browsers now pass the Acid2 test (see Figure 4-2). Considering that the
introduction of that test was in 2005 and for many years previous CSS support was spotty,
finally we see that CSS is changing for the better!

NOTE As this edition goes to print, many browsers pass Acid3 as well. The point here is to show
that in the past few years CSS has become viable and appropriate, and that it took a while to get
there, rather than to declare any browser a winner or loser in a standards race.

Chapter 4: Introduction to CSS 431

) The Sacand Acid Teat - Morilla Firefox

Bl Edt Mew Hgtory fodmerds ok Heb

@ 8 O G [it st e [x] Girlsz
@ et Rartnd E Latet oo :
Hello World!

e £ Yew Fpeies o Heb
Q- O E @G Pt fpres @ -5 m-w e @B

st i ottt oML il B " Gt - Giska covtus e - Eteastig

Hello World!

Ficure 4-1 Older browsers failing Acid2

Newer versions of browsers are far better than their predecessors, and now have good
support for CSS1 and CSS 2.1 as well as many features from CSS3. Yet even as CSS support
has become more commonplace, significant issues remain. Browser bugs still exist, portions
of the CSS specification remain unsupported, developer education and uptake is lagging,
and proprietary extensions to style sheets are rapidly being introduced by browser vendors.
It seems the more things change the more they stay the same regardless of the technology in
use. HTML wonks who have spent time addressing quirks and workarounds will find plenty
of new ones to address in the world of CSS. We'll return to this sad fact at the end of the
chapter when we discuss the pragmatic use of CSS, but now let’s take our first look at CSS.

432 Part 1l: Core Style

@ The Second Acid Test - Mozilla Firefox

[The Secand Acid Test 2 _‘ﬂ’_. Eile Edit Wiew Histary Bookmarks Tools Help
€ C M % http//acid2acidtests.org/étop @_ B Cc & ([| httpfacidz.acidtests.org /%t
Hello World! Hello World!

® @® @®© @®
2 L 2
" " " "

& The Second Acid Test - Opera /€ The Secand Acid Test - Internet Explorer provided by Dell
File Edit View Bookmarks ‘Widgets Tools Help @'\:j' (] https/ acicl2 acidtests.org #top

“ & 2 > K9 £ (B repsscidacitetsorgittop || File Edit View Favortes Tools Help

i Favorites 1€ The Second Acid Test

Hello World! Hello World!

® @ @® ®
L 4 L 4
S E—

Ficure 4-2 Modern browsers passing Acid2

First Look at CSS

CSS rules are defined as a property name followed by a colon and then a property value.
Individual rules are terminated by semicolons, with the final rule having an optional
semicolon:

property-namel : valuel; ... property-nameN : valueN;

Chapter 4: Introduction to CSS$

CSS rules can be placed directly within most (X)HTML tags by setting the core attribute
style to the rule. For example, to set the color and alignment of an h1 heading, we might use

<hl style="color: red; text-align: center;">Big Red CSS Text!</hl>

Such direct use of CSS is called inline style and is the least favorable form of CSS because of
its tight coupling to the actual (X)HTML tags.

Instead of placing rules directly within markup elements, we might more appropriately
create a rule that binds to a particular element or set of elements, which will lend itself for
future reuse. CSS rules not found within a particular tag consist of a selector followed by its
associated style declarations within curly braces. Similar to being used inline, a style rule is
composed of property names and property values separated by colons, with each style
declaration (property/value pair) in turn being separated by a semicolon. In general, the
syntax is

selector {propertyl : valuel; ... propertyN : valueN;}

An example rule conforming to correct CSS syntax broken out into its individual
components is shown here:

I—Property Name-l |— Value —| Declaration Separation

hl {font-size: xx-large;” color: red;}
L'—‘ I— Declaration 4, |— Declara’rionJ

Selector Declaration Block

Rule

NOTE The final declaration in a style rule block does not require the semicolon. However, for good
measure and easy insertion of future properties, page authors should always use semicolons after
all style properties.

CSS property names are separated by dashes when they are multiple words—for
example, font-face, font-size, line-height, and so on. Allowed values come in many
forms; from simple keywords like xx-small, strings like "Arial", plain numbers like 0,
numbers with units like 100px or 2cm, and special delimited values such as URLs, url (. ./
styles/fancy.css).

Given this brief CSS syntax overview, to create a style dictating that all h1 elements are
red and centered, use the following rule:

hl {color: red; text-align: center;}

As rules are added, you may take advantage of the fact that CSS is not terribly
whitespace sensitive, so

hl {font-size:xx-large;color:red;font-family:Arial;}

433

434

Part Il: Core Style

will render the same as

hl {font-size: xx-large;
color:red;
font-family:Arial;}

Given the nature of white space in CSS, you may find formatting leads to better
readability for future development. Also like traditional coding, we should add comments
using the common programming language syntax /* */ like so:

/* first CSS rule below */
hl {font-size: 28px; color: red; font-family: Arial;}

Of course, when publishing CSS and HTML on public-facing Web sites, removing
comments and reducing white space to improve delivery and slightly obfuscate execution
may be appropriate.

Lastly, case should be well considered. In CSS, property names and many values are
case insensitive, so

hl {FONT-SIZE:28px;color:RED; FONT-WEIGHT:bold; }
and
hl {font-size:28px;color:red;font-weight:bold;}

are the same. However, in some important cases, such as with URL values, font names, and
certain selectors such as id and class values, case will be enforced. For example,

#foo {background-image url(tile.gif); font-family: Arial;}
and
#FOO {background-image url (TILE.GIF); font-family: ARIaL;}

will not necessarily be the same, with the URL sometimes working depending on the Web
server involved, the fonts potentially not matching, and the differing id selectors possibly
not working unless an extremely permissive browser is in play. Given the potential for
confusion, it is much safer to assume that CSS is case sensitive.

When not placed directly inline, style rules would be placed either within a <style> tag
found in the document head

<style type="text/css">
/* a sample style sheet */

h1 {color: red; text-align: center;}
P {line-height: 150%;}
</style>

or will be externalized and referenced via a <link> tag found in the head of the document,
like so:

<link href="mystyle.css" rel="stylesheet" type="text/css">

Chapter 4: Introduction to CSS 435

Given that 1ink would be an empty element if we were using XHTML as our base
document, the <1ink> tag requires the trailing slash:

<link href="mystyle.css" rel="stylesheet" type="text/css" />

The external style sheet would solely contain CSS rules, and no HTML markup would be
found. A small example here illustrates this:

/* mystyle.css - a sample style sheet */
hi {color: red; text-align: center;}
p {line-height: 150%;}

To build a style sheet, we need to define the rules that select elements and apply various
style properties to them. Besides element selectors, previously introduced, the two most
common forms of CSS rules are id selectors, which are used to specify a rule to bind to a
particular unique element, and class selectors, which are used to specify a group of
elements.

Elements are named in (X)HTML using the id attribute, which is found on nearly any
element. As an example, here we identify a particular <h1> tag as the primary headline of
the document:

<hl id="primaryHeadline">CSS Works Fine!</hl>

Now that the tag is named, we can bind a style rule just for it by using a #id-value
selector like so:

#primaryHeadline {color: black; font-size: xx-large; font-weight: bold;}

The values for id must be unique, so in order to affect a select group of tags, we relate
them by setting their class attribute to the same value:

<p class="fancy">I'm fancy!</p>

<p>Poor me I am a plain paragraph.</p>

<p>I am not completely fancy, but part of me
is!</p>

Notice that we utilized a tag around a portion of content we desired to style.
We'll see generic elements like span and div commonly employed with CSS. Now to bind a
rule to the elements in the class fancy, we use a selector of the form . class-name like so:

.fancy {background-color: orange; color: black; font-style: italic;}

There is nothing that keeps an element from being identified with both an id and a
class attribute. Further, it is not required that a tag be found in only one class, as shown
here:

<p id="pl" class="fancy modernLook2">This unique paragraph called pl
will sport a fancy and modern look.</p>

436

Part Il: Core Style

Given that many rules may be applied at once, the final style applied to a particular
element may not be immediately obvious. In fact, in quite a number of cases, the properties
affecting an element’s look may be inherited from an enclosing parent element. As a very
simple example, consider the following rules:

<style type="text/css">

body {background-color: white; color: black;}

o) {font-family: Arial, Helvetica, Sans-Serif;
line-height: 150%;}

.intro {font-style: italic;}

#firstPara {background-color: yellow;}

</style>

When the preceding is applied to a paragraph like
<p id="firstPara" class="intro">Paragraph text goes here.</p>

it produces a paragraph with a yellow background and black, Arial, italicized text that is
spaced with a 150 percent line height. What has happened is that the various rules are
applied by selectors, and some property values are inherited from their enclosing parent
elements. Using a small parse tree, Figure 4-3 shows just how the rules cascade downward
to the enclosed elements, which explains the motivation behind the name Cascading Style
Sheets.

In some cases, rules are even overridden by later-defined or more-precise rules that may
even be within inline styles.

Clearly, determining what rules apply to a particular tag can be a bit tricky, but as a rule of
thumb, the more specific the rule, the more recently defined the rule, and the closer to the tag
the rule is, the more powerful it is. For example, an inline style property would beat a value in
a document-wide style rule, while a document-wide style rule would beat a previously
defined linked style rule. Further, rules using an id would beat rules using a eclass, which
would beat rules based upon elements. Of course, all this can be overridden using an
! important indicator at the end of a particular declaration, so here

<style type="text/css">
#hulk {color: green !important; font-size: xx-large !important;}
</style>

the element with an id value of 'hulk' should be big and green. Though that too can be
overridden with subsequent rules setting these properties with ! important. Given the
potential confusion of what rules are being applied at what times, CSS developers should
utilize a tool that can show the rendered style of an element upon inspection, as shown in
Figure 4-4.

There is plenty more to come with understanding the cascade, inheritance, and all the
various selectors. For now, with our brief introduction out of the way, it is time to see our
first style sheet in action.

Chapter 4: Introduction to CSS 437

<body>

<p ({d="firstPara” (class="intro”>Paragraph text goes here.</p>

</body>

{background-color:white; colori:black;}

Class rule
P {font-family:Arial,Helvetica,San-Serif; line-height:150%;)

Inherits from body:
{background-color:white; color:black;}
Applied:
{font-family:Arial,Helvetica,San-Serif;line-height:150%;
background-color:white; color:black;

v

p class=".intro" {font-style: italic;:}

Inherits from body:
{background-color:white; ceolor:black;}
Inherits from p:
{font-family:Arial,Helvetica,San-Serif; line-height:150%;}
Applied:
{font-family:Arial,Helvetica,San-Serif;line-height:150%;
background-color:white; color:black; font-style:ital

Element rule

W

Ly p id="#firstPara” {background-color:yellow; }
Inherits from body:
{baekground~colortwhites color:iblack;)
Inherits from p:
{font-family:Arial,Helvetica,San-Serif; line-height:150%;]}
Applied:
{font-family:Arial,Helvetica,San-Serif;line-height:150%;

al

background-ceolor:yellow; color:black; font-style:italic;)

Final Rendered {font-family:Arial,Helvetica,San-Serif;line-height:150%;
background-color:yellow; color:black; font-style:italic;)

Ficure 4-3 CSS property value cascade illustrated

Part II:

438 Core Style

@ Cascade Second Look - Mozilla Firefox][] S
File Edit Miew History Bookmarks Tools Help
@ c x (] % | [Qrfowse P
Camputed siyles are zo Sfgure aut with a ool
ﬁ Edit | spansilly < p#firstParaintro < body < html el | (A Nx]
Console | HTML | €SS Scipt DOM Met Options = ||| Style | Layout DOM Optians *
osilly | cagscades.Jook.html (line 10}
[# <heads background-color: orange;
E <body= color: purple;

[E <p id="firstPara" class="intro">

Computed styles are
I easy < /span>

to figure out with a tool.
< ip>
< /body=
</ html=

I3
Inherited from pgfirstPara. intro

B cagcades.. look.html {line 8)
aederr—rady
font-style: italic;

}
Inherited from body

body { cascades...look.html (line 7)

eoteri—blachks
+

Inherited from html

root ua.css (line 45)
uotes:

3

lq Done

Ficure 4-4 CSS property inspection with Firebug

Hello CSS World

For the purpose of this demo, we'll use a document-wide style, as defined with the
<style> tag found in the <head> element of an HTML document:

<!DOCTYPE html>
<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Hello CSS World</title>
<style type="text/css">

/* sample style sheet */

body
hi {
#heart {
.fancy
</style>
</head>
<body>
<hl>Welcome to the World of CSS</hl>

{background-color: black; color: white;}

color: red; font-size: xx-large; text-align: center;}
color: red; font-size: xx—large;}

background-color: orange; color: black; font-weight: bold;}

Chapter 4: Introduction to CSS$

<hr>

<p>CSS <em class="fancy">really isn't so hard either!</p>

<p>Soon you will also ♥ using CSS.</p>
<p>You can put lots of text here if you want.

We could go on and on with fake text for you
to read, but let's get back to the book.</p>

</body>

</html>

ONLINE http://htmlref.com/ch4d/hellocssworld.html

The preceding example uses some of the common CSS properties used in (X)HTML
documents and there are some slight changes to the document structure because of it, including;:
¢ Setting colors with background-color and color
¢ Sizing text with font-size
¢ Setting boldness with font-weight
¢ Setting basic text alignment with text-align
¢ Using id and class attributes to specify elements to bind style rules to
* Using logical markup like as opposed to more physical markup like <i>
* Relying on generic tag containers like to style arbitrary portions of text
There are numerous other CSS properties we might employ besides the few we see here,
and we will explore those throughout the book, but for now this sampling is enough to get

our first example up and running. In Figure 4-5, we see the CSS version of the page as
compared to the HTML-only version.

Plain HTML
v
& Hello HTML Warld - Meills Firefec: == FER |
Eile Edit Miew Higtory Bookmarks Tools Help
9 = C LA hittpe/ /htrnlref.cam/chl/helloworld.himl 1+ G| Goop F-]
’ ’ HTML styled
Welcome to the World of HTMI. 4
by CSS

A i v - —
HTML reailly ssn't s hard| & Hella C55 Warld - Momilla Fireboo == (e x|
Soon you wil ¥ using FITML Eile Edit View Higtory Bookmarks Tools Help

9 v C L P om/chd/mellocssworldhiml ©7 = | |[Gl+| fioog 2

You can put lots of teat here o you want We con
get back to the baok
B Done

=~ Done +

Ficure 4-5 Example Hello CSS World rendering

439

440

Part Il: Core Style

While two technologies are required to make the example, note that CSS when well
executed is both distinct from an HTML document and dependent on it. CSS is not a
replacement for markup; it in fact relies on it. As an example, if an HTML document is
malformed—the tags are not closed properly or other mistakes were made—the CSS may
not attach properly and the look would be distorted. However, mistakes can also be made
in the CSS rules, which tend to be a bit more strictly interpreted by browsers and thus may
similarly result in a visual rendering problem. Clearly, a symbiotic relationship exists
between CSS and HTML, but that relationship has changed over time, so that evolution is
described next.

CSS Versions

Cascading Style Sheets is a fairly old technology as far as the Web is concerned. The first
ideas about CSS were presented as early as 1994, and by December of 1996 the CSS1
specification (www.w3.org/TR/REC-CSS1/) was ratified. This early version of CSS was
partially supported in browsers like Internet Explorer 3 and Netscape 4 to varying degrees.
While the features of CSS1 were far superior to what presentation HTML had with its
 tags and workarounds, uptake was slow.

CSS1 provided many features to change borders, margins, backgrounds, colors, and a
variety of text characteristics, but the much demanded ability to directly position objects was
absent. An interim specification on positioning HTML elements commonly called CSS-P for
short (www.w3.org/TR/WD-positioning-19970819) was implemented in Netscape 4 and
Internet Explorer 4 and later rolled into CSS2 (www.w3.org/TR /1998 /REC-CSS52-19980512/),
which was released in May 1998. While CSS2 introduced many valuable features, including
positioning, media types for style sheets, aural style sheets, and much more, not everything has
been implemented even in the most modern browsers. A revision of this specification, CSS 2.1
(www.w3.org/TR/CS521/), released in 2007, removed a number of unimplemented features
and normalized the specification to a more realistic vision of what browsers actually do.

While the future is clearly CSS3 (www.w3.org/Style/CSS/ current-work#CSS3) with its
multitude of modules for addressing color, device constraints, foreign language rendering,
improved printing, and more, it is far from clear when that future will arrive. At the time of this
edition’s writing, select features of various CSS3 modules have been implemented in some
browsers, but, save for a few high-value features like the opacity property, full cross-
browser support is still spotty. Table 4-1 summarizes the version history of CSS.

Proprietary CSS

For some Web developers, CSS is associated with standards and specification, but the reality
is that, like markup, it too has proprietary features. All browser vendors have introduced
some feature or another to improve what their browser could do. Many of these features are
previews of what is likely to be implemented in the eventual CSS3 specification, but for
now they are proprietary.

Unlike (X)HTML, CSS makes it easy for browser vendors to extend the specification, as
newly introduced keywords and property names that start with a hyphen “-” or underscore
“_" are considered vendor-specific extensions. The syntax is -vendoridentifier-newproperty or
_vendoridentifier-newproperty, though in practice the hyphenated names appear to be the
only extensions in use. As an example, -moz is used to prefix Mozilla features like -moz-
border-radius. A list of prefixes that are commonly seen is shown in Table 4-2.

Chapter 4: Introduction to CSS$

CSS Version

Description

CSS1

Classic CSS implementation that introduced text, list, box, margin, border, color,
and background properties. Initially defined in 1996, most every feature of CSS1
is supported in Web browsers, but small quirks do exist around some lesser-used
features like white-space, letter-spacing, display, and others. Some
problems with CSS1 support are more significant in older, pre—Internet Explorer 7
browsers.

CSS2

Specification that is primarily known for positioning and media, particularly print
style sheet features. Many aspects of CSS2, such as aural style sheets, were never
widely implemented and were removed in a later iteration of the CSS specification.

CSS 2.1

A revision of the CSS2 specification that makes some corrections and is normalized
to more clearly represent what most browser vendors have implemented. Note that

many CSS2 features removed from this specification are found in CSS3 modules.
This is currently the recommended CSS specification for study and use.

CSS3

Modularized specification of CSS. Various modules extend and improve aspects
of previous CSS versions; for example, the CSS3 Color module addresses color
correction, transparency, and more, while the CSS3 Fonts module addresses
features to add effects to fonts, adjust their display, and even download custom
fonts. Some modules are all new, like the Transitions and Animations modules,
and others are quite old looking with activity levels suggesting they are abandoned
or near abandon. Whatever the situation, when it comes to CSS3, readers are
encouraged to check the CSS3 Web site and test support carefully.

TaBLE 4-1

Description of Common CSS Versions

Prefix

Organization

Example

Notes

-ms -

Microsoft

-ms-interpolation-mode

Some older proprietary CSS
features found in Internet
Explorer are not prefixed in
any way.

-moz-

Mozilla Foundation

-moz-border-radius

This applies to all Gecko
rendering engine—based
browsers such as Firefox.

Opera

-o-text-overflow

Opera also supports the
-xv- prefix for experimental
voice support for aural style
sheet properties like -xv-
voice-family.

-webkit

WebKit

-webkit-box-shadow

This applies to all WebKit
engine-based browsers such
as Apple’s Safari and Google
Chrome.

TaBLE 4-2 CSS Extension Prefixes

441

442

Part Il: Core Style

There are other propriety CSS prefixes that may be encountered, which may or may not
follow the appropriate prefixing scheme. For example, wireless phones that support WAP
(Wireless Application Protocol) may use -wap- prefix based properties such as -wap-
accesskey. Some implementations of Microsoft Office may use CSS rules like mso-, such
as mso-header-data. Do note that this syntax lacks the appropriate extension character
indicator. In general, it would seem that extensions should be avoided if possible unless
their presentation degrades gracefully, particularly since their compatibility and future
support by browsers or standards bodies is far from clear. Interestingly, many extension
properties appear to be CSS3 properties with stems just waiting for the specifications to
catch up. Chapter 6 will show this to be the case in numerous instances.

CSS Relationship with Markup

As CSS relies on markup and in some cases overlaps with older features provided by markup
elements, it is important to understand the relationship between the two technologies. In
general, transitional versions of (XYHTML markup include some presentational elements that
may be utilized by Web developers in place of CSS, while strict variants of (X)HTML may
eliminate such elements solely in favor of CSS properties. As an example, to center a heading
tag, the align attribute might be used like so:

<hl align="center">Headline Centered</hl>

In the case of strict markup, however, the align attribute is deprecated and thus CSS
should be employed. This could be accomplished either using an inline style like so

<hl style="text-align: center;">Headline Centered</hl>

or, more appropriately, with some CSS rule applied via class, id, or element selector. Here
we use a class rule

hl.centered {text-align: center;}
which would apply to tags with class values containing “centered” like the following:

<hl class="centered">Centered Headline</hl>
<hl class="fancy centered">Another Centered Headline</hl>

In some cases, we find that various HTML elements simply are no longer necessary in
the presence of CSS. For example, instead of tags like <u>, <sub>, <sup>, , and
others, CSS rules are used often with generic elements like div or span. Table 4-3 details
most of the (X)HTML markup elements or attributes deprecated in strict variants and
presents their CSS alternatives.

There are other cases, like <sub>, <sup>, <big>, <small>, and many more, where we
could avoid using markup and apply style. The various markup specifications have not
deprecated every presentational-like element, and even if CSS alleviates the need for some
presentational elements, their usage stubbornly lives on. For that simple fact, these elements
and their equivalents are presented in this book. In fact, the continued inclusion of presentation
ideas in the emerging HTMLS5 specification tends to suggest that despite a desire to move to
a purely semantic markup world, while certainly worthwhile, this is unlikely to come to pass
on the Web at large, at least not rapidly.

Chapter 4:

Introduction to CSS

(X)HTML Tags or Attributes

CSS Property Equivalent(s)

Notes

font-size, color

<center> text-align, Values for margin such as
margin auto generally are used when
centering blocks with text -
align for content.
 font-family,

align attributes

text-align,

In the case of some elements

background-color

float such as , the CSS float
property is more appropriate than
text-align.
Color attributes for <body> color, To set some of the body

attributes like 1ink, v1ink,
alink, pseudo-classes :1ink,
:visited, :active should be
used for <a> tags.

Background image attributes
for <body>, <table>, and
<td>

background-image

The type and start attributes
on lists and list items

list-style-type,
CSS counters

Single CSS properties can’t
directly substitute some features.

The clear attribute for

clear

<8>, <strike>

text-decoration:
line-through

blink

<u> text-decoration:
underline;
<blink> text-decoration: Not supported in all browsers.

TaBLE 4-3 Common (X)HTML Structures Moved to CSS

The Specification of CSS

CSS 2.1 has a grammar (www.w3.org/TR/CS521/grammar.html) but unlike traditional
(X)HTML it is not defined with a document type definition. Instead the CSS specification is
a combination of prose and a grammar that could be used to build a simple parser. For
example, when looking at the grammar for a set of style rules, we see

ruleset

selector [COMMA S* selector]*

LBRACE S* declaration

[';' S* declaration]* '}' g*

443

444

Part Il: Core Style

Roughly, this says that a ruleset contains a selector of some sort, a curly left brace (LBRACE),
a declaration or a set of declarations followed by a semicolon, and then a closing right brace.
This basically defines the rule syntax we have seen earlier, repeated again here:

selector {propertyl : valuel; ... propertyN : valueN;}
Now if you continue to read the specification, you can see that selectors are then defined by

selector
simple selector [combinator simple selector]*

i

which in turn references a simple_selector, which would include some of the types of
selectors like element names, class, and id values we have seen earlier. The production
rule of CSS grammar here shows just that:

simple selector
: element name [HASH | class | attrib | pseudo]*
| [HASH | class | attrib | pseudo]+

7

Yet as you expand the grammar, you should see what appears to be ambiguity. For
example, when you expand to an element_name, it will indicate that a wildcard value of

"y

*” can be used to match an element and then simply a value of IDENT, shown here:

element name
IDENT | '*'

i

IDENT will resolve to another part of the specification that defines a valid token that is a
fairly large range of strings. Simply put, the element_name selector can be just about
anything, which makes perfect sense because CSS can be used for not just HTML but also
for arbitrary XML languages, which could have a variety of possible tags. Given the wide
possibility of usage for CSS, this ambiguity is somewhat to be expected, but even the
various property names and values are not directly spelled out in the grammar and are left
to the prose of the specification. In fact, the forward-looking nature of the CSS specification
gives some latitude here in terms of such values instead of specifying the rules for what a
browser should do when faced with properties or values it doesn’t understand, as discussed
in the next section.

The various aspects of the CSS grammar that are a bit ambiguous are so not because of
some oversight but due to the intersection between CSS and other technologies. For example,
consider the situation of case sensitivity, as previously discussed in the chapter. CSS property
names and many values will be case insensitive, so font -size and FONT-SIZE are both
okay as are declarations like font-size: REDand font-size: red. Even selectors may
not be case sensitive; for example,

H1 {color: red;}
should be the same as

hl {color: red;}

Chapter 4: Introduction to CSS$

because HTML elements can vary in case. However, in the case of XML elements like
MYTAG {color: red;}

and

mytag {color: red;}

these wouldn’t necessarily be the same. Similarly, given the intersection of JavaScript, which
is case sensitive, id and class names should be considered to be case sensitive. Depending
on the server being used, portions of URL values, including the path and filename, may also
be case sensitive. So, the rules of CSS can cause much confusion because they are highly
influenced by its context of use. There are clear cases, however, that syntax is incorrect or at
least not understood by the parsing user-agent; fortunately, the CSS specification spells out
what ought to be done in such situations, though this assumes browser vendors follow the
specification!

CSS Error Handling

As discussed in the previous chapter, the use of syntactically correct markup is certainly not
encouraged by permissive browser parsers that correct mistakes or guess intent when faced
with malformed markup. The situation for CSS is a bit better, and the CSS 2.1 specification does
describe what browsers should do in the case of various errors (www.w3.org/TR/CS521/
syndata.html#parsing-errors), but then again, making the assumption that browsers are not
permissive and correctly implement all aspects of Web specifications is dangerous.

Unknown Properties
If an unknown property is encountered, a CSS-conforming user agent should ignore the
declaration. Given

hl {color: red; trouble: right-here;}

the property trouble would simply be ignored and the rule would simply set the color. It
does not matter what the position of the bogus property declaration is, the result should be
the same as long as the declaration is otherwise well formed.

hl {trouble: right-here; color: red;}
The case is obviously different if the various separators are missing.

Malformed Rules

In the case where semicolons (;), colons (:), quotes ('or"), or curly braces ({ }) are misused,
a browser should try to handle any unexpected characters and read the properties until

a matching value can be found. As an example, consider the simple case of forgetting a
semicolon:

hi {color: red text-decoration: underline; font-style: italic;}

In this case, we should see the browser continue to parse the value of color as “red text-
decoration: underline” before it sees a closing semicolon. The font -style property that

445

446

Part Il: Core Style

follows would then be used. Because the color property has an illegal value, it should be
ignored.

Other cases are a bit more obvious. For example, here we see the colon missing in a style
rule declaration:

hl {color red; text-decoration: underline; font-style: italic;}

In this case, the color property is simply ignored and the text is underlined and italic.

The situation for quotes and braces is the same, with compliant browsers working to
find a matching closing character for any open construct, potentially destroying anything in
between. Consider this set of rules, where quite a large amount of style may be lost:

hl {color: green; font-family: "Super Font;}
h2 {color: orange;}
h3 {color: blue; font-family: "Duper Font";}

Be careful, though, because in this case you might assume that the rule closes off with a
quote, but that may introduce more open construct errors later on in the style sheet.

Unclosed Structures and End of File
A CSS browser should close all braces and quotes when it reaches the end of a style sheet.
While quite permissive, this would suggest that

<style type="text/css">
hl {color: green
</style>

should render properly, as the open rule would be closed automatically by the end of the
style sheet. Open quotes would also be closed in a similar manner when the end of the style
sheet is reached. Testing reveals this action is actually the case in browsers, but creating a
syntactically correct style sheet is obviously far superior than understanding the expected
failures of a conformant browser.

lllegal or Unknown Property Values
CSS-conforming browsers must ignore a declaration with an illegal value. For example,

hl {font-size: microscopic; color: red;}

would simply not set the font - size value but hl elements would be red. Usage of illegal
characters can turn what would appear to be a correct value into an incorrect one. For
example,

hl {color: "green";}

is incorrect not because green is an illegal color, but because it is not the same as the
keyword green when it is quoted.

Do not assume that a CSS-compliant browser will fix such small oversights. For
example, a browser given

hl {color: green forest;}

Chapter 4: Introduction to CSS 447

should not use green but instead ignore the whole rule. Of course, what browser vendors
actually do in the face of malformed Web documents varies.

Incorrect @ Keywords and Media Values

When an @ media value or media type for a <style> tag is used, incorrect values should be
ignored. For example, if you specify <style type="text/css" media="tri-corder"s,
the browser is supposed to ignore the entire <style> block unless it understands such an
odd type. Media types will be discussed in depth later, but for now understand that when
faced with syntax problems, a CSS-compliant browser should simply ignore anything
related to misunderstood values.

Ignoring Network Failures
When style sheets are linked rather than placed within the page, the browser must apply all
types it is able to fetch and simply ignore those it can’t. So if you had

<link rel="stylesheet" href="global.css" type="text/css">
<link rel="stylesheet" href="pagelevel.css" type="text/css">

and the first was fetched by the browser, but the second failed, it would simply apply the
rules it had. Obviously, such transitory errors are hard to account for, but other
considerations presented in this section should have been caught in the validation of
markup and style, discussed next.

Validating CSS

Like (X)HTML, it is quite possible to check your style usage against the specification.
This is also called “validation,” though the term “conformance checking” may be more
appropriate, but the intent is still clear. The W3C provides a validation service for CSS at
http:/ /jigsaw.w3.org/css-validator/. As an example, validating the page found at www
.htmlref.com/ch4/hellomalformedcssworld.html shows that it contains a number of simple
errors, as shown here:

<title>Hello Maltormed CSS World</title> Bad property name and value
fstyLe typﬂ—"textfccs'\

body .:background color black; color: white;Eake-— property fakevalue;

{color: red; font-size: xx-large; text-align:
t {color: red; font-size: xx-large}

: y {background-coleor: orange; color: font-style: normal,
</style>
</head>

Bad property value Missing } to
close rule

The previous section identifies what a conformant browser should do with such errors
and, interestingly, the result is that the malformed page should appear the same as the
“well-formed page.” Like HTML, we often won’t pay a price for our mistakes until later.
The good news is that we can easily uncover these types of errors, as shown in Figure 4-6.
Notice that the service shows what is considered the resulting style sheet in light of the
encountered errors.

448 Part I1: Core Style

File Edit View History Bookmarks Tools Help

@;} Gy @!http:.-’}'jiqsaw.wlurq!css-\raiidatnr.fvalidatur':'un':hl‘lp%A%ZF%Zthmll(’1:3 ¥ .ﬂ' Google P| L‘_‘..
| IRl W3c css Validator resuts for httpy/... | @ | [
Destsch English Espafol Francais Ti=tlH Raiano Nederlands H#Ei% Polski Porugués Pyccrwi Svenska FEFI =

Jump to: Errors (3) Validated CSS

W3C CSS Validator results for http://htmiref.com
/ch4/hellomalformedcssworld.html (CSS level 2.1)

Sorry! We found the following errors (3)

URI : hittp://ntmiref com/cha/heliomalformedcssworld. ntmi
8 body Property fake-property doesn't exist : fakevalue

11 fancy Value Error : color the-black-of-night is not a color value : the-black-of-night
11 fancy Parse Error [empty string]

I'he W3C validators rely on community support for hosting and development.
Donate and help us build better tools for a better web.

Valid CSS information

body {
background-color : black:
color : white;

n1 {
color : red;
font-size : xx-large:
teaxt-align * center:

}

#heart {
color : red;
font-size :; xx-large;
}

[/ Done Wy F SQ SEw

Ficure 4-6 Validating CSS

A challenge with CSS validation is that what is valid CSS in the simple sense of rule
definition may not be valid when combined with markup or JavaScript. For example, is the
following rule in error?

<style type="text/css">
#unique {color: red; font-size: xx-large;}
</style>

Chapter 4: Introduction to CSS 449

At first blush there is nothing wrong, but it turns out the id value is used twice, as
demonstrated here:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>CSS Validation Challenges</title>
<style type="text/css">
#unique {color: red; font-size: xx-large;}
</style>
</head>
<body>
<p id="unique">I am the paragraph with id unique.</p>
<p>I am not the unique paragraph.</p>
<p id="unique">Yet another unique paragraph?</p>
</body>
</html>

If this document is CSS validated, everything is apparently okay:

W3C CSS Validator results for http://htmiref.com
[ch4/cssvalidationchallenges.html (CSS level 2.1)

This document validates as CSS level 2.1 |

Ta show your readers that you've taken the care to create an interoperahle Weh page, you may display this
icon on any page that validates. Here is the XHTML you could use to add this icon to your Web page:

tp://)i1gsaw.wi.org/cas-validator/check/reterer™>

1 yle="border:0:width:E¥px:height:3lpx”
w‘ic ©88, src="http://]ig9aw.wi.org/css-validator/images, /vcag”™
alt="Valid CS5!% />

However, with HTML validation we see that is actually not the case:

Validation Output: 1 Error

@ Line 13, Column 7- 1D "UNIQUE" already defined.

<p id=" Unique">¥et another unique paragraph?</p>

An "id" is a unigue identifier. Each time this attribute is used in a document it must have a different
value. If you are using this attribute as a hook for style sheets it may be more appropriate to use
classes (which group elements) than id (which are used to identify exactly one element).

¥ Line 11, Column 71D "UNIQUE" first defined here.

<p id=" Unique">I am the paragraph with id unigque</p>

450

Part Il: Core Style

Again, visually we may get the desired effect of two large red paragraphs, but it isn't
executed correctly and we will potentially pay a price later with JavaScript, which typically
does not allow the same latitude that presentational technologies do. Consider simply that
each layer of technology we add on with small mistakes makes the overall execution
shakier and shakier. Given this foundational approach, we should first validate markup and
then, once it is solid, validate the CSS that is layered on top.

Breaking the Rules Purposefully?

One aspect of CSS syntax that is a bit interesting is the purposeful introduction of errors into
a style sheet to effect a change. Such tricky applications of CSS are often called hacks or
filters and are simply misuses of the technology to address browser rendering concerns. To
explain clearly, let’s illustrate the idea of these techniques using probably the most famous
hack—the “box model hack.”*

What the box model hack addresses is the nasty fact that CSS implementations in older
browsers, particularly the Internet Explorer 5.X generation, is woefully broken. In the case
of such browsers, the measurements of the various large block elements that compose the
boxes of the page are fundamentally off. For example, given a rule like

#boxexample {border: 20px solid;
padding: 30px;
width: 300px; }

some browsers would correctly interpret the total width of the box defined as including the
border and padding values added to the width of the defined box, as follows:

v

A

400 px

! The Box Model Hack was initially introduced by a well-known CSS expert, Tantek Celik (http://tantek
.com/CSS/Examples/boxmodelhack.html), who certainly is quite aware of what to do and not to do with
CSS. The choice of this hack is only illustrative of the break the rules purposefully approach.

Chapter 4: Introduction to CSS 451

However, a browser that misinterprets the CSS box model, such as Internet Explorer 5,
would include the border and padding in the measurement, so it would subtract these
values to produce the rendered region:

< 300 px >

With such a vast difference in measurement, layout variations are quite noticeable:

IE 5.5 needs fix IE 6+ no fix needed

A Bt Gifestm Priory (B Bl -Han OIS

If you have a very old browser, try it yourself at http:/ /htmlref.com/ch4 /boxmodelhack.html.

452

Part Il: Core Style

To get around this difference, ingenious Web developers developed a technique to force
the browser parser in some cases to explode predictably. For example, given

#boxexample {border: 20px solid;
padding: 30px;
width: 300px;}

we first modify it, as shown next, to set the box width to its correct measurement of 400px
for browsers that misinterpret the calculation. Next, we add rules that these older browsers
will have problems with, thus killing the rest of the line. Finally, we add a rule for those
browsers that don’t have issues to reset the width property back to the correctly interpreted
value of 300px.

#boxexample {width: 400px;
voice-family: "\"}\"";
voice-family: inherit;
width: 300px;}

What this hack does is to act as a simple if statement, choosing one width value in one
case and a different one in another. If the solution seems messy and inappropriate to you,
know you aren’t alone. However, recognize that when faced with browser adversity, Web
developers, who are a wily group, will solve almost any problem using only the tools they
know, whether the method is appropriate or not.

You'll certainly see more hacks and inelegant solutions as you explore the use of CSS.
The point here is not only to show that understanding the rules of CSS and browser activity
can be used purposefully, but also to illustrate the Web development truism that, while
we always aim for standards compliance, the need for hacking and addressing browser
incompatibility, just like in the old days of presentational markup, stubbornly lives on.
Regardless of this necessity, let’s move on to explore all the details of how style is applied
to markup.

Applying Style to a Document

Style information can be included in an (X)HTML document using one of three methods:

1. Use an external style sheet, either by importing it or by linking to it.
2. Directly embed a document-wide style in the head element of the document.

3. Set an inline style rule using the style attribute directly on an element.

Each of these style sheet approaches has its own pros and cons, as listed in Table 4-4.

Linking to a Style Sheet

An external style sheet is simply a plain text file containing CSS style rules. The common
file extension . css indicates that the document provides style sheet information. As an

Chapter 4:

Introduction to CSS

External Style Sheets

Document-Wide Style

Inline Style

e Can set and update
styles for many
documents at once.

e Style information is

e Can easily control
style document by
document.

* No additional network

e Can easily control
style to a single
character instance.

e Qverrides any

media="screen">

NOTE A trailing slash is
needed for XHTML.

Pros cached by the browser, requests to retrieve external or document
so there’s no need to style information. styles in the absence
repeat. of ! important

directive.
® Requires extra download * Need to reapply style * Need to reapply
round-trip for the style information for other style information
sheet, which might documents, bulking throughout the
delay page rendering, up the document document and
particularly when and making it more outside documents.

Cons multiple files are difficult to apply e Bound too closely to

in use. updates. markup, making it
® |n some cases when even more difficult

@import is used, the to update than other
browser may cause a approaches.
rendering “flash” under
slow loading conditions.

<link <style type="text/ <hl style="color:

rel="stylesheet" css" media="all"> red;">

href="main.css" hl {color: red;} I am red!

- n
Example type="text/css </style> </hl>

TaBLe 4-4 Comparison of Style Sheet Approaches

example, the following CSS rules can be found in a file called sitestyle.css, which defines a
style sheet used site-wide:

/* sitestyle.css */

body {font-size: medium;

#page {background-color: white;

font-family: Serif;

background-color: black;

color: white;}

color: black;
padding: lem;}

453

454

Part Il: Core Style

hl {font-size: xx-large;
font-family: Sans-Serif;
color: black;
text-align: center;
border-bottom: solid 4px orange;}

p {text-indent: lem;
text-align: justify;
line-height: 150%;}

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

Don’t worry, we haven’t covered all these properties yet, but we will certainly do so as the
book progresses. Fortunately, most of the selectors are simple element and id selectors that
have already been introduced, save the pseudo-classes, a:1ink, a:visited, a:hover, and
a:active, which are selectors that are associated with the various states of a link.

An (X)HTML file could use the style sheet by referencing it by using a <1ink> tag
within the head element of the document. To indicate the relationship between the
documents, set the rel attribute to a value of "stylesheet." The href attribute is used
to specify the URL of the style sheet to fetch. The URL may be relative or even remote,
pointing to a style sheet on some other server, though you should be cautious about
linking to remote files, given download delays and the possibility that the file could be
changed without your knowledge. The type attribute is set to indicate the type of style
sheet technology in use, as defined by the MIME type text/css. The media attribute can
be used to set how the style sheet should be applied. When omitted, the default is "all".
Later in the chapter, we will discuss how it is possible to define different styles for screen,
print, and other potential output environments. The general syntax for associating a style
using a <link> tag is shown here:

<link rel="stylesheet"
href="stylesheet URL"
type="MIME type of stylesheet"
media="media-type">

This syntax is illustrated here with a few examples:

<link rel="stylesheet" href="global.css" type="text/css">

<link rel="stylesheet" href="../styles/mainscreen.css"
type="text/css" media="screen">

<link rel="stylesheet" href="http://htmlref.com/ch4/print.css"
type="text/css" media="print">

Tip Like other dependent files, it is advisable to put all your style sheets in a special styles directory,
usually named “styles” or “css,” available at a site root.

Chapter 4: Introduction to CSS 455

Of course, unless the style is bound into a document related to the defined rules, nothing
will be seen, so a full example is presented here, with a rendering shown in Figure 4-7:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linked Styles</title>

<link rel="stylesheet" href="sitestyle.css" type="text/css" >
</head>

<body>

<div id="page">

<hl>HTML with Linked Style</hl>

<p>Cascading Style Sheets 2.1 as defined by the

W3C provides

powerful page layout facilities. The technology

depends on correct markup so make sure

you get that right too!</p>

</div>

</body>

</html>

ONLINE http://htmlref.com/ch4/linkedstyle.html

CSS is, at least theoretically, not the only style technology we could use, though as it
stands, by default, most browsers assume that CSS is being used. We set type to be specific
but that may get a bit redundant. The HTML specification suggests you can set a default

Linked Styles =) O

File Edit WView History Bookmarks Dewvelop Window Help

HTML with Linked Style

Cascading Style Sheets 2.1 as defined by the W3C provides powerful page layout
facilities. The technology depends on correct m 50 make sure you get that right
too!

Ficure 4-7 Linked style example rendering

456

Part Il: Core Style

style sheet language in the head element of the document by using the <meta> tag, as
shown here,

<meta http-equiv="Content-Style-Type" content="text/css">

or by outputting this value in the HTTP headers delivered to a site. Interestingly, many sites
set the <meta> tag and use the type attribute, which is particularly appropriate as of this
edition’s publication as the specification dictates that the type attribute must be set and
thus the W3C validator will complain if the attribute is not set regardless of the appearance
of the <meta> tag. Check the current situation by validating the file http:/ /htmlref.com/
ch4/metacsscheck.html using the W3 validator service. Depending on the result, you may
notice that specifications or the tools that check them aren’t always perfect.

Embedding Style Sheets

The second way to include a style sheet is to embed it. When you embed a style sheet, you
generally write the style rules directly within the document with a <style> tag found
within the head of the document. The basic syntax of the <style> tag is as follows:

<style type="text/css" media="all | print | screen" >
* style rules here *
</style>

Here, the type attribute is again used to indicate the MIME type of the enclosed style
sheet. However, this is quite often omitted because browsers generally infer CSS. The media
attribute indicates the media for which the style sheet applies. By default, the style sheet is
applied to all media, so most developers omit this attribute as well. However, as mentioned
before, it is possible to define style sheets that are applied only to a particular output
medium. The most common values are "print" and "screen, " which indicates that rules
are applied to the page only when it is printed or correspondingly shown onscreen. Other
values are possible for the media attribute but generally not supported. Within the style
block, style sheet rules are included. It is important to note that once within the <style>
tag, the rules of (X)HTML do not necessarily apply. The <style> tag defines an island of
CSS within an ocean of markup. The two technologies are intertwined, but have their
own distinct characteristics.

One concern when including style sheets within a markup document is that not all user
agents, particularly older ones or certain indexing systems like simplistic bots, may
understand style sheets. Given the possibility that the content of a style sheet is treated as
regular text, it is desirable to mask the rules. To avoid such a problem, comment out the
style information by using an (X)HTML comment, such as <!-- -->:

<style type="text/css" media="all">
<!--

h1 { color: red; font-size: 48px; }
-->

</style>

Chapter 4: Introduction to CSS 457

While this technique is common practice and used for script masking as well, there
are some subtle issues, particularly when including non-comment-friendly content like
multiple dashes or trying to address XML strictness. For now, here’s a complete example of
a document-wide embedded style sheet including a script mask:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Embedded Styles</title>

<style type="text/css" media="all">

<l--

body {font-size: medium;
font-family: Serif;
background-color: black;
color: white;}

#page {background—color: white;
color: black;
padding: lem;}

hl {font-size: xx-large;
font-family: Sans-Serif;
color: black;
text-align: center;
border-bottom: solid 4px orange;}

p {text-indent: lem;
text-align: justify;
line-height: 150%;}

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

-->

</style>

</head>

<body>

<div id="page">

<hl>HTML with Embedded Style</hl>

<p>Cascading Style Sheets 2.1 as defined by the
W3C provides
powerful page layout facilities. The technology
depends on correct markup so make sure

you get that right too!</p>

</div>

</body>

</html>

ONLINE http://ntmlref.com/chd/embeddedstyle.html

458

Part Il: Core Style

You can have multiple occurrences of the style element within the head of the
document, and you can even import some styles with these elements, as discussed next.

Importing Style Sheets

Another way to use document-wide style rules rather than type the properties directly within
a <style> tag is to import them. The idea is somewhat similar to linking. An external style
sheet is still referenced, but in this case, the reference is similar to a macro or inline expansion.
The syntax for importing a style sheet is @ mport, followed by the keyword url and the
actual URL of the style sheet to include, and terminated with a semicolon:

@import url (corerules.css);

Though not advisable stylistically or for ensured browser compatibility, the specification
also allows us to set a string after @import of the URL, like so:

@import "corerules.css";

The @import directive must be included within a <style> tag and it must precede all
other types of rules in a style sheet. In practice, we might see an intermixture of imported
and embedded styles within a single <style> tag, as shown in this example:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Imported Styles</title>

<style type="text/css" media="all">

<!--

@import url (corerules.css);

@import url (linkrules.css);

hl {font-size: xx-large;
font-family: Sans-Serif;
color: black;
text-align: center;
border-bottom: solid 4px orange;}

p {text-indent: lem;
text-align: justify;
line-height: 150%;}
-—=>
</style>
</head>
<body>
<div id="page">
<hl1>HTML with Imported Style</hl>
<p>Cascading Style Sheets 2.1 as defined by the
W3C provides
powerful page layout facilities. The technology

Chapter 4: Introduction to CSS 459

depends on correct markup so make sure
you get that right too!</p>

</div>

</body>

</html>

ONLINE http://htmlref.com/chd/importedstyle.html

In the preceding example, we could include rules for body and div in the file corestyles.
css, whereas the rules affecting the links are included via the document linkstyles.css. We
might imagine that these rules are used in other style sheets, and thus breaking them out for
reuse via embedding or linking makes sense. Rules for h1 and p elements are placed within
the style block because they may be specific to this particular page.

CSS Hacks with @import

Although imported style sheets might seem to provide a great advantage for organizing
style information, they provide much the same value as a <1ink> element. However, CSS
developers did discover that the limited support of @import in some browsers could

be used to their advantage. For example, some very old, partially CSS-aware browsers,
particularly Netscape 4.x, did not support the @import directive properly. Because of this,
you would see page authors write rules such as this:

<style type="text/css" media="all">

<!--

/* rules hidden from non-import supporting browsers */
@import url (hackingrules.css) ;

/* other rules here */
-->
</style>

Similar to the box-model hack discussed earlier in the chapter, this kind of rudimentary
selection statement approach, developed by understanding the likely behavior of a browser,
is really somewhat of a hack. Even worse, we see that the effect of using @import is an
annoying flashing of unstyled content in some older Internet Explorer versions. Because of
the potential problems with @import, Web page designers should consider well why they
need an outside inclusion scheme besides linked styles, until such quirks are ancient history.

Inline Styles

Instead of using a style sheet for a whole page, you can add style information directly within
a single element. Suppose you want to set one particular <h1> tag to render in extra-large,
green, Arial font. You could quickly apply the style to only the tag in question using its
style attribute, which is a core attribute common to nearly any HTML element. As an
example, the following markup shows an inline style applied to a heading:

<hl style="font-size: xx-large; font-family: Arial; color: green;">Inline
Style!</hl>

This sort of style information doesn’t need to be hidden from a browser that isn’t style
sheet—aware, because browsers ignore any attributes that they don’t understand.

460

Part Il: Core Style

Although using inline styles seems to be an easy route to using CSS, it does have a
number of drawbacks. The largest problem is that inline rules are bound very closely to a tag.
If you want to affect more than one <h1> tag, you have to copy and paste the style attribute
into every other heading of interest. The separation of markup from CSS presentation is not
optimal with an inline style. However, for quick and dirty application of CSS rules, this might
be appropriate, particularly for testing things out.

The second and lesser-known concern with inline CSS rules is that you simply cannot
perform every task with them. For example, if you want to change the look of various link
states, this is easily accomplished in a document-wide or linked style sheet with pseudo-class
rules like

a:link {color: blue; text-decoration: none;}
a:visited {color: red; text-decoration: none;}
a:hover {color: red; text-decoration: underline;}
a:active {color: red; text-decoration: none;}

However, if you attempt to put such rules in an <a> tag, how are other states indicated? The
simple example here would appear to set the color to blue for any state:

Inline Link Styles?

Similarly, in order to change the first letter of a paragraph to large, red text, you might
use a pseudo-element rule like

p:first-letter {color: red; font-size: xx-large;}

However, when you attempt to do this inline, you are forced to introduce an element to
hold the first letter:

<p>This is a test.</p>

While these examples indicate why these selectors were given the names pseudo-class
and pseudo-element, they don’t really show us how to use such inline styles.

It turns out that a working draft specification for addressing this issue was explored in
20022. The idea was to include style blocks without a selector for the default style and for
the various other selectors for the element, state rules directly within the style attribute.
For example, to set the link states, we would use:

<a href="http://www.w3.org/"
style="{text-decoration: none;}
:link {color: blue;}
:visited {color: red;}
:hover {color: red; text-decoration: underline;}
:active {color: red;}">Inline Link Styles?

To set the first letter on paragraphs, we would use:
<p style="{text-indent: lem;

text-align: justify;
line-height: 150%;}

2www.w3.org/TR/css-style-attr

Chapter 4: Introduction to CSS$

:first-letter {color: red; font-size: xx-large;}">
This is a test.</p>

The emerging specification even suggested the importation of style sheets directly inline:

<div id="navbar"
style="@import url (navigationstyles.css);">just an example</div>

While all these ideas are quite interesting, more than seven years after the working draft
was authored, not a single browser supports this syntax at the time this edition is being
completed. So, besides being too closely bound to tags, understand that unless this situation
has changed by the time you read this edition, only using inline styles is going to limit your
application of some of the more useful CSS selectors.

NOTE In numerous places in this book, inline styles will be used to demonstrate the application of
look. While it is clear this choice does not demonstrate the ideal approach to bind style to markup,
the decoupled nature of other approaches simply does not lend itself to explanations in prose.
Frequent reminders will be given to encourage you to more loosely couple style and markup once

you understand the property or tag in question.

Media Types

A significant goal of CSS2 was to add support for other output media forms beyond the

computer screen. The CSS 2.1 specification defines numerous media types, listed in Table 4-5.

Today, primarily the values all, screen, and print are used, so until browser vendors or
developers of other user agents begin to support additional media types, these definitions
have no meaning outside of the specification.

Media Type Definition

all For use with all devices.

aural For use with speech synthesizers.

braille For use with tactile Braille devices.

embossed For use with Braille printers.

handheld For use with handheld devices.

print For use with printed material and documents viewed onscreen in print preview mode.

projection

For use with projected media (direct computer-to-projector presentations), or printing
transparencies for projection.

screen For use with color computer screens.

speech For use with speech-synthesized voice. CSS2 used the value aural instead.

tty For use with low-resolution teletypes, terminals, or other devices with limited
display capabilities.

tv For use with television-type devices.

TaBLE 4-5 Media Types Defined Under CSS2.1

461

462

Part Il: Core Style

Tip If you are curious to experiment with other media type values beyond screen and print, the
Opera browser (www.opera.com) supports a number of types beyond what more popular browsers
support.

CSS provides two main ways to define media types for style sheets. The first method
simply uses the media attribute for the <1ink> tag to define the media type. This attribute
enables the page designer to define one style for computer screens, one for print, and
perhaps one for handheld devices or other supported media types. For example, here we
associate three different style sheets that vary by media:

<link rel="stylesheet" href="screen.css" media="screen"
type="text/css">

<link rel="stylesheet" href="smallscreen.css" media="handheld"
type="text/css">

<link rel="stylesheet" href="print.css" media="print"
type="text/css">

Multiple values also can be set for the attribute. These should be separated by commas,
to show that the style can apply to many media forms; for example:

<link rel="stylesheet" href="screen.css" media="screen, projection, tv"
type="text/css">

The default value for media is all and is applied if the attribute is not used.
When using an embedded style sheet, the media attribute is used in a similar way:

<style type="text/css" media="screen, projection, tv">
/* screen rules */
</style>

<style type="text/css" media="print">
/* print rules */
</style>

When styles are imported, the @import rule can also be used with a media type by
adding the appropriate media type after defining the URL, as shown in this code
fragment:

@import url("screen.css") screen;
@import url ("print.css") print;

A @media rule is used to define style rules for multiple media types in a single
embedded style sheet:

<style type="text/css">
@emedia screen { /* screen rules */ }
@emedia print { /* print rules */ }

@media screen, print { /* screen and print rules */ }

</style>

Chapter 4: Introduction to CSS$

The syntax may look a little odd because you have to wrap style blocks with more curly
braces, like so:

<style type="text/css">

@emedia screen {body
{font-family: sans-serif;
font-size: 14px;}

}

emedia print {body
{font-family: serif;
font-size: 10px;}

</style>

Similar to limitations of inline styles for supporting pseudo-classes and pseudo-elements,
it is not possible at the time of this edition’s writing to build equivalent media-specific syntax
into a value present in an element’s core style attribute. However, given the previous
discussion of possible changes to inline styles, it seems likely that syntax like

<p style="@media print {line-height: 100%; font-size: 10px;}
@media screen {line-height: 150%;}">
This is a test.</p>

might someday be supported in a browser. However, this is purely speculation on the
author’s part, and the example and discussion here should be yet more indication that
inline styles have their limitations.

NOTE One exciting emerging use of media attributes and emedia directives is the use of queries
to apply different looks depending on device characteristics. See the Chapter 6 section “Media
Queries” for more information.

Printer-Specific CSS

Currently, the main use of media-specific style sheets is to specify one style sheet for
printing and one for viewing onscreen, as demonstrated here:

T i e T Ly i —r | B ot T bt - bl Db -, |
bo [ety Bt It Mo} { o) Pup i o5 R
@ c ko G .

Pros Bt Een [T Tprer———

Print Styles in Action
Print Styles In Action

Link 1

wink £

Link 3
|
1
=LA

_tnké |

& just dumeny tast tn Al up thes
rrimy beect. It b fakco. It i Boring. It
iy o you du Lk L0 yoursel 7 Are you

| bettor ond Bhis exsmple before you really start
ing t=ahul k b b found have. Remarmbar | am only keoking out
Tor VOU e reader. NOW DEC BaCk T te restof te book.

463

464

Part Il: Core Style

All modern browsers support printer styles, which would seem to suggest that the
practice of inserting a special “print format” button is obsolete. However, the sense of
“what you see is what you get” is important to users, so it is a good idea usability-wise to
allow the user to easily preview the printed page.

A printer style sheet may be used