

HTML5

Matthew MacDonald

Beijing | Cambridge | Farnham | Köln | Sebastopol | Tokyo

The book that should have been in the box®

HTML5: The Missing Manual
by Matthew MacDonald

Copyright © 2011 Matthew MacDonald. All rights reserved.

Printed in the Unites States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles: http://my.safaribooksonline.com. For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Printing History:

August 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O’Reilly logo, and “The book that should
have been in the box” are registered trademarks of O’Reilly Media, Inc. HTML5: The Missing
Manual, The Missing Manual logo, Pogue Press, and the Pogue Press logo are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-1-449-30239-9

[M]

iii

Table of Contents

The Missing Credits . xi

Introduction . 1

Part One: Meet the New Language
Chapter 1: Introducing HTML5 . 11

The Story of HTML5 . 11
XHTML 1.0: Getting Strict . 12
XHTML 2: The Unexpected Failure . 12
HTML5: Back From the Dead . 13
HTML: The Living Language . 14

Three Key Principles of HTML5 . 15
1. Don’t Break the Web . 15
2. Pave the Cowpaths. 17
3. Be Practical . 17

Your First Look at HTML5 Markup . 18
The HTML5 Doctype . 20
Character Encoding . 21
The Language . 21
Adding a Style Sheet . 22
Adding JavaScript . 22
The Final Product . 23

A Closer Look at HTML5 Syntax . 24
The Loosened Rules . 24
HTML5 Validation . 25
The Return of XHTML . 27

iv table of contents

HTML5’s Element Family . 29
Added Elements . 29
Removed Elements . 30
Adapted Elements . 30
Tweaked Elements . 32
Standardized Elements . 33

Using HTML5 Today . 34
Evaluating Browser Support . 34
Browser Adoption Statistics . 36
Feature Detection with Modernizr . 38
Feature “Filling” with Polyfills . 40

Chapter 2: A New Way to Structure Pages 43
Introducing the Semantic Elements . 44
Retrofitting a Traditional HTML Page . 45

Page Structure the Old Way . 47
Page Structure with HTML5 . 49
Subtitles with <hgroup> . 52
Adding a Figure with <figure> . 53
Adding a Sidebar with <aside> . 56

Browser Compatibility for the Semantic Elements . 57
Designing a Site with the Semantic Elements . 60

Deeper into Headers . 61
Navigation Links with <nav> . 62
Deeper into Footers . 67
Deeper into Sections . 69

The HTML5 Outlining System . 70
How to View an Outline . 70
Basic Outlines . 71
Sectioning Elements . 73
Solving an Outline Problem . 76

Chapter 3: Meaningful Markup . 81
The Semantic Elements Revisited . 82

Dates and Times with <time> . 83
JavaScript Calculations with <output> . 84
Highlighted Text with <mark> . 86

Other Standards that Boost Semantics . 87
ARIA (Accessible Rich Internet Applications) . 88
RDFa (Resource Description Framework) . 89
Microformats . 89
Microdata . 95

Google Rich Snippets . 97
Enhanced Search Results . 98
The Recipe Search Engine . 101

vtable of contents

Part Two: Creating Modern Web Pages
Chapter 4: Web Forms, Refined . 107

Understanding Forms . 108
Revamping a Traditional HTML Form . 109

Adding Hints with Placeholders . 113
Focus: Starting in the Right Spot . 115

Validation: Stopping Errors . 116
How HTML5 Validation Works . 116
Turning Validation Off . 118
Validation Styling Hooks . 119
Validating with Regular Expressions . 120
Custom Validation . 121
Browser Support for Validation . 123

New Types of Input . 125
Email Addresses . 128
URLs . 128
Search Boxes . 128
Telephone Numbers . 129
Numbers . 129
Sliders . 130
Dates and Times . 131
Colors . 132

New Elements . 132
Input Suggestions with <datalist> . 133
Progress Bars and Meters . 135
Toolbars and Menus with <command> and <menu> 138

An HTML Editor in a Web Page . 138
Using contentEditable to Edit an Element . 138
Using designMode to Edit a Page . 141

Chapter 5: Audio and Video . 143
Understanding Video Today . 144
Introducing HTML5 Audio and Video . 145

Making Some Noise with <audio> . 145
Getting the Big Picture with <video> . 148

Format Wars and Fallbacks . 149
Meet the Formats . 150
Browser Support for Media Formats . 152
Multiple Formats: How to Please Every Browser . 154
The <source> Element . 154
The Flash Fallback . 155

Controlling Your Player with JavaScript . 160
Adding Sound Effects . 160
Creating a Custom Video Player . 163
JavaScript Media Players . 166
Captions and Accessibility . 168

vi table of contents

Chapter 6: Basic Drawing with the Canvas 171
Getting Started with the Canvas . 172

Straight Lines . 174
Paths and Shapes . 177
Curved Lines . 179
Transforms . 182
Transparency . 185

Building a Basic Paint Program . 188
Preparing to Draw . 189
Drawing on the Canvas . 190
Saving the Picture in the Canvas . 192

Browser Compatibility for the Canvas . 195
Polyfilling the Canvas . 196
The Canvas Fallback and Feature Detection . 197

Chapter 7: Deeper into the Canvas . 199
Other Things You Can Draw on the Canvas . 200

Drawing Images . 200
Slicing, Dicing, and Resizing an Image . 202
Drawing Text . 203

Shadows and Fancy Fills . 205
Adding Shadows . 205
Filling Shapes with Patterns . 207
Filling Shapes with Gradients . 208
Putting It Together: Drawing a Graph . 211

Making Your Shapes Interactive . 216
Keeping Track of What You’ve Drawn . 217
Hit Testing with Coordinates . 220

Animating the Canvas . 222
A Basic Animation . 223
Animating Multiple Objects . 224

A Practical Example: the Maze Game . 229
Setting Up the Maze . 229
Animating the Face . 232
Hit Testing with Pixel Colors . 234

Chapter 8: Boosting Styles with CSS3 237
Using CSS3 Today . 238

Strategy 1: Use What You Can . 238
Strategy 2: Treat CSS3 Features as Enhancements . 238
Strategy 3: Add Fallbacks with Modernizr . 240
Browser-Specific Styles . 243

viitable of contents

Web Typography . 244
Web Font Formats . 245
Using a Font Kit . 247
Using Google Web Fonts . 250
Using Your Own Fonts . 252
Putting Text in Multiple Columns . 253

Adapting to Different Devices . 255
Media Queries . 256
More Advanced Media Queries . 259
Replacing an Entire Style Sheet . 261
Recognizing Mobile Devices . 261

Building Better Boxes . 263
Transparency . 263
Rounded Corners . 265
Backgrounds . 266
Shadows . 268
Gradients . 269

Creating Effects with Transitions . 271
A Basic Color Transition . 272
More Transition Ideas . 274
Transforms . 274

Part Three: Building Web Apps with Desktop Smarts
Chapter 9: Data Storage . 281

Web Storage Basics . 282
Storing Data . 283
A Practical Example: Storing the Last Position in a Game 285
Browser Support for Web Storage . 287

Deeper into Web Storage . 288
Removing Items . 288
Finding All the Stored Items . 288
Storing Numbers and Dates . 289
Storing Objects . 290
Reacting to Storage Changes . 292

Reading Files . 294
Getting Hold of a File . 295
Browser Support for the File API . 295
Reading a Text File . 296
Replacing the Standard Upload Control . 298
Reading Multiple Files at Once . 298
Reading an Image File . 299

viii table of contents

Chapter 10: Offline Applications . 303
Caching Files with a Manifest . 304

Creating a Manifest . 305
Using Your Manifest . 307
Putting Your Manifest on a Web Server . 308
Updating the Manifest File . 310
Browser Support for Offline Applications . 312

Practical Caching Techniques . 314
Accessing Uncached Files . 314
Adding Fallbacks . 315
Checking the Connection . 317
Pointing Out Updates with JavaScript . 318

Chapter 11: Communicating with the Web Server 323
Sending Messages to the Web Server . 324

The XMLHttpRequest Object . 325
Asking the Web Server a Question . 325
Getting New Content . 330

Server-Sent Events . 333
The Message Format . 334
Sending Messages with a Server Script . 335
Processing Messages in a Web Page . 337
Polling with Server-Side Events . 339

Web Sockets . 340
Assessing Web Sockets . 341
A Simple Web Socket Client . 343
Web Socket Examples on the Web . 344

Chapter 12: More Cool JavaScript Tricks 347
Geolocation . 348

How Geolocation Works . 349
Finding a Visitor’s Coordinates . 351
Dealing with Errors . 353
Setting Geolocation Options . 355
Showing a Map . 356
Monitoring a Visitor’s Moves . 360

Web Workers . 360
A Time-Consuming Task . 362
Doing Work in the Background . 364
Handling Worker Errors . 367
Canceling a Background Task . 367
Passing More Complex Messages . 368

ixtable of contents

History Management . 371
The URL Problem . 372
The Traditional Solution: Hashbang URLs . 373
The HTML5 Solution: Session History . 374
Browser Compatibility for Session History . 377

Part Four: Appendixes
Appendix A: A Very Short Introduction to CSS 381

Appendix B: A Very Short Introduction to JavaScript 397

Index . 419

xi

The Missing Credits

About the Author
Matthew MacDonald is a science and technology writer with well
over a dozen books to his name. Web novices can tiptoe out onto
the Internet with him in Creating a Website: The Missing Manual.
Office geeks can crunch the numbers in Excel 2010: The Missing
Manual. And human beings of all description can discover just
how strange they really are in the quirky handbooks Your Brain:
The Missing Manual and Your Body: The Missing Manual.

About the Creative Team
Nan Barber (editor) has been working on the Missing Manual series since its in-
ception. She lives in Massachusetts with her husband and various Apple products.
Email: nanbarber@oreilly.com.

Adam Zaremba (production editor) has a master’s degree from the Editorial Insti-
tute at Boston University. He lives in Chestnut Hill, Mass., and his favorite color is
yellow...no, blue!

Shelley Powers (technical reviewer) is a former HTML5 working group member
and author of several O’Reilly books. She is also an animal welfare advocate, working
to close down puppy mills in Missouri. Website: http://burningbird.net.

Steve Suehring (Tech Reviewer) is a technical architect with an extensive back-
ground finding simple solutions to complex problems. Steve plays several musical
instruments (not at the same time) and can be reached through his web site http://
www.braingia.org.

Credits

xii the missing credits

Julie Van Keuren (proofreader) is a freelance editor and desktop publisher who
runs her “little media empire” from her home in Billings, Montana. In her spare
time, she enjoys swimming, biking, running, and (hey, why not?) triathlon. Email:
little_media@yahoo.com.

Denise Getz (indexer) is a full-time freelance indexer, specializing in IT, health, and
religious studies. Her current extracurricular passions include photography, Qigong,
and raw foods cuisine. Website: www.access-indexing.com.

Acknowledgments
No author could complete a book without a small army of helpful individuals. I’m
deeply indebted to the whole Missing Manual team, especially my editor, Nan Barber,
who never seemed fazed by the shifting sands of HTML5; and expert tech reviewers
Shelley Powers and Steve Suehring, who helped spot rogue errors and offered con-
sistently good advice. And, as always, I’m also deeply indebted to numerous others
who’ve toiled behind the scenes indexing pages, drawing figures, and proofreading
the final copy.

Finally, for the parts of my life that exist outside this book, I’d like to thank all my
family members. They include my parents, Nora and Paul; my extended parents,
Razia and Hamid; my wife Faria; and my daughters, Maya and Brenna. Thanks,
everyone!

—Matthew MacDonald

The Missing Manual Series
Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features a
handcrafted index; cross-references to specific pages (not just chapters); and Rep-
Kover, a detached-spine binding that lets the book lie perfectly flat without the as-
sistance of weights or cinder blocks.

Recent and upcoming titles include:

Access 2007: The Missing Manual by Matthew MacDonald

Access 2010: The Missing Manual by Matthew MacDonald

Buying a Home: The Missing Manual by Nancy Conner

CSS: The Missing Manual, Second Edition, by David Sawyer McFarland

Creating a Website: The Missing Manual, Second Edition, by Matthew MacDonald

David Pogue’s Digital Photography: The Missing Manual by David Pogue

Dreamweaver CS4: The Missing Manual by David Sawyer McFarland

Dreamweaver CS5: The Missing Manual by David Sawyer McFarland

Droid X2: The Missing Manual by Preston Gralla

Credits

xiiithe missing credits

Droid 2: The Missing Manual by Preston Gralla

Excel 2007: The Missing Manual by Matthew MacDonald

Excel 2010: The Missing Manual by Matthew MacDonald

Facebook: The Missing Manual, Second Edition, by E.A. Vander Veer

FileMaker Pro 10: The Missing Manual by Susan Prosser and Geoff Coffey

FileMaker Pro 11: The Missing Manual by Susan Prosser and Stuart Gripman

Flash CS5: The Missing Manual by Chris Grover

Flash CS5.5: The Missing Manual by Chris Grover

Google Apps: The Missing Manual by Nancy Conner

iMovie ’08 & iDVD: The Missing Manual by David Pogue

iMovie ’09 & iDVD: The Missing Manual by David Pogue and Aaron Miller

iPad: The Missing Manual by J.D. Biersdorfer and David Pogue

iPhone: The Missing Manual, Second Edition, by David Pogue

iPhone App Development: The Missing Manual by Craig Hockenberry

iPhoto ’08: The Missing Manual by David Pogue

iPhoto ’09: The Missing Manual by David Pogue and J.D. Biersdorfer

iPod: The Missing Manual, Eighth Edition, by J.D. Biersdorfer and David Pogue

JavaScript & jQuery: The Missing Manual by David Sawyer McFarland

Living Green: The Missing Manual by Nancy Conner

Mac OS X Snow Leopard: The Missing Manual by David Pogue

Mac OS X Lion: The Missing Manual by David Pogue

Microsoft Project 2007: The Missing Manual by Bonnie Biafore

Microsoft Project 2010: The Missing Manual by Bonnie Biafore

Netbooks: The Missing Manual by J.D. Biersdorfer

Office 2007: The Missing Manual by Chris Grover, Matthew MacDonald, and E.A.
Vander Veer

Office 2010: The Missing Manual by Nancy Connor, Chris Grover, and Matthew
MacDonald

Office 2008 for Macintosh: The Missing Manual by Jim Elferdink

Office 2011 for Macintosh: The Missing Manual by Chris Grover

Palm Pre: The Missing Manual by Ed Baig

Credits

xiv the missing credits

PCs: The Missing Manual by Andy Rathbone

Personal Investing: The Missing Manual by Bonnie Biafore

Photoshop CS4: The Missing Manual by Lesa Snider

Photoshop CS5: The Missing Manual by Lesa Snider

Photoshop Elements 8 for Mac: The Missing Manual by Barbara Brundage

Photoshop Elements 8 for Windows: The Missing Manual by Barbara Brundage

Photoshop Elements 9: The Missing Manual by Barbara Brundage

PowerPoint 2007: The Missing Manual by E.A. Vander Veer

Premiere Elements 8: The Missing Manual by Chris Grover

QuickBase: The Missing Manual by Nancy Conner

QuickBooks 2010: The Missing Manual by Bonnie Biafore

QuickBooks 2011: The Missing Manual by Bonnie Biafore

Quicken 2009: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Snow Leopard Edition, by David Pogue

Switching to the Mac: The Missing Manual, Lion Edition, by David Pogue

Wikipedia: The Missing Manual by John Broughton

Windows XP Home Edition: The Missing Manual, Second Edition, by David Pogue

Windows XP Pro: The Missing Manual, Second Edition, by David Pogue, Craig Zacker,
and Linda Zacker

Windows Vista: The Missing Manual by David Pogue

Windows 7: The Missing Manual by David Pogue

Word 2007: The Missing Manual by Chris Grover

Your Body: The Missing Manual by Matthew MacDonald

Your Brain: The Missing Manual by Matthew MacDonald

Your Money: The Missing Manual by J.D. Roth

1

Introduction

At first glance, you might assume that HTML5 is the fifth version of the
HTML web-page-writing language. But the real story is a whole lot messier.

HTML5 is a rebel. It was dreamt up by a loose group of freethinkers who
weren’t in charge of the official HTML standard. It allows page-writing practices
that were banned a decade ago. It spends thousands of words painstakingly telling
browser makers how to deal with markup mistakes, rather than rejecting them out-
right. It finally makes video playback possible without a browser plug-in like Flash.
And it introduces an avalanche of JavaScript-fueled features that can give web pages
some of the rich, interactive capabilities of desktop software.

Understanding HTML5 is no small feat. The most significant challenge is that people
use the word HTML5 to refer to a dozen or more separate standards. (As you’ll learn,
this problem is the result of HTML5’s evolution. It began as a single standard and
was later broken into more manageable pieces.) In fact, HTML5 has come to mean
“HTML5 and all its related standards” and, even more broadly, “the next generation
of web-page-writing technologies.” That’s the version of HTML5 that you’ll explore
in this book: everything from the HTML5 core language to a few new features are
lumped in with HTML5 even though they were never a part of the standard.

This brings you to the second challenge of HTML5: browser support. Different
browsers support different parts of HTML5, and there are some painfully new fea-
tures that still don’t work in any browser, anywhere.

Introduction

2 html5: the missing manual

Despite these difficulties, there’s one fact that no one challenges: HTML5 is the fu-
ture. Huge software companies like Apple and Google have lent it support; the W3C
(World Wide Web Consortium) has given up its work on XHTML to formalize and
endorse it; and every browser maker now supports a significant part of it. And if you
read this book, you too can join the HTML5 party while it’s still fun and exciting,
and create cool pages like the one shown in Figure I-1.

Figure I-1:
In the dark old days of the
Web (in other words, last
year), you had to build
your web page games
with a browser plug-in like
Flash. But with HTML5’s
new features, including the
canvas (shown here), you
can use trusty, plug-in-free
JavaScript. Here, HTML5
powers a maze game that
you’ll dissect in Chapter 7.

What You Need to Get Started
This book covers HTML5, the latest and greatest version of the HTML standard.
And while you don’t need to be a markup master to read it, you do need some previ-
ous web design experience. Here’s the official rundown:

• Web page writing. This book assumes you’ve written at least a few web pages
before (or at the very least, you understand how to use HTML elements to struc-
ture content into headings, paragraphs, and lists). If you’re new to web design,

Introduction

3introduction

you’re better off with a gentler introduction, like my own Creating a Website:
The Missing Manual. (But don’t worry, you won’t be trapped in the past, as all
the examples in Creating a Website are valid HTML5 documents.)

• Style sheet experience. No modern website is possible without CSS (the Cas-
cading Style Sheet standard), which supplies the layout and formatting for web
pages. To follow along in this book, you should know the basics of style sheets—
how to create them, what goes inside, and how to attach one to a page. If you’re
a bit hazy on the subject, you can catch up in Appendix A (“A Very Short Intro-
duction to CSS”). But if you need more help, or if you just want to sharpen your
CSS skills to make truly cool layouts and styles, check out a supplementary book
like CSS: The Missing Manual by David Sawyer McFarland (O’Reilly).

• JavaScript experience. No, you don’t need JavaScript to create an HTML5 page.
However, you do need JavaScript if you want to use many of HTML5’s slickest
features, like drawing on a canvas or talking to a web server. If you have a smat-
tering of programming experience but don’t know much about JavaScript, then
Appendix B (“A Very Short Introduction to JavaScript”) can help you get up to
speed. But if the idea of writing code sounds about as comfortable as crawling
into bed with an escaped python, then you’ll either end up skipping a lot of
material in this book, or you’ll need to fill in the gaps with a supplementary
book like JavaScript & jQuery: The Missing Manual by David Sawyer McFarland
(O’Reilly).

If these requirements made your head spin a bit—well, that’s the cost of living on the
bleeding edge of web design.

Writing HTML5
You can write HTML5 pages using the same software you use to write HTML pages.
That can be as simple as a lowly text editor, like Notepad (on Windows) or TextEdit
(on Mac). Many current design tools (like Adobe Dreamweaver and Microsoft Ex-
pression Web) have templates that let you quickly create new HTML5 documents.
However, the basic structure of an HTML5 page is so simple that you can use any
web editor to create one, even if your web editor wasn’t specifically designed for
HTML5.

Note: And of course, it doesn’t matter whether you do your surfing and web page creation on a Windows
PC or the latest MacBook—HTML5 supports operating systems of all stripes.

Viewing HTML5
The question everyone likes to ask is, “Which browsers support HTML5?” Sadly, it’s
a question with no clear-cut answer. As you’ll discover in this book, HTML5 is really
a collection of independent standards. Some of it is already supported; some of it

Introduction

4 html5: the missing manual

won’t be supported for several years (and may never be). All the rest falls somewhere
in the middle—which means that HTML5 works in some versions of some browsers.

Here are some browsers that support some significant portion of HTML5 without
requiring workarounds:

• Internet Explorer 9 and later
• Firefox 3.5 and later
• Google Chrome 8 and later
• Safari 4 and later
• Opera 10.5 and later

Support improves with later releases. For example, Firefox 5 has far better HTML5
support than Firefox 3.5.

Before encouraging you to use a new HTML5 feature, this book clearly indicates
that feature’s current level of browser support. Of course, browser versions change
relatively quickly, so you’ll want to perform your own up-to-date research before you
embrace any feature that might cause problems. The website http://caniuse.com lets
you look up specific features and tells you exactly which browser versions support it.
(You’ll learn more about this useful tool on page 4.)

Note: This book discusses features that are known not to work in some browsers. Don’t panic. It’s per-
fectly fine if you just want to dip a toe into the waters of HTML5 and focus on the bits you can use today.
Think of the rest as a sneak peek into the future of the Web.

When Will HTML5 Be Ready?
The short answer is “now.” Even the despised Internet Explorer 6, which is 10 years
old and chock-full of website-breaking quirks, can display HTML5 documents.
That’s because the HTML5 standard was intentionally created in a way that em-
braces and extends traditional HTML.

The more detailed answer is “it depends.” As you’ve already learned, HTML5 is a
collection of different standards with different degrees of browser support. So al-
though every web developer can switch over to HTML5 documents today (and some
big sites, like Google, YouTube, and Wikipedia, already have), it may be years before
it’s safe to use the bulk of HTML5’s fancy new features—at least without adding
some sort of fallback mechanism for less-enlightened browsers.

Note: It really doesn’t matter whether a given feature is part of one specification or another—what matters
is its current web browser support (and the likelihood that nonsupporting browsers will add support in the
future). When this book introduces a new feature, it carefully points out where it’s defined and how well
it’s supported.

Introduction

5introduction

As a standards-minded developer, you also might be interested in knowing how far
the various standards are in their journey toward official status. This is complicated
by the fact that the people who dreamt up HTML5 have a slightly subversive phi-
losophy, and they often point out that what browsers support is more important than
what the official standard says. (In other words, go ahead and use everything that
you want right now, if you can get it to work.) But web developers, big companies,
governments, and other organizations often take their cue about whether a language
is ready to use by looking at the status of its standard.

Technically, the HTML5 language is now in the hands of the W3C as a working
draft. This designation indicates it’s a fairly mature standard, but one that could still
change as it passes through the candidate recommendation stage (probably sometime
in 2012). The actual recommendation stage, which involves plenty of testing, could
be many years later. But that isn’t as important, because there’ll be few changes at that
point, and everyone who wants to use HTML5 will already be on the bandwagon.

About the Outline
This book crams a comprehensive HTML5 tutorial into 12 chapters. Here’s what
you’ll find:

Part One: Meet the New Language
• Chapter 1 (“Introducing HTML5”) explains how HTML turned into HTML5.

You’ll take your first look at an HTML5 document, see how the language has
changed, and take a look at browser support.

• Chapter 2 (“A New Way to Structure Pages”) tackles HTML5’s semantic
elements—a group of elements that can inject meaning into your markup. Used
properly, this extra information can help browsers, screen readers, web design
tools, and search engines work smarter.

• Chapter 3 (“Meaningful Markup”) goes deeper into the world of semantics
with add-on standards like microdata. And while it may seem a bit theoretical,
there’s a fat prize for the web developers who understand it best: better, more
detailed listings in search engines like Google.

Part Two: Creating Modern Web Pages
• Chapter 4 (“Web Forms, Refined”) explores HTML5’s changes to the web form

elements—the text boxes, lists, checkboxes, and other widgets that you use to
collect information from your visitors. HTML5 adds a few frills and some basic
tools for catching data-entry errors.

• Chapter 5 (“Audio and Video”) hits one of HTML5’s most exciting new fea-
tures: its support for audio and video playback. You’ll learn how to survive Web
Video Codec Wars to create playback pages that work in every browser, and
you’ll even see how to create your own customized player.

Introduction

6 html5: the missing manual

• Chapter 6 (“Basic Drawing with the Canvas”) introduces the two-dimensional
drawing surface called the canvas. You’ll learn how to paint it with shapes, pic-
tures, and text, and even build a basic drawing program (with a healthy dose of
JavaScript code).

• Chapter 7 (“Deeper into the Canvas”) pumps up your canvas skills. You’ll
learn about shadows and fancy patterns, along with more ambitious canvas
techniques like clickable, interactive shapes and animation.

• Chapter 8 (“Boosting Styles with CSS3”) introduces the latest version of the
CSS3 standard, which complements HTML5 nicely. You’ll learn how to jazz up
your text with fancy fonts, adapt your page to different types of mobile devices,
and add eye-catching effects with transitions.

Part Three: Building Web Apps with Desktop Smarts
• Chapter 9 (“Data Storage”) covers the new web storage feature that lets you

store small bits of information on the visitor’s computer. (It’s like a super-
convenient version of the cookie feature.) You’ll also learn about ways to pro-
cess a user-selected file in your web page JavaScript code, rather than on the
web server.

• Chapter 10 (“Offline Applications”) explores the new HTML5 caching feature
that can let a browser keep running a web page, even if it loses the web connection.

• Chapter 11 (“Communicating with the Web Server”) dips into the challeng-
ing world of web server communication. You’ll start with the time-honored
XMLHttpRequest object, which lets your JavaScript code contact the web server
and ask for information. Then you’ll move on to two newer features: server-side
events and the more ambitious (and not-nearly-finished) web sockets.

• Chapter 12 (“More Cool JavaScript Tricks”) covers three miscellaneous fea-
tures that address challenges in modern web applications. First, you’ll see how
geolocation can pin down a visitor’s position. Next, you’ll use web workers to
run time-consuming tasks in the background. Finally, you’ll learn about the
new browser history feature, which lets you sync up the web page URL to the
current state of the page.

There are also two appendixes that can help you catch up with the fundamentals you
need to master HTML5. Appendix A gives a stripped-down summary of CSS; Ap-
pendix B gives a concise overview of JavaScript.

About the Online Resources
As the owner of a Missing Manual, you’ve got more than just a book to read. Online,
you’ll find example files as well as tips, articles, and maybe even a video or two. You
can also communicate with the Missing Manual team and tell us what you love (or
hate) about the book. Head over to www.missingmanuals.com, or go directly to one
of the following sections.

Introduction

7introduction

The Missing CD
This book doesn’t have a CD pasted inside the back cover, but you’re not missing
out on anything. Go to http://missingmanuals.com/cds/html5mm to download the
web page examples discussed and demonstrated in this book. And so you don’t wear
down your fingers typing long web addresses, the Missing CD page offers a list of
clickable links to the websites mentioned in each chapter.

Tip: If you’re looking for a specific example, here’s a quick way to find it: Look at the corresponding figure
in this book. The file name is usually visible at the end of the text in the web browser’s address box. For
example, if you see the file path c:\HTML5\Chapter01\SuperSimpleHTML5.html (Figure 1-1), you’ll know
that the corresponding example file is SuperSimpleHTML5.html.

The Try-Out Site
There’s another way to use the examples: on the live example site at www.prosetech.
com/html5. There you’ll find live versions of every example from this book, which
you can run in your browser. This convenience just might save you a few headaches,
because HTML5 includes several features that require the involvement of a real web
server. (If you’re running web pages from the hard drive on your personal computer,
these features may develop mysterious quirks or stop working altogether.) By using
the live site, you can see how an example is supposed to work before you download
the page and start experimenting on your own.

Note: Don’t worry—when you come across an HTML5 feature that needs web server hosting, this book
will warn you.

Registration
If you register this book at oreilly.com, you’ll be eligible for special offers—like dis-
counts on future editions of Creating a Website: The Missing Manual. Registering
takes only a few clicks. Type http://tinyurl.com/registerbook into your browser to hop
directly to the Registration page.

Feedback
Got questions? Need more information? Fancy yourself a book reviewer? On our
Feedback page, you can get expert answers to questions that come to you while read-
ing, share your thoughts on this Missing Manual, and find groups for folks who
share your interest in creating their own sites. To have your say, go to www.missing-
manuals.com/feedback.

Introduction

8 html5: the missing manual

Errata
To keep this book as up to date and accurate as possible, each time we print more
copies, we’ll make any confirmed corrections you suggest. We also note such chang-
es on the book’s website, so you can mark important corrections into your own copy
of the book, if you like. Go to http://tinyurl.com/3q56k7v to report an error and view
existing corrections.

Newsletter
Our free email newsletter keeps you up to date on what’s happening in Missing Man-
ual land. You can meet the authors and editors, see bonus video and book excerpts,
and more. Go to http://tinyurl.com/MMnewsletter to sign up.

Safari® Books Online
Safari® Books Online is an on-demand digital library that lets you
search over 7,500 technology books and videos.

With a subscription, you can read any page and watch any video from our library.
Access new titles before they’re available in print. Copy and paste code samples, or-
ganize your favorites, download chapters, bookmark key sections, create notes, print
out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have
full digital access to this book and others on similar topics from O’Reilly and other
publishers, sign up for free at http://my.safaribooksonline.com.

1
Part One: Meet the New
Language
Chapter 1: Introducing HTML5

Chapter 2: A New Way to Structure Pages

Chapter 3: Meaningful Markup

11

chapter
1

Introducing HTML5

If HTML were a movie, HTML5 would be its surprise twist.

HTML wasn’t meant to survive into the 21st century. The official web standards
organization, called the W3C (short for World Wide Web Consortium), left

HTML for dead way back in 1998. The W3C pinned its future plans on a modern-
ized successor called XHTML. It took a group of disenfranchised rebels to resusci-
tate HTML and lay the groundwork for the features that you’ll explore in this book.

In this chapter, you’ll get the scoop on why HTML died, and how it came back to life.
You’ll learn about HTML5’s philosophy and features, and you’ll consider the thorny
issue of browser support. You’ll also get your first look at a bona fide HTML5 docu-
ment—both in its simplest form, and as a more practical template that you can use
as a starting point for any website.

The Story of HTML5
As you know, HTML is the language you use to write web pages. The basic idea of
HTML—that you use elements to structure your content—hasn’t changed since the
Web’s earliest days. In fact, even the oldest web pages still work perfectly well in the
most modern web browsers (including several browsers that didn’t exist at the time,
like Firefox and Chrome).

Being old and successful also carries some sizable risks—namely, everyone wants
to replace you. In 1998, the W3C stopped working on HTML and attempted to im-
prove it with an XML-powered successor called XHTML 1.0.

12 html5: the missing manual

 The Story of HTML5 The Story of HTML5

XHTML 1.0: Getting Strict
XHTML has most of the same syntax conventions as HTML, but it enforces stricter
rules. Much of the sloppy markup that traditional HTML permitted just isn’t accept-
able in XHTML.

For example, suppose you want to italicize the last word in a heading, like so:
<h1>The Life of a <i>Duck</i></h1>

And you accidentally swap the final two tags:
<h1>The Life of a <i>Duck</h1></i>

When a browser encounters this slightly messed-up markup, it can figure out what
you really want. It italicizes the last word, without even a polite complaint. However,
the mismatched tags break the official rules of XHTML. If you plug your page into
an XHTML validator (or use a web design tool like Dreamweaver), you’ll get a warn-
ing that points out your mistake. From a web design point of view, this is helpful—
it lets you catch minor mistakes that might cause inconsistent results on different
browsers, or might cause bigger problems when you edit and enhance the page.

At first, XHTML was a success story. Professional web developers, who were frus-
trated with browser quirks and the anything-goes state of web design, flocked to
XHTML. Along the way, they were forced to adopt better habits and give up a few
of the half-baked formatting features found in HTML. However, many of XHTML’s
imagined benefits—like interoperability with XML tools, easier page processing
for automated programs, portability to mobile platforms, and extensibility of the
XHTML language itself—never came to pass.

Still, XHTML became the standard for most serious web designers. And while every-
one seemed pretty happy, there was one dirty secret: Although browsers understood
XHTML markup, they didn’t enforce the strict error-checking that the standard
required. That means a page could break the rules of XHTML, and the browsers
wouldn’t blink. In fact, there was nothing to stop a web developer from throwing
together a mess of sloppy markup and old-fashioned HTML content, and calling it
an XHTML page. There wasn’t a single browser on the planet that would complain.
And that made the people in charge of the XHTML standard deeply uncomfortable.

XHTML 2: The Unexpected Failure
The solution was supposed to be XHTML 2. It was set to tighten up the error-
handling rules, forcing browsers to reject invalid XHTML 2 pages. XHTML 2 also
threw out many of the quirks and conventions it had inherited from HTML. For ex-
ample, the system of numbered headings (<h1>, <h2>, <h3>, and so on) was super-
seded by a new <h> element, whose significance depended on its position in a web
page. Similarly, the <a> element was eclipsed by a feature that let web developers
transform any element into a link, and the element lost its alt attribute in
favor of a new way to supply alternate content.

13chapter 1: introducing html5

 The Story of HTML5 The Story of HTML5

These changes were typical of XHTML 2. From a theoretical point of view, they were
cleaner and made more sense. From a practical point of view, they forced everyone
to change the way they wrote web pages (to say nothing of updating the web pages
they already had), without adding new functionality to make all the work worth-
while. And along the way, XHTML 2 dumped a few well-worn elements that some
web designers still loved, like (for bold text), <i> (for italics), and <iframe> (for
embedding one web page inside another).

But perhaps the worst problem was the glacial pace of change. Development on
XHTML 2 dragged on for five years, and developer enthusiasm slowly leaked away.

HTML5: Back From the Dead
At about the same time (starting in 2004), a group of people started looking at the
future of the Web from a different angle. Instead of trying to sort out what was
wrong (or just “philosophically impure”) in HTML, they focused on what was miss-
ing, in terms of the things web developers wanted to get done.

After all, HTML began its life as a tool for displaying documents. With the addition
of JavaScript, it had morphed into a system for developing web applications, like
search engines, e-commerce stores, mapping tools, email readers, and a whole lot
more. And while a crafty web application can do a lot of impressive things, creating
one isn’t easy. Most rely on a soup of handwritten JavaScript, one or more popular
JavaScript toolkits, and a web application that runs on the web server. It’s a chal-
lenge to get all these pieces to interact consistently on different browsers. Even when
you get it to work, you need to mind the duct tape and staples that hold everything
together.

The people creating browsers were particularly concerned about this situation, and
a group of forward-thinking individuals from Opera Software (the creators of the
Opera browser) and the Mozilla Foundation (the creators of Firefox) lobbied to get
XHTML to introduce more developer-oriented features. When they failed, Opera,
Mozilla, and Apple formed the loosely knit WHATWG (Web Hypertext Application
Technology Working Group) to think of new solutions.

The WHATWG wasn’t out to replace HTML, but to extend it, in a seamless, backward-
compatible way. In fact, the earliest version of its work had two add-on specifications
called Web Applications 1.0 and Web Forms 2.0. Eventually, these standards evolved
into HTML5.

Note: The number 5 in the HTML5 specification name is supposed to indicate that the standard picks
up where HTML left off (that’s HTML version 4.01, which predates XHTML). Of course, this isn’t really
accurate, because HTML5 supports everything that’s happened to web pages in the decade since HTML
4.01 was released, including strict XHTML-style syntax (if you choose to use it) and a slew of JavaScript
innovations. However, the name still makes a clear point: HTML5 may support the conventions of XHTML,
but it enforces the rules of HTML.

14 html5: the missing manual

 The Story of HTML5 The Story of HTML5

By 2007, all the excitement was in the WHATWG camp. After some painful re-
flection, the W3C decided to disband the group that was working on XHTML 2
and work on formalizing the HTML5 standard instead. At this point, the original
HTML5 was broken into more manageable pieces, and many of the features that had
originally been called HTML5 became separate standards (see the box on this page).

Tip: You can read the official W3C version of the HTML5 standard at www.w3.org/TR/html5.

Up To Speed

What Does HTML5 Include?
There’s no such thing as a browser that “supports” HTML5.
Instead, every browser supports a gradually expand-
ing subset of HTML5-related features. This approach is
both good and bad. It’s good because the browsers can
quickly implement mature parts of the HTML5 standard
while other features continue to evolve. It’s bad because it
forces web page writers to worry about checking whether
a browser supports each feature they want to use. (You’ll
learn about the painful and not-so-painful techniques to do
so in this book.)

Here are the major feature categories that fall under the
umbrella of HTML5:

• Core HTML5. This part of HTML5 makes up the offi-
cial W3C’s version of the specification. It includes the
new semantic elements (see Chapter 2 and Chapter
3), new and enhanced web form widgets (Chapter 4),
audio and video support (Chapter 5), and the canvas
for drawing with JavaScript (Chapter 6 and Chapter
7). This category includes most of the features that
have the best browser support.

• Features that were once HTML5. These are the fea-
tures that sprang from the original HTML5 specification,

as prepared by the WHATWG. Most of these are specifi-
cations for features that require JavaScript and support
rich web applications. The most significant include
local data storage (Chapter 9), offline applications
(Chapter 10), and messaging (Chapter 11), but you’ll
learn about several more in this book.

• Features that are sometimes called HTML5.
These are next-generation features that are often
lumped together with HTML5, even though they
weren’t ever a part of the HTML5 standard. This
category includes CSS3 (Chapter 8) and geolocation
(Chapter 12).

Oddly enough, it’s not just clueless managers and tech-
nology writers causing the standards confusion. Even the
W3C is blurring the boundaries between the “real” HTML5
(according to the standard) and the “marketing” version
(which includes everything new and the kitchen sink). For
example, the official W3C logo website (www.w3.org/html/
logo) encourages you to generate HTML5 logos that pro-
mote CSS3 and SVG—two standards that were under devel-
opment well before HTML5 appeared.

HTML: The Living Language
The switch from the W3C to the WHATWG and back to the W3C again has led to
a rather unusual arrangement. Technically, the W3C in charge of determining what
is and isn’t official HTML5. But at the same time, the WHATWG continues its work
dreaming up future HTML features. Only now, they no longer refer to their work as
HTML5. They simply call it HTML, explaining that HTML will continue as a living
language.

15chapter 1: introducing html5

Three Key Principles
of HTML5

Three Key Principles
of HTML5

Because HTML is a living language, an HTML page will never become obsolete and
stop working. HTML pages will never need a version number (even in the doctype),
and web developers will never need to “upgrade” their markup from one version to
another to get it to work on new browsers.

Because HTML is a living language, new features (and new elements) may be added
to the HTML standard at any time. Some web pages may choose to take advantage
of these features, and some browsers may choose to support them. But features won’t
be tied to a specific version number.

When web developers hear about this plan, their first reaction is usually unmiti-
gated horror. After all, who wants to deal with a world of wildly variable standards
support, where developers need to pick and choose the features they use based on
the likelihood these features will be supported? However, on reflection, most web
developers come to a grudging realization: for better or worse, this is exactly the way
browsers work today, and the way they’ve worked since the dawn of the Web.

As explained earlier, today’s browsers are happy with any mishmash of supported
features. You can take a state-of-the-art XHTML page and add something as scan-
dalously backward as the <marquee> element (an obsolete feature for creating
scrolling text), and no browser will complain. Similarly, browsers have well-known
holes in their support for even the oldest standards. For example, browser makers
started implementing CSS3 before CSS2 support was finished, and many CSS2 fea-
tures were later dropped. The only difference is that now HTML5 makes the “living
language” status official. Still, it’s no small irony that just as HTML is embarking on
a new, innovative chapter, it has finally returned full circle to its roots.

Tip: To see the current, evolving draft of HTML that includes the stuff we call HTML5 and a small but
ever-evolving set of new, unsupported features, go to http://whatwg.org/html. To follow the latest HTML
news in a less formal setting, check out the WHATWG blog at http://blog.whatwg.org.

Three Key Principles of HTML5
By this point, you’re probably eager to get going with a real HTML5 page. But first,
it’s worth climbing into the minds of the people who built HTML5. Once you under-
stand the philosophy behind the language, the quirks, complexities, and occasional
headaches that you’ll encounter in this book will make a whole lot more sense.

1. Don’t Break the Web
“Don’t break the Web” means that a standard shouldn’t introduce changes that make
other people’s web pages stop working. This rarely happens.

“Don’t break the Web” also means that a standard shouldn’t casually change the rules,
and in the process deem perfectly good current-day web pages to be obsolete (even if

16 html5: the missing manual

Three Key Principles
of HTML5
Three Key Principles
of HTML5

they still work). For example, XHTML 2 broke the Web because it demanded an im-
mediate, dramatic shift in the way web pages were written. Yes, old pages would still
work—thanks to the backward compatibility that’s built into browsers. But if you
wanted to prepare for the future and keep your website up to date, you’d be forced to
waste countless hours correcting the “mistakes” that XHTML 2 had banned.

HTML5 has a different viewpoint. Everything that was valid before HTML5 remains
valid in HTML5. In fact, everything that was valid in HTML 4.01 also remains valid
in HTML 5.

Note: Unlike previous standards, HTML5 doesn’t just tell browser makers what to support—it also docu-
ments and formalizes the way they already work. Because the HTML5 standard documents reality, rather
than just setting out a bunch of ideal rules, it may become the best-supported web standard ever.

Up To Speed

How HTML5 Handles Obsolete Elements
Because HTML5 supports all of HTML, it supports many
features that are considered obsolete. These includes
formatting elements like , despised special-effect
elements like <blink> and <marquee>, and the awkward
system of HTML frames.

This open-mindedness is a point of confusion for many
new HTML5 apprentices. On the one hand, HTML5 should
by all rights ban these outdated elements, which haven’t
appeared in an official specification for years (if ever). On
the other hand, modern browsers still quietly support these
elements, and HTML5 is supposed to reflect how web
browsers really work. So what’s a standard to do?

To solve this problem, the HTML5 specification has two
separate parts. The first part—which is what you’ll consider
in this book—targets web developers. They need to avoid
the bad habits and discarded elements of the past. You can
make sure you’re following this part of the HTML5 standard
by using an HTML5 validator.

The second, much longer part of the HTML5 specification
targets browser makers. They need to support everything
that’s ever existed in HTML, for backward compatibility.

Ideally, the HTML5 standard should have enough informa-
tion that someone could build a browser from scratch, and
make it completely compatible with the modern browsers
of today, whether it was processing new or old markup.
This part of the standard tells browsers how to deal with
obsolete elements that are officially discouraged, but still
supported.

Incidentally, the HTML5 specification also formalizes how
browsers should deal with a variety of errors (for example,
missing or mismatched tags). This point is important, be-
cause it ensures that a flawed page will work the same on
different browsers, even when it comes to subtle issues like
the way a page is modeled in the DOM (that’s the Docu-
ment Object Model, the tree of in-memory objects that
represents the page and is made available to JavaScript
code). To create this long, tedious part of the standard, the
creators of HTML5 performed exhaustive tests on modern
browsers to figure out their undocumented error-handling
behavior. Then, they wrote it down.

17chapter 1: introducing html5

Three Key Principles
of HTML5

Three Key Principles
of HTML5

2. Pave the Cowpaths
A cowpath is the rough, heavily trodden track that gets people from one point to
another. A cowpath exists because it’s being used. It might not be the best possible
way to move around, but at some point it was the most practical working solution.

HTML5 aims to standardize these unofficial (but widely used) techniques. It may
not be as neat as laying down a nicely paved expressway with a brand-new approach,
but it has a better chance of succeeding. That’s because switching over to new tech-
niques may be beyond the ability or interest of the average website designer. And
worse, new techniques may not work for visitors who are using older browsers.
XHTML 2 tried to drive people off the cowpaths, and it failed miserably.

Note: Paving the cowpaths has an obvious benefit: It uses established techniques that already have some
level of browser support. If you give a web developer a choice between a beautifully designed new feature
that works on 70 percent of the web browsers out there and a messy hack that works everywhere, they’ll
choose the messy hack and the bigger audience every time.

The “pave the cowpaths” approach also requires some compromises. Sometimes it
means embracing a widely supported but poorly designed feature. One example is
HTML5’s drag-and-drop ability (see page 299), which is based entirely on the behav-
ior Microsoft created for IE5. Although this drag-and-drop feature is now supported
in all browsers, it’s universally loathed for being clumsy and overly complicated. This
has led some web designers to complain that “HTML5 not only encourages bad
behavior, it defines it.”

3. Be Practical
This principle is simple: Changes should have a practical purpose. And the more
demanding the change, the bigger the payoff needs to be. Web developers may prefer
nicely designed, consistent, quirk-free standards, but that isn’t a good enough reason
to change a language that’s already been used to create several billion documents. Of
course, it’s still up to someone to decide whose concerns are the most important. A
good clue is to look at what web pages are already doing—or trying to do.

For example, the world’s third most popular website (at the time of this writing) is
YouTube. But because HTML had no real video features before HTML5, YouTube
has had to rely on the Flash browser plug-in. This solution works surprisingly well
because the Flash plug-in is present on virtually all web-connected computers. How-
ever, there are occasional exceptions, like locked-down corporate computers that
don’t allow Flash, or Apple-designed devices (like the iPhone and iPad) that don’t
support it. And no matter how many computers have Flash, there’s a good case for
extending the HTML standard so that it directly supports one of the most funda-
mental ways people use web pages today—to watch video.

18 html5: the missing manual

 Your First Look at
HTML5 Markup
 Your First Look at
HTML5 Markup

There’s a similar motivation behind HTML5’s drive to add more interactive features—
drag-and-drop support, editable HTML content, two-dimensional drawing on a
canvas, and so on. You don’t need to look far to find web pages that use all of these
features right now, some with plug-ins like Adobe Flash and Microsoft Silverlight,
and others with JavaScript libraries or (more laboriously) with pages of custom-
written JavaScript code. So why not add official support to the HTML standard, and
make sure these features work consistently on all browsers?

Note: Browser plug-ins like Flash won’t go away overnight (or even in the next few years). Despite its
many innovations, it still takes far more work to build complex, graphical applications in HTML5 (for
example, see the browser-hosted games at www.flasharcade.com). But HTML5’s ultimate vision is clear:
to allow websites to offer video, rich interactivity, and piles of frills without requiring a plug-in.

Your First Look at HTML5 Markup
Here’s one of the simplest HTML5 documents you can create. It starts with the
HTML5 doctype (a special code that’s explained on page 20), followed by a title, and
then followed by some content. In this case, the content is a single paragraph of text:

<!DOCTYPE html>
<title>A Tiny HTML Document</title>
<p>Let's rock the browser, HTML5 style.</p>

You already know what this looks like in a browser, but if you need reassuring, check
out Figure 1-1.

Figure 1-1:
This super-simple HTML5 document holds a single
line of text.

You can pare down this document a bit more. For example, the HTML5 standard
doesn’t really require the final </p> tag, since browsers know to close all open ele-
ments at the end of the document (and the HTML5 standard makes this behavior
official). However, shortcuts like these create confusing markup and can lead to un-
expected mistakes.

19chapter 1: introducing html5

 Your First Look at
HTML5 Markup

 Your First Look at
HTML5 Markup

The HTML5 standard also lets you remove the <title> element if the title informa-
tion is provided by another mechanism. For example, if you’re sending an HTML
document in an email message, you could put the title in the title of the email mes-
sage and put the rest of the markup—the doctype and the content—into the body of
the message. But this is obviously a specialized scenario.

More commonly, you’ll want to flesh out this bare-bones HTML5 document. Most
web developers agree that using the traditional <head> and <body> sections can
prevent confusion, by cleanly separating the information about your page (the head)
and its actual content (the body). This structure is particularly useful when you start
adding scripts, style sheets, and meta elements:

<!DOCTYPE html>
<head>
 <title>A Tiny HTML Document</title>
</head>
<body>
 <p>Let's rock the browser, HTML5 style.</p>
</body>

As always, the indenting (at the beginning of lines three and six) is purely optional.
This example uses it to make the structure of the page easier to see at first glance.

Finally, you can choose to wrap the entire document (not including the doctype) in
the traditional <html> element. Here’s what that looks like:

<!DOCTYPE html>
<html>
<head>
 <title>A Tiny HTML Document</title>
</head>
<body>
 <p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Up until HTML5, every version of the official HTML specification had demanded
that you use the <html> element, despite the fact that it has no effect on browsers.
However, HTML5 makes this detail completely optional.

Note: The use of the <html>, <head>, and <body> elements is simply a matter of style. You can leave
them out, and your page will work perfectly well, even on old browsers that don’t know a thing about
HTML5. In fact, the browser will automatically assume these details. So if you use JavaScript to peek at
the DOM (the set of programming objects that represents your page), you’ll find objects for the <html>,
<head>, and <body> elements, even if you didn’t add them yourself.

Currently, this example is somewhere between the simplest possible HTML5 docu-
ment and the fleshed-out starting point of a practical HTML5 web page. In the fol-
lowing sections, you’ll fill in the rest of what you need, and dig a little deeper into
the markup.

20 html5: the missing manual

 Your First Look at
HTML5 Markup

The HTML5 Doctype
The first line of every HTML5 document is a special code called doctype. It clearly
announces to anyone who’s reading the document markup that HTML5 content
follows:

<!DOCTYPE html>

The first thing you’ll notice about the HTML5 doctype is its striking simplicity.
Compare it, for example, to the ungainly doctype that web developers need when
using XHTML 1.0 strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Even professional web developers were forced to copy-and-paste the XHTML doc-
type from one document to another. But the HTML5 doctype is short and snappy,
so you won’t have much trouble typing it in by hand.

The HTML5 doctype is also notable for the fact that it doesn’t include the official
specification version (that’s the 5 in HTML5). Instead, the doctype simply indicates
that the page is HTML. This is in keeping with the new vision of HTML5 as a living
language (page 14). When new features are added to the HTML language, they’ll
automatically be available in your page, without requiring you to edit the doctype.

All of this raises a good question—if HTML5 is a living language, why does your web
page require any doctype at all?

The answer is that the doctype remains for historical reasons. Without a doctype,
most browsers (including Internet Explorer and Firefox) will lapse into quirks mode.
In this mode, they’ll attempt to render pages according to the slightly buggy rules
that they used in older versions. The problem is that one browser’s quirks mode dif-
fers from the next, so pages designed for one browser are likely to get inconsistently
sized fonts, scrambled layouts, and other glitches on another browser.

When you add a doctype, the browser recognizes that you want to use the stricter
standards mode, which ensures that the web page is displayed with consistent for-
matting and layout on every modern browser. The browser doesn’t even care what
doctype you use (with just a few exceptions). Instead, it simply checks that you have
some doctype. The HTML5 doctype is simply the shortest valid doctype, so it trig-
gers standards mode.

Tip: The HTML5 doctype triggers standards mode on all browsers that have a standards mode, including
browsers that don’t know anything about HTML5. For that reason, you can start using the HTML5 doctype
now, in all your pages, even if you need to hold off on many of HTML5’s less-supported features.

Although the doctype is primarily intended to tell web browsers what to do, other
agents can also check it. This includes HTML5 validators, search engines, design
tools, and other human beings (when they’re trying to figure out what flavor of
markup you’ve chosen for your page).

21chapter 1: introducing html5

 Your First Look at
HTML5 Markup

Character Encoding
The character encoding is the standard that tells a computer how to convert your text
into a sequence of bytes when it’s stored in a file (and how to convert it back again
when the file is opened). For historical reasons, there are many different character
encodings in the world. Today, virtually all English websites use an encoding called
UTF-8, which is compact, fast, and supports all the non-English characters you’ll
ever need.

Often, the web server that hosts your pages is configured to tell browsers that it’s
serving out pages with a certain kind of encoding. However, because you can’t be
sure that your web server will take this step (unless you own it), and because brows-
ers can run into an obscure security issue when they attempt to guess a page’s encod-
ing, you should always add encoding information to your markup.

HTML5 makes that easy to do. All you need to do is add the meta element shown
below at the very beginning of your <head> section (or right after the doctype, if you
don’t define the <head> element):

<head>
 <meta charset="utf-8">
 <title>A Tiny HTML Document</title>
</head>

Design tools like Dreamweaver or Expression Web add this detail automatically
when you create a new page. They also make sure that your files are being saved
with UTF encoding. However, if you’re using an ordinary text editor, you might need
an extra step to make sure your files are being saved correctly. For example, when
editing an HTML file in Notepad (on Windows), you must choose UTF-8 from the
Encoding list at the bottom of the Save As dialog box. In TextEdit (on Mac OS), you
need to first choose Format➝Make Plain Text to make sure the program saves your
page as an ordinary text file, and you must then choose “Unicode (UTF-8)” from the
Plain Text Encoding pop-up menu in the Save As dialog box.

The Language
It’s considered good style to indicate your web page’s natural language. This infor-
mation is occasionally useful to other people—for example, search engines can use
it to filter search results so they include only pages that match the language of the
searcher.

To specify the language of some content, you use the lang attribute on any element,
along with the appropriate language code. That’s en for plain English, but you can
find more exotic language codes at http://people.w3.org/rishida/utils/subtags.

The easiest way to add language information to your web page is to use the <html>
element with the lang attribute:

<html lang="en">

22 html5: the missing manual

 Your First Look at
HTML5 Markup

This detail can also help screen readers if a page has text from multiple languages. In
this situation, you use the lang attribute to indicate the language of different sections
of your document (for example, by applying it to different <div> elements that wrap
different content). Then, screen readers can determine which sections they can read
aloud.

Adding a Style Sheet
Virtually every web page in a properly designed, professional website uses style
sheets. You specify the style sheets you want to use by adding <link> elements to the
<head> section of an HTML5 document, like this:

<head>
 <meta charset="utf-8">
 <title>A Tiny HTML Document</title>
 <link href="styles.css" rel="stylesheet">
</head>

This method is more or less the same way you attach style sheets to a traditional
HTML document, but slightly simpler. Because CSS is the only style sheet language
around, there’s no need to add the type="text/css" attribute that web pages used to
require.

Adding JavaScript
JavaScript started its life as a time-wasting way to add glitter and glamour to hum-
drum web pages. Today, JavaScript is less about user interface frills and more about
novel web applications, including super-advanced email clients, word processors,
and mapping engines that run right in the browser.

You add JavaScript to an HTML5 page in much the same way that you add it to
a traditional HTML page. Here’s an example that references an external file with
JavaScript code:

<head>
 <meta charset="utf-8">
 <title>A Tiny HTML Document</title>
 <script src="scripts.js"></script>
</head>

There’s no need to include the language="JavaScript" attribute. The browser assumes
you want JavaScript unless you specify otherwise (and because JavaScript is the only
HTML scripting language with broad support, you never will). However, you do
still need to remember the closing </script> tag, even when referring an external
JavaScript file. If you leave it out or attempt to shorten your markup using the empty
element syntax, your page won’t work.

23chapter 1: introducing html5

 Your First Look at
HTML5 Markup

If you spend a lot of time testing your JavaScript-powered pages in Internet Explorer,
you may also want to add a special comment called the mark of the Web to your
<head> section, right after the character encoding. It looks like this:

<head>
 <meta charset="utf-8">
 <!-- saved from url=(0014)about:internet -->
 <title>A Tiny HTML Document</title>
 <script src="scripts.js"></script>
</head>

This comment tells Internet Explorer to treat the page as though it has been down-
loaded from a remote website. Otherwise, IE switches into a special locked-down
mode, pops up a security warning in a message bar, and won’t run any JavaScript
code until you explicitly click, “Allow blocked content.”

All other browsers ignore the “mark of the Web” comment and use the same security
settings for remote websites and local files.

The Final Product
If you’ve followed these steps, you’ll have an HTML5 document that looks some-
thing like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>A Tiny HTML Document</title>
 <link href="styles.css" rel="stylesheet">
 <script src="scripts.js"></script>
</head>

<body>
 <p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Although it’s no longer the shortest possible HTML5 document, it’s a reasonable
starting point for any web page you want to build. And while this example seems
wildly dull, don’t worry—in the next chapter, you’ll step up to a real-life page that’s
full of carefully laid-out content, and all wrapped up in CSS.

Note: All the HTML5 syntax you’ve learned about in this section—the new doctype, the meta element
for character encoding, the language information, and the style sheet and JavaScript references, work in
browsers both new and old. That’s because they rely on defaults and built-in error-correcting practices that
all browsers use.

24 html5: the missing manual

 A Closer Look at
HTML5 Syntax

A Closer Look at HTML5 Syntax
As you’ve already learned, HTML5 loosens some of the rules. That’s because the cre-
ators of HTML5 wanted the language to more closely reflect web browser reality—in
other words, they wanted to narrow the gap between “web pages that work” and
“web pages that are considered valid, according to the standard.” In the next section,
you’ll take a closer look at how the rules have changed.

Note: Of course there are still plenty of obsolete practices that browsers support but that the HTML5
standard strictly discourages. For help catching these, you’ll need an HTML5 validator (page 25).

The Loosened Rules
In your first walk through an HTML5 document, you discovered that HTML5
makes the <html>, <head>, and <body> elements optional (although they can still
be pretty useful). But HTML5’s relaxed attitude doesn’t stop there.

HTML5 ignores capitalization, allowing you to write markup like this:
<P>Capital and lowercase letters don't matter in tag names.</p>.

HTML5 also lets you omit the closing slash from a void element—that’s an element
with no nested content, like an (image), a
 (line break), or an <hr> (hori-
zontal line). Here are three equivalent ways to add a line break:

I cannot

move backward

or forward.

I am caught

HTML5 also changes the rules for attributes. Attribute values don’t need quotation
marks anymore, as long as the value doesn’t include a restricted character (typically
>, =, or a space). Here’s an example of an element that takes advantage of this
ability:

Attributes with no values are also allowed. So while XHTML required the somewhat
redundant syntax to put a checkbox in the checked state…

<input type="checkbox" checked="checked" />

…you can now revive the shorter HTML 4.01 tradition of including the attribute
name on its own.

<input type="checkbox" checked>

What’s particularly disturbing to some people isn’t the fact that HTML5 allows these
things. It’s the fact that inconsistent developers can casually switch back and forth
between the stricter and the looser styles, even using both in the same document.
But this really isn’t different from XHTML. In both cases, good style is the respon-
sibility of the web designer, and the browser tolerates whatever you can throw at it.

25chapter 1: introducing html5

 A Closer Look at
HTML5 Syntax

Here’s a quick summary of what constitutes good HTML5 style (and what conven-
tions the examples in this book follow, even if they don’t have to):

• Including the optional <html>, <body>, and <head> elements. The <html>
element is a handy place to define the page’s natural language (page 21); and
the <body> and <head> elements help to keep page content separate from the
other page details.

• Using lowercase tags. They’re not necessary, but they’re far more common,
easier to type (because you don’t need the Shift key), and not nearly as shouty.

• Using quotation marks around attribute values. The quotation marks are
there for a reason—to protect you from mistakes that are all too easy to make.
Without quotation marks, one invalid character can break your whole page.

On the other hand, there are some old conventions that this book ignores (and you
can, too). The examples in this book don’t close empty elements, because most de-
velopers don’t bother to add the extra slash (/) when they switch to HTML5. Simi-
larly, there’s no reason to favor the long attribute form when the attribute name and
the attribute value are the same.

HTML5 Validation
HTML5’s new, relaxed style may suit you fine. Or, the very thought that there could
be inconsistent, error-ridden markup hiding behind a perfectly happy browser may
be enough to keep you up at night. If you fall into the latter camp, you’ll be happy
to know that a validation tool can hunt down markup that doesn’t conform to the
recommended standards of HTML5, even if it doesn’t faze a browser.

Here are some potential problems that a validator can catch:

• Missing mandatory elements (for example, the <title> element)
• A start tag without a matching end tag
• Incorrectly nested tags
• Tags with missing attributes (for example, an element without the src

attribute)
• Elements or content in the wrong place (for example, text that’s placed directly

in the <head> section)

Web design tools like Dreamweaver and Expression Web have their own validators,
but only the very latest versions have support for HTML5. In the meantime, you can
use an online validation tool. Here’s how to use the popular validator provided by the
W3C standards organization:

1.	 In	your	web	browser,	go	to	http://validator.w3.org	(Figure	1-2).
The W3C validator gives you three choices, represented by three separate tabs:
“Validate by URI” (for a page that’s already online), “Validate by File Upload”
(for a page that’s stored in a file on your computer), and “Validate by Direct
Input” (for a bunch of markup you type in yourself).

26 html5: the missing manual

 A Closer Look at
HTML5 Syntax

Figure 1-2:
The website http://
validator.w3.org gives
you three options for
validating HTML. You
can fill in the address
of another web page,
you can upload a file
of your own, or you
can type the markup
in directly (shown
here).

2.	 Click	the	tab	you	want,	and	supply	your	HTML	content.
• “Validate by URI” lets you validate an existing web page. You just need to

type the page’s URL in the Address box (for example, http://www.MySlop-
pySite.com/FlawedPage.html).

• “Validate by File Upload” lets you upload any file from your computer.
First, click the Browse button (in Chrome, click Choose File). In the Open
dialog box, select your HTML file and then click Open.

• “Validate by Direct Input” lets you validate any markup—you just need to
type it into a large box. The easiest way to use this option is to copy the
markup from your text editor and paste it into the box on the W3C valida-
tion page.

Before continuing, you can click More Options to change some settings, but you
probably won’t. For example, it’s best to let the validator automatically detect the
document type—that way, the validator will use the doctype specified in your
web page. Similarly, use automatic detection for the character set unless you
have an HTML page that’s written in another language and the validator has
trouble determining the correct character set.

27chapter 1: introducing html5

 A Closer Look at
HTML5 Syntax

3.	 Click	the	Check	button.
This sends your HTML page to the W3C validator. After a brief delay, the report
appears. You’ll see whether your document passed the validation check and, if it
failed, what errors the validator detected (see Figure 1-3).

Note: Even in a perfectly valid HTML document, you may get a few harmless warnings, including that the
character encoding was determined automatically and that the HTML5 validation service is considered to
be an experimental, not-fully-finished feature.

Figure 1-3:
The validator has
discovered four errors
in this document that
stem from two mis-
takes. First, the page
is missing the manda-
tory <title> element.
Second, it closes the
<p> element before
closing the
element that’s nested
inside. (To solve
this problem, you
would replace
</p>
with
</p>.) Incidentally,
this document is still
close enough to
being correct that all
browsers will display
it properly.

The Return of XHTML
As you’ve already learned, HTML5 spells the end for the previous king of the Web—
XHTML. However, reality isn’t quite that simple, and XHTML fans don’t need to
give up all the things they loved about the past generation of markup languages.

First, remember that XHTML syntax lives on. The rules that XHTML enforced ei-
ther remain as guidelines (for example, nesting elements correctly) or are still sup-
ported as optional conventions (for example, including the trailing slash on empty
elements).

28 html5: the missing manual

 A Closer Look at
HTML5 Syntax

But what if you want to enforce the XHTML syntax rules? Maybe you’re worried that
you (or the people you work with) will inadvertently slip into the looser conventions
of ordinary HTML. To stop that from happening, you need to use XHTML5—a
less common standard that is essentially HTML5 with the XML-based restrictions
slapped on top.

To turn an HTML5 document into an XHTML5 document, you need to explicitly
add the XHTML namespace to the <html> element, close every element, make sure
you use lowercase tags, and so on. Here’s an example of a web page that takes all
these steps:

<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta charset="utf-8"/>
 <title>A Tiny HTML Document</title>
 <link href="styles.css" rel="stylesheet"/>
 <script src="scripts.js"></script>
</head>

<body>
 <p>Let's rock the browser, XHTML5 style.</p>
</body>
</html>

Now you can use an XHTML5 validator to get stricter error checking that enforc-
es the old-style XHTML rules. The W3C validator won’t do it, but the validator
at http://validator.nu will, provided you click the More Options button and choose
XHTML5 from the Preset list. (You’ll also need to choose the “Be lax about HTTP
Content-Type” option, unless you’re using the direct input approach, and pasting
your markup into a text box.)

If you follow these steps, you’ll be able to create and validate an XHTML document.
However, browsers will still process your page as an HTML5 document—one that
just happens to have a XML inferiority complex. They won’t attempt to apply any
extra rules.

If you want to go XHTML5 all the way, you need to configure your web server to
serve your page with the MIME type application/xhtml+xml or application/xml, in-
stead of the standard text/html. (See page 153 for the lowdown on MIME types.) But
before you call your web hosting company, be warned that this change will prevent
your page from being displayed by any version of Internet Explorer before IE 9. For
that reason, true XHTML5 is an immediate deal-breaker in the browser.

Incidentally, browsers that do support XHTML5 deal with it differently than ordi-
nary HTML5. They attempt to process the page as an XML document, and if that
process fails (because you’ve left a mistake behind), the browser gives up on the rest
of the document.

29chapter 1: introducing html5

 HTML5’s Element
Family

Bottom line? For the vast majority of web developers, from ordinary people to seri-
ous pros, XHTML5 isn’t worth the hassle. The only exception is developers who have
a specific XML-related goal in mind (for example, developers who want to manipu-
late the content in their pages with XML-related standards like XQuery and XPath).

Tip: If you’re curious, you can trick your browser into switching into XHTML mode. Just rename your file
so that it ends with .xhtml or .xht. Then open it from your hard drive. Most browsers (including Firefox,
Chrome, and IE 9) will act as though you downloaded the page from a web server with an XML MIME
type. If there’s a minor error in the page, the browser window will show a partially processed page (IE 9),
an XML error message (Firefox), or a combination of the two (Chrome).

HTML5’s Element Family
So far, this chapter has focused on the changes to HTML5’s syntax. But more im-
portant are the additions, subtractions, and changes to the elements that HTML sup-
ports. In the following sections, you’ll get an overview of how they’ve changed.

Added Elements
In the following chapters, you’ll spend most of your time learning about new
elements—ingredients that haven’t existed in web pages up until now. Table 1-1 has
a preview of what’s in store (and where you can read more about it).

Table 1-1. New HTML5 elements

Category Elements Discussed in…
Semantic ele-
ments for struc-
turing a page

<article>, <aside>, <figcaption>, <figure>, <footer>,
<header>, <hgroup>, <nav>, <section>
<details>, <summary>

Chapter 2

Semantic ele-
ments for text

<mark>, <time>
<wbr> (previously supported, but now an official
part of the language)

Chapter 3

Web forms and
interactivity

<input> (not new, but has many new subtypes)
<datalist>, <keygen>, <meter>, <progress>,
<command>, <menu>, <output>

Chapter 4

Audio, video, and
plug-ins

<audio>, <video>, <source>
<embed> (previously supported, but now an official
part of the language)

Chapter 5

Canvas <canvas> Chapter 6

Non-English lan-
guage support

<bdo>, <rp>, <rt>, <ruby> HTML5 specifica-
tion at http://dev.
w3.org/html5/
markup

30 html5: the missing manual

 HTML5’s Element
Family

Removed Elements
Although HTML5 adds new elements, it also boots a few out of the official family.
These elements will keep working in browsers, but any decent HTML5 validator will
smoke them out of their hiding places and complain loudly (page 25).

Most obviously, HTML5 keeps the philosophy (first cooked up with XHTML) that
presentational elements are not welcome in the language. Presentational elements are
elements that are simply there to add formatting to web pages, and even the green-
est web designer knows that’s a job for style sheets. Rejects include elements that
professional developers haven’t use in years (like <big>, <center>, , <tt>, and
<strike>). HTML’s presentational attributes died the same death, so there’s no reason
to rehash them all here.

Additionally, HTML5 kicks more sand on the grave where web developers buried
the HTML frames feature. When it was first created, HTML frames seemed like a
great way to show multiple web pages in a single browser window. But now, frames
are better known as an accessibility nightmare that causes problems with search en-
gines, assistive software, and mobile devices. Interestingly, the <iframe> element—
which lets developers put one page inside another—squeaks through. That’s because
web applications use the <iframe> for a range of integration tasks, like incorporating
YouTube windows, ad units, and Google search boxes in a web page.

A few more elements were kicked out because they were redundant or the cause of
common mistakes, including <acronym> (use <abbr> instead) and <applet> (be-
cause <object> is preferred). But the vast majority of the element family lives on in
HTML5.

Note: For those keeping count, HTML5 includes a family of just over 100 elements. Out of these, almost
30 are new and about 10 are significantly changed. You can browse the list of elements (and review which
ones are new or changed) at http://dev.w3.org/html5/markup.

Adapted Elements
HTML5 has another odd trick: sometimes it adapts an old feature for a new pur-
pose. For example, consider the <small> element, element, which had fallen out of
favor as a clumsy way to shrink the font size of a block of text (a task more properly
done with style sheets). But unlike the discarded <big> element, the HTML5 keeps
the <small> element, with a change. Now, the <small> element represents “small
print”—for example, the legalese that no one wants you to read at the bottom of a
contract:

<small>The creators of this site will not be held liable for any injuries that
may result from unsupervised unicycle racing.</small>

31chapter 1: introducing html5

 HTML5’s Element
Family

Text inside the <small> element is still displayed as it always was, using a smaller
font size, unless you override that setting with a style sheet.

Note: Opinions on this <small> technique differ. On the one hand, it’s great for backward compatibility,
because old browsers already support the <small> element, and so they’ll continue to support it in an
HTML5 page. On the other hand, it introduces a potentially confusing change of meaning for old pages.
They may be using the <small> element for presentational purposes, without wanting to suggest “small
print.”

Another changed element is <hr> (short for horizontal rule), which draws a sepa-
rating line between sections. In HTML5, <hr> represents a thematic break—for ex-
ample, a transition to another topic. The default formatting stays, but now a new
meaning applies.

Similarly, <s> (for struck text), isn’t just about crossing out words anymore—it now
represents text that is no longer accurate or relevant, and has been “struck” from
the document. Both of these changes are subtler than the <small> element’s shift in
meaning, because they capture ways that the <hr> and <s> elements are commonly
used in traditional HTML.

Bold and italic formatting
The most important adapted elements are the ones for bold and italic formatting.
Two of HTML’s most commonly used elements—that’s for bold and <i> for
italics—were partially replaced when the first version of XHTML introduced the
look-alike and elements. The idea was to stop looking at things from
a formatting point of view (bold and italics), and instead substitute elements that
had a real logical meaning (strong importance or stress emphasis). The idea made
a fair bit of sense, but the and <i> tags lived on as shorter and more familiar
alternatives to the XHTML fix.

HTML5 takes another crack at solving the problem. Rather than trying to force de-
velopers away from and <i>, it assigns new meaning to both elements. The idea
is to allow all four elements to coexist in a respectable HTML5 document. The result
is the somewhat confusing set of guidelines listed here:

• Use for text that has strong importance. This is text that needs to stand
out from its surroundings.

• Use for text that should be presented in bold but doesn’t have greater
importance than the rest of your text. This could include keywords, product
names, and anything else that would be bold in print.

• Use for text that has emphatic stress—in other words, text that would have
a different inflection if read out loud.

• Use <i> for text that should be presented in italics but doesn’t have extra em-
phasis. This could include foreign words, technical terms, and anything else that
you’d set in italics in print.

32 html5: the missing manual

 HTML5’s Element
Family

And here’s a snippet of markup that uses all four of these elements in the appropriate
way:

Breaking news! There's a sale on <i>leche quemada</i> candy
at the El Azul restaurant. Don't delay, because when the last candy
is gone, it's gone.

In the browser, the text looks like this:

Breaking news! There’s a sale on leche quemada candy at the El Azul restaurant. Don’t
delay, because when the last candy is gone, it’s gone.

It remains to be seen if web developers will follow HTML’s well-intentioned rules, or
just stick with the most familiar elements for bold and italic formatting.

Tweaked Elements
HTML5 also shifts the rules of a few elements. Usually, these changes are minor
details that only HTML wonks will notice, but occasionally they have deeper effects.
One example is the rarely used <address> element, which is not suitable (despite the
name) for postal addresses. Instead, the <address> element has the narrow purpose
of providing contact information for the creator of the HTML document, usually as
an email address or website link:

Our website is managed by:
<address>
John Solo,
Lisa Cheng<a>, and
Ryan Pavane.
</address>

The <cite> element has also changed. It can still be used to cite some work (for ex-
ample, a story, article, or television show), like this:

<p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

However, it’s not acceptable to use <cite> to mark up a person’s name. This restric-
tion has turned out to be surprisingly controversial, because this usage was allowed
before. Several guru-level web developers are on record urging people to disregard
the new <cite> rule, which is a bit odd, because you can spend a lifetime editing web
pages without ever stumbling across the <cite> element in real life.

A more significantly tweak affects the <a> element for creating links. Past versions
of HTML have allowed the <a> element to hold clickable text or a clickable image. In
HTML5, the <a> element allows anything and everything, which means it’s perfectly
acceptable to stuff entire paragraphs in there, along with lists, images, and so on. (If
you do, you’ll see that all the text inside becomes blue and underlined, and all the
images inside sport blue borders.) Web browsers have supported this behavior for
years, but it’s only HTML5 that makes it an official, albeit not terribly useful, part of
the HTML standard.

33chapter 1: introducing html5

 HTML5’s Element
Family

There are also some tweaks that don’t work yet—in any browser. For example, the
 element (for ordered lists) now gets a reversed attribute, which you can set to
count backward (either toward 1, or toward whatever starting value you set with the
start attribute), but no browsers recognize this setting yet.

You’ll learn about a few more tweaks as you make your way through this book.

Standardized Elements
HTML5 also adds supports for a few elements that were supported but weren’t offi-
cially welcome in the HTML or XHTML language. One of the best-known examples
is <embed>, which is used all over the Web as an all-purpose way to shoehorn a
plug-in into a page.

A more exotic example is <wbr>, which indicates an optional word break—in other
words, a place where the browser can split a line if the word is too long to fit in its
container:

<p>Many linguists remain unconvinced that
supercali<wbr>fragilistic<wbr>expialidocious is indeed a word.</p>

The <wbr> element is useful when you have long names (sometimes seen in pro-
gramming terminology) in small places, like table cells or tiny boxes. Even if the
browser supports <wbr>, it will break the word only if it doesn’t fit in the available
space. In the previous example, that means the browser may render the word in one
of the following ways:

Many linguists remain
unconvinced that
supercalifragilisticexpialidocious
is indeed a word.
Many linguists remain
unconvinced that
supercalifragilistic
expialidocious is indeed a
word.
Many linguists
remain
unconvinced
that supercali
fragilistic
expialidocious
is indeed a
word.

The <wbr> element pairs naturally with the standard <nobr> element (which you
can use to prevent a term from being split where there’s a space). But until HTML5,
the <wbr> existed as a nonstandard extension that was supported in only some
browsers.

34 html5: the missing manual

Using HTML5 Today

Using HTML5 Today
As you’ve seen, HTML5 is an odd mix. At the same time that it revives (and stan-
dardizes) some of the old laissez-faire rules of HTML, it also introduces bleeding-
edge features that won’t work in anything but the newest browsers around.

As far as browser compatibility is concerned, you can think of HTML5 features in
three categories:

• Features that already work. This includes features that are well supported but
weren’t an official part of HTML in the past (like drag-and-drop). It also in-
cludes features that can work on older browsers with very little extra work, like
the semantic elements described in Chapter 2.

• Features that degrade gracefully. For example, the new <video> element has
a fallback mechanism that lets you supply something else to older browsers,
like a video player that uses the Flash plug-in. (Supplying an error message is
somewhat rude, and definitely not an example of degrading gracefully.) This
category also includes nonessential frills that older browsers can safely ignore,
like some of the web form features (like placeholder text) and some of the for-
matting properties from CSS3 (like rounded corners and drop shadows).

• Features that require a JavaScript workaround. Many of HTML5’s new fea-
tures are inspired by the stuff web developers are already doing the hard way.
Thus, it should come as no surprise that you can duplicate many of HTML5’s
features using a good JavaScript library (or, in the worst-case scenario, by writ-
ing a whack-load of your own custom JavaScript). Creating JavaScript work-
arounds can be a lot of work, and if you decide a feature is essential and needs a
workaround, you may simply decide to use that workaround for everybody, and
save the HTML5 approach for the future.

This book assumes that you want to use the HTML5 approach when it’s completely
safe—that’s the first feature category in the list above. If a feature falls into one of the
other categories (and many do), it’s up to you to determine if you want to put the
work into developing an old-browser solution, or whether you’re just here to bide
your time and prepare for the greener pastures ahead. If a good JavaScript work-
around exists on the Web, this book will point it out. However, many times you’ll
face a murky choice between fancy new features and universal compatibility.

Evaluating Browser Support
The people who have the final word on how much HTML5 you use are the browser
vendors. If they don’t support a feature, there’s not much point in attempting to use
it, no matter what the standard says. Today, there are four or five major browsers
(not including mobile browsers designed for web-connected devices like smart-
phones and iPads). A single web developer has no chance of testing each prospective
feature on every browser—not to mention evaluating support in older versions that
are still widely used.

35chapter 1: introducing html5

Using HTML5 Today

Fortunately, there’s a website named http://caniuse.com that can help you out. It de-
tails the HTML5 support found in every mainstream browser. Best of all, it lets you
focus on exactly the features you need. Here’s how it works:

1.	 First,	at	the	top	of	the	page,	pick	the	feature	(or	group	of	features)	that	you’re	
interested	in	using	in	the	checkboxes	(Figure	1-4).
You can search for a specific feature by typing its name into the Search box near
the top of the page. Or, you can look at a whole category of features (in which
case, you’ll get a separate compatibility table for each subfeature) by using the
checkboxes in the Category box. For example, click HTML5 and clear the other
checkboxes to see only those features that are considered a part of the HTML5
standard. Choose JS API to see many of the JavaScript-powered features that
began as part of HTML5 but have since been split off. And choose CSS to ex-
plore support for fancy new CSS3 features.

Figure 1-4:
This search looks for
core HTML5 features
only, but considers
all versions of all
browsers.

Type in here to search for a feature by name

Use the checkboxes in this section to
study an entire group of features

2.	 Optionally,	pick	your	other	options	using	the	other	checkboxes.
You can refine your tables by removing some details. For example, you may not
want to see compatibility information for mobile browsers or for browsers that
are still in development and not officially released. However, it’s usually easiest
to just keep all these options switched on, since the tables are still easy to read.

36 html5: the missing manual

Using HTML5 Today

3.	 Scroll	down	to	see	your	results	(Figure	1-5).
If you’re looking at a large batch of features, you’ll see only 20 tables at a time.
You can move from one page to the next by clicking the “Show next 20” link at
the bottom of the page.
Each feature table shows a grid of different browser versions. The tables indicate
support with the color of the cell, which can be red (no support), bright green
(full support), olive green (partial support), or gray (undetermined, usually
because this version of the browser is still under development and the feature
hasn’t been added yet).

Figure 1-5:
Currently, there are
just over 20 feature
tables in the HTML5
category. This table
shows the current
state of browser sup-
port for HTML5’s new
<audio> element.

A quick estimate of how many people
have browsers that support this feature

Some handy links with
information about this feature

These versions of IE
have no audio support

These versions of IE
have full audio support

Browser Adoption Statistics
Browser adoption statistics fill in the last piece of the puzzle. They tell you what
portion of your audience has a browser that supports the features you plan to use.
One good place to get a look is the popular GlobalStats site http://gs.statcounter.
com. Once you get there, choose Browser Version in the Statistic list box (under
the chart). This chart lets you consider not just which browsers are being used, but
which versions of each browser. You can also pick a geographic region, like North
America, from the Country/Region list box.

37chapter 1: introducing html5

Using HTML5 Today

Up To Speed

Is IE Being Left Behind?
As you explore HTML5, you’ll quickly find that one brows-
er stands out with the weakest HTML5 support (and the
slowest upgrade rate). This laggard is Internet Explorer.
Although Microsoft took a giant step forward with Internet
Explorer 9, IE’s HTML5 support still trails every other mod-
ern browser.

Microsoft isn’t ignoring the newest developments in the
HTML5 universe, but it is holding off on implementing
features that aren’t finished. For some of these features,
Microsoft provides experimental IE extensions (called
HTML5 “labs”), which you can download at http://html5labs.
interoperabilitybridges.com. This is a great if you simply
want to play around with some new, still-evolving HTML5
features. But it’s no help if you actually want to start

implementing them in a real web application. (Of course,
implementing some of these features borders on foolhar-
dy, but that’s a completely different subject.)

But there’s an even more significant issue in IE’s support for
HTML5. As explained earlier, IE 9 is the first version of IE to
support any HTML5 features. It requires Windows 7 or Win-
dows Vista. People using Windows XP (which still ranks as
the world’s most popular operating system, despite its age)
can’t use IE 9, and so they can’t get any HTML5 support .
And while these abandoned computer users aren’t totally
left out—they can still use a competing browser—it’ll be a
long time before web developers can switch over to HTML5
without worrying about feature detection and fallbacks.

Lastly, you can pick the chart type using the option buttons that are just to the right
of the chart box. Pick Bar to see a bar chart that shows a snapshot of the current
situation. Pick Line to see a line chart that shows the trend in browser adoption over
time. By default, line charts show the entire previous year (Figure 1-6), but you can
tweak the date range to focus on the time period that interests you.

Figure 1-6:
This chart shows that
HTML5 support is a
gamble. The world’s
current most popular
browser, IE 8, has
none.

38 html5: the missing manual

Using HTML5 Today

GlobalStats compiles its statistics daily using tracking code that’s present on millions
of websites. And while that’s a large number of pages and a huge amount of data, it’s
still just a small fraction of the total Web, which means you can’t necessarily assume
that your website visitors will have the same browsers.

Furthermore, browser-share results change depending on the web surfer’s country
and the type of website. For example, in Germany, Firefox is the top browser with 60
percent of web surfers, while in Belarus, Opera wins the day with a 49 percent share.
And on the TechCrunch website (a popular news site for computer nerds), barely 16
percent use any version of the world’s most popular web browser, Internet Explorer.
So if you want to design a website that works for your peeps, review the web statistics
generated by your own pages. (And if you aren’t already using a web tracking service
for your site, check out the top-tier and completely free Google Analytics, at www.
google.com/analytics.)

Feature Detection with Modernizr
For the next few years, it’ll be a fact of life that some of your visitors’ browsers won’t
support HTML5. That doesn’t need to stop you from using these features, if you’re
willing to put in some work to create a workaround or degrade gracefully. Either
way, you’ll probably need the help of some JavaScript code. The typical pattern is
this: Your page loads and a script runs to check whether a specific feature is available.

Unfortunately, because HTML5 is, at its heart, a loose collection of related stan-
dards, there’s no single support test. Instead, you need dozens of different tests to
check for dozens of different features—and sometimes even to check if a specific
part of a feature is supported, which gets ugly fast.

Checking for support usually involves looking for a property on a programming
object, or creating an object and trying to use it a certain way. But think twice before
you write this sort of feature-testing code, because it’s so easy to do it badly. For
example, your feature-testing code might fail on certain browsers for some obscure
reason or another, or quickly become out of date. Instead, consider using Modernizr
(www.modernizr.com), a small, constantly updated tool that tests the support of a
wide range of HTML5 and related features. It also has a cool trick for implementing
fallback support when you’re using new CSS3 features, which you’ll see on page 240.

Here’s how to use Modernizr in one of your web pages:

1.	 Look	for	the	“Download	Modernizr”	box.	In	it,	click	the	Development	button	
to	download	the	Modernizr	JavaScript	file.
Typically, this file has a name like modernizr-2.0.6.js. The exact name depends
on the version you’re using. Some developers rename the file so it doesn’t in-
clude the version number (say, modernizr.js). That way you can update the
Modernizr script file in the future without needing to modify the script refer-
ence in the web pages that use it.

39chapter 1: introducing html5

Using HTML5 Today

Tip: The full Modernizr script is a bit bulky. It’s intended for testing purposes while you’re still working on
your website. Once you’ve finished development and you’re ready to go live, you can create a slimmed-
down version of the Modernizr script that tests only for the features you need. To do so, click the Produc-
tion button in the “Download Modernizr” box. This takes you to a page where you can pick and choose
the features you want to detect (by clicking the appropriate checkboxes) and then create your custom
version (by clicking the Generate button).

2.	 Place	the	file	in	the	same	folder	as	your	web	page.
Or, place it in a subfolder, and modify the path in the JavaScript reference (see
the next step) accordingly.

3.	 Add	a	reference	to	the	JavaScript	file	in	the	<head>	section	of	your	web	page.
Here’s an example of what your markup might look like:

<head>
 <meta charset="utf-8">
 <title>HTML5 Feature Detection</title>
 <script src="modernizr-2.0.6.js"></script>
 ...
</head>

Now, when your page loads, the Modernizr script runs. It tests for a couple of
dozen new features, in mere milliseconds, and then creates a JavaScript object
called Modernizr that contains the results. You can test the properties of this
object to check the browser’s support for a specific feature.

Tip: For the full list of features that Modernizr tests, and for the JavaScript code that you need to examine
each one, refer to the documentation at www.modernizr.com/docs.

4.	 Write	some	script	code	that	tests	for	the	feature	you	want	and	then	carries	out	
the	appropriate	action.
For example, here’s how you might test whether Modernizr supports the
HTML5 drag-and-drop feature, and show the result in the page:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>HTML5 Feature Detection</title>
 <script src="modernizr-2.0.6.js"></script>
</head>

<body>
 <p>The verdict is... </p>

 <script>
// Find the element on the page (named result) where you can show
// the results.
var result = document.getElementById("result");

40 html5: the missing manual

Using HTML5 Today

if (Modernizr.draganddrop) {
 result.innerHTML = "Rejoice! Your browser supports drag-and-drop.";
}
else {
 result.innerHTML = "Your feeble browser doesn't support drag-and-drop.";
}
 </script>
</body>

</html>

Figure 1-7 shows the result.

Figure 1-7:
Although this example shows the right way to test
for features, it shows a less-than-ideal approach for
dealing with them. Instead of telling your website
visitor about a missing feature, it’s far, far better to
implement some sort of workaround (even if it’s not
as neat or fully featured as the HTML5 equivalent) or
simply ignore the problem altogether (if the missing
feature is a minor frill that’s not necessary for the
visitor to enjoy the page).

Tip: This example uses basic and time-honored JavaScript techniques—looking up an element by ID
and changing its content. If you find it a bit perplexing, you can brush up with the JavaScript review in
Appendix B.

Feature “Filling” with Polyfills
Modernizr helps you spot the holes in browser support. It alerts you when a feature
won’t work. However, it doesn’t do anything to patch these problems. That’s where
polyfills come in. Basically, polyfills are a hodgepodge collection of techniques for
filling the gaps in HTML5 support on aging browsers. The word polyfills is borrowed
from the product polyfiller, a compound that’s used to fill in drywall holes before
painting (also known as spackling paste). In HTML5, the ideal polyfill is one you can
drop into a page without any extra work. It takes care of backward compatibility in a
seamless, unobtrusive way, so you can work with pure HTML5 while someone else
worries about the workarounds.

41chapter 1: introducing html5

Using HTML5 Today

But polyfills aren’t perfect. Some rely on other technologies that may be only partly
supported. For example, one polyfill allows you to emulate the HTML5 <canvas>
on old versions of Internet Explorer using the Silverlight plug-in. But if the web
visitor isn’t willing or able to install Silverlight, you need to fall back on something
else. Other polyfills may have fewer features than the real HTML5 feature, or poorer
performance.

Gem in The RoUGh

Retrofitting IE with Google Chrome Frame
The biggest polyfill of them all is Google Chrome Frame, a
browser plug-in for Internet Explorer versions 6, 7, 8, and
9. It works by asking the Chrome browser to run inside the
IE browser, and process HTML5 pages. However, Chrome
Frame doesn’t go to work on all HTML5 pages. Instead, it
only kicks in if the website creator has added some infor-
mation to the page that explicitly allows it.

The obvious limitation to Chrome Frame is that users need
to have it installed in order for websites to use it—and if
they’re willing to do that, why not just run the full Chrome
browser? But if you’d like to learn more about Chrome
Frame, you can read Google’s documentation at http://
code.google.com/chrome/chromeframe.

Occasionally, this book will point you to a potential polyfill. If you want more infor-
mation, you can find the closest thing there is to a comprehensive catalog of HTML5
polyfills on GitHub at http://tinyurl.com/polyfill. But be warned—polyfills differ
greatly in quality, performance, and support.

Tip: Remember, it’s not enough to simply know that a polyfill exists for a given HTML5 feature. You must
test it and check how well it works on various old browsers before you risk incorporating the correspond-
ing feature into your website.

With tools like browser statistics, feature detection, and polyfills, you’re ready to
think long and hard about integrating HTML5 features into your own web pages.
In the next chapter, you’ll take the first step, with some HTML5 elements that can
function in browsers both new and old.

43

chapter
2

A New Way to Structure
Pages

Over the nearly two decades that the Web’s been around, websites have
changed dramatically. But the greatest surprise isn’t how much the Web has
changed, but how well ancient HTML elements have held up. In fact, web

developers use the same set of elements to build today’s modern sites that they used
to build their predecessors 10 years ago.

One element in particular—the humble <div> (or division)—is the cornerstone of
nearly every modern web page. Using <div> elements, you can carve an HTML
document into headers, side panels, navigation bars, and more. Add a healthy pinch
of CSS formatting, and you can turn these sections into bordered boxes or shaded
columns, and place each one exactly where it belongs.

This <div>-and-style technique is straightforward, powerful, and flexible—but it’s
not transparent. That means when you look at someone else’s markup, it takes some
effort to figure out what each <div> represents and how the whole page fits together.
To make sense of it all, you need to jump back and forth among the markup, the style
sheet, and the actual page in the browser. And you’ll face this confusion every time
you crack open anyone else’s halfway-sophisticated page, even though you’re prob-
ably using the same design techniques in your own websites.

This situation got people thinking. What if there were a way to replace <div> with
something better? Something that worked like <div>, but conveyed a bit more
meaning. Something that might help separate the sidebars from the headers and the
ad bars from the menus. HTML5 fulfills this dream with a set of new elements for
structuring pages.

44 html5: the missing manual

 Introducing the
Semantic Elements
 Introducing the
Semantic Elements

Tip: If your CSS skills are so rusty that you need a tetanus shot before you can crack open a style sheet,
then you’re not quite ready for this chapter. Fortunately, Appendix A has a condensed introduction that
covers the CSS essentials you need to know.

Introducing the Semantic Elements
To improve the structure of your web pages, you need HTML5’s new semantic ele-
ments. These elements give extra meaning to the content they enclose.

For example, the new <time> element flags a valid date or time in your web page.
Here’s an example of the <time> element at its very simplest:

Registration begins on <time>2012-11-25</time>.

And this is what someone sees when viewing the page:

Registration begins on 2012-11-25.

The important thing to understand is that the <time> element doesn’t have any
built-in formatting. In fact, the web page reader has no way of knowing that there’s
an extra element wrapping the date. You can add your own formatting to the <time>
element using a style sheet, but by default, it’s indistinguishable from ordinary text.

The <time> element is designed to wrap a single piece of information. However,
most of HTML5’s semantic elements are different: They’re designed to identify larg-
er sections of content. For example, the <nav> element identifies a set of navigation
links. The <footer> element wraps the footer that sits at the bottom of a page. And
so on, for a dozen (or so) new elements.

Note: Although semantic elements are the least showy of HTML5’s new features, they’re one of the larg-
est. In fact, the majority of the new elements in HTML5 are semantic elements.

All the semantic elements share a distinguishing feature: They don’t really do any-
thing. By contrast, the <video> element, for example, embeds a fully capable vid-
eo player in your page (page 148). So why bother using a new set of elements that
doesn’t change the way your web page looks?

There are several good reasons:

• Easier editing and maintenance. It can be difficult to interpret the markup in
a traditional HTML page. To understand the overall layout and the significance
of various sections, you’ll often need to scour a web page’s style sheet. But by
using HTML5’s semantic elements, you provide extra structural information in
the markup. That makes your life easier when you need to edit the page months
later, and it’s even more important if someone else needs to revise your work.

45chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page

 Retrofitting a
Traditional HTML

Page
• Accessibility. One of the key themes of modern web design is making accessible

pages—that is, pages that people can navigate using screen readers and other
assistive tools. Right now, the companies that create accessibility tools are still
scrambling to catch up to HTML5. When they do, they’ll be able to provide a far
better browsing experience for disabled visitors. (For just one example, imagine
how a screen reader can home in on the <nav> sections to quickly find the navi-
gation links for a website.)

Tip: To learn more about the best practices for web accessibility, you can visit the WAI (Web Accessibility
Initiative) website at www.w3.org/WAI. Or, to get a quick look at what life is like behind a screen reader
(and to learn why properly arranged headings are so important), check out the YouTube video at http://
tinyurl.com/6bu4pe.

• Search-engine optimization. Search engines like Google use powerful search
bots—automated programs that crawl the Web and fetch every page they can—
to scan your content and index it in their search databases. The better Google
understands your site, the better the chance that it can match a web searcher’s
query to your content, and the better the chance that your website will turn up
in someone’s search results. Search bots already check for some of HTML5’s
semantic elements to glean more information about the pages they’re indexing.

• Future features. New browsers and web editing tools are sure to take advantage
of semantic elements in ways both small and large. For example, a browser could
provide an outline that lets visitors jump to the appropriate section in a page,
like the Navigation Pane in Microsoft Word 2010. (In fact, Chrome already has
a plug-in that does exactly that—see page 71.) Similarly, web design tools might
include features that let you build or edit navigation menus, by managing the
content you’ve placed in the <nav> section.

The bottom line is this: If you can apply the semantic elements correctly, you can
create cleaner, clearer pages that are ready for the next wave of browsers and web
tools. But if your brain is still tied up with the old-fashioned practices of traditional
HTML, the future just might pass you by.

Retrofitting a Traditional HTML Page
The easiest way to introduce yourself to the new semantic elements—and to learn
how to use them to structure a page—is to take a classic HTML document and inject
it with some HTML5 goodness. Figure 2-1 shows the first example you’ll tackle. It’s
a simple, standalone web page that holds an article, although other types of content
(like a blog posting, a product description, or a short story) would work equally well.

46 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

 Retrofitting a
Traditional HTML
Page

Figure 2-1:
This ordinary HTML
page has a basic,
document-like struc-
ture. A linked style
sheet provides all the
formatting.

Header boxFirst-level headingByline

Lead-in
Second-level heading Footer

Tip: You can view or download the example in Figure 2-1 from the try-out site at www.prosetech.com/
html5, along with all the examples for this chapter. Start with ApocalypsePage_Original.html if you’d like
to try to remodel the HTML yourself, or ApocalypsePage_Revised.html if you want to jump straight to the
HTML5-improved final product.

47chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page

 Retrofitting a
Traditional HTML

Page

Page Structure the Old Way
There are a number of ways to format a page like the one shown in Figure 2-1. Hap-
pily, this example uses HTML best practices, which means the markup doesn’t have
a lick of formatting logic. There are no bold or italic elements, no inline styles, and
certainly nothing as hideous as the obsolete element. Instead, it’s a neatly
formatted document that’s bound to an external style sheet.

Here’s a shortened version of the markup, which highlights where the document
plugs into its style sheet:

<div class="Header">
 <h1>How the World Could End</h1>
 <p class="Teaser">Scenarios that spell the end of life as we know</p>
 <p class="Byline">by Ray N. Carnation</p>
</div>

<div class="Content">
 <p>Right now, you're probably ...</p>
 <p>...</p>

 <h2>Mayan Doomsday</h2>
 <p>Skeptics suggest ...</p>
 ...
</div>

<div class="Footer">
 <p class="Disclaimer">These apocalyptic predictions ...</p>
 <p>
 About Us
 ...
 </p>
 <p>Copyright © 2011</p>
</div>

Up To Speed

What Are These Dots (…)?
This book can’t show you the full markup for every
example—at least not without expanding itself to 12,000
pages and wiping out an entire old-growth forest. But it can
show you basic structure of a page, and all its important
elements. To do that, many of the examples in this book
use an ellipsis (a series of three dots) to show where some
content has been left out.

For example, consider the markup shown on this page. It
includes the full body of the page shown in Figure 2-2, but
it leaves out the full text of most paragraphs, most of the ar-
ticle after the “Mayan Doomsday” heading, and the full list
of links in the footer. But as you know, you can pore over
every detail by examining the sample files for this chapter
on the try-out site (www.prosetech.com/html5).

In a well-written, traditional HTML page (like this one), most of the work is farmed
out to the style sheet using the <div> and containers. The lets you
format snippets of text inside another element. The <div> allows you to format en-
tire sections of content, and it establishes the overall structure of the page (Figure
2-2).

48 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

 Retrofitting a
Traditional HTML
Page

Figure 2-2:
The <div> elements
carve this page into
three logical sections:
the header at the top,
the content that fol-
lows, and the footer
at the bottom.

<div>

<div>

<div>

Here, the style-sheet formatting tasks are simple. The entire page is given a maxi-
mum width (800 pixels) to prevent really long text lines on widescreen monitors.
The header is put in a blue bordered box. The content is padded on either side, and
the footer is centered at the bottom of the page.

49chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page

 Retrofitting a
Traditional HTML

Page
Thanks to the <div>, formatting is easy. For example, here are the style sheet rules
that format the header box and the content inside:

/* Format the <div> that represents the header (as a blue, bordered box). */
.Header {
 background-color: #7695FE;
 border: thin #336699 solid;
 padding: 10px;
 margin: 10px;
 text-align: center;
}

/* Format any <h1> headings in the header <div> (that's the article title). */
.Header h1 {
 margin: 0px;
 color: white;
 font-size: xx-large;
}

/* Format the subtitle in the header <div>. */
.Header .Teaser {
 margin: 0px;
 font-weight: bold;
}

/* Format the byline in the header <div>. */
.Header .Byline {
 font-style: italic;
 font-size: small;
 margin: 0px;
}

You’ll notice that this example makes good use of contextual selectors (page 387).
For example, it uses the selector .Header h1 to format all <h1> elements in the head-
er box.

Tip: This example is also described in the CSS review in Appendix A. If you’d like to take a detailed walk
through the style sheet rules that format each section, flip to page 391.

Page Structure with HTML5
The <div> element is a staple of current-day web design. It’s a straightforward, all-
purpose container that can apply formatting anywhere you want in a web page. The
limitation of the <div> is that it doesn’t provide any information about the page.
When you (or a browser, or a design tool, or a screen reader, or a search bot) come
across a <div>, you know that you’ve found a separate section of the page, but you
don’t know the purpose of that section.

50 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

 Retrofitting a
Traditional HTML
Page

To improve this situation in HTML5, you can replace some of your <div> elements
with more descriptive semantic elements. The semantic elements behave exactly like
a <div> element: They group a block of markup, they don’t do anything on their
own, and they give you a styling hook that allows you to apply formatting. However,
they also add a little bit more semantic smarts to your page.

Here’s a quick revision of the article shown in Figure 2-1. It removes two <div> ele-
ments and adds two semantic elements from HTML5: <header> and <footer>.

<header class="Header">
 <h1>How the World Could End</h1>
 <p class="Teaser">Scenarios that spell the end of life as we know</p>
 <p class="Byline">by Ray N. Carnation</p>
</header>

<div class="Content">
 <p>Right now, you're probably ...</p>
 <p>...</p>

 <h2>Mayan Doomsday</h2>
 <p>Skeptics suggest ...</p>
 ...
</div>

<footer class="Footer">
 <p class="Disclaimer">These apocalyptic predictions ...</p>
 <p>
 About Us
 ...
 </p>
 <p>Copyright © 2011</p>
</footer>

In this example, the <header> and <footer> elements take the place of the <div> ele-
ments that were there before. Web developers who are revising a large website might
start by wrapping the existing <div> elements in the appropriate HTML5 semantic
elements.

You’ll also notice that the <header> and <footer> elements still use class names. This
way, there’s no immediate need to change the style sheet. However, the class names
seem a bit redundant, so you might prefer to leave them out, like this:

<header>
 <h1>How the World Could End</h1>
 <p class="Teaser">Scenarios that spell the end of life as we know</p>
 <p class="Byline">by Ray N. Carnation</p>
</header>

51chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page

 Retrofitting a
Traditional HTML

Page
Because the page has just a single header, you can target it by element name. Here’s
the revised style sheet that applies its formatting to all <header> elements:

/* Format the <header> (as a blue, bordered box.) */
header {
 ...
}

/* Format any <h1> headings in the <header> (that's the article title). */
header h1 {
 ...
}

/* Format the subtitle in the <header>. */
header .Teaser {
 ...
}

/* Format the byline in the <header>. */
header .Byline {
 ...
}

Both approaches are equally valid. As with many design decisions in HTML5, there
are plenty of discussions but no hard rules.

You’ll notice that the <div> section for the content remains. This is perfectly accept-
able, as HTML5 web pages often contain a mix of semantic elements and the more
generic <div> container. Because there’s no HTML5 “content” element, an ordinary
<div> still makes sense.

Note: Left to its own devices, this web page won’t display correctly on versions of Internet Explorer before
IE 9. To fix this issue, you need the simple workaround discussed on page 59. But first, check out a few
more semantic elements that can enhance your pages.

Finally, there’s one more element worth adding to this example. HTML5 includes
an <article> element that represents a complete, self-contained piece of content, like
a blog posting or a news story. The <article> element includes the whole shebang,
including the title, author byline, and main content. Once you add the <article> ele-
ment to the page, you get this structure:

<article>
 <header>
 <h1>How the World Could End</h1>
 ...
 </header>

 <div class="Content">
 <p>Right now, you're probably ...</p>
 <p>...</p>

52 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

 <h2>Mayan Doomsday</h2>
 <p>Skeptics suggest ...</p>
 ...
 </div>
</article>

<footer>
 <p class="Disclaimer">These apocalyptic predictions ...</p>
 ...
</footer>

Figure 2-3 shows the final structure.

Figure 2-3:
After the redesign, the page uses three of HTML5’s semantic elements. If the old struc-
ture said, “Here is a page with three sections,” then the new structure says, “Here is an
article with a header and a footer.”

Web Page

<article>

<header>

<footer>

Although the web page still looks the same in the browser, there’s a fair bit of extra
information lurking behind the scenes. For example, a search bot that stops by your
site can quickly find the content on the page (that’s your article) and the title of that
content (that’s the header). It won’t pay as much attention to the footer.

Note: Sometimes articles are split over several web pages. The current consensus of webheads is that
each part of the article should be wrapped in its own <article> element, even though it’s not complete
and self-contained. This messy compromise is just one of many that occur when semantics meet the
practical, presentational considerations of the Web.

Subtitles with <hgroup>
The previous example puts the <header> to good use. However, HTML5 actually
adds two heading-related elements: <header> and <hgroup>. Here are the official
guidelines about how to use them.

First, if you have an ordinary title, all on its own with no special content, a numbered
heading element (like <h1>, <h2>, <h3>, and so on) will do fine on its own:

<h1>How the World Could End</h1>

53chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page
If you have a title and a subtitle, you can wrap the two of them in an <hgroup>. But
don’t try to sneak anything in there other than numbered heading elements (that’s
<h1>, <h2>, <h3>, and so on):

<hgroup>
 <h1>How the World Could End</h1>
 <h2>Scenarios that spell the end of life as we know</h2>
</hgroup>

If you have a “fat” header—one that includes the title and some other content (for
example, a summary, the publication date, an author byline, an image, or subtopic
links)—you should wrap the whole thing in the <header> element:

<header>
 <h1>How the World Could End</h1>
 <p class="Byline">by Ray N. Carnation</p>
</header>

Finally, if you have a fat header that also has a subtitle, you need to throw a <header>
around your <hgroup> to mark up the extra content, like this:

<header>
 <hgroup>
 <h1>How the World Could End</h1>
 <h2>Scenarios that spell the end of life as we know</h2>
 </hgroup>
 <p class="Byline">by Ray N. Carnation</p>
</header>

This, of course, is the content from the previous example, with a slight change: The
subtitle is marked up with the <h2> element instead of <p>.

At first glance, this markup seems potentially confusing. It could, structurally speak-
ing, imply that all the content that follows is part of a subsection that starts with the
level 2 heading, which doesn’t make much sense. After all, who wants an article that
consists entirely of one big subsection? And even though setup this doesn’t affect the
way the page appears in a browser, it does change the way browsers and other tools
build a document outline for your page (as you’ll see on page 70).

Fortunately, the <hgroup> element solves the problem automatically. Structurally
speaking, it pays attention to the top-level heading only (in this case, that’s the <h1>).
Other headings are shown in the browser, but they don’t become part of the docu-
ment outline. This behavior makes perfect sense, because these headings are meant
to indicate subtitles, not subsections.

Adding a Figure with <figure>
Plenty of pages have images. But the concept of a figure is a bit different. The HTML5
specification suggests that you think of them much like figures in a book—in other
words, a picture that’s separate from the text, yet referred to in the text.

54 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

Generally, you let figures float, which means you put them in the nearest convenient
spot alongside your text (rather than lock them in place next to a specific word or
element). Often, figures have captions that float with them.

The following example shows some HTML markup that adds a figure to the apoc-
alyptic article. (It also includes the paragraph that immediate precedes the figure
and the one that follows it, so you can see exactly where the figure is placed in the
markup.)

<p>Right now, you're probably ...</p>

<div class="FloatFigure">

 <p>Will you be the last person standing if one of these apocalyptic
 scenarios plays out?</p>
</div>

<p>But don't get too smug ...</p>

This markup assumes that you’ve created a style sheet rule that positions the figure
(and sets margins, controls the formatting of the caption text, and optionally draws
a border around it). Here’s an example:

/* Format the floating figure box. */
.FloatFigure {
 float: left;
 margin-left: 0px;
 margin-top: 0px;
 margin-right: 20px;
 margin-bottom: 0px;
}

/* Format the figure caption text. */
.FloatFigure p {
 max-width: 200px;
 font-size: small;
 font-style: italic;
 margin-bottom: 5px;
}

Figure 2-4 shows this example at work.

If you’ve created this sort of figure before, you’ll be interested to know that HTML5
provides new semantic elements that are tailor-made for this pattern. Instead of us-
ing a boring <div> to hold the figure box, you use a <figure> element. And if you
have any caption text, you put that in a <figcaption> element inside the <figure>:

<figure class="FloatFigure">

 <figcaption>Will you be the last person standing if one of these
 apocalyptic scenarios plays out?</figcaption>
</figure>

55chapter 2: a new way to structure pages

 Retrofitting a
Traditional HTML

Page

Figure 2-4:
Now a figure graces
the article. In the
markup, it’s defined
just after the first
paragraph, so it
floats to the left of the
following text. Notice
that the width of the
caption is limited, to
create a nice, packed
paragraph.

Of course it’s still up to you to use a style sheet to position and format your figure
box. (In this example, that means you need to change the style rule selector that
targets the caption text. Right now it uses .FloatFigure p, but the revised example
requires .FloatFigure figcaption.)

Tip: Note that the <figure> element still gets its formatting based on its class name (FloatFigure), not its
element type. That’s because you’re likely to format figures in more than one way. For example, you might
have figures that float on the left, figures that float on the right, ones that need different margin or caption
settings, and so on. To preserve this sort of flexibility, it makes sense to format your figures with classes.

In the browser, the figure still looks the same. The difference is that the purpose of
your figure markup is now perfectly clear. (Incidentally, <figcaption> isn’t limited to
holding text—you can use any HTML elements that make sense. Other possibilities
include links and tiny icons.)

56 html5: the missing manual

 Retrofitting a
Traditional HTML
Page

Finally, it’s worth noting that in some cases the figure caption may include a com-
plete description of the image, rendering the alt text redundant. In this situation, you
can remove the alt attribute from the element:

<figure class="FloatFigure">

 <figcaption>A human skull lies on the sand</figcaption>
</figure>

Just make sure you don’t set the alternate text with an empty string, because that
means your image is purely presentational and screen readers should avoid it alto-
gether.

Adding a Sidebar with <aside>
The new <aside> element represents content that is tangentially related to the text
that surrounds it. For example, you can use an <aside> in the same way you use a
sidebar in print—to introduce a related topic or to expand on a point that’s raised
in the main document. (See, for instance, the box on page 58.) The <aside> element
also makes sense if you need somewhere to stash a block of ads, some related content
links, or even a pull-quote like the one shown in Figure 2-5.

Figure 2-5:
A pull-quote is a
technique borrowed
from print. It attracts
the reader’s attention
and highlights impor-
tant content.

57chapter 2: a new way to structure pages

 Browser
Compatibility for the

Semantic Elements
You can easily create this effect with the well-worn <div> element, but the <aside>
element gives you a more meaningful way to mark up the same content:

<p>... (in a suitably robotic voice) "Who's your daddy now?"</p>

<aside class="PullQuote">

 We don't know how the universe started, so we can't be sure it won't
 just end, maybe today.

</aside>

<h2>Unexplained Singularity</h2>

This time, the style sheet rule floats the pull-quote to the right. Here are the styling
details, just in case you’re curious:

.PullQuote {
 float: right;
 max-width: 300px;
 border-top: thin black solid;
 border-bottom: thick black solid;
 font-size: 30px;
 line-height: 130%;
 font-style: italic;
 padding-top: 5px;
 padding-bottom: 5px;
 margin-left: 15px;
 margin-bottom: 10px;
}

.PullQuote img {
 vertical-align: bottom;
}

Browser Compatibility for the Semantic Elements
So far, this exercise has been a lot of fun. But the results aren’t as cheering if you fire
this page up on older browsers. Before we get to those, it’s worth checking out the
browser requirements for pure, uncomplicated semantic element support. Table 2-1
tells the story.

Table 2-1. Browser support for the semantic elements

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

9 4 8 5 11.1 4 2.1

Fortunately, this is one missing feature that’s easy to patch up. After all, the semantic
elements don’t actually do anything. To support them, a browser simply needs to
treat them like an ordinary <div> element. And to make that happen, you need to
tackle two challenges.

58 html5: the missing manual

 Browser
Compatibility for the
Semantic Elements

Up To Speed

How the Semantic Elements Were Chosen
Before inventing HTML5, its creators took a long look at
the current crop of web pages. And they didn’t just browse
through their favorite sites; instead, they reviewed the
Google-crunched statistics for over a billion web pages.
(You can see the results of this remarkable survey at http://
code.google.com/webstats, which is best viewed in a non-
IE browser, as Internet Explorer won’t show the nifty charts
and graphs.)

The Google survey analyzed the markup and compiled
a list of the class names web authors were using in their
pages. Their idea was that the class name might betray the
purpose of the element and give a valuable clue about the
way people were structuring pages. For example, if every-
one has a <div> element that uses a class named header,
then it’s logical to assume everyone is putting headers at
the tops of their web pages.

The first thing that Google found is that the vast major-
ity of pages didn’t use class names (or style sheets at all).
Next, they compiled a short list of the most commonly
used class names. Some of the most popular names were
footer, header, title, menu, nav—which correspond well to
HTML5’s new semantic elements <footer>, <header>, and
<nav>. A few others suggest possible semantic elements
that haven’t been created yet, like search and copyright.

In other words, the Web is awash with the same basic de-
signs—for example, pages with headers, footers, sidebars,
and navigation menus. But everyone has a slightly differ-
ent way of doing more or less the same thing. From this
realization, it’s just a small leap to decide that the HTML
language could be expanded with a few new elements that
capture the semantics of what everyone is already doing.
And this is exactly the insight that inspired HTML5’s seman-
tic elements.

First, you need to fight the browser’s built-in habit of treating all unrecognized ele-
ments as inline elements. Most of HTML5’s semantic elements (including all the
ones you’ve seen in this chapter, except <time>) are block elements, which means
they should be rendered on a separate line, with a little bit of space between them
and the preceding and following elements.

Web browsers that don’t recognize the HTML5 elements won’t know to display some
of them as block elements, so they’re likely to end up in a clumped-together mess.
To fix this problem, you simply need to add a new rule to your style sheet. Here’s a
super-rule that applies block display formatting to the nine HTML5 elements that
need it in one step:

article, aside, figure, figcaption, footer, header, hgroup, nav, section,
summary {
 display: block;
}

This style sheet rule won’t have any effect for browsers that already recognize
HTML5, because the display property is already set to block. And it won’t affect any
style rules you already use to format these elements. They will still apply in addition
to this rule.

59chapter 2: a new way to structure pages

 Browser
Compatibility for the

Semantic Elements
That first technique is enough to solve the problem in most browsers, but “most”
doesn’t include Internet Explorer 8 and older. Old versions of IE introduce a second
challenge: They refuse to apply style sheet formatting to elements they don’t recog-
nize. Fortunately, there is a workaround: You can trick IE into recognizing a foreign
element by registering it with a JavaScript command. For example, here’s a script
block that gives IE the ability to recognize and style the <header> element:

<script>
 document.createElement('header')
</script>

Rather than write this sort of code yourself, you can make use of a ready-made script
that does it for you (described at http://tinyurl.com/nlcjxm). To use this script, you
simply add a reference to it in the <head> section of your page, like this:

<head>
 <title>...</title>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
 ...
<head>

This code grabs the script from the html5shim.googlecode.com web server and runs
it before the browser starts processing the rest of the page. The script is short and
to the point—it uses the JavaScript described above to create all the new HTML5
elements. This allows you to format them with style sheet rules. Add the super-rule
shown above to your style sheet, and the new elements will display as proper block
elements. The only remaining task is for you to use the elements, and to add your
own style sheet rules to format them.

Incidentally, the html5.js script code is conditional—it runs only if it detects you’re
running an old version of Internet Explorer. But if you want to avoid the overhead
of requesting the JavaScript file at all, you can make the script reference conditional,
like so:

<!--[if lt IE 9]>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

That way, other browsers (and IE 9 or later) will ignore this instruction, saving your
page a few milliseconds of time.

Finally, it’s worth pointing out that when you test a web page on your own computer,
Internet Explorer will usually lock it down. That means you’ll see the infamous IE
security bar at the top of the page, warning you that it’s disabled the script. To run
it, you need to explicitly click the security bar and choose to allow active content.

This problem disappears once you upload the page to a website, but it can be a hassle
when testing your work. The solution is to add the “mark of the Web” comment to
the beginning of your web page, as described on page 23.

60 html5: the missing manual

 Designing a Site
with the Semantic
Elements

Tip: There’s one alternate solution to the semantic styling problem: Use Modernizr (page 38). It auto-
matically takes care of the problem without the need for the html5.js script or the style rule. So if you’re
already using Modernizr to test for feature support, consider the problem solved.

Designing a Site with the Semantic Elements
Adding the semantic elements to a simple, document-like page is easy. Adding them
to a complete website isn’t any harder, but it does raise a whole lot more questions.
And because HTML5 is essentially virgin territory, there are a small number of
settled conventions (but a large number of legitimate disagreements). That means
when you have a choice between two markup approaches, and the HTML5 standard
says they’re both perfectly acceptable, it’s up to you to decide which one makes the
most sense for your content.

Figure 2-6 shows the more ambitious example that you’ll consider next.

Figure 2-6:
Here, the single-page
article you consid-
ered previously has
been placed in a
complete content-
based website. A
site header caps the
page; the content is
underneath; and a
sidebar on the left
provides navigation
controls, “About Us”
information, and an
image ad.

61chapter 2: a new way to structure pages

 Designing a Site
with the Semantic

Elements

Deeper into Headers
There are two similar, but subtly different, ways to use the <header> element. First,
you can use it to title some content. Second, you can use it title your web page. Some-
times, these two tasks overlap (as with the single article example shown in Figure
2-1). But other times, you’ll have a web page with both a page header and one or
more pieces of headered content. Figure 2-6 is this sort of example.

What makes this situation a bit trickier is that the conventions for using the <header>
element change based on its role. If you’re dealing with content, you probably won’t
use a header unless you need it. And you need it only if you’re creating a “fat”
header—one that has some extra content besides the title. If all you need is an or-
dinary title, you’re probably best to use the <h1> element on its own. Similarly, if
all you need is a title with one or more subtitles, you can use <hgroup> on its own.
But if you need to add other details, it makes sense to wrap the whole package in a
<header> (as explained on page 50). But when creating a header for a website, most
people elect to wrap it in a <header> element, even if there’s nothing there but a title
in a big CSS-formatted box. After all, it’s a major design point of your website, and
who knows when you might need to crack it open and add something new?

Here’s the takeaway: Pages can have more than one <header> element (and they
often will), even though these headers play different roles on the page.

Up To Speed

Turning a Web Page into a Website
Figure 2-6 shows a single page from a fictional website.

In a real website, you’d have the same layout (and the same
side panel) on dozens of different pages or more. The only
thing that would change as the visitor clicks around the
page is main page content—in this case, the article.

HTML5 doesn’t have any special magic for turning web
pages into websites. Instead, you need to use the same
tricks and technologies that web developers rely on in tra-
ditional HTML. Those are:

• Server-side frameworks. The idea is simple: When
a browser requests a page, the web server assembles
the pieces, including the common elements (like a
navigation bar) and the content. This approach is by
far the most common, and it’s the only way to go on
big, professional websites. Countless different tech-
nologies implement this approach in different ways,
from the old-fashioned server-side include feature

to rich web application platforms (like ASP.NET and
PHP) and content management systems (like Drupal
and WordPress).

• Page templates. High-powered web page editors
like Dreamweaver and Expression Web include a
page template feature. You begin by creating a tem-
plate that defines the structure of your web pages and
includes the repeating content you want to appear on
every page (like the header and the sidebar). Then
you use that template to create all your site pages.
Here’s the neat part: When you update the template,
your web page editor automatically updates all the
pages that use it.

Of course, you’re free to use either technique, so this book
focuses on the final result: the pasted-together markup that
forms a complete page and is shown in the web browser.

62 html5: the missing manual

 Designing a Site
with the Semantic
Elements

The apocalyptic site (Figure 2-6) adds a website header. The content for that header
is a single banner image, which combines graphical text and a picture. Here’s the
<header> element that the site uses:

<header class="SiteHeader">

 <h1 style="display:none">Apocalypse Today</h1>
</header>

Right away, you’ll notice that this header adds a detail that you don’t see on the page:
a <h1> heading that duplicates the content that’s in the picture. However, an inline
style setting hides this heading.

This example raises a clear question—what’s the point of adding a heading that you
can’t see? There are actually several reasons. First, all <header> elements require
some level of heading inside, just to satisfy the rules of HTML5. Second, this design
makes the page more accessible for people who are navigating it with screen read-
ers, because they’ll often jump from one heading to the next without looking at the
content in between. And third, it establishes a heading structure that you may use
in the rest of the page. That’s a fancy way of saying that if you start with an <h1> for
your website header, you may decide to use <h2> elements to title the other sections
of the page (like “Articles” and “About Us” in the sidebar). For more about this design
decision, see the box on page 63.

Note: Of course, you could simplify your life by creating an ordinary text header. (And if you want fancy
fonts, the new CSS3 embedded font feature, described on page 244, can help you out.) But for the many
web pages that put the title in a picture, the hidden heading trick is the next best solution.

Navigation Links with <nav>
The most interesting new feature in the apocalyptic website is the sidebar on the left,
which provides the website’s navigation, some extra information, and an image ad.
(Typically, you’d throw in a block of JavaScript that fetches a randomly chosen ad
using a service like Google AdSense. But this example just hard-codes a picture to
stand in for that.)

In a traditional HTML website, you’d wrap the whole sidebar in a <div>. In HTML5,
you almost always rely on two more specific elements: <aside> and <nav>.

The <aside> element is a bit like the <header> element in that it has a subtle, slightly
stretchable meaning. You can use it to mark up a piece of unrelated content, as you
did with the pull-quote on page 56. Or, you can also use it to designate an entirely
separate section of the page—one that’s offset from the main flow.

63chapter 2: a new way to structure pages

 Designing a Site
with the Semantic

Elements

FReqUenTly ASked qUeSTionS

The Heading Structure of a Site
Is it acceptable to have more than one level-1 heading on
a page? Is it a good idea?

According to the official rules of HTML, you can have as
many level-1 headings as you want. However, website cre-
ators often strive to have just a single level-1 heading per
page, because it makes for a more accessible site. (That’s
because people using screen readers might miss a level-1
heading as they skip from one level-2 heading to the next.)
There’s also a school of webmaster thought that says ev-
ery page should have exactly one level-1 heading, which
is unique across the entire website and clearly tells search
engines what content awaits.

The example in Figure 2-6 uses this style. The “Apocalypse
Today” heading that tops the site is the only <h1> on the
page. The other sections on the page, like “Articles” and
“About Us” in the sidebar, use level-2 headings. The article
title also uses a level-2 heading. (With a little bit of extra
planning, you could vary the text of the level-1 heading to
match the current article—after all, this heading isn’t actu-
ally visible, and it could help the page match more focused
queries in a search engine like Google.)

But there are other, equally valid approaches. For example,
you could use level-1 headings to title each major section
of your page, including the sidebar, the article, and so on.

Or, you could give the website a level-1 site heading and
put level-2 headings in the sidebar (as in the current exam-
ple) but make the article title into a second level-1 heading.
This works fine in HTML5, because of its new outlining sys-
tem. As you’ll learn on page 73, some elements, including
<article>, are treated as separate sections, with their own
distinct outlines. So it makes perfect sense for these sec-
tions to start the heading hierarchy over again with a brand
new <h1>. (However, HTML5 says it’s fine to start with a
different heading level, too.)

In short, there’s no clear answer about how to structure
your website. It seems likely that the multiple-<h1> ap-
proach will become increasingly popular as HTML5 con-
quers the Web. But for now, many web developers are
sticking with the single-<h1> approach to keep screen
readers happy.

The <nav> element wraps a block of links. These links may point to topics on the
current page, or to other pages on the website. Most pages will have multiple <nav>
sections in them. But not all links need a <nav> section—instead, it’s generally re-
served for the largest and most important navigational sections on a page. For ex-
ample, if you have a list of articles (as in Figure 2-6), you definitely need a <nav>
section. But if you have just a couple of links at the bottom of the page with licensing
and contact information, a full-blown <nav> isn’t necessary.

With these two elements in mind, it’s a good time to try a practice exercise. First,
review the sidebar in Figure 2-6. Next, sketch out on a piece of paper how you would
mark up the structure of this content. Then, read on to find out the best possible
solution.

In fact, there are at least two reasonably good ways to structure this sidebar, as shown
in Figure 2-7.

64 html5: the missing manual

 Designing a Site
with the Semantic
Elements

Figure 2-7:
Left: You can think of the entire side panel as a navigation bar,
with some other content wedged in. In this case, the whole
panel can be a <nav>, and the other content sections require
an <aside> (because they aren’t related to the sidebar’s main
content, the links).

Right: Alternatively, consider the entire side panel to be a sepa-
rate web page section that serves several purposes. In this case,
the sidebar becomes an <aside> while the navigational content
inside is wrapped in a <nav>.

<nav>

<aside>

<aside>

<aside>

<nav>
[Links go here]

[Links go here]

<section>

<div>

The apocalyptic site uses the second approach (Figure 2-7, right). That’s because the
sidebar seems to serve several purposes, with none clearly being dominant. But if
you have a lengthy and complex navigational section (like a collapsible menu) fol-
lowed by a short bit of content, the first approach just might make more sense.

Here’s the markup that shapes the sidebar, dividing it into three sections:
<aside class="NavSidebar">
 <nav>
 <h2>Articles</h2>

 How The World Could End
 Would Aliens Enslave or Eradicate Us?
 ...

 </nav>

 <section>
 <h2>About Us</h2>
 <p>Apocalypse Today is a world leader in conspiracy theories ..."
 </p>
 </section>

 <div>

 </div>
</aside>

Here are the key points you don’t want to miss:

• The title sections (“Articles” and “About Us”) are level-2 headings. That way,
they are clearly subordinate to the level-1 website heading, which makes the
page more accessible to screen readers.

• The links are marked up in an unordered list using the and ele-
ments. Website designers agree that a list is the best, most accessible way to deal
with a series of links. However, you may need to use style sheet rules to remove
the indent (as done here) and the bullets (not in this example).

65chapter 2: a new way to structure pages

 Designing a Site
with the Semantic

Elements
• The “About Us” section is wrapped in a <section> element. That’s because

there’s no other semantic element that suits this content. A <section> is slightly
more specific than a <div>—it’s suitable for any block of content that starts with
a heading. If there were a more specific element to use (for example, a hypo-
thetical <about> element), that would be preferable to a basic <section>, but
there isn’t.

• The image ad is wrapped in a <div>. The <section> element is appropriate
only for content that starts with a title, and the image section doesn’t have a
heading. (Although if it did—say, “A Word from Our Sponsors”—a <section>
element would be the better choice.) Technically, it’s not necessary to put any
other element around the image, but the <div> makes it easier to separate this
section, style it, and throw in some JavaScript code that manipulates it, if necessary.

There are also some details that this sidebar doesn’t have, but many others do. For
example, complex sidebars may start with a <header> and end with a <footer>. They
may also include multiple <nav> sections—for example, one for a list of archived
content, one with a list of late-breaking news, one with a blogroll or list of related
sites, and so on. For an example, check out the sidebar of a typical blog, which is
packed full of sections, many of which are navigational.

The style sheet rules you use to format the <aside> sidebar are the same as the ones
you’d use to format a traditional <div> sidebar. They place the sidebar in the correct
spot, using absolute positioning, and set some formatting details, like padding and
background color:

aside.NavSidebar
{
 position: absolute;
 top: 179px;
 left: 0px;
 padding: 5px 15px 0px 15px;
 width: 203px;
 min-height: 1500px;
 background-color:#eee;
 font-size: small;
}

This rule is followed by contextual style sheet rules that format the <h2>, , ,
and elements in the sidebar. (As always, you can get the sample code from
www.prosetech.com/html5, and peruse the complete style sheet.)

Now that you understand how the sidebar is put together, you’ll understand how it
fits into the layout of the entire page, as shown in Figure 2-8.

Note: As you’ve learned, the <nav> is often found on its own, or in an <aside>. There’s one more com-
mon place for it to crop up: in the <header> element that tops a web page.

66 html5: the missing manual

 Designing a Site
with the Semantic
Elements

Figure 2-8:
Here are all the semantic elements that you’ll find in the
apocalyptic web page (shown in Figure 2-6).

<aside>

<header>

<nav>

<section>

<div>

<article>

[Article content]

<header>

<footer>

<figure>

<aside>

Web Page

Gem in The RoUGh

Collapsible Boxes with <details> and <summary>
You’ve no doubt seen collapsible boxes on the Web: sec-
tions of content that you can show or hide by clicking a
heading. Collapsible boxes are one of the easiest feats
to pull off with basic JavaScript. You simply need to react
when the heading is clicked, and then change a style setting
to hide your box:

var box = document.getElementById("myBox");
box.style.display = "none";

And then back again to make it reappear:

var box = document.getElementById("myBox");
box.style.display = "block";

Interestingly, HTML5 adds two semantic elements that aim
to make this behavior automatic. The idea is that you wrap
your collapsible section in a <details> element, and wrap
the heading inside in in a <summary> element. The final
result is something like this:

<details>
 <summary>Section #1</summary>
 <p>If you can see this content, the
 section is expanded</p>
</details>

Browsers that support these elements (currently, that’s just
Chrome), will show just the heading, possibly with some
sort of visual adornment (like a tiny triangle icon next to
the heading). Then, if the user clicks the heading, the full
content expands into view. Browsers that don’t support the
<details> and <summary> elements will show the full con-
tent right from the start, without giving the user any way
to collapse it.

The <details> and <summary> elements are somewhat
controversial. Many web developers feel that they aren’t
really semantic, because they’re more about visual style
than logical structure.

For now, it’s best to avoid the <details> and <summary>
elements because they have such poor browser support.
Although you could write a workaround that uses Java-
Script on browsers that don’t support them, writing this
workaround is more effort than just using a few lines of
JavaScript to perform the collapsing on your own, on any
browser.

67chapter 2: a new way to structure pages

 Designing a Site
with the Semantic

Elements

Deeper into Footers
HTML5 and fat headers were meant for each other. Not only can you stuff in sub-
titles and bylines, but you can also add images, navigational sections (with the <nav>
element), and virtually anything else that belongs at the top of your page.

Oddly, HTML5 isn’t as accommodating when it comes to footers. The footer is sup-
posed to be limited to a few basic details about the website’s copyright, authorship,
legal restrictions, and links. Footers aren’t supposed to hold long lists of links, im-
portant pieces of content, or extraneous details like ads, social media buttons, and
website widgets.

This raises a question. What should you do if your website design calls for a fat
footer? After all, fat footers are wildly popular in website design right now (see Fig-
ure 2-9 for an example). They incorporate a number of fancy techniques, sometimes
including:

• Fixed positioning, so that they are always attached to the bottom of the browser
window, no matter where the visitor scrolls (as with the example in Figure 2-9).

• A close button, so the user can close them and reclaim the space after reading
the footer (as with the example in Figure 2-9). To make this work, you use a
simple piece of JavaScript that hides whatever element wraps the footer (like the
code shown in the box on page 66).

• A partially transparent background, so that you can see the page content
through the footer. This works well if the footer is advertising breaking news
or an important disclaimer, and it’s usually used in conjunction with a close
button.

• Animation, so that they spring or slide into view (for example, see the related
article box that pops up when you reach the bottom of an article at www.ny-
times.com).

If your site includes this sort of footer, you have a choice. The simple approach is to
disregard the rules. This approach not as terrible as it sounds, because other website
developers are sure to commit the same mistake, and over time the official rules
may be loosened, allowing fancier footers. But if you want to be on the right side
of the standard right now, you need to adjust your markup. Fortunately, it’s not too
difficult.

68 html5: the missing manual

 Designing a Site
with the Semantic
Elements

Figure 2-9:
This absurdly fat
footer is stuffed with
garish extras, like an
award picture and
social media buttons.
It uses fixed position-
ing to lock itself to
the bottom of the
browser window, like
a toolbar. Fortunate-
ly, this footer has one
redeeming quality:
the close button in the
top-right corner that
lets anyone banish it
from view.

The trick is to split the standard footer details from the extras. In the browser, these
can appear to be a single footer, but in the markup, they won’t all belong to the
<footer> element. For example, here’s the structure of the fat footer in Figure 2-9:

<div id="FatFooter">
 <!-- Fat footer content goes here. -->

 ...

 <footer>
 <!-- Standard footer content goes here. -->
 <p>The views expressed on this site do not ... </p>
 </footer>
</div>

The outer <div> has no semantic meaning. Instead, it’s a convenient package that
bundles the extra “fat” content with the bare-bones footer details. It also lets you ap-
ply the style sheet formatting rule that locks the fat footer into place:

#FatFooter {
 position: fixed;
 bottom: 0px;
 height: 145px;
 width: 100%;
 background: #ECD672;
 border-top: thin solid black;
 font-size: small;
}

69chapter 2: a new way to structure pages

 Designing a Site
with the Semantic

Elements
Note: In this example, the style sheet rule applies its formatting by ID name (using the #FatFooter
selector) rather than by class name (for example, using a .FatFooter selector). That’s because the fat footer
already needs a unique ID, so the JavaScript code can find it and hide it when someone clicks the close
button. It makes more sense to use this unique ID in the style sheet than to add a class name for the
same purpose.

You could also choose to put the footer in an <aside> element, to clearly indicate
that the footer content is a separate section, and tangentially related to the rest of the
content on the page. Here’s what that structure looks like:

<div id="FatFooter">
 <aside>
 <!-- Fat footer content goes here. -->

 ...
 </aside>
 <footer>
 <!-- Standard footer content goes here. -->
 <p>The views expressed on this site do not ... </p>
 </footer>
</div>

The important detail here is that the <footer> is not placed inside the <aside> el-
ement. That’s because the <footer> doesn’t apply to the <aside> but to the entire
website. Similarly, if you have a <footer> that applies to some piece of content, your
<footer> needs to be placed inside the element that wraps that content.

Note: The rules and guidelines for the proper use of HTML5’s semantic elements are still evolving. Ques-
tions about the proper way to mark up large, complex sites stir ferocious debate in the HTML community.
The best advice is this: If something doesn’t seem true to your content, don’t do it. Or you can discuss it
online, where you can get feedback from dozens of super-smart HTML gurus. (One particularly good site
is http://html5doctor.com, where you can see these ongoing debates unfolding in the comments section
of most articles.)

Deeper into Sections
As you’ve already learned, the <section> is the semantic element of last resort. If you
have a titled block of content, and the other semantic elements aren’t appropriate,
then the <section> element is generally a better choice than <div>.

So what goes in a typical section? Depending on your perspective, the <section> ele-
ment is either a flexible tool that fits many needs, or a loose and baggy monster with
no clear identity. That’s because sections play a variety of different web page roles.
They can mark up any of the following:

• Small blocks of content that are displayed alongside the main page, like the
“About Us” paragraph in the apocalyptic website.

70 html5: the missing manual

 The HTML5
Outlining System

• Self-contained content that can’t really be described as an article, like a cus-
tomer billing record or a product listing.

• Groups of content—for example, a collection of articles on a news site.
• A portion of a longer document. For example, in the apocalyptic article, you

could mark up each separate end-of-the-world scenario as a distinct section.
Sometimes you’ll use sections in this way to ensure a correct outline for your
document, as explained in the next section.

The last two items in the list are the most surprising. Many web developers find it’s
a bit of a stretch to use the same element to deal with a small fragment of an article
and an entire group of articles. Some think that HTML5 should have at least two
different elements to deal with these different scenarios. But the creators of HTML5
decided to keep things simple (by limiting the number of new elements) while mak-
ing the new elements as flexible and practical as possible.

There’s one last consideration. The <section> element also has an effect on a web
page’s outline, which is the concept you’ll explore next.

The HTML5 Outlining System
HTML5 defines a set of rules that dictate how you can create a document outline for
any web page. A web page’s outline can come in handy in a lot of ways. For example,
a browser could let you jump from one part of an outline to another. A design tool
could let you rearrange sections by dragging and dropping them in an outline view.
A search engine could use the outline to build a better page preview, and screen
readers could benefit the most of all, by using outlines to guide users with vision dif-
ficulties through a deeply nested hierarchy of sections and subsections.

However, none of these scenarios is real yet, because almost no one uses HTML5
outlines today—except for the small set of developer tools you’ll consider in the next
section.

Note: It’s hard to get excited about a feature that doesn’t affect the way the page is presented in a
browser and isn’t used by other tools. However, it’s still a good idea to review the outline of your web
pages (or at least the outline of a typical page from your website) to make sure that its structure makes
sense and that you aren’t breaking any HTML5 rules.

How to View an Outline
To really understand outlines, you need to take a look at the outlines produced by
your own pages. Right now, no browser implements the rules of HTML5 outlines
(or gives you a way to peek at one). However, there are several tools that fill the gap:

71chapter 2: a new way to structure pages

 The HTML5
Outlining System

• Online HTML outliner. Just visit http://gsnedders.html5.org/outliner and tell
the outliner what page you want to outline. As with the HTML5 validator you
used in Chapter 1 (page 25), you can submit the page you want to outline in
three ways: by uploading a file from your computer, by supplying a URL, or by
pasting the markup into a text box.

• Chrome extension. You can use the h5o plug-in to analyze page outlines from
inside the Chrome browser. Just install it from http://code.google.com/p/h5o
and surf to an HTML5 page somewhere on the Web (sadly, at this writing h5o
doesn’t work with files that are stored on your computer). An outline icon will
appear in the address bar, which reveals the structure of the page when clicked
(Figure 2-10). The h5o page also provides a bookmarklet—a piece of JavaScript
code that you can add to your web browser’s bookmark list—which allows you
to display page outlines in Firefox and Internet Explorer, albeit with a few quirks.

• Opera extension. There’s an Opera version of the h5o Chrome extension. Get
it at http://tinyurl.com/3k3ecdy.

Figure 2-10:
When you visit an HTML5
page with the Chrome h5o
extension installed, an
outline icon appears in the
address bar. Click the icon
to pop open a window
with the full page outline.

Basic Outlines
To visualize the outline of your web page, imagine it stripped of all content except
for the text in a numbered heading element (<h1>, <h2>, <h3>, and so on). Then,
indent those headings based on their place in your markup, so more deeply nested
headings are indented more in the outline.

72 html5: the missing manual

 The HTML5
Outlining System

For example, consider the apocalypse article in its initial, pre-HTML5 state:
<body>
 <div class="Header">
 <h1>How the World Could End</h1>
 ...
 </div>
 ...
 <h2>Mayan Doomsday</h2>
 ...
 <h2>Robot Takeover</h2>
 ...
 <h2>Unexplained Singularity</h2>
 ...
 <h2>Runaway Climate Change</h2>
 ...
 <h2>Global Epidemic</h2>
 ...
 <div class="Footer">
 ...
 </div>
</body>

This simple structure leads to an outline like this:

1. How the World Could End

 1. Mayan Doomsday

 2. Robot Takeover

 3. Unexplained Singularity

 4. Runaway Climate Change

 5. Global Epidemic

Two levels of headings (<h1> and <h2>) create a two-level outline. This scheme is
similar to the outline features in many word processing programs—for example, you
can see much the same thing in Word 2010’s Navigation pane.

On the other hand, markup like this:
<h1>Level-1 Heading</h1>
<h2>Level-2 Heading</h2>
<h2>Level-2 Heading</h2>
<h3>Level-3 Heading</h3>
<h2>Level-2 Heading</h2>

73chapter 2: a new way to structure pages

 The HTML5
Outlining System

Gets an outline like this:

1. Level-1 Heading

 1. Level-2 Heading

 2. Level-2 Heading

 1. Level-3 Heading

 3. Level-2 Heading

Again, there are no surprises.

Finally, the outline algorithm is smart enough to ignore skipped levels. For example,
if you write this slightly wobbly markup, which skips from <h1> directly to <h3>:

<h1>Level-1 Heading</h1>
<h2>Level-2 Heading</h2>
<h1>Level-1 Heading</h2>
<h3>Level-3 Heading</h3>
<h2>Level-2 Heading</h2>

You get this outline:

1. Level-1 Heading

 1. Level-2 Heading

2. Level-1 Heading

 1. Level-3 Heading

 2. Level-2 Heading

Now the level-3 heading has level-2 status in the outline, based on its position in the
document. This might seem like one of those automatic error corrections browsers
love to make, but it actually serves a practical purpose. In some situations, a web
page may be assembled out of separate pieces—for example, it might contain a copy
of an article that’s published elsewhere. In this case, the heading levels of the embed-
ded content might not line up perfectly with the rest of the web page. But because
the outlining algorithm smooths these differences out, it’s unlikely to be a problem.

Sectioning Elements
Sectioning elements are elements that create a new, nested outline inside your page.
These elements are <article>, <aside>, <nav>, and <section>. To understand how
sectioning elements work, imagine a page that contains two <article> elements. Be-
cause <article> is a sectioning element, this page has (at least) three outlines—the
outline of the overall page, and one nested outline for each article.

74 html5: the missing manual

 The HTML5
Outlining System

To get a better grasp of this situation, consider the structure of the apocalypse article,
after it’s been revised with HTML5:

<body>
 <article>
 <header>
 <h1>How the World Could End</h1>
 ...
 </header>

 <div class="Content">
 ...
 <h2>Mayan Doomsday</h2>
 ...
 <h2>Robot Takeover</h2>
 ...
 <h2>Unexplained Singularity</h2>
 ...
 <h2>Runaway Climate Change</h2>
 ...
 <h2>Global Epidemic</h2>
 ...
 </div>
 </article>

 <footer>
 ...
 </footer>
</body>

Plug this into an outline viewer like http://gsnedders.html5.org/outliner, and you’ll
see this:

1. Untitled Section

 1. How the World Could End

 1. Mayan Doomsday

 2. Robot Takeover

 3. Unexplained Singularity

 4. Runaway Climate Change

 5. Global Epidemic

Here, the outline starts with an untitled section, which is the root <body> element.
The <article> element starts a new, nested outline, which contains a single <h1> and
several <h2> elements.

75chapter 2: a new way to structure pages

 The HTML5
Outlining System

Sometimes, the “Untitled Section” note indicates a mistake. Although it’s considered
acceptable for <aside> and <nav> elements to exist without titles, the same leniency
isn’t usually given to <article> or <section> elements. In the previous example, the
untitled section is the main section for the page, which belongs to the <body> ele-
ment. Because the page contains a single article, there’s no reason for the page to
have a separate heading, and you can ignore this quirk.

Now consider what happens with a more complex example, like the apocalypse site
with the navigation sidebar (page 60). Put that through an outliner, and you’ll get
this outline:

1. Apocalypse Today

 1. Untitled Section

 1. Articles

 2. About Us

 2. How the World Could End

 1. Mayan Doomsday

 2. Robot Takeover

 3. Untitled Section

 4. Unexplained Singularity

 5. Runaway Climate Change

 6. Global Epidemic

Here, there are two sectioning elements, and two nested outlines: one for the sidebar,
and one for the article. There are also two untitled sections, both of which are legiti-
mate. The first is the <aside> element for the sidebar, and the second is the <aside>
element that represents the pull-quote in the article.

Note: In addition to sectioning elements, some elements are called section roots. These elements aren’t
just branches of an existing outline; they start a new outline of their own that doesn’t appear in the main
outline of the containing page. The <body> element that contains your web page content is a section-
ing root, which makes sense. But HTML5 also considers the following elements to be sectioning roots:
<blockquote>, <td>, <fieldset>, <figure>, and <details>.

76 html5: the missing manual

 The HTML5
Outlining System

Gem in The RoUGh

How Sectioning Elements Help Complex Pages
Sectioning is a great help with syndication and aggrega-
tion—two examples of the fine art of taking content from
one web page and injecting it into another.

For example, imagine you have a web page that includes
excerpts from several articles, all of which are drawn from
other sites. Now imagine that this page has a deeply nested
structure of headings, and somewhere inside—let’s say un-
der an <h4> heading—there’s an article with content pulled
from another web page.

In traditional HTML, you’d like the first heading in this con-
tent to use the <h5> element, because it’s nested under an
<h4>. But this article was originally developed to be placed
somewhere else, on a different page, with less nesting, so it
probably starts with an <h2> or an <h1>. This doesn’t stop
the page from working, but it does mean that the hierarchy is

scrambled, and the page could be more difficult for screen
readers, search engines, and other software to process.

In HTML5, this page isn’t a problem. As long as you wrap
the nested article in an <article> element, the extracted
content becomes part of its own nested outline. That out-
line can start with any heading—it doesn’t matter. What
matters is its position in the containing document. So if the
<article> element falls after an <h4>, then the first level
of heading in that article behaves like a logical <h5>, the
second level acts like a logical <h6>, and so on.

The conclusion is this: HTML5 has a logical outline system
that makes it easier to combine documents. In this outline
system, the position of your headings becomes more im-
portant, and the exact level of each heading becomes less
significant—making it harder to shoot yourself in the foot.

Solving an Outline Problem
So far, you’ve looked at the examples in this chapter, and seen the outlines they gen-
erated. And so far, the outlines have made perfect sense. But sometimes, a problem
can occur. For example, imagine you create a document with this structure:

<body>
 <article>
 <h1>Natural Wonders to Visit Before You Die</h1>
 ...
 <h2>In North America</h2>
 ...
 <h3>The Grand Canyon</h3>
 ...
 <h3>Yellowstone National Park</h3>
 ...
 <h2>In the Rest of the World</h2>
 ...
 <aside>...</aside>
 ...
 <h3>Galapagos Islands</h3>
 ...
 <h3>The Swiss Alps</h3>
 ...
 </article>
</body>

77chapter 2: a new way to structure pages

 The HTML5
Outlining System

You probably expect an outline like this:

1. Untitled Section for the <body>

 1. Natural Wonders to Visit Before You Die

 1. In North America

 1. The Grand Canyon

 2. Yellowstone National Park

 2. In the Rest of the World

 3. Untitled Section for the <aside>

 1. Galapagos Islands

 2. The Swiss Alps

But the outline you actually get is this:

1. Untitled Section for the <body>

 1. Natural Wonders to Visit Before You Die

 1. In North America

 1. The Grand Canyon

 2. Yellowstone National Park

 2. In the Rest of the World

 3. Untitled Section for the <aside>

 4. Galapagos Islands

 5. The Swiss Alps

Somehow, the addition of the <aside> after the <h2> throws off the following <h3>
elements, making them have the same logical level as the <h2>. This clearly isn’t
what you want.

To solve this problem, you first need to understand that the HTML5 outline system
automatically creates a new section every time it finds a numbered heading element
(like <h1>, <h2>, <h3>, and so on), unless that element is already at the top of a
section.

In this example, the outline system doesn’t do anything to the initial <h1> element,
because it’s at the top of the <article> section. But the outline algorithm does create
new sections for the <h2> and <h3> elements that follow. It’s as though you wrote
this markup:

<body>
 <article>
 <h1>Natural Wonders to Visit Before You Die</h1>
 ...
 <section>
 <h2>In North America</h2>
 ...

78 html5: the missing manual

 The HTML5
Outlining System

 <section>
 <h3>The Grand Canyon</h3>
 ...
 </section>
 <section>
 <h3>Yellowstone National Park</h3>
 ...
 </section>
 </section>

 <section>
 <h2>In the Rest of the World</h2>
 ...
 </section>
 <aside>...</aside>
 ...
 <section>
 <h3>Galapagos Islands</h3>
 ...
 </section>
 <section>
 <h3>The Swiss Alps</h3>
 ...
 </section>
 </article>
</body>

Most of the time, these automatically created sections aren’t a problem. In fact,
they’re usually an asset, because they make sure incorrectly numbered heading are
still placed in the right outline level (as you learned on page 76). The cost for this
convenience is an occasional glitch, like the one shown here.

As you can see in this listing, everything goes right at first. The top <h1> is left alone
(because it’s in an <article> already), there’s a subsection created for the first <h2>,
then a subsection for each <h3> inside, and so on. The problem starts when the
outline algorithm runs into the <aside> element. It sees this as a cue to close the cur-
rent section, which means that when the sections are created for the following <h3>
elements, they’re at the same logical level as the <h2> elements before.

To correct this problem, you need to take control of the sections and subsections
by defining some yourself. In this example, the goal is to prevent the second <h2>
section from being closed too early, which you can do by defining it explicitly in the
markup:

<body>
 <article>
 <h1>Natural Wonders to Visit Before You Die</h1>
 ...
 <h2>In North America</h2>
 ...
 <h3>The Grand Canyon</h3>
 ...
 <h3>Yellowstone National Park</h3>
 ...

79chapter 2: a new way to structure pages

 The HTML5
Outlining System

 <section>
 <h2>In the Rest of the World</h2>
 ...
 <aside>...</aside>
 ...
 <h3>Galapagos Islands</h3>
 ...
 <h3>The Swiss Alps</h3>
 ...
 </section>
 </article>
</body>

Now, the outline algorithm doesn’t need to create an automatic section for the sec-
ond <h2>, and so there’s no risk of it closing the section when it stumbles across the
<aside>. Although you could define the section for every heading in this document,
there’s no need to clutter your markup, as this single change fixes the problem.

Note: Another solution is to replace the <aside> with a <div>. The <div> is not a sectioning element, so it
won’t cause a section to close unexpectedly.

Using the <aside> element doesn’t always cause this problem. The earlier article
examples used the <aside> element for a pull-quote but worked fine, because the
<aside> fell between two <h2> elements. But if you carelessly plunk a sectioning ele-
ment between two different heading levels, you should check your outline to make
sure it still makes sense.

Tip: If the whole outline concept seems overwhelmingly theoretical, don’t worry. Truthfully, it’s a subtle
concept that many web developers will ignore (at least for now). The best approach is to think of the
HTML5 outlining system as a quality assurance tool that can help you out. If you review your pages in an
outline generator (like one of the tools listed on page 71), you can catch mistakes that may indicate other
problems, and make sure that you’re using the semantic elements correctly.

81

chapter
3

Meaningful Markup

In the previous chapter, you met HTML5’s semantic elements. With their help,
you can give your pages a clean, logical structure and prepare for a future of
super-smart browsers, search engines, and assistive devices.

But you haven’t reached the end of the semantic story yet. Semantics are all about
adding meaning to your markup, and there are several types of information you
can inject. In Chapter 2, semantics were all about page structure—you used them to
explain the purpose of large blocks of content and entire sections of your layout. But
semantics can also include text-level information, which you add to explain much
smaller pieces of content. You can use text-level semantics to point out important
types of information that would otherwise be lost in a sea of web page content, like
names, addresses, event listings, products, recipes, restaurant reviews, and so on.
Then this content can be extracted and used by a host of different services—everything
from nifty browser plug-ins to specialized search engines.

In this chapter, you’ll start by returning to the small set of semantic elements that are
built into the HTML5 language. You’ll learn about a few text-level semantic elements
that you can use today, effortlessly. Next, you’ll look at the companion standards
that tackle text-level semantics head-on. That means digging into microdata, which
began its life as part of the original HTML5 specification, but now lives on as a sepa-
rate, still-evolving standard managed by the W3C. Along the way, you’ll take a look
at a few forward-thinking services that are already putting microdata to good use.

82 html5: the missing manual

 The Semantic
Elements Revisited
 The Semantic
Elements Revisited

The Semantic Elements Revisited
There’s a reason you began your exploration into semantics with the page structure
elements (see Table 3-1 for a recap). Quite simply, page structure is an easy chal-
lenge. That’s because the vast majority of websites use a small set of design elements
(headers, footers, sidebars, and menus) to create layouts that are—for all their cos-
metic differences—very similar.

Table 3-1. Semantic elements for page structure

Element Description
<article> Represents whatever you think of as an article—a section of self-contained

content like a newspaper article, a forum post, or a blog entry (not including
frills like comments or the author bio).

<aside> Represents a complete chunk of content that’s separate from the surrounding
content of the page. For example, it makes sense to use <aside> to create a
sidebar with related content or links next to a main article.

<figure> and
<figcaption>

Represents a figure. The <figcaption> element wraps the caption text, and
the <figure> element wraps the <figcaption> and the element for the
picture itself. The goal is to indicate the association between an image and its
caption.

<footer> Represents the footer at the bottom of the page. This is a tiny chunk of content
that may include small print, a copyright notice, and a brief set of links (for
example, “About Us” or “Get Support”).

<header> Represents an enhanced heading that includes a standard HTML heading
and extra content. The extra content might include a logo, a byline, or a set of
navigation links for the content that follows.

<hgroup> Represents an enhanced heading that groups two or more heading elements,
and nothing else. Its primary purpose is to make a title and a subtitle stand
together.

<nav> Represents a significant collection of links on a page. These links may point to
topics on the current page, or to other pages on the website. In fact, it’s not
unusual to have a page with multiple <nav> sections.

 <section> Represents a section of a document or a group of documents. The <section>
is an all-purpose container with a single rule: The content it holds should
begin with a heading. Use <section> only if the other semantic elements (for
example, <article> and <aside>) don’t apply.

Text-level semantics are a tougher nut to crack. That’s because people use a huge
number of different types of content. If HTML5 set out to create an element for ev-
ery sort of information you might add to a page, the language would be swimming
in a mess of elements. Complicating the problem is the fact that structured infor-
mation is also made of smaller pieces that can be assembled in different ways. For
example, even an ordinary postal address would require a handful of elements (like
<address>, <name>, <street>, <postalcode>, <country>, and so on) before anyone
could use it in a page.

83chapter 3: meaningful markup

 The Semantic
Elements Revisited

 The Semantic
Elements Revisited

HTML5 takes a two-pronged approach. First, it adds a very small number of text-
level semantic elements. But second, and more importantly, HTML5 supports a sep-
arate microdata standard, which gives people an extensible way to define any sort
of information they want, and then flag it in their pages. You’ll cover both of these
topics in this chapter. First up are three new text-level semantic elements: <time>,
<output>, and <mark>.

Dates and Times with <time>
Date and time information appears frequently in web pages. For example, it turns up
at the end of most blog postings. Unfortunately, there’s no standardized way to tag
dates, so there’s no easy way for other programs (like search engines) to extract them
without guessing. The <time> element solves this problem. It allows you to mark up
a date, time, or combined date and time. Here’s an example:

The party starts <time>2012-03-21</time>.

Note: It may seem a little counterintuitive to have a <time> element wrapping a date (with no time), but
that’s just one of the quirks of HTML5. A more sensible element name would be <datetime>, but that isn’t
what they chose.

The <time> element performs two roles. First, it indicates where a date or time value
is in your markup. Second, it provides that date or time value in a form that any
software program can understand. The previous example meets the second require-
ment using the universal date format, which includes a four-digit year, a two-digit
month, and a two-digit day, in that order, with each piece separated by a colon. In
other words, the format follows this pattern:

YYYY:MM:DD

However, it’s perfectly acceptable to present the date in a different way to the person
reading your web page. In fact, you can use whatever text you want, as long as you
supply the computer-readable universal date with the datetime attribute, like this:

The party starts <time datetime="2012-03-21">March 21st</time>.

Which looks like this in the browser:

The party starts March 21st.

The <time> element has similar rules about times, which you supply in this format:
HH:MM+00:00

That’s a two-digit hour (using a 24-hour clock), followed by a two-digit number of
minutes. The part that’s tacked on at the end, after the + sign, is the time zone. Time
zones are not optional—you can figure yours out at http://en.wikipedia.org/wiki/
Time_zone. For example, New York is in the Eastern Time Zone, which is known as
UTC-5:00. To indicate 4:30 p.m. in New York, you’d use this markup:

Parties start every night at <time datetime="16:30-5:00">4:30 p.m.</time>.

84 html5: the missing manual

 The Semantic
Elements Revisited
 The Semantic
Elements Revisited

This way, the people reading your page get the time in the format they expect, while
search bots and other bits of software get an unambiguous datetime value that they
can process.

Finally, you can specify a time on a specific date by combining these two standards.
Just put the date first, followed by an uppercase letter T, followed by the time
information:

The party starts <time datetime="2012-03-21T16:30-5:00">March 21st
at 4:30 p.m.</time>.

The <time> element also supports a pubdate attribute. You should use this if your
date corresponds to the publication date of the current content (for example, the
<article> in which the <time> is placed). Here’s an example:

Published on <time datetime="2011-03-21" pubdate>March 31, 2011</time>.

Note: Because the <time> element is purely informational and doesn’t have any associated formatting,
you can use it with any browser. There are no compatibility issues to worry about. But if you want to style
the <time> element, you need the Internet Explorer workaround described on page 59.

JavaScript Calculations with <output>
HTML5 includes one semantic element that’s designed to make certain types of
JavaScript-powered pages a bit clearer—the <output> element. It’s a nothing more
than a placeholder that your code can use to show a piece of calculated information.

For example, imagine you create a page like the one shown in Figure 3-1. This figure
lets the user enter some information. A script then takes this information, performs
a calculation, and displays the result just underneath.

The usual way of dealing with this is to assign a unique ID to the placeholder, so the
JavaScript code can find it when it performs the calculation. Typically, web develop-
ers use the element, which works perfectly but doesn’t provide any specific
meaning:

<p>Your BMI: </p>

Here’s the more meaningful version you’d use in HTML5:
<p>Your BMI: <output id="result"></output></p>

The actual JavaScript code doesn’t need any changes, because it looks up the element
by name, and doesn’t care about the element type:

var resultElement = document.getElementById("result");

Note: Before you use <output>, make sure you’ve included the Internet Explorer workaround described
on page 59. Otherwise, the element won’t be accessible in JavaScript on old versions of IE.

85chapter 3: meaningful markup

 The Semantic
Elements Revisited

 The Semantic
Elements Revisited

Figure 3-1:
It’s a time-honored web design pattern. Type some
numbers, click a button, and let the page give you
the answer.

Often, this sort of page will put its controls into a <form> element. In this example,
that’s the three text boxes where people can type in information:

<form action="#" id="bmiCalculator">
 <label for="feet inches">Height:</label>
 <input name="feet"> feet

 <input name="inches"> inches

 <label for="pounds">Weight:</label>
 <input name="pounds"> pounds

 ...
</form>

If you want to make your <output> element look even smarter, you can add the form
attribute (which indicates the ID of the form that has the related controls) and the
for attribute (which lists the IDs of the related controls, separated by spaces). Here’s
an example:

<p>Your BMI: <output id="result" form="bmiCalculator"
for="feet inches pounds"></output></p>

These attributes don’t actually do anything, other than convey information about
where your <output> element gets its goods. But they will earn you some serious
semantic brownie points. And if other people need to edit your page, these attributes
could help them sort out how it works.

86 html5: the missing manual

 The Semantic
Elements Revisited
 The Semantic
Elements Revisited

Tip: If you’re a bit hazy about forms, you’ll learn more in Chapter 4. If you know more about Esperanto
than JavaScript, you can brush up on the programming language in Appendix B. And if you want to try this
page out for yourself, you can find the complete example at www.prosetech.com/html5.

Highlighted Text with <mark>
The <mark> element represents a section of text that’s highlighted for reference. It’s
particularly appropriate when you’re quoting someone else’s text, and you want to
bring attention to something:

<p>In 2009, Facebook made a bold grab to own everyone’s content,
forever. This is the text they put in their terms of service:</p>
<blockquote>You hereby grant Facebook an <mark>irrevocable, perpetual,
non-exclusive, transferable, fully paid, worldwide license</mark> (with the
right to sublicense) to <mark>use, copy, publish</mark>, stream, store,
retain, publicly perform or display, transmit, scan, reformat, modify, edit,
frame, translate, excerpt, adapt, create derivative works and distribute
(through multiple tiers), <mark>any user content you post</mark>
...
</blockquote>

The text in a <mark> element gets the yellow background shown in Figure 3-2.

You could also use <mark> to flag important content or keywords, as search engines
do when showing matching text in your search results, or to mark up document
changes, in combination with (for deleted text) and <ins> (for inserted text).

Truthfully, the <mark> element is a bit of a misfit. The HTML5 specification con-
siders it to be a semantic element, but it plays a presentational role that’s arguably
more important. By default, marked-up text is highlighted with a bright yellow back-
ground (Figure 3-2), although you could apply your own style sheet rules to use a
different formatting effect.

Tip: The <mark> element isn’t really about formatting. After all, there are lots of ways to make text stand
out in a web page. Instead, you should use <mark> (coupled with any CSS formatting you like) when it’s
semantically appropriate. A good rule of thumb is to use <mark> to draw attention to ordinary text that
has become important, either because of the discussion that frames it, or because of the task the user is
performing.

Even if you stick with the default yellow-background formatting, you should add a
style sheet fallback for browsers that don’t support HTML5. Here’s the sort of style
rule you need:

mark {
 background-color: yellow;
 color: black;
}

You’ll also need the Internet Explorer workaround described on page 59 to make the
<mark> element style-able.

87chapter 3: meaningful markup

Other Standards that
Boost Semantics

Other Standards that
Boost Semantics

Figure 3-2:
Here, the <mark>
element highlights
important details in a
block of quoted text.

Other Standards that Boost Semantics
At this point, it’s probably occurring to you that there are a lot of potential semantic
elements that HTML doesn’t have. Sure, you can flag dates and highlighted text, but
what about other common bits of information, like names, addresses, business list-
ings, product descriptions, personal profiles, and so on? HTML5 deliberately doesn’t
wade into this arena, because its creators didn’t want to bog the language down with
dozens of specialized elements that would suit some people but leave others bored
and unimpressed. To really get to the next level with semantics, you need to broaden
your search beyond the core HTML5 language, and consider a few standards that
can work with your web pages.

Semantically smart markup isn’t a new idea. In fact, way back when HTML5 was
still just a fantasy in WHATWG editor Ian Hickson’s head, there were plenty of web
developers clamoring for ways to make their markup for meaningful. Their goals
weren’t always the same—some wanted to boost accessibility, some were planning to
do data mining, and others just wanted to dial up the cool factor on their resumés.
But none of them could find what they wanted in the standard HTML language,
which is why several new standards sprung up to fill the gap.

88 html5: the missing manual

Other Standards that
Boost Semantics
Other Standards that
Boost Semantics

In the following sections, you’ll learn about no fewer than four of these standards.
First, you’ll get the scoop on ARIA, a standard that’s all about improving accessibil-
ity for screen readers. Then, you’ll take a peek at three competing approaches for
describing different types of content, whether it’s contact details, addresses, business
listings, or just about anything else you can fit between the tags of an HTML page.

ARIA (Accessible Rich Internet Applications)
ARIA is a developing standard that lets you supply extra information for screen
readers through attributes on any HTML element. For example, ARIA introduces
the role attribute, which indicates the purpose of a given element. For example, if you
have a <div> that represents a header:

<div class="header">

You can announce that fact to screen readers by setting the aria role attribute to
banner:

<div class="header" role="banner">

Of course, you learned last chapter that HTML5 also gives you a more meaningful
way to mark up headers. So what you really should use is something like this:

<header role="banner">

This example demonstrates two important facts. First, ARIA requires you to use one
of a short list of recommended role names. (For the full list, refer to the appropri-
ate section of the specification at www.w3.org/TR/wai-aria/roles#landmark_roles.)
Second, parts of ARIA overlap the new HTML5 semantic elements—which makes
sense, because ARIA predates HTML5. But the overlap isn’t complete. For example,
some role names duplicate HTML5 (like “banner” and “article”), while others go
further (like “toolbar” and “search”).

ARIA also adds two attributes that work with HTML forms. The aria-required at-
tribute in a text box indicates that the user needs to enter a value. The aria-invalid
attribute in a text box indicates that the current value isn’t right. This attributes are
helpful, because screen readers are likely to miss the visual cues that sighted users
rely on, like an asterisk next to a missing field, or a flashing red error icon.

In order to apply ARIA properly, you need to learn the standard and spend some
time reviewing your markup. Web developers are divided over whether it’s a worth-
while investment, given that the standard is still developing and that HTML5 pro-
vides some of the same benefits with less trouble. However, if you want to create a
truly accessible website today, you need to use both, because newer screen readers
support ARIA but not yet HTML5.

Note: For more information about ARIA (fully known as WAI-ARIA, because it was developed by the Web
Accessibility Initiative group), you can read the specification at www.w3.org/TR/wai-aria.

89chapter 3: meaningful markup

Other Standards that
Boost Semantics

Other Standards that
Boost Semantics

RDFa (Resource Description Framework)
RDFa is a standard for embedding detailed metadata into your web documents us-
ing attributes. RDFa has a significant advantage: Unlike the other approaches dis-
cussed in this chapter, it’s a stable, settled standard. RDFa also has two significant
drawbacks. First, it’s complicated. Markup that’s augmented with RDFa metadata is
far longer and more cumbersome than ordinary HTML. Second, it’s designed for
XHTML, not HTML5. Right now, a number of super-smart webheads are hammer-
ing out the best ways for web developers to adapt RDFa to work with HTML5. How-
ever, it’s possible that RDFa just won’t catch fire in the HTML5 world, because it’s
more at home with the strict syntax and ironclad rules of XML.

RDFa isn’t discussed in this chapter. But if you want to learn more, you can get a
solid introduction on Wikipedia at http://en.wikipedia.org/wiki/RDFa, or you can
visit the Google Rich Snippets page described later (page 98), which has RDFa ver-
sions of all its examples.

Microformats
Microformats are a simple, streamlined approach to putting metadata in your pag-
es. Microformats don’t attempt to be any sort of official standard. Instead, they are
best described as a loose collection of agreed-upon conventions that allow pages
to share structured information, without requiring the complexities of a something
like RDFa. This approach has given microformats tremendous success, and a recent
Google survey found that when a page has some sort of rich metadata, 94 percent of
the time it’s microformats.

Note: Based on the popularity of microformats, you might assume that the battle for the Semantic Web
is settled. But not so fast—there are several caveats. First, the vast majority of pages have no rich semantic
data at all. Second, most of the pages that have adopted microformats use them for just two purposes:
contact information and event listings. And third, the simplicity of microformats may hold them back
from more ambitious tasks, especially when HTML5 catches on. So although microformats aren’t going
anywhere soon, you can’t afford to ignore the competition either.

Before you can mark up any data, you need to choose the microformat you want to
use. There are only a few dozen in widespread use, and most are still being tweaked
and revised. You can see what’s available and read detailed usage information about
each microformat at http://microformats.org/wiki. But it’s most likely that you’ll use
one of the two most popular microformats: hCard or hCalendar.

Contact details with hCard
The hCard microformat is an all-purpose way to represent the contact details for a
person, company, organization, or place. At last count, the Web contained more than
2 billion hCards, making it the most popular microformat by far.

90 html5: the missing manual

Other Standards that
Boost Semantics

Microformats work in an innovative way—they piggyback on the class attribute
that’s usually used for styling. You mark up your data using certain standardized
style names, depending on the type of data. Then, another program can read your
markup, extract the data, and check the attributes to figure out what everything
means. To create an hCard, you need a root element that sets the class attribute to
vcard. Inside that element, you need to supply at least a formatted name, in another
element. That element needs to set the class attribute to fn. Here’s some markup that
meets these requirements:

<div class="vcard">
 <div class="fn">Mike Rowe Formatte</div>
</div>

When you use the class attribute for a microformat, you don’t need to go to the
trouble of creating a matching style with that class name. (In fact, doing so is prob-
ably just going to be confusing.) Instead, the class attribute is put to a different use—
advertising your data as a nicely structured, meaningful bit of content.

Although an hCard doesn’t need anything more than a name, most fill in a few more
details, such as a postal and email address, website URL, telephone number, birth
date, photo, title, organization name, and so on. As long as you use the right class
names, you can put these details in any order in the containing vcard element. Here’s
an example, with the all-important class names highlighted:

<div class="vcard">
 <div class="fn">Mike Rowe Formatte</div>

 <div class="title">Web Developer</div>
 <div class="org">The Magic Semantic Company</div>
 www.magicsemantics.com
 <div class="tel">641-545-0234</div>
</div>

Tip: You can get information about all the supported hCard properties at http://microformats.org/wiki/hcard.

So far, this example has shown how to create markup that matches the hCard micro-
format from scratch. But you’ll often need to take an existing web page and retrofit
it with microdata support. For example, you might have a page that includes contact
information, but you want to mark up that information so it’s accessible to any pro-
gram that understands the hCard microformat. This task is fairly easy, if you keep a
few points in mind:

• Often, you’ll have important data mixed in with content that you want to ig-
nore. In this case, you can add new elements around each piece of information
you want to capture. Use a <div> if you want a block-level element or a
if you want to get a piece of inline content.

91chapter 3: meaningful markup

Other Standards that
Boost Semantics

• Don’t worry about other elements with different class names. When reading a
microformat, everything that doesn’t have a recognized class name is ignored.

• If you’re supplying a picture to a microformat, you can use the element.
If you’re supplying a link, you can use the <a> element. The rest of the time,
you’ll usually be marking up ordinary text.

Here’s a more typical example. Imagine you start with an “About Me” page (Figure
3-3) that has content like this:

<h1>About Me</h1>

<p>This website is the work of Mike Rowe Formatte.
His friends know him as The Big M.</p>

<p>You can contact him where he works, at
The Magic Semantic Company (phone
641-545-0234 and ask for Mike).</p>

<p>Or, visit him there at:

42 Jordan Gordon Street, 6th Floor

San Francisco, CA 94105

USA

www.magicsemantics.com

And here’s how you can weave the microformat-enhanced elements around this
information:

<h1>About Me</h1>

<div class="vcard">

 <p>This website is the work of
 Web Developer
 <b class="fn">Mike Rowe Formatte.
 His friends know him as <b class="nickname">The Big M.</p>

 <p>You can contact him where he works, at
 The Magic Semantic Company (phone
 641-545-0234 and ask for Mike).</p>

 <p>Or, visit him there at:

 42 Jordan Gordon Street, 6th Floor

 San Francisco,
 CA
 94105

 USA

 www.magicsemantics.com</
a>
</div>

92 html5: the missing manual

Other Standards that
Boost Semantics

Figure 3-3:
This “About Me” page includes the contact details for the
website author.

This example incorporates several tricks:

• It adds new elements to wrap the bits of content you need for the vcard.
• It adds the class attribute to existing elements, where doing so makes sense. For

example, the element wraps the name information, so there’s no need to add
an additional . (Of course, you could. For example, you might prefer to
write something like <b class="KeywordEmphasis">Mike Rowe
Formatte if you want to apply formatting and mark up the name at
the same time, but keep your style sheet rules separate from your microformat.

• It uses a hidden piece of content to point out the person’s title (as a web devel-
oper). There’s no need to show this on the page, because that information is
already obvious from the sentence, “This website is the work of….” However,
this technique is a bit controversial, because some tools (like Google) ignore
information that isn’t made visible to the web page viewer.

93chapter 3: meaningful markup

Other Standards that
Boost Semantics

Now that you’ve gone to this trouble, it’s time to see what sort of benefits you can
reap. Although no browser recognizes microformats on its own (at least at the time
of this writing), there are a variety of plug-ins and scripts that can give browsers
these capabilities. And it’s not difficult to imagine useful scenarios. For example, a
browser could detect the hCards on a page, list them in a side panel, and give you
commands that would allow you to add a person to your address book as quickly as
you bookmark a page. You can look for a browser plug-in that supports microfor-
mats at http://microformats.org/wiki/browsers.

One such tool is Oomph (available at http://oomph.codeplex.com). You can install
Oomph as a browser plug-in for Internet Explorer, in which case it automatically
searches every page you visit for three microformats: hCard (for contact informa-
tion), hCalendar (for event listings), and hMedia (for images, audio, or video). If it
finds something, it adds a tiny icon to the top-left corner of the window (see Figure
3-4). Click this icon, and you’ll see the contacts, events, and media files it found,
complete with handy links.

Figure 3-4:
Top: A telltale icon indicates that
Oomph has found at least one
microformat.

Bottom: Click the icon, and you get the
full details, along with a map of the
associated geographic location and an
option to quickly transfer the contact
details to an email address book. If the
page contains multiple microformats,
you also get links that let you step
through all the hCard, hCalendar, and
hMedia sections.

94 html5: the missing manual

Other Standards that
Boost Semantics

But the really interesting thing about Oomph is that there’s another way to use it—
using a JavaScript library. In this case, all you need to do is add to script references
to your page:

<head>
 <meta charset="utf-8">
 <title>hCard Example</title>
 <script src="jquery-1.3.2.min.js"></script>
 <script src="oomph.min.js"></script>
<style>

Now, all the people who visit your page get the enhanced experience with the pop-
up microformat button, no matter what browser they use. In fact, that’s what allows
the example in Figure 3-4 to work on Google Chrome. To see for yourself, visit the
try-out site at www.prosetech.com/html5.

Note: You should think of Oomph as a proof-of-concept demonstration of what’s possible with microfor-
mats, not a real-life tool. The best bet for a microformats future is for mainstream browsers to incorporate
direct support, just like IE, Firefox, and Safari do for RSS feeds. For example, if you visit a blog with Firefox,
it automatically detects the RSS feed and allows you to create a “live” bookmark. This is exactly the sort of
value-added feature that could make microformats really useful.

Events with hCalendar
The second most popular microformat is hCalendar, a simple way of marking up
events. For example, you can use hCalendar to detail appointments, meetings, holi-
days, product releases, store openings, and so on. Currently, the Web has tens of
millions of hCalendar events. Figure 3-5 shows an example.

Once you’ve worked your way around your first hCard, you’ll have no trouble un-
derstanding hCalendar. First, you need to wrap the event listing in an element with
the class name vevent. Inside, you need at least two pieces of information: the start
date (marked up with the dtstart class) and a description (marked up with the sum-
mary class). You can also choose from a variety of optional attributes described at
http://microformats.org/wiki/hcalendar, including an ending date or duration, a lo-
cation, and a URL with more details. Here’s an example:

<div class="vevent">
 <h2 class="summary">Web Developer Clam Bake</h2>
 <p>I'm hosting a party!</p>
 <p>It's
 Tuesday, October 25,
 1:30PM
 at the Deep Sea Hotel, San Francisco, CA</p>
</div>

95chapter 3: meaningful markup

Other Standards that
Boost Semantics

When formatting the date, you must use the universal date format described on page
83. However, there’s a workaround—you can supply the computer-readable date de-
tails using the title attribute, and then use whatever text you want. Unfortunately,
there’s currently no automatic way for a microformat to use the information in the
datetime attribute of HTML5’s <time> element (although the microdata standard
fixes that, as you’ll see on the next page).

Figure 3-5:
All Facebook event
pages use the hCalendar
microformat to mark up
the event and the hCard
microformat to mark up
the venue. That means
you can use a browser
plug-in, like Operator (for
Firefox, see http://addons.
mozilla.org/firefox/addon/
operator) to grab the
details from the page.

Microdata
Microdata is a third take at solving the challenge of semantic markup. It began its life
as part of the HTML5 specification, and later split into its own developing standard
at http://dev.w3.org/html5/md. Microdata uses an approach that’s similar to RDFa,
but simplified. Unlike microformats, it uses its own attributes, and doesn’t risk col-
liding with style sheet rules (or confusing the heck out of other web developers).
This design means microdata is more logical, as well as easier to adapt for your
own custom languages. But it also comes at the cost of brevity—microdata-enriched
markup can bloat up a bit more than microformat-enriched markup.

Note: As the newest semantic standard, it’s still unclear whether microdata will ride in on a wave of
HTML5-fueled excitement, or whether it will give way to the other, more established standards (per-
haps microformats for simple uses and some adapted form of RDFa for more complex requirements).
However, either way, learning about microdata isn’t a waste. As you’ll see in the next section, it’s already
supported by Google, and looks a lot like RDFa—close enough that you can switch formats depending on
what the future holds.

96 html5: the missing manual

Other Standards that
Boost Semantics

To begin a microdata section, you add the itemscope and itemtype attributes to any
element (although a <div> makes a logical container, if you don’t have one already).
The itemscope attribute indicates that you’re starting a new chunk of semantic con-
tent. The itemtype attribute indicates the specific type of data you’re encoding:

<div itemscope itemtype="http://data-vocabulary.org/Person">
 ...
</div>

To identify the data type, you use a predetermined, unique piece of text called an
XML namespace. In this example, the XML namespace is http://data-vocabulary.org/
Person, which is a data format for encoding contact details.

XML namespaces are often URLs. Sometimes, you can even find a description of
the corresponding data type by typing the URL into your web browser (as you can
with the http://data-vocabulary.org/Person data format). However, XML namespaces
don’t need to correlate to real web locations, and they don’t need to be URLs at all.
It just depends on what the person (or people) chose when creating the format. The
advantage of a URL is that it can incorporate a domain name that a person or orga-
nization owns. This way, the namespace is more likely to be unique, meaning that
no one else will create a different data format that shares the same namespace name
and confuses everyone.

Once you have the container element, you’re ready to move on to the next step. In-
side your container element, you use the itemprop attribute to capture the important
bits of information. The basic approach is the same as it was for microformats—you
use a recognized itemprop name, and other pieces of software can grab the informa-
tion from the associated elements. In fact, the most significant difference between
microdata and microformats is that microdata uses the itemprop attribute to mark
up elements instead of the class attribute.

<div itemscope itemtype="http://data-vocabulary.org/Person">
 Mike Rowe Formatte.
 ...
</div>

Microdata is also a bit more structured than microformats. For example, it’s com-
mon to have one type of data nested inside another type. In the case of the contact
details, you might have a set of address information nestled inside. Technically, the
address information all belongs to a separate data type, which is identified with a
different XML namespace. So you need a new <div> or element that uses the
itemscope and itemtype attributes, as shown here:

<div itemscope itemtype="http://data-vocabulary.org/Person">
 ...
 <span itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">
 42 Jordan Gordon Street,
 6th Floor

 San Francisco,
 CA

</div>

97chapter 3: meaningful markup

 Google Rich Snippets

With these rules in mind, you can retrofit the “About Me” page shown earlier (page
91) to use microdata. Here’s the finished product, with the changes highlighted:

<h1>About Me</h1>

<div itemscope itemtype="http://data-vocabulary.org/Person">

 <p>This website is the work of
 Web Developer
 <b itemprop="name">Mike Rowe Formatte.
 His friends know him as <b itemprop="nickname">The Big M.</p>

 <p>You can contact him where he works, at
 The Magic Semantic Company (phone
 641-545-0234 and ask for Mike).</p>

 <p>Or, visit him there at:

 <span itemprop="address" itemscope
 itemtype="http://data-vocabulary.org/Address">
 42 Jordan Gordon Street,
 6th Floor

 San Francisco,
 CA
 94105

 USA

 www.magicsemantics.
com
</div>

As you’ve probably noticed, this example is strikingly similar to the hCard exam-
ple shown earlier (page 91). Although the property names have shifted from the
class attribute to the itemprop attribute, this example still uses almost all the same
property names (the only changes are fn to name and org to affiliation). And if you
learned RDFa, you’d find an even greater correspondence, because both microdata
and RDFa use the http://data-vocabulary.org/Person data format.

Note: The three standards for rich semantic data—RDFa, microdata, and microformats—all share broad
similarities. They aren’t quite compatible, but the markup is similar enough that the skills you pick up
learning one system are mostly applicable to the others.

Microdata falls short in one notable area: There’s still no browser plug-in or Java-
Script magic that can dig these details out of a page. However, microdata works
perfectly well if your goal is to enhance web search results, which is the technique
you’ll practice next.

Google Rich Snippets
Stuffing your page with semantic details is a great way to win yourself some serious
web-nerd cred. But even hardcore web developers need some sort of payoff to make
the extra work (and the messier markup) worthwhile. It’s nice to think about a world

98 html5: the missing manual

 Google Rich Snippets

of super-smart, semantically aware browsers, but right now the cold, hard reality is
that web surfers have little more than a few experimental and little-known browser
plug-ins.

Fortunately, there is another reason to embrace rich semantics: search engine op-
timization (SEO). SEO is the art of making your website more visible in a search
engine—in other words, making it turn up more often in a results page, helping it
get a better ranking for certain keywords, and making it more likely to entice a visi-
tor to click through to your site. Google’s rich snippets feature helps with the last part
of this equation. All you do is put the right semantic data on your page, and Google
will find it and use it to present a fancier search listing, which can help your website
stand out from the crowd.

But before you use rich snippets, you need to understand a bit more about the term.
Rich snippets is the name Google has created to lump together RDFa, microformats,
and microdata. As you’ve already learned, these approaches share significant simi-
larities and address the same problem. But Google’s goal is to treat them all equally,
so it doesn’t matter which approach you favor. (The following examples use micro-
data, with the aim of getting onboard with HTML5’s newest semantic standard.)

To learn more about the standards that rich snippets support, you can view Google’s
documentation at http://tinyurl.com/GoogleRichSnippets. Not only does this page in-
clude a decent overview of RDFa, microformats, and microdata, it also shows many
different snippet examples (like contact information, events, products, reviews, reci-
pes, and so on). Best of all, Google includes an RDFa, microformat, and microdata
version of each example, which can help you translate your semantic skills from one
standard to another, if the need arises.

Enhanced Search Results
To see how Google’s rich snippets feature works, you can use Google’s Rich Snippets
Testing Tool. This tool checks a page you supply, shows you the semantic data that
Google can extract from the page, and then shows you how Google might use that
information to customize the way it presents that page in someone’s search results.

Note: The Rich Snippets Testing Tool is useful for two reasons. First, it helps validate your semantic
markup. (If Google isn’t able to extract all the information you put in the page, or if some of it is assigned
to the wrong property, you know you’ve done something wrong.) Second, it shows you how the semantic
data can change your page’s appearance in Google’s search results.

To use the Rich Snippets Testing Tool, follow these simple steps:

1.	 Go	to	www.google.com/webmasters/tools/richsnippets.
This simple page includes a single text box (see Figure 3-6).

99chapter 3: meaningful markup

 Google Rich Snippets

2.	 Enter	the	full	URL	to	your	page	in	the	text	box.
The only disadvantage is that the Rich Snippets Testing Tool works only on
pages that are already online, so you can’t use it to check a page that’s stored on
your computer’s hard drive.

3.	 Click	Preview.
You can now review the results (see Figure 3-6). There are two important sec-
tions to review. The “Google search preview” section shows how the page may
appear in a search result. The “Extracted rich snippet data from the page” shows
all the raw semantic data that Google was able to pull out of your markup.

Figure 3-6:
Here, Google found
the person contact
details and address
information (from the
microdata example
shown on page 97). It
used this information
to add a gray byline
under the page title,
with some of the
personal details.

Google uses some of the
semantic data to create

this light gray line
The page you want
Google to examine

Google also found
the address details

Google found the contact
details on the page

100 html5: the missing manual

 Google Rich Snippets

Tip: If you see the dreaded “Insufficient data to generate the preview” error message, there are three
possible causes. First, your markup may be faulty. Review the raw data that Google extracted, and make
sure it found everything you put there. If you don’t find a problem here, it’s possible that you’re trying to
use a data type that Google doesn’t yet support or you haven’t included the bare minimum set of proper-
ties that Google needs. To figure out what the problem is, compare your markup with one of Google’s
examples at http://tinyurl.com/GoogleRichSnippets.

The method Google uses to emphasize contact details (Figure 3-6) is fairly re-
strained. However, contact details are only one of the rich data types that Google
recognizes. Earlier in this chapter (page 94), you saw how to define events using
microformats. Add a list of events to your page, and Google just might include them
at the bottom of your search result, as shown in Figure 3-7.

Figure 3-7:
This example page has three events. If
you supply a URL with your event list-
ing (as done here), Google turns each
event listing into a clickable link.

Google is also interested in business listings (which are treated in much the same
way as personal contact details), recipes (which you’ll take a peek at in the next sec-
tion), and reviews (which you’ll consider next).

The following example shows the markup you need to turn some review text into
recognizable review microdata. The data standard is defined at http://data-vocabulary.
org/Review. Key properties include itemreviewed (in this case, a restaurant), review-
er, and description. You can also supply a one-sentence overview (summary), the
date when the review was made or submitted (dtreviewed, which supports HTML5’s
<time> element), and a score from 0 to 5 (rating).

Here’s an example, with all the microdata details highlighted:
<div itemscope itemtype="http://data-vocabulary.org/Review">
 <h1 itemprop="itemreviewed">Jan's Pizza House</h1>
 <p>Reviewed by Jared Elberadi on
 <time itemprop="dtreviewed" datetime="2011-01-26">January 26</time>.<p>
 <p itemprop="summary">Pretty bad, and then the Health Department showed
up.</p>
 <p itemprop="description">I had an urge to mack on some pizza, and this
 place was the only joint around. It looked like a bit of a dive, but I went
 in hoping to find an undiscovered gem. Instead, I watched a Health
 Department inspector closing the place down. Verdict? I didn't get to
 finish my pizza, and the inspector recommends a Hep-C shot.</p>
 <p>Rating: 0.5</p>
</div>

Put this data in a page, and Google gives it truly special treatment (Figure 3-8).

101chapter 3: meaningful markup

 Google Rich Snippets

Figure 3-8:
Reviews really stand out in search
results. The ranking stars are eye-
catching and attract immediate
interest.

TRoUbleShooTinG momenT

What to Do When Google Ignores Your Semantic Data
Just because Google can show a semantically enriched
page in a certain special way doesn’t mean it will. Google
uses its own set of semi-secret rules to determine if the se-
mantic information is valuable to the searcher. But here are
some surefire ways to make sure Google ignores your data:

• The semantic data doesn’t represent the main
content. In other words, if you slap your contact de-
tails on a page about fly-fishing, Google isn’t likely
to use your contact information. (After all, the odds
are that when web searchers find this page, they’re
searching for something to do with fishing, and it
doesn’t make any sense to see a byline with your

address and business underneath.) On the other
hand, if you put your contact details on your resumé
page, they’re more likely to be used.

• The semantic data is hidden. Google won’t use
any content that’s hidden via CSS.

• Your website uses just a little semantic data. If
your site has relatively few pages that use semantic
data, Google might inadvertently overlook the ones
that do.

Avoid these mistakes and you stand a good chance of get-
ting an enhanced listing.

The Recipe Search Engine
Enhanced search listings are a neat trick, and they can drive new traffic into your
website. But still, it’s hard not to want something even more impressive to justify
your newfound semantic skills. Happily, the geniuses at Google are busy dreaming
up the future of search, and it has semantics all over it.

One brilliant idea is to use the semantic information not to tweak how an item is
presented in a search, but to allow smarter search filtering. For example, if people
mark up their resumés using RDFa, microformats, or microdata, Google could pro-
vide a specialized resumé searching feature that looks at this data, considering resumés
from every popular career website and ignoring every other type of web content.
This resumé search engine could also provide enhanced filtering options—for ex-
ample, allowing companies to find candidates who have specific accreditations or
have worked for specific companies.

Right now, Google doesn’t have a resumé search engine. However, Google has re-
cently released something that’s conceptually quite similar, and possibly more prac-
tical: a search tool for hunting down recipes.

102 html5: the missing manual

 Google Rich Snippets

By now, you can probably guess what recipe data looks like when it’s marked up
with microdata or a microformat. The entire recipe sits inside a container that uses
the recipe data format (that’s http://data-vocabulary.org/Recipe). There are separate
properties for the recipe name, the author, and a photo. You can also add a one-
sentence summary and a ranking from user reviews.

Here’s a portion of recipe markup:
<div itemscope itemtype="http://data-vocabulary.org/Recipe">
 <h1 itemprop="name">Elegant Tomato Soup</h1>

 <p>By Michael Chiarello</p>
 <p itemprop="summary">Roasted tomatoes are the key to developing the rich
 flavor of this tomato soup.</p>
 ...

After this, you can include key details about the recipe, including its prep time, cook
time, and yield. You can also add a nested section for nutritional information (with
details about serving size, calories, fat, and so on):

 ...
 <p>Prep time: <time itemprop="prepTime" datetime="PT30M">30 min</time></p>
 <p>Cook time: <time itemprop="cookTime" datetime="PT1H">40 min</time></p>
 <p>Yield: 4 servings</p>
 <div itemprop="nutrition" itemscope
 itemtype="http://data-vocabulary.org/Nutrition">
 Serving size: 1 large bowl
 Calories per serving: 250
 Fat per serving: 3g
 </div>
 ...

Note: The prepTime and cookTime properties are meant to represent a duration of time, not a single
instant in time, and so they can’t use the same format as the HTML5 <time> element. Instead, they use an
ISO format that’s detailed at http://en.wikipedia.org/wiki/ISO_8601#Durations.

After this is the recipe’s ingredient list. Each ingredient is a separate nested section,
which typically includes information like the ingredient name and quantity:

 ...

 <li itemprop="ingredient" itemscope
 itemtype="http://data-vocabulary.org/RecipeIngredient">
 1
 yellow onion (diced)

103chapter 3: meaningful markup

 Google Rich Snippets

 <li itemprop="ingredient" itemscope
 itemtype="http://data-vocabulary.org/RecipeIngredient">
 14-ounce can
 diced tomatoes

 ...

 ...

Writing this part of the markup is tedious. But don’t stop yet—the payoff is just
ahead.

Finally, the directions are a series of paragraphs or a list of steps. They’re wrapped up
in a single property, like this:

 ...
 <div itemprop="instructions">

 Preheat oven to 450 degrees F.
 Strain the chopped canned tomatoes, reserving the juices.
 ...
 </div>
 ...
</div>

For a full recipe example, see http://tinyurl.com/RichSnippetsRecipe.

Note: Recipes tend to be long and fairly detailed, so marking them up is a long and involved project. This
is a clear case where a good authoring tool could make a dramatic difference. Ideally, this tool would let
web authors enter the recipe details in the text boxes of a nicely arranged window. It would then generate
semantically correct markup that you could place in your web page.

Once Google indexes your marked-up recipe page, it will make that recipe available
through the Recipe View search feature. To try out Recipe View, surf to www.google.
com/landing/recipes, type a recipe name in the search box, and then click Search. The
interesting part is what comes next. Because Google can understand the structure of
every recipe, it can ignore web pages that don’t have real recipe data, and it can in-
clude smarter filtering options (see Figure 3-9). The end result is that semantic data
gives web surfers a powerful information-hunting tool—and a more effective way to
find your web pages.

104 html5: the missing manual

 Google Rich Snippets

Figure 3-9:
After you perform
a recipe search,
Google lets you filter
the results based on
some of the rich snip-
pet information that it
found in the matching
recipes. For example,
you can require or
eliminate specific
ingredients, and set a
maximum cook time
or calorie count.

2
Part Two: Creating
Modern Web Pages
Chapter 4: Web Forms, Refined

Chapter 5: Audio and Video

Chapter 6: Basic Drawing with the Canvas

Chapter 7: Deeper into the Canvas

Chapter 8: Boosting Styles with CSS3

107

chapter
4

Web Forms, Refined

HTML forms are simple HTML controls you use to collect information from
website visitors. They include text boxes people can type into, list boxes
they can pick from, checkboxes they can switch on or off, and so on. There

are countless ways to use HTML forms, and if you’ve kicked around the Web for
more than a week, you’ve used them to do everything from getting a stock quote to
signing up for an email account.

HTML forms have existed almost since the dawn of HTML, and they haven’t changed
a wink since last century, despite some serious efforts. Web standards-makers spent
years cooking up a successor called XForms, which fell as flat as XHTML 2 (see page
12). Although XForms solved some problems easily and elegantly, it also had its own
headaches—for example, XForms code was verbose and assumed that web designers
were intimately familiar with XML. But the biggest hurdle was the fact that XForms
wasn’t compatible with HTML forms in any way, meaning that developers would
need to close their eyes and jump to a new model with nothing but a whole lot of
nerve and hope. But because mainstream web browsers never bothered to imple-
ment XForms—it was too complex and little used—web developers never ended up
taking that leap.

HTML5 takes a different approach. It introduces refinements to the existing HTML
forms model, which means HTML5-enhanced forms can keep working on older
browsers, just without all the bells and whistles. (This is good, because Internet Ex-
plorer won’t start supporting the new form features until IE 10.) HTML5 forms also
focus on adding features that developers are already using today. The difference is
that HTML5 makes them easily accessible, without requiring a tangle of JavaScript
code or a JavaScript toolkit from another company.

108 html5: the missing manual

 Understanding
Forms
 Understanding
Forms

In this chapter, you’ll tour all the new features of HTML5 forms. You’ll see which
ones are supported, which ones aren’t, and which workarounds can help you smooth
over the differences. You’ll also consider a feature that isn’t technically part of the
HTML5 forms standard but is all about interactivity—putting a rich HTML editor
in an ordinary web page.

Understanding Forms
Odds are that you’ve worked with forms before. But if you’re a bit sketchy on the
details, the following recap will refresh your memory.

A web form is a collection of text boxes, lists, buttons, and other clickable widgets
that a web surfer uses to supply some sort of information to a website. Forms are
all over the Web—they allow you to sign up for email accounts, review products,
and make bank transactions. The simplest possible form is the single text box that
adorns search engines like Google (see Figure 4-1).

Figure 4-1:
Google’s Spartan
search page holds
a basic HTML form.
You use it in the
same way you use
any form—enter
some information
(in this case, search
keywords), and click
a button to submit
that information.

Form input field Form submit buttons

All basic web forms work in the same way. The user fills in some information and
then clicks a button. At that point, the server collects all the data that the user has en-
tered and sends it back to the web server. On the web server, some sort of application
digests the information and takes the appropriate next step. The server-side program
might consult a database (either to read or to store some information), before send-
ing a new page back to the web browser.

109chapter 4: web forms, refined

 Revamping a
Traditional HTML

Form

 Revamping a
Traditional HTML

Form
The tricky part of this discussion is that there are hundreds of ways to build the
server-side part of the equation (that’s the application that processes the information
that’s submitted from the form). Some developers may use stripped-down scripts
that let them manipulate the raw form data, while others may work with higher-level
models that package the form details in neat programming objects. But either way,
the task is basically the same—examine the form data, do something with it, and
then send back a new page.

Note: This book doesn’t make any assumptions about your choice of server-side programming tool. In
fact, it doesn’t really matter, because you still need to use the same set of form elements, and these ele-
ments are still bound by the same HTML5 rules.

Up To Speed

Bypassing Form Submission with JavaScript
It’s worth noting that forms aren’t the only way to send
user-entered information to a web server (although they
were, once upon a time). Today, crafty developers can use
the XMLHttpRequest object (page 325) in JavaScript code
to quietly communicate with a web server. For example,
the Google search page uses this approach in two different
ways—first, to get search suggestions, which it displays in
a drop-down list; and second, to get a search results page
as you type, if you’ve enabled the Google Instant feature
(www.google.com/instant).

It might occur to you that JavaScript can completely by-
pass the form submission step, as it does in Google Instant.
But while it’s possible to offer this as a feature, it’s not ac-
ceptable to include it as a requirement. That’s because the
JavaScript approach isn’t bulletproof (for example, it may
exhibit the occasional quirk on a slow connection) and

there’s still a small fraction of people with no JavaScript
support or with JavaScript turned off in their browsers.

Finally, it’s worth noting that it’s perfectly acceptable to
have a page that never submits its form. You’ve probably
seen pages that perform simple calculations (for example,
a mortgage interest rate calculator). These forms don’t
need any help from the server, so they can perform their
calculations entirely in JavaScript and display the result on
the current page.

From the HTML5 point of view, it really doesn’t matter
whether you submit your form to a server, use the data in
an ordinary JavaScript routine, or pass it back to the server
through XMLHttpRequest. In all cases, you’ll still build your
form using the standard HTML forms controls.

Revamping a Traditional HTML Form
The best way to learn about HTML5 forms is to take a typical example from today
and enhance it. Figure 4-2 shows the example you’ll start out with.

110 html5: the missing manual

 Revamping a
Traditional HTML
Form

 Revamping a
Traditional HTML
Form

Figure 4-2:
If you’ve traveled
the Web, you’ve
seen your share of
forms like this one,
which collects basic
information from a
web page visitor.

The markup is dishwater-dull. If you’ve worked with forms before, you won’t see
anything new here. First, the entire form is wrapped in a <form> element:

<form id="zooKeeperForm" action="processApplication.cgi">
 <p><i>Please complete the form. Mandatory fields are marked with
 a </i>*</p>
 ...

111chapter 4: web forms, refined

 Revamping a
Traditional HTML

Form

 Revamping a
Traditional HTML

Form
The <form> element bundles together all the form widgets (also known as controls
or fields). It also tells the browser where to post the page when it’s submitted, by
providing a URL in the action attribute. If you plan to do all the work in client-side
JavaScript code, you can simply use a number sign (#) for the action attribute.

Note: HTML5 adds a mechanism for placing form controls outside of the form to which they belong. The
trick is to use the new form attribute to refer to the form by its id value (as in form=”zooForm”). However,
browsers that don’t support this feature will completely overlook your data when the form is submitted,
which means this minor feature is still too risky to use in a real web page.

A well-designed form, like the zookeeper application, divides itself into logical
chunks using the <fieldset> element. Each chunk gets a title, courtesy of the
<legend> element. Here’s the <fieldset> for the Contact Details section (which is
dissected in Figure 4-3):

 ...
 <fieldset>
 <legend>Contact Details</legend>
 <label for="name">Name *</label>
 <input id="name">

 <label for="telephone">Telephone</label>
 <input id="telephone">

 <label for="email">Email *</label>
 <input id="email">

 </fieldset>
 ...

Figure 4-3:
This <fieldset> col-
lects three pieces of
information: a name,
telephone number,
and email address.
For each piece of
information, you sup-
ply a caption (using the
<label> element) and
a control to collect the
data (using an <input>,
<textarea>, or <select>
element).

<label>

<legend> <fieldset>

<input>

As in all forms, the bulk of the work is handled by the all-purpose <input> element,
which collects text and creates checkboxes, radio buttons, and list buttons. Along
with <input>, the <textarea> element gives people a way to enter multiple lines of
text, and the <select> element creates a list. If you need a refresher, Table 4-1 will fill
you in.

112 html5: the missing manual

 Revamping a
Traditional HTML
Form

 Revamping a
Traditional HTML
Form

Table 4-1. Form controls

Control HTML element Description
Single-line
textbox

<input type="text">
<input type="password">

Shows a text box where visitors can type in
text. If you use the password type, the browser
won’t display the text. Instead, visitors see
an asterisk (*) or a bullet (•) in place of each
letter as they type in their password.

Multiline
textbox

<textarea>...</textarea> Shows a large text box that can fit multiple
lines of text.

Checkbox <input type="checkbox"> Shows a checkbox that can be switched on
or off.

Radio
button

<input type="radio"> Shows a radio button (a circle you can turn
on or off). Usually, you have a group of radio
buttons with the same value for the name
attribute, in which case the visitor can select
only one.

Button <input type="submit">
<input type="image">
<input type="reset">
<input type="button">

Shows the standard clickable button. A submit
button always gathers up the form data and
sends it to its destination. An image button
does the same thing, but it lets you display a
clickable picture instead of the standard text-
on-a-button. A reset button clears the visitor’s
selections and text from all the input controls.
A button button doesn’t do anything unless
you add some JavaScript code.

List <select>...</select> Shows a list where your visitor can select one
or more items. You add an <option> element
for each item in the list.

Here’s the rest of the zookeeper form markup, with a few new details (a <select> list,
checkboxes, and the button that submits the form):

 ...
 <fieldset>
 <legend>Personal Information</legend>
 <label for="age">*Age</label>
 <input id="age">

 <label for="gender">Gender</label>
 <select id="gender">
 <option value="female">Female</option>
 <option value="male">Male</option>
 </select>

 <label for="comments">When did you first know you wanted to be a
 zoo-keeper?</label>
 <textarea id="comments"></textarea>
 </fieldset>

 <fieldset>
 <legend>Pick Your Favorite Animals</legend>

113chapter 4: web forms, refined

 Revamping a
Traditional HTML

Form

 Revamping a
Traditional HTML

Form
 <label for="zebra"><input id="zebra" type="checkbox"> Zebra</label>
 <label for="cat"><input id="cat" type="checkbox"> Cat</label>
 <label for="anaconda"><input id="anaconda" type="checkbox"> Anaconda
 </label>
 <label for="human"><input id="human" type="checkbox"> Human</label>
 <label for="elephant"><input id="elephant" type="checkbox"> Elephant
 </label>
 <label for="wildebeest"><input id="wildebeest" type="checkbox">
 Wildebeest</label>
 <label for="pigeon"><input id="pigeon" type="checkbox"> Pigeon</label>
 <label for="crab"><input id="crab" type="checkbox"> Crab</label>
 </fieldset>
 <p><input type="submit" value="Submit Application"></p>
</form>

You can find the full example, along with the relatively simple style sheet that for-
mats it, on the try-out site (www.prosetech.com/html5). Look for the Zookeper-
Form_Original.html file to play around with traditional, unenhanced version of the
form, and ZookeperForm_Revised.html to get all the HTML5 goodies.

Note: One limit of HTML forms is that you can’t change how the browser draws controls. For example,
if you want to replace the standard dull gray checkbox with a big black-and-white box with a fat red
checkmark image, you can’t. (The alternative is to create a normal element that has checkbox-like behavior
using JavaScript—in other words, it changes its appearance back and forth when someone clicks it.)

HTML5 keeps this no-customization limit in place, and extends it to the new controls you’ll learn about in
this chapter. That means forms won’t suit people who need highly stylized widgets and complete control
over the look of their pages.

Now that you’ve got a form to work with, it’s time to start improving it with HTML5.
In the following sections, you’ll start small, with placeholder text and an autofocus
field.

Adding Hints with Placeholders
Forms usually start out empty. But a column of blank text boxes can be a bit intimi-
dating, especially if it’s not absolutely clear what belongs inside each text box. That’s
why you commonly see some sort of sample text inside otherwise-empty text boxes.
This placeholder text is also called a watermark, because it’s often given a light gray
color to distinguish it from real, typed-in content. Figure 4-4 shows a placeholder
in action.

114 html5: the missing manual

 Revamping a
Traditional HTML
Form

 Revamping a
Traditional HTML
Form

Figure 4-4:
Top: When a field is
empty, its placeholder text
appears, as with the Name
and Telephone fields
shown here.

Bottom: When the user
clicks in the field (giving
it focus), the placeholder
text disappears. When the
form filler moves on to an-
other field, the placeholder
text reappears, as long as
the text box is still empty.

To create a placeholder, simply use the placeholder attribute:
<label for="name">Name *</label>
<input id="name" placeholder="Jane Smith">

<label for="telephone">Telephone</label>
<input id="telephone" placeholder="(xxx) xxx-xxxx">

Browsers that don’t support placeholder text just ignore the placeholder attribute;
Internet Explorer is the main culprit. Fortunately, it’s not a big deal, since place-
holders are just nice form frills, not essential to your form’s functioning. If it really
bothers you, there are plenty of JavaScript patches that can bring IE up to speed,
painlessly, at http://tinyurl.com/polyfills.

Right now, there’s no standard, consistent way to change the appearance of place-
holder text (for example, to italicize it or to change the text color). Eventually,
browser makers will create the CSS styling hooks that you need—in fact, they’re
hashing out the details even as you read this. But for now, you’ll either need to fiddle
with browser-specific pseudoclasses (namely, -webkit-input-placeholder and -moz-
placeholder) or leave it alone. (Page 389 explains pseudoclasses.)

However, you can use the better-supported focus pseudoclass to change the way a
text box looks when it gets the focus. For example, you might want to assign a darker
background color to make it stand out:

input:focus {
 background: #eaeaea;
}

115chapter 4: web forms, refined

 Revamping a
Traditional HTML

Form

 Revamping a
Traditional HTML

Form

Up To Speed

Writing Good Placeholders
You don’t need placeholders for every text box. Instead,
you should use them to clear up potential ambiguity. For
example, no one needs an explanation about what goes in
a First Name box, but the Name box in Figure 4-4 isn’t quite
as obvious. The placeholder text makes it clear that there’s
room for a first and last name.

Sometimes placeholders include a sample value—in other
words, something you might actually type into the box. For
example, Google’s recipe search (http://www.google.com/
landing/recipes) uses the text chicken pasta for a place-
holder, making it obvious that you should enter part of a
recipe name, not a list of ingredients or the name of the
chef who cooked it up.

Other times, placeholders indicate the way a value should
be formatted. The telephone box in Figure 4-4 is an example—
it shows the value (xxx) xxx-xxxx to concisely indicate that
telephone numbers should consist of a three-digit area
code, followed by a sequence of three, then four digits.
This placeholder doesn’t necessarily mean that differently
formatted input isn’t allowed, but it does offer a suggestion
that uncertain people can follow.

There are two things you shouldn’t try with a placeholder.
First, don’t try to cram in a description of the field or in-
structions. For example, imagine you have a box for a credit
card’s security code. The text, “The three digits listed on
the back of your card” is not a good placeholder. Instead,
consider adding a text note under the input box, or using
the title attribute to make a pop-up window appear when
someone hovers over the field:

<label for="promoCode">Promotion Code</label>
<input id="promoCode" placeholder="QRB001"
 title="Your promotion code is three letters
 followed by three numbers">

Second, you shouldn’t add special characters to your
placeholder in an attempt to make it obvious that your
placeholder is not real, typed-in text. For example, some
websites use placeholders like [John Smith] instead of John
Smith, with the square brackets there to emphasize that
the placeholder is just an example. This convention can be
confusing.

Focus: Starting in the Right Spot
After loading up your form, the first thing your visitors want to do is start typing.
Unfortunately, they can’t—at least not until they tab over to the first control, or click
it with the mouse, thereby giving it focus.

You can make this happen with JavaScript, by calling the focus() method of the ap-
propriate <input> element. But this involves an extra line of code and can sometimes
cause annoying quirks. For example, it’s sometimes possible for the user to click
somewhere else and start typing before the focus() method gets called, at which
point focus is rudely transferred back to the first control. But if the browser were
able to control the focus, it could be a bit smarter, and transfer focus only if the user
hasn’t already dived into another control.

116 html5: the missing manual

 Validation: Stopping
Errors

That’s the idea behind HTML5’s new autofocus attribute, which you can add to a
single <input> or <textarea> element, like this:

<label for="name">Name *</label>
<input id="name" placeholder="Jane Smith" autofocus>

The autofocus has similar support as the placeholder attribute, which means ba-
sically every browser recognizes it except Internet Explorer. Once again, it’s easy
enough to plug the hole. You can check for autofocus support using Modernizr (page
38) and then run your own autofocus code if needed. Or, you can use a ready-made
JavaScript polyfill that adds autofocus support (http://tinyurl.com/polyfills). How-
ever, it hardly seems worth it for such a minor frill, unless you’re also aiming to give
IE support for other form features, like the validation system discussed next.

Validation: Stopping Errors
The fields in a form are there to gather information from web page visitors. But no
matter how politely you ask, you might not get what you want. Impatient or con-
fused visitors can skip over important sections, enter partial information, or just hit
the wrong keys. The end result? They click Submit, and your website gets a whack-
load of scrambled data.

What a respectable web page needs is validation—a way to catch mistakes when they
happen (or even better, to prevent them from happening at all). For years, develop-
ers have done that by writing their own JavaScript routines or using professional
JavaScript libraries. And, truthfully, these approaches work perfectly well. But see-
ing as validation is so common (just about everyone needs to do error-checking),
and seeing as validation generally revolves around a few key themes (for example,
spotting invalid email addresses or dates), and seeing as validation is boring (no one
really wants to write the same code for every form, not to mention test it), there’s
clearly room for a better way.

The creators of HTML5 spotted this low-hanging fruit and invented a way for brows-
ers to help out, by getting them to do the validation work instead of web developers.
They devised a client-side validation system (see the box on page 117) that lets you
embed common error-checking rules into any <input> field. Best of all, this system
is easy—all you need to do is insert the right attribute.

How HTML5 Validation Works
The basic idea behind HTML5 form validation is that you indicate where validation
should happen, but you don’t actually implement the tedious details. It’s a bit like be-
ing promoted into a management job, just without the pay raise.

For example, imagine you decide a certain field cannot be left blank—the form filler
needs to supply some sort of information. In HTML5, you can make this demand by
adding the required attribute:

<label for="name">Name *</label>
<input id="name" placeholder="Jane Smith" autofocus required>

117chapter 4: web forms, refined

 Validation: Stopping
Errors

Up To Speed

Validating in Two Places
Throughout the years, crafty developers have attacked the
validation problem in different ways. Today, the consensus
is clear. To make a bulletproof form, you need two types
of error-checking:

• Client-side validation. These are the checks that
happen in the browser, before a form is submitted.
The goal here is to make life easier for the people
filling out the form. Instead of waiting for them to
complete three dozen text boxes and click a submit
button, you want to catch problems in the making.
That way you can pop up a helpful error message
right away and in the right spot, allowing the form
filler to correct the mistake before submitting the
form to the server.

• Server-side validation. These are the checks that
happen after a form is sent back to the web server. At

this point, it’s up to your server-side code to review
the details and make sure everything is kosher before
continuing. No matter what the browser does, server-
side validation is essential. It’s the only way to defend
yourself from malicious people who are deliberately
trying to tamper with form data. If your server-side
validation detects a problem, you send back a page
with an error message.

So client-side validation (of which HTML5 validation is an
example) is there to make life easier for your web page
visitors, while server-side validation ensures correctness.
The key thing to understand is that you need both types
of validation—unless you have an exceedingly simple form
where mistakes aren’t likely or aren’t a big deal.

Initially, there’s no visual detail to indicate that a field is required. For that reason,
you might want to use some other visual clue, such as giving the text box a different
border color or placing an asterisk next to the field (as in the zookeeper form).

Validation kicks in only when the form filler clicks a button to submit the form. If
the browser implements HTML5 forms, then it will notice that a required field is
blank, intercept the form submission attempt, and show a pop-up message that flags
the invalid field (Figure 4-5).

As you’ll see in the following sections, different attributes let you apply different
error-checking rules. You can apply more than one rule to the same input box, and
you can apply the same rule to as many <input> elements as you want (and to the
<textarea> element). All the validation conditions must be met before the form can
be submitted.

This raises a good question: What happens if form data breaks more than one rule—
for example, it has multiple required fields that aren’t filled in?

Once again, nothing happens until the person filling out the form clicks the submit
button. Then, the browser begins examining the fields from top to bottom. When it
finds the first invalid value, it stops checking any further. It cancels the form submis-
sion and pops up an error message next to this value. (Additionally, if the offending
text box isn’t currently visible, the browser scrolls up just enough that it appears at
the top of the page.) If the visitor corrects the problem and clicks the submit button
again, the browser will stop and highlight the next invalid value.

118 html5: the missing manual

 Validation: Stopping
Errors

Figure 4-5:
Here’s the same required
field in Firefox (top),
Chrome (middle), and
Opera (bottom). Browsers
are free to choose the ex-
act way they notify people
about validation problems,
but they all use a pop-up
box that looks like a styl-
ized tooltip. Unfortunately,
you can’t customize the
formatting of this box or
change the wording of the
validation message—at
least not yet.

Note: Web browser hold off on validation until a submit button is clicked. This ensures that the validation
system is efficient and restrained, so it works for everyone.

Some web developers prefer to alert people as soon as they leave an invalid field (by tabbing away
or clicking somewhere else with the mouse). This sort of validation is handy in long forms, especially
if there’s a chance that someone may make a similar mistake in several different fields. Unfortunately,
HTML5 doesn’t have a way for you to dictate when the web browser does its validation, although it’s pos-
sible that it might add one in the future. For now, if you want immediate validation messages, it's best to
write the JavaScript yourself or to use a good JavaScript library.

Turning Validation Off
In some cases, you may need to disable the validation feature. For example, you
might need to turn it off for testing to verify that your server-side code deals ap-
propriately with invalid data. To turn validation off for an entire form, you add the
novalidate attribute to the containing <form> element:

<form id="zooKeeperForm" action="processApplication.cgi" novalidate>

The other option is to provide a submit button that bypasses validation. This tech-
nique is sometimes useful in a web page. For example, you may want to enforce
strict validation for the official submit button, but provide another button that does

119chapter 4: web forms, refined

 Validation: Stopping
Errors

something else (like storing half-completed data for later use). To allow this, add the
formnovalidate attribute to the <input> element that represents your button:

<input type="submit" value="Save for Later" formnovalidate>

You’ve now seen how to use validation to catch missing information. Next, you’ll
learn to search for errors in different types of data.

Note: Planning to validate numbers? There’s no validation rule that forces text to contain digits, but there
is a new number data type, which you’ll examine on page 129. Unfortunately, its support is still sketchy.

Validation Styling Hooks
Although you can’t style validation messages, you can change the appearance of the
input fields based on their validation state. For example, you can give invalid values a
different background color, which will appear in the text box as soon as the browser
detects the problem.

To use this technique, you simply need to add a few new pseudoclasses (page 389).
Your options include:

• required and optional, which apply styles to fields based on whether they use
the required attribute.

• valid and invalid, which apply styles to controls based on whether they con-
tain mistakes. But remember that most browsers won’t actually discover invalid
values until the visitor tries to submit the form, so you won’t see the invalid
formatting right away.

• in-range and out-of-range, which apply formatting to controls that use the min
and max attributes to limit numbers to a range (page 129).

For example, if you want to give required <input> fields a light yellow background,
you could use a style rule with the required pseudoclass:

input:required {
 background-color: lightyellow;
}

Or, you might want to highlight only those fields that are required and currently
hold invalid values by combining the required and invalid pseudoclasses like this:

input:required:invalid {
 background-color: lightyellow;
}

With this setting, blank fields are automatically highlighted, because they break the
required-field rule.

You can use all sorts of other tricks, like combining the validation pseudoclasses
with the focus pseudoclass, or using an offset background that includes an error icon
to flag invalid values. Of course, a hefty disclaimer applies: You can use these
pseudoclasses to improve your pages, but make sure your form still looks good with-
out them, because support lags in older browsers.

120 html5: the missing manual

 Validation: Stopping
Errors

Validating with Regular Expressions
The most powerful (and complex) type of validation that HTML5 supports is based
on regular expressions. Seeing as JavaScript already supports regular expression,
adding this feature to HTML forms makes perfect sense.

A regular expression is a pattern written using the regular expression language. Regu-
lar expressions are designed to match patterned text—for example, a regular expres-
sion can make sure that a postal code has the right sequence of letters and digits, or
that an email address has an @ symbol and a domain extension that’s at least two
characters long. For example, consider this expression:

[A-Z]{3}-[0-9]{3}

The square brackets at the beginning define a range of allowed characters. In other
words, [A-Z] allows any uppercase letter from A to Z. The curly brackets that follow
multiply this effect, so {3} means you need three uppercase letters. The dash that
follows doesn’t have a special meaning, so it indicates that a dash must follow the
three-letter sequence. Finally, [0-9] allows a digit from 0 to 9, and {3} requires three
of them.

Regular expression matching is useful for searching (finding pattern matches in a
long document) and validation (verifying that a value matches a pattern). HTML5
forms use regular expressions for validation.

Note: Regular expression geeks take note: You don’t need the magic ^ and $ characters to match the
beginning or end of a value in a field. HTML5 assumes both details automatically, which means a regular
expression must match the entire value in a field in order to be deemed valid.

These values are valid, because they match the pattern shown above:
QRB-001
TTT-952
LAA-000

But these values are not:
qrb-001
TTT-0952
LA5-000

Regular expressions quickly get much more complex than this example. Writing a
regular expression can be quite a chore, which is why most developers simply search
for a ready-made regular expression that validates the type of data they want to
check. Or they get help.

Tip: To learn just enough about the regular expression language to make your own super-simple expres-
sions, check out the concise tutorials at www.w3schools.com/js/js_obj_regexp.asp or http://tinyurl.com/
jsregex. To find ready-made regular expressions that you can use with your forms, visit http://regexlib.com.
And to become a regular expression guru, read Mastering Regular Expressions, Third Edition by Jeffrey
Friedl (O’Reilly).

121chapter 4: web forms, refined

 Validation: Stopping
Errors

Once you have a regular expression, you can enforce it in any <input> or <textarea>
element by adding the pattern attribute:

<label for="promoCode">Promotion Code</label>
<input id="promoCode" placeholder="QRB-001" title=
 "Your promotion code is three uppercase letters, a dash, then three numbers"
 pattern="[A-Z]{3}-[0-9]{3}">

Figure 4-6 shows what happens if you break the regular expression rule.

Tip: Browsers don’t validate blank values. In this example, a blank promotion code passes muster. If this
isn’t what you want, then combine the pattern attribute with the required attribute.

Figure 4-6:
Smart browsers (like Google Chrome, shown
here) don’t just catch the mistake, they also
grab the text from the title attribute and
display that too to help guide the person who’s
filling out the form.

Note: Regular expressions seem like a perfect match for email addresses (and they are). However, hold
off on using them this way, because HTML5 already has a dedicated input type for email addresses that
has the right regular expression baked in (page 128).

Custom Validation
The HTML5 specification also outlines a set of JavaScript properties that let you find
out if fields are valid (or force the browser to validate them). The most useful of these
is the setCustomValidity() method, which lets you write custom validation logic for
specific fields and have it work with the HTML5 validation system.

Here’s how it works. First, you need to check the appropriate field for errors. You do
this by handling the onInput event, which is nothing new:

<label for="comments">When did you first know you wanted to be a
 zookeeper?</label>
<textarea id="comments" oninput="validateComments(this)" ></textarea>

In this example, the onInput event triggers a function named validateComments().
It’s up to you to write this function, check the current value of the <input> element,
and then call setCustomValidity().

122 html5: the missing manual

 Validation: Stopping
Errors

If the current value has problems, you need to supply an error message when you
call setCustomValidity(). Or, if the current value checks out, you need to call setCus-
tomValidity() with an empty string. This clears any error custom messages that you
may set earlier.

Here’s an example that forces the text in the comment box to be at least 20 characters
long:

function validateComments(input) {
 if (input.value.length < 20) {
 input.setCustomValidity("You need to comment in more detail.");
 }
 else {
 // There's no error. Clear any error message.
 input.setCustomValidity("");
 }
}

Figure 4-7 shows what happens if someone breaks this rule and then tries to submit
the form.

Figure 4-7:
When you supply an
error message with
setCustomValidity(),
the browser treats it the
same as its own, built-in
validation messages.
Try to submit the form,
and you’ll see a pop-up
warning with your mes-
sage text.

Of course, you could solve this problem more neatly with a regular expression that
requires long strings. But while regular expressions are great for validating some
data types, custom validation logic can do anything, from complex algebra to con-
tacting the web server.

Note: Remember, your web page visitors can see anything you put in JavaScript, so it’s no place for secret
algorithms. For example, you might know that in a valid promotional code, the digits always add up to 12.
But you probably don’t want to betray that detail in a custom validation routine, because it will help shifty
people cook up fake codes. Instead, keep this sort of validation in the web server.

123chapter 4: web forms, refined

 Validation: Stopping
Errors

Browser Support for Validation
Browser makers added support for validation in pieces. That means some browser
builds support some validation features while ignoring others. Table 4-2 indicates
the minimum browser versions you need to use to get solid support for all the vali-
dation tricks you’ve learned so far.

Table 4-2. Browser support for validation

IE Firefox Chrome Safari Opera Safari iOS Android

Minimum
version

10* 4 10 5 (Windows
only)

10 - -

*Currently, this version is available in early beta builds only.

Because HTML5 validation doesn’t replace the validation you do on your web serv-
er, you may see it as a frill, in which case you can accept this uneven support. Brows-
ers that don’t implement validation, like IE 9, let people submit forms with invalid
dates, but you can then catch these problems on the web server and return the same
page, but with error details.

On the other hand, your website might include complex forms with lots of potential
for confusion, and you might not be ready to accept a world of frustrated IE users. In
this case, you have two basic choices: Fall back on your own validation system, or use
a JavaScript library that adds the missing smarts. Your choice depends on the extent
and complexity of your validation.

If all your form needs is a smattering of simple validation, it’s probably worth adding
your own checks. Using Modernizr (page 38), you can check for a variety of HTML5
web forms features. For example, use the Modernizr.input.pattern property to check
whether the current browser recognizes the pattern attribute:

if (!Modernizr.input.pattern) {
 // The current browser doesn't perform regular expression validation.
 // You can use the regular expression features in JavaScript instead.
 ...
}

Note: The pattern property is just one of the properties exposed by Modernizr.input object. Other proper-
ties that are useful for testing web form support include placeholder, autofocus, required, max, min, and
step.

Of course, this example doesn’t tell you when to perform this check or how to react.
If you want your validation to mimic the HTML5 validation system, it makes sense
to perform your validation when the person viewing the form attempts to submit it.
You do this by handling the form’s onSubmit event, and then returning either true
(which means the form is valid and the browser can submit it) or false (which means
the form has a problem and the browser should cancel the operation):

<form id="zooKeeperForm" action="processApplication.cgi"
 onsubmit="return validateForm()">

124 html5: the missing manual

 Validation: Stopping
Errors

Here’s an example of a very simple custom validation routine that enforces required
fields:

function validateForm() {
 if (!Modernizr.input.required) {
 // The required attribute is not supported, so you need to check the
 // required fields yourself.

 // First, get an array that holds all the elements.
 var inputElements = document.getElementById("zooKeeperForm").elements;

 // Next, move through that array, checking each element.
 for(var i = 0; i < inputElements.length; i++) {

 // Check if this element is required.
 if (inputElements[i].hasAttribute("required")) {
 // If this element is required, check if it has a value.
 // If not, the form fails validation, and this function returns false.
 if (inputElements[i].value == "") return false;
 }
 }

 // If you reach this point, everything worked out and the browser
 // can submit the form.
 return true;
 }
}

Tip: This block of code relies on a number of basic JavaScript techniques, including element lookup, a
loop, and conditional logic. To learn more about all these details, check out Appendix B.

If you have a complex form and you want to save some effort (while at the same time
preparing for the future), you may prefer to use a JavaScript patch to solve all your
problems. Technically, the approach is the same—your page will check for validation
support and then perform validation manually if necessary. The difference is that
the JavaScript library already has all the tedious code you need.

At http://tinyurl.com/polyfills, you can find a long, intimidating list of JavaScript li-
braries that all attempt to do more or less the same thing. One of the best ones
is simply called webforms2, and is available from https://github.com/westonruter/
webforms2 (to get a copy, look for the easy-to-miss Download button).

The webforms2 library implements all the attributes you’ve seen so far. To make it
work, you download all the files to your website folder (or, more commonly, a sub-
folder of your website folder), and add a single reference to the library in your web
page:

<head>
 <title>...</title>
 <script src="webforms2.js"></script>
 ...
<head>

125chapter 4: web forms, refined

 New Types of Input

The webforms2 library integrates nicely with another JavaScript patch, called
html5Widgets, which adds support for the form features you’ll learn about next, like
the slider, date picker, and color chooser. To learn more about this all-in-one patch,
visit www.useragentman.com/tests/html5Widgets. Both of these libraries offer good
all-around web forms support, but there are inevitable gaps and minor bugs bur-
ied in the code. Only time will tell if these already-impressive libraries are properly
maintained and gradually improved.

Gem in The RoUGh

A Few Rogue Input Attributes
HTML5 recognizes a few more attributes that can control
browser behavior when editing forms, but aren’t used for
validation. Not all of these attributes apply to all browsers.
Still, they make for good experimenting:

• Spellcheck. Some browsers try to help you avoid
embarrassment by spell-checking the words you type
in an input box. The obvious problem is that not all
text is meant to be real words, and there are only so
many red squiggles a web surfer can take before get-
ting just a bit annoyed. Set spellcheck to false to rec-
ommend that the browser not spellcheck a field, or
true to recommend that it does. (Browsers differ on
their default spell-checking behavior, which is what
you get if you don’t set the spellcheck attribute at all.)

• Autocomplete. Some browsers try to save you time
by offering you recently typed-in values when you
enter information in a field. This behavior isn’t always
appropriate—as the HTML5 specification points out,
some types of information may be sensitive (like nu-
clear attack codes) or may be relevant for only a short

amount of time (like a one-time bank login code). In
these cases, set autocomplete to off to recommend
that the browser not offer autocomplete suggestions.
You can also set autocomplete to on to recommend
it for a particular field.

• Autocorrect and autocapitalize. Use these attri-
butes to control automatic correction and capitaliza-
tion features on some mobile devices—namely, the
version of Safari that runs on iPads and iPhones.

• Multiple. Web designers have been adding the mul-
tiple attribute to the <select> element to create mul-
tiple-selection lists since time immemorial. But now
you can add it to certain types of <input> elements,
including ones that use the file type (for uploading
files) and ones that use the email type (page 128).
On a supporting browser, the user can then pick sev-
eral files to upload at once, or stick multiple email
addresses in one box.

New Types of Input
One of the quirks of HTML forms is that one ingredient—the vaguely named
<input> element—is used to create a variety of controls, from checkboxes to text
boxes to buttons. The type attribute is the master switch that determines what each
<input> element really is.

If a browser runs into an <input> element with a type that it doesn’t recognize, the
browser treats it like an ordinary text box. That means these three elements get ex-
actly the same treatment in every browser:

<input type="text">
<input type="super-strange-wonky-input-type">
<input>

126 html5: the missing manual

 New Types of Input

HTML5 uses this default to its benefit. It adds a few new data types to the <input> el-
ement, secure in the knowledge that browsers will treat them as ordinary text boxes
if they don’t recognize them. For example, if you need to create a text box that holds
an email address, you can use the new input type email:

<label for="email">Email *</label>
<input id="email" type="email">

If you view this page in a browser that doesn’t directly support the email input type
(like Internet Explorer 9), you’ll get an ordinary text box, which is perfectly accept-
able. But browsers that support HTML5 forms are a bit smarter. Here’s what they
can do:

• Offer editing conveniences. For example, an intelligent browser might give you
a way to get an email from your address book and pop it into an email field.

• Restrict potential errors. For example, browsers can ignore letters when you
type in a number text box. Or, they can reject invalid dates (or just force you to
pick one from a mini calendar, which is easier and safer).

• Perform validation. Browsers can perform more sophisticated checks when
you click a submit button. For example, an intelligent browser will spot an obvi-
ously incorrect email address in an email box and refuse to continue.

The HTML5 specification doesn’t give browser makers any guidance on the first
point. Browsers are free to manage the display and editing of different data types
in any way that makes sense, and different browser can add different little luxuries.
For example, mobile browsers take advantage of this information to customize the
virtual keyboard that they show, hiding keys that don’t apply (see Figure 4-8).

Figure 4-8:
When people use a
mobile device to fill
out a form, they don’t
have the luxury of
entering information
on a full keyboard.
The iPod makes life
easier by custom-
izing the virtual
keyboard depending
on the data type, so
telephone numbers
get a telephone-style
numeric keypad (left),
while email addresses
get a dedicated @
button and a smaller
space bar (right).

127chapter 4: web forms, refined

 New Types of Input

The error-prevention and error-checking features are more important. At a bare
minimum, a browser that supports HTML5 web forms must prevent a form from
being submitted if it contains data that breaks the data type rules. So if the browser
doesn’t prevent errors (according to the second point in this list), it must validate
them when the user submits the data (that’s the third point).

Unfortunately, not all current browsers live up to this requirement. Some recog-
nize the new data types and provide some sort of editing niceties but no validation.
Many understand one data type but not another. Mobile browsers are particu-
larly problematic—they provide some editing conveniences but currently have none
of the validation.

Table 4-3 lists the new data types and the browsers that support them completely—
meaning that they prevent forms from being submitted when the data type rules are
broken.

Table 4-3. Browser compatibility for new input types

Data type IE Firefox Chrome Safari Opera
Safari
iOS** Android

email - 4 10 5 (Windows
only)

10.6 - -

url - 4 10 5 (Windows
only)

10.6 - -

search* n/a n/a n/a n/a n/a n/a n/a

tel* n/a n/a n/a n/a n/a n/a n/a

number - - 10 5 (Windows
only)

- - -

range - - 6 5 11 - -

datetime,
date,
month,
week, time

- - 10 - 11 - -

color - - - - 11 - -

* The HTML5 standard does not require validation for this data type.
** Although the iOS browser doesn’t provide validation, its virtual keyboard customization (see Figure 4-8)

is a significant convenience, so it’s still worth using specialized data types.

Tip: Incidentally, you can test for data type support in Modernizr using the properties of the Modernizr.
inputtypes object. For example, Modernizr.inputtypes.range returns true if the browser supports the range
data type.

128 html5: the missing manual

 New Types of Input

Email Addresses
Email addresses use the email type. Generally, a valid email address is a string of
characters (with certain symbols not allowed). An email address must contain the @
symbol and a period, and there needs to be at least one character between them and
two characters after the period. These are, more or less, the rules that govern email
addresses. However, writing the right validation logic or regular expression for email
addresses is a surprisingly subtle task that has tripped up many a well-intentioned
developer. Which is why it’s great to find web browsers that support the email data
type and perform validation automatically (see Figure 4-9).

Figure 4-9:
Firefox refuses to accept
the space in this spurious
email address.

Email attributes support the multiple attribute, which allows the field to hold mul-
tiple email addresses. However, these multiple email addresses still look like a single
piece of text—you just separate each one with a comma.

Note: Remember, blank values bypass validation. If you want to force someone to enter a valid email
address, you need the email data type combined with the required attribute (page 116).

URLs
URLs use the url type. What constitutes a valid URL is still a matter of hot debate.
But most browsers use a relatively lax validation algorithm. It requires a URL prefix
(which could be legitimate, like http://, or made up, like bonk://), and accepts spaces
and most special characters other than the colon (:).

Some browsers also show a drop-down list of URL suggestions, which is typically
taken from the browser’s history of recently visited pages.

Search Boxes
Search boxes use the search type. A search box is generally meant to contain key-
words that are then used to perform some sort of search. It could be a search of the

129chapter 4: web forms, refined

 New Types of Input

entire Web (as with Google, in Figure 4-1), a search of a single page, or a custom-
built search routine that examines your own catalog of information. Either way, a
search box looks and behaves almost exactly like a normal text box.

On some browsers, like Safari, search boxes are styled slightly differently, with
rounded corners. Also, as soon as you start typing in a search box in Safari or
Chrome, a small X icon appears on the right side that you can click to clear the box.
Other than these very minor differences, search boxes are text boxes. The value is in
the semantics. In other words, you use the search data type to make the purpose of
the box clear to browsers and assistive software. They can then guide visitors to the
right spot or offer other smart features—maybe, someday.

Telephone Numbers
Telephone numbers use the tel type. Telephone numbers come in a variety of pat-
terns. Some use only numbers, while others incorporate spaces, dashes, plus signs,
and parentheses. Perhaps it’s because of these complications that the HTML5 stan-
dard doesn’t ask browsers to perform any telephone number validation at all. How-
ever, it’s hard to ignore the feeling that a tel field should at least reject letters (which
it doesn’t).

Right now, the only value in using the tel type is to get a customized virtual keyboard
on mobile browsers, which focuses on numbers and leaves out letters.

Numbers
HTML5 defines two numeric data types. The number type is the one to use for or-
dinary numbers.

The number data type has obvious potential. Ordinary text boxes accept anything:
numbers, letters, spaces, punctuation, and the symbols usually reserved for cartoon
character swearing. For this reason, one of the most common validation tasks is to
check that a given value is numeric and falls in the right range. But use the number
data type, and the browser automatically ignores all non-numeric keystrokes. Here’s
an example:

<label for="age">Age*</label>
<input id="age" type="number">

Of course, there are plenty of numbers, and they aren’t all appropriate for every kind
of data. The markup shown above allows ages like 43,000 and -6. To fix this, you
need to use the min and max attributes. Here’s an example that limits ages to the
reasonable range of 0 to 120:

<input id="age" type="number" min="0" max="120">

Ordinarily, the number data type accepts only whole numbers, so a fractional age
like 30.5 isn’t accepted. (In fact, some browsers won’t even let you type the decimal
point.) However, you can change this too by setting the step attribute, which indi-
cates the acceptable intervals for the number. For example, a step minimum value of

130 html5: the missing manual

 New Types of Input

0 and a step of 0.1 means you can use values like 0, 0.1, 0.2, and 0.3. Try to submit
a form with 0.15, however, and you’ll get the familiar pop-up error message. The
default step is 1.

<label for="weight">Weight (in pounds)</label>
<input id="weight" type="number" min="50" max="1000" step="0.1"
value="160">

The step attribute also affects how the spin buttons work in the number box, as
shown in Figure 4-10.

Figure 4-10:
Many browsers add spin buttons to number
boxes. Every time you click the up arrow, the
number increases by the step value (unless you
reach the maximum allowed number). Similarly,
when you click the down arrow, the number
decreases by one step.

Sliders
The range type is HTML5’s other numeric data type. Like the number type, it can
represent whole numbers or fractional values. It also supports the same attributes for
setting the range of allowed values (min and max). Here’s an example:

<label for="weight">Weight (in pounds)</label>
<input id="weight" type="range" min="50" max="1000" value="160">

The difference is the way the range type presents its information. Instead of asking
you to type the value you want in a text box, intelligent browsers show a slider con-
trol (Figure 4-11).

Figure 4-11:
You’ve probably used range-like controls to set
things like sound volume. They work well for
information where there’s a narrow range of
values between a known minimum and a known
maximum, and the specific numeric value isn’t
important (but the placement of that value rela-
tive to the minimum and maximum is).

To set a range type, you simply pull the tab to the position you want, somewhere
between the minimum and maximum values at either end of the slider. Browsers
that support the range type don’t give any feedback about the specific value that’s
set. If you want that piece of information, you need to add a scrap of JavaScript that
reacts when the slider changes (perhaps by handling the onChange event) and then

131chapter 4: web forms, refined

 New Types of Input

displays the value nearby. Of course, you’d also want to check if the current browser
supports the range type (using a tool like Modernizr). If the browser doesn’t support
the range type, there’s no need to take any extra steps, because the value will show
up in an ordinary text box.

Dates and Times
HTML5 defines several date-related types. Browsers that understand the date types
can provide handy drop-down calendars for people to pick from. Not only does this
clear away confusion about the right way to format the date, it also prevents peo-
ple from accidentally (or deliberately) picking a date that doesn’t exist. And smart
browsers can go even further—for example, adding integration with a personal
calendar.

Right now, the date types are poorly supported, despite their obvious usefulness.
Opera is the only browser that provides the drop-down calendars (see Figure 4-12).
Chrome provides the bare minimum in support: It uses a text box with spin buttons,
like the number type, and refuses bad dates.

Figure 4-12:
The <input> boxes
look slightly different
when storing date
and time information
(left). But the real
convenience that
Opera provides is the
drop-down calendar
that lets you set these
values with a proper
date, and no format-
ting headaches
(right).

Tip: If you decide to use one of the date types, you may want to use a polyfill for browsers that don’t
understand it, like html5Widgets library described earlier (www.useragentman.com/tests/html5Widgets).
That’s because it’s easy for people on non-supporting browsers to enter dates in the wrong format, and
it’s tedious for you to validate date data and provide the appropriate guidance. (That’s also why custom
Java-Script date controls already exist—and why they’re all over the Web.)

Table 4-4 explains the six date formats.

132 html5: the missing manual

New Elements

Table 4-4. Date data types

Date type Description Example
date A date in the format YYYY-MM-DD. January 25, 2012, is:

2012-01-25

time A 24-hour time with an optional seconds por-
tion, in the format HH:mm:ss.ss.

2:35 p.m. (and 50.2 sec-
onds) is:
14:35 or
14:35:50.2

datetimelocal A date and a time, separated by a capital T (so
the format is YYYY-MM-DDTHH:mm:ss).

January 25, 2012, 2:35 p.m:
2012-01-15T14:35

datetime A date and a time, like the datetime-local data
type, but with a time-zone offset. This uses the
same format (YYYY-MM-DDTHH:mm:ss-HH:mm)
as the <time> element you considered on page
83.

January 25, 2012, 2:35 p.m.,
in New York:
2012-01-15T14:35-05:00

month A year and month number, in the format YYYY-
MM.

First month in 2012:
2012-01

week A year and week number, in the format YYYY-
Www. Note that there can be 52 or 53 weeks,
depending on the year.

Second week in 2012:
2012-W02

Tip: Browsers that support the date types also support the min and max attributes with them. That
means you can set maximum and minimum dates, as long as you use the right date format. So, to
restrict a date field to dates in the year 2012, you would write: <input type=”date” min=”2012-01-01”
max=”2012-12-31”>.

Colors
Colors use the color type. The color data type is an interesting, albeit little-used, frill
that lets a web page visitor pick a color from a drop-down color picker, which looks
like what you might see in a desktop paint program. Currently, Opera is the only
browser to add one. In other browsers, you need to type a hexadecimal color code
on your own (or use the html5Widgets library, from www.useragentman.com/tests/
html5Widgets).

New Elements
So far, you’ve learned how HTML5 extends forms with new validation features, and
how it gets smarter about data by adding more input types. These are the most prac-
tical and the most widely supported new features, but they aren’t the end of the
HTML5 forms story.

133chapter 4: web forms, refined

New Elements

HTML5 also introduces a few entirely new elements to fill gaps and add features. Us-
ing these nifty new elements, you can add a drop-down list of suggestions, a progress
bar, a toolbar, and more. The problem with new elements is that old browsers are
guaranteed not to support them, and even new browsers are slow to wade in when
the specification is still changing. As a result, these details include some of the least
supported features covered in this chapter. You may want to see how they work, but
you’ll probably wait to use them, unless you’re comfortable inching your way out
even further into the world of browser quirks and incompatibilities.

Input Suggestions with <datalist>
The <datalist> element gives you a way to fuse a drop-down list of suggestions to an
ordinary text box. It gives people filling out a form the convenience to pick an option
from the list, or the freedom to type exactly what they want (see Figure 4-13).

Figure 4-13:
As you type, the browser shows you
potential matches. For example,
type in the letters “ca,” and the
browser shows you every animal
that has that letter sequence
somewhere in its name (and not
necessarily at the beginning).

To use a datalist, you must first start with a standard text box. For example, imagine
you have an ordinary <input> element like this:

<legend>What's Your Favorite Animal?</legend>
<input id="favoriteAnimal">

To add a drop-down list of suggestions, you need to create a datalist. Technically,
you can place that <datalist> element anywhere you want. That’s because the datalist
can’t display itself—instead, it simply provides data that an input box will use. How-
ever, it makes logical sense to place the <datalist> element just after or just before the
<input> element that uses it. Here’s an example:

<datalist id="animalChoices">
 <option label="Alpaca" value="alpaca">
 <option label="Zebra" value="zebra">

134 html5: the missing manual

New Elements

 <option label="Cat" value="cat">
 <option label="Caribou" value="caribou">
 <option label="Caterpillar" value="caterpillar">
 <option label="Anaconda" value="anaconda">
 <option label="Human" value="human">
 <option label="Elephant" value="elephant">
 <option label="Wildebeest" value="wildebeest">
 <option label="Pigeon" value="pigeon">
 <option label="Crab" value="crab">
</datalist>

The datalist uses <option> elements, just like the traditional <select> element. Each
<option> element represents a separate suggestion that may be offered to the form
filler. The label shows the text that appears in the text box, while the value tracks the
text that will be sent back to the web server, if the user chooses that option. On its
own, a datalist is invisible. To hook it up to a text box so it can start providing sugges-
tions, you need to set the list attribute to match the ID of the corresponding datalist:

<input id="favoriteAnimal" list="animalChoices">

On browsers that supports the datalist—and right now, that’s only Opera 10 and
Firefox 4 (or later)—visitors will see the result shown in Figure 4-13. Other brows-
ers will ignore the list attribute and the datalist markup, rendering your suggestions
useless.

However, there’s a clever fallback trick that makes other browsers behave properly.
The trick is to put other content inside the datalist. This works because browsers that
support the datalist pay attention to <option> elements only, and ignore all other
content. Here’s a revised example that exploits this behavior. (The bold parts are the
markup that datalist-supporting browsers will ignore.)

<legend>What's Your Favorite Animal?</legend>
<datalist id="animalChoices">
 Pick an option:
 <select id="favoriteAnimalPreset">
 <option label="Alpaca" value="alpaca">
 <option label="Zebra" value="zebra">
 <option label="Cat" value="cat">
 <option label="Caribou" value="caribou">
 <option label="Caterpillar" value="caterpillar">
 <option label="Anaconda" value="anaconda">
 <option label="Human" value="human">
 <option label="Elephant" value="elephant">
 <option label="Wildebeest" value="wildebeest">
 <option label="Pigeon" value="pigeon">
 <option label="Crab" value="crab">
 </select>

 Or type it in:
</datalist>
<input list="animalChoices" name="list">

If you remove the bold markup, you end up with the same markup you had before.
That means browsers that recognize the datalist still show the single input box and

135chapter 4: web forms, refined

New Elements

the drop-down suggestion list, as shown in Figure 4-13. But on other browsers, the
additional details wrap the datalist suggestion in a traditional select list, giving users
the option of typing in what they want or picking it from a list (Figure 4-14).

Figure 4-14:
You can still use your suggestions
on browsers that don’t support the
datalist. But you need to wrap them
in a <select> list first.

This effect isn’t completely seamless. When you receive the form data on the web
server, you need to check for data from the list (in this example, that’s favoriteAni-
malPreset) and from the text box (that’s favoriteAnimal). But other than this minor
wrinkle, you’ve got a solid way to add new conveniences without leaving anyone
behind.

Note: When the datalist was first created, it had a feature that it let it fetch suggestions from somewhere
else—for example, it could call a web server, which could then pull a list of suggestions out of a database.
This feature might still be added in a future version of the HTML standard, but for now it’s possible only if
you write JavaScript code to handle the fetching, with the help of the XMLHttpRequest object (page 325).

Progress Bars and Meters
The <progress> and <meter> element are two new graphical widgets that look simi-
lar but serve different purposes (Figure 4-15).

The <progress> element indicates how far a task has progressed. It uses a gray back-
ground that’s partially filled in with a pulsating green bar. The <progress> element
resembles the progress bars you’ve probably seen before (for example, when the
Windows operating system is copying files), although its exact appearance depends
on the browser being used to view the page.

136 html5: the missing manual

New Elements

The <meter> element indicates a value within a known range. It looks similar to
the <progress> element, but the green bar is a slightly different shade, and it doesn’t
pulse. Depending on the browser, the meter bar may change color when a value is
classified as “too low” or “too high”—for example, in the latter case Chrome changes
the bar from green to yellow. But the most important difference between <progress>
and <meter> is the semantic meaning that the markup conveys.

Figure 4-15:
The <progress> and
<meter> elements
are nice visual
conveniences, on the
browsers that support
them (left). Other
browsers simply
substitute the fallback
content you’ve set
(right).

Note: Technically, the new <meter> and <progress> elements don’t need to be in a form. In fact, they
aren’t even real controls (because they don’t collect input from the web page visitor). However, the official
HTML5 standard lumps them all together, because in some respects the <progress> and <meter> ele-
ments feel like form widgets, probably because they display bits of data in a graphical way.

Currently, the <progress> and <meter> elements work in Chrome (version 9 or lat-
er), Opera (version 11 or later), and Safari (version 5.1 or later). Firefox and Internet
Explorer don’t support them yet.

Using the <progress> and <meter> elements is easy. First, consider the <progress>
element. It takes a value attribute, which sets the percentage of progress (and thus
the width of the green fill) as a fractional value from 0 to 1. For example, you could
set the value to 0.25 to represent a task that’s 25 percent complete:

<progress value="0.25"></progress>

Alternatively, you can use the max attribute to set an upper maximum and change
the scale of the progress bar. For example, if max is 200, your value needs to fall
between 0 and 200. If you set it to 50, you’d get the same 25 percent fill as in the
previous example:

<progress value="50" max="200"></progress>

The scale is simply a matter of convenience. The web page viewer doesn’t see the
actual value in the progress bar.

137chapter 4: web forms, refined

New Elements

Note: The <progress> element is simply a way to display a nicely shaded progress bar. It doesn’t actually
do anything. For example, if you’re using the progress bar to show the progress of a background task (say,
using web workers, as demonstrated on page 364), it’s up to you to write the JavaScript code that grabs
hold of the <progress> element and changes its value.

Browsers that don’t recognize the <progress> element simply ignore it. To deal with
this problem, you can put some fallback content inside the <progress> element, like
this:

<progress value="0.25">25%</progress>

Just remember that the fallback content won’t appear in browsers that do support the
<progress> element.

There’s one other progress bar option. You can show an indeterminate progress bar,
which indicates that a task is under way, but you aren’t sure how close it is to comple-
tion. (Think of an indeterminate progress bar as a fancy “in progress” message.) An
indeterminate progress bar looks like an empty gray bar but has a periodic green
flash travel across it, from left to right. To create one, just leave out the value attri-
bute, like this:

<progress>Task in progress ...</progress>

The <meter> element has a similar model, but it indicates any sort of measurement.
The <meter> element is sometimes described as a gauge. Often, the specific me-
ter value you use will correspond to something in the real world (for example, an
amount of money, a number of days, an amount of weight, and so on). To control
how the <meter> element displays this information, you’re able to set both a mini-
mum and maximum value (using the min and max attributes):

Your suitcase weighs: <meter min="5" max="70" value="28">28 pounds</meter>

Once again, the content inside the <meter> element is shown only if the browser
doesn’t know how to display a meter bar. Of course, sometimes it’s important to
show the specific number that the <meter> element uses. In this case, you’ll need to
add it to the page yourself, and you don’t need the fallback content. The following
example uses this approach. It provides all the information up-front and adds an
optional <meter> element on browsers that support it:

<p>Our goal is to raise $50,000 for SLF (Save the Lemmings Foundation).</p>
<p>So far we've raised $14,000. <meter max="50000" value="14000"></meter>

The <meter> element also has the smarts to indicate that certain values are too high
or too low, while still displaying them properly. To do this, you use the low and high
attributes. For example, a value that’s above high (but still below max) is higher than
it should be, but still allowed. Similarly, a value that’s below low (but still above min)
is lower than it should be:

Your suitcase weighs:
<meter min="5" max="100" high="70" value="79">79 pounds</meter>*
<p><small>* A surcharge applies to suitcases heavier than 70 pounds.
</small></p>

138 html5: the missing manual

 An HTML Editor in a
Web Page

Browsers may or may not use this information. For example, Chrome shows a yellow
bar for overly high values (like the one in the previous example). It doesn’t do any-
thing to indicate low values. Finally, you can flag a certain value as being an optimal
value using the optimum attribute, but it won’t change the way it shows up in today’s
browsers.

All in all, <progress> and <scale> are minor conveniences that will be useful once
their browser support improves just a bit.

Toolbars and Menus with <command> and <menu>
Count this as the greatest feature that’s not yet implemented. The idea is to have an
element that represents actions the user can trigger (that’s <command>) and an-
other one to hold a group of them (that’s <menu>). Depending on how you put it to-
gether and what styling tricks you use, the <menu> element could become anything
from a toolbar docked to the side of the browser window to a pop-up menu that
appears when you click somewhere on the page. But right now, no browser supports
these elements, and so you’ll have to wait to find out if they’re really as cool as web
developers hope.

An HTML Editor in a Web Page
As you learned in Chapter 1, HTML5 believes in paving cowpaths—in other words,
taking the unstandardized features that developers use today, and making them part
of the official HTML5 standard. One of the single best examples is its inclusion of
two odd attributes, named contentEditable and designMode, which let you turn an
ordinary browser into a basic HTML editor.

These two attributes are nothing new. In fact, they were originally added to Internet
Explorer 5 in the dark ages of the Internet. At the time, most developers dismissed
them as more Windows-only extensions to the Web. But as the years wore on, more
browsers began to copy IE’s practical but quirky approach to rich HTML editing.
Today, every desktop browser supports these attributes, even though they have never
been part of an official standard.

Using contentEditable to Edit an Element
The first tool you have for HTML editing is the contentEditable attribute. Add it to
any element to make the content of that element editable:

<div id="editableElement" contentEditable>You can edit this text, if you'd
like.</div>

You probably won’t notice the difference at first. But if you load your page in a
browser and click inside that <div>, a text-editing cursor (called a caret) will appear
(Figure 4-16).

139chapter 4: web forms, refined

 An HTML Editor in a
Web Page

Up To Speed

When to Use HTML Editing
Before you try out rich HTML editing, it’s worth asking what
the feature is actually for. Despite its immediate cool factor,
HTML editing is a specialized feature that won’t appeal to
everyone. It makes most sense if you need a quick-and-
easy way for users to edit HTML content—for example, if
you need to let them add blog posts, enter reviews, post
classified ads, or compose messages to other users.

Even if you decide you need this sort of feature, the con-
tentEditable and designMode attributes might not be your
first choice. That’s because they don’t give you all the

niceties of a real web design tool, like markup-changing
commands, the ability to view and edit the HTML source,
spell-checking, and so on. Using HTML’s rich editing fea-
ture, you can build a much fancier editor, with a bit of
work. But if you really need rich editing functionality, you
may be happier using someone else’s ready-made editor,
which you can then plug into your own pages. To review
some of the most popular options, read the blog post at
http://ajaxian.com/archives/richtexteditors-compared.

Figure 4-16:
When you click in an
editable region, you
can move around
using the arrow keys,
delete text, and insert
new content (left).
You can also select
text with the Shift key
and then copy, cut,
and paste it (right).
It’s a bit like typing
in a word processor,
only you won’t be
able to escape the
confines of the <div>
to get to the rest of
the page.

In this example, the editable <div> contains nothing but text. However, you could
just as easily put other elements inside. In fact, this <div> element could wrap your
entire page, making the whole thing editable. Similarly, you could use contentEdit-
able on multiple elements to make several sections of a page editable.

Tip: Some browsers support a few built-in commands. For example, you can get bold, italic, and under-
line formatting in IE using the shortcut keys Ctrl+B, Ctrl+I, and Ctrl+U. Similarly, you can reverse your last
action in Firefox by pressing Ctrl+Z, and you can use all of these shortcuts in Chrome. To learn more about
these editing commands, and how you can create a custom toolbar that triggers them, see Opera’s two-
part article series at http://tinyurl.com/htmlEdit1 and http://tinyurl.com/htmlEdit2.)

140 html5: the missing manual

 An HTML Editor in a
Web Page

Usually, you won’t set contentEditable in your markup. Instead, you’ll turn it on us-
ing a bit of JavaScript, and you’ll turn it off when you want to finish editing. Here are
two functions that do exactly that:

function startEdit() {
 // Make the element editable.
 var element = document.getElementById("editableElement");
 element.contentEditable = true;
}

function stopEdit() {
 // Return the element to normal.
 var element = document.getElementById("editableElement");
 element.contentEditable = false;

 // Show the markup in a message box.
 alert("Your edited content: " + element.innerHTML);
}

And here are two buttons that use them:
<button onclick="startEdit()">Start Editing</button>
<button onclick="stopEdit()">Stop Editing</button>

Just make sure you don’t place the buttons in the editable region of your page, be-
cause when a page is being edited, its elements stop firing events and won’t trigger
your code.

Figure 4-17 shows the result after the element has been edited and some formatting
has been applied (courtesy of the Ctrl+B shortcut command).

Figure 4-17:
This proves it—editing an element really does
change the in-memory content of the page. In
this example, the new content is simply shown
in a message box. However, a more typical
page would send this data to a web server,
probably using the XMLHttpRequest object
described on page 325.

141chapter 4: web forms, refined

 An HTML Editor in a
Web Page

Note: There are subtle differences in the way rich HTML editing works in different browsers. For example,
pressing Ctrl+B in Chrome adds a element, while pressing it in IE adds the element. Similar
variations occur when you hit the Enter key to add a new line or Backspace to delete a tag. One of the rea-
sons that it makes sense for HTML5 to standardize the rich HTML editing feature is the ability to enforce
better consistency.

Using designMode to Edit a Page
The designMode property is similar to contentEditable, except it allows you to edit
an entire web page. This may seem like a bit of a problem—after all, if the whole page
is editable, how will the user click buttons and control the editing process? The solu-
tion is to put the editable document inside an <iframe> element, which then acts as
a super-powered editing box (Figure 4-18).

Figure 4-18:
This page contains
two boxes. The first
is an <iframe> that
shows the apoca-
lypse page example
from Chapter 2. The
second is an ordinary
<div> that shows
the HTML markup
of the page, after it’s
been edited. The two
buttons at the top of
the page control the
show, switching the
<iframe> into design
mode when the user
is ready to work.

142 html5: the missing manual

 An HTML Editor in a
Web Page

The markup in this page is refreshingly simple. Here are the complete contents of the
<body> element in the page:

<h1>Editable Page</h1>
<iframe id="pageEditor" src="ApocalypsePage_Revised.html"></iframe>
<div>
 <button onclick="startEdit()">Start Editing</button>
 <button onclick="stopEdit()">Stop Editing</button>
</div>

<h1>Edited HTML</h1>
<div id="editedHTML"></div>

As you can see, this example relies on the startEdit() and stopEdit() methods, much
like the previous example. However, the code is tweaked so that it sets the design-
Mode attribute rather than the contentEditable attribute:

function startEdit() {
 // Turn on design mode in the <iframe>.
 var editor = document.getElementById("pageEditor");
 editor.contentWindow.document.designMode = "on";
}

function stopEdit() {
 // Turn off design mode in the <iframe>.
 var editor = document.getElementById("pageEditor");
 editor.contentWindow.document.designMode = "off";

 // Display the edited HTML (just to prove it's there).
 var htmlDisplay = document.getElementById("editedHTML");
 htmlDisplay.textContent = editor.contentWindow.document.body.innerHTML;
}

This example gives you a better idea of the scope of the rich editing feature. For ex-
ample, click on a picture and you’ll see how the browser lets you manipulate it. You
can resize it, drag it to a new place, or delete it completely with a single click of the
Delete button. You’ll have similar power over form controls, if they’re in the page
you’re editing.

Of course, there’s still a significant gap you’ll need to cross if you want to turn this
example into something practical. First, you’ll probably want to add better editing
controls. Once again, the helpful folks at Opera have your back if you’re ready to
make a deeper exploration into the command model, which is beyond the scope
of this chapter (see http://tinyurl.com/htmlEdit1 and http://tinyurl.com/htmlEdit2).
Second, you’ll need to do something useful with your edited markup, like sending it
to your web server via XMLHttpRequest (page 325).

There’s one more caveat to note. If you run this example locally from your hard
drive, it won’t work in all browsers. (Internet Explorer and Chrome run into security
restrictions, while Firefox sails ahead without a problem.) To avoid the problem, you
can run it from the try-out site at www.prosetech.com/html5.

143

chapter
5

Audio and Video

There was a time when the Internet was primarily a way to share academic
research. Then, things changed and in a blink the Web became a news and
commerce powerhouse. A few more blinks, and here we are today, with an In-

ternet that uses state-of-the networking technology to funnel jaw-dropping amounts
of slapstick video and piano-playing kittens around the planet.

It’s hard to exaggerate the magnitude of this shift. What was just a “wouldn’t it be
cool” dream in early 2005 is now YouTube, the world’s third-most-popular website.
3- and 4-minute videos have taken over the Web (and, in the process, at least part
of our lives). And network colossus Cisco reports that the trend isn’t slowing down,
estimating that a staggering 90 percent of all Internet traffic will be video by 2013.

Amazingly, this monumental change happened despite the fact that HTML and web
browsers have no built-in support for video or even audio. Instead, they rely on
plug-ins like Flash, which work well for most people, most of the time. But there
are clear blind spots—like the one Apple created when it released the iPad with no
Flash support.

HTML5 addresses the gap by adding the <audio> and <video> elements that HTML
has been missing all these years. Finally, rich media gets consistent, standardized
support that doesn’t require a plug-in. But the story isn’t all rosy. The major browser
companies are locked into an audio and video format war that’s way dirtier than Blu-
ray versus HD-DVD. The sad consequence is that there’s no single audio and video
format that works on every browser, and you’ll need to encode and then re-encode
your media files to get them working in HTML5. In this chapter, you’ll learn how.

144 html5: the missing manual

 Understanding Video
Today
 Understanding Video
Today

But first, it’s time to step back, take a look at the big picture, and see where video left
off before HTML5 hit the scene.

Understanding Video Today
Without HTML5, you have a couple of ways to add video to a web page. Most simply,
you can shoehorn it into a page with the <embed> element. The browser then cre-
ates a video window that uses Windows Media Player, Apple QuickTime, or some
other video player, and places it on the page.

The key problem with this technique is that it puts you in a desolate no-man’s-land
of browser support. You have no way to control playback, you may not be able to
buffer the video to prevent long playback delays, and you have no way of knowing
whether your video file will be playable at all on different browsers or operating
systems.

The second approach is to use a browser plug-in—like Microsoft’s relative new-
comer, Silverlight, or the more typical Adobe Flash. Up until recently, Flash had the
problem of browser support solved cold. After all, Flash video works everywhere the
Flash plug-in is installed, and currently that’s on more than 99 percent of Internet-
connected computers. Flash also gives you nearly unlimited control over the way
playback works. For example, you can use someone else’s prebuilt Flash video player
for convenience, or you can design your own and customize every last glowy button.

But the Flash approach isn’t perfect. To get Flash video into a web page, you need to
throw down some seriously ugly markup that uses the <object> and <embed> ele-
ments. You need to encode your video files appropriately, and you may also need to
buy the high-priced Flash developer software and learn to use it—and the learning
curve can be steep. But the worst problem is Apple’s new wave of mobile devices: the
iPhone and the iPad. They refuse to tolerate Flash at all, slapping blank boxes over
the web page regions that use it.

Note: Plug-ins also have a reputation for occasional unreliability. That’s because of the way they work.
For example, when you visit a page that uses Flash, the browser lets the Flash plug-in take control of a
rectangular box somewhere on the web page. Most of the time, this hands-off approach works well, but
minor bugs or unusual system configurations can lead to unexpected interactions and glitches, like sud-
denly garbled video or pages that suck up huge amounts of computer memory and slow your web surfing
down to a crawl.

Still, if you watch video on the Web today (and you aren’t using an iPhone or iPad),
odds are that it’s wrapped in a Flash mini-application. If you’re not sure, try right-
clicking the video player. If the menu that pops up includes a command like “About
Flash Player 10,” then you know you’re dealing with the ubiquitous Flash plug-in.
And even when you move to HTML5, you’ll probably still need a Flash-powered
fallback for browsers that aren’t quite there yet, like Internet Explorer 8.

145chapter 5: audio and video

 Introducing HTML5
Audio and Video

 Introducing HTML5
Audio and Video

Note: In 2010, YouTube rolled out a trial HTML5 video player. To try it out, visit www.youtube.com/html5.
Everywhere else, YouTube sticks exclusively with Flash.

Introducing HTML5 Audio and Video
A simple idea underpins HTML5’s audio and video support. Just as you can add im-
ages to a web page with the element, you should be able to insert sound with
an <audio> element and video with a <video> element. Logically enough, HTML5
adds both.

Up To Speed

Turn Back Now If…
Unfortunately, some things are beyond HTML5’s new au-
dio and video capabilities. If you want to perform any of
these tricks, you’ll need to scramble back to Flash (at least
for now):

• Licensed content. HTML5 video files don’t use
any sort of copy protection system. In fact, folks can
download HTML5 videos as easily as downloading
pictures—with a simple right-click of the mouse.

• Video or audio recording. HTML5 has no way to
stream audio or video from your computer to an-
other computer. So if you want to build a web chat
program that uses the microphones and webcams of
your visitors, stick with Flash. The creators of HTML5
are experimenting with a <device> element that
might serve the same purpose, but for now there’s
no HTML-only solution, in any browser.

• Adaptive video streaming. Advanced, video-heavy
websites like YouTube need fine-grained control over
video streaming and buffering. They need to provide
videos in different resolutions, stream live events, and

adjust the video quality to fit the bandwidth of the vis-
itor’s Internet connection. Until HTML5 can provide
these features, video sharing sites may add HTML5
support, but they won’t completely switch from Flash.

• Low-latency, high-performance audio. Some ap-
plications need audio to start with no delay or they
need to play multiple audio clips in perfect unison.
Examples include a virtual synthesizer, music visual-
izer, or a real-time game with plenty of overlapping
sound effects. And while browser makers are hard at
work improving HTML5’s audio performance, it still
can’t live up to these demands.

• Dynamically created or edited audio. What if you
could not just play recorded audio, but also analyze
audio information, modify it, or generate it in real
time? New standards, like the Firefox-sponsored Au-
dio Data API (http://wiki.mozilla.org/Audio_Data_
API), are competing to add on these sorts of features
to HTML5 audio, but they aren’t here yet.

Making Some Noise with <audio>
Here’s an example of the <audio> element at its absolute simplest:

<p>Hear us rock out with our new song,
<cite>Death to Rubber Duckies</cite>:</p>
<audio src="rubberduckies.mp3" controls></audio>

146 html5: the missing manual

 Introducing HTML5
Audio and Video
 Introducing HTML5
Audio and Video

The src attribute provides the file name of the audio file you want to play. The con-
trols attribute tells the browser to include a basic set of playback controls. Each
browser has a slightly different version of these controls, but they always serve the
same purpose—to let the user start and stop playback, jump to a new position, and
change the volume (Figure 5-1).

Note: The <audio> and <video> elements must have both a start and an end tag. You can’t use empty
element syntax, like <audio />.

Figure 5-1:
Here’s what playback controls look like
on three browsers: Internet Explorer
(top), Google Chrome (middle), and
Firefox (bottom). However, to create
a page with audio that actually works
in all three browsers requires a bit of
audio-format juggling, as you’ll learn
on page 149.

The <audio> element supports three more attributes: preload, autoplay, and loop.
The preload attribute tells the browser how it should download the audio. You can
use auto to tell the browser to start downloading the whole file, so it’s available when
the user clicks the play button. Of course, this download process unfolds in the back-
ground, so your web page visitor can scroll around and read the page without wait-
ing for the download to finish.

The preload attribute also supports two more values. You can use metadata to tell the
browser to grab the first small chunk of data from the file, which is enough to de-
termine some basic details (like the total length of the audio). Or, you can use none,
which tells the browser to hold off completely. You might use one of these options to
save bandwidth, for example, if you have a page stuffed full of <audio> elements and
you don’t expect the visitor to play more than a few of them.

<audio src="rubberduckies.mp3" controls preload="metadata"></audio>

147chapter 5: audio and video

 Introducing HTML5
Audio and Video

 Introducing HTML5
Audio and Video

When you use the none or metadata values, the browser downloads the audio file
as soon as someone clicks the play button. Happily, browsers can play one chunk of
audio while downloading the next, without a hiccup, unless you’re working over a
slow network connection.

If you don’t set the preload attribute, browsers can do what they want, and differ-
ent browsers make different assumptions. Most browsers assume auto as the default
value, but Firefox uses metadata. Furthermore, it’s important to note that the preload
attribute isn’t a rigid rule, but a recommendation you’re giving to the browser—one
that may be ignored depending on other factors. (And some slightly older browser
builds don’t play attention to the preload attribute at all.)

Note: If you have a page stuffed with <audio> elements, the browser creates a separate strip of playback
controls for each one. The web page visitor can listen to one audio file at a time, or start them all playing
at once.

Next up is the autoplay attribute, which tells the browser to start playback immedi-
ately once the page has finished loading:

<audio src="rubberduckies.mp3" controls autoplay></audio>

Without autoplay, it’s up to the person viewing the page to click the play button.

You can also use the <audio> element to play background music unobtrusively, or
even to provide the sound effects for a browser-based game. To get background mu-
sic, remove the controls attribute and add the autoplay attribute (or use JavaScript-
powered playback, as described on page 160). But use this approach with caution,
and remember that your page still needs some sort of audio shutoff switch.

Warning: No one wants to face a page that blares music or sound effects but lacks a way to shut the
sound off. If you decide to use the <audio> element without the controls attribute, you must, at a bare
minimum, add a mute button that uses JavaScript to silence the audio.

Finally, the loop attribute tells the browser to start over at the beginning when the
audio ends:

<audio src="rubberduckies.mp3" controls loop></audio>

In most browsers, playback is fluid enough that you can use this technique to create
a seamless, looping soundtrack. The trick is to choose a loopable piece of audio that
ends where it begins. You can find hundreds or free examples at www.flashkit.com/
loops. (These loops were originally designed for Flash but can also be downloaded
in MP3 and WAV versions.)

If the <audio> element seems too good to be true, well, it is. On page 149, you’ll
consider the format headaches that make HTML5 developers miserable. But first, it’s
worth taking a look at the <audio> element’s close companion: the <video> element.

148 html5: the missing manual

 Introducing HTML5
Audio and Video
 Introducing HTML5
Audio and Video

Getting the Big Picture with <video>
The <video> element pairs nicely with the <audio> element. It has the same src,
controls, preload, autoplay, and loop attributes. Here’s a straightforward example:

<p>A butterfly from my vacation in Switzerland!</p>
<video src="butterfly.mp4" controls></video>

Once again, the controls attribute gets the browser to generate a set of handy play-
back controls (Figure 5-2). In most browsers, these controls disappear when you
click somewhere else on the page, and return when you hover over the movie.

Figure 5-2:
The <video> element could easily
be mistaken for a Flash video
window. But if you right-click the
<video> element, you’ll get a
simpler menu that includes the
option to save the video file on
your computer. (Depending on
the browser, it may also include
commands for changing the
playback speed, looping the
video, taking it full screen, and
muting the sound.)

The <video> element also adds three more attributes: height, width, and poster.

The height and width attributes set the size of the video window (in pixels). Here’s an
example that creates a video box that measures 400 × 300 pixels:

<video src="butterfly.mp4" controls width="400" height="300"></video>

This should match the natural size of the video itself, but you might choose to in-
dicate these details explicitly so your layout doesn’t get messed up before the video
loads (or if the video fails to load altogether).

Finally, the poster attribute lets you supply an image that should be used in place of
the video. Browsers use this picture in three situations: if the first frame of the video
hasn’t been downloaded yet, if you’ve set the preload attribute to none, or if the se-
lected video file wasn’t found.

<video src="butterfly.mp4" controls poster="swiss_alps.jpg"></video>

149chapter 5: audio and video

 Format Wars and
Fallbacks

 Format Wars and
Fallbacks

Although you’ve now learned everything there is to know about audio and video
markup, there’s a lot more you can do with some well-placed JavaScript. But before
you can get any fancier with the <audio> and <video> elements, you need to face the
headaches of audio and video codec support.

Note: The HTML5 standrad specifies two more attributes that apply to the <audio> and <video> ele-
ments. You can add the muted attribute to shut off the sound initially (the viewer can switch it on using
the playback controls). You can use the mediagroup attribute to link multiple media files together, so
their playback is synchronized (which is particularly useful if the audio track for your video is in a separate
audio file). However, browsers don’t currently support either attribute.

Format Wars and Fallbacks
The examples you’ve just considered use two popular standards: MP3 audio and
H.264 video. They’re enough to keep Internet Explorer 9 and Safari happy, but other
browsers have their own ideas (Figure 5-3).

Figure 5-3:
Try to play an MP3 file in Firefox (top) or a Theora
video in IE (bottom), and here’s all the joy you’ll get.

When confronted with the HTML5 format wars, web developers have a few angry
questions. Like, is HTML5 audio and video hopelessly broken? And who can we
blame first? But the issue isn’t as clear-cut as it seems. Different browser makers have
defensible reasons for preferring different video standards. Small companies (like
Mozilla, the creators of Firefox) aren’t willing to pay stiff licensing costs for popular
standards like MP3 audio and H.264 video. And it’s hard to blame them—after all,
they are giving away their work for free.

150 html5: the missing manual

 Format Wars and
Fallbacks
 Format Wars and
Fallbacks

Bigger companies, like Microsoft and Apple, have their own reasonable-sounding
excuses for shunning unlicensed standards. They complain that these standards
won’t perform as well (they currently lack hardware acceleration) and aren’t as wide-
spread (unlike H.264, which is used in camcorders, Blu-ray players, and a host of
other devices). But the biggest problem may be that no one is really sure that these
unlicensed standards don’t have obscure ties to someone else’s intellectual property.
If they do, and if big companies like Microsoft and Apple start using them, they open
themselves up to pricey patent lawsuits that could drag on for years.

FReqUenTly ASked qUeSTionS

H.264 Licensing
I’m using H.264 for my videos. Do I have to pay licensing
costs?

If you’re using an H.264 decoder in your product (for
example, you’re creating a browser that can play H.264-
encoded video), you definitely need to pay. But if you’re a
video provider, it’s less clear cut.

First, the good news. If you’re using H.264 to make free
videos, you won’t be asked to pay anything, ever. If you’re
creating videos that have a commercial purpose but aren’t
actually being sold (say, you’re shooting a commercial or
promoting yourself in an interview), you’re also in the clear.

If you’re selling H.264-encoded video content on your
website, you may be on the hook to pay license fees to

MPEG-LA, either now or in the future. Right now, the key
detail is the number of subscribers. If you have fewer than
100,000, there’s no licensing cost, but if you have 100,000
to 250,000, you’re expected to cough up $25,000 a year.
This probably won’t seem like much bank for a video-
selling company of that size, and it may pale in comparison
to other considerations, like the cost of professional encod-
ing tools. However, these numbers could change when the
licensing terms are revised in 2016. Big companies looking
to make lots of money in web video might prefer to use
an open, unlicensed video standard like Theora or WebM.

For the full licensing legalese on H.264, visit www.mpegla.
com/main/programs/AVC/Pages/Intro.aspx.

Meet the Formats
The official HTML5 standard doesn’t require support for any specific video or au-
dio format. (Early versions did, but the recommendation was dropped after intense
lobbying.) As a result, browser makers are free to choose the formats they want to
support, despite the fact that they’re congenitally unable to agree with one another.
Table 5-1 shows the standards that they’re using right now.

151chapter 5: audio and video

 Format Wars and
Fallbacks

 Format Wars and
Fallbacks

Table 5-1. Some of the standards that HTML5 browsers may support

Format Description
Common file
extension

MIME
type

MP3
The world’s most popular audio format. How-
ever, licensing costs make it impractical for small
players like Firefox and Opera.

.mp3 audio/mp3

Ogg
Vorbis

A free, open standard that offers high-quality,
compressed audio comparable to MP3.

.ogg audio/ogg

WAV
The original format for raw digital audio. Doesn’t
use compression, so files are staggeringly big
and unsuitable for most web uses.

.wav audio/wav

H.264

The industry standard for video encoding,
particularly when dealing with high-definition
video. Used by consumer devices (like Blu-ray
players and camcorders), web sharing websites
(like YouTube and Vimeo), and web plug-ins (like
Flash and Silverlight).

.mp4 video/mp4

Ogg
Theora

A free, open standard for video by the creators
of the Vorbis audio standard. Byte for byte, the
quality and performance doesn’t match H.264,
although it’s still good enough to satisfy most
people.

.ogv video/ogg

WebM

The newest video format, created when Google
purchased VP8 and transformed it into a free
standard. Critics argue that the quality isn’t up
to the level of H.264 video—yet—and that it may
have unexpected links to other people’s patents,
which could lead to a storm of lawsuits in the
future. Still, WebM is the best bet for a future of
open video.

.webm video/
webm

Table 5-1 also lists the recommended file extensions your media files should use. To
realize why this is important, you need to understand that there are actually three
standards at play in a video file. First, and most obviously, is the video codec, which
compresses the video into a stream of data (examples include H.264, Theora, and
WebM). Second is the audio codec, which compresses one or more tracks of audio
using a related standard. (For example, H.264 generally uses MP3, while Theora
uses Vorbis.) Third is the container format, which packages everything together with
some descriptive information and, optionally, other frills like still images and sub-
titles. Often, the file extension refers to the container format, so .mp4 signifies an
MPEG-4 container, .ogv signifies an Ogg container, and so on.

Here’s the tricky part: Most container formats support a range of different video
and audio standards. For example, the popular Matroska container (.mkv) can hold
video that’s encoded with H.264 or Theora. For reasons of not making your head ex-
plode, Table 5-1 puts each video format with the container format that’s most com-
mon and has the most reliable web support.

152 html5: the missing manual

 Format Wars and
Fallbacks

Table 5-1 also indicates the proper MIME type, which must be configured on your
web server. If you use the wrong MIME type, browsers may stubbornly refuse to play
a perfectly good media file. (If you’re a little fuzzy on exactly what MIME types do
and how to configure them, see the box on page 153.)

Browser Support for Media Formats
All the audio and video formats in the world aren’t much use until you know how
they’re supported. Table 5-2 describes the support for different audio formats on dif-
ferent browsers. Table 5-3 shows the same information for video formats.

Table 5-2. Browser support for HTML5 audio formats

IE Firefox Chrome Safari Opera Safari iOS Android

MP3 9 - 5 3.1 - 3 -

Ogg Vorbis - 3.6 5 - 10.5 - -

WAV - 3.6 8 3.1 10.5 - -

Table 5-3. Browser support for HTML5 video formats

IE Firefox Chrome Safari Opera Safari iOS Android

H.264 Video 9 - * 3.1 - 4** 2.3

Ogg Theora - 3.5 5 - 10.5 - -

WebM *** 4 6 - 10.6 - 2.3

* Chrome currently supports this standard but has pledged to remove it in future versions to better promote
WebM.

** iOS 3.x supports video, but there are a few subtle video bugs hiding in the Safari browser. For example, if
you set the poster attribute (page 148) the video becomes unplayable.

*** IE will support the WebM format, if computer users install the codec on their own.

Mobile browsers pose particular support headaches. First of all, there are quirks.
Some features, like autoplay and looping, may not be supported, and some devices
may perform playback in a dedicated player (rather than right in the web page win-
dow). More significantly, mobile devices usually need video encoded with a reduced
size and lower quality.

Tip: As a general rule of thumb, if you want a video to be playable on a mobile device, you should
encode it using the H.264 Baseline Profile (rather than High Profile). For iPhone and Android phones,
use a size of 640 × 480 or smaller (and stick to 480 × 360 if you want to play it on a BlackBerry). Many
encoding programs (see the box on page 156) have presets that let you prepare mobile-optimized video.

153chapter 5: audio and video

 Format Wars and
Fallbacks

Up To Speed

Understanding MIME Types
A MIME type (sometimes called a content type) is a piece
of information that identifies the type of content in a web
resource. For example, the MIME type of a web page is
text/html.

Before a web server sends a resource to a browser, it sends
the MIME type. For example, if a browser asks for the page
SuperVideoPlayerPage.html, the web server sends the text/
html MIME type, a few other pieces of information, and the
actual file content. When the browser receives the MIME
type, it knows what to do with the content that comes next.
It doesn’t need to try to make a guess based on a file name
extension or some other sort of hackery.

For common file types—for example, HTML pages and im-
ages—you don’t need to worry about MIME types, because
every web server already handles them properly. But some
web servers might not be configured with the MIME types
for audio and video. That’s a problem, because browsers
will be thrown off course if the web server sends a media
file with the wrong MIME type. Usually, they won’t play the
file at all.

To avoid this problem, make sure your web server is set up
with the MIME types listed in Table 5-1, and use the cor-
responding file extensions for your audio and video files.
(It’s no use configuring the MIME type and then using the
wrong file extension, because the web server needs to be
able to pair the two together. For example, if you configure
.mp4 files to use the MIME type video/mp4, but then you
give your video file the extension .mpFour, the web server
won’t have a clue what you’re trying to do.)

Configuring MIME types is an easy job, but the exact steps
depend on your web hosting company (or your web server
software, if you’re hosting your site yourself). If your web
hosting company uses the popular cPanel interface, then
look for an icon named MIME Types, and click it. You’ll then
see a page like the one shown in Figure 5-4. And if you’re
in any doubt, contact your web hosting company for help.

Figure 5-4:
Here a new MIME type is being
added to support H.264 video
files. In many cases, you won’t
need to take this step, because
your website will already be
configured correctly.

154 html5: the missing manual

 Format Wars and
Fallbacks

Multiple Formats: How to Please Every Browser
Faced with these format differences, what’s an honest web developer to do? The sad
truth is that no single audio or video format can work on all browsers. If you want
to support all browsers—and you should—you need to prepare your media in mul-
tiple formats. You’ll probably also need a Flash fallback for visitors who are using
HTML5-ignorant browsers like IE 8.

Fortunately, the <audio> and <video> elements support a fallback system that works
quite well, and pioneering webheads have already ironed out most of the quirks.
Less happily, the format wars mean that you’ll need to encode your content at least
twice—a process that wastes time, CPU power, and disk space.

Before you get started, you need to choose a strategy for supporting non-HTML5
browsers. Basically, web developers have two good choices:

• Use Flash with an HTML5 fallback. This gives everybody Flash, except for
those who don’t have it installed. This strategy makes sense if you’re already
showing video content on your website with a mature Flash video player, but
you want to reach out to iPad and iPhone users.

• Use HTML5 with a Flash fallback. This gives everybody HTML5 video (or au-
dio), except for people with older browsers, who get Flash. If you go this route,
you can also decide to support fewer formats, in which case people who have
HTML5 browsers but don’t support your chosen format will also get the Flash
fallback. This approach is the way of the future, assuming you can live with the
current limits of HTML5 video and audio (see page 145).

In the following sections, you’ll put the second approach to work. That way, you
ensure that browsers get a pure HTML5 solution, whenever it’s possible.

The <source> Element
The first step to support multiple formats is to remove the src attribute from the
<video> or <audio> element, and replace it with a list of nested <source> elements
inside. Here’s an example with the <audio> element:

<audio controls>
 <source src="rubberduckies.mp3" type="audio/mp3">
 <source src="rubberduckies.ogg" type="audio/ogg">
</audio>

Here, the same <audio> element holds two <source> elements, each of which points
to a separate audio file. The browser then chooses the first file it finds that has a
format it supports. Firefox and Opera will grab rubberduckies.ogg. Internet Explorer,
Safari, and Chrome will stick with rubberduckies.mp3.

In theory, a browser can determine whether or not it supports a file by downloading
a chunk of it. But a better approach is to use the type attribute to supply the correct
MIME type (see page 153). That way, the browser will attempt to download only a
file it believes it can play. (To figure out the correct MIME type, consult Table 5-1.)

155chapter 5: audio and video

 Format Wars and
Fallbacks

The same technique works for the <video> element. Here’s an example that supplies
the same video file twice, once encoded with H.264 and once with Theora:

<video controls width="700" height="400">
 <source src="beach.mp4" type="video/mp4">
 <source src="beach.ogv" type="video/ogg">
</video>

In this example, there’s one new detail to note. When using multiple video formats,
the H.264-encoded file should always come first. Otherwise, it won’t work for old
iPads running iOS 3.x. (The problem has since been fixed in iOS 4, but there’s no
disadvantage to keeping H.264 in the top spot.)

Note: Just because a browser believes it supports a specific type of audio or video doesn’t necessarily
mean it can play it. For example, you may have used an insanely high bitrate, or a strange codec in a
recognized container format. You can deal with issues like these by supplying type and codec information
through the type attribute, but it’ll make a mess of your markup. The HTML5 spec has all the gruesome
details at http://tinyurl.com/3aq5nk3.

So how many video formats should you use? To cover absolutely all your bases, you
need H.264, Theora, and a Flash fallback (which is covered in the next section). For
better quality, you can replace Theora with WebM. This won’t work for slightly older
versions of Firefox and Opera, but these versions aren’t terribly common anyway. Or,
you can get encoder-crazy, and include H.264, Theora, and WebM versions of your
work (in that order). You put WebM before Theora so browsers that support both
use the better-quality video.

If you’re really ambitious, you may opt to create a single video page that’s meant for
both desktop browsers and mobile devices. In this case, you not only need to worry
about the H.264 and Theora video formats, but you also need to think about creating
low-bandwidth versions of your video files that are suitable for devices that have less
hardware power and use slower Internet connections. To make sure mobile devices
get the lighter-weight video files while desktop browsers get the higher-quality ones,
you need to use media queries, as explained on page 263.

The Flash Fallback
Every web browser since the dawn of time deals with unrecognized tags in the same
way—it ignores them. For example, if Internet Explorer 8 comes across the opening
tag for the <video> element, it barrels merrily on, without bothering to check the src
attribute. However, browsers don’t ignore the content inside unrecognized element,
which is a crucial difference. It means if you have markup like this:

<video controls width="400" height="300">
 <source src="discoParty.mp4" type="video/mp4">
 <source src="discoParty.ogv" type="video/ogg">
 <p>We like disco dancing.</p>
</video>

156 html5: the missing manual

 Format Wars and
Fallbacks

Browsers that don’t understand HTML5 will act as though they saw this:
<p>We like disco dancing.</p>

This fallback content provides a seamless way to deal with older browsers.

Up To Speed

Encoding Your Media
Now you know what combination of formats to use, but you
don’t necessarily know how to transform your media files
into those formats. Don’t despair, as there are plenty of tools.
Some work on entire batches of files at once, some have a
reputation for professional-grade quality (and a price tag to
match), and some do their work on powerful web servers
so you don’t have to wait. The trick is picking through all the
options to get the encoder that works for you.

Here are some of your options:

• Audio editors. If you’re looking to edit WAV files
and save them in the MP3 or Vorbis formats, a basic
audio editor can help out. Audacity (http://audacity.
sourceforge.net) is a free editor for Mac and Win-
dows that fits the bill, although you’ll need to install
the LAME MP3 encoder to get MP3 support (http://
lame.buanzo.com.ar). Goldwave (www.goldwave.
com) is a similarly capable audio editor that’s free to
try, but sold for a nominal fee.

• Miro Video Converter. This free, open-source pro-
gram runs on Windows and Mac OS X. It can take vir-
tually any video file, and convert it to WebM, Theora,
or H.264. It also has presets that match the screen

sizes and supported formats for mobile devices, like
iPads, iPhones, or Android phones. The only down-
side is that you can’t tweak more advanced options
to control how the encoding is done. To try it out, go
to www.mirovideoconverter.com.

• Firefogg. This Firefox plug-in (available at http://
firefogg.org) can create Theora or WebM video files,
while giving you a few more options than Miro. It also
runs right inside your web browser (although it does
all its work locally, without involving a web server).

• HandBrake. This open-source, multi-platform pro-
gram (available at http://handbrake.fr) converts a
wide range of video formats into H.264 (and a couple
of other modern formats).

• Zencoder. Here’s an example of a professional me-
dia encoding service that you can integrate with your
website. Zencoder (http://zencoder.com) pulls video
files off your web server, encodes them in all the for-
mats and bitrates you need, gives them the names
you want, and places them in the spot they belong.
A big player (say, a video sharing site), would pay
Zencoder a sizeable monthly fee.

Note: Browsers that support HTML5 audio ignore the fallback section, even if they can’t play the media
file. For example, consider what happens if Firefox finds a <video> element that uses an H.264 video file
but doesn’t support Theora. In this situation, Firefox shows a displayed video player window with an X
icon (as in Figure 5-3), but it still won’t show the fallback content.

157chapter 5: audio and video

 Format Wars and
Fallbacks

So now that you know how to add fallback content, you need to decide what your
fallback content should include. One example of bad fallback content is a text mes-
sage (as in, “Your browser does not support HTML5 video, so please upgrade.”).
Website visitors consider this sort of comment tremendously impolite, and they’re
likely never to return when they see it.

The proper thing to include for fallback content is another working video window—
in other words, whatever you’d use in an ordinary, non-HTML5 page. One possibil-
ity is a YouTube video window. If you use this approach, you need to meet YouTube’s
rules (make sure your video is less than 15 minutes and doesn’t contain offensive or
copyrighted content). You can then upload your video to YouTube in the best format
you have on hand, and YouTube will re-encode the video into the formats it sup-
ports. To get started, head to http://upload.youtube.com/my_videos_upload.

Another possibility is to use a Flash video player. (Or, if you’re playing audio, a Flash
audio player.) Happily, the world has plenty of Flash video players. Many of them are
free, at least for noncommercial uses. And best of all, most support H.264, a format
you’re probably already using for HTML5 video.

Here’s an example that inserts the popular Flowplayer (http://flowplayer.org) into an
HTML5 <video> element:

<video controls width="700" height="400">
 <source src="beach.mp4" type="video/mp4">
 <source src="beach.ogv" type="video/ogg">

 <object id="flowplayer" width="700" height="400"
 data="flowplayer-3.2.7.swf"
 type="application/x-shockwave-flash">
 <param name="movie" value="flowplayer-3.2.7.swf">
 <param name="flashvars" value='config={"clip":"beach.mp4"}'>
 </object>
</video>

Here, the bold part is a parameter that the browser passes to the Flowplayer, with
the file name of the video file. As you can see, even though this example has three
possible outcomes (HTML5 video with H.264, HTML5 video with Theora, or Flash
video with H.264), it needs only two video files, which saves on the encoding work.
Figure 5-5 shows the result in action.

Tip: Although it’s convenient to reuse your H.264 file with Flash, this approach isn’t perfect. Flash didn’t
add support for H.264 until Flash 9.0.115.0. Browsers with older versions of the Flash plug-in won’t be
able to play a H.264-encoded video file unless they upgrade. You could use the Flash Video Format (.flv),
which is guaranteed to work for all versions of Flash, but that requires yet another round of re-encoding.

158 html5: the missing manual

 Format Wars and
Fallbacks

Figure 5-5:
One video, served three ways: in IE 9 (top),
in Firefox (middle), and in IE 7, with Flash
(bottom).

159chapter 5: audio and video

 Format Wars and
Fallbacks

Of course, some people won’t have Flash or a browser that supports HTML5. As
you’ll see, you can offer them another fallback, such as a link to download the video
file and open it in an external program. You place that content after the Flash con-
tent, but still inside the <object> element, like this:

<video controls width="700" height="400">
 <source src="beach.mp4" type="video/mp4">
 <source src="beach.ogv" type="video/ogg">

 <object id="flowplayer" width="700" height="400"
 data="http://releases.flowplayer.org/swf/flowplayer-3.2.7.swf"
 type="application/x-shockwave-flash">
 <param name="movie" value="beach.mp4">

 <p>Your browser does not support HTML5 video or Flash.</p>
 <p>You can download the video in MP4 H.264
 or Ogg Theora format.</p>
 </object>
</video>

If you want a Flash player with an HTML fallback (instead of an HTML video player
with a Flash fallback), you simply need to invert this example. Start with the <object>
element, and nestle the <video> element inside, just before the closing </object> tag.
Place the fallback content just after the last <source> element, like this:

<object id="flowplayer" width="700" height="400"
 data="http://releases.flowplayer.org/swf/flowplayer-3.2.7.swf"
 type="application/x-shockwave-flash">
 <param name="movie" value="butterfly.mp4">

 <video controls width="700" height="400">
 <source src="beach.mp4" type="video/mp4">
 <source src="beach.ogv" type="video/ogg">

 <p>Your browser does not support HTML5 video or Flash.</p>
 <p>You can download the video in MP4 H.264
 or Ogg Theora format.</p>
 </video>
</object>

Usually, you’ll only use this approach if you need to take an existing Flash-based
website and extend it to support Apple devices like the iPad. Incidentally, there’s at
least one JavaScript player that has a baked-in HTML5 fallback. It’s the JW Player,
which you can get at www.longtailvideo.com/players/jw-flv-player.

160 html5: the missing manual

Controlling Your
Player with
JavaScript

Controlling Your Player with JavaScript
So far, you’ve covered some heavy ground. You’ve learned how to take the new <au-
dio> and <video> elements and turn them into a reasonably supported solution that
works on more web pages than today’s Flash-based players. Not bad for a bleeding-
edge technology.

That’s about the most you can do with the <audio> and <video> elements if you stick to
markup only. But both elements have an extensive JavaScript object model, which lets
you control playback with code. In fact, you can even adjust some details—like playback
speed—that aren’t available in the browser’s standard audio and video players.

In the following sections, you’ll explore the JavaScript support by considering two
practical examples. First, you’ll add sound effects to a game. Next, you’ll create a
custom video player. And finally, you’ll consider the solutions that other people have
developed using this potent mix of HTML5 and JavaScript, including supercharged,
skinnable players and accessible captioning.

Adding Sound Effects
The <audio> element doesn’t just let web visitors play songs and voice recordings. It’s
also a useful tool for playing sound effects, whenever you need them. This makes it
particularly useful if you need to add music and sound effects to a game.

Figure 5-6 shows a very simple example, with an interactive ball-dropping anima-
tion. You’ll see the code that makes this example work when you consider the <canvas>
element in Chapter 6. But for now, the only important detail is how you can add a
suitable sonic backdrop.

This example combines a background music track with sound effects. The back-
ground music track is the easiest part. To create it, you start by adding an invisible
<audio> element to your page, like this:

<audio id="backgroundMusic" loop>
 <source src="TheOwlNamedOrion.mp3" type="audio/mp3">
 <source src="TheOwlNamedOrion.ogg" type="audio/ogg">
</audio>

This audio player doesn’t include the autoplay or controls attributes, so initially it’s
silent and invisible. It does use the loop attribute, so once it starts playing it will
repeat the music track endlessly. To control playback, you need to use two methods
of the audio (or video) object: play() and pause(). Confusingly, there’s no stop
method—for that, you need to pause the video and then reset the currentTime prop-
erty to 0, which represents the beginning of the file.

161chapter 5: audio and video

Controlling Your
Player with

JavaScript

Figure 5-6:
This web page runs a simple animation on
a canvas. The visitor can click a button to
add new ball (which then falls down and
bounces around the drawing surface). Or,
the visitor can click a ball to send it bounc-
ing in a new direction.

With this in mind, it’s quite easy to start playback on the background audio when
the first ball is created:

var audioElement = document.getElementById("backgroundMusic");
audioElement.play();

And just as easy to stop playback when the canvas is cleared:
var audioElement = document.getElementById("backgroundMusic");
audioElement.pause();
audioElement.currentTime = 0;

As you learned earlier, there’s no limit on the amount of audio you can play at once.
So while the background audio is playing its tune, you can concentrate on the more
interesting challenge of adding sound effects.

In this example, a “boing” sound effect is played every time a ball ricochets against
the ground or a wall. To keep things interesting, several slightly different boing
sounds are used. This is a stand-in for a more realistic game, which would probably
incorporate a dozen or more sounds.

There are several ways to implement this design, but not all of them are practical.
The first option is to add a single new <audio> element to play sound effects. Then,
every time a collision happens, you can load a different audio file into that element

162 html5: the missing manual

Controlling Your
Player with
JavaScript

(by setting the src property) and play it. This approach hits two obstacles. First, a
single <audio> element can play only a single sound at once, so if more than one ball
hits the ground in quick succession, you need to either ignore the second, overlap-
ping sound, or interrupt the first sound to start the second one. The other problem
is that setting the src property forces the browser to request the audio file. And while
some browsers will do this quickly (if the audio file is already in the cache), Internet
Explorer doesn’t. The result is laggy audio—in other words, a boing that happens
half a second after the actual collision.

A better approach is to use a group of <audio> elements, one for each sound. Here’s
an example:

<audio id="audio1">
 <source src="boing1.mp3" type="audio/mp3">
 <source src="boing1.wav" type="audio/wav">
</audio>
<audio id="audio2">
 <source src="boing2.mp3" type="audio/mp3">
 <source src="boing2.wav" type="audio/wav">
</audio>
<audio id="audio3">
 <source src="boing3.mp3" type="audio/mp3">
 <source src="boing3.wav" type="audio/wav">
</audio>

Note: Even though these three <audio> elements use different audio files, that isn’t a requirement. For
example, if you wanted to have the same boing sound effect but allow overlapping audio, you’d still use
three audio players.

Whenever a collision happens, the JavaScript code calls a custom function named
boing(). That method grabs the next <audio> element in the sequence, and plays it.

Here’s the code that makes it happen:
// Keep track of the number of <audio> elements.
var audioElementCount = 3;

// Keep track of the <audio> element that's next in line for playback.
var audioElementIndex = 1;

function boing() {
 // Get the <audio> element that's next in the rotation.
 var audioElementName = "audio" + audioElementIndex;
 var audio = document.getElementById(audioElementName);

 // Play the sound effect.
 audio.currentTime = 0;
 audio.play();

 // Move the counter to the next <audio> element.
 if (audioElementIndex == audioElementCount) {
 audioElementIndex = 1;

163chapter 5: audio and video

Controlling Your
Player with

JavaScript
 }
 else {
 audioElementIndex += 1;
 }
}

Tip: To get an idea of the noise this page causes with its background music and sound effects, visit the
try-out site at www.prosetech.com/html5.

This example works well, but what if you want to have a much larger range of audio
effects? The easiest choice is to create a hidden <audio> element for each one. If
that’s impractical, you can dynamically set the src property of an existing <audio>
element. Or, you can create a new <audio> element on the fly, like this:

var audio = document.createElement("audio");
audio.src = "newsound.mp3";

or use this shortcut:
var audio = new Audio("newsound.mp3");

However, there are two potential problems with both approaches. First, you need to
set the source well before you play the audio. Otherwise, playback will be noticeably
delayed, particularly on Internet Explorer. Second, you need to know what the sup-
ported audio formats are, so you can set the right file type. This requires using the
clunky canPlayType() method. You pass in an audio or video MIME type, and can-
PlayType() tells you if the browser can play that format—sort of. It actually returns a
blank string if it can’t, the word “probably” if it thinks it can, and the word “maybe”
if it hopes it might, but just can’t make any promises. This rather embarrassing situ-
ation exists because supported container formats can use unsupported codecs, and
supported codes can still use unsupported encoding settings.

Most developers settle on code like this, which attempts playback if canPlayType()
gives any answer other than a blank string:

if (audio.canPlayType("audio/ogg")) {
 audio.src = "newsound.ogg";
}
else if (audio.canPlayType("audio/mp3")) {
 audio.src = "newsound.mp3";
}

Creating a Custom Video Player
One of the most common reasons to delve into JavaScript programming with the
<audio> and <video> elements is to build your own player. The basic idea is pure
simplicity—remove the controls attribute, so that all you have is a video window, and
add your own widgets underneath. Finally, add the JavaScript code that makes these
new controls work. Figure 5-7 shows an example.

164 html5: the missing manual

Controlling Your
Player with
JavaScript

Figure 5-7:
Making a custom HTML5 video
player is easy (making it pretty is not).
This example includes the standard
playback buttons, a playback progress
bar, and a few extra buttons that
show off what JavaScript can do with
the <video> element.

Every video player needs a basic complement of playback buttons. Figure 5-7 uses
plain-Jane buttons:

<button onclick="play()">Play</button>
<button onclick="pause()">Pause</button>
<button onclick="stop()">Stop</button>

These buttons trigger the following super-simple functions:
function play() {
 video.play();
}

function pause() {
 video.pause();
}

function stop() {
 video.pause();
 video.currentTime = 0;
}

165chapter 5: audio and video

Controlling Your
Player with

JavaScript
The other three playback buttons are more exotic. They adjust the playbackRate
property to change the speed. For example, a playbackRate of 2 plays video at twice
the normal speed, but with pitch correction so the audio sounds normal, just ac-
celerated. This is a great feature for getting through a slow training video in a hurry.
Similarly, a playbackRate of 0.5 plays video at half normal speed, and a playback-
Rate of -1 should play video at normal speed, backward, but browsers have trouble
smoothly implementing this behavior.

function speedUp() {
 video.play();
 video.playbackRate = 2;
}

function slowDown() {
 video.play();
 video.playbackRate = 0.5;
}

function normalSpeed() {
 video.play();
 video.playbackRate = 1;
}

Creating the playback progress bar is a bit more interesting. From a markup point of
view, it’s built out of two <div> elements, one inside the other:

<div id="durationBar">
 <div id="positionBar">Idle.</div>
</div>

Tip: The playback progress bar is an example where the <progress> element (page 135) would make
perfect sense. However, the <progress> element still has limited support—far less than the HTML5 video
feature—so this example builds something that looks similar using two <div> elements.

The outer <div> element (named durationBar) draws the solid black border, which
stretches over the entire bar and represents the full duration of the video. The inner
<div> element (named positionBar) indicates the current playback position, by filling
in a portion of the black bar in blue. Finally, a element inside the inner <div>
holds the status text, which shows the current position (in seconds) during playback.

Here are the style sheet rules that size and paint the two bars:
#durationBar {
 border: solid 1px black;
 width: 100%;
 margin-bottom: 5px;
}

#positionBar {
 height: 30px;
 color: white;
 font-weight: bold;
 background: steelblue;
 text-align: center;
}

166 html5: the missing manual

Controlling Your
Player with
JavaScript

When video playback is under way, the <video> element triggers the onTimeUpdate
event continuously. You can react to this event to update the playback bar:

<video id="videoPlayer" ontimeupdate="progressUpdate()">
 <source src="butterfly.mp4" type="video/mp4">
 <source src="butterfly.ogv" type="video/ogg">
</video>

Here, the code gets the current positing in the video (from the currentTime prop-
erty), divides that into the total time (from the duration property), and turns that
into a percentage that sizes the positionBar <div> element:

function progressUpdate() {
 // Resizing the blue positionBar, from 0 to 100%.
 var positionBar = document.getElementById("positionBar");
 positionBar.style.width = (video.currentTime / video.duration * 100) + "%";

 // Display the number of seconds, using two decimal places.
 displayStatus.innerHTML = (Math.round(video.currentTime*100)/100) + " sec";
}

Tip: To get fancier, you could superimpose a download progress bar that shows how much current
content has been downloaded and buffered so far. Browsers already add this feature to their built-in play-
ers. To add it to your own player, you need to handle the onProgress event and work with the seekable
property. For more information about the many properties, methods, and events provided by the <video>
element, check out Microsoft’s decent reference at http://msdn.microsoft.com/library/ff975073.aspx.

JavaScript Media Players
If you’re truly independent-minded, you can create your own audio or video player
from scratch. But it’s not a small project, especially if you want nifty features, like
an interactive playlist. And if you don’t have a small art department to back you up,
there’s a distinct possibility that your final product will look just a little bit ugly.

Happily, there’s a better option for web authors in search of the perfect HTML5 play-
er. Instead of building one yourself, you can pick up a free, JavaScript-customized
media player from the Web. Two solid choices are VideoJS (http://videojs.com) and,
for jQuery fans, jPlayer (www.jplayer.org). Both of these players are lightweight, easy
to use, and skinnable, which means you can switch from one style to another by plug-
ging in a different style sheet (Figure 5-8).

Most JavaScript media players (including VideoJS and jPlayer) have built-in Flash
fallbacks, which saves you from needing to find a separate Flash player. And jPlayer
includes its own handy playlist feature, which lets you queue up a whole list of audio
and video files (Figure 5-9).

167chapter 5: audio and video

Controlling Your
Player with

JavaScript

Figure 5-8:
The VideoJS player
includes ready-to-use
skins that mimic the
look of popular video
websites, including
YouTube, Vimeo, and
Hulu. Here’s how the
playback controls
change.

Figure 5-9:
Using jPlayer’s playlist feature,
you can offer a series of audio
or video files. The user can then
play them all in sequence or
click to play a specific one. The
example playlist here has three
videos.

168 html5: the missing manual

Controlling Your
Player with
JavaScript

To use VideoJS, you start by downloading the JavaScript files from the VideoJS web-
site. Then, you add the JavaScript reference and style sheet reference shown here:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>...</title>

 <script src="video.js"></script>
 <link rel="stylesheet" href="video-js.css">
</head>
...

Then, you use the exact same <video> element you’d normally use, with the mul-
tiple source elements and Flash fallback. (The VideoJS player sample code has the
Flowplayer already slotted in for the Flash fallback, but you can remove it and use a
different Flash player instead.) In fact, the only difference between a normal HTML5
video page and one that uses VideoJS is the fact that you must use a special <div>
element to wrap the video player, as shown here:

<div class="video-js-box">
 <video class="video-js" width="640" height="264" controls ...>
 ...
 </video>
</div>

It’s nice to see that even when extending HTML5, life can stay pretty simple.

Captions and Accessibility
As you’ve seen in previous chapters, the creators of HTML5 were often thinking
about web accessibility—in other words, how people with disabilities can use rich
web pages easily and efficiently.

Adding accessibility information to images is easy enough. You simply need to bolt
on some suitably descriptive text with the alt attribute. But what’s the equivalent to
alt text for a video stream? The consensus is to use subtitles, text captions that pop
up at the right point during playback. Subtitles can be similar to television closed-
captioning, by simply transcribing dialogue, or they can descriptive and supplemen-
tary information of their own. The point is that they give people an avenue to follow
the video even if they have hearing difficulties (or if they just don’t want to switch on
their computer speakers to play the Iron Man 3 movie trailer for the entire office).

Unfortunately, despite the fact that subtitles stand out as the perfect solution, no one
has agreed on exactly how to implement them yet. HTML5 has proposed a <track>
element that will point out a linked subtitle file, perhaps using the WebSRT format,
or perhaps using the new and still-evolving WebVTT format. Someday soon, brows-
ers will read this element and provide controls that let users switch subtitles on or
off. Search engines will retrieve subtitle files and index their content. But right now,
the final details aren’t settled, and no official moves have been made.

169chapter 5: audio and video

Controlling Your
Player with

JavaScript
What developers have done is created their own subtitle workarounds with Java-
Script. Usually, these involve floating a element over a video window and
filling it with subtitle text when playback reaches the appropriate points. For exam-
ple, www.storiesinflight.com/js_videosub has the VideoSub JavaScript library, which
extracts text from a WebSRT subtitle file and displays it in a video window (see Fig-
ure 5-10). VideoSub checks for browser subtitle support and does its work only if the
browser can’t. (Currently, this is all the time, because no browser claims to support
subtitles.) There’s even a complete JavaScript-powered player, called the LeanBack
Player, which has subtitle support built in (http://dev.mennerich.name/showroom/
html5_video). Unfortunately, it’s too soon to tell which is the best way to approach
subtitles—the way that will work with the least amount of work on the next genera-
tion of web browsers. So if you really need subtitles right now, you need to stick with
JavaScript and get ready to revise your pages as HTML evolves.

Figure 5-10:
Here, two JavaScript references and a WebSRT
file is all it takes to add subtitles to this video

Floating subtitle text

171

chapter
6

Basic Drawing with the
Canvas

As you learned in Chapter 1, one of HTML5’s goals is to make it easier to
put rich applications inside otherwise ordinary web pages. In this case, the
word “rich” doesn’t have anything to do with your bank account. Instead, a

rich application is one that’s decked out with slick graphics, interactive features, and
showy frills like animation.

The most important new tool for rich applications is the canvas, a drawing surface
where you can let your inner Picasso loose. Compared with every other HTML ele-
ment, the canvas is unique because it requires JavaScript. There’s no way to draw
shapes or paint pictures without it. That means the canvas is essentially a program-
ming tool—one that takes you far beyond the original document-based idea of the
Web.

At first, using the canvas can feel like stuffing your page with a crude version of
Windows Paint. But dig deeper, and you’ll discover that the canvas is the key to a
range of graphically advanced applications, including some you’ve probably already
thought about (like games, mapping tools, and dynamic charts) and others that you
might not have imagined (like musical lightshows and physics simulators). In the
not-so-distant past, these applications were extremely difficult without the help of
a browser plug-in like Flash. Today, with the canvas, they’re all suddenly possible,
provided you’re willing to put in a fair bit of work.

In this chapter, you’ll learn how to create a canvas and fill it up with lines, curves, and
simple shapes. Then you’ll put your skills to use by building a simple painting pro-
gram. And, perhaps most importantly, you’ll learn how you can get canvas-equipped
pages to work on old browsers that don’t support HTML5 (page 196).

172 html5: the missing manual

 Getting Started with
the Canvas
 Getting Started with
the Canvas

Note: For some developers, the canvas will be indispensable. For others, it will just be an interesting
diversion. (And for some, it may be interesting but still way too much work compared with a mature pro-
gramming platform like Flash.) But one thing is certain: This straightforward drawing surface is destined to
be much more than a toy for bored programmers.

Getting Started with the Canvas
The <canvas> element is the place where all your drawing takes place. From a mark-
up point of view, it’s as simple as can be. You supply three attributes: id, width, and
height:

<canvas id="drawingCanvas" width="500" height="300"></canvas>

The id attribute gives the canvas a unique name, which you’ll need when your script
code goes searching for it. The width and height attributes set the size of your canvas,
in pixels.

Note: You should always set the size of your canvas through the width and height attributes, not the
width and height style sheet properties. To learn about the possible problem that can occur if you use
style sheet sizing, see the box on page 201.

Ordinarily, the canvas shows up as a blank, borderless rectangle (which is to say it
doesn’t show up at all). To make it stand out on the page, you can apply a background
color or a border with a style sheet rule like this:

canvas {
 border: 1px dashed black;
}

Figure 6-1 shows this starting point.

To work with a canvas, you need to fire off a bit of JavaScript that takes two steps.
First, your script must use the document.getElementById() method to grab hold of
the canvas object:

var canvas = document.getElementById("drawingCanvas");

This is no surprise, as you use the getElementById() method anytime you need to
find an element on the current page.

Note: If you aren’t familiar with JavaScript, you won’t get far with the canvas. To brush up with the absolute
bare-minimum essentials, read Appendix B. Or, if you need to hone your programming skills and take time to
get more comfortable with the JavaScript language, check out JavaScript & jQuery: The Missing Manual.

Next, your code must use the canvas object’s getContext() method to retrieve a two-
dimensional drawing context:

var context = canvas.getContext("2d");

173chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

 Getting Started with
the Canvas

Figure 6-1:
Every canvas begins as an empty
rectangle somewhere on a web
page. To put even a single line
inside, you need to write some
JavaScript code.

You can think of the context as a supercharged drawing tool that handles all your
canvas tasks, like painting rectangles, writing text, pasting an image, and so on. It’s a
sort of one-stop shop for canvas drawing operations.

Note: The fact that the context is explicitly called two-dimensional (and referred to as “2d” in the code)
raises an obvious question—namely, is there a three-dimensional drawing context? The answer is not yet,
but the creators of HTML5 have clearly left space for one in the future.

You can grab the context object and start drawing at any point: for example, when
the page first loads, when the visitor clicks a button, and so on. When you’re just
starting out with the canvas, you probably want to create a practice page that gets to
work straightaway. Here’s a template for a page that does just that:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Canvas Test</title>

 <style>
canvas {
 border: 1px dashed black;
}
 </style>

 <script>

174 html5: the missing manual

 Getting Started with
the Canvas
 Getting Started with
the Canvas

window.onload = function() {
 var canvas = document.getElementById("drawingCanvas");
 var context = canvas.getContext("2d");

 // (Put your fabulous drawing code here.)
};
 </script>
</head>

<body>
 <canvas id="drawingCanvas" width="500" height="300"></canvas>
</body>
</html>

The <style> section of this page makes the canvas stand out with a border. The
<script> section handles the window.onload event, which occurs once the browser
has completely loaded the page. The code then gets the canvas, creates a drawing
context, and gets ready to draw. You can use this example as the starting point for
your own canvas experiments.

Note: Of course, when you’re using the canvas in a real page on your website, you’ll want to declutter a
bit by snipping out the JavaScript code and putting it in an external script file (page 401). But for now, this
template gives you single-page convenience. If you want to type the examples in on your own, you can
get this markup from the CanvasTemplate.html file on the try-out site (www.prosetech.com/html5).

Straight Lines
Now you’re just about ready to start drawing. But before you add anything on a
canvas, you need to understand its coordinate system. Figure 6-2 shows you how it
works.

The simplest thing you can draw on a canvas is a solid line. Doing that takes three
actions with the drawing context. First, you use the moveTo() method to move to the
point where you want the line to start. Second, you use the lineTo() method to travel
from the current point to the end of the line. Third, you call the stroke() method to
make the line actually appear:

context.moveTo(10,10);
context.lineTo(400,40);
context.stroke();

Or think of it this way: First you lift up your pen and put it where you want (using
moveTo), then you drag the pen across the canvas (using lineTo), then you make the
line appear (using stroke). This result is a thin (1-pixel) black line from point (10,10)
to point (400,40).

175chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

 Getting Started with
the Canvas

Figure 6-2:
As with every other HTML element,
the canvas designates its top-left
corner as the point (0,0). As you
move right, the x-value increases,
and as you move down, the
y-value increases. If a canvas is
500 × 300 pixels, the bottom-right
corner is point (500, 300).

Point (0,0)

Point (250,150)250 pixels

15
0

pi
xe

ls

Happily, you can get a little fancier with your lines. At any point before you call
the stroke() method that winks your line into existence, you can set three drawing
context properties: lineWidth, strokeStyle, and lineCap. These properties affect ev-
erything you draw, until you change them.

You use lineWidth to set the width of your lines, in pixels. Here’s a thick, 10-pixel
line:

context.lineWidth = 10;

You use strokeStyle to set the color of your lines. You can use an HTML color name,
an HTML color code, or the rgb() function from CSS, which lets you assemble a
color out of red, green, and blue components. (This is useful because most drawing
and painting programs use the same system.) No matter which approach you use,
you need to wrap the whole value in quotation marks, as shown here:

// Set the color (brick red) using an HTML color code:
context.strokeStyle = "#cd2828";

// Set the color (brick red) using the rgb() function:
context.strokeStyle = "rgb(205,40,40)";

Note: This property is named strokeStyle rather than strokeColor because you aren’t limited to plain
colors. As you’ll see later on, you can use color blends called gradients (page 208) and image-based pat-
terns (page 207).

176 html5: the missing manual

 Getting Started with
the Canvas
 Getting Started with
the Canvas

Finally, use lineCap to decide how you want to cap off the ends of your lines. The
default is to make a squared-off edge with butt, but you can also use round (to round
off the edge) or square (which looks the same as butt, but extends the line an amount
equal to half its thickness on each end).

And here’s the complete script code you need to draw three horizontal lines, with
different line caps (Figure 6-3). To try this code out, pop it into any JavaScript func-
tion you want. To make it run right away, put it in the function that handles the
window.onload event, as shown on page 174:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Set the line width and color (for all the lines).
context.lineWidth = 20;
context.strokeStyle = "rgb(205,40,40)";

// Draw the first line, with the standard butt ending.
context.moveTo(10,50);
context.lineTo(400,50);
context.lineCap = "butt";
context.stroke();

// Draw the second line, with a round cap.
context.beginPath();
context.moveTo(10,120);
context.lineTo(400,120);
context.lineCap = "round";
context.stroke();

// Draw the third line, with a square cap.
context.beginPath();
context.moveTo(10,190);
context.lineTo(400,190);
context.lineCap = "square";
context.stroke();

This example introduces one new feature: the beginPath() method of the drawing
context. When you call beginPath(), you start a new, separate segment of your draw-
ing. Without this step, every time you call stroke(), the canvas will attempt to draw
everything over again. (This is a particular problem if you’re changing other context
properties. In this case, you’d end up drawing over your existing content with the
same shapes but a new color, thickness, or line cap.)

Note: While you do need to begin new segments by calling beginPath(), you don’t need to do anything
special to end a segment. Instead, the current segment is automatically considered “finished” the moment
you create a new segment.

177chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

 Getting Started with
the Canvas

Figure 6-3:
The top line uses the standard
butt ending, while the lines below
have added caps (round or
square), which extend the line
by an amount equal to half the
line’s thickness.

Actual end line

Paths and Shapes
In the previous example, you separated different lines by starting a new path for each
one. This method lets you give each line a different color (and a different width and
cap style). Paths are also important because they allow you to fill custom shapes. For
example, imagine you create a red-outlined triangle using this code:

context.moveTo(250,50);
context.lineTo(50,250);
context.lineTo(450,250);
context.lineTo(250,50);

context.lineWidth = 10;
context.strokeStyle = "red";
context.stroke();

But if you want to fill that triangle, the stroke() method won’t help you. Instead, you
need to close the path by calling closePath(), pick a fill color by setting the fillStyle
property, and then call the fill() method to make it happen:

context.closePath();
context.fillStyle = "blue";
context.fill();

It’s worth tweaking a couple of things in this example. First, when closing a path, you
don’t need to draw the final line segment, because calling closePath() automatically
draws a line between the last drawn point and the starting point. Second, it’s best to
fill your shape first, and then draw its outline. Otherwise, your outline may be par-
tially overwritten by the fill.

178 html5: the missing manual

 Getting Started with
the Canvas
 Getting Started with
the Canvas

Here’s the complete triangle-drawing code:
var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

context.moveTo(250,50);
context.lineTo(50,250);
context.lineTo(450,250);
context.closePath();

// Paint the inside.
context.fillStyle = "blue";
context.fill();

// Draw the outline.
context.lineWidth = 10;
context.strokeStyle = "red";
context.stroke();

Notice that you don’t need to use beginPath() in this example, because the canvas
starts you off with a new path automatically. You need to call beginPath() only when
you need a new path—for example, when changing line settings or drawing a new
shape. Figure 6-4 shows the result.

Note: When drawing connecting line segments (like the three sides of this triangle), you can set the
drawing context’s lineJoin property to round or bevel the edges (by using the values round or bevel—the
default is mitre).

Most of the time, when you want a complex shape, you’ll need to assemble a path
for it, one line at a time. But there’s one shape that’s important enough to get spe-
cial treatment: the rectangle. You can fill a rectangular region in one step using the
fillRect() method. You supply the coordinate for the top-left corner, the width, and
the height.

For example, to place a 100 × 200 pixel rectangle starting at point (0,10), use this
code:

fillRect(0,10,100,200);

The fillRect() method gets the color to use from the fillStyle property, just like the
fill() method.

Similarly, you can use strokeRect() to draw the outline of a rectangle in one step:
strokeRect(0,10,100,200);

The strokeRect() method uses the current lineWidth and strokeStyle properties to
determine the thickness and color of the outline, just as the stroke() method does.

179chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

 Getting Started with
the Canvas

Figure 6-4:
To create a closed shape like this
triangle, use moveTo() to get to
the starting point, lineTo() to draw
each line segment, and close-
Path() to complete the shape.
You can then fill it with fill() and
outline it with stroke().

Curved Lines
If you want something more impressive than lines and rectangles (and who doesn’t?),
you’ll need to understand four methods that can really throw you for a curve: arc(),
arcTo(), bezierCurveTo(), and quadraticCurveTo(). All of these methods draw
curved lines in different ways, and they all require at least a smattering of math (and
some need a whole lot more).

The arc() method is the simplest of the bunch. It draws a portion of a circle’s out-
line. To draw an arc, you first need to visualize an imaginary circle, and then decide
which part of the edge you need (see Figure 6-5). You’ll then have all the data you
need to pass to the arc() method.

Once you’ve sorted out all the details you need, you can call the arc() method:
var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Create variables to store each detail about the arc.
var centerX = 150;
var centerY = 300;
var radius = 100;
var startingAngle = 1.25 * Math.PI;
var endingAngle = 1.75 * Math.PI;

// Use this information to draw the arc.
context.arc(centerX, centerY, radius, startingAngle, endingAngle);
context.stroke();

180 html5: the missing manual

 Getting Started with
the Canvas

Figure 6-5:
An arc seems simple
enough, but you need
several pieces of
information to describe
it completely. First, you
need to pin down the
imaginary circle. That
requires the coordinates
of the center point (#1)
and the radius that indi-
cates how big the circle
is (#2). Next, you need
to describe the length of
the arc, which requires
the angle where the arc
starts (#3) and the an-
gle where it ends (#4).
You must supply angles
in radian coordinates,
which are expressed as
fractions of the constant
pi. (So 1 pi is halfway
around the circle, and 2
pi is all the way around,
as indicated here.)

Starting Angle (#3)

1 pi 0 pi

0.5 pi

1.5 pi

Radius (#2)
Ending Angle (#4)

Center Point (#1)

Or, call closePath() before you call stroke() to add a straight line between the two
ends of the arc. This creates a closed semi-circle.

Incidentally, a circle is simply an arc that stretches all the way around the circle. You
can draw it like this:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

var centerX = 150;
var centerY = 300;
var radius = 100;
var startingAngle = 0;
var endingAngle = 2 * Math.PI;

context.arc(centerX, centerY, radius, startingAngle, endingAngle);
context.stroke();

Note: The arc() method doesn’t let you draw an ellipse (a flattened circle). To get that, you need to do
more work—either use some of the more sophisticated curve methods described next, or use a transform
(page 182) to stretch out an ordinary circle as you draw it.

181chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

The three other curve methods—arcTo(), bezierCurveTo(), and quadraticCurveTo()—
are a bit more intimidating to the geometrically challenged. They involve a concept
called control points—points that aren’t included in the curve, but influence the way
it’s drawn. The most famous example is the Bézier curve, which is used in virtually
every computer illustration program ever created. It’s popular because it creates a
curve that looks smooth no matter how small or big you draw it. Figure 6-6 shows
how control points shape a Bézier curve.

Figure 6-6:
A Bézier curve has two control points. The start of the curve runs
parallel to the first control point. The end of the curve runs par-
allel to the second control point. In between, the line curves. The
amount of curvature is influenced by the distance to the control
point—the farther away the point is, the stronger its “pull.” It’s
sort of like gravity, but in reverse.

Starting point

Ending Point

Second Control Point

First Control Point

And here’s the code that creates the curve from Figure 6-6:
var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Put the pen where the curve starts.
context.moveTo(62, 242);

// Create variables for the two control points and the end point of the curve.
var control1_x = 187;
var control1_y = 32;
var control2_x = 429;
var control2_y = 480;
var endPointX = 365;
var endPointY = 133;

// Draw the curve.
context.bezierCurveTo(control1_x, control1_y, control2_x, control2_y,
 endPointX, endPointY);
context.stroke();

The outline of a complex, organic shape often involves a series of arcs and curves
glued together. Once you’re finished, you can call closePath() to fill or outline the
entire shape. The best way to learn about curves is to play with one on your own. You
can find a perfect test page at http://tinyurl.com/html5bezier (Figure 6-7).

182 html5: the missing manual

 Getting Started with
the Canvas

Figure 6-7:
This page (found at
http://tinyurl.com/
html5bezier) lets you
tweak all the details
of a Bézier curve by
clicking and pulling
with the mouse. Best
of all, as you drag the
starting point, control
points, and end point,
the page generates
the corresponding
snippet of HTML5
canvas code that you
can use to create the
same curve on your
own canvas. You
can find a similarly
great test page for
quadratic curves at
http://tinyurl.com/
html5quadratic.

Transforms
A transform is a drawing technique that lets you shift the canvas’s coordinate system.
For example, imagine you want to draw the same square in three places. You could
call fillRect() three times, with three different points:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Draw a 30x30 square, at three places.
context.rect(0, 0, 30, 30);
context.rect(50, 50, 30, 30);
context.rect(100, 100, 30, 30);

context.stroke();

183chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

FReqUenTly ASked qUeSTionS

Canvas Drawing for Math-Phobes
How do I get all the shapes with none of the headaches?

If you’re hoping to use the canvas to create eye-catching
graphics, but you don’t want to pick up a degree in geom-
etry, you might be a bit frustrated. Fortunately, there are
several approaches that can help you draw what you want
without worrying about the mathematical underpinnings:

• Use a drawing library. Why draw everything the
hard way when you can use someone else’s draw-
ing library to draw circles, triangles, ellipses, and
polygons in a single step? The idea is simple—you
call a higher-level method (say, fillEllipse(), with the
appropriate coordinates), and the JavaScript library
translates that to the correct canvas operations. Two
good examples are CanvasPlus (http://code.google.
com/p/canvasplus) and Artisan JS (http://artisanjs.
com). However, these libraries (and more) are still
evolving rapidly. It’s too soon to say which ones will
have real staying power, and which ones are worth
adopting for professional work.

• Draw bitmap images. Instead of painstakingly
drawing each shape you need, you can copy ready-
made graphics to your canvas. For example, if you
have an image of a circle with a file name circle.png,
you can insert that into your canvas using the code
on page 200. However, this technique won’t give you
the same flexibility to manipulate your image (for ex-
ample, to stretch it, rearrange it, remove part of it,
and so on).

• Use an export tool. If you have a complex graphic
and you need to manipulate it on the canvas or make it
interactive, drawing a fixed bitmap isn’t good enough.
But a conversion tool that can examine your graphic
and generate the right canvas-creation code just might
solve your problem. One intriguing example is the
Ai->Canvas plug-in for Adobe Illustrator (http://visit-
mix.com/labs/ai2canvas), which converts Adobe Illus-
trator artwork to an HTML page with JavaScript code
that painstakingly recreates the picture on a canvas.

Or you could call fillRect() three times, with the same point, but shift the coordinate
system each time so the square actually ends up in three different spots, like so:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Draw a square at (0,0).
context.rect(0, 0, 30, 30);

// Shift the coordinate system down 50 pixels and right 50 pixels.
context.translate(50, 50);
context.rect(0, 0, 30, 30);

// Shift the coordinate system down a bit more. Transforms are cumulative,
// so now the (0,0) point will actually be at (100,100).
context.translate(50, 50);
context.rect(0, 0, 30, 30);

context.stroke();

Both versions of this code have the same effect: They draw three squares, in the same
three spots.

184 html5: the missing manual

 Getting Started with
the Canvas

At first glance, transform may just seem like a way to make a somewhat complicated
drawing task even more complicated. But transforms can work magic in some tricky
situations. For example, suppose you have a function that draws a series of complex
shapes that, put together, create a picture of a bird. Now, say you want to animate
that bird, so it appears to fly around the canvas. (You’ll see a basic example of anima-
tion on the canvas on page 222.)

Without transforms, you’d need to adjust every coordinate in your drawing code
each time you drew the bird. But with transforms, you can leave your drawing code
untouched and simply tweak the coordinate system over and over again.

Transforms come in several different flavors. In the previous example, a translate
transform was used to move the center point of the coordinate system—that’s the
(0,0) point that’s usually placed in the top-left corner of the canvas. Along with the
translate transform, there’s also a scale transform (which lets you draw things bigger
or smaller), a rotate transform (which lets you turn the coordinate system around),
and a matrix transform (which lets you stretch and warp the coordinate system in
virtually any way—provided you understand the complex matrix math that under-
pins the visual effect you want).

Transforms are cumulative. The following example moves the (0,0) point to (100,100)
with a translate transform and then rotates the coordinate system around that point
several times. Each time, it draws a new square, creating the pattern shown in Figure
6-8:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Move the (0,0) point. This is important, because
// the rotate transform turns around this point.
context.translate(100, 100);

// Draw 10 squares.
var copies = 10;
for (var i=1; i<copies; i++) {
 // Before drawing the square, rotate the coordinate system.
 // A complete rotation is 2*Math.PI. This code does a fraction of this
 // for each square, so that it has rotated around completely by the time
 // it’s drawn the last one.
 context.rotate(2 * Math.PI * 1/(copies-1));

 // Draw the square.
 context.rect(0, 0, 60, 60);
}
context.stroke();

Tip: You can use the drawing context’s save() method to save the current state of the coordinate system.
Later on, you can use the restore() method to return to your previous saved state. You might want to call
save() before you’ve applied any transforms, so you can call restore() to get the coordinate system back to
normal. And in long, complex drawing tasks, you might save the state many times. This list of saved states
acts like the web page history in a browser. Each time you call restore(), the coordinate system reverts to
the immediately preceding state.

185chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

Figure 6-8:
By drawing a series of rotated squares, you can create
spirograph-like patterns.

Transforms are somewhat beyond the scope of this chapter. If you want to explore
them in more detail, Mozilla (the company that created Firefox) has some helpful
documentation and examples at http://tinyurl.com/b742o4.

Transparency
So far, you’ve been dealing with solid colors. However, the canvas also lets you use
partial transparency to layer one shape over another. There are two ways to use
transparency with the canvas. The first approach is to set a color (through the fill-
Style or strokeStyle properties) with the rgba() function, instead of the more com-
mon rgb() function. The rgba() function takes four arguments—the numbers for the
red, green, and blue color components (from 0 to 255), and an additional number
for the alpha value (from 0 to 1), which sets the color’s opacity. An alpha value of 1
is completely solid, while an alpha value of 0 is completely invisible. Set a value in
between—for example, 0.5—and you get a partially transparent color that any con-
tent underneath shows through.

Note: What content is underneath and what content is on top depends solely on the order of your draw-
ing operations. For example, if you draw a circle first, and then a square at the same location, the square
will be superimposed on top of the circle.

Here’s an example that draws a circle and a triangle. The both use the same fill color,
except the triangle sets the alpha value to 0.5, making it 50 percent opaque:

var canvas = document.getElementById("drawingCanvas");
var context = canvas.getContext("2d");

// Set the fill and outline colors.

186 html5: the missing manual

 Getting Started with
the Canvas

context.fillStyle = "rgb(100,150,185)";
context.lineWidth = 10;
context.strokeStyle = "red";

// Draw a circle.
context.arc(110, 120, 100, 0, 2*Math.PI);
context.fill();
context.stroke();

// Remember to call beginPath() before adding a new shape.
// Otherwise, the outlines of both shapes will
// be merged together in an unpredictable way.
context.beginPath();

// Give the triangle a transparent fill.
context.fillStyle = "rgba(100,150,185,0.5)";

// Now draw the triangle.
context.moveTo(215,50);
context.lineTo(15,250);
context.lineTo(315,250);
context.closePath();
context.fill();
context.stroke();

Figure 6-9 shows the result.

Figure 6-9:
Left: Two solid shapes, one on top of the other.

Right: One solid shape, with a semitransparent shape on top. Semi-
transparent shapes look lighter (because they let the white background
through), and they allow you to see whatever content you’ve drawn
underneath. Notice that in this example, the semitransparent shape uses a
fully opaque color for its border.

The other way to use transparency is to set the drawing context’s globalAlpha prop-
erty, like this:

context.globalAlpha = 0.5;

// Now this color automatically gets an alpha value of 0.5:
context.fillStyle = "rgb(100,150,185)";

Do that, and everything you draw from that point on (until you change globalAlpha
again) will use the same alpha value and get the same degree of transparency. This
includes both stroke colors and fill colors.

So which approach is better? If you need just a single transparent color, use rgba().
If you need to paint a variety of shapes with different colors, and they all need the
same level of transparency, use globalAlpha. The globalAlpha property is also useful
if you want to paint semitransparent images on your canvas, as you’ll learn to do on
page 200.

187chapter 6: basic drawing with the canvas

 Getting Started with
the Canvas

poweR USeRS’ CliniC

Composite Operations
So far, this chapter has assumed that when you put one
shape on top of another, the second shape paints over the
first, obscuring it. The canvas works this way most of the
time. However, the canvas also has the ability to use more
complex composite operations.

A composite operation is a rule that tells the canvas how to
display two images that overlap. The default composite op-
eration is source-over, which tells the canvas that the sec-
ond shape should be painted over the top of the first. But
other options are possible, like xor, which tells the canvas
to show nothing at all in the area where the shapes overlap.
Figure 6-10 shows an overview of the different composite
operations.

To change the current composite operation that the canvas
uses, simply set the drawing context’s globalCompositeOp-
eration property, like this:

context.globalCompositeOperation = "xor";

Used cleverly, a composite operation can provide shortcuts
for certain drawing tasks. Unfortunately, different brows-
ers don’t yet agree on how to display them. As a result,
some composite operations show different result on dif-
ferent browsers. For a description of the problem and a
comparison of the differences, see the blog post at http://
tinyurl.com/68b2nmz.

Figure 6-10:
Here are 12 possible composite
operations and their effects, in the
eyes of Firefox. Internet Explorer 9
and Opera treat the copy opera-
tion differently, while Chrome and
Safari differ on the source-in,
source-out, destination-in, and
destination-atop operations.

source-over source-in source-out source-atop

destination-atopdestination-outdestination-indestination-over

lighter darker copy xor

188 html5: the missing manual

Building a Basic
Paint Program

Building a Basic Paint Program
The canvas still has a fair bit more in store for you. But you’ve covered enough
ground to build your first practical canvas-powered program. It’s the simple paint-
ing program shown in Figure 6-11.

The JavaScript that makes this example work is longer than the examples you’ve seen
so far, but still surprisingly straightforward. You’ll consider it piece by piece, in the
following sections.

Tip: If you’re curious about the style sheet rules that create the blue toolbars above and below the canvas,
you want to see the whole example in one piece, or you just want to paint something in your browser,
then you can use the Paint.html file on the try-out site (www.prosetech.com/html5).

Figure 6-11:
To express yourself with this
paint program, just pick a pen
color, pick a pen thickness, and
scribble away with the mouse.

189chapter 6: basic drawing with the canvas

Building a Basic
Paint Program

Preparing to Draw
First, when the page loads, the code grabs the canvas object and attaches functions
that will handle several JavaScript events for different mouse actions: onMouseDown,
onMouseUp, onMouseOut, and onMouseMove.. (As you’ll see, these events control
the drawing process.) At the same time, the page also stores the canvas in a handy
global variable (named canvas), and the drawing context in another global variable
(named context). This way, these objects will be easily available to the rest of the
code:

var canvas;
var context;

window.onload = function() {
 // Get the canvas and the drawing context.
 canvas = document.getElementById("drawingCanvas");
 context = canvas.getContext("2d");

 // Attach the events that you need for drawing.
 canvas.onmousedown = startDrawing;
 canvas.onmouseup = stopDrawing;
 canvas.onmouseout = stopDrawing;
 canvas.onmousemove = draw;
};

To get started with the paint program, the person using the page chooses the pen
color and pen thickness from the two toolbars at the top of the window. These tool-
bars are simple <div> elements styled to look like nice steel-blue boxes, with a hand-
ful of clickable elements in them. For example, here’s the toolbar with the
three color choices:

<div class="Toolbar">
 - Pen Color -

 <img id="redPen" src="pen_red.gif" alt="Red Pen"
 onclick="changeColor('rgb(212,21,29)', this)">
 <img id="greenPen" src="pen_green.gif" alt="Green Pen"
 onclick="changeColor('rgb(131,190,61)', this)">
 <img id="bluePen" src="pen_blue.gif" alt="Blue Pen"
 onclick="changeColor('rgb(0,86,166)', this)">
</div>

The important part of this markup is the element’s onclick attribute. When-
ever the web page visitor clicks a picture, the element calls the changeColor()
function. The changeColor() function accepts two pieces of information—the new
color, which is set to match the icon, and a reference to the element that was
clicked. Here’s the code:

// Keep track of the previous clicked element for color.
var previousColorElement;

function changeColor(color, imgElement) {
 // Change the current drawing color.
 context.strokeStyle = color;

190 html5: the missing manual

Building a Basic
Paint Program

 // Give the newly clicked element a new style.
 imgElement.className = "Selected";

 // Return the previously clicked element to its normal state.
 if (previousColorElement != null) previousColorElement.className = "";
 previousColorElement = imgElement;
}

The changeColor() code takes care of two basic tasks. First, it sets the drawing con-
text’s strokeStyle property to match the new color. This takes a single line of code.
Second, it changes the style of the clicked element, giving it a solid border, so
that it’s clear which color is currently active. This requires a bit more work, because
the code needs to keep track of the previously selected color, so it can remove the
solid border around that element.

The changeThickness() function performs an almost identical task, only it alters the
lineWidth property to have the appropriate thickness:

// Keep track of the previously clicked element for thickness.
var previousThicknessElement;

function changeThickness(thickness, imgElement) {
 // Change the current drawing thickness.
 context.lineWidth = thickness;

 // Give the newly clicked element a new style.
 imgElement.className = "Selected";

 // Return the previously clicked element to its normal state.
 if (previousThicknessElement != null) {
 previousThicknessElement.className = "";
 }
 previousThicknessElement = imgElement;
}

This code gets all the drawing setup out of the way, but this example still isn’t ready
to run. The next (and final) step is to add the code that performs the actual drawing.

Drawing on the Canvas
Drawing begins when the user clicks down on the canvas with the mouse button.
The paint program uses a global variable named isDrawing to keep track of when
drawing is taking place, so the rest of the code knows whether it should be writing
on the drawing context.

As you saw earlier, the onMouseDown event is linked to the startDrawing() func-
tion. It sets the isDrawing variable, creates a new path, and then moves to the start-
ing position to get ready to draw something:

var isDrawing = false;

function startDrawing(e) {
 // Start drawing.
 isDrawing = true;

191chapter 6: basic drawing with the canvas

Building a Basic
Paint Program

 // Create a new path (with the current stroke color and stroke thickness).
 context.beginPath();

 // Put the pen down where the mouse is positioned.
 context.moveTo(e.pageX - canvas.offsetLeft, e.pageY - canvas.offsetTop);
}

In order for the paint program to work properly, it needs to start drawing at the
current position—that’s where the mouse is hovering when the user clicks down.
However, getting the right coordinates for this point is a bit tricky.

The onMouseDown event provides coordinates (through the pageX and the pageY
properties shown in this example), but these coordinates are relative to the whole
page. To calculate the corresponding coordinate on the canvas, you need to subtract
the distance between the top-left corner of the browser window and the top-left
corner of the canvas.

The actual drawing happens while the user is moving the mouse. Every time the
user moves the mouse, even just a single pixel, the onMouseMove event fires and
the code in the draw() function runs. If isDrawing is set to true, then the code calcu-
lates the current canvas coordinate—where the mouse is right now—and then calls
lineTo() to add a tiny line segment to the new position and stroke() to draw it:

function draw(e) {
 if (isDrawing == true) {
 // Find the new position of the mouse.
 var x = e.pageX - canvas.offsetLeft;
 var y = e.pageY - canvas.offsetTop;

 // Draw a line to the new position.
 context.lineTo(x, y);
 context.stroke();
 }
}

If the user keeps moving the mouse, the draw() function keeps getting called, and
another short piece of line keeps getting added. This line is so short—probably just a
pixel or two—that it doesn’t even look like a straight line when you start scribbling.

Finally, when the user releases the mouse button, or moves the cursor off to the side,
away from the canvas, the onMouseUp or onMouseOut events fire. Both of these
trigger the stopDrawing() function, which tells the application to stop drawing:

function stopDrawing() {
 isDrawing = false;
}

So far, this code covers almost all there is to the simple paint program. The only
missing details are the two buttons under the canvas, which offer to clear or save
the current work. Click clear, and the clearCanvas() function blanks out the entire
surface, using the drawing context’s clearRect() method:

function clearCanvas() {
 context.clearRect(0, 0, canvas.width, canvas.height);
}

The save option is slightly more interesting, and you’ll consider it next.

192 html5: the missing manual

Building a Basic
Paint Program

Saving the Picture in the Canvas
When it comes to saving the picture in a canvas, there are countless options. First,
you need to decide how you’re going to get the data. The canvas gives you three basic
options:

• Use a data URL. This converts the canvas to an image file, and then converts
that image data to a sequence of characters, formatted as a URL. This gives you
a nice, portable way to pass the image data around (for example, you can hand
it to an element or send it off to the web server). The paint program uses
this approach.

• Use the getImageData() method. This grabs the raw pixel data, which you can
then manipulate as you please. You’ll learn to use getImageData() on page 234.

• Store a list of “steps.” For example, you can store an array that lists every line
you drew on the canvas. Then, you can save that data, and use it to recreate the
image later. This approach takes less storage space, and it gives you more flex-
ibility to work with or edit the image later on. Unfortunately, it works only if you
keep track of all the steps you’re taking, using a technique like the one you’ll see
in the circle-drawing example (page 217).

If that seems a bit intimidating, well, you’re not done quite yet. Once you decide
what you want to save, you still need to decide where to save it. Here are some op-
tions for that:

• In an image file. For example, you can let the web surfer save a PNG or JPEG
on the computer. That’s the approach you’ll see next.

• In the local storage system. You’ll learn how that works in Chapter 9.
• On the web server. Once you transfer the data, the web server could store it in

a file or a database, and make it available the next time the web page user visits.

To make the save feature work in the paint program, the code uses a feature called
data URLs. Getting a URL for the current data, you simply use the canvas’s toData-
URL() method:

var url = canvas.toDataURL();

When you call toDataURL() without supplying any arguments, you get a PNG-
formatted picture. Alternatively, you can supply an image type to request that format
instead:

var url = canvas.toDataURL("image/jpeg");

But if the browser is unable to honor your format request, it will still send you a PNG
file, converted to a long string of letters.

At this point, you’re probably wondering what a data URL looks like. Technically,
it’s a long string of base-64 encoded characters that starts with the text data:image/
png;base64. It looks like gobbledygook, but that’s OK, because it’s supposed to be
readable by computer programs (like browsers). Here’s a data URL for the current
canvas picture:

193chapter 6: basic drawing with the canvas

Building a Basic
Paint Program


0IArs4c6QAAAARnQU1BAACxjwv8YQUAACqRSURBVHhe7Z1bkB1Hecdn5uxFFzA2FWOnsEEGiiew
nZgKsrWLrZXMRU9JgZQKhoSHVK...gAAEIQAACEIBAiAT+HxAYpeqDfKieAAAAAElFTkSuQmCC

This example leaves out a huge amount of the content in the middle (where the el-
lipsis is) to save space. If it was all left in, this data URL would fill five typed pages
in this book.

Note: Base-64 encoding is a system that converts image data to a long string of characters, numbers,
and a small set of special characters. It avoids punctuation and all the bizarre extended characters, so the
resulting text is safe to stick in a web page (for example, to set the value of a hidden input field or the src
attribute in an element).

So, it’s easy to convert a canvas to image data in the form of a data URL. But once
you have that data URL, what can you do with it? One option is to send it to the web
server for long-term storage. You can see an example of a web page that does that,
using a sprinkling of PHP script on the server, at http://tinyurl.com/5uud9ob.

If you want to keep your data on the client, your options are a bit more limited. Some
browsers will let you navigate directly to a data URL. That means you can use code
like the following to navigate to the image:

window.location = canvas.toDataURL();

A more reliable technique is to hand the data URL over to an element. Here’s
what the paint program does (Figure 6-12):

function saveCanvas() {
 // Find the element.
 var imageCopy = document.getElementById("savedImageCopy");

 // Show the canvas data in the image.
 imageCopy.src = canvas.toDataURL();

 // Unhide the <div> that holds the , so the picture is now visible.
 var imageContainer = document.getElementById("savedCopyContainer");
 imageContainer.style.display = "block";
}

This code doesn’t exactly “save” the image data, because the image hasn’t yet been
stored permanently, in a file. However, it takes just one more step to save the data
once it’s in an image. The web page visitor simply needs to right-click the image and
choose the Save command. This isn’t quite as convenient as a file download or the
Save dialog box, but it’s the only client-side option that works reliably in all browsers.

Note: Firefox has the built-in ability to save canvas content. Just right-click any canvas (not the image
copy) and choose Save Image As. Other browsers, like Chrome and Internet Explorer, don’t offer this
option.

194 html5: the missing manual

Building a Basic
Paint Program

Figure 6-12:
Here, the data URL is used
to transmit information to an
 element. The ele-
ment has been given a smaller
size, to distinguish it from the
main canvas. If you want to save
this image as a respectable .png
file, simply right-click the image
and choose “Save picture as,”
just as you would with any other
picture in a web page.

Note: The data URL feature is one of several canvas features that may fail to work if you’re running a
test page from your computer hard drive. To avoid problems, upload your work to a live web server for
testing.

195chapter 6: basic drawing with the canvas

 Browser
Compatibility for the

Canvas

Gem in The RoUGh

Canvas Paint Programs on the Web
A paint program is one of the first examples that comes to
mind when people start exercising their canvas-program-
ming muscles. It’s thus no surprise that you can Google up
many more paint program examples on the Web, includ-
ing some ridiculously advanced versions. Here are a few
examples:

• http://canvaspaint.org. A Bizzarro-world attempt to
recreate the classic, Windows XP version of Microsoft
Paint, but in a browser. It’s complete, with slightly
dated menus and public-domain code that’s free for
the taking.

• www.jswidget.com/index-ipaint.html.. A more ad-
vanced painting program that’s similar to modern
versions of Windows Paint. When the author finishes
this experiment, he plans to move to building an
Adobe Photoshop clone, but in a browser.

• http://mugtug.com/sketchpad. An amazingly tricked-
out painting and drawing program, with support for
advanced illustration features like shape manipula-
tion, marquee selection, and spirograph drawing.
Currently, it doesn’t work on any version of Internet
Explorer.

Browser Compatibility for the Canvas
You’ve come a long way with the canvas already. Now it’s time to step back and an-
swer the question that hangs over every new HTML5 feature: When is it safe to use
it?

Fortunately, the canvas is one of the better-supported parts of HTML5. The latest
version of every mainstream browser supports it, as shown in Table 6-1. Of course,
the more up-to-date the browser, the better—later builds of these browsers improve
the drawing speed of the canvas and remove occasional glitches.

Table 6-1. Browser support for the canvas

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

9 3.5 3 4 10 1 1

You’re not likely to run into an older version of any of these browsers, except for
Internet Explorer. And that’s the clear issue that today’s canvas users will be thinking
about: How can you put the canvas in your pages without locking out old but still
popular browsers like IE 8 and IE 7?

As with many HTML5 features, you have two compatibility choices. Your first op-
tion is to detect when canvas support is missing and try to fall back on a different
approach. Your second option is to fill the gap with another tool that can simulate
the HTML5 canvas, so your pages will work—as written—on old browsers. In the
case of the canvas, the second approach is the surprise winner, as you’ll learn in the
next section.

196 html5: the missing manual

 Browser
Compatibility for the
Canvas

Polyfilling the Canvas
There are several solid workarounds that grant canvas-like abilities to aging copies
of IE. The first is the ExplorerCanvas library (also called excanvas), by Google engi-
neer and JavaScript genius Erik Arvidsson. It simulates the HTML5 canvas in Inter-
net Explorer 7 or 8, using nothing but JavaScript and a now out-of-date technology
called VML (Vector Markup Language).

Note: VML is a specification for creating line art and other illustrations using markup in an HTML docu-
ment. It’s now been replaced by a similar, but better supported, standard called SVG (Scalable Vector
Graphics), which browsers are just beginning to support. Today, VML still lingers in a few Microsoft
products, like Microsoft Office and Internet Explorer. This makes it a reasonable substitute for the canvas,
albeit with some limitations.

You can download the latest version of ExplorerCanvas from http://code.google.
com/p/explorercanvas. To use it, copy the excanvas.js file to the same folder as your
web page, and add a script reference like this to your web page:

<head>
 <title>...</title>
 <!--[if lt IE 9]>
 <script src="excanvas.js"></script>
 <![endif]-->
 ...
<head>

Notice that this reference is conditional. Versions of Internet Explorer that are earlier
than IE 9 will use it, but IE 9 and non-IE browsers will ignore the script altogether.

From this point, you can use the <canvas> without any serious headaches. For ex-
ample, this change is all you need to get the basic paint program (shown on page
188) working in old versions of IE.

Note: If you plan to draw text on your canvas (a feature discussed on page 203), you’ll also need the
help of a second JavaScript library, called Canvas-text, which works in conjunction with ExplorerCanvas.
You can download it from http://code.google.com/p/canvas-text.

Of course, the ExplorerCanvas isn’t perfect. If you use advanced features, you’ll
probably run into something that doesn’t look right. The main features that aren’t
supported in ExplorerCanvas (at the time of this writing, anyway) include radial
gradients, shadows, clipping regions, raw pixel processing, and data URLs.

If you have really ambitious plans—for example, you’re planning to create complex
animations or a side-scrolling game—you might find that ExplorerCanvas isn’t fast
enough to keep up. In this situation, you can consider switching to a different poly-
fill that uses a high-performance browser plug-in like Silverlight or Flash. You can

197chapter 6: basic drawing with the canvas

 Browser
Compatibility for the

Canvas
review all your options on GitHub’s polyfill page at http://tinyurl.com/polyfills. Or, go
straight to one of the best: the free FlashCanvas library at http://code.google.com/p/
flashcanvas. Like ExplorerCanvas, you can plug it into your page using a single line
of JavaScript. But unlike ExplorerCanvas, it uses the Flash plug-in, without a trace
of VML.

FlashCanvas also has a grown-up professional version called FlashCanvas Pro. It has
even better canvas support—in fact, it ranks about as well as most major browsers
in canvas compatibility tests. You can buy FlashCanvas Pro for a small fee (current-
ly $31) at http://flashcanvas.net/purchase. You can compare the canvas support of
ExplorerCanvas, FlashCanvas, and FlashCanvas Pro at http://flashcanvas.net/docs/
canvas-api.

Note: When you combine a canvas-powered page with a library like FlashCanvas, you get truly impres-
sive support on virtually every browser known to humankind. Not only do you get support for slightly
older versions of IE through Flash, but you also get support for Flash-free mobile devices like the iPad and
iPhone through HTML5.

The Canvas Fallback and Feature Detection
The most popular way to extend the reach of pages that use the canvas is with Ex-
plorerCanvas and FlashCanvas. However, they aren’t the only options.

The <canvas> element supports fallback content, just like the <audio> and <video>
elements you explored in the last chapter. For example, you could apply this sort of
markup to use the canvas (if it’s supported) or to display an image (if it isn’t):

<canvas id="logoCreator" width="500" height="300">
 <p>The canvas isn't supported on your computer, so you can't use our
 dynamic logo creator.</p>

</canvas>

This technique is rarely much help. Most of time, you’ll use the canvas to draw dy-
namic graphics or create some sort of interactive graphical application, and a fixed
graphic just can’t compensate. One alternative is to place a Flash application inside
the <canvas> element. This approach is especially good if you already have a Flash
version of your work but you’re moving to the canvas for future development. It lets
you offer a working Flash-based solution to old versions of IE, while letting everyone
else use the plug-in-free canvas.

If you’re using Modernizr (page 38), you can test for canvas support in your JavaScript
code. Just test the Modernizr.canvas property, and check the Modernizr.canvastext
property to look for the canvas’s text-drawing feature (which was a later addition to the
canvas drawing model). If you don’t detect canvas support in the current browser, then
you can use any workaround you’d like.

198 html5: the missing manual

 Browser
Compatibility for the
Canvas

FReqUenTly ASked qUeSTion

Canvas Accessibility
Is it possible to make the canvas more accessible?

One of the key themes of HTML5, the semantic elements,
and the past few chapters is accessibility—designing a
page that provides information to assistive software, so it
can help disabled people use your website. After all this
emphasis, it may come as a shock that one of HTML5’s
premier new features has no semantics or accessibility
model at all.

The creators of HTML5 are working to patch the hole.
However, no one’s quite certain of the best solution. One
proposal is to create a separate document model for assis-
tive devices, which would then mirror the canvas content.
The problem here is that it’s up to the author to keep this
“shadow” model in sync with the visuals, and lazy or over-
worked developers are likely to pass on this responsibility if
it’s in any way complicated.

A second proposal is to extend image maps (an existing
HTML feature that divides pictures into clickable regions)
so they act as a layer over the top of the canvas. Because
an image map is essentially a group of links, it could hold
important information for assistive software to read and
report to the user.

Currently, there’s no point in thinking too much about
either of these ideas, because they’re both still being de-
bated. In the meantime, it makes sense to use the canvas
for a variety of graphical tasks, like arcade games (most of
which can’t practically be made accessible) and data visual-
ization (as long as you have the data available in text form
elsewhere on the page). However, the canvas isn’t a good
choice for an all-purpose page design element. So if you’re
planning to use the canvas to create a fancy heading or a
menu for your website, hold off for now.

199

chapter
7

Deeper into the Canvas

The canvas is a huge, sprawling feature. In the previous chapter, you learned
how to draw line art and even create a respectable drawing program in a few
dozen lines of JavaScript. But the canvas has more up its sleeve than that.

Not only can it show dynamic pictures and host paint programs, but it can also play
animations, process images with pixel-perfect control, and run interactive games. In
this chapter, you’ll learn the practical beginnings for all these tasks.

First, you’ll start by looking at drawing context methods that let you paint differ-
ent types of content on a canvas, including images and text. Next, you’ll learn how
to add some graphical pizzazz with shadows, patterned fills, and gradients. Finally,
you’ll learn practical techniques to make your canvas interactive and to host live
animations. Best of all, you can build all of these examples with nothing more than
ordinary JavaScript and raw ambition.

Note: For the first half of this chapter, you’ll focus on small snippets of drawing code. You can incorporate
this code into your own pages, but you’ll need to first add a <canvas> element to your page and create a
drawing context, as you learned on page 172. In the second half of this chapter, you’ll look at much more
ambitious examples. Although you’ll see most (or all) of the canvas-drawing code that these examples
use, you won’t get every page detail. To try out the examples for yourself, visit the try-out site at www.
prosetech.com/html5.

200 html5: the missing manual

Other Things You
Can Draw on the
Canvas

Other Things You
Can Draw on the
Canvas

Other Things You Can Draw on the Canvas
Using the canvas, you can painstakingly recreate any drawing you want, from a
bunch of lines and triangles to a carefully shaded portrait. But as the complexity of
your drawing increases, so does the code. It’s extremely unlikely that you’d write by
hand all the code you need to create a finely detailed picture.

Fortunately, you have other options. The drawing context isn’t limited to lines and
curves—it also has methods that let you slap down pre-existing images, text, pat-
terns, and even video frames. In the following sections, you’ll learn how to use these
methods to get more content on your canvas.

Drawing Images
You’ve probably seen web pages that build maps out of satellite images, which they
download and stitch together. That’s an example of how you can take images you
already have and combine them to get the final image that you want.

The canvas supports ordinary image data through the drawing context’s logically
named drawImage() method. To put an image in your canvas, you call drawImage()
and pass in an image object and your coordinates, like this:

context.drawImage(img, 10, 10);

But before you can call drawImage(), you need the image object. HTML5 gives you
three ways to get it. First, you can build it yourself out of raw pixels, one pixel at a
time, using createImageData(). This approach is tedious and slow (although you’ll
learn more about per-pixel manipulation on page 234).

Your second option is to use an element that’s already on your page. For ex-
ample, if you have this markup:

You can copy that picture onto the canvas with this code:
var img = document.getElementById("arrow_left");
context.drawImage(img, 10, 10);

The third way that you can get an image for use with drawImage() is by creating an
image object and loading an image picture from a separate file. The disadvantage to
this approach is that you can’t use your image with drawImage() until that picture
has been completely downloaded. To prevent problems, you need to wait until the
image’s onLoad event occurs before you do anything with the image.

To understand this pattern, it helps to look at an example. Imagine you have an im-
age named maze.png that you want to display on a canvas. Conceptually, you want
to take this series of steps:

// Create the image object.
var img = new Image();

// Load the image file.
img.src = "maze.png";

201chapter 7: deeper into the canvas

Other Things You
Can Draw on the

Canvas

Other Things You
Can Draw on the

Canvas
// Draw the image. (This could fail, because the picture
// might not be downloaded yet.)
context.drawImage(img, 0, 0);

TRoUbleShooTinG momenT

My Pictures are Squashed!
If you attempt to draw a picture and find that it’s inexplica-
bly stretched, squashed, or otherwise distorted, the most
likely culprit is a style sheet rule.

The proper way to size the canvas is to use its height and
width attributes in your HTML markup. You might think you
could remove these in your markup, leaving a tag like this:

<canvas></canvas>

And replace them with a style sheet rule that targets your
canvas, like this one:

canvas {
 height: 300px;
 width: 500px;
}

But this doesn’t work. The problem is that the CSS height
and width properties aren’t the same as the canvas height
and width properties. If you make this mistake, what actu-
ally happens is that the canvas gets its default size (300 ×
150 pixels). Then, the CSS size properties stretch or squash
the canvas to fit, causing it to resize its contents accord-
ingly. As a result, when you put an image on the canvas, it’s
squashed too, which is decidedly unappealing.

To avoid this problem, always specify the canvas size using
its height and width attributes. And if you need a way to
change the size of the canvas based on something else, use
a bit of JavaScript code the change the <canvas> element’s
height and width when needed.

The problem here is that setting the src attribute starts an image download, but your
code carries on without waiting for it to finish. The proper way to arrange this code
is like this:

// Create the image object.
var img = new Image();

// Attach a function to the onload event.
// This tells the browser what to do after the image is loaded.
img.onload = function() {
 context.drawImage(img, 0, 0);
};

// Load the image file.
img.src = "maze.png";

This may seem counterintuitive, since the order in which the code is listed doesn’t
match the order in which it will be executed. In this example, the context.drawIm-
age() call happens last, shortly after the img.src property is set.

Images have a wide range of uses. You can use them to add embellishments to your
line drawings, or as a shortcut to avoid drawing by hand. In a game, you can use
images for different objects and characters, positioned appropriately on the canvas.
And fancy paint programs use them instead of basic line segments so the user can
draw “textured” lines. You’ll see some practical examples that use image drawing in
this chapter.

202 html5: the missing manual

Other Things You
Can Draw on the
Canvas

Other Things You
Can Draw on the
Canvas

Slicing, Dicing, and Resizing an Image
The drawImage() function accepts a few optional arguments that let you alter the
way your image is painted on the canvas. First, if you want to resize the image, you
can tack on the width and height you want, like this:

context.drawImage(img, 10, 10, 30, 30);

This function makes a 30 × 30 pixel box for the image, with the top-left corner at
point (10,10). Assuming the image is naturally 60 × 60 pixels, this operation squashes
it by half in both dimensions, leaving it just a quarter as big as it would ordinarily be.

If you want to crop a piece out of the picture, you can supply the four extra arguments
to drawImage() at the beginning of the argument list. These four points define the
position and size of the rectangle you want to cut out of the picture, as shown here:

context.drawImage(img, source_x, source_y,
 source_width, source_height, x, y, width, height);

The last four arguments are the same as in the previous example—they define the
position and size that the cropped picture should have on the canvas.

For example, imagine you have a 200 × 200 pixel image, and you want to paint just
the top half. To do that, you create a box that starts at point (0,0) and has a width of
200 and a height of 100. You can then draw it on the canvas at point (75,25), using
this code:

context.drawImage(img, 0, 0, 200, 100, 75, 25, 200, 100);

Figure 7-1 shows exactly what’s happening in this example.

Figure 7-1:
Left: The original, source
image.

Right: A cropped portion
of the source image, on
the canvas.

If you want to do more—for example, skew or rotate an image before you draw it,
the drawImage() method can’t keep up. However, you can use transforms to alter the
way you draw anything and everything, as explained on page 182.

203chapter 7: deeper into the canvas

Other Things You
Can Draw on the

Canvas

Other Things You
Can Draw on the

Canvas

Gem in The RoUGh

Drawing a Video Frame
The first parameter of the drawImage() method is the im-
age you want to draw. As you’ve seen, this can be an Im-
age object you’ve just created, or an element that’s
elsewhere on the page.

But that’s not the whole story. HTML5 actually allows two
more substitutions. Instead of an image, you can throw in
a complete <canvas> element (not the one you’re drawing
on). Or, you can use a currently playing <video> element,
with no extra work:

var video =
 document.getElementById("videoPlayer");

context.drawImage(video, 0, 0,
 video.clientWidth, video.clientWidth);

When this code runs, it grabs a single frame of video—the
frame that’s being played at the very instant this code runs.
It then paints that picture onto the canvas.

This ability opens the door to a number of interesting ef-
fects. For example, you can use a timer to grab new video
frames while playback is under way, and keep painting
them on a canvas. If you do this fast enough, the copied
sequence of images on the canvas will look like another
video player.

To get more exotic, you can change something about the
copied video frame before you paint it. For example, you
could scale it larger or smaller, or dip into the raw pixels
and apply a Photoshop-style effect. For an example, read
the article at http://html5doctor.com/video-canvas-magic.
It shows how you can play a video in grayscale simply by
taking regular snapshots of the real video and converting
each pixel in each frame to a color-free shade of gray.

Drawing Text
Text is another thing that you wouldn’t want to assemble yourself out of lines and
curves. And the HTML5 canvas doesn’t expect you to. Instead, it includes two draw-
ing context methods that can do the job.

First, before you draw any text, you need to set the drawing context’s font property.
You use a string that uses the same syntax as the all-in-one CSS font property. At a
bare minimum, you must supply the font size, in pixels, and the font name, like this:

context.font = "20px Arial";

You can supply a list of font names, if you’re not sure that your font is supported:
context.font = "20px Verdana,sans-serif";

And optionally, you can add italics or bold at the beginning of the string, like this:
context.font = "bold 20px Arial";

You can also use a fancy embedded font, courtesy of CSS3. All you need to do is
register the font name first, using a style sheet (as described on page 244).

Once the font is in place, you can use the fillText() method to draw your text. Here’s
an example that puts the top-left corner of the text at the point (10,10):

context.textBaseline = "top";
context.fillStyle = "black";
context.fillText("I'm stuck in a canvas. Someone let me out!", 10, 10);

204 html5: the missing manual

Other Things You
Can Draw on the
Canvas

Other Things You
Can Draw on the
Canvas

You can put the text wherever you want, but you’re limited to a single line. If you
want to draw multiple lines of text, you need to call fillText() multiple times.

Tip: If you want to divide a solid paragraph over multiple lines, you can create your own word wrapping
algorithm. The basic idea is this: Split your sentence into words, and see how many words fit in each
line using the drawing context’s measureText() method. It’s tedious to do, but the sample code at http://
tinyurl.com/6ec7hld can get you started.

Instead of using fillText(), you can use the other text-drawing method, strokeText().
It draws an outline around your text, using the strokeStyle property for its color and
the lineWidth property for its thickness. Here’s an example:

context.font = "bold 40px Verdana,sans-serif";
context.lineWidth = "1";
context.strokeStyle = "red";
context.strokeText("I'm an OUTLINE", 20, 50);

When you use strokeText(), the middle of the text stays blank. Of course, you can
use fillText() followed by strokeText() if you want colored, outlined text. Figure 7-2
shows both pieces of text in a canvas.

Figure 7-2:
The canvas makes it easy to draw
solid text and outlined text.

Tip: Drawing text is much slower than drawing lines and images. The speed isn’t important if you’re
creating a static, unchanging image (like a chart), but it may be an issue if you’re creating an interactive,
animated application. If you need to optimize performance, you may find that it’s better to save your text
in an image file, and then draw it on the canvas with drawImage().

205chapter 7: deeper into the canvas

Shadows and Fancy
Fills

Shadows and Fancy
Fills

Shadows and Fancy Fills
So far, when you’ve drawn lines and filled shapes on the canvas, you’ve used solid
colors. And while there’s certainly nothing wrong with that, ambitious painters will
be happy to hear that the canvas has a few fancier drawing techniques. For example,
the canvas can draw an artfully blurred shadow behind any shape. Or, it can fill a
shape by tiling a small graphic across its surface. But the canvas’s fanciest painting
frill is almost certainly gradients, which you can use to blend two or more colors into
a kaleidoscope of patterns.

In the following sections, you’ll learn to use all these features, simply by setting dif-
ferent properties in the canvas’s drawing context.

Adding Shadows
One handy canvas feature is the ability to add a shadow behind anything you draw.
Figure 7-3 shows some snazzy shadow examples.

Figure 7-3:
Shadows work equally well
with shapes, images, and text.
One nifty feature is the way
that shadows work with images
that have transparent back-
grounds, like the star in the
top-right corner of this page.
As you can see, the shadow
follows the outline of the star
shape, not the square box that
delineates the entire image. (At
the time of this writing, only
Internet Explorer and Firefox
support this feature.) Shadows
also pair nicely with text, so
you can create a range of dif-
ferent effects, depending on the
shadow settings you pick.

Essentially, a shadow looks like a blurry version of what you would ordinarily draw
(lines, shapes, images, or text). You control the appearance of shadows using several
drawing context properties, as outlined in Table 7-1.

206 html5: the missing manual

Shadows and Fancy
Fills
Shadows and Fancy
Fills

Table 7-1. Properties for creating shadows

Property Description
shadowColor Sets the shadow’s color. You could go with black or a tinted color, but a

nice midrange gray is generally best. Another good technique is to use a
semitransparent color (page 185) so the content that’s underneath still
shows through. When you want to turn shadows off, set shadowColor
back to transparent.

shadowBlur Sets the shadow’s “fuzziness.” A shadowBlur of 0 creates a crisp shadow
that looks just like a silhouette of the original shape. By comparison,
a shadowBlur of 20 is a blurry haze, and you can go higher still. Most
people agree that some fuzz (a blur of at least 3) looks best.

shadowOffsetX and
shadowOffsetY

Positions the shadow, relative to the content. For example, set both
properties to 5, and the shadow will be bumped 5 pixels to the right
and 5 pixels down from the original content. You can also use negative
numbers to move the shadow the other way (left and up).

The following code creates the assorted shadows shown in Figure 7-3:
// Draw the shadowed rectangle.
context.rect(20, 20, 200, 100);
context.fillStyle = "#8ED6FF";
context.shadowColor = "#bbbbbb";
context.shadowBlur = 20;
context.shadowOffsetX = 15;
context.shadowOffsetY = 15;
context.fill();

// Draw the shadowed star.
context.shadowOffsetX = 10;
context.shadowOffsetY = 10;
context.shadowBlur = 4;
img = document.getElementById("star");
context.drawImage(img, 250, 30);

context.textBaseline = "top";
context.font = "bold 20px Arial";

// Draw three pieces of shadowed text.
context.shadowBlur = 3;
context.shadowOffsetX = 2;
context.shadowOffsetY = 2;
context.fillStyle = "steelblue";
context.fillText("This is a subtle, slightly old-fashioned shadow.", 10, 175);

context.shadowBlur = 5;
context.shadowOffsetX = 20;
context.shadowOffsetY = 20;
context.fillStyle = "green";
context.fillText("This is a distant shadow...", 10, 225);

context.shadowBlur = 15;
context.shadowOffsetX = 0;
context.shadowOffsetY = 0;

207chapter 7: deeper into the canvas

Shadows and Fancy
Fills

Shadows and Fancy
Fills

context.shadowColor = "black";
context.fillStyle = "white";
context.fillText("This shadow isn't offset. It creates a halo effect.", 10,
 300);

Filling Shapes with Patterns
So far, you’ve filled the shapes you’ve drawn with solid or semitransparent colors.
But the canvas also has a fancy fill feature that lets you slather the inside with a pat-
tern or a gradient. Using these fancy fills is a sure way to jazz up plain shapes. Using
a fancy fill is a two-step affair. First, you create the fill. Then, you attach it to the
fillStyle property (or, occasionally, the strokeStyle property).

To make a pattern fill, you start by choosing a small image that you can tile seam-
lessly over a large area (see Figure 7-4). You need to load the picture you want to
tile into an image object using one of the techniques you learned about earlier, such
as putting a hidden on your page (page 200), or loading it from a file and
handling the onLoad event of the element (page 201). This example uses the
first approach:

var img = document.getElementById("brickTile");

Once you have your image, you can create a pattern object using the drawing con-
text’s createPattern() method. At this point, you pick whether you want the pattern to
repeat horizontally (repeat-x), vertically (repeat-y), or in both dimensions (repeat):

var pattern = context.createPattern(img, "repeat");

The final step is to use pattern object to set the fillStyle or strokeStyle property:
context.fillStyle = pattern;
context.rect(0, 0, canvas.width, canvas.height);
context.fill();

This creates a rectangle that fills the canvas with the tiled image pattern, as shown
in Figure 7-4.

Figure 7-4:
Left: An image that
holds a single tile.

Right: The pattern
created by tiling the
image over an entire
canvas.

208 html5: the missing manual

Shadows and Fancy
Fills

Filling Shapes with Gradients
The second type of fancy fill is a gradient, which blends two or more colors. The can-
vas supports linear gradients and radial gradients, and Figure 7-5 compares the two.

Figure 7-5:
A linear gradient (top left) blends from one line of color
to another. A radial gradient (top right) blends from one
point of color to another. Both types support more than two
colors, allowing you to create a banded effect with linear
gradients (bottom left) or a ring effect with radial gradients
(bottom right).

Tip: If you’re looking at these gradients in a black-and-white print copy of this book, give your head a
shake and try out the examples at www.prosetech.com/html5, so you can see the wild colors for yourself.
(The sample code also includes the drawing logic for the hearts, which stitches together four Bézier curves
in a path.)

Unsurprisingly, the first step to using a gradient fill is creating the right type of gra-
dient object. The drawing context has two methods that handle this task: createLin-
earGradient() and createRadialGradient(). Both work more or less the same way:
They hold a list of colors that kick in at different points.

The easiest way to understand gradients is to start by looking at a simple example.
Here’s the code that’s used to create the gradient for the top-left heart in Figure 7-5:

// Create a gradient from point (10,0) to (100,0).
var gradient = context.createLinearGradient(10, 0, 100, 0);

// Add two colors.
gradient.addColorStop(0, "magenta");
gradient.addColorStop(1, "yellow");

209chapter 7: deeper into the canvas

Shadows and Fancy
Fills

// Call another function to draw the shape.
drawHeart(60, 50);

// Paint the shape.
context.fillStyle = gradient;
context.fill();
context.stroke();

When you create a new linear gradient, you supply two points that represent the
starting point and ending point of a line. This line is the path over which the color
change takes place.

The gradient line is important, because it determines what the gradient looks like
(see Figure 7-6). For example, consider a linear gradient that transitions from ma-
genta to yellow. It could make this leap in a few pixels, or it could blend it out over
the entire width of the canvas. Furthermore, the blend could be from left to right, top
to bottom, or slanted somewhere in between. The line determines all these details.

Figure 7-6:
Left: Here’s the
gradient generated
for the bottom-left
heart from Figure
7-5. When you use
that gradient to fill a
shape, you see just a
portion of it.

Right: The same is
true for this radial
gradient, which is
used for the bottom-
right heart in Figure
7-5.

Start of the gradient line (10,0)

End of the gradient line (100,0)

Outer circle

Inner circle

Tip: Think of a gradient as a colorful design just under the surface of your canvas. When you create a
gradient, you're creating this colorful, but hidden, surface. When you fill a shape, you cut a hole that lets
part of that gradient show through. The actual result—what you see in your canvas—depends on both the
settings of your gradient and the size and position of your shape.

210 html5: the missing manual

Shadows and Fancy
Fills

In this example, the gradient line starts at point (10,0) and ends at point (100,0).
These points tell you several important things:

• The gradient is horizontal. That means it blends colors from left to right. You
know this because the two points have the same y-coordinate. If, on the other
hand, you wanted to blend from top to bottom, you could use points like (0,10)
and (0,100). If you wanted it to stretch diagonally from top left to bottom right,
you could use (10,10) and (100,100).

• The actual color blend spans just 90 pixels (starting when the x-coordinate is
10 and ending when the x-coordinate is 100). In this example, the heart shape
is just slightly smaller than the gradient dimensions, which means you see most
of the gradient in the heart.

• Beyond the limits of this gradient, the colors become solid. So if you make
the heart wider, you’ll see more solid magenta (on the left) and solid yellow (on
the right).

Tip: Often, you’ll create a gradient that’s just barely bigger than the shape you’re painting, as in this
example. However, other approaches are possible. For example, if you want to paint several shapes using
different parts of the same gradient, you might decide to create a gradient that covers the entire canvas.

To actually set the colors in a gradient, you call the gradient’s addColorStop() meth-
od. Each time you do, you supply an offset from 0 to 1, which sets where the color
appears in the blend. A value of 0 means the color appears at the very start of the
gradient, while a value of 1 puts the color at the very end. Change these numbers (for
example, to 0.2 and 0.8), and you can compress the gradient, exposing more solid
color on either side.

When you create a two-color gradient, 0 and 1 make most sense for your offsets.
But when you create a gradient with more colors, you can choose different offsets to
stretch out some bands of colors while compressing others. The bottom-left heart in
Figure 7-5 splits its offsets evenly, giving each color an equal-sized band:

var gradient = context.createLinearGradient(10, 0, 100, 0);
gradient.addColorStop("0", "magenta");
gradient.addColorStop(".25", "blue");
gradient.addColorStop(".50", "green");
gradient.addColorStop(".75", "yellow");
gradient.addColorStop("1.0", "red");

drawHeart(60, 200);
context.fillStyle = gradient;
context.fill();
context.stroke();

Note: If the room is starting to revolve around you, don’t panic. After all, you don’t need to understand
everything that happens in a gradient. There’s nothing to stop you from just tweaking the numbers until
an appealing blend of colors appears in your shape.

211chapter 7: deeper into the canvas

Shadows and Fancy
Fills

You use the same process to create a radial gradient as you do to create a linear one.
But instead of supplying two points, you must define two circles. That’s because a
radial gradient is a blend of color that radiates out from a small circle to a larger, con-
taining circle. To define each of these circles, you supply the center point and radius.

In the radial gradient example shown in the top right of Figure 7-5, the colors blend
from a center point inside the heart, at (180,100). The inner color is represented by a
10-pixel circle, and the outer color is a 50-pixel circle. Once again, if you go beyond
these limits, you get solid colors, giving the radial gradient a solid magenta core and
solid yellow surroundings.

Here’s the code that draws the two-color radial gradient:
var gradient = context.createRadialGradient(180, 100, 10, 180, 100, 50);
gradient.addColorStop(0, "magenta");
gradient.addColorStop(1, "yellow");

drawHeart(180, 80);
context.fillStyle = gradient;
context.fill();
context.stroke();

Note: Most often, you’ll choose the same center point for both the inner and outer circles. However, you
could offset one from the other, which can stretch, squash, and distort the blend of colors in interesting
ways.

Using this example, you can create the final, multicolored radial gradient that’s in the
bottom-right corner of Figure 7-5. You simply need to move the center point of the
circles to the location of the heart, and add a different set of color stops—the same
ones that you used for the multicolored linear gradient:

var gradient = context.createRadialGradient(180, 250, 10, 180, 250, 50);
gradient.addColorStop("0","magenta");
gradient.addColorStop(".25","blue");
gradient.addColorStop(".50","green");
gradient.addColorStop(".75","yellow");
gradient.addColorStop("1.0","red");

drawHeart(180, 230);
context.fillStyle = gradient;
context.fill();
context.stroke();

You now you have the smarts to create more psychedelic patterns than a 1960s re-
vival party.

Putting It Together: Drawing a Graph
Now that you’ve slogged your way through the better part of the canvas’s drawing
features, it’s time to pause and enjoy the fruits of your labor. In the following ex-
ample, you’ll take some humdrum text and numbers and use the canvas to create
simple, standout charts.

212 html5: the missing manual

Shadows and Fancy
Fills

Figure 7-7 shows the starting point: a two-page personality test that’s light on graph-
ics. The user answers the questions on the first page and then clicks Get Score to
move to the second page. The second page reports the personality scores according
the infamous five-factor personality model (see the box on page 213).

Figure 7-7:
Click your way through the
questions (top), and then review
the scores (bottom). Unfortu-
nately, without a scale or any
kind of visual aid, it’s difficult
for ordinary people to tell what
these numbers are supposed to
mean.

213chapter 7: deeper into the canvas

Shadows and Fancy
Fills

Up To Speed

How to Convert One Personality into Five Numbers
This five-factor personality test ranks you according to five
personality “ingredients,” which are usually called open-
ness, conscientiousness, extraversion, agreeableness, and
neuroticism. These factors were cooked up when research-
ers analyzed the thousands of personality-describing adjec-
tives in the English language.

To pick just five factors, psychologists used a combination
of hard-core statistics, personality surveys, and a computer.
They identified which adjectives people tend to tick off to-
gether and used that to distill the smallest set of personality
super-traits. For example, people who describe themselves

as outgoing usually also describe themselves as social and
gregarious, so it makes sense to combine all these traits
into a single personality factor (which psychologists call
extraversion). By the time the researchers had finished
chewing through their set of nearly 20,000 adjectives, they
had managed to boil them down to five closely interrelated
factors.

You can learn more about the five-factor personality model
at http://en.wikipedia.org/wiki/Big_Five_personality_traits,
or in the book Your Brain: The Missing Manual (O’Reilly).

The JavaScript code that makes this example work is pretty straightforward. When
the user clicks a number button, its background is changed to indicate the user’s
choice. When the user completes the quiz, a simple algorithm runs the answers
through a set of scoring formulas to calculate the five personality factors. If you
want to examine this code or to take the test, visit the try-out site at www.prosetech.
com/html5.

So far, there’s no HTML5 magic. But consider how you could improve this two-
page personality test by graphing the personality scores so that each factor is shown
visually. Figure 7-8 shows the revamped version of the personality test results page,
which uses this technique.

To show these charts, the page uses five separate canvases, one for each personality
factor. Here’s the markup:

<hgroup>
 <h1>Five Factor Personality Test</h1>
 <h2>The Results</h2>
</hgroup>

<div class="score">
 <h2 id="headingE">Extraversion: </h2>
 <canvas id="canvasE" height="75" width="550"></canvas>
</div>

<div class="score">
 <h2 id="headingA">Accommodation: </h2>
 <canvas id="canvasA" height="75" width="550"></canvas>
</div>

<div class="score">
 <h2 id="headingC">Conscientiousness: </h2>
 <canvas id="canvasC" height="75" width="550"></canvas>
</div>

214 html5: the missing manual

Shadows and Fancy
Fills

<div class="score">
 <h2 id="headingN">Neuroticism: </h2>
 <canvas id="canvasN" height="75" width="550"></canvas>
</div>

<div class="score">
 <h2 id="headingO">Openness: </h2>
 <canvas id="canvasO" height="75" width="550"></canvas>
</div>

Figure 7-8:
This page combines several different types
of canvas drawing, including lines, images,
and text. But the most interesting part of it is
the way it dynamically draws these simple
graphs, based on your answers in the person-
ality quiz.

Each chart is drawn by the same custom JavaScript function, named plotScore().
The page calls this function five times, using different arguments each time. For
example, to draw the extraversion chart at the top of the page, the code passes the
topmost canvas element, the extraversion score (as a number from -20 to 20), and
the text title (“Extraversion”):

window.onload = function() {
 ...
 // Get the <canvas> element for the extraversion score.
 var canvasE = document.getElementById("canvasE");

215chapter 7: deeper into the canvas

Shadows and Fancy
Fills

 // Add the score number to the corresponding heading.
 // (The score is stored in a variable named extraversion.)
 document.getElementById("headingE").innerHTML += extraversion;

 // Plot the score in the corresponding canvas.
 plotScore(canvasE, extraversion, "Extraversion");
 ...
}

The plotScore() function runs through a bit of drawing code that will seem familiar
to you by now. It uses the various drawing context methods to draw the different
parts of the score graph:

function plotScore(canvas, score, title) {
 var context = canvas.getContext("2d");

 // Draw the arrows on the side of the chart line.
 var img = document.getElementById("arrow_left");
 context.drawImage(img, 12, 10);
 img = document.getElementById("arrow_right");
 context.drawImage(img, 498, 10);

 // Draw the line between the arrows.
 context.moveTo(39, 25);
 context.lineTo(503, 25);
 context.lineWidth = 10;
 context.strokeStyle = "rgb(174,215,244)";
 context.stroke();

 // Write the numbers on the scale.
 context.fillStyle = context.strokeStyle;
 context.font = "italic bold 18px Arial";
 context.textBaseline = 'top';

 context.fillText("-20", 35, 50);
 context.fillText("0", 255, 50);
 context.fillText("20", 475, 50);

 // Add the star to show where the score ranks on the chart.
 img = document.getElementById("star");
 context.drawImage(img, (score+20)/40*440+35-17, 0);
}

The most important bit is the final line, which plots the star at the right position us-
ing this slightly messy equation:

context.drawImage(img, (score+20)/40*440+35-17, 0);

Here’s how it works. The first step is to convert the score into a percentage from 0 to
100 percent. Ordinarily, the score falls between -20 and 20, so the first operation the
code needs to carry out is to change it to a value from 0 to 40:

score+20

216 html5: the missing manual

 Making Your Shapes
Interactive

You can then divide that number by 40 to get the percentage:
(score+20)/40

Once you have the percentage, you need to multiply it by the length of the line. That
way, 0 percent ends up at the far left side, while 100 percent ends up at the opposite
end, and everything else falls somewhere in between:

(score+20)/40*440

This code would work fine if the line stretched from the x-coordinate 0 to the x-
coordinate 400. But in reality the line is offset a bit from the left edge, to give it a bit
of padding. You need to offset the star by the same amount:

(score+20)/40*440+35

But this lines the left edge of the start up with the proper position, when really you
want to line up its midpoint. To correct this issue, you need to subtract an amount
that’s roughly equal to half the start’s width:

(score+20)/40*440+35-17

This gives you the final x-coordinate for the star, based on the score.

Note: It’s a small jump to move from fixed drawings to dynamic graphics like the ones in this example,
which tailor themselves according to the latest data. But once you’ve made this step, you can apply your
skills to build all sorts of interesting data-driven graphics, from traditional pie charts to infographics that
use dials and meters. And if you’re looking for a way to simplify the task, check out one of the canvas
graphic libraries, which include pre-written JavaScript routines for drawing common types of graphs based
on your data. Two good examples are RGraph (www.rgraph.net) and ZingChart (www.zingchart.com).

Making Your Shapes Interactive
The canvas is a non-retained painting surface. That means that the canvas doesn’t
keep track of what drawing operations you’ve performed. Instead, it just keeps the
final result—the grid of colored pixels that makes up your picture.

For example, if you draw a red square in the middle of your canvas, the moment you
call stroke() or fill(), that square becomes nothing more than a block of red pixels. It
may look like a square, but the canvas has no memory of its squareness.

This model makes drawing fast. However, it also makes life difficult if you want to
add interactivity to your drawing. For example, imagine you want to create a smarter
version of the painting program you saw on page 188. You want people to be able
to not only draw a line, but also draw a rectangle. (That part’s easy.) And you want
people to be able to not only draw a rectangle, but also select it, drag it to a new
place, resize it, change its color, and so on. Before you can give them all that power,
you need to deal with several complications. First, how do you know if someone has
clicked on the rectangle? Second, how do you know the details about the rectangle—
its coordinates, size, stroke color, and fill color? And third, how do you know the
details about every other shape on the canvas—which you’ll need to know if you
need to change the rectangle and repaint the canvas?

217chapter 7: deeper into the canvas

 Making Your Shapes
Interactive

To solve these problems, and make your canvas interactive, you need to keep track
of every object you paint. Then, when someone clicks somewhere, you need to check
whether they’re clicking one of the shapes (a process known as hit testing). If you
can tackle these two tasks, the rest—changing one of your shapes and repainting the
canvas—is easy.

Keeping Track of What You’ve Drawn
In order to be able to change and repaint your picture, you need to know everything
about its contents. For example, consider the circle-drawing program show in Figure
7-9. To keep things simple, it consists entirely of separately sized, differently colored
circles.

Figure 7-9:
This circle-drawing program is interac-
tive. You can click to select a circle (at
which point it becomes highlighted with
a different border color) and drag it to
a new position.

To keep track of an individual circle, you need to know its position, radius, and fill
color. Rather than create dozens of variables to store all this information, it makes
sense to put all four details in a small package. That package is a custom object.

If you haven’t created a custom object before, here’s the standard technique. First,
you create a function that’s named after your type of object. For example, if you want
to build a custom object for a circle creation, you might name the function Circle(),
like this:

function Circle() {
}

218 html5: the missing manual

 Making Your Shapes
Interactive

Next, you need your object to store some data. You do that by using a keyword
named this to create properties. For example, if you want to give your circle object a
property named radius, you would assign a value to this.radius.

Here’s a circle-generating function that stores three details: the x- and y-coordinates,
and the radius of the circle:

function Circle() {
 this.x = 0;
 thix.y = 0;
 this.radius = 15;
}

Now, you can use the Circle() function to create a new circle object. The trick is that
you don’t want to call the function—instead, you want to create a new copy of it with
the new keyword. Here’s an example:

// Create a new circle object, and store it in a variable named myCircle.
var myCircle = new Circle();

And then you can access all the circle details as properties:
// Change the radius.
myCircle.radius = 20;

If you want to get a bit fancier, you can pass arguments to the Circle() function. That
way, you can create a circle object and set all the circle properties in one step. Here’s
the version of the Circle() function that’s used for the page in Figure 7-9:

function Circle(x, y, radius, color) {
 this.x = x;
 this.y = y;
 this.radius = radius;
 this.color = color;
 this.isSelected = false;
}

The isSelected property takes a true or false value. When someone clicks the circle,
isSelected is set to true, and then the drawing code knows to paint a different border
around it.

Using this version of the Circle() function, you can use code like this to create a circle
object:

var myCircle = new Circle(0, 0, 20, "red");

Of course, the whole point of the circle-drawing program it to let people draw as
many circles as they want. That means just one circle object won’t do. Instead, you
need to create an array that can hold all the circles. Here’s the global variable that
makes this work in the current example:

var circles = [];

219chapter 7: deeper into the canvas

 Making Your Shapes
Interactive

The rest of the code is easy. When someone clicks the Add Circle button to create
a new circle, it triggers the addRandomCircle() function. The addRandomCircle()
function creates a new circle with a random size, color, and position:

function addRandomCircle() {
 // Give the circle a random size and position.
 var radius = randomFromTo(10, 60);
 var x = randomFromTo(0, canvas.width);
 var y = randomFromTo(0, canvas.height);

 // Give the circle a random color.
 var colors = ["green", "blue", "red", "yellow", "magenta",
 "orange", "brown", "purple", "pink"];
 var color = colors[randomFromTo(0, 8)];

 // Create the new circle.
 var circle = new Circle(x, y, radius, color);

 // Store it in the array.
 circles.push(circle);

 // Redraw the canvas.
 drawCircles();
}

This code makes use of a custom function named randomFromTo(), which gener-
ates random numbers in a set range. (To play with the full code, visit www.prosetech.
com/html5.)

The final step in this sequence is actually painting the canvas, based on the current
collection of circles. After a new circle is created, the addRandomCircle() function
calls another function, named drawCircles(), to do the job. The drawCircles() func-
tion moves through the array of circles, using this loop:

for(var i=0; i<circles.length; i++) {
 var circle = circles[i];
 ...
}

This code uses the trusty for loop (which is described in Appendix B, page 410). The
block of code in the braces runs once for each circle. The first line of code grabs the
current circle and stores it in a variable, so it’s easy to work with.

Here’s the complete drawCircles() function, which fills the canvas with the current
collection of circles:

function drawCircles() {
 // Clear the canvas and prepare to draw.
 context.clearRect(0, 0, canvas.width, canvas.height);
 context.globalAlpha = 0.85;
 context.strokeStyle = "black";

 // Go through all the circles.
for(var i=0; i<circles.length; i++) {
 var circle = circles[i];

220 html5: the missing manual

 Making Your Shapes
Interactive

 // Draw the circle.
 context.beginPath();
 context.arc(circle.x, circle.y, circle.radius, 0, Math.PI*2);
 context.fillStyle = circle.color;

 context.fill();
 context.stroke();
 }
}

Note: Each time the circle-drawing program refreshes the display, it starts by clearing everything away
with the clearRect() method. Paranoid programmers might worry that this step would cause a flicker,
as the canvas goes blank and the circles disappear, then reappear. However, the canvas is optimized to
prevent this problem. It doesn’t actually clear or paint anything until all your drawing logic has finished, at
which point it copies the final product to the canvas in one smooth step.

Right now, the circles still aren’t interactive. However, the page has the all-important
plumbing that keeps track of every circle that’s drawn. Although the canvas is still
just a block of colored pixels, the code knows the precise combination of circles that
creates the canvas—and that means it can manipulate those circles at any time.

In the next section, you’ll see how you can use this system to let the user select a
circle.

Hit Testing with Coordinates
If you’re creating interactive shapes, you’ll almost certainly need to use hit testing, a
technique that checks whether a given point has “hit” another shape. In the circle-
drawing program, you want to check whether the user’s click has hit upon a circle or
just empty space.

More sophisticated animation frameworks (like those provided by Flash and Silver-
light) handle hit testing for you. And there are add-on JavaScript libraries for the
canvas (like Kinetic JS) that aim to offer the same conveniences, but none is mature
enough to recommend at this writing. So right now, canvas fans need to write their
own hit testing logic.

To do that, you need to examine each shape and calculate whether the point is inside
the bounds of that shape. If it is, the click has “hit” that shape. Conceptually, this
process is straightforward, but the actual details—the calculations you need to figure
out whether a shape has been clicked—can get messy.

The first thing you need is a loop that moves through all the shapes. This loop looks
a little different from the one that the drawCircles() function uses:

for (var i=circles.length-1; i>=0; i--) {
 var circle = circles[i];
 ...
}

221chapter 7: deeper into the canvas

 Making Your Shapes
Interactive

Notice that the code actually moves backward through the array, from finish to start.
It starts at the end (where the index is equal to the total number of items in the array,
minus 1), and counts back to the beginning (where the index is 0). The backward
looping is deliberate, because in most applications (including this one), the objects
are drawn in the same order they’re listed in the array. That means later objects are
superimposed over earlier ones, and when shapes overlap, it’s always the shape on
top that should get the click.

To determine if a click has landed in a shape, you need to use some math. In the case
of a circle, you need to calculate the straight-line distance from the clicked point to
the center of the circle. If the distance is less than or equal to the radius of the circle,
then the point lies inside its bounds.

In the current example, the web page handles the onClick event of the canvas to
check for circle clicks. When the user clicks the canvas, it triggers a function named
canvasClick(). That function figures out the click coordinates and then sees if they
intersect any circle:

function canvasClick(e) {
 // Get the canvas click coordinates.
 var clickX = e.pageX - canvas.offsetLeft;
 var clickY = e.pageY - canvas.offsetTop;

 // Look for the clicked circle.
 for (var i=circles.length; i>0; i--) {
 // Use Pythagorean theorem to find the distance from this point
 // and the center of the circle.
 var distanceFromCenter =
 Math.sqrt(Math.pow(circle.x - clickX, 2) + Math.pow(circle.y - clickY, 2))

 // Does this point lie in the circle?
 if (distanceFromCenter <= circle.radius) {
 // Clear the previous selection.
 if (previousSelectedCircle != null) {
 previousSelectedCircle.isSelected = false;
 }
 previousSelectedCircle = circle;

 // Select the new circle.
 circle.isSelected = true;

 // Update the display.
 drawCircles();

 // Stop searching.
 return;
 }
 }
}

Note: You’ll look at another way to do hit testing—by grabbing raw pixels and checking their color—when
you create a maze game, on page 234.

222 html5: the missing manual

Animating the
Canvas

To finish this example, the drawing code in the drawCircles() function needs a slight
tweak. Now it needs to single out the selected circle for special treatment (in this
case, a thick, bold border):

function drawCircles() {
 ...

 // Go through all the circles.
 for(var i=0; i<circles.length; i++) {
 var circle = circles[i];

 if (circle.isSelected) {
 context.lineWidth = 5;
 }
 else {
 context.lineWidth = 1;
 }
 ...
 }
}

There’s no end of ways that you can build on this example and make it smarter. For
example, you can add a toolbar of commands that modify the selected circle—for ex-
ample, changing its color or deleting it from the canvas. Or, you can let the user drag
the selected circle around the canvas. To do that, you simply need to listen for the
onMouseMove event of the canvas, change the circle coordinates accordingly, and
call the drawCircles() function to repaint the canvas. (This technique is essentially
a variation of the mouse-handling logic in the paint program on page 190, except
now you’re using mouse movements to drag a shape, not draw a line.) The try-out
site (www.prosetech.com/html5) includes a variation of this example named Interac-
tiveCircles_WithDrag.html that demonstrates this technique.

The lesson is clear: If you keep track of what you draw, you have unlimited flexibility
to change it and redraw it later on.

Animating the Canvas
Drawing one perfect picture can seem daunting enough. So it’s no surprise that even
seasoned web developers approach the idea of drawing several dozen each second
with some trepidation. The whole challenge of animation is to draw and redraw
canvas content fast enough that it looks like it’s moving or changing right in front of
your visitors.

Animation is an obvious and essential building block for certain types of applica-
tions, like real-time games and physics simulators. But simpler forms of animation
make sense in a much broader range of canvas-powered pages. You can use anima-
tion to highlight user interactivity (for example, making a shape glow, pulse, or twin-
kle when someone hovers over it). You can also use animation to draw attention to

223chapter 7: deeper into the canvas

Animating the
Canvas

changes in content (for example, fading in a new scene, or creating graphs and charts
that “grow” into the right positions). Used in these ways, animation is a powerful
way to give your web applications some polish, make them feel more responsive, and
even help them stand out from the crowd of web competitors.

A Basic Animation
It’s easy enough to animate a drawing on an HTML5 canvas. First, you set a timer
that calls your drawing over and over again—typically 30 or 40 times each second.
Each time, your code repaints the entire canvas from scratch. If you’ve done your
job right, the constantly shifting frames will blend into a smooth, lifelike animation.

JavaScript gives you two ways to manage this repetitive redrawing:

• Use the setTimeout() function. This tells the browser to wait a few millisec-
onds and then run a piece of code—in this case, that’s your canvas-drawing
logic. Once your code finishes, you call setTimeout() to ask the browser to call
it again, and so on, until you want your animation to end.

• Use the setInterval() function. Tells your browser to run a piece of code at
regular intervals (say, every 20 milliseconds). It has much the same effect as
setTimeout(), but you need to call setInterval() only once. To stop the browser
from calling your code, you call clearInterval().

If your drawing code is quick, both of these have the same effect. If your drawing
code is less than snappy, then the setInterval() approach will do a better job keeping
your redraws precisely on time, but possibly at the expense of performance. (In the
worst-case situation, when your drawing code takes a bit longer than the interval
you’ve set, your browser will struggle to keep up, your drawing code will run con-
tinuously, and your page may briefly freeze up.) For this reason, the examples in this
chapter use the setTimeout() approach.

When you call setTimeout(), you supply two pieces of information: The name of
the function you want to run, and the amount of time to wait before running it. You
give the amount of time as a number of milliseconds (thousandths of a second), so
20 milliseconds (a typical delay for animation) is 0.02 seconds. Here’s an example:

var canvas;
var context;

window.onload = function() {
 canvas = document.getElementById("canvas");
 context = canvas.getContext("2d");

 // Draw the canvas in 0.02 seconds.
 setTimeout("drawFrame()", 20);
};

224 html5: the missing manual

Animating the
Canvas

This call to setTimeout() is the heart of any animation task. For example, imagine
you want to make a square fall from the top of the page to the bottom. To do this, you
need to keep track of the square’s position using two global variables:

// Set the square's initial position.
var squarePosition_y = 0;
var squarePosition_x = 10;

Now, you simply need to change the position each time the drawFrame() function
runs, and then redraw the square in its new position:

function drawFrame() {
 // Clear the canvas.
 context.clearRect(0, 0, canvas.width, canvas.height);

 // Call beginPath() to make sure you don't redraw
 // part of what you were drawing before.
 context.beginPath();

 // Draw a 10x10 square, at the current position.
 context.rect(squarePosition_x, squarePosition_y, 10, 10);
 context.lineStyle = "black";
 context.lineWidth = 1;
 context.stroke();

 // Move the square down 1 pixel (where it will be drawn
 // in the next frame).
 squarePosition_y += 1;

 // Draw the next frame in 20 milliseconds.
 setTimeout("drawFrame()", 20);
}

Run this example, and you’ll see a square that plummets from the top of the canvas
and carries on, disappearing past the bottom edge.

In a more sophisticated animation, the calculations get more complex. For example,
you may want to make the square accelerate to simulate gravity, or bounce at the bot-
tom of the page. But the basic technique—setting a timer, calling a drawing function,
and redrawing the entire canvas—stays exactly the same.

Animating Multiple Objects
Now that you’ve learned the basics of animation and the basics of making interactive
canvas drawings, it’s time to take the next step and merge them together. Figure 7-10
shows a test page with an animation of falling, bouncing balls. The page uses the
familiar setTimeout() method you met in the last section, but now the drawing code
has to manage an essentially unlimited number of flying balls.

225chapter 7: deeper into the canvas

Animating the
Canvas

Up To Speed

Animation Performance
Because of these rapid redraws, it’s clear that animation
will tax the abilities of the canvas far more than ordinary
drawing does. However, the canvas holds up surprisingly
well. Modern browsers use performance-enhancing fea-
tures like hardware acceleration, which farms out some
of the graphical work to the computer’s video card, rath-
er than using its CPU for everything. And even though
JavaScript isn’t the fastest language on the block, it’s quite
possible to create a complex, high-speed animation—even
a real-time arcade game—without using anything except
script code and the canvas.

However, canvas performance can become a problem for
people using underpowered mobile devices, like iPhones
or phones running Google’s Android operating system.
Tests have shown that an animation that can run at 60 fps
(frames per second) on a desktop browser probably tops
out at a jerky 10 fps on a smartphone. So if you want to
create an application for mobile visitors, make sure you test
before you get too far into your design, and be prepared to
sacrifice some of the animation eye candy to keep things
running smoothly.

Figure 7-10:
This test page lets you
add as many balls as
you want. You can
choose the size of
each ball (the default
is a 15-pixel radius),
and you can switch on
connecting lines (shown
on right). Once added,
each ball begins its own
independent journey,
falling down and picking
up speed until it collides
with the bottom of the
canvas and bounces off
somewhere else.

Tip: Pictures can’t do justice to animations. To find out how animations like the one in Figure 7-10 look
and feel, you can try out the examples for yourself at www.prosetech.com/html5.

226 html5: the missing manual

Animating the
Canvas

To manage all these balls, you need to reuse the custom object trick you picked
up on page 217. Only now you need to track an array of ball objects, and each ball
needs not only a position (represented by the properties x and y), but also a speed
(represented by dx or dy):

// These are the details that represent an individual ball.
function Ball(x, y, dx, dy, radius) {
 this.x = x;
 this.y = y;
 this.dx = dx;
 this.dy = dy;
 this.radius = radius;
 this.color = "red";
}

// This is an array that will hold all the balls on the canvas.
var balls = [];

Note: In mathematics lingo, dx is the rate that x is changing, and dy is the rate that y is changing. So as
the ball is falling, each frame x increases by the dx amount and y increases by the dy amount.

When the visitor clicks the Add Ball button, a simple bit of code creates a new ball
object and stores it in the balls array:

function addBall() {
 // Get the requested size.
 var radius = parseFloat(document.getElementById("ballSize").value);

 // Create the new ball.
 var ball = new Ball(50,50,1,1,radius);

 // Store it in the balls array.
 balls.push(ball);
}

The Clear Canvas button has the complementary task of emptying the balls array:
function clearBalls() {
 // Remove all the balls.
 balls = [];
}

However, neither the addBall() nor the clearBalls() function actually draws any-
thing. Neither one even calls a drawing function. Instead, the page sets itself up to
call the drawFrame() function, which paints the canvas in 20 milliseconds intervals:

var canvas;
var context;

window.onload = function() {
 canvas = document.getElementById("canvas");
 context = canvas.getContext("2d");

 // Redraw every 20 milliseconds.
 setTimeout("drawFrame()", 20);
};

227chapter 7: deeper into the canvas

Animating the
Canvas

The drawFrame() function is the heart of this example. It not only paints the balls on
the canvas, but it also calculates their current position and speed. The drawFrame()
function uses a number of calculations to simulate more realistic movement—for
example, making balls accelerate as they fall and slow down when they bounce off of
obstacles. Here’s the complete code:

function drawFrame() // Clear the canvas.
 context.clearRect(0, 0, canvas.width, canvas.height);
 context.beginPath();

 // Go through all the balls.
 for(var i=0; i<balls.length; i++) {
 // Move each ball to its new position.
 var ball = balls[i];
 ball.x += ball.dx;
 ball.y += ball.dy;

 // Add in a "gravity" effect that makes the ball fall faster.
 if ((ball.y) < canvas.height) ball.dy += 0.22;

 // Add in a "friction" effect that slows down the side-to-side motion.
 ball.dx = ball.dx * 0.998;

 // If the ball has hit the side, bounce it.
 if ((ball.x + ball.radius > canvas.width) || (ball.x - ball.radius < 0)) {
 ball.dx = -ball.dx;
 }

 // If the ball has hit the bottom, bounce it, but slow it down slightly.
 if ((ball.y + ball.radius > canvas.height) || (ball.y - ball.radius < 0))
 {
 ball.dy = -ball.dy*0.96;
 }

 // Check if the user wants lines.
 if (!document.getElementById("connectedBalls").checked) {
 context.beginPath();
 context.fillStyle = ball.fillColor;
 }
 else {
 context.fillStyle = "white";
 }

 // Draw the ball.
 context.arc(ball.x, ball.y, ball.radius, 0, Math.PI*2);
 context.lineWidth = 1;
 context.fill();
 context.stroke();
 }

 // Draw the next frame in 20 milliseconds.
 setTimeout("drawFrame()", 20);
}

228 html5: the missing manual

Animating the
Canvas

Tip: If you’re fuzzy about how the if statements work in this example, and what operators like ! and ||
really mean, check out the summary of logical operators on page 409 in Appendix B.

The sheer amount of code can seem a bit intimidating. But the overall approach
hasn’t changed. The code performs the same steps:

1. Clear the canvas.
2. Loop through the array of balls.
3. Adjust the position and velocity of each ball.
4. Paint each ball.
5. Set a timeout so the drawFrame() method will be called again, 20 milliseconds

later.

The complex bit is step 3, where the ball is tweaked. This code can be as complicated
as you like, depending on the effect you’re trying to achieve. Gradual, natural move-
ment is particularly difficult to model, and it usually needs more math.

Finally, now that you’ve done all the work tracking each ball, it’s easy to add inter-
activity. In fact, you can use virtually the same code you used to detect clicks in the
circle-drawing program on page 220. Only now, when a ball is clicked, you want
something else to happen—for example, you might choose to give the clicked ball
a sudden boost in speed, sending it ricocheting off to the side. (The downloadable
version of this example, available at www.prosetech.com/html5, does exactly that.)

FReqUenTly ASked qUeSTion

Canvas Animations for Busy (or Lazy) People
Do I really need to calculate everything on my own? For
real?

The most significant drawback to canvas animation is the
fact that you need to do everything yourself. For example, if
you want a picture to fly from one side of the canvas to the
other, you need to calculate its new position in each frame,
and then draw the picture in its proper location. If you have
several things being animated at the same time in differ-
ent ways, your logic can quickly get messy. By compari-
son, life is much easier for programmers who are using a
browser plug-in like Flash or Silverlight. Both technologies
have built-in animation systems, which allow developers to
give instructions like “move this shape from here to there,

taking 45 seconds.” Or, even better, “move this shape from
the top of the window to the bottom, using an accelerating
effect that ends with a gentle bounce.”

There’s no doubt that someone, at some point in the fu-
ture, will layer a higher-level animation system on top of
the canvas. Ideally, you’ll be able to use this animation
system to pick the effects you want, without having to slog
through all the math. It’s most likely that this higher-level
animation system will be a JavaScript library, not a core
enhancement to the HTML specification. However, it’s still
too early to know which toolkits will be the most capable,
the least buggy, and the best supported.

229chapter 7: deeper into the canvas

 A Practical Example:
the Maze Game

To see this example carried to its most impressive extreme, check out the bounc-
ing Google balls at http://tinyurl.com/6byvnk5. When left alone, the balls are pulled,
magnet-like, to spell the word “Google.” But when your mouse moves in, they’re
repulsed, flying off to the far corners of the canvas and bouncing erratically. And
if you’re still hungry for more animation examples, check out the poke-able blob at
http://www.blobsallad.se and the somewhat clichéd flying star field at http://tinyurl.
com/crn3ed.

A Practical Example: the Maze Game
So far, you’ve explored how to combine the canvas with some key programming
techniques to make interactive drawings and to perform animations. These building
blocks take the canvas beyond mere drawing and into the realm of complete, self-
contained applications—like games or Flash-style mini-apps.

Figure 7-11 shows a more ambitious example that takes advantage of what you’ve
learned so far and builds on both concepts. It’s a simple game that invites the user
to guide a small happy face icon through a complex maze. When the user presses
an arrow key, the happy face starts moving in that direction (using animation) and
stops only when it hits a wall (using hit testing).

Of course, there’s a trade-off. If you’re going to rely on the canvas to build something
sophisticated, you’ll need to dig your way through a significant amount of code. The
following sections show you the essentials, but be prepared to flex your JavaScript
muscles.

Note: You can run this example from your local computer if you’re using Internet Explorer 9. But on other
browsers, it works only if you first put your page (and the graphics it uses) on a test web server. To save
the trouble, run this example from the try-out site at www.prosetech.com/html5.

Setting Up the Maze
Before anything can happen, the page needs to set up the canvas. Although you
could paint the entire maze out of lines and rectangles, you’d need a lot of drawing
code. Writing that drawing code by hand would be extremely tedious. You’d need to
have a mental model of the entire maze, and then draw each short wall segment us-
ing a separate drawing operation. If you went this route, you’d almost certainly use a
tool that automatically creates your drawing code. For example, you might draw the
maze in Adobe Illustrator and then use a plug-in to convert it to canvas code (page
183).

Another option is to take a preexisting graphic of a maze and paint that on the can-
vas. This is particularly easy, because the web is filled with free pages that will create
mazes for you. Using one of these pages, you set a few details—for example, the size,
shape, colors, density, and complexity or the maze—and the page creates a down-
loadable graphic. (To try it out for yourself, just Google maze generator.)

230 html5: the missing manual

 A Practical Example:
the Maze Game

Figure 7-11:
Guide the face
through the maze. To
a user, it looks like a
fun game. To a devel-
oper, it’s a potent mix
of the HTML5 canvas
and some smart
JavaScript.

This example uses maze pictures. When the page first loads, it takes a picture file
(named maze.png) and draws that on the canvas. Here’s the code that kicks that pro-
cess off when the page first loads:

// Define the global variables for the canvas and drawing context.
var canvas;
var context;

window.onload = function() {
 // Set up the canvas.
 canvas = document.getElementById("canvas");
 context = canvas.getContext("2d");

231chapter 7: deeper into the canvas

 A Practical Example:
the Maze Game

 // Draw the maze background.
 drawMaze("maze.png", 268, 5);

 // When the user presses a key, run the processKey() function.
 window.onkeydown = processKey;
};

This code doesn’t actually draw the maze background. Instead, it hands the work off
to another function, named drawMaze().

Because this example uses a separate maze-drawing function, it’s not limited to a
single maze. Instead, it lets you load any maze graphic you want. You simply need
to call drawMaze() and pass in the file name of the maze picture, along with the
coordinates for where the happy face should start. Here’s the drawMaze() code that
does the job:

// Keep track of the current face position.
var x = 0;
var y = 0;

function drawMaze(mazeFile, startingX, startingY) {
 // Load the maze picture.
 imgMaze = new Image();
 imgMaze.onload = function() {
 // Resize the canvas to match the size of the maze picture.
 canvas.width = imgMaze.width;
 canvas.height = imgMaze.height;

 // Draw the maze.
 var imgFace = document.getElementById("face");
 context.drawImage(imgMaze, 0,0);

 // Draw the face.
 x = startingX;
 y = startingY;

 context.drawImage(imgFace, x, y);
 context.stroke();

 // Draw the next frame in 10 milliseconds.
 setTimeout("drawFrame()", 10);
 };
 imgMaze.src = mazeFile;
}

This code uses the two-step image drawing method explained on page 201. First, it
sets a function that will handle the image’s onLoad event and draw the maze image,
after it loads. Second, it sets the src attribute on the image object, which loads the
image and triggers the code. This two-step process is a bit more complicated than
just pulling the picture out of a hidden element on the page, but it’s necessary
if you want to create a function that’s flexible enough to load any maze picture you
want.

232 html5: the missing manual

 A Practical Example:
the Maze Game

When the maze image is loaded, the code adjusts the size of the canvas to match,
places the face at its proper position, and then paints the face image. Finally, it calls
setTimeout() to start drawing frames.

Note: The downloadable version of this example (at www.prosetech.com/html5) is slightly more sophis-
ticated. It lets the user load a new maze at any time—even while the happy face is still moving around the
current maze. To make this work, it adds a bit of extra code in the drawMaze() function to stop the happy
face (if it’s currently moving) and halt the animating process, before loading the background and starting
it again.

Animating the Face
When the user hits a key, the face begins moving. For example, if the user presses the
down key, the happy face continues moving down until it hits a barrier or another
key is pressed.

To make this work, the code uses two global variables that track the happy face’s
speed—in other words, how many pixels it will move in the x or y dimension, per
frame. The variables that do this are named dx and dy, just as they were in the bounc-
ing ball example (page 226). The difference is that you don’t need an array for this
page, because there’s only one happy face:

var dx = 0;
var dy = 0;

When the user presses a key, the canvas calls the processKey() function. The func-
tion then checks if one of the arrow keys was pressed, and adjusts the speed accord-
ingly. To identify an arrow key, the code checks its key code against a known value.
For example, a key code of 38 always represents the up arrow key. The processKey()
function ignores all other keys except the arrow keys:

function processKey(e) {
 // If the face is moving, stop it.
 dx = 0;
 dy = 0;

 // The up arrow was pressed, so move up.
 if (e.keyCode == 38) {
 dy = -1;
 }

 // The down arrow was pressed, so move down.
 if (e.keyCode == 40) {
 dy = 1;
 }

 // The left arrow was pressed, so move left.
 if (e.keyCode == 37) {
 dx = -1;
 }

233chapter 7: deeper into the canvas

 A Practical Example:
the Maze Game

 // The right arrow was pressed, so move right.
 if (e.keyCode == 39) {
 dx = 1;
 }
}

The processKey() function doesn’t change the current position of the happy face,
or attempt to draw it. Instead, this task happens every 10 milliseconds, when the
drawFrame() function is called.

The drawFrame()code is fairly straightforward, but detailed. It performs several
tasks. First, it checks if the face is moving in either direction. If not, there’s really no
work to be done:

function drawFrame() {
 if (dx != 0 || dy != 0) {

If the face is moving, the drawFrame() code draws a yellow patch in the current face
position (which creates the “trail” effect. It then moves the face to its new position:

 context.beginPath();
 context.fillStyle = "rgb(254,244,207)";
 context.rect(x, y, 15, 15);
 context.fill()

 // Increment the face's position.
 x += dx;
 y += dy;

Next, the code calls checkForCollision() to see if this new position is valid. (You’ll
see the code for this hit testing function in the next section.) If the new position isn’t
valid, the face has hit a wall, and the code must move the face back to its old position
and stop it from moving:

 if (checkForCollision()) {
 x -= dx;
 y -= dy;
 dx = 0;
 dy = 0;
 }

Now the code is ready to draw the face, where it belongs:
 var imgFace = document.getElementById("face");
 context.drawImage(imgFace, x, y);

And check if the face reached the bottom of the maze (and has thus completed it). If
so, the code shows a message box:

 if (y > (canvas.height - 17)) {
 alert("You win!");
 return;
 }
 }

If not, the code sets a timeout so the drawFrame() method will be called again, 10

234 html5: the missing manual

 A Practical Example:
the Maze Game

milliseconds later:
 // Draw a new frame in 10 milliseconds.
 setTimeout("drawFrame()", 10);
}

You’ve now seen all the code for the maze game code, except the innovative bit of
logic in the checkForCollision() function, which handles the hit testing. That’s the
topic you’ll tackle next.

Hit Testing with Pixel Colors
Earlier in this chapter, you saw how you can use mathematical calculations to do
your hit testing. However, there’s another approach you can use. Instead of looking
through a collection of objects you’ve drawn, you can grab a block of pixels and look
at their colors. This approach is simpler in some ways, because it doesn’t need all the
objects and the shape tracking code. But it works only if you can make clear-cut
assumptions about the colors you’re looking for.

Note: The pixel-based hit-testing approach is the perfect approach for the maze example. Using this sort
of hit testing, you can determine when the happy face runs into one of the black walls. Without this tech-
nique, you’d need a way to store all the maze information in memory, and then determine if the current
happy-face coordinates overlap one of the maze’s wall lines.

The secret to the color-testing approach is the canvas’s support for manipulating
individual pixels—the tiny dots that comprise every picture. The drawing context
provides three methods for managing pixels: getImageData(), putImageData(), and
createImageData(). You use getImageData() to grab a block of pixels from a rect-
angular region and examine them (as in the maze game). You can also modify the
pixels and use putImageData() to write them back to the canvas. And finally, create-
ImageData() lets you create a new, empty block of pixels that exists only in memory,
the idea being that you can customize them and then write them to the canvas with
putImageData().

To understand a bit more about the pixel-manipulation methods, consider the fol-
lowing code. First, it grabs a 100 × 50 square of pixels from the current canvas, using
getImageData():

// Get pixels starting at point (0,0), and stretching out 100 pixels to
// the right and 50 pixels down.
var imageData = context.getImageData(0, 0, 100, 50);

Then, the code retrieves the array of numbers that has the image data, using the data
property:

var pixels = imageData.data;

You might expect that there’s one number for each pixel, but life isn’t that simple.

235chapter 7: deeper into the canvas

 A Practical Example:
the Maze Game

There are actually four numbers for each pixel, one each to represent its red, green,
blue, and alpha components. So if you want to examine each pixel, you need a loop
that bounds through the array four steps at a time, like this:

// Loop over each pixel and invert the color.
for (var i = 0, n = pixels.length; i < n; i += 4) {

 // Get the data for one pixel.
 var red = pixels[i];
 var green = pixels[i+1];
 var blue = pixels[i+2];
 var alpha = pixels[i+3];

 // Invert the colors.
 pixels[i] = 255 – red;
 pixels[i+1] = 255 – green;
 pixels[i+2] = 255 – blue;
}

Each number ranges from 0 to 255. The code above uses one of the simplest image
manipulation methods around—it inverts the colors. Try this with an ordinary pic-
ture, and you get a result that looks like a photo negative.

To see the results, you can write the pixels back to the canvas, in their original posi-
tion (although you could just as easily paint the content somewhere else):

context.putImageData(imageData, 0, 0);

The pixel-manipulation methods certainly give you a lot of control. However, they
also have drawbacks. The pixel operations are slow, and the pixel data in the average
canvas is immense. If you grab off a large chunk of picture data, you’ll have tens of
thousands of pixels to look at. And if you were already getting tired of drawing com-
plex pictures using basic ingredients like lines and curves, you’ll find that dealing
with individual pixels is even more tedious.

That said, the pixel-manipulation methods can solve certain problems that would be
difficult to deal with in any other way. For example, they provide the easiest way to
create fractal patterns and Photoshop-style picture filters. In the maze game, they let
you create a concise routine that checks the next move of the happy face icon, and
determine whether it collides with a wall. Here’s the checkForCollision() function
that handles the job:

function checkForCollision() {
 // Grab the block of pixels where the happy face is, but extend
 // the edges just a bit.
 var imgData = context.getImageData(x-1, y-1, 15+2, 15+2);
 var pixels = imgData.data;

 // Check these pixels.
 for (var i = 0; n = pixels.length, i < n; i += 4) {
 var red = pixels[i];
 var green = pixels[i+1];
 var blue = pixels[i+2];
 var alpha = pixels[i+3];

236 html5: the missing manual

 A Practical Example:
the Maze Game

 // Look for black walls (which indicates a collision).
 if (red == 0 && green == 0 && blue == 0) {
 return true;
 }
 // Look for gray edge space (which indicates a collision).
 if (red == 169 && green == 169 && blue == 169) {
 return true;
 }
 }
 // There was no collision.
 return false;
}

This completes the canvas maze page, which is the longest and most code-packed
example you’ll encounter in this book. It may take a bit more review (or a JavaScript
brush-up) before you really feel comfortable with all the code it contains, but once
you do you’ll be able to use similar techniques in your own canvas creations.

poweR USeRS’ CliniC

Eye-Popping Canvas Examples
There’s virtually no limit to what you can do with the can-
vas. If you want to look at some even more ambitious ex-
amples that take HTML5 into the world of black-belt cod-
ing, the Web is your friend. Here’s a list of websites that
demonstrate some mind-blowing canvas mojo:

• Canvas Demos. This canvas example site has
enough content to keep you mesmerized for days.
Recent entries at the time of this writing include the
game Mutant Zombie Masters and the stock-charting
tool TickerPlot. Visit www.canvasdemos.com to
browse them all.

• Wikipedia knowledge map. This impressive can-
vas application shows a graphical representation of
Wikipedia articles, with linked topics connected to-
gether by slender, web-like lines. Choose a new topic

and you zoom into that part of the knowledge map,
pulling new articles to the forefront with a slick ani-
mation. See it at http://en.inforapid.org.

• 3D Walker. This example lets you walk through a
simple 3-D world of walls and passages (similar to
the ancient Wolfenstein 3-D game that kicked off the
first-person-shooter gaming craze way back in 1992).
Take it for a spin at www.benjoffe.com/code/demos/
canvascape.

• Chess. This HTML5 chess simulator lets you try your
hand against a computer opponent with a canvas-
drawn board that’s rendered from above or with a
three-dimensional perspective, depending on your
preference. Challenge yourself to a game at http://
htmlchess.sourceforge.net/demo/example.html.

237

chapter
8

Boosting Styles with CSS3

It would be almost ludicrous to build a modern website without CSS. The stan-
dard is fused into the fabric of the Web almost as tightly as HTML. Whether
you’re laying out pages, building interactive buttons and menus, or just making

things look pretty, CSS is a fundamental tool. In fact, as HTML has increasingly
shifted its focus to content and semantics (page 44), CSS has become the heart and
soul of web design.

Along the way, CSS has become far more detailed and far more complex. When CSS
evolved from its first version to CSS 2.1, it quintupled in size, reaching the size of
a modest novel. Fortunately, the creators of the CSS standard had a better plan for
future features. They carved the next generation of enhancements into a set of sepa-
rate standards, called modules. That way, browser makers were free to implement
the most exciting and popular parts of the standard first—which is what they were
already doing, modules or not. All together, the new CSS modules fall under the
catchall name CSS3 (note the curious lack of a space, as with HTML5).

CSS3 has roughly 50 modules in various stages of maturity. They range from fea-
tures that provide fancy eye candy (like rich fonts and animation) to ones that serve
a more specialized, practical purpose (for example, speaking text aloud or varying
styles based on the capabilities of the computer or mobile device). Altogether, they
include features that are reliably supported in the most recent versions of all modern
browsers and features so experimental that no browser yet supports them.

In this chapter, you’ll tour some of the most important (and best supported) parts of
CSS3. First, you’ll learn how to jazz up your text with virtually any font. Then, you’ll
learn how to tailor your styles to suit different sized browser windows and different
types of web-connected devices, like iPads and iPhones. Next, you’ll see how to use

238 html5: the missing manual

Using CSS3 TodayUsing CSS3 Today

shadows, rounded corners, and other refinements to make your boxes look better.
Finally, you’ll learn how you can use transitions to create subtle effects when the visi-
tor hovers over an element, clicks on it, or tabs over to a control. (And you’ll make
these effects even better with two more CSS3 features: transforms and transparency.)

But first, before you get to any of these hot new features, it’s time to consider how you
can plug in the latest and most stylin’ styling features without leaving a big chunk of
your audience behind.

Using CSS3 Today
CSS3 is the unchallenged future of web styling, and it’s not finished yet. Most mod-
ules are still being refined and revised, and no browser supports them all. This means
CSS has all the same complications as HTML5. Website authors like yourself need
to decide what to use, what to ignore, and how to bridge the gaping support gaps.

There are essentially three strategies you can use when you start incorporating CSS3
into a website. The following sections describe them.

Note: CSS3 is not part of HTML5. The standards were developed separately, by different people working
at different times in different buildings. However, even the W3C encourages web developers to lump
HTML5 and CSS3 together as part of the same new wave of modern web development. For example, if
you check out the W3C’s HTML5 logo-building page at www.w3.org/html/logo, you’ll see that it encour-
ages you to advertise CSS3 in its HTML5 logo strips.

Strategy 1: Use What You Can
It makes sense to use features that already have solid browser support across all
browser brands. One example is the web font feature (page 244). With the right font
formats, you can get it working with browsers all the way back to IE 6. Unfortunately,
very few CSS3 features fall into this category. The word-wrap property works virtu-
ally everywhere, and older browsers can do transparency with a bit of fiddling, but
just about every other feature leaves the still-popular IE 7 and IE 8 browsers in the
dust.

Note: Unless otherwise noted, the features in this chapter work on the latest version of every modern
browser, including Internet Explorer 9. However, they don’t work on older versions of IE.

Strategy 2: Treat CSS3 Features as Enhancements
CSS3 fans have a rallying cry: “Websites don’t need to look exactly the same on
every browser.” Which is certainly true. (They have a website, too—see http://
DoWebsitesNeedToBeExperiencedExactlyTheSameInEveryBrowser.com.)

239chapter 8: boosting styles with css3

Using CSS3 TodayUsing CSS3 Today

The idea behind this strategy is to use CSS3 to add fine touches that won’t be missed
by people using less-capable browsers. One example is the border-radius property
that you can use to gently round the corners of a floating box. Here’s an example:

header {
 background-color: #7695FE;
 border: thin #336699 solid;
 padding: 10px;
 margin: 10px;
 text-align: center;
 border-radius: 25px;
}

Browsers that recognize the border-radius property will know what to do. Older
browsers will just ignore it, keeping the plain square corners (Figure 8-1).

Figure 8-1:
On Internet Explorer
9, this header box
has rounded corners
(top). IE 8 ignores the
border-radius prop-
erty but applies the
rest of the style sheet
properties (bottom).

There’s an obvious appeal to this strategy, because it gives web designers justifica-
tion to play with all the latest technology toys. However, there’s a definite downside
if you go too far. No matter how good a website looks in the latest version of your
favorite browser, it can be deeply deflating if you fire up an older browser that’s used
by a significant slice of your clientele and find that it looks distinctly less awesome.
After all, you want your website to impress everyone, not just web nerds with the
best browsers.

For this reason, you may want to approach some CSS3 enhancements with cau-
tion. Limit yourself to features that are already in multiple browsers (and are at least
promised for IE 10). And don’t use them in ways that change the experience of your
website so dramatically that some people are getting second-rate status.

240 html5: the missing manual

Using CSS3 TodayUsing CSS3 Today

Tip: When it comes to CSS3, Internet Explorer is the straggler. There’s a militant minority of web designers
who believe that web designers should ignore IE and start using CSS3 features as soon as other browsers
support them. Otherwise, who will keep pressure on Microsoft and encourage the Web to get better? This
is all well and fine, if the primary purpose of your website is the political one of promoting advanced web
standards. But otherwise, keep in mind that dismissing a large segment of the web world will reflect poorly
on you—because no matter how much you dislike someone’s browser, that person is still using it to look
at your work.

Strategy 3: Add Fallbacks with Modernizr
Using a partially supported CSS3 feature is a great idea if the website still looks great
without it. But sometimes, a vital part of your website design can go missing, or the
downgraded version of your website just looks ugly. For example, consider what
happens if you use the Firefox-only multicolored border settings, as shown in Figure
8-2.

Figure 8-2:
This multicolored border looks
snazzy in Firefox (top). But try
the same thing out in Chrome,
and you’ll get a thick, plain black
border (bottom)—and that never
looks good.

Sometimes, you can solve the problem by stacking properties in the right order. The
basic technique is to start with more general properties, followed by new proper-
ties that override these settings. When this works, it satisfies every browser—the old
browsers get the standard settings, while the new browsers override these settings
with newer ones. For example, you can use this technique to replace an ordinary
background fill with a gradient:

.stylishBox {
 ...
 background: yellow;
 background: radial-gradient(ellipse, red, yellow);
}

Figure 8-3 shows the result.

241chapter 8: boosting styles with css3

Using CSS3 TodayUsing CSS3 Today

Figure 8-3:
Top: In browsers that don’t understand CSS3, the stylishBox
rule paints a yellow background.

Bottom: In browsers that do understand CSS3, the yellow
background is replaced with a radial gradient that blends from
a red center point to yellow at the edges. (At least, that’s the
plan. This example doesn’t work exactly as written, because
the radial-gradient standard is still being revised. To get the
result shown here, you need vendor prefixes, as described on
page 243.)

In some cases, overriding style properties doesn’t work, because you need to set
properties in combination. The multicolored border in Figure 8-2 is an example.
The multicolored effect is set with the border-colors property, but appears only if
the border is made thick with the border-thickness property. On browsers that don’t
support multicolored borders, the thick border is an eyesore, no matter what single
color you use.

One way to address problems like these is with Modernizr, the JavaScript library
that tests HTML5 feature support (page 38). It lets you define alternate style settings
for browsers that don’t support the style properties you really want. For example,
imagine you want to create two versions of the header box shown in Figure 8-1. You
want to use rounded corners if they're supported, but substitute a double-line border
if they aren't. If you’ve added the Modernizr script reference to your page, then you
can use a combination of style rules, like this:

/* Settings for all headers, no matter what level of CSS3 support. */
header {
 background-color: #7695FE;
 padding: 10px;
 margin: 10px;
 text-align: center;
}

242 html5: the missing manual

Using CSS3 TodayUsing CSS3 Today

/* Settings for browsers that support border-radius. */
.borderradius header {
 border: thin #336699 solid;
 border-radius: 25px;
}

/* Settings for browsers that don't support border-radius. */
.no-borderradius header {
 border: 5px #336699 double;
}

So how does this nifty trick work? When you use Modernizr in a page, you begin by
adding the class="no-js" attribute to the root <html> element:

<html class="no-js">

When you load Modernizr on a page, it quickly checks if a range of HTML5, Java-
Script, and CSS3 features are supported. It then applies a pile of classes to the root
<html> element, separated by spaces, changing it into something like this:

<html class="js flexbox canvas canvastext webgl no-touch geolocation
postmessage no-websqldatabase indexeddb hashchange history draganddrop
no-websockets rgba hsla multiplebgs backgroundsize borderimage borderradius
boxshadow textshadow opacity no-cssanimations csscolumns cssgradients
no-cssreflections csstransforms no-csstransforms3d csstransitions fontface
generatedcontent video audio localstorage sessionstorage webworkers
applicationcache svg inlinesvg smil svgclippaths">

If a feature appears in the class list, that feature is supported. If a feature name is
prefixed with the text “no-” then that feature is not supported. Thus, in the example
shown here, JavaScript is supported (js) but web sockets are not (no-websockets).
On the CSS3 side of things, the border-radius property works (borderradius) but
CSS3 reflections do not (no-cssreflections).

You can incorporate these classes into your selectors to filter out style settings based
on support. For example, a selectors like .borderradius header gets all the <header>
elements inside the root <html> element—if the browser supports the border-radius
property. Otherwise, there will be no .borderradius class, the selector won’t match
anything, and the rule won’t be applied.

The catch is that Modernizr provides classes for only a subset of CSS3 features. This
subset includes some of CSS3’s most popular and mature features, but the border-
color feature in Figure 8-2 doesn’t qualify because it’s still Firefox-only. For that rea-
son, it’s a good idea to hold off on using multicolored borders in your pages, at least
for now.

Note: You can also use Modernizr to create JavaScript fallbacks. In this case, you simply need to check
the appropriate property of the Modernizr object, as you do when checking for HTML5 support. You
could use this technique to compensate if you’re missing more advanced CSS3 features, like transitions or
animations. However, there’s so much work involved and the models are so different that it’s usually best
to stick with a JavaScript-only solution for essential website features.

243chapter 8: boosting styles with css3

Using CSS3 TodayUsing CSS3 Today

Browser-Specific Styles
When the creators of CSS develop new features, they often run into a chicken-and-
egg dilemma. In order to perfect the feature, they need feedback from browser mak-
ers and web designers. But in order to get this feedback, browser makers and web
designers need to implement these new-and-imperfect features. The result is a cycle
of trial and feedback that takes many revisions to settle down. While this process
unfolds, the syntax and implementation of features change. This raises a very real
danger—unknowing web developers might learn about a dazzling new feature and
implement it in their real-life websites, not realizing that future versions of the stan-
dard could change the rules and break the websites.

To avoid this threat, browser makers use a system of vendor prefixes to change CSS
property and function names while they’re still under development. For example,
consider the new radial-gradient property described on page 271. To use it with
Firefox, you need to set the “in progress” version of this property called -moz-radial-
gradient. That’s because Firefox uses the vendor prefix -moz- (which is short for
Mozilla, the organization that’s behind the Firefox project).

Every browser engine has its own vendor prefix (Table 8-1). This complicates life
horrendously, but it has a good reason. Different browser makers add support at dif-
ferent times, often using different draft versions of the same specification. Although
all browsers will support the same syntax for final specification, the syntax of the
vendor-specific properties and functions often varies.

Table 8-1. Vendor prefixes

Prefix For Browsers
-moz- Firefox

-webkit- Chrome and Safari
(the same rendering engine powers both browsers)

-ms- Internet Explorer

-o- Opera

So, if you want to use a radial gradient today and support all the browsers you can
(including the forthcoming IE 10), you’ll need to use a bloated CSS rule like this one:

.stylishBox {
 background: yellow;
 background-image: -moz-radial-gradient(circle, green, yellow);
 background-image: -webkit-radial-gradient(circle, green, yellow);
 background-image: -o-radial-gradient(circle, green, yellow);
 background-image: -ms-radial-gradient(circle, green, yellow);
}

In this example, each rule sets the radial gradient using the same syntax. This in-
dicates that the standard is settling down, and browser makers may soon be able to
drop the vendor prefix and support the radial-gradient property directly (as they
currently support corner-radius). However, this is a fairly recent development, as old
versions of Chrome used completely different gradient syntax.

244 html5: the missing manual

 Web Typography Web Typography

Note: Using vendor prefixes is a messy business. Web developers are split on whether they’re a neces-
sary evil of getting the latest and greatest frills, or a big fat warning sign that should scare clear-thinking
designers away. But one thing is certain: If you don’t use the vendor prefixes, a fair bit of CSS3 will be
off-limits for now.

Web Typography
With all its pizzazzy new features, it’s hard to pick the best of CSS3. But if you had to
single out just one feature that opens an avalanche of new possibilities and is ready
to use right now, that feature may just be web fonts.

In the past, web designers had to work with a limited set of web-safe fonts. These are
the few fonts that are known to work on different browsers and operating systems.
But as every decent designer knows, type plays a huge role in setting the overall
atmosphere of a document. With the right font, the same content can switch from
coolly professional to whimsical, or from old-fashioned to futuristic.

Note: There were good reasons why web browsers didn’t rush to implement custom web fonts. First,
there are optimization issues, because computer screens offer far less resolution than printed documents.
If a web font isn’t properly tweaked for onscreen viewing, it’ll look like a blurry mess at small sizes. Sec-
ond, most fonts aren’t free. Big companies like Microsoft were understandably reluctant to add a feature
that could encourage web developers to take the fonts installed on their computers and upload them to
a website without proper permission. As you’ll see in the next section, font companies now have good
solutions for both problems.

CSS3 adds support for fancy fonts with the @font-face feature. Here’s how it works:

1. You upload the font to your website (or, more likely, multiple versions of that
font to support different browsers).

2. You register each font-face you want to use in your style sheet, using the
@font-face command.

3. You use the registered font in your styles, by name, just as you use the web-safe
fonts.

4. When a browser encounters a style sheet that uses a web font, it downloads the
font to its temporary cache of pages and pictures. It then uses that font for just
your page or website (Figure 8-4). If other web pages want to use the same font,
they’ll need to register it themselves and provide their own font files.

Note: Technically, @font-face isn’t new. It was a part of CSS 2, but dropped in CSS 2.1 when the browser
makers couldn’t cooperate. Now, in CSS3, there’s a new drive to make @font-face a universal standard.

The following sections walk you through these essential steps.

245chapter 8: boosting styles with css3

 Web Typography Web Typography

Figure 8-4:
This revised version
of the apocalyptic
page combines a
hodgepodge of four
fonts. All of these
fonts are free, and
you’ll learn how to
get them for yourself
from Font Squirrel on
page 247.

Zero & Zero Is Impact Label Reversed Regular

Metrophobia

Impact Label Regular

Web Font Formats
Although all current browsers support @font-face, they don’t all support the same
types of font files. Internet Explorer, which has supported @font-face for years, sup-
ports only EOT (Embedded OpenType) font files. This format has a number of
advantages—for example, it uses compression to reduce the size of the font file, and
it allows strict website licensing so a font can’t be stolen from one website and used
on another. However, the .eot format never caught on, and no other browser uses
it. Instead, other browsers have (until recently) stuck with the more familiar font
standards used in desktop computer applications—that’s TTF (TrueType) and OTF
(OpenType PostScript). But the story’s still not complete without two more acro-
nyms—SVG and WOFF. Table 8-2 puts all the font formats in perspective.

246 html5: the missing manual

 Web Typography

Table 8-2. Embedded font formats

Format Description Use with
TTF (TrueType)
OTF (OpenType
PostScript)

Your font will probably begin in
one of these common desktop
formats.

Firefox (before version 3.6),
Chrome (before version 6),
Safari, and Opera

EOT (Embedded Open
Type)

A Microsoft-specific format that
never caught on with browsers
except Internet Explorer.

Internet Explorer (before IE 9)

SVG (Scalable Vector
Graphics)

An all-purpose graphics format
you can use for fonts, with good
but not great results (it’s slower
to display and produces lower-
quality text).

Safari Mobile (on the iPhone
and iPad before iOS 4.2),
and mobile devices using the
Android operating system.

WOFF (Web Open
Font Format)

The single format of the future,
probably. Newer browsers
support it.

Any browser that supports it,
starting with Internet Explorer 9,
Firefox 3.6, and Chrome 6.

Bottom line: If you want to use the @font-face feature and support a wide range of
browsers, you need to distribute your font in several different formats. At a mini-
mum, you need to supply your font in TTF or OTF format (either one is fine), the
EOT format, and the SVG format. It’s a good idea (but not essential) to also supply
a WOFF font, which is likely to become more popular and better supported in the
future. (Among its advantages, WOFF files are compressed, which minimizes the
download time.)

TRoUbleShooTinG momenT

Ironing Out the Quirks
Even if you follow the rules and supply all the required font
formats, expect a few quirks. Here are some problems that
occasionally crop up with web fonts:

• Many fonts look bad on the still-popular Windows XP
operating system, because Windows XP computers
often have the anti-aliasing display setting turned off.
(And fonts without anti-aliasing look as attractive as
mascara on a mule.)

• Some people have reported that some browsers (or
some operating systems) have trouble printing cer-
tain embedded fonts.

• Some browsers suffer from a problem known as
FOUT (which stands for Flash of Unstyled Text). This
phenomenon occurs when an embedded font takes

a few seconds to download, and the page is rendered
first using a fallback font, and then re-rendered us-
ing the embedded font. This problem is most notice-
able on old builds of Firefox. If it really bothers you,
Google provides a JavaScript library that lets you de-
fine fallback styles that kick in for unloaded fonts, giv-
ing you complete control over the rendering of your
text at all times (see http://code.google.com/apis/
webfonts/docs/webfont_loader.html).

Although these quirks are occasionally annoying, most are
being steadily ironed out in new browser builds. For ex-
ample, Firefox now minimizes FOUT by waiting for up to
3 seconds to download an embedded font before using
the fallback font.

247chapter 8: boosting styles with css3

 Web Typography

Using a Font Kit
At this point, you’re probably wondering where you can get the many font files you
need. The easiest option is to download a ready-made font kit from the Web. That
way, you get all the font files you need. The disadvantage is that your selection is
limited to whatever you can find online. One of the best places to find web font kits
is the Font Squirrel website; you can see its handpicked selection at www.fontsquirrel.
com/fontface (see Figure 8-5).

Figure 8-5:
Font Squirrel provides
a few hundred high-
quality fonts, orga-
nized into sections by
type (“Calligraphic,”
“Grunge,” and
“Retro,” for example).
Best of all, every
font is free to use
wherever you want—
on your personal
computer to create
documents, or on the
Web to build web
pages. When you find
a font you like, click
View Font to get a
closer look at every
letter, “View @ff
Demo” to see the font
in a sample web page
via the @font-face
feature, and “Get Kit”
to download the font
to your computer.

Font category

Links to preview or download a font

When you download a font kit, you get a compressed Zip file that contains a number
of files. For example, download the Chantelli Antiqua font shown in Figure 8-5, and
you get these files:

Bernd Montag License.txt
Chantelli_Antiqua-webfont.eot
Chantelli_Antiqua-webfont.svg
Chantelli_Antiqua-webfont.ttf
Chantelli_Antiqua-webfont.woff
demo.html
stylesheet.css

248 html5: the missing manual

 Web Typography

The text file (Bernd Montag License.txt) provides licensing information that basi-
cally says you can use the font freely, but never sell it. The Chantelli_Antiqua-web-
font files provide the font in four different file formats. (Depending on the font you
pick, you may get additional files for different variations of that font—for example,
in bold, italic, and extra-dark styles.) Finally, the stylesheet.css file contains the style
sheet rule you need to apply the font to your web page, and demo.html displays the
font in a sample web page.

To use the Chantelli Antiqua font, you need to copy all the Chantelli_Antiqua-
webfont files to the same folder as your web page. Then you need to register the font
so that it’s available for use in your style sheet. To do that, you use a complex @font-
face rule at the beginning of your style sheet, which looks like this (with the lines
numbered for easy reference):

1 @font-face {
2 font-family: 'ChantelliAntiquaRegular';
3 src: url('Chantelli_Antiqua-webfont.eot');
4 src: local('Chantelli Antiqua'),
5 url('Chantelli_Antiqua-webfont.woff') format('woff'),
6 url('Chantelli_Antiqua-webfont.ttf') format('truetype'),
7 url('Chantelli_Antiqua-webfont.svg') format('svg');
8 }

To understand what’s going on in this rule, it helps to break it down line by line:

• Line 1: @font-face is the tool you use to officially register a font so you can use
it elsewhere in your style sheet.

• Line 2: You can give the font any name you want. This is the name you’ll use
later, when you apply the font.

• Line 3: The first format you specify has to be the file name of the EOT file. That’s
because Internet Explorer gets confused by the rest of the rule, and ignores the
other formats. The url() function is a style sheet technique that tells a browser
to download another file at the location you specify. If you put the font in the
same folder as your web page, then you can simply provide the file name here.

• Line 4: The next step is to use the local() function. This function tells the brows-
er the font name, and if that font just happens to be installed on the visitor’s
computer, the browser uses it. However, in rare cases this can cause a problem
(for example, it could cause Mac OS X to show a security dialog box, depending
on where your visitor has installed the font, or it could load a different font that
has the same name). For these reasons, web designers sometimes use an obvi-
ously fake name to ensure that the browser finds no local font. One common
choice is to use a meaningless symbol like local('').

• Lines 5 to 7: The final step is to tell the browser about the other font files it can
use. If you have a WOFF font file, suggest that first, as it offers the best quality.
Next, tell the browser about the TTF or OTF file, and finally about the SVG file.

249chapter 8: boosting styles with css3

 Web Typography

Tip: Of course, you don’t need to type the @font-face rule by hand (and you definitely don’t need to
understand all the technical underpinnings described above). You can simply copy the rule from the
stylesheet.css file that’s included in the web font kit.

Once you register an embedded font using the @font-face feature, you can use it in
any style sheet. Simply use the familiar font-family property, and refer to the font
family name you specified with @font-face (in line 2). Here’s an example that leaves
out the full @font-face details:

@font-face {
 font-family: 'ChantelliAntiquaRegular';
 ...
}

body {
 font-family: 'ChantelliAntiquaRegular';
}

This rule applies the font to the entire web page, although you could certainly re-
strict it to certain elements or use classes. However, you must register the font with
@font-face before you use it in a style rule. Reverse the order of these two steps, and
the font won’t work properly.

Tip: The Font Squirrel website provides more fonts beyond its prepackaged font kits. You can also find
more fonts by looking at the list of most popular fonts (click Most Downloaded) and most recent (click
Newly Added). In these lists, you’ll find the web font kits along with other free font files that don’t have
the support files or need to be downloaded from another website. You can convert your font to the other
formats you need using Font Squirrel’s font-kit generator, as described on page 252.

FReqUenTly ASked qUeSTion

Using a Font on Your Computer
Can I use the same font for web work and printed documents?

If you find a hot new font to use in your website, you can
probably put it to good use on your computer, too. For ex-
ample, you might want to use it in an illustration program
to create a logo. Or, your business might want to use it
for other print work, like ads, fliers, product manuals, and
financial reports.

Modern Windows and Mac computers support TrueType
(.ttf) and OpenType (.otf) fonts. Every font package in-
cludes a font in one of these formats—usually, TrueType.
To install it in Windows, make sure you’ve pulled it out of
the ZIP download file. Then, right-click it and choose In-
stall. (You can do this with multiple font files at once.) On a
Mac, double-click the font file to open the Font Book utility.
Then, click the Install Font button.

250 html5: the missing manual

 Web Typography

Using Google Web Fonts
If you want a simpler way to use a fancy font on your website, Google has got you
covered. It provides a service called Google Web Fonts, which hosts free fonts that
anyone can use. The beauty of Google Web Fonts is that you don’t need to worry
about font formats, because Google detects the browser and automatically sends the
right font file.

To use a Google font in your pages, follow these steps:

1.	 Go	to	www.google.com/webfonts.
Google shows you a long list of available fonts (Figure 8-6).

2.	 At	 the	 top	 of	 the	 page,	 click	 a	 tab	 title	 (Word,	 Sentence,	 or	 Paragraph)	 	 to	
choose	how	you	preview	fonts.
For example, if you’re hunting for a font to use in a heading, you’ll probably
choose Word or Sentence to take a close up look at a single word or line of text.
But if you’re looking for a font to use in your body text, you’ll probably choose
Paragraph to study a whole paragraph of text at once. No matter what option
you choose, you can type in your own preview text and set an exact font size for
your previews.

Figure 8-6:
Google has a relent-
lessly expanding se-
lection of fonts. When
you’re looking for a
font, you’ll probably
want to tweak the font
list’s sorting and filter-
ing options (circled).
For example, you can
sort alphabetically or
put the most popular
fonts first, and you
can filter out just
serif, sans-serif, or
handwritten (cursive)
fonts.

Filter the list

Sort the list

Get your font

251chapter 8: boosting styles with css3

 Web Typography

3.	 Set	your	search	options.
If you have a specific font in mind, type it into the search box. Otherwise, you’ll
need to scroll down, and that could take ages. To help you get what you want
more quickly, start by setting a sort order and some filtering options, if they
apply (for example, you might want to find the most popular bold sans-serif
fonts). Figure 8-6 shows you where to find these options.

4.	 When	you	see	a	font	that’s	a	candidate	for	your	site,	click	“Pop	out.”
Google pops open an informative window that describes the font and shows
each of its characters.

5.	 If	you	like	the	font,	click	“Quick-use”	to	get	the	information	you	need	to	use	
it.
Google shows you the code you need to use this font. It consists of a style sheet
link (which you must add to your web page) and an example of a style sheet rule
that uses the font.

6.	 Add	a	style	sheet	link	to	your	web	page.
For example, if you picked the Metrophobic font, Google wants you to place this
link in the <head> section of your page:

<link href="http://fonts.googleapis.com/css?family=Metrophobic"
rel="stylesheet">

This style sheet registers the font, using @font-face, so you don’t have to. Best
of all, Google provides the font files, so you don’t need to upload anything extra
to your website.

Note: Remember to put the link for the Google font style sheet before your other style sheet links. That
way, your other style sheets can use the Google font.

7.	 Use	the	font,	by	name,	wherever	you	want.
For example, here’s how you could use the newly registered Metrophobic font
in a heading, with fallbacks in case the browser fails to download the font file:

h1 {
 font-family: 'Metrophobic', arial, serif;
}

252 html5: the missing manual

 Web Typography

poweR USeR’S CliniC

Creating a Font Collection
These steps show the fastest way to get the markup you
need for a font. However, you can get more options by
creating a font collection.

A font collection is a way to package up multiple fonts. To
start creating one, you simply click the “Add to Collection”
button next to a font you like. As you add fonts to your
collection, each one appears in the fat blue footer at the
bottom of the page.

When you’re finished picking the fonts you want, click the
footer’s big Use button. Google then shows a page that’s

similar to the “Quick-use” page, except it allows you to cre-
ate a single style sheet reference that supports all the fonts
from your custom-picked collection.

When you create a font collection, you can also use two
links that appear at the top-right of the page. Click “Book-
mark your Collection” to create a browser bookmark that
lets you load up the same collection at some point in the
future, so you can tweak it. Choose “Download your collec-
tion” to download copies of the fonts to your computer, so
you can install the fonts and use them for print work.

Using Your Own Fonts
Font fanatics are notoriously picky about their typefaces. If you have a specific font
in mind for your web pages, even the biggest free font library isn’t enough. Fortu-
nately, there’s a fairly easy way to adapt any font for the Web. Using the right tool, you
can take a TTF or OTF font file you already have and create the other formats you
need (EOT, SVG, and WOFF).

But before you take this road, it’s important to get one issue out of the way: Ordinary
fonts aren’t free. That means it’s not kosher to take a font you have on your com-
puter and use it on your website, unless you have explicit permission from the font’s
creator. For example, Microsoft and Apple pay to include certain fonts with their
operating systems and applications so you can use them to, say, create a newsletter
in a word processor. However, this license doesn’t allow you to put these fonts on a
web server and use them in your pages.

Tip: If you have a favorite font, the only way to know whether you need to pay for it is to contact the
company or individual that made it. Some font makers charge licensing fees based on the amount of
traffic your website receives. Other font creators may let you use their fonts for a nominal amount or for
free, provided you meet certain criteria (for example, you include some small-print note about the font
you’re using, or you have a noncommercial website that isn’t out to make boatloads of money). There’s
also a side benefit to reaching out: Skilled font makers often provide display-optimized versions of their
creations.

253chapter 8: boosting styles with css3

 Web Typography

Once you know that you’re allowed to use a specific font, you can convert it using a
handy tool from Font Squirrel (the same website that offers the nifty free web font
kits). To do so, surf to www.fontsquirrel.com/fontface/generator. Figure 8-7 shows
you the three-step process you need to follow.

Figure 8-7:
First, click Add Fonts
to upload a font file
from your computer.
Then, add a check-
mark to the setting
“Yes, the fonts I’m
uploading are legally
eligible for web em-
bedding” (assuming
you’ve reviewed their
license requirements,
as described on page
252). Finally, click
Download Your Kit.

The web kit that Font Squirrel generates is just like the free ones described earlier.
It even includes a style sheet that has the @font-face section you need, along with a
test web page.

Tip: Still looking for more places to get fonts? If you haven’t found that perfect typeface yet, spend some
time at http://webfonts.info. There you’ll find links to other websites that provide free fonts, as well as
professional font foundries like the legendary Monotype. Although font-pricing models are changing fast,
most font foundries offer some free fonts, and paid subscriptions can give website developers dozens of
ultra-high-quality typefaces for as little as $10 per year. Some provide fonts through a hosting service like
Google Fonts, so there’s no need to upload font files to your web server.

Putting Text in Multiple Columns
Fancy fonts aren’t the only innovation CSS3 has for displaying text. It also adds an
entirely new module for multicolumn text, which gives you a flexible, readable way
to deal with lengthy content.

254 html5: the missing manual

 Web Typography

Using multiple columns is almost effortless, and you have two ways to create them.
Your first option is to set the number of columns you want using the column-count
property, like this:

article {
 text-align: justify;
 column-count: 3;
}

At the time of this writing, this works for Opera only. To get the same support in
Firefox, Chrome, and Safari, you need to add vendor-prefixed versions of the column-
count property, like this:

article {
 text-align: justify;
 -moz-column-count: 3;
 -webkit-column-count: 3;
 column-count: 3;
}

You won’t find any support in Internet Explorer 9 (although IE 10 is likely to join
the party).

This approach—creating a set number of columns—works well for fixed-size lay-
outs. But if you have a space that grows and shrinks with the browser window, your
columns may grow too wide and become unreadable. In this situation, it’s better not
to set the exact number of columns. Instead, tell the browser how big each column
should be using the column-width property:

article {
 text-align: justify;
 -moz-column-width: 10em;
 -webkit-column-width: 10em;
 column-width: 10em;
}

The browser can then create as many columns as it needs to fill up the available
space (see Figure 8-8).

Note: You can use pixel units to size a column, but em units make more sense. That’s because em units
adapt to the current font size. So if a web page visitor ratchets up the text size settings in her browser, the
column width grows proportionately to match. To get a sense of size, 1 em is equal to the two times the
current font size. So if you have a 12 pixel font, 1 em works out to 24 pixels.

You can also adjust the size of the spacing between columns (with column-gap) and
even add a vertical line that separates them (with column-rule). For more informa-
tion about all your column-creating options, including ways to control where text
breaks into columns and tricks that let figures and other elements span columns, re-
fer to the full multicolumn standard at www.w3.org/TR/css3-multicol. Unfortunately,
at this writing no browser supports these advanced features.

255chapter 8: boosting styles with css3

Adapting to
Different Devices

Figure 8-8:
In a narrow window (top), Firefox can accommo-
date just one column. But widen the window, and
you’ll get as many more as can fit (bottom).

Adapting to Different Devices
If you’ve ever gone on an extended web surfing spree using a mobile device (and
odds are you have), you’ve discovered that a tiny screen isn’t the best window onto
the Web. Sure, you can scroll and zoom your way around virtually any website, but
the process is often laborious. Life gets much better if you find a specifically de-
signed mobile site that scales down its content to fit your device.

Today, it’s not unusual to find developers creating custom versions of the same web-
site for specific devices, like iPhones and iPads. These sites are often hosted on
different web domains (like http://m.nytimes.com for the mobile version of the New
York Times). But here’s the rub: As mobile browsing becomes more popular, and
mobile devices become increasingly numerous and varied, web developers like you
can end up with big headaches managing all those device-specific sites.

256 html5: the missing manual

Adapting to
Different Devices

Of course, separate sites aren’t the only way to deal with different devices. You can
also write web server code that checks every request, figures out what web browser
is on the other end, and sends the appropriate type of content. This sort of solution is
great, if you have the time and skills. But wouldn’t it be nice to have a simple mecha-
nism that tweaks your styles for different types of devices, with no web application
framework or server-side code required?

Enter media queries. This CSS3 feature gives you a simple way to vary styles for dif-
ferent devices and viewing settings. Used carefully, they can help you serve every-
thing from an ultra-widescreen desktop computer to an iPhone—without altering a
single line of HTML.

Media Queries
Media queries work by latching onto a key detail about the device that’s viewing your
page (like its size, resolution, color capabilities, and so on). Based on that informa-
tion, you can apply different styles, or even swap in a completely different style sheet.
Figure 8-9 shows a media query in action.

noSTAlGiA CoRneR

CSS Media Types
Interestingly, the creators of CSS took a crack at the multi-
ple-device problem in CSS 2.1, using a feature called media
types. You might already be using this standard to supply a
separate style sheet for printouts:

<head>
 ...
 <!-- Use this stylesheet to display the
 page on-screen. -->
 <link rel="stylesheet" media="screen"
 href="styles.css">

 <!-- Use this stylesheet to print the
 page. -->
 <link rel="stylesheet" media="print"
 href="print_styles.css">
</head>

The media attribute also accepts the value handheld, which
is meant for low-bandwidth, small-screen mobile devices.
Most mobile devices make some attempt to pay attention
to the media attribute and use the handheld style sheet, if it
exists. But there are quirks aplenty, and the media attribute
is woefully inadequate for dealing with the wide range of
web-connected devices that exists today. (However, it’s still
a good way to clean up printouts.)

To use media queries, you must first choose the property you want to examine. In
Figure 8-9, that key detail is max-width, which gets the current size of the page,
in the browser window. Even more useful is max-device-width, which checks the
maximum screen width. If this value is small, it’s clear that you’re working with a
webphone or a similarly tiny device.

The easiest way to use media queries is to start with the standard version of your
website, and then override it selectively. In the example in Figure 8-9, the content is
broken into two sections:

257chapter 8: boosting styles with css3

Adapting to
Different Devices

<article>
 ...
</article>
<aside>
 ...
</aside>

Figure 8-9:
Here’s the same page viewed in a
wide browser window (top) and in a
narrow browser window (bottom).
The media query magic automatically
switches a portion of the page’s style
rules when the window shrinks, turn-
ing a sidebar into a footer. You don’t
even need to refresh the page.

258 html5: the missing manual

Adapting to
Different Devices

And the style sheet starts with two rules, one for each section:
article {
 border: solid 1px black;
 padding: 15px;
 margin: 5px;
 background: yellow;
 float: left;
 width: 330px;
}

aside {
 border: solid 1px black;
 padding: 15px;
 margin: 5px;
 background: yellow;
 position: absolute;
 float: left;
 margin-left: 370px;
}

These rules implement a standard two-column layout, with a fixed 330-pixel column
on the left, and a sidebar on the right that expands to fill up the remaining space.
(Of course, you’re free to use any sort of CSS-powered layout you want in your
examples.)

The magic happens when you define a separate part of your style sheet that comes
into effect for a given media-query value. The syntax takes this form:

@media (media-query-property-name: value) {
 /* New styles go here. */
}

In the current example, this new set of styles comes into effect when the width of the
browser window is 480 pixels or less. That means you need a section in your style
sheet that looks like this:

@media (max-width: 480px) {
 ...
}

Tip: Right now, the most popular media queries are max-device-width (for creating mobile versions of
your pages), max-width (for varying styles based on the current size of the browser window), and orienta-
tion (for changing your layout based on whether an iPad is turned horizontally or vertically). But the
media queries specification defines a handful of other details you can examine. For the full list, check out
the standard at www.w3.org/TR/css3-mediaqueries.

Although you’re free to put anything inside the media query block, this example
simply adds new style rules for the <article> and <aside> elements:

@media (max-width: 480px) {
 article {
 float: none;
 width: auto;
 }

259chapter 8: boosting styles with css3

Adapting to
Different Devices

 aside {
 position: static;
 float: none;
 background: pink;
 margin-left: 5px;
 }
}

These styles are applied in addition to the normal styles you’ve already defined.
Thus, you may need to reset properties you’ve already changed to their default val-
ues. In this example, the media query styles reset the position property to static, the
float property to none, and the width property to auto. These are the default values,
but the original sidebar style changed them.

Note: Browsers that don’t understand media queries, like Internet Explorer 8, will simply ignore these
new styles and keep applying the original styles, no matter how big or small the browser window
becomes.

If you want, you could add another media query section that overrides these rules
at a still-smaller size. For example, this section would apply new rules when the
browser width creeps under 250 pixels:

@media (max-width: 250px) {
 ...
}

Just remember that these rules are overriding everything that’s been applied so far—
in other words, the cumulative set of properties that have been set by the normal
styles and the media query section for under 450 pixels. If this seems too confusing,
don’t worry—you’ll learn to work around it with more tightly defined media queries
in the next section.

Tip: When trying to identify mobile devices like webphones, you need to use the max-device-width
property, not max-width. That’s because the max-width property uses the size of the phone’s viewport—
the segment of the web page that the phone user can scroll around. A typical viewport is twice as wide as
the actual device width. For the full scoop (and some pictures that illustrate how viewports work), see the
Quirksmode article at http://tinyurl.com/yyec93n. And you’ll learn more about media queries for mobile
devices on page 261.

More Advanced Media Queries
Sometimes you might want your styles even more specific, so that they depend on
multiple conditions. Here’s an example:

@media (min-width: 400px) and (max-width: 700px) {
 /* These styles apply to windows from 400 to 700 pixels wide. */
}

260 html5: the missing manual

Adapting to
Different Devices

This comes in handy if you want to apply several sets of mutually exclusive styles,
but you don’t want the headaches of several layers of overlapping rules. Here’s an
example:

/* Normal styles here */

@media (min-width: 600px) and (max-width: 700px) {
 /* Override the styles for 600-700 pixel windows. */
}

@media (min-width: 400px) and (max-width: 599.99px) {
 /* Override the styles for 400-600 pixel windows. */
}

@media (max-width: 399.99px) {
 /* Override the styles for sub-400 pixel windows. */
}

Now, if the browser window is 380 pixels, exactly two sets of style will apply: the
standard styles and the styles in the final @media block. Whether this approach
simplifies your life or complicates it depends on exactly what you’re trying to ac-
complish. If you’re using complex styles and changing them a lot, the no-overlap
approach shown here is often the simplest way to go.

Notice that you have to take care that your rules don’t unexpectedly overlap. For
example, if you set the maximum width of one rule to 400 pixels and the minimum
width of another rule to 400 pixels, you’ll have one spot where both style settings
suddenly combine. The slightly awkward solution is to use fractional values, like the
399.99 pixel measurement used in this example.

Another option is to use the not keyword. There’s really no functional difference, but
if the following style sheet makes more sense to you, feel free to use this approach:

/* Normal styles here */

@media (not max-width: 600px) and (max-width: 700px) {
 /* Override the styles for 600-700 pixel windows. */
}

@media (not max-width: 400px) and (max-width: 600px) {
 /* Override the styles for 400-600 pixel windows. */
}

@media (max-width: 400px) {
 /* Override the styles for sub-400 pixel windows. */
}

In these examples, there’s still one level of style overriding to think about. That’s be-
cause every @media section starts off with the standard, no-media-query style rules.
Depending on this situation, you might prefer to separate your style logic completely
(for example, so a mobile device gets its own, completely independent set of styles).
To do so, you need to use media queries with external style sheets, as described next.

261chapter 8: boosting styles with css3

Adapting to
Different Devices

Replacing an Entire Style Sheet
If you have simple tweaks to make, the @media block is handy, because it lets you
keep all your styles together in one file. But if the changes are more significant, you
may decide that it’s just easier to create a whole separate style sheet. You can then use
a media query to create a link to that style sheet:

<head>
 <link rel="stylesheet" href="standard_styles">
 <link rel="stylesheet" media="(max-width: 480px)" href="small_styles.css">
 ...
</head>

The browser will download the second style sheet (small_styles.css) with the page but
won’t actually apply it unless the browser width falls under the maximum.

As in the previous example, the new styles will override the styles you already have
in this place. In some cases, what you really want is completely separate, indepen-
dent style sheets. First, you need to add a media query to your standard style sheet,
to make sure it kicks in only for large sizes:

<link rel="stylesheet" media="(min-width: 480.01px)" href="standard_styles">
<link rel="stylesheet" media="(max-width: 480px)" href="small_styles.css">

The problem with this approach is that browsers that don’t understand media que-
ries will ignore both style sheets. You can fix this up for old versions of Internet
Explorer by adding your main style sheet again, but with conditional comments:

<link rel="stylesheet" media="(min-width: 480.01px)" href="standard_styles">
<link rel="stylesheet" media="(max-width: 480px)" href="small_styles.css">
<!--[if lt IE 9]>
 <link rel="stylesheet" href="standard_styles">
<![endif]-->

This example still has one small blind spot. Old versions of Firefox (earlier than 3.5)
don’t understand media queries and don’t use the conditionally commented IE sec-
tion. You could solve the problem by detecting the browser in your code, and then
using JavaScript to swap in a new page, but it’s messy. Fortunately, old versions of
Firefox are becoming increasingly rare.

Incidentally, you can combine media queries with the media types described in the
box on page 256. When doing this, always start with the media type, and don’t put it
in parentheses. For example, here’s how you could create a print-only style sheet for
a specific page width:

<link rel="stylesheet" media="print and (min-width: 25cm)"
 href="NormalPrintStyles.css" >
<link rel="stylesheet" media="print and (not min-width: 25cm)"
 href="NarrowPrintStyles.css" >

Recognizing Mobile Devices
As you’ve already learned, you can distinguish between normal computers and mo-
bile devices by writing a media query that uses max-device-width. But what widths
should you use?

262 html5: the missing manual

Adapting to
Different Devices

If you’re looking for mobile phones, check for a max-device-width of 480 pixels.
This is the best, more general rule. It catches the iPhone and the Android phones
that exist today:

<link rel="stylesheet" media="(max-device-width: 480px)"
 href="mobile_styles.css">

If you’re a hardware geek, this rule may have raised a red flag. After all, the current
crop of mobile devices uses tiny, super-high-resolution screens. For example, the
iPhone 4 crams a grid of 960 × 640 pixels into view at once. You might think you’d
need larger device widths for these devices. Surprisingly, though, that isn’t the case.
Most web devices continue reporting that they have 480 pixels of width, even when
they have a fancy high-resolution display. These devices add in a fudge factor called
the pixel ratio. In the iPhone 4, for instance, every CSS pixel is two physical pixels
wide, so the pixel ratio is 2. In fact, you can create a media query that matches the
iPhone 4, but ignores older iPhones, using the following media query:

<link rel="stylesheet"
 media="(max-device-width: 480px) and (-webkit-min-device-pixel-ratio: 2)"
 href="iphone4.css">

The iPad poses a special challenge: Users can turn it around to show content ver-
tically or horizontally. And although this changes the max-width, it doesn’t alter
the max-device-width. In both portrait and landscape orientation, the iPad reports
a device width of 768 pixels. Fortunately, you can combine the max-device-width
property with the orientation property if you want to vary styles based on the iPad’s
orientation:

<link rel="stylesheet"
 media="(max-device-width: 768px) and (orientation: portrait)"
 href="iPad_portrait.css">

<link rel="stylesheet"
 media="(max-device-width: 768px) and (orientation: landscape)"
 href="iPad_landscape.css">

Of course, this rule isn’t limited to iPads. Other devices that have similar screens
sizes (in this case, 768 pixels or less) will get the same style rules.

Note: On their own, media queries probably aren’t enough to turn a normal website into a mobile-
friendly one. You’ll also need to think about bandwidth and the user experience. On the bandwidth side,
you’ll want to use smaller, lightweight images. (You can do this by giving elements background images,
and setting these images in your styles. However, this approach is a nightmare for websites with lots of
pictures.) On the user experience side, you need to think about breaking content down into smaller pieces
(so less scrolling is required) and avoiding effects and interactions that are difficult to navigate with a
touch interface (like pop-up menus).

263chapter 8: boosting styles with css3

Building Better
Boxes

Gem in The RoUGh

Media Queries for Video
One obvious difference between desktop websites and
mobile websites is the way they use video. A mobile web-
site may still include video, but it will typically use a smaller
video window and a smaller media file. The reasons are
obvious—not only do mobile browsers have slower, more
expensive network connections to download video, they
also have less powerful hardware to play it back.

Using the media query techniques you’ve just learned, you
can easily change the size of a <video> element to suit a
mobile user. However, it’s not as easy to take care of the
crucial second step, and link to a slimmed-down video file.

HTML5 has a solution: It adds a media attribute directly
the <source> element. As you learned in Chapter 5, the
<source> element specifies the media file a <video> ele-
ment should play. By adding the media attribute, you can
limit certain media files to certain device types.

Here’s an example that hands the butterfly_mobile.mp4
file out to small-screened devices. Other devices get

butterfly.mp4 or butterfly.ogv, depending on which video
format they support.

<video controls width="400" height="300">
 <source src="butterfly_mobile.mp4"
 type="video/mp4"
 media="(max-device-width: 480px)">
 <source src="butterfly.mp4" type="video/mp4">
 <source src="butterfly.ogv" type="video/ogg">
</video>

Of course, it’s still up to you to encode a separate copy of
your video for mobile users. Encoding tools usually have
device-specific profiles that can help you out. For example,
they might have an option for encoding “iPad video.” It’s
also still up to you to make sure that you use the right me-
dia format for your device (usually, that will be H.264), and
supply video formats for every other browser.

Building Better Boxes
From the earliest days of CSS, web designers were using it to format boxes of con-
tent. As CSS became more powerful, the boxes became more impressive, creating
everything from nicely shaded headers to floating, captioned figures. And when CSS
cracked the hovering problem, floating boxes were even turned into rich, glowy but-
tons, taking over from the awkward JavaScript-based approaches of yore. With this
is mind, it’s no surprise that some of the most popular and best-supported CSS3
features can make your boxes look even prettier, no matter what they hold.

Transparency
The ability to make partially transparent pictures and colors is one of the most basic
building blocks in CSS3. There are two ways to do it.

Your first option is to use the rgba() color function, which accepts four numbers.
The first three values are the red, green, and blue components of the color, from 0 to
255. The final value is the alpha, a fractional value number from 0 (fully transparent)
to 1 (fully opaque).

264 html5: the missing manual

Building Better
Boxes

Here’s an example that creates a 50 percent transparent lime green color:
.semitransparentBox {
 background: rgba(170,240,0,0.5);
}

Browsers that don’t support rgba() will just ignore this rule, and the element will
keep its default, completely transparent background. So the second, and better, ap-
proach is to start by declaring a solid fallback color, and then replace that color with
a semitransparent one:

.semitransparentBox {
 background: rgb(170,240,0);
 background: rgba(170,240,0,0.5);
}

This way, browsers that don’t support the rgba() function will still color the element’s
background, just without the transparency.

Tip: To make this fallback better, you should use a color that more accurately reflects the semitransparent
effect. For example, if you’re putting a semitransparent lime green color over a mostly white background,
the color will look lighter because the white shows through. Your fallback color should reflect this fact, if
possible.

CSS3 also adds a style property named opacity, which works just like the alpha value.
You can set opacity to a value from 0 to 1 to make any element partially transparent:

.semitransparentBox {
 background: rgb(170,240,0);
 opacity: 0.5;
}

Figure 8-10 shows two example of semitransparency, one that uses the rgba() func-
tion and one that uses the opacity property.

Figure 8-10:
This page serves up semitransparency
two different ways: to fade out a picture
(using the opacity property) and to let the
background show through a box (using a
background color created with the rgba()
function).

265chapter 8: boosting styles with css3

Building Better
Boxes

The opacity property is a better tool than the rgba() function if you want to do any
of the following:

• Make more than one color semitransparent. With opacity, the background col-
or, text color, and border color of an element can become transparent.

• Make something semitransparent, even if you don’t know its color (for example,
because it might be set by another style sheet or in JavaScript code).

• Make an image semitransparent.
• Use a transition, an animated effect that can make an element fade away or reap-

pear (page 271).

Rounded Corners
You’ve already learned about the straightforward border-radius property, which lets
you shave the hard corners off your boxes. But what you haven’t yet seen is the way
you can tweak this setting to get the curve you want.

First, you can choose a different, single value for the border-radius property. The
border radius is the radius of the circle that’s used to draw the rounded edge. Of
course, you don’t see the entire circle—just enough to connect the vertical and hori-
zontal sides of the box. Set a bigger border-radius value, and you’ll get a bigger curve
and a more gently rounded corner. As with most measurements in CSS, you can use
a variety of units, including pixels and percentages. You can also adjust each corner
separately by supplying four values:

.roundedBox {
 background: yellow;
 border-radius: 25px 50px 25px 85px;
}

But that’s not all—you can also stretch the circle into an ellipse, creating a curve that
stretches longer in one direction. To do this, you need to target each corner sepa-
rately (using properties like border-top-left-radius) and then supply two numbers:
one for the horizontal radius and one for the vertical radius:

.roundedBox {
 background: yellow;
 border-top-left-radius: 150px 30px;
 border-top-right-radius: 150px 30px;
}

Figure 8-11 shows some examples.

266 html5: the missing manual

Building Better
Boxes

Figure 8-11:
A clever application of border-radius can create
virtually any sort of curve.

Backgrounds
One shortcut to attractive backgrounds and borders is to use images. CSS3 intro-
duces two new features to help out here. First is multiple background support, which
lets you combine two or more images in a single element’s background. Here’s an
example that uses two backgrounds to embellish the top-left and bottom-right cor-
ner of a box:

.decoratedBox {
 margin: 50px;
 padding: 20px;
 background-image: url('top-left.png'), url('bottom-right.png');
 background-position: left top, right bottom;
 background-repeat: no-repeat, no-repeat;
}

This first step is to supply a list with any number of images, which you use to set the
background-image property. You can then position each image, and control wheth-
er it repeats, using the background-position and background-repeat properties. The
trick is to make sure that the order matches, so the first image is positioned with
the first background-position value, the second image with the second background-
position value, and so on. Figure 8-12 shows the result.

267chapter 8: boosting styles with css3

Building Better
Boxes

Figure 8-12:
It doesn’t matter how
big this box grows—
the two background
images stay fixed at
either corner.

Note: If browsers don’t support multiple backgrounds, they’ll completely ignore your attempt to set the
background. To avoid this problem, start by setting the background or background-image property with a
fallback color or picture. Then, attempt to set multiple backgrounds by setting background-image with a
list of pictures.

268 html5: the missing manual

Building Better
Boxes

And here’s a revised example that uses the sliding doors technique, a time-honored
web design pattern that creates a resizable graphic out of three pieces: an image for
the left, an image for the right, and an extremely thin sliver that’s tiled through the
middle:

.decoratedBox {
 margin: 50px;
 padding: 20px;
 background-image: url('left.png'), url('middle.png'), url('right.png');
 background-position: left top, left top, right bottom;
 background-repeat: no-repeat, repeat-x, no-repeat;
}

You could use markup like this to draw a background for a button. Of course, with
all of CSS3’s fancy new features, you’ll probably prefer to create those using shadows,
gradients, and other image-free effects.

Shadows
CSS3 introduces two types of shadows: box shadows and text shadows. Of the two,
box shadows are generally more useful and better supported, while text shadows
don’t work in any version of Internet Explorer. You can use a box shadow to throw a
rectangular shadow behind any <div> (but don’t forget your border, so it still looks
like a box). Shadows even follow the contours of boxes with rounded corners (see
Figure 8-13).

Figure 8-13:
Shadows can make text float (top), boxes pop out (middle),
or buttons look glowy (bottom).

The two properties that make shadows work are box-shadow and text-shadow. Here’s
a basic box shadow example:

.shadowedBox {
 border: thin #336699 solid;
 border-radius: 25px;
 box-shadow: 5px 5px 10px gray;
}

269chapter 8: boosting styles with css3

Building Better
Boxes

The first two values set the horizontal and vertical offset of the shadow. Using posi-
tive values (like 5 pixels for both, in the above example) displaces the shadow down
and to the right. The next value sets the blur distance (in this example, 10 pixels),
which increases the fuzziness of the shadow. At the end is the shadow color. If there’s
any content underneath the box, consider using the rgba() function (page 185) to
supply a semitransparent shadow.

If you want to tweak your shadow, you can tack on two details. You can add another
number between the blur and the color to set the shadow spread, which expands the
shadow by thickening the solid part before the blurred edge starts:

 box-shadow: 5px 5px 10px 5px gray;

And you can add the word inset on the end to create a shadow that reflects inside an
element, instead of outside. This works best if you use a shadow that’s directly on top
of the element, with no horizontal or vertical offset:

 box-shadow: 0px 0px 20px lime inset;

This creates the bottom example in Figure 8-13. You can use inset shadows to add
hover effects to a button (page 272).

Note: Shadow-crazy developers can even supply multiple shadows, by separating each one with a
comma. But this is usually a waste of developer effort and computing power.

The text-shadow property requires a similar set of values, but in a different order.
The color comes first, followed by the horizontal and vertical offsets, followed by
the blur:

.textShadow {
 font-size: 30px;
 font-weight: bold;
 text-shadow: gray 10px 10px 7px;
}

Gradients
Gradients are blends of color that can create a range of effects, from the subtle shad-
ing behind a menu bar to a psychedelic button that’s colored like a 1960s revival
party. Figure 8-14 shows some examples.

Note: Many web gradients are faked with background images. But CSS3 lets you define the gradient you
want, and gets the browser to do the work. The advantage is fewer image files to schlep around and the
ability to create gradients that seamlessly resize themselves to fill any amount of space.

You’ve already had some gradient-building experience with the canvas (page 208),
and CSS3 gradients are similar. As with the canvas, CSS supports two types of gra-
dients: linear gradients that blend from one band of color to another, and radial
gradients that blend from a central point to the outer edges of your region.

270 html5: the missing manual

Building Better
Boxes

Figure 8-14:
At the heart of it,
gradients are nothing
more than blends of
two or more colors.
But that simple recipe
cooks up into plenty
of different dishes.

There aren’t any special CSS properties for creating gradients. Instead, you can use a
gradient function to set the background property. Just remember to set the property
to a solid color first to create a fallback for browsers that don’t support gradients.
(That includes Internet Explorer, which won’t add gradient support until IE 10.)

There are four gradient functions, and they all need the awkward vendor prefixes
you learned about on page 243. In this section, you’ll look at examples that work
on Firefox (and use the -moz- prefix). You’ll need to add identical -webkit- and -o-
versions to support Chrome, Safari, and Opera.

The first function is linear-gradient(). Here it is in one of its simpler forms, shading
a region from white at the top to blue at the bottom:

.colorBlendBox {
 background: -moz-linear-gradient(top, white, blue);
}

Replace top with left to go from one side to another. Or, use a corner to blend
diagonally:

 background: -moz-linear-gradient(top left, white, lightblue)

If you want multiple color bands, you simply need to supply a list of colors. Here’s
how you create a series of three horizontal color stripes:

 background: -moz-linear-gradient(top, red, orange, yellow);

Finally, you can control where each color starts (bumping some together or off to
one side), using gradient stops. Each gradient stop is a percentage, with 0 percent be-
ing at the very start of the gradient and 100 percent being at the very end. Here’s an
example that extends the orangey-yellow section in the middle:

271chapter 8: boosting styles with css3

 Creating Effects with
Transitions

background: -moz-linear-gradient(top, red 0%, orange 20%, yellow 80%,
 violet 100%);

To get a radial gradient, you use the radial-gradient() function. You need to supply
a color for the center of the circle and a color for the outer edge of the circle, where
it meets the boundaries of the element. Here’s a radial gradient that places a white
point in the center and fades out to blue on the edges:

 background: -moz-radial-gradient(circle, white, lightblue)

There are a pile more options that let you move the center point of the circle, stretch
it into an ellipse, and change exactly where the colors fade. Different browser mak-
ers are still nailing down simple, consistent syntax that they can all use. For more
gradient examples, and to see the two gradient functions not discussed here—that’s
repeating-linear-gradient() and repeating-radial-gradient()—check out the short
Safari blog post at www.webkit.org/blog/1424/css3-gradients. Or, try an online Mi-
crosoft tool that lets you click-and-pick your way to the gradient you want, and then
gives you markup that works with every browser, including IE 10. (Try it at http://
tinyurl.com/5rzocsk.)

Tip: In all these examples, gradients were used with the background property. However, you can also use
gradient functions to set the background-image property in exactly the same way. The advantage here is
that background-image lets you use an image fallback. First, set background-image to a suitable fallback
image for less-equipped browsers, and then set it again using a gradient function. Most browsers are
smart enough that they won’t download the gradient image unless they need it, which saves bandwidth.

Creating Effects with Transitions
CSS made every web developer’s life a whole lot easier when it added pseudoclasses
(page 389). Suddenly, with the help of :hover and :focus, developers could create in-
teractive effects without writing any JavaScript code. For example, to create a hover
button, you simply supply a set of new style properties for the :hover pseudoclass. These
styles kick in automatically when the visitor moves the mouse pointer over your
button.

Tip: If you’re the last web developer on earth who hasn’t rolled your own hover button, you can find
a detailed tutorial in Creating a Website: The Missing Manual (O’Reilly), or in an online article at www.
elated.com/articles/css-rollover-buttons.

Great as they are, pseudoclasses aren’t cutting edge any longer. The problem is their
all-or-nothing nature. For example, if you use the :hover pseudoclass, then your style
settings spring into action immediately when someone hovers over an element. But
in Flash application or in desktop programs, the effect is usually more refined. The
hovered-over button may shift its color, move, or begin to glow, using a subtle ani-
mation that takes a fraction of a second to complete.

272 html5: the missing manual

 Creating Effects with
Transitions

Some web developers have begun to add effects like these to their pages, but it usu-
ally requires the help of someone else’s JavaScript animation framework. But CSS3
has a simpler solution—a new transitions feature that lets you smoothly switch from
one group of settings to another.

A Basic Color Transition
To understand how transitions work, you need to see a real example. Figure 8-15
shows a color-changing button that’s bolstered with some CSS3 transition magic.

Figure 8-15:
If this were an ordinary rollover button, its background would
jump from green to yellow in one step. But with transitions,
the green blends into yellow, taking half a second to make the
change. Move the mouse off, and the same transition plays out
in reverse, returning the button to its normal state. The result is a
button that just feels more polished.

Here’s the nontransition way to style this button:
.slickButton {
 color: white;
 font-weight: bold;
 padding: 10px;
 border: solid 1px black;
 background: lightgreen;
 cursor: pointer;
}

.slickButton:hover {
 color: black;
 background: yellow;
}

Here’s the button this markup formats:
<button class="slickButton">Hover Here!

To smooth this change out with a transition, you need to set the transition property.
You do this in the normal slickButton style (not the :hover pseudoclass).

At a minimum, every transition needs two pieces of information: the CSS property
that you want to animate and the time the browser should take to make the change.
In this example, the transition acts on the background property, and the duration is
0.5 seconds:

.slickButton {
 color: white;
 font-weight: bold;
 padding: 10px;
 border: solid 1px black;
 background: lightgreen;
 cursor: pointer;

273chapter 8: boosting styles with css3

 Creating Effects with
Transitions

 -webkit-transition: background 0.5s;
 -moz-transition: background 0.5s;
 -o-transition: background 0.5s;
}

.slickButton:hover {
 color: black;
 background: yellow;
}

As you’ll no doubt notice, this example adds three transition properties instead of
the promised one. That’s because the CSS3 transitions standard is still under devel-
opment, and the browsers that support it do it using vendor prefixes. To get your
transition to work in Chrome, Safari, Firefox, and Opera, you need to set three ver-
sions of the same property—and you’ll need to add another one with the -ms- prefix
if Internet Explorer 10 supports transitions (as it’s expected to do). Sadly, using ex-
perimental properties can make for some messy style sheets.

There’s one quirk in this example. The hovered-over button changes two details: its
background color and its text color. But the transition applies to the background
color only. As a result, the text blinks from white to black in an instant, while the new
background color fades in slowly.

There are two ways to patch this up. Your first option is to set the transition property
with a comma-separated list of transitions, like this:

.slickButton {
 ...
 -webkit-transition: background 0.5s, color 0.5s;
 -moz-transition: background 0.5s, color 0.5s;
 -o-transition: background 0.5s, color 0.5s;
 ...
}

But there’s a shortcut if you want to set transitions for all the properties that change,
and you want to use the same duration for each one. In this case, you can simply add
a single transition and use all for the property name:

 -webkit-transition: all 0.5s;
 -moz-transition: all 0.5s;
 -o-transition: all 0.5s;

Note: There are a few more details that can fine-tune a transition. First, you can choose a timing function
that controls how the transition effect flows—for example, whether it starts slow and then speeds up or
starts fast and then decelerates. In a short transition, the timing function you choose doesn’t make much
of a difference. But in a longer, more complex animation, it can change the overall feel of the effect. Sec-
ond, you can also add a delay that holds off the start of the transition for some period of time. For more
information about both, check out the official specification at www.w3.org/TR/css3-transitions.

Right now, transitions work in Opera 10.5, Firefox 4, and any version of Safari or
Chrome you’ll ever meet. They aren’t supported in Internet Explorer (although
they’re planned for IE 10). However, this lack of support isn’t the problem it seems.

274 html5: the missing manual

 Creating Effects with
Transitions

Even if a browser ignores the transition property, it still applies the effect. It just
makes the change immediately, rather than smoothly fading it in. That’s good
news—it means a website can use transitions and keep the essentials of its visual
style intact on old browsers.

More Transition Ideas
It’s gratifying to see that CSS transitions can make a simple color change look good.
But if you’re planning to build a slick rollover effect for your buttons or menus, there
are plenty of other properties you can use with a transition. Here are some first-rate
ideas:

• Transparency. By modifying the opacity property, you can make an image fade
away into the background. Just remember not to make the picture completely
transparent, or the visitor won’t know where to hover.

• Shadow. Earlier, you learned how the box-shadow property can add a shadow
behind any box (page 268). But the right shadow can also make a good hover
effect. In particular, consider shadows with no offset and lots of blur, which cre-
ate more of a traditional glow effect. You can also use an inset shadow to put the
effect inside the box.

• Gradients. Change up a linear gradient or add a radial one—either way, it’s hard
to miss this effect.

• Transforms. As you’ll learn in the next section, transforms can move, resize,
and warp any element. That makes them a perfect tool for transitions.

On the flip side, it’s usually not a good idea to use transitions with padding, margins,
and font size. These operations take more processing power (because the browser
needs to recalculate layout or text hinting), which can make them slow and jerky.
If you’re trying to make something move, grow, or shrink, you’re better off using a
transform, as described next.

Transforms
When you explored the canvas, you learned about transforms—ways to move, scale,
skew, and rotate content. In the canvas, you can use transforms to change the things
you draw. With CSS3 transforms, you use them to change the appearance of an ele-
ment. Like transitions, transforms are a new and experimental feature. To use them,
you need to stack up the vendor-prefixed versions of the transform property. Here’s
an example that rotates an element and all its contents:

.rotatedElement {
 -moz-transform: rotate(45deg);
 -webkit-transform: rotate(45deg);
 -o-transform: rotate(45deg);
}

275chapter 8: boosting styles with css3

 Creating Effects with
Transitions

woRd To The wiSe

Don’t Leave Old Browsers Behind
As you know, browsers that don’t support transitions switch
between states immediately, which is usually a good thing.
However, if you use CSS3 glitter to make your states look
different (for example, you’re adding a shadow or a gra-
dient to a hovered-over button), old browsers ignore that
too. That’s not so good. It means that visitors with less ca-
pable browsers get no hover-over effect at all.

To solve this problem, use a fallback that older browsers
understand. For example, you might create a hover state

that sets a different background color and then sets a gra-
dient. This way, older browsers will see the background
change to a new solid color when the button is hovered
over. More capable browsers will see the background
change to a gradient fill. For even more customizing power,
you can use Modernizr, which lets you define completely
different styles for older browsers (page 240).

In the previous example, the rotate() function does the work, twisting an element 45
degrees around its center. However, there are many more transform functions that
you can use, separately or at the same time. For example, the following style chains
three transforms together. It enlarges an element by half (using the scale transform),
moves it to 10 pixels to the left (using the scaleX transform), and skews it for effect
(using the skew transform):

.rotatedElement {
 -moz-transform: scale(1.5) scaleX(10px) skew(10deg);
 -webkit-transform: scale(1.5) scaleX(10px) skew(10deg);
 -o-transform: scale(1.5) scaleX(10px) skew(10deg);
}

Note: A skew twists an element out of shape. For example, imagine pushing the top edge of a box out
to the side, while the bottom edge stays fixed (so it looks like a parallelogram). To learn more about
the technical details of transform functions, check out Firefox’s helpful documentation at http://tinyurl.
com/6ger2wp, but don’t forget to add the other vendor prefixes if you want it to work in Chrome and
Opera.

Transforms don’t affect other elements or the layout of your web page. For example,
if you enlarge an element with a transform, it simply overlaps the adjacent content.

Transforms and transitions make a natural pair. For example, imagine you want to
create an image gallery, like the one shown in Figure 8-16.

276 html5: the missing manual

 Creating Effects with
Transitions

Figure 8-16:
Here, a transform
makes the hovered-
over image stand out.

This example starts out simple enough, with a bunch of images wrapped in a <div>
container:

<div class="gallery">

</div>

Here’s the style for the <div> that holds all the images:
.gallery {
 margin: 0px 30px 0px 30px;
 background: #D8EEFE;
 padding: 10px;
}

And here’s how each element starts off:
.gallery img {
 margin: 5px;
 padding: 5px;
 width: 75px;
 border: solid 1px black;
 background: white;
}

You’ll notice that all the images are given explicit sizes with the width property. That’s
because this example uses slightly bigger pictures that are downsized when they’re
shown on the page. This technique is deliberate: It makes sure the browser has all
the picture data it needs to enlarge the image with a transform. If you didn’t take this
step, and used thumbnail-sized picture files, the enlarged version would be blurry.

277chapter 8: boosting styles with css3

 Creating Effects with
Transitions

Now for the hover effect. When the user moves the mouse over an image, the page
uses a transform to rotate and expand the image slightly:

.gallery img:hover {
 -webkit-transform: scale(2.2) rotate(10deg);
 -moz-transform: scale(2.2) rotate(10deg);
 -o-transform: scale(2.2) rotate(10deg);
}

Right now, this transform snaps the picture to its new size and position in one
step. But to make this effect look more fluid and natural, you can define an all-
encompassing transition in the normal state:

.gallery img {
 margin: 5px;
 padding: 5px;
 width: 75px;
 border: solid 1px black;
 -webkit-transition: all 1s;
 -moz-transition: all 1s;
 -o-transition: all 1s;
 background: white;
}

Now the picture rotates and grows itself over 1 second. Move the mouse away, and it
takes another second to shrink back to its original position.

poweR USeRS’ CliniC

The Future of CSS-Powered Effects
The examples on these pages just scratch the surface of
what transforms and transitions can do. Although these
features are far from being finalized, you can use several
experimental features to extend them further:

• 3-D transforms. When you get tired of moving
an element around in two dimensions, you can
use 3-D transforms to move, rotate, and warp it in
three-dimensional space. The creators of Safari have
a brief walkthrough at www.webkit.org/blog/386/
3d-transforms.

• Animations. Right now, transitions are limited to
fairly simple interactions—mostly, that’s when some-
one hovers with the mouse (using the :hover pseu-
doclass) or changes focus to an input control (using
:focus). The animation feature extends where you can
use transitions, allowing you to apply them dynami-
cally, in response to a JavaScript event. For example,
you might create a rotation effect that kicks in when
you click a button. You can read the specification at
www.w3.org/TR/css3-animations.

• A sprinkling of JavaScript. Add a little bit of code
to dynamically turn styles on and off, and you can
build complex chunks of user interface, like a 3-D im-
age carousel or a collapsible group of panels (often
called an accordion control). To see some examples
in action, visit http://css3.bradshawenterprises.com.

Right now, none of these features are worth the trouble.
First, they require lots of messy vendor-specific prefixes,
which makes mistakes all too easy and forces you to test
the page on every mainstream browser. Second, these fea-
tures aren’t available on many of today’s browsers. Anima-
tions, for instance, aren’t supported on any version of IE
or Opera (at the time of this writing), or on Firefox 4. And
trying to add a workaround is more work than using a dif-
ferent approach from the start.

Today, the best practical solution for animated effects is a
JavaScript library like jQuery UI or MooTools. But CSS3 is
the clear future of web effects, once the standards settle
down and modern browsers have colonized the computers
of the world.

3
Part Three: Building Web
Apps with Desktop Smarts
Chapter 9: Data Storage

Chapter 10: Offline Applications

Chapter 11: Communicating with the Web Server

Chapter 12: More Cool JavaScript Tricks

281

chapter
9

Data Storage

On the Web, there are two places to store information: on the web server, or
on the web client (the viewer’s computer). Certain types of data belong on
one, while others work better on the other.

The web server is the place to store sensitive information and data you don’t want
people tampering with. For example, if you fill your shopping cart at an online book-
store, your potential purchases are stored on the web server. The only data your
computer keeps is a tiny bit of tracking information that tells the website who you
are (so it knows which shopping cart is yours). Even with HTML5, there’s no reason
to change this setup—it’s safe, secure, and efficient.

But server-side storage isn’t the best bet for every website. Sometimes, it’s easier to
keep nonessential information on the web surfer’s computer. For example, local stor-
age makes sense for user preferences (for example, settings that influence how the
web page tailors its display) and application state (a snapshot of where the web ap-
plication is right now, so the web visitor can pick up at the same spot later on).

Before HTML5, the only way to get local storage was to use cookies, a mechanism
that was originally devised to transmit small bits of identifying information be-
tween web browsers and web servers. Cookies work perfectly well for storing small
amounts of data, but the JavaScript model for using them is a bit clunky. Cookies
also force you to fiddle with expiry dates and needlessly send your data back and
forth over the Internet with every web request.

HTML5 introduces a better alternative that lets you store information on your visi-
tor’s computer simply and easily. This data stays on the client indefinitely, isn’t sent
to the web server (unless you do it yourself), has plenty of room, and works through

282 html5: the missing manual

 Web Storage Basics Web Storage Basics

a couple of simple, streamlined JavaScript objects. This feature—called web storage—is
a particularly nice fit with the offline application feature explored in Chapter 10,
because it lets you build self-sufficient offline applications that can store all the in-
formation they need, even when there’s no web connection.

In this chapter, you’ll explore every corner of the web storage feature. You’ll also look
at another, even newer standard that lets some web browsers read the content from
other files on the computer’s hard drive.

Web Storage Basics
HTML5’s web storage feature lets a web page store some information on the viewer’s
computer. That information could be short-lived (so it disappears once the browser
is shut down), or it could be long-lived (so it’s still available days later, on subsequent
visits to the website).

Note: The name web storage is more than a little misleading. That’s because the information a page
stores is never on the Web—in fact, it never leaves the web surfer’s computer.

There are two types of web storage, and they revolve around two objects:

• Local storage uses the localStorage object to store data for your entire website,
permanently. That means if a web page stores local data, it will still be there
when the visitor returns the next day, the next week, or the next year. Of course,
most browsers also include a way to let users clear out local storage. Some web
browsers provide an all-or-nothing command that lets people wipe out local
data, in much the same way that you can clear out your cookies. (In fact, in
some browsers the two features are linked, so that the only way to clear local
data is to clear the cookies.) Other browsers may let their users review the stor-
age usage of each website, and clear the local data for specific sites.

• Session storage uses the sessionStorage object to store data temporarily, for a
single window (or tab). The data remains until the visitor closes that tab, at
which point the session ends and the data disappears. However, the session data
stays around if the user goes to another website and then returns to your site,
provided this all happens in the same window tab.

Tip: From the point of view of your web page code, both local storage and session storage work exactly
the same. The difference is just how long the data lasts. Using local storage is the best bet for information
you want to keep for future visits. Use session storage for data that you want to pass from one page to an-
other. (You can also use session storage to keep temporary data that’s used in just one page, but ordinary
JavaScript variables work perfectly well for that purpose.)

283chapter 9: data storage

 Web Storage Basics Web Storage Basics

Both local storage and session storage are linked to your website domain. So if you
use local storage on a page at www.GoatsCanFloat.org/game/zapper.html, that data
will be available on the page www.GoatsCanFloat.org/contact.html, because the do-
main is the same (www.GoatsCanFloat.org). However, other websites won’t be able
to see it or manipulate it.

Also, because web storage is stored on your computer (or mobile device), it’s linked
to that computer; a web page can’t access information that was stored locally on
someone else’s computer. Similarly, you get different local storage if you log on to
your computer with a different user name or fire up a different browser.

Note: Although the HTML5 specification doesn’t lay down any hard rules about maximum storage space,
most browsers limit local storage to 5 MB. That’s enough to pack in a lot of data, but it falls short if you
want to use local storage to optimize performance by caching large pictures or videos (and truthfully, this
isn’t what local storage is designed to do). For space-hoggers, the still-evolving IndexedDB database stor-
age standard (see the box on page 301) offers much more room—typically 50 MB to start and then more
if the user agrees.

Storing Data
To put a piece of information away into local storage or session storage, you first
need to think of a descriptive name for it. This name is called a key, and you need it
to retrieve your data later on.

The syntax for storing a piece of data is as follows:
localStorage[keyName] = data;

For example, imagine you want to store a piece of text with the current user’s name.
For this data, you might use the key name user_name, as shown here:

localStorage["user_name"] = "Marky Mark";

Of course, it doesn’t really make sense to store a hard-coded piece of text. Instead,
you’d store something that changes—for example, the current date, the result of a
mathematical calculation, or some text that the user has typed into a text box. Here’s
an example of the latter:

// Get a text box.
var nameInput = document.getElementById("userName");

// Store the text from that text box.
localStorage["user_name"] = nameInput.value;

Pulling something out of local storage is as easy as putting it in. For example, here’s
a line of code that grabs the previously stored name and shows it in a message box:

alert("You stored: " + localStorage["user_name"]);

This code works whether the name was stored five seconds ago or five months ago.

284 html5: the missing manual

 Web Storage Basics Web Storage Basics

Of course, it’s possible that nothing was stored at all. If you want to check whether
a storage slot is empty, you can test for a null reference. Here’s an example of that
technique:

if (localStorage["user_name"] == null) {
 alert ("You haven't entered a name yet.");
}
else {
 // Put the name into a text box.
 document.getElementById("userName").value = localStorage["user_name"];
}

Session storage is just as simple. The only difference is that you use the sessionStor-
age object instead of the localStorage object:

// Get the current date.
var today = new Date();

// Store the time as a piece of text in the form HH:mm.
sessionStorage["lastUpdateTime"] = today.getHours() + ":" + today.get-
Minutes();

Figure 9-1 shows a simple test page that puts all of these concepts together.

Figure 9-1:
This page has two
text boxes, one for
session storage and
one for local storage.
When you click Save,
the page stores the
values. Click Load
Data, and it brings
them back. To try this
out (and to verify
that session storage
disappears when the
window is closed but
that local storage
lives forever), run
this page at www.
prosetech.com/html5.

Note: Web storage also supports an alternate property syntax that’s a little less common. With prop-
erty syntax, you refer to a storage slot called “user_name” as localStorage.user_name rather than
localStorage[“user_name”]. There’s no reason to prefer one syntax to the other (other than personal
preference).

285chapter 9: data storage

 Web Storage Basics Web Storage Basics

TRoUbleShooTinG momenT

Web Storage Fails Without a Web Server
There’s an unexpected problem that can trip up your web
storage testing. In many browsers, web storage works
only when you’re requesting the pages from a live web
server. It doesn’t matter whether that web server is located
on the Internet or if it’s just a test server running on your
own computer—the important detail is that you aren’t just
launching the pages from your local hard drive.

This quirk is a side effect of the way that browsers dole out
their local storage space. As you’ve already learned, they
limit each website to 5 MB, and in order to do that, they
need to associate every page that wants to use local storage
to a website domain.

So what happens if you break this rule and open a web
page that uses web storage, straight from a file? It depends.

In Internet Explorer, the browser appears to lose its web
storage support completely. The localStorage and session-
Storage objects disappear, and trying to use them causes
a JavaScript error. In Firefox, the localStorage and session-
Storage objects remain, and support appears to be there
(even to Modernizr), but everything you try to store quietly
disappears into a void. And in Chrome, the result is dif-
ferent again—most of web storage works fine, but some
features (like the onStorage event) don’t work. You’ll see
the same issues when you use the File API (page 294). So
do yourself a favor and put your pages on a test server, so
you’re not tripped up by unexpected quirks. Or, run the
examples in this chapter from the try-out site at www.
prosetech.com/html5.

A Practical Example: Storing the Last Position in a Game
At this point, you might have the impression that there isn’t much to web storage,
other than remembering to pick a name and put it in square brackets. And you’d be
mostly right. But you can put local storage to some more practical purposes without
any extra effort.

For example, consider the canvas-based maze game you saw in Chapter 7 (page 229).
A maze might be too much trouble to solve in one go, in which case it makes sense
to store the current position when the user closes the window or navigates to a new
page. When the user returns to the maze page, your code can then restore the happy
face to its previous position in the maze.

There are several possible ways to implement this example. You could simply save a
new position after each move. Local storage is fast, so this wouldn’t cause any prob-
lem. Or, you could react to the page’s onBeforeUnload event to ask the game player
if it’s worth storing the current position (Figure 9-2).

286 html5: the missing manual

 Web Storage Basics Web Storage Basics

Figure 9-2:
When a visitor leaves
this page, either by
navigating to a new
site or closing the
window, the page
offers to store the
current position.

Here’s the code that offers to store the position details:
window.onbeforeunload = function(e) {
 // Check if the localStorage object exists (as there's no reason to offer
 // to save the position if it won't work).
 if (localStorage) {

 // Ask to save the position.
 if (confirm(
 "Do you want to save your current position in the maze, for next time?")) {
 // Store the two coordinates in two storage slots.
 localStorage["mazeGame_currentX"] = x;
 localStorage["mazeGame_currentY"] = y;
 }
 }
}

287chapter 9: data storage

 Web Storage Basics Web Storage Basics

Tip: Long key names, like mazeGame_currentX, are good. After all, it’s up to you to ensure that key
names unique, so two web pages on your website don’t inadvertently use the same name to store differ-
ent pieces of data. With just a single container that holds all your data, it’s all too easy to run into naming
conflicts, which is the one glaring weakness in the web storage system. To prevent problems, come up
with a plan for creating logical, descriptive key names. For example, if you have separate maze games on
separate pages, consider incorporating the page name into the key name, as in Maze01_currentX.)

When the page loads the next time, you can check to see whether this information exists:
// Is the local storage feature supported?
if (localStorage) {
 // Try to get the data.
 var savedX = localStorage["mazeGame_currentX"];
 var savedY = localStorage["mazeGame_currentY"];

 // If the variables are null, no data was saved.
 // Otherwise, use the data to set new coordinates.
 if (savedX != null) x = Number(savedX);
 if (savedY != null) y = Number(savedY);
}

This example shows how to store an application state. If you wanted to avoid show-
ing the same message each time the user leaves the game, you could add an “Auto-
matically save position” checkbox. You would then store the position if the checkbox
is switched on. Of course, you’d want to save the value of the checkbox too, and that
would be an example of storing application preferences.

This example also uses the JavaScript Number() function to make sure the saved
data is converted to valid numbers. You’ll learn why that’s important on page 289.

Browser Support for Web Storage
Web storage is one of the better-supported HTML5 features, with good support in
every modern browser. Table 9-1 lists the minimum versions you need.

Table 9-1. Browser support for local storage and session storage

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

8 3.5 5 4 10.5 2 2

All these browsers allow you to store data in local storage and session storage. How-
ever, support for the onStorage event (a less commonly used feature that you’ll con-
sider on page 292) is a bit more recent. For example, you’ll need IE 9, Firefox 4, or
Chrome 6 to use it.

The browser that’s most likely to cause a problem is IE 7, which doesn’t support web
storage at all. As a workaround, you can simulate web storage using cookies. The fit
isn’t perfect, but it works. And although there’s no official piece of script that plugs
that gap, you can find many decent starting points on the GitHub polyfill page at
http://tinyurl.com/polyfill (just look under the “Web Storage” section heading).

288 html5: the missing manual

Deeper into Web
Storage
Deeper into Web
Storage

Deeper into Web Storage
You now know the essentials of web storage—how to put information in, and how to
get it out again. However, there are several finer points and a few useful techniques
left to cover before you put it to use. In the following sections, you’ll see how to
remove items from web storage and how to examine all the currently stored items.
You’ll also learn to deal with different data types, store custom objects, and react
when the collection of stored items changes.

Removing Items
It couldn’t be easier. You use the removeItem() method, and the key name, to get rid
of a single piece of data you don’t want:

localStorage.removeItem("user_name");

Or, if you want to empty out all the local data your website has stored, use the more
radical clear() method:

sessionStorage.clear();

Finding All the Stored Items
To get a single piece of data out of web storage, you need to know its key name. But
here’s another neat trick. Using the key() method you can pull every single item out
of local or session storage (for the current website), even if you don’t know any key
names. This is a nifty technique when you’re debugging, or if you just want to review
what other pages in your site are storing, and what key names they’re using.

Figure 9-3 shows a page that puts this technique into practice.

Figure 9-3:
Click the button, and this page fills a list with the local
storage contents.

289chapter 9: data storage

Deeper into Web
Storage

Deeper into Web
Storage

When you click the button in this example, it triggers the findAllItems() function,
which scans through the collection of items in local storage. Here’s the code:

function findAllItems() {
 // Get the element for the list of items.
 var itemList = document.getElementById("itemList");

 // Clear the list.
 itemList.innerHTML = "";

 // Do a loop over all the items.
 for (var i=0; i<localStorage.length; i++) {
 // Get the key for the item at the current position.
 var key = localStorage.key(i);

 // Get the item that's stored with this key.
 var item = localStorage[key];

 // Create a new list item with this information,
 // and add it to the page.
 var newItem = document.createElement("li");
 newItem.innerHTML = key + ": " + item;
 itemList.appendChild(newItem);
 }
}

Storing Numbers and Dates
So far, the exploration into web storage has glossed over one important detail.
Whenever you store something in the localStorage or sessionStorage object, that
data is automatically converted to text.

For values that are already text (like the user name typed into a text box), there’s no
problem. But numbers aren’t as forgiving. Consider the example on page 287, which
stores the most recent face position in local storage. If you forget to convert the co-
ordinates from text to numbers, you can run into this sort of problem:

// Get the last x-coordinate position.
// For example, this might return the text "35"
x = localStorage["mazeGame_currentX"];

// Increment the position.
// Unfortunately, JavaScript converts “35”+”5” to “355”.
x += 10;

This clearly isn’t what you want. In fact, this code will cause the happy face to jump
to completely the wrong position, or right out of the maze.

290 html5: the missing manual

Deeper into Web
Storage

The issue here is that JavaScript assumes you’re trying to stick two pieces of text
together, rather than perform a mathematical operation. To solve the problem, you
need to give JavaScript a hint that you’re trying to work with numbers. Several solu-
tions are possible, but the Number() function works well:

x = Number(localStorage[“mazeGame_currentX”]);

// Now JavaScript calculates 35+10 properly, and returns 40.
x += 10;

Text and numbers are easy to deal with, but if you want to place other sorts of data
into web storage, you’ll need to handle them with care. Some data types have handy
conversion routines. For example, imagine you store a date like this:

var today = new Date();

This code doesn’t store a date object, but a text string, like Sat Jun 09 2011 13:30:46.
Unfortunately, there’s no easy way to convert this text back into a date object when
you pull it out of storage. And if you don’t have a date object, you won’t be able to
manipulate the date in same way—say, calling date methods and performing date
calculations.

To solve this problem, it’s up to you to explicitly convert the date into the text you
want, and then convert it back into a proper date object when you retrieve it. Here’s
an example:

// Create a date object.
var today = new Date();

// Turn the date into text string in the standard form YYYY/MM/DD,
// and store that text.
sessionStorage["session_started"] = today.getFullYear() + "/" +
 today.getMonth() + "/" + today.getDate();

...

// Now retrieve the date text, and use it to create a new date object.
// This works because the date text is in a recognizable format.
today = new Date(sessionStorage["session_started"]);

// Use the methods of the date object, like getFullYear().
alert(today.getFullYear());

Run this code, and the year appears in a message box, confirming that you’ve suc-
cessfully recreated the date object.

Storing Objects
In the previous section, you saw how to convert numbers and dates to text and back
again, allowing you to store them with web storage. These examples work because
the JavaScript language helps you out, first with the handy Number() function, and
then with the text-to-date conversion smarts that are hard-wired into date objects.
However, there are plenty of other objects that can’t be converted this way. This is
definitely the case if you create a custom object of your own.

291chapter 9: data storage

Deeper into Web
Storage

For example, consider the personality quiz you first saw in Chapter 7 (page 212).
The personality quiz uses two pages. On the first, the quiz-taker answers some ques-
tions and gets a score. On the second, the results are shown. In the original version
of this page, the information is passed from the first page to the second using query
string arguments that are embedded in the URL. This approach is traditional HTML
(although a cookie would work too). But in HTML5, local storage is the best way to
shuffle data around.

But here’s the challenge. The quiz data consists of five numbers, one for each per-
sonality factor. You could store each personality factor in a separate storage slot. But
wouldn’t it be neater and cleaner to create a custom object that packages up all the
personality information in one place? Here’s an example of a PersonalityScore object
that does the trick:

function PersonalityScore(o, c, e, a, n) {
 this.openness = o;
 this.conscientiousness = c;
 this.extraversion = e;
 this.agreeableness = a;
 this.neuroticism = n;
}

If you create a PersonalityScore object, you need just one storage slot, instead of five.
(For a refresher about how custom objects work in JavaScript, see page 217.)

To store a custom object in web storage, you need a way to convert the object to a
text representation. You could write some tedious code that does the work. But for-
tunately, there’s a simpler, standardized approach called JSON encoding.

JSON (JavaScript Object Notation) is a lightweight format that translates structured
data—like all the values that are wrapped in an object—into text. The best thing about
JSON is that browsers support it natively. That means you can call JSON.stringify()
to turn any JavaScript object into text, complete with all its data, and JSON.parse() to
convert that text back into an object. Here’s an example that puts this to the test with
the PersonalityScore object. When the test is submitted, the page calculates the score
(not shown), creates the object, stores it, and then redirects to the new page:

// Create the PersonalityScore object.
var score = new PersonalityScore(o, c, e, a, n);

// Store it, in handy JSON format.
sessionStore["personalityScore"] = JSON.stringify(score);

// Go to the results page.
window.location = "PersonalityTest_Score.html";

On the new page, you can pull the JSON text out of storage, and use the JSON.parse()
method to convert it back to the object you want. Here’s that step:

// Convert the JSON text to a proper object.
var score = JSON.parse(localStorage["personalityScore"]);

// Get some data out of the object.
lblScoreInfo.innerHTML = "Your extraversion score is " + score.extraversion;

292 html5: the missing manual

Deeper into Web
Storage

To see the complete code for this example, including the calculations for each per-
sonality factor, visit www.prosetech.com/html5. To learn more about JSON and take
a peek at what JSON-encoded data actually looks like, check out http://en.wikipedia.
org/wiki/JSON.

Reacting to Storage Changes
Web storage also gives you a way to communicate between different browser win-
dows. That’s because whenever a change happens to local storage or session storage,
the window.onStorage event is triggered in every other window that’s viewing the
same page or another page on the same website. So if you change local storage on
www.GoatsCanFloat.org/storeStuff.html, the onStorage event will fire in a browser
window for the page www.GoatsCanFloat.org/checkStorage.html. (Of course, the
page has to be viewed in the same browser and on the same computer, but you al-
ready knew that.)

The onStorage event is triggered whenever you add a new object to storage, change
an object, remove an object, or clear the entire collection. It doesn’t happen if your
code makes a storage operation that has no effect (like storing the same value that’s
already stored, or clearing an already-empty storage collection).

Consider the test page shown in Figure 9-4. Here, the visitor can add any value to
local storage, with any key, just by filling out two text boxes. When a change is made,
the second page reports the new value.

To create the example shown in Figure 9-4, you first need to create the page that
stores the data. In this case, clicking the Add button triggers a short addValue()
function that looks like this:

function addValue() {
 // Get the values from both text boxes.
 var key = document.getElementById("key").value;
 var item = document.getElementById("item").value;

 // Put the item in local storage.
 // (If the key already exists, the new item replaces the old.)
 localStorage[key] = item;
}

The second page is just as simple. When the page first loads, it attaches a function to
the window.onStorage event, using this code:

window.onload = function() {
 // Connect the onStorage event to the storageChanged() function.
 window.addEventListener("storage", storageChanged, false);
};

This code looks a little different than the event handling code you’ve seen so far.
Instead of setting window.onstorage, it calls window.addEventListener(). That’s
because this code is the simplest that works on all current browsers. If you set
window.onstorage directly, your code will work in every browser except Firefox.

293chapter 9: data storage

Deeper into Web
Storage

Note: Web graybeards may remember that the addEventListener() method doesn’t work on Internet
Explorer 8 (or older). In this example, that limitation is no cause for concern, because IE 8 doesn’t support
storage events anyway.

Figure 9-4:
To see the onStorage event in action, open
StorageEvents1.html and StorageEvents2.html
at the same time. When you add or change a
value in the first page (top), the second page
captures the event and reports it in the page
(bottom).

The storageChanged() function has a simple task. It grabs the updated information
and displays it in on the page, in a <div> element:

function storageChanged(e) {
 var message = document.getElementById("updateMessage");
 message.innerHTML = "Local storage updated.";
 message.innerHTML += "
Key: " + e.key;
 message.innerHTML += "
Old Value: " + e.oldValue;
 message.innerHTML += "
New Value: " + e.newValue;
 message.innerHTML += "
URL: " + e.url;
}

294 html5: the missing manual

 Reading Files

As you can see, the onStorage event provides several pieces of information, includ-
ing the key of the value that was changed, the old value, the newly applied value, and
the URL of the page that made the change. If the onStorage event is a reaction to the
insertion of a new item, the e.oldValue property is either null (in most browsers) or
an empty string (in Internet Explorer).

Note: If you have several pages open for the same website, the onStorage event occurs in each one,
except the page that made the change (in the current example, that’s StorageEvents1.html). However,
Internet Explorer is the exception—it doesn’t follow this rule, and fires the onStorage event in the original
page as well.

Reading Files
Web storage is a solidly supported part of HTML5. But it’s not the only way to access
information. Several new standards are creeping onto the field for different types of
storage-related tasks. One example is a standard called the File API, which techni-
cally isn’t a part of HTML5, but has good support across modern browsers (except
IE).

Based on its rather vague name, you might expect that the File API is a sweeping
standard for reading and writing files on a web browser’s hard drive. However, it’s
not that ambitious or powerful. Instead, the File API gives a way for a visitor to pick
a file from his hard drive, and hand it directly to the JavaScript code that’s running
on the web page. This code can then open the file and explore its data, whether it’s
simple text or something more complicated. The key thing is that the file goes di-
rectly to the JavaScript code. Unlike a normal file upload, it never needs to travel to
the web server.

It’s also important to note what the File API can’t do. Most significantly, it can’t
change a file or create a new one. If you want to store any data, you’ll need to use
another mechanism—for example, you can send your data to a web server through
XMLHttpRequest (page 325), or you can put it in local storage.

You might think that the File API is less useful than local storage—and for most
websites, you’d be right. However, the File API is also a toehold into a world where
HTML has never gone before, at least not without a plug-in to help.

Note: Right now, the File API is an indispensable feature for certain types of specialized applications, but
in the future its capabilities may expand to make it much more important. For example, future versions
may allow web pages to write local files, provided the user has control over the file name and location,
using a Save dialog box. Browser plug-ins like Flash already have this capability.

295chapter 9: data storage

 Reading Files

Getting Hold of a File
Before you can do anything with the File API, you need to get hold of a file. There are
three strategies you can use, but they are the same in one key fact—namely, your web
page only gets a file if the visitor explicitly picks it and gives it to you.

Here are your options:

• The <input> element. Set the type attribute to file, and you’ve got the standard
file upload box. But with a bit of JavaScript and the File API, you can open it
locally.

• A hidden <input> element. The <input> element is ugly. To get right with the
style police, you can hide your <input> element and make a nicer browser but-
ton. When it’s clicked, use JavaScript to call the click() method on the hidden
<input> element. This shows the standard file-selection dialog box.

• Drag-and-drop. If the browser supports it, you can drag a file from the desktop
or a file browser window and drop it on a region in the web page.

In the following sections, you’ll see all three approaches. But first, it’s worth taking a
look at the current state of browser support, so you can decide whether the File API
makes sense for your websites.

Browser Support for the File API
The File API doesn’t enjoy the same broad support as web storage. Table 9-2 shows
which browsers include it.

Table 9-2. Browser support for the File API

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

10* 3.6 8 6 11.1 - 3

*Currently, this version is available in early beta builds only.

The browser versions in this table can use all the examples in this chapter. However,
they almost certainly don’t implement all the File API features, because some part of
the standard (those that deal with binary blobs of data and “slicing” chunks of data)
are still changing.

Because the File API requires some privileges that ordinary web pages don’t have,
you can’t patch the missing feature with more JavaScript. Instead, you need to rely
on a plug-in like Flash or Silverlight. For example, you can find a polyfill at http://
sandbox.knarly.com/js/dropfiles that uses Silverlight to intercept a dragged file, open
it, and then pass the details to the JavaScript code on the page.

296 html5: the missing manual

 Reading Files

Reading a Text File
One of the easiest things you can do with the File API is read the content from a
simple text file. Figure 9-5 shows a web page that uses this technique to read the
markup in a web page and then display it.

Figure 9-5:
Click the Browse button (or Choose File,
as it’s named in Chrome), choose a file,
and then click OK. Instead of the usual
upload, the web page JavaScript takes it
from there, copying the content into your
page.

To build this example you start with the <input type="file"> element, which creates
the infamous text box and Browse button combination:

<input id="fileInput" type="file" onchange="processFiles(this.files)">

However, whereas an <input> element usually belongs in a <form> container so the
file can be posted to the web server, this <input> element goes its own way. When
the web page visitor picks a file, it triggers the <input> element’s onChange event,
and that triggers the processFiles() function. It’s here that the file is opened, in ordi-
nary JavaScript.

Now you’ll consider the processFiles() function, one piece at a time. The first order
of business is to grab the first file from collection of files that the <input> element
provides. Unless you explicitly allow multiple file selection (with the multiple attri-
bute), the files collection is guaranteed to hold just one file, which will be at position
0 in the files array:

function processFiles(files) {
 var file = files[0];

Note: Every file object has three potentially useful properties. The name property gives you its file name
(not including the path), the size property tells you how many bytes big it is, and the type property tells
you the MIME type of the file (page 153), if it can be determined. You could read these properties and
add additional logic—for example, you could refuse to process files above a certain size, or allow files of
only a certain type.

297chapter 9: data storage

 Reading Files

Next, you create a FileReader object that allows you to process the file:
 var reader = new FileReader();

It’s almost time to call one of the FileReader’s methods to extract the file content. All
of these methods are asynchronous, which means they start the file-reading task but
don’t wait for the data. To get the data, you first need to handle the onLoad event:

 reader.onload = function (e) {
 // When this event fires, the data is ready.
 // Copy it to a <div> on the page.
 var output = document.getElementById("fileOutput");
 output.textContent = e.target.result;
 };

Finally, with that event handler in place, you can call the FileReader’s readAsText()
method:

 reader.readAsText(file);
}

This method dumps all the file content into a single long string, which is provided in
the e.target.result that’s sent to the onLoad event.

The readAsText() method works properly only if the file holds text content (not
binary content). That means it suits HTML files perfectly well, as shown in Figure
9-5. However, there are other useful formats that use plain text. One good example
is the CSV format, which is a basic export format supported by all spreadsheet pro-
grams. Another example is the XML format, which is a standard way of exchang-
ing bunches of data between programs. (It’s also the foundation of the Office XML
formats, which means you can hand .docx and .xlsx files directly to the readAsText()
method as well.)

Note: The JavaScript language even has a built-in XML parser, which means you can browse around
an XML file and dig out just the content you need. Of course, the code this requires is considerable,
it performs poorly for large files, and it’s rarely easier than just uploading the file to a web server and
running your file-processing logic there. However, you can start to see how the File API can open up new
possibilities that HTML lovers didn’t dare imagine even just a few years ago.

The readAsText() is only one of a handful of file-reading methods. The FileReader
object also includes the following: readAsBinaryString(), readAsDataURL(), and
readAsArrayBuffer(), although the last one isn’t yet supported in Firefox.

The readAsBinaryString() method gives your application the ability to deal with
binary-encoded data, although it somewhat awkwardly sticks it into a text string,
which is inefficient. And if you actually want to interpret that data, you need to
struggle through some horribly convoluted code. Better support is planned for “slic-
ing” out small pieces of binary data, so you can process one chunk at a time. But at
the time of this writing, this feature is still being revised, and has been implemented
differently in different browsers. (You can read the latest standard at www.w3.org/
TR/FileAPI.)

298 html5: the missing manual

 Reading Files

The readAsDataURL() method gives you an easy way to grab picture data. You’ll use
that on page 301. But first, it’s time to make this page a bit prettier.

Replacing the Standard Upload Control
Web developers agree: The standard <input> control for file submission is ugly. And
although you do need to use it, you don’t actually need to let anyone see it. Instead,
you can simply hide it, with a style rule like this:

#fileInput {
 display: none;
}

Now add a new control that will trigger the file-submission process. An ordinary
link button will do, which you can make look as pretty as you want:

<button onclick="showFileInput()">Analyze a File</button>

The final step is to handle the button click and use it to manually trigger the <input>
element, by calling its click() method:

function showFileInput() {
 var fileInput = document.getElementById("fileInput");
 fileInput.click();
}

Now, when the button is clicked, the showFileInput() function runs, which clicks
the hidden Browse button and shows the dialog box where the visitor can pick a file.
This, in turn, triggers the hidden <input> element’s onChange event, which runs the
processFiles() function, just like before.

Reading Multiple Files at Once
There’s no reason to limit people to submitting one file at a time. HTML5 allows
multiple file submission, but you need to explicitly allow it by adding the multiple
attribute to the <input> element:

<input id="fileInput" type="file" onchange="processFiles(this.files)"
 multiple>

Now the user can select more than one file in the Open dialog box (for example, by
pressing Ctrl on a Windows computer while clicking several files, or by dragging
a box around a group of them). Once you allow multiple files, your code needs to
accommodate them. That means you can’t just grab the first file from the files col-
lection, as in the previous example. Instead, you need a for loop that processes each
file, one at a time:

for (var i=0; i<files.length; i++) {
 // Get the next file
 var file = files[i];

 // Create a FileReader for this file, and run the usual code here.
 var reader = new FileReader();
 reader.onload = function (e) {
 ...

299chapter 9: data storage

 Reading Files

 };
 reader.readAsText(file);
}

Reading an Image File
As you’ve seen, the FileReader handles text content in a single, simple step. It deals
will images just as easily, thanks to the readAsDataURL() method.

Figure 9-6 shows an example that introduces two new features: image support, and
file drag-and-drop. The submitted image is used to paint the background of an ele-
ment, although you could just as easily paint it on a canvas and process it using the
canvas’s raw pixel features (page 234). For example, you could use this technique to
create a page where someone can drop in a picture, draw on it or modify it, and then
upload the final result using an XMLHttpRequest call (page 325).

Figure 9-6:
There are two ways to
provide an image to this
page: Use the file con-
trols below, or drag one
or more images onto the
drop box.

To create this page, you first need to decide what element will capture the dropped
files. In this example, it’s a <div> element named dropBox:

<div id="dropBox">
 <div>Drop your image here...</div>
</div>

Some straightforward style sheet magic gives the drop box the size, borders, and
colors you want:

#dropBox {
 margin: 15px;
 width: 300px;
 height: 300px;
 border: 5px dashed gray;
 border-radius: 8px;

300 html5: the missing manual

 Reading Files

 background: lightyellow;
 background-size: 100%;
 background-repeat: no-repeat;
 text-align: center;
}

#dropBox div {
 margin: 100px 70px;
 color: orange;
 font-size: 25px;
 font-family: Verdana, Arial, sans-serif;
}

Keen eyes will notice that the drop box sets the background-size and background-
repeat properties in preparation for what comes next. When the image is dropped
onto the <div>, it’s set as the background. The background-size property ensures
that the picture is compressed down so you can see all of it at once. The background-
repeat property ensures that the picture isn’t tiled to fill the leftover space.

To handle file drops, you need to handle three events: onDragEnter, onDragOver,
and onDrop. When this page first loads, it attaches event handlers for all three:

var dropBox ;

window.onload = function() {
 dropBox = document.getElementById("dropBox");
 dropBox.ondragenter = ignoreDrag;
 dropBox.ondragover = ignoreDrag;
 dropBox.ondrop = drop;
};

The ignoreDrag() function handles both onDragEnter (which fires when the mouse
pointer enters the drop box, with a file attached) and onDragOver (which fires con-
tinuously, as the file-dragging mouse pointer moves over the drop box). That’s be-
cause you don’t need to react to either of these actions, other than to tell the browser
to hold off from taking any actions of its own. Here’s the code you need:

function ignoreDrag(e) {
 // Make sure nodoby else gets this event, because you’re handling
 // the drag and drop.
 e.stopPropagation();
 e.preventDefault();
}

The onDrop event is more important. It’s at this point that you get the file and pro-
cess it. However, because there are actually two ways to submit files to this page, the
drop() function calls the processFiles() function to do the actual work:

function drop(e) {
 // Cancel this event for everyone else.
 e.stopPropagation();
 e.preventDefault();

 // Get the dragged-in files.
 var data = e.dataTransfer;
 var files = data.files;

301chapter 9: data storage

 Reading Files

 // Pass them to the file-processing function.
 processFiles(files);
}

The processFiles() function is the last stop in the drag-and-drop journey. It creates
a FileReader, attaches a function to the onload event, and calls readAsDataURL() to
transform the image data into a data URL (page 192):

Note: As you learned when you explored the canvas, a data URL is a way of representing image data in a
long text string that’s fit for URL. This gives you a portable way to move the image data around. To show
the image content in a web page, you can set the src property of an element (as on page 193), or
you can set the CSS background-image property (as in this example).

function processFiles(files) {
 var file = files[0];

 // Create the FileReader.
 var reader = new FileReader();

 // Tell it what to do when the data URL is ready.
 reader.onload = function (e) {
 // Use the image URL to paint the drop box background
 dropBox.style.backgroundImage = "url('" + e.target.result + "')";
 };

 // Start reading the image.
 reader.readAsDataURL(file);
}

The FileReader provides several more events, and when reading image files you
might choose to use them. The onProgress event fires periodically during long op-
erations, to let you know how much data has been loaded so far. (You can cancel an
operation that’s not yet complete by calling the FileReader’s abort() method.) The
onError event fires if there was a problem opening or reading the file. And the on-
LoadEnd event fires when the operation is complete for any reason, including if an
error forced it to end early.

poweR USeRS’ CliniC

Into the World of Databases
Are you hungering for a more powerful local storage op-
tion? If text strings (web storage) and plain files (the File
API) aren’t exciting you anymore, how about having a com-
plete, miniature database running in your browser?

This ambitious idea isn’t just a dream. In fact, it’s already
been implemented once, in Chrome and Safari, according
to the Web Databases standard. However, the standard
failed to convince Firefox and is now considered obsolete.

In its place is the very new Indexed DB, which all brows-
er makers seem likely to implement. To get a preview,
you can read the scant Firefox documentation at http://
developer.mozilla.org/en/IndexedDB, or try out the ex-
perimental lab for Internet Explorer 9, which is available at
http://tinyurl.com/3fuvu9g.

303

chapter
10

Offline Applications

If you want to view a website, you need to connect to the Internet. Everybody
knows that by now. So why a chapter about offline applications? The very no-
tion seems so last century. After all, didn’t web applications overthrow several

generations of offline, desktop applications on their way to conquering the world?
And there are plenty of tasks—from following the latest Charlie Sheen sightings to
ordering a new office chair—that just wouldn’t be possible without a live, real-time
connection. But remember, even web applications aren’t meant to stay permanent-
ly online. Instead, they’re designed to keep working during occasional periods of
downtime when a computer loses its network connection. In other words, an offline
web application tolerates intermittent network disruptions.

This fact is particularly important for people using web-enabled phones and tablets.
To see the problem, try traveling through a long tunnel while working on a web ap-
plication with one of these devices. Odds are you’ll get a nasty error page, and you’ll
need to start all over again when you get to the other side. But do the same with an
offline web application, and you’ll avoid interruption. Some of the features of the
web application may become temporarily unavailable, but you won’t get booted out.
(Of course, some tunnels are longer than others. An ambitious offline web applica-
tion can keep working through a three-hour plane flight—or a three-week trip to
the Congo, if that’s what you’re after. There’s really no limit to how long you can stay
offline.)

In this chapter, you’ll learn how to turn any web page (or group of web pages) into an
offline application. You’ll also learn how to tell when a website is available and when
it’s offline, and react accordingly.

304 html5: the missing manual

 Caching Files with a
Manifest
 Caching Files with a
Manifest

FReqUenTly ASked qUeSTion

When It Makes Sense to Go Offline
Should I make my web page offline-able?

Offline web applications don’t suit every sort of web page.
For example, there’s really no point in turning a stock quote
page into an offline web application, because the whole
point of its existence is to fetch updated stock data from a
web server. However, the offline feature might suit a more
detailed stock analysis tool that downloads a bunch of data
at once and then lets you choose how to chart it or ana-
lyze it. Using a page like this, you could download some
data while you’re online and then tweak options and fiddle
with buttons until you reach the proverbial other side of
the tunnel.

The offline feature also suits web pages that are interac-
tive and stateful—ones that have piles of JavaScript code
maintaining lots of information in memory. These pages do

more on their own, so they make sense as offline applica-
tions. And the cost of losing your connection with one of
these pages is also higher (because being kicked out in the
middle of a complex task is seriously annoying). So while
there’s no point in making a simple page of content offline-
able, it’s immediately obvious that a word-processor-in-a-
browser tool can benefit from offline support. In fact, an
offline application like this might just be able to stand in for
a more fully-featured desktop program.

The other consideration is your audience. The offline ap-
plication feature makes great sense if your visitors include
people who don’t have reliable Internet connections or are
likely to need mobile access (for example, if you’re creating
a mapping tool for tablet devices). But if not, adding offline
support might not be worth the trouble.

Caching Files with a Manifest
The basic technique that makes offline applications work is caching—the technique
of downloading a file (like a web page) and keeping a copy of it on the web surfer’s
computer. That way, if the computer loses its web connection, the browser can still
use the cached copy of the page.

To create an offline application, you need to complete three steps:

1.	 Create	a	manifest	file.
A manifest is a special sort of file that tells browsers what files to store, what files
not to store, and what files to substitute with something else. This package of
cacheable content is called an offline application.

2.	 Modify	your	web	page	so	it	refers	to	the	manifest.
That way, the browser knows to download the manifest file when someone re-
quests the page.

3.	 Configure	the	web	server.
Most importantly, the web server needs to serve manifest files with the proper
MIME type. But as you’ll see, there are a few more subtle issues that can also
trip up caching.

You’ll tackle all these tasks in the following sections.

305chapter 10: offline applications

 Caching Files with a
Manifest

 Caching Files with a
Manifest

Up To Speed

Traditional Caching vs. Offline Applications
Caching is nothing new in the web world. Browsers use
caching regularly to avoid repeatedly downloading the
same files. After all, if you travel through several pages in
a website, and each page uses the same style sheet, why
download it more than once? However, the mechanism
that controls this sort of caching isn’t the same as the one
that makes offline applications work.

Traditional caching happens when the web server sends ex-
tra information (called cache-control headers) along with
some file that a web browser has requested. The headers
tell the browser if the file should be cached and how long
to keep the cached copy before asking the web server if the
file has changes. Typically, caching is brief for web pages

and much longer for the resources that web pages use, like
style sheets, pictures, and script files.

By comparison, an offline application is controlled a sepa-
rate file (called a manifest), and it doesn’t use any time
limit at all. Instead, it applies the following rule: “If a web
page is part of an offline application, if the browser has
a cached copy of that application, and if the definition of
that application hasn’t changed, then use the cached copy.”
You, the web developer, can add in certain exceptions—for
example, telling the browser not to cache certain files, or to
substitute one file for another. But there’s no need to worry
about expiration dates and other potentially messy details.

Creating a Manifest
The manifest is the heart of HTML5’s offline application feature. It’s a text file that
lists the files you want to cache.

The manifest always starts with the words “CACHE MANIFEST” (in uppercase),
like this:

CACHE MANIFEST

After that, you list the files you want to cache. Here’s an example that grabs two web
pages (from the personality test example described on page 212):

CACHE MANIFEST

PersonalityTest.html
PersonalityTest_Score.html

Spaces (like the blank line in the manifest shown above) are optional, so you can add
them wherever you want.

With an offline application, the browser must cache everything your application
needs. That includes web pages and the resources these web pages use (like scripts,
graphics, style sheets, and embedded fonts). Here’s a more complete manifest that
takes these details into account:

CACHE MANIFEST
pages
PersonalityTest.html
PersonalityTest_Score.html

styles & scripts

306 html5: the missing manual

 Caching Files with a
Manifest
 Caching Files with a
Manifest

PersonalityTest.css
PersonalityTest.js

pictures & fonts
Images/emotional_bear.jpg
Fonts/museo_slab_500-webfont.eot
Fonts/museo_slab_500-webfont.woff
Fonts/museo_slab_500-webfont.ttf
Fonts/museo_slab_500-webfont.svg

Here, you’ll notice two new details. First, you’ll see several lines that begin with a
number sign (#). These are comments, which you can add to remind yourself what
goes where. Second, you’ll see some files that are in subfolders (for example, emo-
tional_bear.jpg in the Images folder). As long as these files are on the web server and
accessible to the browser, you can bundle them up as part of your offline application
package.

Complex web pages will need a lot of supporting files, which can lead to long, com-
plex manifest files. Worst of all, a single mistyped file name will prevent the offline
application feature from working at all. In the future, leading web editors will im-
prove life. They’ll add features that will automatically create manifest files for the
pages you pick, and help you modify and maintain them.

Tip: You might decide to leave out some resources that are large or unimportant, like huge pictures or
ad banners. That’s quite all right, but if you think their absence might cause some trouble (like error mes-
sages, odd blank spaces, or scrambled layouts), consider using JavaScript to tweak your pages when the
user is offline, by using the connection-checking trick described on page 317.

Once you’ve filled out the contents of your manifest file, you can save it in the
root folder of your website, alongside your web pages. You can use whatever file
name you want, although two file extensions are currently popular: .manifest and
.appcache. The first choice (say, PersonalityTest.manifest) is the most logical, but
it conflicts with a file type already used on some Windows web servers (as part of
the ClickOnce deployment process used by .NET applications). The second choice
(as in PersonalityTest.appcache) is reasonable, but less common. The important
thing is that the web server is configured to recognize the file extension. If you’re
running your own web server, you can use the setup steps described on page 308.
If not, you need to talk to your web hosting company and ask them what file exten-
sions they use to support manifest files.

307chapter 10: offline applications

 Caching Files with a
Manifest

 Caching Files with a
Manifest

FReqUenTly ASked qUeSTion

How Much Can You Cache?
Are there limits on how much information can be cached?

Different browsers impose wildly different size restrictions
on offline applications.

Mobile browsers are an obvious example. Because they
run on space-limited devices, they tend to be stingy with
their caching. At this writing, the version of Safari that runs
on the iPad and iPhone limits each offline application to 5 MB
of space.

Desktop browsers are surprisingly inconsistent. In Firefox, a
cached application can swallow up to 50 MB of space with
the default settings, and the person using the browser can
increase this limit. (To apply custom cache settings, choose
Options from the Firefox menu, click the Advanced icon,
and choose the Network tab.) However, Chrome grants
offline applications a measly 5 MB of space, unless you de-
velop a dedicated Chrome app (http://code.google.com/
chrome/extensions/apps.html) or use a clumsy configura-
tion hack (http://tinyurl.com/5w83opp). Chrome develop-
ers plan to remove this limitation in the future and give
the user explicit control over how much storage space each

website gets, but for now the 5 MB limit remains as a stop-
gap measure.

Unfortunately, the lack of consistency among browsers
is a problem. If you create an offline application that at-
tempts to includes more than 5 MB of data, it will work
fine in Firefox, but not in Chrome. Even worse, every time
a Chrome user visits your site, Chrome will attempt to
cache the application, fail when it hits the size limit, and
then throw all the downloaded data away. Not only will you
waste time and bytes, but your Chrome users won’t get any
offline benefits. They’ll be locked out of your application
unless they’re online.

The bottom line is this: In the future, offline applications
will probably have large amounts of space at their disposal.
But right now, web developers must assume that they’re
working with a much more limited 5 MB sliver. As a conse-
quence, it’s probably not practical to use the offline applica-
tion feature to improve performance (by downloading big,
commonly used files and storing them permanently). But
expect this situation to change someday soon.

Using Your Manifest
Just creating a manifest isn’t enough to get a browser to pay attention. To put your
manifest into effect, you need to refer to it in your web pages. You do that by adding
the manifest attribute to the root <html> element and supplying the manifest file
name, like this:

<!DOCTYPE html>
<html lang="en" manifest="PersonalityTest.manifest">
...

You need to take this step for every page that’s part of your offline application. In the
previous example, that means you need to change two files: PersonalityTest.html and
PersonalityTest_Score.html.

Note: A website can have as many offline applications as you want, as long as each one has its own
manifest. Offline applications can also use some of the same resources (like style sheets), but each one
must have its own distinct collection of web pages.

308 html5: the missing manual

 Caching Files with a
Manifest
 Caching Files with a
Manifest

Putting Your Manifest on a Web Server
Testing manifest files can be a tricky process. Minor problems can cause silent fail-
ures and throw off the entire caching process. Still, at some point you’ll need to give
it a try to make sure your offline application is as self-sufficient as you expect.

It should come as no surprise that you can’t test offline applications when you’re
launching files from your hard drive. Instead, you need to put your application on
a web server (or use a test web server that runs on your computer, like the IIS web
server that’s built into Windows).

To test an offline application, follow these steps:

1.	 Make	sure	the	web	server	is	configured	to	serve	manifest	files	with	the	MIME	
type	text/cache-manifest.
If the web server indicates that the file is any other type, including a plain text
file, the browser will ignore the manifest completely.

Note: Every type of web server software works differently. Depending on your skills, you may need the
help of your neighborhood webmaster to set MIME types (step 1) and change caching settings (step 2).
Page 153 has more information about MIME types.

2.	 Consider	turning	off	traditional	caching	(page	305)	for	manifest	files.
Here’s the problem. Web servers may tell web browsers to cache manifest files
for a short period of time, just as they tell them to cache other types of files. This
behavior is reasonable enough, but it can cause king-sized testing headaches.
That’s because when you update the manifest file, some browsers will ignore
it and carry on with the old, cached manifest file, and so they’ll keep using the
old, cached copies of your web pages. (Firefox has a particularly nasty habit of
sticking with out-of-date manifest files.) To avoid this problem, you should con-
figure the web server to tell browsers not to cache manifest files.

3.	 Request	 the	 page	 in	 a	 web	 browser	 that	 supports	 offline	 applications—in	
other	words,	virtually	any	browser	other	than	Internet	Explorer.	(Get	the	low-
down	on	page	295.)
When a web browser discovers a web page that uses a manifest, it may ask for
your permission before downloading the files. Mobile devices probably will,
because they have limited space requirements. Desktop browsers may or may
not—for example, Firefox does (see Figure 10-1), but Chrome and Safari don’t.
If you give your browser permission (or if your browser doesn’t ask for it), the
caching process begins. The browser downloads the manifest and then down-
loads each of the files it references. This downloading process takes place in the
background and doesn’t freeze up the page. It’s just the same as when a browser
downloads a large image or video, while displaying the rest of the page.

309chapter 10: offline applications

 Caching Files with a
Manifest

 Caching Files with a
Manifest

Figure 10-1:
Firefox shows this
message when it loads
a web page that uses
a manifest. Click Allow
to grant permission to
download and cache
all the files that are
listed in the manifest.
On subsequent visits,
when Firefox detects
a changed manifest, it
will download the new
files without asking for
permission again.

4.	 Go	offline.
If you’re testing on a remote server, just disconnect your network connection. If
you’re testing on a local web server (one that’s running on your computer), shut
your website down (Figure 10-2).

Figure 10-2:
The exact way you shut down your
test website depends on the type of
web server software you’re using.
In the Windows-based IIS software
(shown here), a simple right-click
gets you started.

310 html5: the missing manual

 Caching Files with a
Manifest
 Caching Files with a
Manifest

5.	 Browse	to	one	of	the	pages	in	your	offline	application,	and	refresh	it.
Even if you’ve told a browser not to cache a page, it sometimes will, just so you
can step through your surfing history with the Back button. But when you click
the Refresh or Reload button, the browser always tries to make contact with
the web server. If you’re requesting an ordinary page, this request will fail. But
if you’re requesting a page from an offline application, the browser seamlessly
substitutes the cached copy, without even informing you of the switch. You can
even click links to jump from one page to another, but if you navigate to a page
that’s not part of the offline application, you’ll get the familiar “no response”
error.

TRoUbleShooTinG momenT

My Offline Application Doesn’t Work Offline
The offline application feature is a bit fragile. A minor mis-
take can throw it all off. If you follow the steps described
above, but you get a “no response” error when you at-
tempt to access your offline pages, check for these com-
mon problems:

• Problems downloading the manifest. If the
manifest isn’t there, or isn’t accessible to the browser,
you’ll have an obvious problem. But equally impor-
tant is serving the manifest with the right MIME type
(page 153).

• Problems downloading the files that are listed
in the manifest. For example, imagine that your
manifest includes a picture that no longer exists. Or
it asks for a web font file, and that font file uses a file
type that your web server doesn’t allow. Either way,
if the browser fails to download even a single file, it

will give up completely (and throw away any cached
information it already has). To avoid this problem,
start simple, with a manifest that lists just a single
web page and no resources. Or, in more complex ex-
amples, look at the web server logs to find out exactly
what resources the browser has requested (which
may tell you the point at which it met an error and
gave up).

• An old manifest is still cached. Browsers can cache
the manifest file (according to the traditional cach-
ing rules of the Web) and ignore the fact that you’ve
changed it. One of the signs that you’ve stumbled
into this problem is when some pages are cached but
other, more recently added pages are not. To solve
this problem, consider manually clearing the browser
cache (see the box on page 312).

Updating the Manifest File
Getting an application to work offline is the first challenge. The next is updating it
with new content.

For example, consider the previous example (page 305), which caches two web pag-
es. If you update PersonalityTest.html, fire up your browser, and reload the page,
you’ll still see the original, cached version of the page—regardless of whether your
computer is currently online. The problem here is that once a browser has a cached
copy of an application, it uses that. The browser ignores the online versions of the
associated web pages and doesn’t bother to check if they’ve changed. And because
offline applications never expire, it doesn’t matter how long you wait—even months
later, the browser will stubbornly ignore changed pages.

311chapter 10: offline applications

 Caching Files with a
Manifest

 Caching Files with a
Manifest

However, the browser will check for a new manifest file. So save a new copy of that,
put in on the web server, and you’ve solved the problem, right?

Not necessarily. To trigger an update for a cached web application, you need to meet
three criteria:

• The manifest file can’t be cached in the browser. If the browser has a local-
ly cached copy of the manifest file, it won’t bother to check the web server at
all. Browsers differ on how they handle manifest file caching, with some (like
Chrome) always checking with the web server for new manifests. But Firefox
follows the traditional rules of HTTP caching, and holds onto its cached copy
for some time. So if you want to save yourself development headaches, make
sure your web server explicitly tells clients that they shouldn’t cache manifests
(page 308).

• The manifest file needs a new date. When a browser checks the server, the first
thing it does is ask if the last-updated timestamp has changed. If it hasn’t, the
web browser doesn’t bother to download the manifest file.

• The manifest file needs new content. If a browser downloads a newly updated
manifest file but discovers the content hasn’t changed, it stops the update pro-
cess and keeps using the previously cached copy. This potentially frustrating
step actually serves a valuable purpose. Re-downloading a cached application
takes time and uses up network bandwidth, so browsers don’t want to do it if it’s
really not necessary.

If you’ve been following along carefully, you’ll notice a potential problem here. What
if there’s no reason to change the manifest file (because you haven’t added any files),
but you do need to force browsers to update their application cache (because some of
the existing files have changed)? In this situation, you need to make a trivial change
to the manifest file, so it appears to be new when it isn’t. The best way to do so is with
a comment, like this:

CACHE MANIFEST
version 1.00.001
pages
PersonalityTest.html
PersonalityTest_Score.html

styles & scripts
PersonalityTest.css
PersonalityTest.js

pictures & fonts
Images/emotional_bear.jpg
Fonts/museo_slab_500-webfont.eot
Fonts/museo_slab_500-webfont.woff
Fonts/museo_slab_500-webfont.ttf
Fonts/museo_slab_500-webfont.svg

The next time you need browsers to update their caches, simply change the version
number in this example to 1.00.002, and so on. Presto—you now have a way to force
updates and keep track of how many updates you’ve uploaded.

312 html5: the missing manual

 Caching Files with a
Manifest

Updates aren’t instantaneous. When the browser discovers a new manifest file, it
quietly downloads all the files, and uses them to replace the old cache content. The
next time the user visits the page (or refreshes the page), the new content will appear.
If you want to switch over to the newly downloaded application right away, you can
use the JavaScript technique described on page 319.

Note: There is no incremental way to update an offline application. When the application has changed,
the browser tosses out the old and downloads every file again, even if some files haven’t changed.

Gem in The RoUGh

Clearing The Browser’s Cache
When testing an offline application, it’s often helpful to
manually clear the cache. That way, you can test new up-
dates without needing to change the manifest.

Every browser has a way to clear the cache, but every
browser tucks it away somewhere different. The most use-
ful browsers keep track of how much space each offline

application uses (see Figure 10-3). This lets you deter-
mine when caching has failed—for example, the applica-
tion’s website isn’t listed or the cached size isn’t as big as
it should be. It also lets you remove the cached files for a
single site without disturbing the others.

Browser Support for Offline Applications
By now, you’ve probably realized that all major browsers support offline applica-
tions, aside from the notable HTML5 laggard, Internet Explorer. Support stretches
back several versions, which all but ensures that Firefox, Chrome, and Safari users
will be able to run your applications offline. Table 10-1 lays out the specifics.

Table 10-1. Browser support for offline applications

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

- 3.5 5 4 10.6 2.1 2

However, the way that different browsers support offline applications isn’t com-
pletely consistent. The most important difference is the amount of space they allow
offline applications to fill. This variation is significant, because it sets the difference
between websites that will be cached for offline access and ones that won’t (see the
box on page 307).

There’s no worthwhile way to get offline application support on browsers that don’t
include it as a feature (like IE 9). However, this shouldn’t stop you from using the
offline application feature. After all, offline applications are really just a giant frill.

313chapter 10: offline applications

 Caching Files with a
Manifest

Web browsers that don’t support them will still work, they’ll just require a live web
connection. And people that need offline support—for example, frequent travelers—
will discover the value of having a non-IE browser on hand for their disconnected
times of need.

Figure 10-3:
Top: In the Firefox menu, click
Options, choose the Advanced icon,
and then choose the Network tab
to end up here. You can review the
space usage of every website, or
clear the cached resources of any
one, by selecting it and clicking
Remove. In this example, there’s just
one cached website, on the domain
localhost (which represents a test
server on the current computer).

Bottom: To get a similar display
in Chrome, type about:appcache-
internals into the address bar.

314 html5: the missing manual

Practical Caching
Techniques

Practical Caching Techniques
So far, you’ve seen how to package up a group of pages and resources as an offline
application. Along the way, you learned to write a manifest file, update it, and make
sure browsers don’t ignore your hard work. This knowledge is enough to put simple
applications offline. However, more complex websites sometimes need more. For ex-
ample, you might want to keep some content online, substitute different pages when
offline, or determine (in code) whether the computer has a live Internet connection.
In the following sections, you’ll learn how to accomplish all these tasks with smarter
manifest files and a dash of JavaScript.

Accessing Uncached Files
Earlier, you learned that once a page is cached, the web browser uses that cached
copy and doesn’t bother talking to any web servers. But what you might not realize is
that the browser’s reluctance to go online applies to all the resources an offline web
page uses, whether they’re cached or not.

For example, imagine you have a page that uses two pictures, using this markup:

However, the manifest caches just one of the pictures:
CACHE MANIFEST
PersonalityTest.html
PersonalityTest_Score.html

PersonalityTest.css
PersonalityTest.js

Images/emotional_bear.jpg

You might assume that a browser will grab the emotional_bear.png picture from its
cache, while requesting logo.png from the web server (as long as the computer is
online). After all, that’s the way it works in your browser when you step from a
cached web page to an uncached page. But here, the reality is different. The browser
grabs emotional_bear.jpg from the cache but ignores the uncached logo.png graphic,
displaying a broken-image icon or just a blank space on the page, depending on the
browser.

To solve this problem, you need to add a new section to your manifest. You title this
section with a “NETWORK:” title, followed by a list of the pages that live online:

CACHE MANIFEST
PersonalityTest.html
PersonalityTest_Score.html

PersonalityTest.css
PersonalityTest.js

315chapter 10: offline applications

Practical Caching
Techniques

Images/emotional_bear.jpg

NETWORK:
Images/logo.png

Now the browser will attempt to get the logo.png file from the web server when the
computer is online, but not bother to do anything when it’s offline.

At this point, you’re probably wondering why you would bother to explicitly list files
you don’t want to cache. It could be for space considerations—for example, maybe
you’re leaving out large files to make sure your application can be cached on brows-
ers that have only 5 MB of cache space (page 307).

But a more likely situation is that you have content that should be available when
requested but never cached—for example, tracking scripts or dynamically generated
ads. In this case, the easiest solution is to add an asterisk (*) in your network section.
That’s a wildcard character that tells the browser to go online to get every resource
you haven’t explicitly cached:

NETWORK:
*

You can also use the asterisk to target files of a specific type (for example, *.jpg refers
to all JPEG images) or all the files on a specific server (for example, http://www.
google-analytics.com/* refers to all the resources on the Google Analytics web domain).

Note: It might occur to you that you could simplify your manifest by using the asterisk wildcard in the list
of cached files. That way, you could cache bunches of files at once, rather than list each one individually.
Unfortunately, the asterisk isn’t supported for picking cached files, because the creators of HTML5 were
concerned that careless web developers might try to cache entire mammoth websites.

Adding Fallbacks
Using a manifest, you tell the browser what files to cache and (using the network
section) what files to get from the Web. Manifests also support one more trick: a
fallback section that lets you swap one file for another, depending on whether the
computer is online or offline.

To create a fallback section, start with the “FALLBACK:” title, which you can place
anywhere in your manifest. Then, list files in pairs on a single line. The first file name
is the file to use when online; the second file name is the offline fallback:

FALLBACK:
PersonalityScore.html PersonalityScore_offline.html

The web browser will download the fallback file (in this case, that’s PersonalityScore_
offline.html) and add it to the cache. However, the browser won’t use the fallback file
unless the computer is offline. While it’s online, the browser will request the other
file (in this case, PersonalityScore.html) directly from the web server.

316 html5: the missing manual

Practical Caching
Techniques

Note: Remember, you don’t have to be disconnected from the Web to be “offline” with respect to a web
application. The important detail is whether the web domain is accessible—if it doesn’t respond, for any
reason, that web application is considered to be offline.

There are plenty of reasons to use a fallback. For example, you might want to substi-
tute a simpler page when offline, a page that doesn’t use the same scripts, or smaller
resources. You can put the fallback section wherever you want, so long as it’s pre-
ceded by the section title:

CACHE MANIFEST
PersonalityTest.html
PersonalityTest_Score.html

PersonalityTest.css

FALLBACK:
PersonalityScore.html PersonalityScore_offline.html
Images/emotional_bear.jpg Images/emotional_bear_small.jpg
PersonalityTest.js PersonalityTest_offline.js

NETWORK:
*

Note: Incidentally, the files that you want to cache are part of the CACHE: section in the manifest. You can
add the section title if you want, but you don’t need it unless you want to list files after one of the other
sections.

The fallback section also supports wildcard matching. This feature lets you create a
built-in error page, like this:

FALLBACK:
/ offline.html

Now, imagine someone attempts to request a page that’s in the same website as the
offline application, but isn’t in the cache. If the computer is online, the web browser
tries to contact the web server and get the real page. But if the computer is offline, or
if the website is unreachable, or if the requested page quite simply doesn’t exist, the
web browser shows the cached offline.html page instead (Figure 10-4).

The previous example used the somewhat arbitrary convention of using a single
forward slash character (/) to represent any page. This might strike you as a bit odd,
considering that the network section uses the asterisk wildcard character for much
the same purpose. And some web browsers, like Firefox, do let you use the asterisk
in the fallback section. That means you can duplicate the previous example like this:

FALLBACK:
* offline.html

317chapter 10: offline applications

Practical Caching
Techniques

Figure 10-4:
Here the page ImaginaryPage.html doesn’t exist.
Interestingly, the browser doesn’t update the
address bar, so the visitor has no way of knowing
the exact name of the error page.

And you can write more targeted fallbacks that match all the files in a specific
subfolder:

FALLBACK:
http://www.superAppsOnSteroids.org/paint_app/* offline.html

Or ones that match certain types of files:
FALLBACK:
*.jpg missig_picture.jpg

Unfortunately, other browsers don’t understand this sensible syntax—at least not
yet.

Checking the Connection
The fallback section is the secret to a handy JavaScript trick that allows you to de-
termine whether the browser is currently online. If you’re an old-hand JavaScript
developer, you probably know about the navigator.onLine property, which provides
a slightly unreliable way to check whether the browser is currently online. The prob-
lem is that the onLine property really reflects the state of the browser’s “work of-
fline” setting, not the actual presence of an Internet connection. And even if the
onLine property were a more reliable indicator of connectivity, it still wouldn’t tell
you whether the browser failed to contact the web server or whether it failed to
download the web page for some other reason.

The solution is to use a fallback that loads different versions of the same JavaScript
function, depending on whether the application is online or offline. Here’s how you
write the fallback section:

FALLBACK:
online.js offline.js

318 html5: the missing manual

Practical Caching
Techniques

The original version of the web page refers to the online.js JavaScript file:
<!DOCTYPE html>
<html lang="en" manifest="personality.manifest">
<head>
 <meta charset="utf-8">
 <title>...</title>
 <script src="online.js"></script>
 ...

It contains this very simple function:
function isSiteOnline() {
 return true;
}

But if the online.js file can’t be accessed, the browser substitutes the offline.js file,
which contains a method with the same name, but a different result:

function isSiteOnline() {
 return false;
}

In your original page, whenever you need to know the status of your application,
check with the isSiteOnline() function:

var displayStatus = document.getElementById("displayStatus");
if (isSiteOnline()) {
 // (It's safe to run tasks that require network connectivity, like
 // contacting the web server through XMLHttpRequest.)
 displayStatus.innerHTML = "You are connected and the web server is online.";
}
else {
 // (The application is running offline. You may want to hide or
 // programmatically change some content, or disable certain features.)
 displayStatus.innerHTML = "You are running this application offline.";
}

Pointing Out Updates with JavaScript
You can interact with the offline application feature using a relatively limited Java-
Script interface. It all revolves around an object called applicationCache.

The applicationCache object provides a status property that indicates whether the
browser is checking for an updated manifest, downloading new files, or doing some-
thing else. This property changes frequently and is nearly as useful as the comple-
mentary events (listed in Table 10-2), which fire as the applicationCache switches
from one status to another.

319chapter 10: offline applications

Practical Caching
Techniques

Table 10-2. Caching events

Event Description
onChecking When the browser spots the manifest attribute in a web page, it fires this

event and checks the web server for the corresponding manifest file.

onNoUpdate If the browser has already downloaded the manifest, and the manifest
hasn’t changed, it fires this event and doesn’t do anything further.

onDownloading Before the browser begins downloading a manifest (and the pages it refer-
ences), it fires this event. This occurs the first time it downloads the manifest
files, and during updates.

onProgress During a download, the browser fires this event to periodically report its
progress.

onCached This event signals the end of a first-time download for a new offline applica-
tion. No more events occur after this.

onUpdateReady This event signals the end of a download to get updated content. At this
point, the new content is ready to use, but it won’t appear in the browser
window until the page is reloaded. No more events occur after this.

onError Something went wrong somewhere along the process. The web server might
not be reachable (in which case the page will have switched into offline
mode), the manifest might have invalid syntax, or a cached resource might
not be available. If this event occurs, no more follow.

onObsolete While checking for an update, the browser discovered that the manifest no
longer exists. It then clears the cache. The next time the page is loaded, the
browser will get the live, latest version from the web server.

Note: At the time of this writing, browsers don’t all support the caching events equally. Firefox, for
example, ignores useful events like onChecking and onUpdateReady, although it does fire onNoUpdate
and onError.

The most useful event is onUpdateReady, which signals that a new version of the
application has been downloaded. Even though the new version is ready for use, the
old version of the page has already been loaded into the browser. You may want to
inform the visitor of the change, in much the same way that a desktop application
does when it downloads a new update:

<script>
window.onload = function() {

 // Attach the function that handles the onUpdateReady event.
 applicationCache.onupdateready = function() {
 var displayStatus = document.getElementById("displayStatus");
 displayStatus.innerHTML = "There is a new version of this application. " +
 "To load it, refresh the page.";
 }
}
</script>

320 html5: the missing manual

Practical Caching
Techniques

Or, you can offer to reload the page for the visitor using the window.location.reload()
method:

<script>
window.onload = function() {

 applicationCache.onupdateready = function() {
 if (confirm(
 "A new version of this application is available. Reload now?")) {
 window.location.reload();
 }
 }
}
</script>

Figure 10-5 shows this code at work.

Figure 10-5:
Here, the application offers to reload itself
with the newly downloaded content, if
the visitor clicks OK. (Otherwise, the new
content will appear the next time the page
is loaded or refreshed.)

The applicationCache also provides two methods for more specialized scenarios.
First is the confusingly named update() method, which simply checks for a new
manifest. If one exists, it starts the download process in the background. Otherwise,
it does nothing more.

321chapter 10: offline applications

Practical Caching
Techniques

Although browsers check for updates automatically, you can call update() if you
think the manifest has changed since the user first loaded the page. This method
might be important in a very long-lived web application—for example, one that us-
ers leave open on the same page, all day.

The second method is swapCache(), which tells the browser to start using the newly
cached content, if it has just downloaded an update. However, swapCache() doesn’t
change the page that’s currently on display—for that, you need a reload. So what
good is swapCache()? Well, by changing over to the new cache, anything that you
load from that point on—say, a dynamically loaded image—comes from the new
cache, not the old one. If managed carefully, swapCache() could give your page a way
to get access to new content without forcing a complete page reload (and potentially
resetting the current application to its initial state). But in most applications, swap-
Cache() is more trouble than it’s worth, and it can cause subtle bugs by mixing old
and new bits of the cache.

323

chapter
11

Communicating with the
Web Server

When you started your journey with HTML5, you began with its markup-
based features (like semantic elements, web forms, and video). But as
you progressed through this book, you slowly shifted your focus to web

page programming, and the JavaScript-powered parts of HTML5. Now, you’re about
to dip your toe into a few HTML5 features that take web page programming to the
next level. They not only require JavaScript code but also some server-side code—
code that runs on the web server, in whatever server-side programming language
you want to use.

Adding a server-side language to the mix poses a bit of a problem. On one hand, it
doesn’t matter what server-side programming language you pick, as long as it can
work with pure HTML5 pages (and they all can). On the other hand, there’s not
much point in getting knee-deep learning a technology that you don’t plan to use
or that your web host doesn’t support. And there’s no shortage of good choices for
server-side programming, including PHP, ASP.NET, Ruby, Java, Python, and many
more.

This chapter tackles the problem by using a small amount of very simple server-side
code. It’s just enough to round out each example and to let you test the HTML5 part
of the equation (that’s the JavaScript code in the web page). In your websites, you’ll
change and extend this server-side code, depending on what you’re trying to accom-
plish and which server-side language you prefer.

So what are these features that require server-side interaction? HTML5 provides two
new ways for your web pages to talk with a web server. The first feature is server-
sent events, which lets the web server call up your page and pass it information at

324 html5: the missing manual

Sending Messages to
the Web Server
Sending Messages to
the Web Server

periodic intervals. The second feature is the much more ambitious web sockets
framework, which lets browsers and web servers carry out a freewheeling back-and-
forth conversation. But before you explore either of these, you’ll start with a review
of the current-day tool for web server communication: the XMLHttpRequest object.

Note: Server-sent events and web sockets seem deceptively simple. It’s easy enough to learn how they
work and to create a very basic example (as in this chapter). But building on that to create something
that will work reliably on a professional website, and provide the sort of features you want, is an entirely
different matter. The bottom line is this: To implement these features in your website, you’ll probably need
to get the help of someone with some serious server-side programming experience.

Sending Messages to the Web Server
Before you can understand the new server communication features in HTML5, you
need to understand the situation that web pages were in before. That means explor-
ing XMLHttpRequest, the indispensable JavaScript object that lets a web page talk to
its web server. If you already know about XMLHttpRequest (and are using it in your
own pages), feel free to skip right over this section. But if your web page design ca-
reer so far consists of more traditional web pages, keep reading to get the essentials.

Up To Speed

The History of Web Server Involvement
In the early days of the Web, communicating with a web
server was a straightforward and unexciting affair. A brows-
er would simply ask for a web page, and the web server
would send it back. That was that.

A little bit later, software companies began to get clever.
They devised web server tools that could get in between
the first step (requesting the page) and the second step
(sending the page), by running some sort of code on the
web server. The idea was to change the page dynamically
(for example, by blurting out a block of markup in the
middle of it) or even to create a new page from scratch (for
example, by reading a record in a database and generating
a tailor-made page with product details).

And then web developers got even more ambitious, and
wanted to build pages that were more interactive. The
server-side programming tools could handle this, with a bit
of juggling, as long as the web browser was willing to re-
fresh the page. For example, if you wanted to add a product

to your e-commerce shopping cart, you would click a button
that would submit the current page (using web forms; see
Chapter 4) and ask for a new one. The web server could
then send back the same page or a different page (for ex-
ample, one that shows the contents of the shopping cart).
This strategy was wildly successful, and just a bit clunky.

Then, web developers got ambitious again. They wanted a
way to build slick web applications (like email programs)
without constantly posting back the page and regenerat-
ing everything from scratch. The solution was a set of
techniques that are sometimes called Ajax, but almost
always revolve around a special JavaScript object called
XMLHttpRequest. This object lets web pages contact the
web server, send some data, and get a response, without
posting or refreshing anything. That clears the way for
JavaScript to handle every aspect of the page experience,
including updating content. It also makes web pages seem
slicker and more responsive.

325chapter 11: communicating with the web server

Sending Messages to
the Web Server

Sending Messages to
the Web Server

The XMLHttpRequest Object
The chief tool that lets a web page speak to a web server is the XMLHttpRequest
object. The XMLHttpRequest object was originally created by Microsoft to improve
the web version of its Outlook email program, but it steadily spread to every modern
browser. Today, it’s a fundamental part of most modern web applications.

The basic idea behind XMLHttpRequest is that it lets your JavaScript code make a
web request on its own, whenever you need some more data. This web request takes
place asynchronously, which means the web page stays responsive even while the
request is under way. In fact, the visitor never knows that there’s a web request taking
place behind the scenes (unless you add some sort of message or progress indicator
to your page).

The XMLHttpRequest object is the perfect tool when you need to get some sort of
data from the web server. Here are some examples:

• Data that’s stored on the web server. This information might be in a file or,
more commonly, a database. For example, you might want a product or cus-
tomer record.

• Data that only the web server can calculate. For example, you might have a
piece of server-side code that performs a complex calculation. You could try to
perform the same calculation in JavaScript, but that might not be appropriate—
for example, JavaScript might not have the mathematical smarts you need, or
it might not have access to some of the data the calculation involves. Or, your
code might be super-sensitive, meaning you need to hide it from prying eyes or
potential tamperers. Or, the calculation might be so intensive that it’s unlikely
a desktop computer could calculate it as quickly as a high-powered web server
(think, for example, of a page that renders a 3-D scene). In all these cases, it
makes sense to do the calculation on the web server.

• Data that’s on someone else’s web server. Your web page can’t access someone
else’s web server directly. However, you can call a program on your web server
(using XMLHttpRequest), and that program can then call the other web server,
get the data, and return it to you.

The best way to really understand XMLHttpRequest is to start playing with it. In the
following sections, you’ll see two straightforward examples.

Asking the Web Server a Question
Figure 11-1 shows a web page that asks the web server to perform a straightforward
mathematical calculation. The message is sent through the XMLHttpRequest object.

326 html5: the missing manual

Sending Messages to
the Web Server
Sending Messages to
the Web Server

Figure 11-1:
Click the “Ask the Server” button, and
this web page creates an XMLHttpRe-
quest object and sends the two
numbers to the web server. The web
server runs a simple script to calculate
the answer and then returns the result
(shown later, in Figure 11-2).

Before you can create this page, you need some sort of server-side script that will run,
process the information you send it (in this case, that’s the two typed-in numbers),
and then send back a result. This trick is possible in every server-side programming
language ever created (after all, sending back a single scrap of text is easier than
sending a complete HTML document). This example uses a PHP script, largely be-
cause PHP is relatively simple and supported by almost all web hosting companies.

Creating the script
To create a PHP script, you first create a new text file. Inside that text file, you start
by adding the funny-looking codes shown here, which delineate the beginning and
end of your script:

<?php
 // (Code goes here.)
?>

In this example the code is straightforward. Here’s the complete script:
<?php
 $num1 = $_GET['number1'];
 $num2 = $_GET['number2'];
 $sum = $num1 + $num2
 echo($sum);
?>

Even if you aren’t a PHP expert, you probably have a pretty good idea of what this
code does, just by looking over it. The first order of business is to retrieve the two
numbers that the web page will have sent:

 $num1 = $_GET['number1'];
 $num2 = $_GET['number2'];

327chapter 11: communicating with the web server

Sending Messages to
the Web Server

Sending Messages to
the Web Server

The $ symbol indicates a variable, so this code creates a variable named $num1 and
another named $num2. To set the variables, the code pulls a piece of information out
of a built-in collection named $_GET. The $_GET collection holds all the informa-
tion from the URL that was used to request the script.

For example, if you place the PHP script in a file named WebCalculator.php, a web
request might look like this:

http://www.magicalXMLHttpRequestTest.com/WebCalculator.php?number1=34&number2=46

Here, the URL holds two pieces of information tacked onto the end (in the URL
section known as the query string). First, there’s a value named number1, which is
set to 34. Next is a value named number2, which is set to 46. The question mark (?)
denotes the start of the query string, and the ampersand symbol (&) precedes each
value after the first one. When the PHP engine fires up, it retrieves these details and
stuffs them into the $_GET collection, so your code can access them. (Most server-
side programming platforms support a model like this. For example, in ASP you can
access the same information through the Request.QueryString collection.)

Note: HTML veterans know that there are two ways to send data to a web server—through the query
string, or by posting it in the body of the request message. With either technique, the data is encoded
in the same way, and it’s accessed in the web server in a similar way as well. For example, PHP has a
$_POST collection that provides access to any posted data.

Once the PHP script has the two numbers in hand, it simply needs to add them
together:

 $sum = $num1 + $num2

The last step is to send the result back to the web page that’s making the request. You
could package the result up in a scrap of HTML markup or even some data-friendly
XML. But that’s overkill in this example, since plain text does just fine. But no mat-
ter what you choose, sending the data back is simply a matter of using PHP’s echo
command:

 echo($sum);

Altogether, this script contains a mere four lines of PHP code. However, it’s enough
to establish the basic pattern: The web page asks a question, and the web server
returns a result.

Note: Could you write this page entirely in JavaScript, with no web server request? Of course. But the
actual calculation isn’t important. The PHP script shown here is an example that stands in for whatever
server task you want to perform. You could make the PHP script as complex as you like, but the basic
exchange of data will stay the same.

328 html5: the missing manual

Sending Messages to
the Web Server
Sending Messages to
the Web Server

Calling the web server
The second step is to build the page that uses the PHP script, with the help of XML-
HttpRequest. It all starts out simply enough. In script code, an XMLHttpRequest
object is created, so it will be available in all your functions:

var req = new XMLHttpRequest();

When the user clicks the “Ask the Server” button, it calls a function named askServer():
<div>
 <p>Enter two numbers:
 <input id="number1" type="number">
 <input id="number2" type="number">
 </p>
 <p>To ask the server to add them, without refreshing the page, click
 this button:<button onclick="askServer()">Ask the Server</button>
 </p>
</div>
<p id="result"></p>

The askServer() function uses the XMLHttpRequest object to make its behind-the-
scenes request. First, it gathers the data it needs—the two numbers:

function askServer() {
 var number1 = document.getElementById("number1").value;
 var number2 = document.getElementById("number2").value;

Then, it uses this data to build a proper query string:
 var dataToSend = "?number1=" + number1 + "&number2=" + number2;

Now it’s ready to prepare the request. The open() method of the XMLHttpRequest
starts you out. It takes the type of HTTP operation (GET or POST), the URL you’re
using to make your request, and a true or false value that tells the browser whether
to do its work asynchronously:

 req.open("GET", "WebCalculator.php" + dataToSend, true);

Note: Web experts agree unanimously—the final open() argument should always be true, which enables
asynchronous use. That’s because no website is completely reliable, and a synchronous request (a request
that forces your code to stop and wait) could crash your whole web page while it’s waiting for a response.

Before actually sending the request, you need to make sure you have a function
wired up to the XMLHttpRequest’s onReadyStateChange event. This event is trig-
gered when the server sends back any information, including the final response
when its work is done:

 req.onreadystatechange = handleServerResponse;

329chapter 11: communicating with the web server

Sending Messages to
the Web Server

Sending Messages to
the Web Server

Now you can start the process with the XMLHttpRequest’s send() method. Just re-
member, your code carries on without any delay. The only way to read the response
is through the onReadyStateChange event, which may be triggered later on:

 req.send();

 document.getElementById("result").innerHTML = "The request has been sent.";
}

When you receive a response, you need to immediately check two XMLHttpRequest
properties. First, you need to look at readyState, a number that travels from 0 to 4
as the request is initialized (1), sent (2), partially received (3), and then complete
(4). Unless readyState is 4, there’s no point continuing. Next, you need to look at
status, which provides the HTTP status code. Here, you’re looking for a result of
200, which indicates that everything is OK. You’ll get a different value if you attempt
to request a page that’s not allowed (401), wasn’t found (404), has moved (302), or
is too busy (503), among many others. (See www.addedbytes.com/for-beginners/
http-status-codes for a full list.)

Here’s how the current example checks for these two details:
function handleServerResponse() {
 if ((req.readyState == 4) && (req.status == 200)) {

If those criteria are met, you can retrieve the result from the XMLHttpResponse’s
responseText property. In this case, the response is the new sum. The code then
displays the answer on the page (Figure 11-2):

 var result = req.responseText;
 document.getElementById("result").innerHTML = "The answer is: " +
 result + ".";
 }
}

Figure 11-2:
The web server has returned a
response, triggering a JavaScript func-
tion, which changed the page.

330 html5: the missing manual

Sending Messages to
the Web Server
Sending Messages to
the Web Server

XMLHttpRequest doesn’t make any assumptions about the type of data you’re re-
questing. The name of the object has XML in it because it was originally designed
with XML data in mind, simply because XML is a convenient, logical package for
parceling up structured information. However, XMLHttpRequest is also used with
requests for simple text (as in this example), JSON data (page 291), HTML (as in the
next example), and XML. In fact, non-XML uses are now more common than XML
uses, so don’t let the object name fool you.

Tip: You need to put your web pages on a test web server before you can use any server-side code,
including PHP scripts. To run the example pages in this chapter without the frustration, visit the try-out site
at www.prosetech.com/html5.

Getting New Content
Another scenario where XMLHttpRequest comes in handy is loading new HTML
content into a page. For example, a news article might contain multiple pictures but
show just one at a time. You click a button, and some JavaScript fetches the content
for the next picture, and inserts it in the page. Or, a page might use the same tech-
nique to show the slides in a top-five or top-10 list. Figure 11-3 shows a slideshow
example that shows a series of captioned pictures that accompany an article.

There are a number of reasons to use a design like the one shown in Figure 11-3.
Done skillfully, this technique can be a great way to tame huge amounts of content,
so it’s readily available but not immediately overwhelming. (In less capable hands,
it’s just a desperate attempt to boost page views by forcing readers to make multiple
requests to get all the content they want.)

The best way to design this sort of page is with the XMLHttpRequest object. That
way, the page can request new content and update the page without triggering a full
refresh. And full refreshes are bad, because they download extra data, cause the page
to flicker, and scroll the user back to the top. All of these details seem minor, but they
make the difference between a website that feels slick and seamless, and one that
seems hopelessly clunky and out of date.

To build the example in Figure 11-3, you first need to carve out a spot for the dy-
namic content. Here it’s a <div> element that creates a golden box and has two links
underneath:

<div id="slide">Click Next to start the show.</div>
< Previous
Next >

331chapter 11: communicating with the web server

Sending Messages to
the Web Server

Sending Messages to
the Web Server

Figure 11-3:
This page splits its content into separate
slides. Click the Previous or Next link to
load in a new slide, with different text
content and a new picture. To make this
work, the page uses the XMLHttpRe-
quest object to request the new content,
as it’s needed.

332 html5: the missing manual

Sending Messages to
the Web Server

The links call previousSlide() or nextSlide(), depending on whether the visitor is
traveling forward or backward in the list of sites. Both functions increment a coun-
ter that starts at 0, moves up to 5, and then loops back to 1. Here’s the code for the
nextSlide() function:

var slideNumber = 0;

function nextSlide() {
 // Move the slide index ahead.
 if (slideNumber == 5) {
 slideNumber = 1;
 } else {
 slideNumber += 1;
 }

 // Call another function that shows the slide.
 goToNewSlide();

 // Make sure the link doesn't actually do anything (like attempt
 // to navigate to a new page).
 return false;
}

And here’s the very similar code for previousSlide():
function previousSlide() {
 if (slideNumber == 1) {
 slideNumber = 5;
 } else {
 slideNumber -= 1;
 }

 goToNewSlide();
 return false;
}

Both functions rely on another function, goToNewSlide(), which does the real work.
It uses XMLHttpRequest to contact the web server and ask for the new chunk of
data.

The real question: Where does the ChinaSites.html page get its data from? Sophisti-
cated examples might call some sort of web service or PHP script. The new content
could be generated on the fly, or pulled out of a database. But this example uses a
low-tech solution that works on any web server—it looks for a file with a specific
name. For example, the file with the first slide is named ChinaSites1_slide.html,
the file with the second is ChinaSites2_slide.html, and so on. Each file contains a
scrap of HTML markup (not an entire page). For example, here’s the content in
ChinaSites5_slide.html:

<figure>
 <h2>Wishing Tree</h2>
 <figcaption>Make a wish and toss a red ribbon up into the branches
 of this tree. If it sticks, good fortune may await.</figcaption>

</figure>

333chapter 11: communicating with the web server

 Server-Sent Events

Now that you know where the data is stored, it’s easy enough to create an XML-
HttpRequest that grabs the right file. A simple line of code can generate the right
file name using the current counter value. Here’s the goToNewSlide() function that
does it:

var req = new XMLHttpRequest();

function goToNewSlide() {
 if (req != null) {
 // Prepare a request for the file with the slide data.
 req.open("GET", "ChinaSites" + slideNumber + "_slide" + ".html", true);

 // Set the function that will handle the slide data.
 req.onreadystatechange = newSlideReceived;

 // Send the request.
 req.send();
 }
}

The last step is to copy the retrieved data in the <div> that represents the current
slide:

function newSlideReceived() {
 if ((req.readyState == 4) && (req.status == 200)) {
 document.getElementById("slide").innerHTML = req.responseText;
 }
}

Tip: To give this example a bit more pizzazz, you could create a transition effect. For example, the new
picture could fade into the view while the old one fades out of sight. All you need is the opacity property
and a snippet of JavaScript that runs on a timer. (See http://clagnut.com/sandbox/imagefades.php for the
classic approach, or http://css3.bradshawenterprises.com/cfimg2/ for a style-based solution that uses the
new and not-yet-completely-supported CSS3 transitions feature.) This is one of the advantages of dynamic
pages that use XMLHttpRequest—they can control exactly how new content is presented.

This isn’t the last you’ll see of this example. In Chapter 12 (page 372), you’ll use
HTML5’s history management to manage the web page’s URL, so that the URL
changes to match the currently displayed slide. But for now, it’s time to move on to
two new ways to communicate with the web server.

Server-Sent Events
The XMLHttpRequest object lets your web page ask the web server a question and
get an immediate answer. It’s a one-for-one exchange—once the web server provides
its response, the interaction is over. There’s no way for the web server to wait a few
minutes and send another message with an update.

However, there are some types of web pages that could use a longer-term web server
relationship. For example, think of a stock quote on Google Finance (www.google.
com/finance). When you leave that page open on your desktop, you’ll see regular

334 html5: the missing manual

 Server-Sent Events

price updates appear automatically. Another example is a news ticker like the one at
www.bbc.co.uk/news. Linger here, and you’ll find that the list of headlines is updated
throughout the day. You’ll find similar magic bringing new messages into the inbox
of any web-based mail program, like Hotmail (www.hotmail.com).

In both these examples, the web page is using a technique called polling. Periodically
(say, every few minutes), the page checks the web server for new data. To implement
this sort of design, you use JavaScript’s setInterval() or setTimeout() functions (see
page 223), which trigger your code after a set amount of time.

Polling is a reasonable solution, but it’s sometimes inefficient. In many cases, it
means calling the web server and setting up a new connection, only to find out that
there’s no new data. Multiply this by hundreds or thousands of people using your
website at once, and it can add up to an unnecessary strain on your web server.

One possible solution is server-sent events, which let a web page hold an open con-
nection to the web server. The web server can send new messages at any time, and
there’s no need to continually disconnect, reconnect, and run the same server script
from scratch. (Unless you want to, because server-sent events also support polling.)
Best of all, the server-sent event system is simple to use, works on most web hosts,
and is sturdily reliable. However, it’s relatively new, as Table 11-1 attests, with no sup-
port in current versions of Firefox or Internet Explorer.

Table 11-1. Browser support for server-sent events

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

- 6* 5 5 11 4 -

*Currently, this version is available in early beta builds only.

Note: If you’re looking for a polyfill that can fake server-sent event support using polling, there are several
candidates worth checking out at http://tinyurl.com/polyfills.

In the following sections, you’ll put together a simple example that demonstrates
server-sent events.

The Message Format
Unlike XMLHttpRequest, the server-sent events standard doesn’t let you send just
any data. Instead, you need to follow a simple but specific format. Every message
must start with the text “data:” followed by the actual message text and the new line
character sequence, which is represented as “\n\n” in many programming languages,
including PHP.

335chapter 11: communicating with the web server

 Server-Sent Events

Here’s an example of what a line of message text looks like, as it travels over the
Internet:

data: The web server has sent you this message.\n\n

It's also acceptable to split a message over multiple lines. You use the end of line
character sequence, which is often represented as a single “\n”. This makes it easier
to send complex data:

data: The web server has sent you this message.\n
data: Hope you enjoy it.\n\n

You’ll notice that you still need to start each line with “data:” and you still need to
end the entire message with “\n\n”.

You could even use this technique to send JSON-encoded data (page 291), which
would allow the web page to convert the text into an object in a single step:

data: {\n
data: "messageType": "statusUpdate",\n
data: "messageData": "Work in Progress"\n
data: }\n\n

Along with the message data, the web server can send a unique ID value (using the
prefix “id:”) and a connection timeout (using “retry:”):

id: 495\n
retry: 15000\n
data: The web server has sent you this message.\n\n

Your web page pays attention to the message data, but it doesn’t deal with the ID
and connection timeout information. Instead, the browser uses these details. For ex-
ample, after reading the above message, the browser knows that if it loses it connec-
tion to the web server, it should attempt to reconnect after 15,000 milliseconds (15
seconds). It should also send the ID number 495 to help the web server identify it.

Note: A web page can lose its connection to the web server for a variety of reasons, including a brief
network outage or a proxy server that times out while waiting for data. If possible the browser will attempt
to reopen the connection automatically, after waiting a default 3 seconds.

Sending Messages with a Server Script
Now that you know the message format, it’s trivially easy to create some server-side
code that spits it out. Once again, it makes sense to turn to PHP to build a straight-
forward example that virtually all web hosts will support. Figure 11-4 shows a page
that gets regular messages from the server. In this case, the messages are simple—
they contain the current time, on the web server.

336 html5: the missing manual

 Server-Sent Events

Figure 11-4:
When this page is listening, it re-
ceives a steady stream of messages
from the web server—approximately
one every 2 seconds. Each message
is added to the scrolling list at the
top, and the time display at the bot-
tom shows the time received from
the most recent message.

Note: The web server time is a single piece of information that’s continuously updated. That makes it
a good candidate for creating a simple server-side event demonstration like this one. However, in a real
example, you’re more likely to send something more valuable, like the most up-to-date headlines for a
news ticker.

The server-side part of this example simply reports the time, in regular intervals.
Here’s the complete script, at a glance:

<?php
 header("Content-Type: text/event-stream");
 header('Cache-Control: no-cache');

 // Start a loop that goes forever.
 do {
 // Get the current time.
 $currentTime = date("h:i:s", time());

 // Send it in a message.
 echo "data: " . $currentTime . PHP_EOL;
 echo PHP_EOL;
 flush();

337chapter 11: communicating with the web server

 Server-Sent Events

 // Wait 2 seconds before creating a new message.
 sleep(2);
 } while(true);
?>

The beginning of this script sets two important headers. First, it sets the MIME type
to text/event-stream, which is required by the server-side event standard:

 header("Content-Type: text/event-stream");

Then, it tells the web server (and any proxy servers) to turn off web caching. Other-
wise, it’s possible that some of the time messages will arrive in uneven batches:

 header('Cache-Control: no-cache');

The rest of the code is wrapped in a loop that continues indefinitely (or at least until
the client disappears). Each time the loop runs, it uses the built-in time() function
to grab the current time (in the format hours:minutes:seconds), and it stuffs that into
a variable:

 $currentTime = date("h:i:s", time());

Next, the loop uses this information to build a message in the proper format, which
it sends using PHP’s trusty echo command. In this example, the message is single line,
starting with “data:” and followed by the time. It ends with the constant PHP_EOL
(for PHP end of line), which is a shorthand way of referring to the “\n” character
sequence described earlier:

 echo "data: " . $currentTime . PHP_EOL;
 echo PHP_EOL;

Note: If this looks funny, it's probably because PHP uses the dot operator (.) to join strings. It works in
the same way as the + operator with text in JavaScript, only there’s no way to accidentally confuse it with
numeric addition.

The flush() function makes sure the data is sent right away, rather than buffered un-
til the PHP code is complete. Finally, the code uses the sleep() function to stall itself
for 2 seconds before continuing with a new pass through the loop.

Tip: If you wait a long time between messages, your connection might be cut off by a proxy server (a
server that sits between your web server and the client’s computer, directing traffic). To avoid this behav-
ior, you can send a comment message every 15 seconds or so, which is simply a colon (:) with no text.

Processing Messages in a Web Page
The web page that listens to these messages is even simpler. Here’s all the markup
from the <body> section, which divides the pages into three <div> sections—one for
the message list, one for the big time display, and one for the clickable buttons that
start the whole process:

<div id="messageLog"></div>
<div id="timeDisplay"></div>

338 html5: the missing manual

 Server-Sent Events

<div id="controls">
 <button onclick="startListening()">Start Listening</button>

 <button onclick="stopListening()">Stop Listening</button>
</div>

When the page loads, it looks up these messageLog and timeDisplay elements and
stores them in global variables so they’ll be easy to access in all your functions:

var messageLog;
var timeDisplay;

window.onload = function() {
 messageLog = document.getElementById("messageLog");
 timeDisplay = document.getElementById("timeDisplay");
};

The magic happens when someone clicks the Start Listening button. At this point,
the code creates a new EventSource object, supplying the URL of the server-side re-
source that’s going to send the messages. (In this example, that’s a PHP script named
TimeEvents.php.) It then attaches a function to the onMessage event, which fires
whenever the page receives a message.

var source;

function startListening() {
 source = new EventSource("TimeEvents.php");
 source.onmessage = receiveMessage;
 messageLog.innerHTML += "
" + "Started listening for messages.";
}

Tip: To check for server-side event support, you can test if the window.EventSource property exists. If it
doesn’t, you’ll need to use your own fallback approach. For example, you could use the XMLHttpRequest
object to make periodic calls to the web server to get data.

When receiveMessage is triggered, you can get the message from the data property
of the event object. In this example, the data adds a new message in the message list
and updates the large clock:

function receiveMessage(e) {
 messageLog.innerHTML += "
" + "New web server time received: " + e.data;
 timeDisplay.innerHTML = e.data;
}

You’ll notice that once the message is delivered to your page, the pesky “data:” and
“/n/n” details are stripped out, leaving you with just the content you want.

Finally, a page can choose to stop listening for server events at any time by calling the
close() method of the EventSource object. It works like this:

function stopListening() {
 source.close();
 messageLog.innerHTML += "
" + "No longer listening for messages.";
}

339chapter 11: communicating with the web server

 Server-Sent Events

Polling with Server-Side Events
The previous example used server-side events in the simplest way. The page makes
a request, the connection stays open, and the server sends information periodically.
The web browser may need to reconnect (which it will do automatically), but only
if there’s a problem with the connection or if it decides to temporarily stop the com-
munication for other reasons (for example, low battery in a mobile device).

But what happens if the server script ends and the web server closes the connec-
tion? Interestingly, even though no accident occurred, and even though the server
deliberately broke off communication, the web page still automatically reopens the
connection (after waiting the default 3 seconds) and requests the script again, start-
ing it over from scratch.

You can use this behavior to your advantage. For example, imagine that you create
a relatively short server script that sends just one message. Now your web page acts
like it’s using polling (page 334), by periodically reestablishing the connection. The
only difference is that the web server tells the browser how often it should check for
new information. In a page that uses traditional polling, this detail is built into your
JavaScript code.

The following script uses a hybrid approach. It stays connected (and sends periodic
messages) for 1 minute. Then, it recommends that the browser try in again in 2 min-
utes and closes the connection:

<?php
 header("Content-Type: text/event-stream");
 header('Cache-Control: no-cache');

 // Tell the browser to wait 2 minutes before reconnecting,
 // when the connection is closed.
 echo "retry: 120000" . PHP_EOL;

 // Store the start time.
 $startTime = time();

 do {
 // Send a message.
 $currentTime = date("h:i:s", time());
 echo "data: " . $currentTime . PHP_EOL;
 echo PHP_EOL;
 flush();

 // If a minute has passed, end this script.
 if ((time() - $startTime) > 60) {
 die();
 }

 // Wait 5 seconds, and send a new message.
 sleep(5);
 } while(true);
?>

340 html5: the missing manual

 Web Sockets

Now when you run the page, you’ll get a minute’s worth of regular updates, followed
by a 2-minute pause (Figure 11-5). In a more sophisticated example, you might have
the web server send a special message to the web browser that tells it there’s no rea-
son to wait for updated data (say, the stock markets have closed for the day). At this
point, the web page could call the EventSource’s close() method.

Note: With complex server scripts, the web browser’s automatic reconnection feature might not work out
so well. For example, the connection may have been cut off while the web server was in the middle of a
specific task. In this case, your web server code can send each client an ID (as described on page 335),
which will be sent back to the server when the browser reconnects. However, it’s up to your server-side
code to generate a suitable ID, keep track of what task each ID is doing (for example, by storing some
information in a database), and then attempt to pick up where you left off. All of these steps can be highly
challenging if you lack super-black-belt coding skills.

Figure 11-5:
This page uses a combination of
streaming (for a batch of mes-
sages, over the course of a minute),
followed by polling (for the next 2
minutes). This sort of design might
make sense as a way to minimize
web server traffic, depending on how
often your data is updated and how
important it is to have up-to-the-
minute data.

Web Sockets
Server-sent events are a perfect tool if you want to receive a series of messages from
the web server. But the communication is completely one-sided. There’s no way for
the browser to respond, or to enter into a more complex dialogue.

341chapter 11: communicating with the web server

 Web Sockets

If you’re creating a web application where the browser and the web server need to
have a serious conversation, your best bet (without adopting Flash) is to use the
XMLHttpRequest object. Depending on the sort of application you’re building, this
approach may work fine. However, there are stumbling blocks aplenty. First, the
XMLHttpRequest object doesn’t work well if you need to send multiple messages
back and forth very quickly (like you might in a chat application, for example). Sec-
ond, there’s no way to associate one call with the next, so every time the web page
makes a request, the web server needs to sort out who you are all over again. If your
web page needs to make a chain of related requests, your web server code can be-
come frightfully complicated.

There’s a solution to these problems, but it’s not quite here yet. That solution is web
sockets, a standard that lets a browser hold open a connection to a web server, and
exchange back-and-forth messages for as long as it wants. The web sockets feature
has generated plenty of excitement, but it’s still evolving, and it lacks solid browser
support. Firefox 4 and Opera 11 initially added support for web sockets, only to
disable it a few months later due to concerns about a potential security threat. The
feature is scheduled to reappear in Firefox 6, using a slightly tweaked version of
the original protocol, and it’s likely to follow in future versions of Opera. Microsoft
hasn’t made any commitment but is openly experimenting with the feature (you can
play with its test lab at http://tinyurl.com/3szzz72).

Because of these continuous changes, it’s difficult to say anything definitive about
the web socket standard. In fact, this section doesn’t even include the familiar sup-
port table, because different browser versions support different versions of the web
socket standard, and they’re generally not compatible. That means a web socket
server that’s designed with one version in mind won’t work with browsers that are
built with a different version in mind.

Note: For now, the best bet is to test web socket pages with Chrome, which provides the most consistent
support for them. You can also try out Firefox, if you download the beta version of Firefox 6. (It’s techni-
cally possible to switch on socket support in older versions, using a hidden setting, but it’s awkward and
it uses an older, out-of-date version of the socket standard anyway; therefore, it’s not really worth the
trouble.)

Assessing Web Sockets
If you’ve made it this far, you know not to be scared off from features so new that
they haven’t been finished or fully implemented yet. The real question is how much
time you should spend learning web sockets right now—in other words, are they
destined to be a valuable feature in the future of web programming, and can you
expect to plop web sockets into your own applications in a year or two?

342 html5: the missing manual

 Web Sockets

To answer these questions, you need to understand two important points. First, web
sockets are a specialized tool. They make great sense in a chat application, a massive
multiplayer game, or a peer-to-peer collaboration tool. They allow new types of ap-
plications, but they probably don’t make sense in most of today’s JavaScript-powered
web applications (like e-commerce websites).

Second, web socket solutions can be fiendishly complex. The web page JavaScript is
simple enough. But to build the server-side application, you’ll need mad program-
ming skills, including a good grasp of multithreading and networking concepts.

In order to use web sockets, you need to run a program (called a web socket server)
on the web server for your website. This program has the responsibility of coordinat-
ing everyone’s communication, and once it’s launched it keeps running indefinitely.

Note: Many web hosts won’t allow long-running programs, unless you pay for a dedicated server (a web
server that’s allocated to your website, and no one else’s). If you’re using ordinary shared hosting, you
probably can’t create web pages that use the web socket feature. Even if you can manage to launch a web
socket server that keeps running, your web host will probably detect it and shut it down.

To give you an idea of the scope of a web socket server, consider some of the tasks a
web socket server needs to manage:

• Set the message “vocabulary”—in other words, decide what types of messages
are valid, and what they mean.

• Keep a list of all the currently connected clients.
• Detect errors sending messages to clients, and stop trying to contact them if

they don’t seem to be there anymore.
• Deal with any in-memory data—that is, data that all web clients might access—

safely. Subtle issues abound—for example, consider what happens if one client is
trying to join the party while another is leaving, and the connection details for
both are stored in the same in-memory object.

Most developers will probably never create a server-side program that uses sockets;
it’s simply not worth the considerable effort. The easiest approach will be to install
someone else’s socket server and design custom web pages that use it. Because the
JavaScript part of the web socket standard is easy to use, this won’t pose a problem.
Another option is to pick up someone else’s socket server code and then customize
it to get the exact behavior you want. Right now, there are plenty of projects, many
of them free and open source, that are developing usable web socket servers for a
variety of tasks, and in a variety of server-side programming languages. You’ll get
the details on page 345.

343chapter 11: communicating with the web server

 Web Sockets

A Simple Web Socket Client
From the web page’s point of view, the web socket feature is easy to understand and
use. The first step is to create the WebSocket object. When you do, you supply a URL
that looks something like this:

var socket = new WebSocket("ws://localhost/socketServer.php");

The URL starts with ws://, which is the new system for identifying web socket con-
nections. However, the URL still leads to a web application on a server (in this case,
the script named socketServer.php). The web socket standard also supports URLs
that start with wss://, which indicates that you want to use a secure, encrypted con-
nection (just as you do when requesting a web page that starts with https:// instead
of http://).

Note: Web sockets aren’t limited to contacting their home web server. A web page can open a socket
connection to a web socket server that’s running on another web server, without any extra work.

Simply creating a new WebSocket object causes your page to attempt to connect
to the server. You deal with what happens next using one of the WebSocket’s four
events: onOpen (when the connection is first established), onError (when there’s a
problem), onClose (when the connection is closed), and onMessage (when the page
receives a message from the server):

socket.onopen = connectionOpen;
socket.onmessage = messageReceived;
socket.onerror = errorOccurred;
socket.onopen = connectionClosed;

For example, if the connection has succeeded, it makes sense to send a confirmation
message. To deliver a message, you use the WebSocket’s send() method, which takes
ordinary text. Here’s a function that handles the onOpen event and sends a message:

function connectionOpen() {
 socket.send("UserName:jerryCradivo23@gmail.com");
}

Presumably, the web server will receive this and then send a new message back.

You can use the onError and onClose events to notify the web page user. However,
the most important event (by far) is the onMessage event that fires every time the
web server delivers new data. Once again, the JavaScript that’s involved is perfectly
understandable—you simply grab the text of the message from the data property:

function messageReceived(e) {
 messageLog.innerHTML += "
" + "Message received: " + e.data;
}

If the web page decides its work is done, it can easily close the connection with the
disconnect() method:

socket.disconnect();

344 html5: the missing manual

 Web Sockets

Based on this quick overview, you can see that using someone else’s socket server is a
breeze—you just need to know what messages to send and what messages to expect.

Note: A lot of behind-the-scenes work takes place to make a web socket connection work. First, the web
page makes contact using the well-worn HTTP standard. Then it needs to “upgrade” its connection to a
web socket connection that allows unfettered back-and-forth communication. At this point, you could run
into a problem if a proxy server sits between your computer and the web server (for example, on a typical
company network). The proxy server may refuse to go along with the plan and drop the connection. You
can deal with this problem by detecting the failed connection (through the WebSocket’s onError event)
and falling back on one of the socket polyfills described on GitHub at http://tinyurl.com/polyfills. They use
tricks like polling to simulate a web socket connection, as best as possible.

Web Socket Examples on the Web
Curious to try out web sockets for yourself? There are plenty of places on the web
where you can fire up an example on your own.

For starters, try http://websocket.org/echo.html, which features the most basic web
socket server imaginable: You send a message, and it echoes the same message back
to you (Figure 11-6). While this isn’t very glamorous, it lets you exercise all the fea-
tures of the WebSocket class. In fact, there’s nothing to stop you from connecting to
the echo server in your own page, regardless of whether your page is stored on your
own web server (or even on your own computer hard drive).

Figure 11-6:
A web socket server
that simply repeats
what you say won’t win
any prizes in software
innovation. However,
it does let you see how
easy it is to talk to
a ready-made web
socket server.

Message sent from
browser to server

Message sent from
server to browser

345chapter 11: communicating with the web server

 Web Sockets

If you want to look at some more exciting examples, check these out:

• Basic chat. It’s a giant chat free-for-all. Log in to this simple web socket server,
send a message, and everyone gets it delivered immediately. Try it out at http://
html5demos.com/web-socket.

• Multiuser sketchpad. This page fuses web sockets with the HTML5 canvas. As
other users draw on the canvas, the scribbles they paint appear on your canvas
in real-time (and vice versa). It’s simple in concept but truly impressive to wit-
ness. Try it out at http://mrdoob.com/projects/multiuserpad.

poweR USeRS’ CliniC

Web Socket Servers
To actually run a practical example of your own, you need
a web socket server that your web page can talk to. And
although the server code that’s required—which is several
dozen lines at least—is beyond the scope of this chapter,
there are plenty of places where you can find a test server.
Here are some of your many options:

• PHP. This simple and slightly crude code project
gives you a good starting point for building a web
socket server with PHP. Get it at http://code.google.
com/p/phpwebsocket.

• Ruby. There’s more than one sample web socket
server for Ruby, but this one that uses the Event-
Machine model is popular. See http://github.com/
igrigorik/em-websocket.

• Python. This Apache extension adds a socket server
using Python. Get it at http://code.google.com/p/
pywebsocket.

• .NET. Simple, it isn’t. But this comprehensive project
contains a complete web socket server using Micro-
soft’s .NET platform and the C# language. Download
it from http://superwebsocket.codeplex.com.

• Java. Similar in scope to the .NET project described
above, this web socket server is pure Java. See http://
jwebsocket.org.

• node.JS. Depending on who you ask, node.JS—a
web server that runs JavaScript code—is either the
next big thing in the making or an overgrown test-
ing tool. Either way, you can get a web socket server
that runs on it from http://github.com/miksago/
node-websocket-server.

• Kaazing. Unlike the other items in this list, Kaazing
doesn’t provide the code for a web socket server.
Instead, it provides a mature web socket server that
you can license for your website. Adventurous devel-
opers who want to go it alone won’t be interested.
But it may make sense for less-ambitious websites,
especially considering the built-in fallback support in
its client libraries (which try the HTML5 web socket
standard first, then attempt to use Flash, or finally fall
back to pure JavaScript polling). Learn more at http://
kaazing.com/products/html5-edition.html.

347

chapter
12

More Cool JavaScript
Tricks

By now, you know all about the key themes of HTML5. You’ve used it to write
more meaningful and better structured markup. You’ve seen its rich graphical
features, like video and dynamic drawing. And you’ve used it to create self-

sufficient, JavaScript-powered pages that can work even without a web connection.

In this chapter, you’ll tackle three features that have escaped your attention so far. As
with much of what you’ve already learned, these features extend the capabilities of
what a web page can do—with a scrap of JavaScript code. Here's what awaits:

• Geolocation. Although it’s often discussed as part of HTML5, geolocation is ac-
tually a separate standard that’s never been in the hands of the WHATWG (page
13). However, like many of HTML5’s features, geolocation lets you power up
pages with a bit of JavaScript. Using geolocation, you can grab hold of a single
piece of information: the geographic coordinates that pinpoint a web visitor’s
current location.

• Web workers. As web developers make smarter pages that run more JavaScript,
it becomes more important to run certain tasks in the background, quietly,
unobtrusively, and over long periods of time. You could use timers and other
tricks. But the web workers feature provides a far more convenient solution for
performing background work.

348 html5: the missing manual

 Geolocation Geolocation

• Session history. In the old days of the Web, a page did one thing only: dis-
play stuff. As a result, people spent plenty of time clicking links to get from
one document to another. But today, a JavaScript-fueled page can load content
from another page without triggering a full page refresh. In this way, JavaS-
cript creates a more seamless viewing experience. However, it also introduces a
few wrinkles, like the challenge of keeping the browser URL synchronized with
the current content. Web developers use plenty of advanced techniques to keep
things in order, and now HTML5 adds a session history tool that can help (some
of the time).

Note: As you explore these last three features, you’ll get a still better idea of the scope of what is now
called HTML5. What started as a few good ideas wedged into an overly ambitious standard has grown
to encompass a grab bag of new features that tackle a range of different problems, with just a few core
concepts (like semantics, JavaScript, and CSS3) to hold it all together.

Geolocation
Geolocation is a feature that lets you find out where in the world your visitors are.
And that doesn’t just mean what country or city a person’s in. The geolocation fea-
ture can often narrow someone’s position down to a city block, or even determine
the exact coordinates of some who’s strolling around with a webphone.

The geolocation feature has good support in every browser, as Table 12-1 shows.

Table 12-1. Browser support for geolocation

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

9 3.5 5 5 10.6 3.2 2.1

The obvious weak links are old versions of Internet Explorer, like IE 7 and IE 8. One
way to get geolocation support on these browsers is to create a fallback that uses
Google Gears (http://code.google.com/apis/gears). Google Gears was developed be-
fore HTML5 and targets many of the same features, including a similar geolocation
system. Although Google Gears is now deprecated (meaning Google has stopped
working on it and supporting it for newer browsers), it can still do in a pinch for
old browsers. The drawback is that, like all browser plug-ins, Google Gears must be
installed on the visitor’s computer. If the computer doesn’t have Google Gears, you
could use Chrome Frame (page 41), or you may just need to ask visitors to type in
their locations.

Note: Most of the new JavaScript features you’ve seen in this book were part of the original HTML5
specification, and were split off when it was handed over to the W3C. But geolocation isn’t like that—it
was never part of HTML5. Instead, it simply reached maturity around the same time. However, almost
everyone now lumps them together as part of the wave of future web technologies.

349chapter 12: more cool javascript tricks

 Geolocation Geolocation

How Geolocation Works
Geolocation raises quite a lot of questions in people who ordinarily aren’t paranoid.
Like, how does a piece of software know I’m hanging out at the local coffee shop? Is
there some hidden code that’s tracking my every move? And who’s in that white van
parked outside?

Fortunately, geolocation is a lot less Big Brotherish than it seems. That’s because
even if a browser can figure out your position, it won’t tell a website unless you give
it explicit permission (see Figure 12-1).

Figure 12-1:
Here a web page
wants location data,
and Firefox asks
whether you want
to allow it just this
once (click Share
Location), to allow it
every time (Always
Share), or never to
allow it (Never Share).
This behavior isn’t
just Firefox being
polite; the geolocation
standard makes it an
official rule to get user
permission for every
website that wants
location data.

To figure out a person’s location, the browser enlists the help of a location provider—
for example, on Firefox that’s Google Location Services. This location provider has
the tough job of finding the location, and it can use several different strategies to do
it.

For a desktop computer with a fixed (not wireless) Internet connection, the science
is simple but imprecise. When someone goes online, her traffic is funneled from
her computer or local network through a cable, telephone wire, or (horrors) dial-up
connection, until it reaches a high-powered piece of network hardware that brings
it onto the Internet. That piece of hardware has a unique IP address, a numeric code
that establishes its public identity to other computers. It also has a postal address in
the real world.

350 html5: the missing manual

 Geolocation Geolocation

Note: If you have some networking experience, you already know that your computer has its own IP ad-
dress, like every computer on a network. However, this IP address is your own private one whose purpose
is to separate your computer from any other devices that are sharing your connection (like the netbook in
your kitchen or the tablet computer in your knapsack). Geolocation doesn’t use that IP address.

The location provider combines these two features. First, it figures out the IP address
you’re connecting through, and then it pinpoints the home of the router that uses it.
Because of this indirection, geolocation won’t be spot-on when you’re using a desk-
top computer. For example, if you surf from a computer on the west side of Chicago,
you might find that your traffic is being funneled through a router that’s several
miles closer to downtown. Still, even an imprecise result like this is often useful. For
example, if you’re looking for nearby pizza stores in a mapping tool, you can quickly
skip over to the area you’re really interested in—your home neighborhood—even if
you start a certain distance away.

Note: The IP address technique is the roughest form of geolocation. If there’s a better source of location
data, the location provider will use that instead.

If you’re using a laptop or a mobile device with a wireless connection, a location
provider can look for nearby wireless access points. Ideally, the location provider
consults a giant database to figure out the exact location of these access points, and
then uses that information to triangulate your location.

If you’re using a web-enabled phone, the location provider provides a similar trian-
gulation process, but it uses the signals from different cellphone towers. This quick,
relatively effective procedure usually gets your position down to less than a kilo-
meter. (More industrialized areas—like downtown city cores—have more cellphone
towers, which results in more precise geolocation.)

Finally, many mobile devices also have dedicated GPS hardware, which uses satellite
signals to pin your location down to just a few meters. The drawback is that GPS is a
bit slower and draws more battery power. It also doesn’t work as well in built-up cit-
ies, where tall buildings can obscure the signals. As you’ll see, it’s up to you whether
you want to request a high-precision location using GPS, if it’s available (page 355).

And of course, other techniques are possible. Nothing stops a location provider
from relying on different information, like an RFID chip, nearby Bluetooth devices,
a cookie set by a mapping website like Google Maps, and so on.

Tip: You may also be able to correct your starting position with another tool. For example, Firefox fans can
use a browser plug-in named Geolocater (http://addons.mozilla.org/en-us/firefox/addon/geolocater) to
set the position that Firefox should report when you browse a website that uses geolocation. You can even
use this technique to fake your address—for example, to pretend your computer in Iowa is actually surfing
in from the Netherlands.

351chapter 12: more cool javascript tricks

 Geolocation Geolocation

The takeaway is this: No matter how you connect to the Internet—even if you’re sit-
ting at a desktop computer—geolocation can get somewhere near you. And if you’re
using a device that gets a cellphone signal or has a GPS chip, the geolocation coordi-
nates will be scarily accurate.

Up To Speed

How You Can Use Geolocation
Once you’ve answered the big question—how does geolo-
cation work?—you need to resolve another one—namely,
why should you use it?

The key point to understand is that geolocation tells your
code the approximate geographic coordinates of a person—
and that’s it. You need to combine this simple but essential
information with more detailed location data. This data
could be provided by your web server (typically, fetched
out of a huge server-side database) or another geographic
web service (like Google Maps).

For example, if you’re a big business with a physical pres-
ence in the real world, you might compare the user’s posi-
tion with the coordinates of your different locations. You
could then determine which location is closest. Or, if you’re

building some sort of social networking tool, you might plot
the information of a group of people, to show them how
close they are to one another. Or, you might take someone
else’s location data and use that to provide a service for
your visitors, like hunting down the nearest chocolate store,
or finding the closest clean toilet in Brooklyn. Either way,
the geolocation coordinates of the visitor only become
important when they’re combined with more geographic
data.

Although other businesses’ mapping and geographic ser-
vices are outside the scope of this chapter, you’ll get the
chance to try out an example with Google Maps on page
356.

Finding a Visitor’s Coordinates
The geolocation feature is strikingly simple. It consists of three methods that are
packed into the navigator.geolocation object: getCurrentPosition(), watchPosition(),
and clearWatch().

Note: If you aren’t already familiar with the navigator object, it’s a relatively minor part of JavaScript, with
a few properties that tell you about the current browser and its capabilities. The most useful of these is
navigator.userAgent, which provides an all-in-one string that details the browser, its version number, and
the operating system on which it’s running.

To get a web visitor’s location, you call getCurrentPosition(). Of course, the location-
finding process isn’t instantaneous, and no browser wants to lock up a page while
it’s waiting for location data. For that reason, the getCurrentPosition() method is
asynchronous—it carries on immediately, without stalling your code.. When the
geolocation process is finished, it triggers another piece of code to handle the results.

352 html5: the missing manual

 Geolocation Geolocation

You might assume that geolocation uses an event to tell you when it’s done, in much
the same way that you react when an image has been loaded or a text file has been
read. But JavaScript is nothing if not inconsistent. Instead, when you call getCur-
rentPosition() you supply the completion function.

Here’s an example:
navigator.geolocation.getCurrentPosition(
 function(position) {
 alert("You were last spotted at (" + position.coords.latitude +
 "," + position.coords.longitude + ")");
 }
);

When this code runs, it calls getCurrentPosition() and passes in a function. Once the
browser determines the location, it triggers that function, which shows a message
box. Figure 12-2 shows the result in Internet Explorer.

Figure 12-2:
Top: First, you need to agree to let the browser tell
the web server about your position.

Bottom: The results are in—your coordinates on
the globe.

To keep your code clear and organized, you probably won’t define your comple-
tion function right inside the getCurrentPosition() call (as done in this example).
Instead, you can put it in a separate, named function:

function geolocationSuccess(position) {
 alert("You were last spotted at (" + position.coords.latitude +
 "," + position.coords.longitude + ")");
}

Then you can point to it when you call getCurrentLocation():
navigator.geolocation.getCurrentPosition(geolocationSuccess);

353chapter 12: more cool javascript tricks

 Geolocation Geolocation

Remember, you need to use a browser that supports geolocation and let the web page
track you. Also, it’s a good idea to upload your page to a test server before trying
it out. Otherwise, you’ll see some quirks (for example, geolocation error-handling
won’t work) and some browsers will fail to detect your position altogether (like
Chrome).

If you’re wondering, “What good are geographic coordinates to me?” you’ve asked
a good question. You’ll explore how you can use the geolocation data shortly (page
356). But first, you should understand how to catch errors and configure a few geo-
location settings.

poweR USeRS’ CliniC

Finding Out the Accuracy of a Geolocation Guess
When the getCurrentPosition() method meets with suc-
cess, your code gets a position object that has two proper-
ties: timestamp (which records when the geolocation was
performed) and coords (which indicates the geographic
coordinates).

As you’ve seen, the coords object gives you the latitude
and longitude—the coordinates that pin down your position
on the globe. However, the coords object bundles up a bit
more information that you haven’t seen yet. For example,
there are more specialized altitude, heading, and speed
properties, none of which are currently supported by any
browser.

More interesting is the accuracy property, which tells you
how accurate the geolocation information is, in meters.
(Somewhat confusingly, that means the value of the ac-
curacy property increases as the accuracy of the location
data decreases.) For example, an accuracy of 2,135 meters

converts to about 1.3 miles, meaning the geolocation coor-
dinates have pinpointed the current visitor’s position within
that distance. To visualize this, imagine a circle with the
center at the geolocation coordinates, and a radius of 1.3
miles. Odds are the visitor is somewhere in that circle.

The accuracy property is useful for identifying bad geolo-
cation results. For example, if you get an accuracy result
that’s tens of thousands of meters, then the location data
isn’t reliable:

if (position.coords.accuracy > 50000) {

 results.innerHTML =

 “This guess is all over the map.”;

}

At this point, you might want to warn the user or offer him
the chance to enter the right position information himself.

Dealing with Errors
Geolocation doesn’t run so smoothly if the visitor opts out and decides not to share
the location data with your page. In the current example, the completion function
won’t be called at all, and your page won’t have any way to tell whether the browser
is still trying to dig up the data or has run into an error. To deal with this sort of
situation, you supply two functions when you call getCurrentLocation(). The first
function is called if your page meets with success, while the second is called if your
geolocation attempt ends in failure.

354 html5: the missing manual

 Geolocation Geolocation

Here’s an example that uses both a completion function and an error function:
// Store the element where the page displays the result.
var results;

window.onload = function() {
 results = document.getElementById("results");

 // If geolocation is available, try to get the visitor's position.
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 geolocationSuccess, geolocationFailure
);
 results.innerHTML = "The search has begun.";
 }
 else {
 results.innerHTML = "This browser doesn't support geolocation.";
 }
};

function geolocationSuccess(position) {
 results.innerHTML = "You were last spotted at (" +
 position.coords.latitude + "," + position.coords.longitude + ")";
}

function geolocationFailure(positionError) {
 results.innerHTML = "Geolocation failed.";
}

When the error function is called, the browser hands it an error object with two
properties: code (a numeric code that classifies it as one of four types of problems)
and message (which provides a short text message reporting the problem). Generally,
the message is intended for testing, and your code will use the error code to decide
how it should handle the issue.

Here’s a revised error function that checks all possible error code values:
function geolocationFailure(positionError) {
 if (positionError.code == 1) {
 results.innerHTML =
 "You decided not to share, but that's OK. We won't ask again.";
 }
 else if (positionError.code == 2) {
 results.innerHTML =
 "The network is down or the positioning service can't be reached.";
 }
 else if (positionError.code == 3) {
 results.innerHTML =
 "The attempt timed out before it could get the location data.";
 }
 else {
 results.innerHTML =
 "This the mystery error. We don’t know what happened.";
 }
}

355chapter 12: more cool javascript tricks

 Geolocation Geolocation

Note: If you’re running the test web page from your computer (not a real web server), the error function
won’t be triggered when you decline to share your location.

Setting Geolocation Options
So far, you’ve seen how to call getCurrentLocation() with two arguments: the success
function and the failure function. You can also supply a third argument, which is an
object that sets certain geolocation options.

Currently, there are three options you can set, and each one corresponds to a differ-
ent property on the geolocation options object. You can set just one or any combina-
tion. Here’s an example that sets one, named enableHighAccuracy:

navigator.geolocation.getCurrentPosition(geolocationSuccess,
 geolocationFailure, {enableHighAccuracy: true});

And here’s an example that sets all three:
navigator.geolocation.getCurrentPosition(
 geolocationSuccess, geolocationFailure,
 {enableHighAccuracy: true,
 timeout: 10000,
 maximumAge: 60000}
);

Both of these examples supply the geolocation options using a JavaScript object
literal. If that looks a bit weird to you, check out the explanatory box on page 356.

So what do these properties mean? The enableHighAccuracy property opts into
high-precision GPS-based location detection, if the device supports it (and the user
allows it). Don’t choose this option unless you need exact coordinates, because it can
draw serious battery juice. The default for enableHighAccuracy, should you choose
not to set it, is false.

The timeout property sets the amount of time your page is willing to wait for loca-
tion data before throwing in the towel. The timeout is in milliseconds, so a value of
10,000 milliseconds means a maximum wait of 10 seconds. The countdown begins
after the user agrees to share the location data. By default, timeout is 0, meaning the
page will wait indefinitely, without ever triggering the timeout error.

The maximumAge property lets you use cached location data. For example, if you
set maximumAge to 60,000 milliseconds, you’ll accept a previous value that’s up to a
minute old. This saves the effort of repeated geolocation calls, but it also means your
results will be less accurate for a person on the move. By default, maximumAge is
0, meaning cached location data is never used. (You can also use a special value of
Infinity, which means use any cached location data, no matter how old it is.)

356 html5: the missing manual

 Geolocation

Up To Speed

Understanding Object Literals
In Chapter 7, you learned about a technique to create ob-
jects in JavaScript using a function, which acts as a tem-
plate. For example, on page 217 you learned how you
could use a single Circle() function, and then use it to gen-
erate dozens of circle objects. On page 226 you did it again
to make ball objects.

When you want to formally define the ingredients that
make up an object, using a function is the best approach. It
leads to well-organized code, and it makes complex coding
tasks easier. But sometimes you just need a quick way to
create an object for a one-off task. In this case, an object
literal makes sense, because it requires nothing more ad-
vanced than a pair or curly brackets.

To create an object literal, you use the opening curly brace,
supply a comma-separated list of properties, and then end
with the closing curly brace. You can use spacing and line
breaks to make your code more readable, but it’s not re-
quired. Here’s an example:

var personObject = {
 firstName="Joe",
 lastName="Grapta"
};

For each property, you specify the property name and its start-
ing value. Thus, the above code sets personObject.firstName
to the text “Joe” and personObject.lastName to “Grapta”.

The example on page 355 uses object literals to send infor-
mation to the geolocation system. As long as you use the
right property names (the ones the getCurrentPosition()
method is expecting), then an object literal works perfectly.

If you want to learn more about object literals, object
functions, and everything else to do with custom objects
in JavaScript, check out the detailed information at www.
javascriptkit.com/javatutors/oopjs.shtml.

Showing a Map
Being able to grab someone’s geographic coordinates is a neat trick. But the novelty
wears off fast unless you have something useful to do with that information. Hard-
core geo-junkies know that there’s a treasure trove of location information out there.
(Often, the problem is taking this information and converting it to a form that’s use-
ful to your web application.) There are also several web-based mapping services, the
king of which is Google Maps. In fact, good estimates suggest that Google Maps is
the most heavily used web application service, for any purpose.

Using Google Maps, you can create a map for any portion of the world, at any size
you want. You can control how your visitors interact with that map, generate driv-
ing instructions, and—most usefully—overlay your own custom data points on that
map. For example, a Google Maps-fortified page can show visitors your business
locations or flag interesting sights in a Manhattan walking tour. To get started with
Google Maps, check out the documentation at http://code.google.com/apis/maps/
documentation/javascript.

357chapter 12: more cool javascript tricks

 Geolocation

Note: Google Maps is free to use, even for commercial websites, provided you aren’t charging people to
access your site. (And if you are, Google has a premium mapping service you can pay to use.) Currently,
Google Maps does not show ads, although the Google Maps license terms explicitly reserve the right to
do that in the future.

Figure 12-3 shows a revised version of the geolocation page. Once it grabs the cur-
rent user’s coordinates, it shows that position in a map.

Figure 12-3:
Geolocation and
Google Maps make
a potent combina-
tion. They let you
generate a map for
any position, with just
a few extra lines of
JavaScript.

Creating this page is easy. First, you need a link to the scripts that power the Google
Maps API. Place this before any script blocks that use the mapping functionality:

<head>
 <meta charset="utf-8">
 <title>Geolocation Map</title>
 <script src="http://maps.google.com/maps/api/js?sensor=true"></script>
 ...
</head>

358 html5: the missing manual

 Geolocation

Next, you need a <div> element that will hold the dynamically generated map. Give
it a unique ID for easy reference:

<body>
 <p id="results">Where do you live?</p>
 <div id="mapSurface"></div>
</body>

You can then use a style sheet rule to set the size of your map:
#mapSurface {
 width: 600px;
 height: 400px;
 border: solid 1px black;
}

Now you’re ready to start using Google Maps. The first job is to create the map
surface. This example creates the map when the page loads, so that you can use it in
the success or failure function. (After all, failure doesn’t mean the visitor can’t use
the mapping feature in your page; it just means that you can’t determine that visitor’s
current location. You’ll probably still want to show the map, but just default to a dif-
ferent starting point.)

Here’s the code that runs when the page loads. It creates the map and then starts a
geolocation attempt:

var results;
var map;

window.onload = function() {
 results = document.getElementById("results");

 // Set some map options. This example sets the starting zoom level and the
 // map type, but see the Google Maps documentation for all your options.
 var myOptions = {
 zoom: 13,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // Create the map, with these options.
 map = new google.maps.Map(document.getElementById("mapSurface"), myOptions);

 // Try to find the visitor's position.
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(geolocationSuccess,
 geolocationFailure);
 results.innerHTML = "The search has begun.";
 }
 else {
 results.innerHTML = "This browser doesn't support geolocation.";
 goToDefaultLocation();
 }
};

359chapter 12: more cool javascript tricks

 Geolocation

Tip: The Google Maps documentation at http://tinyurl.com/36aemmr shows how to perform geolocation
two ways—using the geolocation feature described in this chapter, or falling back to Google Gears (page
348).

Even after you’ve created the map with this code, you still won’t see it in the page.
That’s because you haven’t set a geographic position. To do that, you need to create
a specific global point using the LatLng object. You can then place that point on the
map with the map’s setCenter() method. Here’s the code that does that with the visi-
tor’s coordinates:

function geolocationSuccess(position) {
 // Turn the geolocation position into a LatLng object.
 location = new google.maps.LatLng(
 position.coords.latitude, position.coords.longitude);

 // Map that point.
 map.setCenter(location);

This code is sufficient for displaying a map, like the one in Figure 12-3. But you can
also add adornments to that map, like other places or an info bubble. For the lat-
ter, you need to create an InfoWindow object. Here’s the code that creates the info
bubble shown in Figure 12-3:

 // Create the info bubble and set its text content and map coordinates.
 var infowindow = new google.maps.InfoWindow();
 infowindow.setContent("You are here, or somewhere thereabouts.");
 infowindow.setPosition(location);

 // Make the info bubble appear.
 infowindow.open(map);

 results.innerHTML = "Now you're on the map.";
}

Finally, if geolocation fails or isn’t supported, you can carry out essentially the same
process. Just use the hard-coded coordinates of a place you know:

function geolocationFailure(positionError) {
 ...
 goToDefaultLocation();
}

function goToDefaultLocation() {
 // This is the location of New York.
 var newYork = new google.maps.LatLng(40.69847, -73.95144);

 map.setCenter(newYork);
}

360 html5: the missing manual

 Web Workers

Monitoring a Visitor’s Moves
All the examples you’ve used so far have relied on the getCurrentPosition() method,
which is the heart of geolocation. However, the geolocation object has two more
methods that allow you to track a visitor’s position, so your page receives notifica-
tions as the location changes.

It all starts with the watchPosition() method, which looks strikingly similar to
getCurrentPosition(). Like getCurrentPosition(), watchPosition() accepts three ar-
guments: a success function (which is the only required detail), a failure function,
and an options object:

navigator.geolocation.watchPosition(geolocationSuccess, geolocationFailure);

The difference between getCurrentPosition() and watchPosition() is that watchPosi-
tion() may trigger the success function multiple times—when it gets the location
for the first time, and again, whenever it detects a new position. (It’s not in your
control to set how often the device checks for a new position. All you need to know
is that the device won’t bother you if the position hasn’t changed, but it will trigger
the success function again if it has.) On a desktop computer, which never moves,
the getCurrentPosition() and watchPosition() methods have exactly the same effect.

Unlike getCurrentPosition(), watchPosition() returns a number. You can hold onto
this number, and pass it in to clearWatch() to stop paying attention to location
changes. Or, you can ignore this step and keep receiving notifications until the visi-
tor surfs to another page:

var watch = navigator.geolocation.watchPosition(geolocationSuccess,
 geolocationFailure);
...

navigator.geolocation.clearWatch(watch);

Web Workers
Way back when JavaScript was first created, no one worried too much about perfor-
mance. JavaScript was built to be a straightforward language for running small bits
of script in a web page. JavaScript was a frill—a simplified version of Java for ama-
teur programmers. It certainly wasn’t meant to run anyone’s business.

Fast forward nearly 20 years, and JavaScript has taken over the Web. Developers use
it to add interactivity to almost every sort of page, from games and mapping tools
to shopping carts and fancy forms. But in many ways, the JavaScript language is still
scrambling to catch up to its high status.

One example is the way JavaScript deals with big jobs that require hefty calcula-
tions. In most modern programming systems, work like this would happen quietly
in the background, while the person using the application carried on, undisturbed.
But in JavaScript, code always runs in the foreground. So any time-consuming piece
of code will interrupt the user and freeze up the page until the job is done. Ignore
this problem, and you’ll wind up with some seriously annoyed, never-to-return web
page visitors.

361chapter 12: more cool javascript tricks

 Web Workers

Note: Crafty web developers have found some partial solutions to the JavaScript freeze-up problem.
These involve splitting long-running tasks into small pieces and using setInterval() or setTimeout() to run
one piece at a time. For certain types of tasks, this solution works well (for example, it’s a practical way
to animate a canvas, as demonstrated on page 222). But if you need to run a single, very long operation
from start to finish, this technique adds complexity and confusion.

HTML5 introduces a better solution. It adds a dedicated object, called a web worker,
that’s designed to do background work. If you have a time-consuming job to polish
off, you create a new web worker, supply it with your code, and start it on its way.
While it works, you can communicate with it in a safe but limited way—by passing
text messages.

Table 12-2 shows the current state of web worker support.

Table 12-2. Browser support for web workers

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

10* 3.5 3 4 10.6 - -

*Currently, this version is available in early beta builds only.

Up To Speed

Web Worker Safety Measures
JavaScript’s web worker lets your code work in the back-
ground, while something else takes place in the fore-
ground. This brings up a well-known theme of modern
programming: If an application can do two things at once,
one of them has the potential to mess up the other.

The problem occurs when two different pieces of code fight
over the same data, at the same time. For example, one
piece of code may attempt to read some data, while anoth-
er attempts to set it. Or both may attempt to set a variable
at the same time, causing one change to be overwritten. Or
two pieces of code may attempt to manipulate the same
object in different ways, pushing it into an inconsistent
state. The possible issues are endless, and they’re notori-
ously difficult to discover and solve. Often, a multithreaded
application (that’s an application that uses several threads

of independently executing code) works fine during testing.
But when you start using it in the real world, maddeningly
inconsistent errors appear.

Fortunately, you won’t face these problems with Java-
Script’s web workers feature. That’s because it doesn’t al-
low you to share the same data between your web page
and your web workers. You can send data from your web
page to a web worker (or vice versa), but JavaScript auto-
matically makes a copy of your data and sends that. That
means there’s no possible way for two threads to get hold
of the same memory slot at the same time, and cause
subtle issues. Of course, this simplified model also restricts
some of the things that web workers can do, but a minor
reduction in capabilities is the cost of making sure ambi-
tious programmers can’t shoot themselves in the foot.

362 html5: the missing manual

 Web Workers

Note: If you’re running your web worker page from a local file, Chrome will fail unless you start it with
the --allow-file-access-from-files parameter. The easiest way to do this is to create a new Chrome shortcut
that tacks this parameter onto the end of the command line. See http://tinyurl.com/3j4dgcb for a blow-by-
blow description.

A Time-Consuming Task
Before you can see the benefits of web workers, you need to find a suitable intensive
piece of code. There’s no point in using web workers for short tasks. But if you plan
to run some CPU-taxing calculations that could tie up the web browser for more
than a few seconds, web workers make all the difference. Consider, for example, the
prime number searcher shown in Figure 12-4. Here, you can hunt for prime num-
bers that fall in a given range. The code is simple, but the task is computationally
difficult, which means it could take some serious number-crunching time.

Figure 12-4:
Pick your range and click the
button to start the search.
Pick a relatively narrow
range (like this one, from
1 to 50,000), and the task
completes in seconds, with-
out inconveniencing anyone.
But launch a broader search
(say, from 1 to 500,000) and
your page could become
unresponsive for minutes or
more. You won’t be able to
click, scroll, or interact with
anything—and the browser
may even give you a “long-
running script” warning or
gray out the entire page.

Clearly, this page can be improved with web workers. But before you get to that, you
need to take a quick look through the existing markup and JavaScript code.

363chapter 12: more cool javascript tricks

 Web Workers

The markup is short and concise. The page uses two <input> controls, one for each
text box. It also includes a button to start the search, and two <div> elements, one
to hold the results and another to hold the status message underneath. Here’s the
complete markup from inside the <body> element:

<p>Do a prime number search from <input id="from" value="1"> to
 <input id="to" value="20000">.</p>
<button id="searchButton" onclick="doSearch()">Start Searching</button>

<div id="primeContainer">
</div>

<div id="status"></div>

One interesting detail is the styling of the <div> element that holds the prime number
list. It’s given a fixed height and a maximum width, and the overflow and overflow-x
properties work together to add a vertical scroll bar (but not a horizontal one):

#primeContainer {
 border: solid 1px black;
 margin-top: 20px;
 margin-bottom: 10px;
 padding: 3px;
 height: 300px;
 max-width: 500px;
 overflow: scroll;
 overflow-x: hidden;
 font-size: x-small;
}

The JavaScript code is a bit longer, but not much more complicated. It retrieves the
numbers from the text boxes, starts the search, and then adds the prime number
list to the page. It doesn’t actually perform the mathematical operations that find
the prime numbers—this is handled through a separate function, which is named
findPrimes() and stored in a separate JavaScript file.

Tip: You don’t need to see the findPrimes() function to understand this example or web workers—all you
need is a suitably long task. However, if you’re curious to see the math that makes this page work, or if
you just want to run a few prime number searches yourself, check out the full code on the try-out site at
www.prosetech.com/html5.

Here’s the complete code for the doSearch() function:
function doSearch() {
 // Get the numbers for the search range.
 var fromNumber = document.getElementById("from").value;
 var toNumber = document.getElementById("to").value;

 // Perform the prime search. (This is the time-consuming step.)
 var primes = findPrimes(fromNumber, toNumber);

 // Loop over the array of prime numbers, and paste them together into
 // one long piece of text.

364 html5: the missing manual

 Web Workers

 var primeList = "";
 for (var i=0; i<primes.length; i++) {
 primeList += primes[i];
 if (i != primes.length-1) primeList += ", ";
 }

 // Insert the prime number text into the page.
 var displayList = document.getElementById("primeContainer");
 displayList.innerHTML = primeList;

 // Update the status text to tell the user what just happened.
 var statusDisplay = document.getElementById("status");
 if (primeList.length == 0) {
 statusDisplay.innerHTML = "Search failed to find any results.";
 }
 else {
 statusDisplay.innerHTML = "The results are here!";
 }
}

As you can see, the markup and code is short, simple, and to the point. Unfortunate-
ly, if you plug in a large search you’ll find that it’s also as slow and clunky as riding a
golf cart up a steep hill.

Doing Work in the Background
The web worker feature revolves around a new object called the Worker. When you
want to run something in the background, you create a new Worker, give it some
code, and send it some data.

Here’s an example that creates a new web worker that runs the code in the file named
PrimeWorker.js:

var worker = new Worker("PrimeWorker.js");

The code that a worker runs is always stored in a separate JavaScript file. This design
discourages newbie programmers from writing web worker code that attempts to
use global variables or directly access elements on the page. Neither of these opera-
tions is possible.

Note: Browsers enforce a strict separation between your web page and your web worker code. For
example, there’s no way for the code in PrimeWorker.js to write prime numbers into a <div> element.
Instead, your worker code needs to send its data back to JavaScript code on the page, so the web page
code can display the results.

Web pages and web workers communicate by exchanging messages. To send data to
a worker, you call the worker’s postMessage() method:

worker.postMessage(myData);

365chapter 12: more cool javascript tricks

 Web Workers

The worker then receives an onMessage event that provides a copy of the data. This
is when it starts working.

Similarly, when your worker needs to talk back to the web page, it calls its own post-
Message() method, along with some data, and the web page receives an onMessage
event. Figure 12-5 shows this interaction close up.

Figure 12-5:
Here’s the web workers
feature at its simplest.
There are three basic
steps: The page sends
the worker some data,
the worker runs, and the
worker sends back some
data.

Web Page
(PrimeNumberSearch_WebWorker.html)

Web Worker
(PrimeWorker.js)

Regular Code
Handle a button-click

(for example)

onMessage Event
Update the page here

onMessage Event
Do the time-consuming

work here

Call postMessage()

Call postMessage()

There’s one more wrinkle to consider before you dive in. The postMessage() function
allows only a single value. This is a stumbling block for the prime number cruncher,
because it needs two pieces of data (the two numbers in the range). The solution is
to package these two details into an object literal (see page 356). This code shows
one example, which gives the object two properties (the first named from, and the
second named to), and assigns values to both of them:

worker.postMessage(
 { from: 1,
 to: 20000 }
);

Note: Incidentally, you can send virtually any object to a worker. Behind the scenes, the browser uses
JSON (page 291) to convert your object to a harmless piece of text, duplicate it, and re-objectify it.

With these details in mind, you can revise the doSearch() function you saw earlier.
Instead of performing the prime number search itself, the doSearch() function cre-
ates a worker and gets it to do the real job:

var worker;

function doSearch() {
 // Disable the button, so the user can't start more than one search
 // at the same time.
 searchButton.disabled = true;

366 html5: the missing manual

 Web Workers

 // Create the worker.
 worker = new Worker("PrimeWorker.js");

 // Hook up to the onMessage event, so you can receive messages
 // from the worker.
 worker.onmessage = receivedWorkerMessage;

 // Get the number range, and send it to the web worker.
 var fromNumber = document.getElementById("from").value;
 var toNumber = document.getElementById("to").value;

 worker.postMessage(
 { from: fromNumber,
 to: toNumber }
);

 // Let the user know that things are on their way.
 statusDisplay.innerHTML = "A web worker is on the job ("+
 fromNumber + " to " + toNumber + ") ...";
}

Now, the code in the PrimeWorker.js file springs into action. It receives the onMes-
sage event, performs the search, and then posts a new message back to the page, with
the prime list:

onmessage = function(event) {
 // The object that the web page sent is stored in the event.data property.
 var fromNumber = event.data.from;
 var toNumber = event.data.to;

 // Using that number range, perform the prime number search.
 var primes = findPrimes(fromNumber, toNumber);

 // Now the search is finished. Send back the results.
 postMessage(primes);
};

function findPrimes(fromNumber, toNumber) {
 // (The boring prime number calculations go in this function.)
}

When the worker calls postMessage(), it fires the onMessage event, which triggers
this function in the web page:

function receivedWorkerMessage(event) {
 // Get the prime number list.
 var primes = event.data;

 // Copy the list to the page.
 ...

 // Allow more searches.
 searchButton.disabled = false;
}

367chapter 12: more cool javascript tricks

 Web Workers

You can now use the same code you saw earlier (page 364) to convert the array of
prime numbers into a piece of text, and insert that text into the web page.

Overall, the structure of the code has changed a bit, but the logic is mostly the same.
The result, however, is dramatically different. Now, when a long prime number
search is under way, the page remains responsive. You can scroll down, type in the
text boxes, and select numbers in the list from the previous search. Other than the
message at the bottom of the page, there’s nothing to reveal that a web worker is
plugging away in the background.

Tip: Does your web worker need access to the code in another JavaScript file? There’s a simple solution
with the importScripts() function. For example, if you want to call functions from the FindPrimes.js file in
PrimeWorker.js, just add this line of code before you do:

importScripts("FindPrimes.js");

Handling Worker Errors
As you’ve learned, the postMessage() method is the key to communicating with web
workers. However, there’s one more way that a web worker can notify your web
page—with the onerror event that signals an error:

worker.onerror = workerError;

Now, if some dodgy script or invalid data causes an error in your background code,
the error details are packaged up and sent back to the page. Here’s some web page
code that simply displays the text of the error message:

function workerError(error) {
 statusDisplay.innerHTML = error.message;
}

Along with the message property, the error object also includes a lineno and filename
property, which report the line number and file name where the error occurred.

Canceling a Background Task
Now that you’ve built a basic web worker example, it’s time to add a few refine-
ments. First is cancellation support, which lets your page shut down a worker in
mid-calculation.

There are two ways to stop a worker. First, a worker can stop itself by calling close().
More commonly, the page that created the worker will shut it down by calling the
worker’s terminate() method. For example, here’s the code you can use to power a
straightforward cancel button:

function cancelSearch() {
 worker.terminate();
 statusDisplay.innerHTML = "";
 searchButton.disabled = false;
}

368 html5: the missing manual

 Web Workers

Gem in The RoUGh

A Web Worker Fallback
By this point, you’re probably wondering what you should
do when your page runs on a browser that doesn’t have
web worker support.

As with geolocation, you can use Google Gears as a fall-
back for web workers, as it provides a similar feature called
worker pool (http://code.google.com/apis/gears/api_
workerpool.html). However, even if you use Gears, you’ll
still need another fallback for computers that don’t have it
installed. The easiest option is to simply do the same work
in the foreground:

if (window.Worker) {
 // Web workers are supported.
 // So why not create a web worker
 // and start it?
} else {

 // Web workers aren’t available.
 // You can just call the prime search
 // function, and wait.

}

This approach doesn’t force you to write any extra code,
because the prime-number-searching function is already
written, and you can call it with or without a web worker.
However, if you have a long task, this approach could lock
up the browser for a bit. An alternate (but more tedious)
approach is to try to fake a background job using the se-
tInterval() or setTimeout() methods. For example, you
could write some code that tests just a few numbers every
interval.

Click this button to stop the current search and re-enable the search button. Just
remember that once a worker is stopped in this way, you can’t send any more mes-
sages, and it can’t be used to do any more operations. To perform a new search, you
need to create a new worker object. (The current example does this already, so it
works perfectly.)

Passing More Complex Messages
The last trick you’ll learn to do with a web worker is return progress information.
Figure 12-6 shows a revised version of the web worker page that adds this feature.

To build the progress display, the web worker needs to send the progress percentage
to the page while it works. But as you already know, web workers have just one way
to talk to the pages that owns them—with the postMessage() method. So to create
this example, the web worker needs to send two types of messages: progress notifica-
tions (while the work is under way) and the prime number list (when the work is fin-
ished). The trick is making the difference between these two messages clear, so the
onMessage event handler in the page can easily distinguish between the two types.

The best approach is to add a bit of extra information to the message. For example,
when the web worker sends progress information, it can slap the text label “Prog-
ress” on its message. And when the web worker sends the prime number list, it can
add the label “PrimeList.”

369chapter 12: more cool javascript tricks

 Web Workers

Figure 12-6:
As the prime number search
is under way, the search
updates the status display to
tell you how close the task is
to completion. For a fancier
display, you could use a color-
filling progress bar like the one
on page 164.

To bundle all the information you want together in one message, you need to create
an object literal. This is the same technique the web page used to send the number
range data to the web worker. The extra piece of information is the text that de-
scribes the type of message, which is placed in a property called messageType in this
example. The actual data goes in a second property, named data.

Here’s how you would rewrite the web worker code to add a message type to the
prime number list:

onmessage = function(event) {
 // Perform the prime number search.
 var primes = findPrimes(event.data.from, event.data.to);

 // Send back the results.
 postMessage(
 {messageType: "PrimeList", data: primes}
);
};

370 html5: the missing manual

 Web Workers

The code in the findPrimes() function also uses the postMessage() method to send
a message back to the web page. It uses the same two properties—messageType and
data. But now the messageType indicates that the message is a progress notification,
and data holds the progress percentage:

function findPrimes(fromNumber, toNumber) {
 ...

 // Calculate the progress percentage.
 var progress = Math.round(i/list.length*100);

 // Only send a progress update if the progress has changed at least 1%.
 if (progress != previousProgress) {
 postMessage(
 {messageType: "Progress", data: progress}
);
 previousProgress = progress;
 }
 ...
}

When the page receives a message, it needs to start by checking the messageType
property to determine what sort of message it has just received. If it’s a prime list,
then the results are shown in the page. If it’s a progress notification, then the progress
text is updated:

function receivedWorkerMessage(event) {
 var message = event.data;

 if (message.messageType == "PrimeList") {
 var primes = message.data;

 // Display the prime list. This code is the same as before.
 ...
 }
 else if (message.messageType == "Progress") {
 // Report the current progress.
 statusDisplay.innerHTML = message.data + "% done ...";
 }
}

Note: There’s another way to design this page. You could get the worker to call postMessage() every time
it finds a prime number. The web page would then add each prime number to the list and show it in the
page immediately. This approach has the advantage of showing results as they arrive. However, it also has
the drawback of continually interrupting the page (because the web worker will find prime numbers quite
quickly). The ideal design depends on the nature of your task—how long it takes to complete, whether
partial results are useful, how quickly each partial result is calculated, and so on.

371chapter 12: more cool javascript tricks

 History Management

poweR USeRS’ CliniC

More Ways to Use a Web Worker
The prime number search users web workers in the most
straightforward way possible—to perform one well-defined
task. Every time the search is started, the page creates a
new web worker. That web worker is responsible for a
single task. It receives a single message, and sends a single
message back.

Your pages don’t need to be this simple. Here are a few
examples of how you can extend your web-worker designs
to do more complicated things:

• Reuse a web worker for multiple jobs. When a
worker finishes its work and reaches the end of the
onMessage event handler, it doesn’t die. It simply
goes idle and waits quietly. If you send the worker
another message, it springs back to life and does the
work.

• Create multiple web workers. Your page doesn’t
need to stick to one worker. For example, imagine
you want to let a visitor launch several prime number
searches at a time. You could create a new web work-
er for each search, and keep track of all your workers
in an array. Each time a web worker responds with
its list of prime numbers, you add that to the page,

taking care not to overwrite any other worker’s result.
(However, some words of caution are in order. Web
workers have a relatively high overhead, and running
a dozen at once could swamp the computer with
work.)

• Create web workers inside a web worker. A web
worker can start its own web workers, send them
messages, and receive their messages back. This
technique is useful for complex computational tasks
that require recursion, like calculating the Fibonacci
sequence.

• Download data with a web worker. Web work-
ers can use the XMLHttpRequest object (page 325) to
grab new pages or to send requests to a web service.
When they get the information they need, they can
call postMessage() to send it up to the page.

• Do periodic tasks with a web worker. Web work-
ers can use the setTimeout() and setInterval() func-
tions, just like ordinary web pages. For example, you
might create a web worker that checks a website for
new data every minute.

History Management
Session history is an HTML5 add-on that extends the capabilities of the JavaScript
history object. This sounds simple, but the trick is knowing when and why you
should use it.

If you’ve never noticed the history object before, don’t be alarmed. Up until now, it’s
had very little to offer. In fact, the traditional history object has just one property and
three basic methods. The property is length, and it tells you how many entries are
in the browser’s History list (the list of recently visited web pages that the browser
maintains as you skip from page to page across the Web). Here’s an example that
uses it:

alert("You have " + history.length +
 " pages in your browser's history list.");

The most useful history method is back(). It lets you send a visitor one step back in
the browsing history:

history.back();

372 html5: the missing manual

 History Management

This method has the same effect as if the visitor clicked the browser’s Back button.
Similarly, you can use the forward() method to step forward, or the go() method to
move a specified number of steps backward or forward.

All this adds up to relatively little, unless you want to design your own custom Back
and Forward buttons on a web page. But HTML5 adds a bit more functionality,
which can be put to far more ambitious purposes. The centerpiece is the pushState()
method, which lets you change the URL in the browser window without triggering
a page refresh. This comes in handy in a specific scenario—namely, when you’re
building dynamic pages that quietly load new content and seamlessly update them-
selves. In this situation, the page’s URL and the page’s content can become out of
sync. For example, if a page loads content from another page, the first page’s URL
stays in the browser’s address box, which can cause all sorts of bookmarking confu-
sion. Session history gives you a way to patch this hole.

If you’re having a bit of trouble visualizing this scenario, hold on. In the next section,
you’ll see a page that’s a perfect candidate for session history.

The URL Problem
In the previous chapter, you considered a page about Chinese tourism that had a
built-in slideshow (page 330). Using the Previous and Next buttons on this page, the
viewer could load different slides. But the best part about this example is that each
slide was loaded quietly and unobtrusively and without reloading the page, thanks
to the trusty XMLHttpRequest object.

Pages that include dynamic content and use this sort of design have a well-known
limitation. Even though the page changes when it loads in new content, the URL
stays the same in the browser’s address bar (Figure 12-7).

Figure 12-7:
Here are two versions
of the ChinaSites.html
page, with different
slides loaded. In both
pages, the URL stays
the same (it’s China-
Sites.html).

Different content, same URL

373chapter 12: more cool javascript tricks

 History Management

To understand the problem, imagine that Joe reads the article shown in Figure 12-7,
looks at the different sights, and is excited by the wishing tree in the fifth slide. Joe
bookmarks the page, sends the URL to his friend Claire via email, and promotes it to
the whole world with a Twitter message (“Throwing paper into a tree beats dropping
coins in a fountain. Check it out at http://...”). The problem is that when Joe returns
to his bookmark, or when Claire clicks the link in the email, or when any of Joe’s fol-
lowers visit the link in the tweet, they all end up at the first slide. They may not have
the patience to click through to the fifth slide, or they may not even know where it is.
And this problem grows worse if there are more than just five slides—for example, a
Flickr photo stream could have dozens or hundreds of pictures.

The Traditional Solution: Hashbang URLs
To deal with this problem, some web pages tack extra information onto the end of
the URL. One of the most common (and controversial) strategies is the hashbang
technique, which sticks on the characters #! followed by some text of your choosing.
Here’s an example:

http://jjtraveltales.com/ChinaSites.html#!/Slide5

The reason the hashbang approach works is because browsers treat everything after
the # character as the fragment portion of a URL. So in the example shown here, the
web browser knows that you’re still referring to the same ChinaSites.html page, just
with an extra fragment added to the end.

On the other hand, consider what happens if your JavaScript code changes the URL
without using the # character:

http://jjtraveltales.com/ChinaSites.html/Slide5

Now the web browser will immediately send this request to the web server and at-
tempt to download a new page. This isn’t what you want.

So how would you implement the hashbang technique? First, you need to change the
URL that appears in the browser whenever your page loads a new slide. (You can do
this by setting the location.href property in your JavaScript code.) Second, you need
to check the URL when the page first loads, retrieve the fragment, and fetch the cor-
responding bit of dynamic content from the web server. All of this adds up to a fair
bit of juggling, but you can use a JavaScript library like PathJS (https://github.com/
mtrpcic/pathjs) to make life much easier.

The hashbang approach is widely used but deeply controversial. Web designers have
started to back away from it for a number of reasons:

• Complex URLs. Facebook is a good example of the problem. In the past, it
wouldn’t take much browsing before the browser’s URL would be polluted with
extra information, as in http://www.facebook.com/profile.php?id=1586010043#!/
pages/Haskell/401573824771. Now designers use session history, if the browser
supports it.

374 html5: the missing manual

 History Management

• Inflexibility. Hashbang pages store a lot of information in the URL. If you
change the way a hashbanged page works, or the way it stores information, old
URLs could stop working, which is a major website fail.

• Search engine optimization. Search engines may treat different hashbanged
URLs as essentially the same page. In the ChinaSites.html page, that means you
won’t get a separately indexed page for each tourist site—in fact, search engines
might ignore this information altogether. This means that if someone searches
for “china wishing tree,” the ChinaSites.html page won’t turn up as a match.
Google made its own attempt to solve the problem with a special hashbang syn-
tax (http://code.google.com/web/ajaxcrawling/docs/getting-started.html) but web
developers have unanimously criticized it for confusing everyone.

• Cool URLs matter. Cool URLs are web page addresses that are short, clear,
and—most importantly—never change. Tim Berners-Lee, the creator of the
Web, explains the philosophy at www.w3.org/Provider/Style/URI.html. And no
matter how strongly you feel about keeping good web content alive, hashbang
URLs are difficult to maintain and unlikely to survive the next stage in web
evolution.

Although webmasters differ over how much they tolerate the hashbang approach,
most agree that it’s a short stage of web development that eventually will be replaced
by HTML5’s session history feature.

The HTML5 Solution: Session History
HTML5’s session history feature provides a different solution to the URL problem.
It gives you a way to change the URL to whatever you want, without needing to stick
in funny characters like the hashbang. For example, when the ChinaSites.html page
loads the fifth slide, you could change the URL to look like this:

http://jjtraveltales.com/ChinaSites4.html

When you do this, the browser won’t actually attempt to request a page named Chi-
naSites4.html. Instead, it keeps the current page, with the newly loaded slide, which
is exactly what you want. The same is true if the visitor goes back through the brows-
er history. For example, if a visitor moves to the next slide (and the URL changes to
ChinaSites5.html) and then clicks the Back button (returning the URL to China-
Sites4.html), the browser sticks with the current page and raises an event that gives
you the chance to load the matching slide and restore the right version of the page.

So far, this sounds like a perfect solution. However, there’s a significant drawback. If
you want this system to work the way it’s intended, you actually need to create a page
for every URL you use. In this example, that means you need to create ChinaSites1.
html, ChinaSites2.html, ChinaSites3.html, and so on. That’s because surfers might
go directly to those pages—for example, when returning through a bookmark, typ-
ing the link in by hand, clicking it in an email message, and so on. For big web outfits

375chapter 12: more cool javascript tricks

 History Management

(like Facebook or Flickr), this is no big deal, because they can use a scrap of server-
side code to serve up the same slide content in a different package. But if you’re a
small-scale web developer, it might be a bit more work. For some options on how to
handle the challenge, see the box on page 378.

Now that you understand how session history fits into your pages (the hard part),
actually using it is easy. In fact, session history consists of just two methods and a
single event, all of which are added to the history object.

The most important of these is the pushState() method, which lets you change the
web page portion of the URL to whatever you want. For security reasons, you can’t
change the rest of the URL. (If you could, hackers would have a powerful tool for
faking other people’s websites—including, say, the Gmail sign on a bank transaction
form.)

Here’s an example that changes the web page part of the URL to ChinaSites4.html:
history.pushState(null, null, "ChinaSites4.html");

The pushState() method accepts three arguments. The third one is the only essential
detail—it’s the URL that appears in the browser’s address bar.

The first argument is any piece of data you want to store to represent the current
state of this page. As you’ll see, you can use this data to restore the page state if the
user returns to this URL through the browser’s History list. The second argument
is the page title you want the browser to show. All browsers are currently unified in
ignoring this detail. If you don’t want to set either the state or the title, just supply a
null value, as shown above.

Here’s the code you’d add to the ChinaSites.html page to change the URL to match
the currently displayed slide. You’ll notice that the current slide number is used for
the page state. That detail will become important in a moment, when you consider
the onPopState event:

function nextSlide() {
 if (slideNumber == 5) {
 slideNumber = 1;
 } else {
 slideNumber += 1;
 }

 history.pushState(slideNumber, null, "ChinaSites" + slideNumber + ".html");
 goToNewSlide();
 return false;
}

function previousSlide() {
 if (slideNumber == 1) {
 slideNumber = 5;
 } else {
 slideNumber -= 1;
 }

376 html5: the missing manual

 History Management

 history.pushState(slideNumber, null, "ChinaSites" + slideNumber + ".html");
 goToNewSlide();
 return false;
}

Figure 12-8 shows the result.

Figure 12-8:
As a visitor clicks
through the slides,
the URL changes to
match. The URL that
appears is clean and
sensible, and it refers
to exactly the right
spot in the slideshow.

If you use the pushState() method, you’ll also need to think about the onPopState
event, which is its natural counterpart. While the pushState() method puts a new
entry into the browser’s History list, the onPopState event gives you the chance to
deal with it when the user returns.

To understand how it works, consider what happens if a visitor works through all the
slides. As she clicks through, the URL in the address bar changes from ChinaSites.
html to ChinaSites1.html, then ChinaSites2.html, ChinaSites3.html, and so on. Even
though the page hasn’t actually changed, all of these URLs are added to the browser’s
history. If the user clicks back to get to a previous slide (for example, moving from
ChinaSites3.html to ChinaSites2.html), the onPopState event is triggered. It pro-
vides your code with the state information you stored earlier, with pushState(). Your
job is to use that to restore the page to its proper version. In the current example, that
means loading the corresponding slide:

window.onpopstate = function(e) {
 if (e.state != null) {
 // What's the slide number for this state?
 // (You could also snip it out of the URL, using the location.href
 // property, but that's more work.)
 slideNumber = e.state;

 // Request this slide from the web server.
 goToNewSlide();
 }
};

377chapter 12: more cool javascript tricks

 History Management

You’ll notice that this example checks to see if there is any state object before it
does its work. That’s because some browsers (including Chrome) fire the onPopState
event the first time a page is loaded, even if you haven’t yet called pushState().

Note: There’s one more new history method, but it’s used a lot less frequently—replaceState(). You can
use replaceState() to change the state information that’s associated with the current page, without adding
anything to the History list.

Browser Compatibility for Session History
Session history is a relatively new feature, although you’ll find it in the latest versions
of all desktop browsers except Internet Explorer (see Table 12-3).

Table 12-3. Browser support for session history

IE Firefox Chrome Safari Opera Safari iOS Android
Minimum
version

- 4 8 5 11.5 4.2 -

There are several ways you can handle a browser that doesn’t support session his-
tory. If you do nothing at all, the fancy URLs just won’t appear. This is what you get
if you load the previous example in Internet Explorer—no matter what slide you
load up, the URL stays fixed at ChinaSites.html. Flickr also uses this approach with
its photo streams (to see an example, view http://tinyurl.com/6hnvanw with Internet
Explorer).

Another choice is to trigger a full page refresh when the user loads new content on
a browser that doesn’t support session history. This makes sense if providing a good,
meaningful URL is more important that providing the slick experience of dynami-
cally loaded content. For example, the code hosting website http://github.com uses
this strategy to keep the URL up to date when you browse through the folders of a
project. But use a browser that supports session history, and you’ll not only get dy-
namically loaded content, but you’ll also see a neat slide-in effect, which is described
at http://github.com/blog/760-the-tree-slider.

The most complex option is to use session history where possible, but fall back to the
hashbang syntax. (Facebook uses this method.) The drawback is that you’ll need to
juggle two different approaches in the same page. You can also use a JavaScript patch
that tries to paper over the difference—it’s available at http://github.com/balupton/
history.js.

378 html5: the missing manual

 History Management

Up To Speed

Creating Extra Pages to Satisfy Your URLs
Session history follows the original philosophy of the Web:
Every piece of content should be identified with a unique,
durable URL. Unfortunately, this means you’ll need to
make sure that these URLs lead visitors back to the con-
tent they want, which is a much stickier affair. For example,
when someone types in a request for ChinaSites3.html,
you need to grab the main content from ChinaSites.html
and the slide content from ChinaSites3_slide.html and
somehow stick it together.

If you’re a hard-core web programmer, you can write code
that runs on the web server, intercepts web request, and
carries out this assembly process on the fly. But if you don’t
have serious codemaster skills, you’ll need to use a differ-
ent approach.

The simplest option is to make a separate file for each URL—
in other words, actually create the files ChinaSites1.html,
ChinaSites2.html, ChinaSites3.html, and so on. Of course,
you don’t want to duplicate the slide content in more than
one place (for example, in both the ChinaSites3.html and
ChinaSites3_slide.html), because that would create a main-
tenance nightmare. Fortunately, there are two simple ap-
proaches that can simplify your life:

• Use server-side includes. If your web server sup-
ports this technique (and most do), you can use a
special coded instruction like the following:

<!--#include file="footer.html" -->

Although it looks like a comment, this tells the web
server to open the file and insert its contents at that
position in the markup. Using this technique, you can
insert the main content and the slide content into
each slide-specific page. In fact, each slide-specific
web page file (ChinaSites1.html, ChinaSites2.html,
and so on) will need just a few lines of markup to
create a basic shell of a page.

• Use templates in a web design tool. Both Adobe
Dreamweaver and Microsoft Expression Web allow
you to create web templates that can be copied, with
exact detail, to as many pages as you want. So if you
create a template that has the main content and style
details, you can reuse it to create all the slide-specific
pages you need, quickly and easily.

4
Part Four: Appendixes
Appendix A: A Very Short Introduction to CSS

Appendix B: A Very Short Introduction to JavaScript

381

appendix
a

A Very Short Introduction
to CSS

It’s no exaggeration to say that modern web design wouldn’t be possible without
CSS, the Cascading Style Sheet standard. CSS allows even the most richly for-
matted, graphically complex web pages to outsource the formatting work to a

separate document—a style sheet. This keeps the web page markup clean, clear, and
readable.

To get the most out of HTML5 (and this book), you need to be familiar with the CSS
standard. If you’re a CSS pro, don’t worry about this appendix—carry on with the
material in the rest of the book, and pay special attention to Chapter 8, which intro-
duces the new style features that are being added to CSS3. But if your CSS skills are a
bit rusty, this appendix will help to refresh your memory before you go any further.

Note: This appendix gives a very quick (and not comprehensive) rundown of CSS. If you’re still over-
whelmed, consult a book that deals with CSS in more detail, like CSS: The Missing Manual.

Adding Styles to a Web Page
There are three ways to use styles in a web page.

The first approach is to embed style information directly into an element using the
style attribute. Here’s an example that changes the color of a heading:

<h1 style="color: green">Inline Styles are Sloppy Styles</h1>

This is convenient, but it clutters the markup terribly.

382 html5: the missing manual

 The Anatomy of a
Style Sheet
 The Anatomy of a
Style Sheet

The second approach is to embed an entire style sheet in a <style> element, which
you must place in the <head> section of your page:

<head>
 <title>Embedded Style Sheet Test</title>
 <style>
 ...
 </style>
</head>

This code separates the formatting from your web page markup but still keeps ev-
erything together in one file. This approach makes sense for one-off formatting tasks
(when you don’t want to reuse your formatting choices in another page), and it’s a
good choice for simple tests and examples, like the ones that are included with this
book. However, it’s not so great for a real-world, professional website, because it
leads to long, bloated pages.

The third approach is to link to a separate style sheet file by adding a <link> element
to the <head> section. Here’s an example that tells a web browser to apply the styles
from the style sheet named SampleStyles.css:

<head>
 <title>External Style Sheet Test</title>
 <link rel="stylesheet" href="SampleStyles.css">
</head>

This approach is the most common, and the most powerful. It also gives you the
flexibility to reuse your styles in other pages. If you want, you can further divide your
styles into multiple style sheets, and link to as many as you need in any HTML page.

Note: A simple philosophy underpins modern web development. HTML markup is for structuring a page
into logical sections (for example, paragraphs, headings, lists, images, and links), while a CSS style sheet
is for formatting it (by specifying fonts, colors, borders, backgrounds, and layout). Follow this rule, and
your web pages will be easy to edit. You’ll also be able to change the formatting and layout of your entire
website simply by modifying its linked style sheet. (To see a truly impressive example of style sheet magic,
check out www.csszengarden.com, where one website is given more than 200 different faces, simply by
swapping in different style sheets.)

The Anatomy of a Style Sheet
A style sheet is a text file, which you’ll usually place on a web server alongside your
HTML pages. It contains one or more rules. The order of the rules doesn’t matter.

383appendix a: a very short introduction to css

 The Anatomy of a
Style Sheet

 The Anatomy of a
Style Sheet

Each rule applies one or more formatting details to one or more HTML elements.
Here’s the structure of a simple rule:

selector {
 property: value;
 property: value;
}

And here’s what each part means:

• The selector identifies the type of content you want to format. A browser hunts
down all the elements in the web page that match your selector. There are many
different ways to write a selector, but one of the simplest approaches (shown
next) is to identify the elements you want to format by their element name. For
example, you could write a selector that picks out all the level-one headings in
your page.

• The property identifies the type of formatting you want to apply. Here’s where
you choose whether you want to change colors, fonts, alignment, or something
else. You can have as many property settings as you want in a rule—this example
has two.

• The value sets a value for the property. For example, if your property is color,
the value could be light blue or a queasy green.

Now here’s a real rule that does something:
h1 {
 text-align: center;
 color: green;
}

Pop this text into a style sheet and save it (for example, as SampleStyles.css). Then,
take a sample web page (one that has at least one <h1> heading), and add a <link>
element that refers to this style sheet. Finally, open this page in a browser. You’ll see
that the <h1> headings don’t have their normal formatting—instead, they will be
centered and green.

CSS Properties
The previous example introduces two formatting properties: text-align (which sets
how text is positioned, horizontally) and color (which sets the text color).

There are many, many more formatting properties for you to play with. Table A-1
lists some of the most commonly used. In fact, this table lists almost all the style
properties you’ll encounter in the examples in this book (not including the new
CSS3 properties that are described in Chapter 8).

384 html5: the missing manual

 The Anatomy of a
Style Sheet
 The Anatomy of a
Style Sheet

Table A-1. Commonly used style sheet properties, by category

Properties

Colors
color
background-color

Spacing

margin
padding
margin-left, margin-right, margin-top, margin-bottom
padding-left, padding-right, padding-top, padding-bottom

Borders

border-width
border-style
border-color
border (to set the width, style, and color in one step)

Text alignment

text-align
text-indent
word-spacing
letter-spacing
line-height
white-space

Fonts

font-family
font-size
font-weight
font-style
font-variant
text-decoration
@font-face (for using fancy fonts; see page 244)

Size
width
height

Layout
position
left, right
float, clear

Graphics
background-image
background-repeat
background-position

Tip: If you don’t have a style sheet book on hand, you can get an at-a-glance overview of all the proper-
ties listed here (and more) at www.htmldog.com/reference/cssproperties. You can also get more informa-
tion about each property, including a brief description of what it does and the values it allows.

385appendix a: a very short introduction to css

 The Anatomy of a
Style Sheet

Formatting the Right Elements with Classes
The previous style sheet rule formatted all the <h1> headings in a document. But
in more complex documents, you need to pick out specific elements, and give them
distinct formatting.

To do this, you need to give these elements a name with the class attribute. Here’s an
example:

<h1 class="ArticleTitle">HTML5 is Winning</h1>

Now you can write a style sheet rule that formats only this heading. The trick is to
write a selector that starts with a period, followed by the class name, like this:

.ArticleTitle {
 font-family: Garamond, serif;
 font-size: 40px;
}

Now, the <h1> that represents the article title is sized up to be 40 pixels tall.

You can use the class attribute on as many elements as you want. In fact, that’s the
idea. A typical style sheet is filled with class rules, which take web page markup and
neatly carve it into stylable units.

Finally, it’s worth noting that you can create a selector that uses an element type and
a class name, like this:

h1.ArticleTitle {
 font-size: 40px;
}

This selector creates an ArticleTitle class that will work only for <h1> elements.
Sometimes, you may write this sort of style rule just to be clear. For example, you
may want to make it obvious that the ArticleTitle applies only to <h1> headings,
and shouldn’t be used anywhere else. But most of the time, web designers just create
straight classes with no element restrictions.

Note: Different selectors can overlap. If more than one selector applies to the same element, they will
both take effect, with the most general being applied first. For example, if you have a rule that applies to
all headings and a rule that applies to the class named ArticleTitle, the all-headings rule is applied first,
followed by the class rule. As a result, the class rule can override the properties that are set in the all-
headings rule. If two rules are equally specific, the one that’s defined last in the style sheet wins.

Style Sheet Comments
In a complicated style sheet, it’s sometimes worth leaving little notes to remind your-
self (or let other people know) why a style sheet rule exists, and what it’s designed
to do. Like HTML, CSS lets you add comments, which the web browser ignores.
However, CSS comments don’t look like HTML comments. They always start with
the characters /* and end with the characters */. Here’s an example of a somewhat
pointless comment:

386 html5: the missing manual

Slightly More
Advanced Style
Sheets

/* The heading of the main article on a page. */
.ArticleTitle {
 font-size: 40px;
}

Slightly More Advanced Style Sheets
You’ll see an example of a practical style sheet in a moment. But first, you need to
consider a few of the finer points of style-sheet writing.

Structuring a Page with <div> Elements
When working with style sheets, you’ll often use the <div> element to wrap up a
section of content:

<div>
 <p>Here are two paragraphs of content.</p>
 <p>In a div container.</p>
</div>

On its own, the <div> does nothing. But it gives you a convenient place to apply
some class-based style sheet formatting. Here are some examples:

• Inherited values. Some CSS properties are inherited, which means the value
you set in one element is automatically applied to all the elements inside. One
example is the set of font properties—set them on a <div>, and everything in-
side gets the same text formatting (unless you override it in places with more
specific formatting rules).

• Boxes. A <div> is a natural container. Add a border, some spacing, and a dif-
ferent background color (or image), and you have a way to make select content
stand out.

• Columns. Professional websites often carve their content up into two or three
columns. One way to make this happen is to wrap the content for each column
in a <div>, and then use CSS positioning properties to put them in their proper
places.

Tip: Now that HTML5 has introduced the semantic elements, the <div> element doesn’t play quite as
central a role. If you can replace a <div> with another, more meaningful semantic element (like <header>
or <figure>), you should do that. But when nothing else fits, the <div> remains the go-to tool. Chapter 2
has a detailed description of all the new semantic elements.

The <div> element also has a smaller brother named . Like the <div> ele-
ment, the element has no built-in formatting. The difference is that <div> is
a block element, designed to wrap separate paragraphs or entire sections of content,
while is an inline element that’s meant to wrap smaller portions of content
inside a block element. For example, you can use to apply custom formatting
to a few words inside a paragraph.

387appendix a: a very short introduction to css

Slightly More
Advanced Style

Sheets
Note: CSS encourages good design. How? If you want to use CSS effectively, you need to properly plan
the structure of your web page. Thus, the need for CSS encourages even casual web-page writers to think
seriously about how their content is organized.

Multiple Selectors
Sometimes, you might want to define some formatting that applies to more than one
element or more than one class. The trick is to separate each selector with a comma.

For example, consider these two heading levels, which have different sizes but share
the same title font:

h1 {
 font-family: Impact, Charcoal, sans-serif;
 font-size: 40px;
}

h2 {
 font-family: Impact, Charcoal, sans-serif;
 font-size: 20px;
}

You could pull the font-family setting into a separate rule that applies to both head-
ing levels, like this:

h1, h2 {
 font-family: Impact, Charcoal, sans-serif;
}

h1 {
 font-size: 40px;
}

h2 {
 font-size: 20px;
}

It’s important to understand that this isn’t necessarily a better design. Often, it’s
better to duplicate settings because that gives you the most flexibility to change
formatting later on. If you have too many shared properties, it’s more awkward to
modify one element type or class without affecting another.

Contextual Selectors
A contextual selector matches an element inside another element. Here’s an example:

.Content h2 {
 color: #24486C;
 font-size: medium;
}

388 html5: the missing manual

Slightly More
Advanced Style
Sheets

This selector looks for an element that uses the Content class. Then, it looks for
<h2> elements inside that element, and formats them with a different text color and
font size. Here’s an example of an element it will format:

<div class="Content">
 ...
 <h2>Mayan Doomsday</h2>
 ...
</div>

In the first example, the first selector is a class selector, and the second selector (the
contextual one), is an element type selector. However, you can change this up any
way you want. Here’s an example:

.Content .LeadIn {
 font-variant: small-caps;
}

This selector looks for an element in the LeadIn class, wrapped inside an element in
the Content class. It matches this element:

<div class="Content">
 <p>Right now, you're probably feeling pretty
good.
 After all, life in the developed world is comfortable ...</p>
 ...
</div>

Once you get the hang of contextual selectors, you’ll find that they’re quite straight-
forward, and ridiculously useful.

id Selectors
Class selectors have a closely related cousin called id selectors. Like a class selector,
the id selector lets you format just the elements you chose. And like a class selector,
the id selector lets you pick a descriptive name. But instead of using a period, you use
a number-sign character (#), as shown here:

#Menu {
 border-width: 2px;
 border-style: solid;
}

As with class rules, browsers don’t apply id rules unless you specifically tell them to
in your HTML. However, instead of switching on the rules with a class attribute, you
do so with the id attribute. For example, here’s a <div> element that uses the Menu
style:

<div id="Menu">...</div>

At this point, you’re probably wondering why you would use an id selector—after
all, the id selector seems almost exactly the same as a class selector. But there’s one
difference: You can assign a given id to just one element in a page. In the current ex-
ample, that means only one <div> can be labeled with the Menu id. This restriction
doesn’t apply to class names, which you can reuse as many times as you like.

389appendix a: a very short introduction to css

Slightly More
Advanced Style

Sheets
That means the id selector is a good choice if you want to format a single, never-
repeated element on your page. The advantage is that the id selector clearly indicates
the special importance of that element. For example, if a page has an id selector
named Menu or NavigationBar id selector, the web designer knows there’s only one
menu or navigation bar on that page. Of course, you never need to use an id selector.
Some web designers use class selectors for everything, whether the section is unique
or not. It’s really just a matter of personal preference.

Note: The id attribute also plays an important role in JavaScript, allowing web page designers to identify
a specific element so it can be manipulated in code. The examples in this book use id rules whenever an
element already has an id for JavaScript. (This avoids defining setting both the id attribute and the class
attribute.) In every other case, the examples use class rules, regardless of whether the element is unique
or not.

Pseudoclass Selectors
So far, the selectors you’ve seen have been straightforward. They’ve taken a single,
obvious piece of information into consideration, like the element type, class name,
or id name. Pseudoclasses are a bit more sophisticated. They take extra information
into account—information that might not be set in the markup or might be based
on user actions.

For most of CSS history, browsers have supported just a few pseudoclasses, which
were mostly designed for formatting links. The :link pseudoclass formats any link
that points to a new, unvisited location. The :visited pseudoclass applies to any link
that points to a location the reader has already visited. The :hover pseudoclass for-
mats a link when a visitor moves the mouse over it, and the :active pseudoclass for-
mats a link as a reader clicks it, before releasing the mouse button. As you can see,
pseudoclasses always start with a colon (:).

Here’s a style rule that uses pseudoclasses to create a misleading page—one where
visited links are blue and unvisited links are red:

a:link {
 color: red;
}
a:visited {
 color: blue;
}

You can also use pseudoclasses with a class name:
.BackwardLink:link {
 color: red;
}
.BackwardLink:visited {
 color: blue;
}

390 html5: the missing manual

Slightly More
Advanced Style
Sheets

Now an anchor element needs to specify the class name to display your new style,
as shown here:

...

Pseudoclasses aren’t just a way to format links. The :hover pseudoclass is useful for
applying animated effects and creating fancy buttons. It’s used with CSS3 transitions
in Chapter 8 (page 271).

Note: CSS3 also introduces some more advanced pseudoclasses that take other details into consider-
ation, like the position of an element relative to other elements or the state of an input control in a web
form. These pseudoclasses aren’t described in this book, but you can learn about them from a Smashing
Magazine article at http://tinyurl.com/3p28wau.

Attribute Selectors
Attribute selection is a new feature offered by CSS3 that lets you format a specific
type of element that also has a specific value set for one of its attributes. For example,
consider the following style rule, which applies only to text boxes:

input[type="text"] {
 background-color:silver;
}

First, this selector grabs all the <input> elements. Then, it filters down its selection
to include just those <input> elements that have a type attribute set to “text,” which
it then formats. In the following markup, that means the first <input> element gets
the silver background, but the second doesn’t:

<label for="name">Name:</label><input id="name" type="text">

<input type="submit" value="OK">

Technically, you don’t need to include the type="text" attribute in the first <input>
element, because that’s the default value. If you leave it out, the attribute selector still
works, because it pays attention to the current value of the attribute, and doesn’t care
how that value is defined in your markup.

Similarly, you could create a rule that formats the caption for this text box but ig-
nores all other labels:

label[for="name"] {
 width: 200px;
}

Note: You can still get a bit fancier with attribute selectors. For example, you can match a combination
of attribute values, or match part of an attribute value. These techniques are awfully clever but inject too
much complexity into the average style sheet. To get the lowdown, see the CSS3 standard for selectors at
www.w3.org/TR/css3-selectors/#selectors.

391appendix a: a very short introduction to css

 A Style Sheet Tour

A Style Sheet Tour
Chapter 2 shows how you can learn to use HTML5’s new semantic elements by revis-
ing a straightforward, but nicely formatted page called ApocalypsePage_Original.html
(Figure A-1). This page links to a style sheet named ApocalypsePage_Original.css:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Apocalypse Now</title>
 <link rel="stylesheet" href="ApocalypsePage_Original.css">
</head>
...

The style sheet is straightforward and relatively brief, weighing in somewhere over
50 lines. In this section, you’ll dissect each one of its style rules.

Figure A-1:
The styles in this
page are simple,
but they follow the
basic organizational
principles that you’ll
see put into practice
throughout this book.

392 html5: the missing manual

 A Style Sheet Tour

First, the style sheet begins with a selector that targets the <body> element, which is
the root of the entire web page. This is the best place to set inherited values that you
want to apply, by default, to the rest of the document. Examples include margins,
padding, background color, the font, and the width:

body {
 font-family: “Lucida Sans Unicode”, “Lucida Grande”, Geneva, sans-serif;
 max-width: 800px;
}

When setting the font-family property in CSS, you should follow two rules. First,
use a web-safe font—one of the small number of fonts that are known to work on
virtually all web-connected computers (see www.fonttester.com/help/list_of_web_
safe_fonts.html for the basics, or www.speaking-in-styles.com/web-typography/Web-
Safe-Fonts for more exotic, riskier choices). Second, use a font list that starts with the
specific variant you want, followed by other possible fallbacks, and ends with serif or
sans-serif (two font instructions that all browsers understand). If you prefer to use a
fancy font that the user must download from your web server, check out the CSS3
font embedding feature on page 244.

The body rule also sets a maximum width, capping it at 800 pixels. This rule pre-
vents overly long, unreadable lines when the browser window is made very wide.
There are other possible techniques for handling this situation, including splitting
the text into columns (page 253), using CSS media queries (page 256), or creating
extra columns to soak up the additional space. However, although setting a fixed
800-pixel width isn’t the most glamorous solution, it is a common approach.

Next in the style sheet is a class-specific rule that formats the header region at the
top of the page:

.Header {
 background-color: #7695FE;
 border: thin #336699 solid;
 padding: 10px;
 margin: 10px;
 text-align: center;
}

Note: In the original example (used here), the header is simply a <div> with the class name Header.
However, Chapter 2 explains how you might consider replacing that with HTML5’s new <header> element.

There’s a lot of information packed into this rule. The background-color property can
be set, like all CSS colors, using a color name (which provides relatively few choices),
an HTML color code (as done here), or the rgb() function (which specifies the red,
green, and blue components of the color). The examples in this book use all three
approaches, with color names in simple examples and color codes and the rgb()
function in more realistic examples.

393appendix a: a very short introduction to css

 A Style Sheet Tour

Incidentally, every HTML color code can be written with the rgb() function, and
vice versa. For example, you can write the color in the above example using the rgb()
function, like this:

 background-color: rgb(118,149,254);

Tip: To actually get the RGB values for the color you want, try an online color picker, or look the numbers
up in your favorite drawing or graphics program.

The header rule also draws a thin border around its edges. It uses the all-in-one
border property to specify the border thickness, border color, and border style (for
example, solid, dashed, dotted, double, groove, ridge, inset, or outset) in one prop-
erty setting.

With the background color and border details out of the way, the header rule sets
10 pixels of padding (between the content inside and the border) and 10 pixels of
margin space (between the border and the surrounding web page). Finally, the text
inside the header is centered.

The following three rules use contextual selectors to control how elements are for-
matted inside the header. The first one formats <h1> elements in the header:

.Header h1 {
 margin: 0px;
 color: white;
 font-size: xx-large;
}

Tip: When setting a font size, you can use keywords (like the xx-large value used here). Or if you want
precise control, you can supply an exact measurement using pixels or em units.

The next two rules format classes are named .Teaser and .Byline:
.Header .Teaser {
 margin: 0px;
 font-weight: bold;
}

.Header .Byline {
 font-style: italic;
 font-size: small;
 margin: 0px;
}

This code works because the header contains two elements. One has
the class name Teaser, and contains the subtitle. The second has the author
information, and uses the class name Byline:

<div class="Header">
 <h1>How the World Could End</h1>
 <p class="Teaser">Scenarios that spell the end of life as we know</p>
 <p class="Byline">by Ray N. Carnation</p>
</div>

394 html5: the missing manual

 A Style Sheet Tour

Next up is a rule that formats a <div> with the class name Content. It holds the main
body of the page. The accompanying style sheet rule sets the font, padding, and line
height:

.Content {
 font-size: medium;
 font-family: Cambria, Cochin, Georgia, "Times New Roman", Times, serif;
 padding-top: 20px;
 padding-right: 50px;
 padding-bottom: 5px;
 padding-left: 50px;
 line-height: 120%;
}

Whereas the header rule set the padding to be the same on all sides, the content rule
sets different padding on each side, adding more space above and the most space
on the sides. One way to do that is to specify the expanded padding properties (like
padding-top, padding-right, and so on), as done here. Another option is to use the
padding property with a series of values—the trick being that you need to remember
the right order. (It’s top, right, bottom, left.) Here’s how you can replace the expanded
padding properties with just one property:

 padding: 20px 50px 5px 50px;

Generally, you’ll use this form when setting the padding on all sides, but you’ll use
the expanded padding properties if you just want to change the padding on some
sides. Of course, it’s really a matter of taste.

The final line-height property sets the space between adjacent lines. The value of 120
percent gives some extra spacing, for a more readable feel.

Following the content rule are three contextual selectors that format elements inside.
The first rule formats a span with the class name LeadIn. It’s used to put the first two
words in large, bold, small-cap lettering:

.Content .LeadIn {
 font-weight: bold;
 font-size: large;
 font-variant: small-caps;
}

The next two rules change how the <h2> and <p> elements are formatted in the
content region:

.Content h2 {
 color: #24486C;
 margin-bottom: 2px;
 font-size: medium;
}

.Content p {
 margin-top: 0px;
}

395appendix a: a very short introduction to css

 A Style Sheet Tour

As you can see, as a style sheet grows longer it doesn’t necessarily become more
complex. Here, the style sheet simply repeats the same basic techniques (class selec-
tors and contextual selectors), but uses them to format other parts of the document.

Finally, the style sheet ends with the rules that format the footer portion. By now,
you can interpret these on your own:

.Footer {
 text-align: center;
 font-size: x-small;
}

.Footer .Disclaimer {
 font-style: italic;
}

.Footer p {
 margin: 3px;
}

This rounds out the ApocalypsePage_Original.css style sheet. Feel free to download
it from the try-out site (www.prostech.com/html5) and try tweaking it to see what
happens. Or, check out Chapter 2, which revises this page and the accompanying
style sheet to use the HTML5 semantic elements.

397

appendix
b

A Very Short Introduction
to JavaScript

There was a time when the Web was all about markup. Pages held text and
HTML tags, and not much more. Really advanced websites used server
scripts that could tweak the HTML markup before it made its way to the

browser, but the code stopped there.

Crack open a web page today and you’re likely to find buckets of JavaScript code,
powering everything from vital features to minor frills. Self-completing text boxes,
pop-up menus, picture slideshows, and webmail are just a few examples of the many
ways crafty developers put JavaScript to work. In fact, it’s nearly impossible to imag-
ine a Web without JavaScript. While HTML is still the language of the Web, Java-
Script is now the brains behind its most advanced pages.

In this appendix, you’ll get a heavily condensed JavaScript crash course. This appendix
won’t provide a complete tutorial on JavaScript, nor does it have enough information
to help you get started if you’ve never written a line of code in any programming lan-
guage, ever. But if you have some rudimentary programming knowledge—say, you
once learned a lick of Visual Basic, picked up the basics of Pascal, or took C out for
spin—this appendix will help you transfer your skills to the JavaScript world. You’ll
get just enough information to identify familiar programming ingredients like vari-
ables, loops, and conditional logic. And you’ll cover all the basic language elements
that used in the JavaScript-based examples in the rest of this book.

Tip: If you need more help to get started with JavaScript, check out JavaScript & jQuery: The Missing
Manual, which also introduces jQuery, a popular JavaScript-enhancing toolkit. Or, read Mozilla’s detailed
but dry JavaScript guide at http://developer.mozilla.org/en/JavaScript/Guide.

398 html5: the missing manual

 How a Web Page
Uses JavaScript
 How a Web Page
Uses JavaScript

How a Web Page Uses JavaScript
Before you can run a line of JavaScript, you need to know where to put it in your web
page. It all starts with the <script> element. The following sections show you how
to take a page from quick-and-dirty JavaScript injection to a properly structured
example that you can put online, without embarrassment.

Embedding Script in Your Markup
The simplest way to use the <script> element is to stick it somewhere in your HTML
markup, like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>A Simple JavaScript Example</title>
</head>

<body>
 <p>At some point in the processing of this page, a script block
will run and show a message box.</p>

 <script>
alert("We interrupt this web page with a special JavaScript announcement.");
 </script>

 <p>If you get here, you've already seen it.</p>
</body>
</html>

This script block contains just one line of code, although you could just as easily
pack it with a sequence of operations. In this case, the single line of code triggers
JavaScript’s built-in alert() function. The alert() function accepts a piece of text, and
shows that text in a message box (see Figure B-1). To move on, the user must click
the OK button.

Note: This example introduces a JavaScript convention that you’ll see throughout this book, and on good
websites everywhere: the semicolon. In JavaScript, semicolons indicate the end of each programming
statement. Strictly speaking, semicolons aren’t necessary (unless you want to cram multiple statements on
a single line). However, they’re considered good style.

If you want to run some JavaScript right away (as in this example), you’ll probably
put it at the end of the <body> section, just before the final </body> tag. That way, it
runs only after the browser has processed all the page markup.

399appendix b: a very short introduction to javascript

 How a Web Page
Uses JavaScript

 How a Web Page
Uses JavaScript

Figure B-1:
When the web browser comes
across JavaScript code, it runs it
immediately. In fact, it even halts
the page processing, temporarily.
In this case, the code is held up
until the web page user closes the
message box, by clicking OK. This
allows the code to continue and
the script block to end. The web
browser then processes the rest of
the markup.

Gem in The RoUGh

Dealing with Internet Explorer’s Paranoia
If you run the alert example above in Firefox or Chrome,
you’ll find that everything works seamlessly. If you run it
in Internet Explorer, you won’t get the same satisfaction.
Instead, you’ll see a security warning in a yellow bar at the
top of the page (depending on the version of IE). Until you
go to that bar and click Allow Blocked Content, your Java-
Script code won’t run.

At first glance, IE’s security warning seems like a surefire
way to scare off the bravest web visitor. But you don’t need
to worry; the message is just part of the quirky way Internet
Explorer deals with web pages that you store on your hard
drive. When you access the same page over the Web, Inter-
net Explorer won’t raise the slightest objection.

That said, the security warning is still an annoyance while
you’re testing your web page, because it forces you to keep

explicitly telling the browser to allow the page to run Java-
Script. To avoid the security notice altogether, you can tell
Internet Explorer to pretend you downloaded your page
from a web server. You do this by adding a special com-
ment called the mark of the Web. You place this comment
in the <head> section of your page:

<head>
<meta charset="utf-8">
<!-- saved from url=(0014)about:internet -->
 ...
</head>

When IE sees the mark of the Web, it treats the page as
though it came from a web server, skipping the security
warning, and running your JavaScript code without hesita-
tion. To all other browsers, the mark of the Web just looks
like an ordinary HTML comment.

400 html5: the missing manual

 How a Web Page
Uses JavaScript
 How a Web Page
Uses JavaScript

Using a Function
The problem with the previous example is that it encourages you to mingle code and
markup in an unseemly mess. To keep things organized, you should wrap each code
“task” in a function—a named unit of code that you can call into action whenever
you need it.

When you create a function, you should give it a logical name. Here’s one named
showMessage:

function showMessage() {
 // Code goes here ...
}

Right now, this function contains a single comment, but no code. (A JavaScript com-
ment is a line that starts with two slash characters, which the browser ignores.)

To add some code, just put all the statements you need between the curly brackets:
function showMessage() {
 alert("We interrupt this web page with a special JavaScript announcement.");
}

Of course, this whole shebang needs to go in a <script> block. The best place to put
JavaScript functions is in the <head> section of the page. This imposes some basic
organization on your page, by moving the code out of the markup and into a sepa-
rate section.

Here’s a revamped version of the earlier example, which now uses a function:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>A Simple JavaScript Example</title>
 <script>
function showMessage() {
 alert("We interrupt this web page with a special JavaScript announcement.");
}
 </script>
</head>
...

Functions, on their own, don’t do anything. To trigger a function, you need another
piece of code that calls the function.

Calling a function is easy—in fact, you’ve already seen how to do it with the built-in
alert() function. You simply write the function name, followed by a set of paren-
theses. Inside the parentheses, you put whatever data the function needs. Or, if the
function doesn’t accept any data, like showMessage(), you simply include parenthe-
ses with nothing inside them:

...
<body>
 <p>At some point in the processing of this page, a script block
will run and show a message box.</p>
 <script>

401appendix b: a very short introduction to javascript

 How a Web Page
Uses JavaScript

 How a Web Page
Uses JavaScript

showMessage();
 </script>
 <p>If you get here, you've already seen it.</p>
</body>
</html>

Because this new-and-improved design now has two script blocks, it seems more com-
plicated than before. But it’s actually a dramatic step forward, for several reasons:

• The bulk of the code is out of the markup. You need just one line of code to
call a function. However, a realistic function will contain a pile of code, and a
realistic page will contain a pile of functions. You definitely want to separate all
those details from your markup.

• You can reuse your code. Once code is in a function, you can call that function
at different times, from different places in your code. This isn’t obvious in this
simple example, but it becomes an important factor in more complex applica-
tions, like the painting application in Chapter 6.

• You’re ready to use external script files. Moving your code out of the markup
is a precursor to moving it right out of the HTML file, as you’ll see in the next
section, for even better organization.

• You can add events. An event is a way for you to tell the page to run a specific
function when a specific occurrence takes place. Web pages are event-driven,
which means most code is fired up when an event happens (rather than be-
ing launched through a script block). Events need functions, and events let you
trigger functions without using an extra script block, as you’ll see on page 402.

Note: You can place as many <script> blocks in a web page as you want.

Moving the Code to a Script File
Pulling your JavaScript code together into a set of functions is the first step in good
organization. The second step is to take that script code and put it in an entirely sep-
arate file. Do this with all your scripts, and you’ll get smaller, simpler web pages—
and the ability to reuse the same functions in different web pages. In fact, putting
script code in an external file is analogous to putting CSS style rules in an external
file. In both cases, you gain the ability to reuse your work and you leave simpler
pages behind.

Note: Virtually every well-designed web page that uses JavaScript puts the code in one or more script
files. The only exceptions are if you have a few lines of very simple code that you’re certain not to use
anywhere else, or if you’re creating a one-off example.

402 html5: the missing manual

 How a Web Page
Uses JavaScript
 How a Web Page
Uses JavaScript

Script files are always plain text files. Usually, they have the extension .js (for Java-
Script). You put all your code inside a script file, but you don’t include the <script>
element. For example, here are the complete contents of a script file named Mes-
sageScripts.js:

function showMessage() {
 alert("We interrupt this web page with a special JavaScript announcement.");
}

Now save the file, and put it in the same folder as your web page. In your web page,
define a script block, but don’t supply any code. Instead, add the src attribute and
indicate the script file you want to link to:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>A Simple JavaScript Example</title>
 <script src="MessageScripts.js"></script>
</head>

<body>
 <p>At some point in the processing of this page, a script block
will run and show a message box.</p>
 <script>
showMessage()
 </script>
 <p>If you get here, you've already seen it.</p>
</body>
</html>

When a browser comes across this script block, it requests the MessageScripts.js file
and treats it as though the code were right inside the page. That means you can call
the showMessage() function in exactly the same way you did before.

Note: Even though the script block doesn’t actually contain any code when you use external script files,
you must still include the closing </script> tag. If you leave that out, the browser assumes everything that
follows—the rest of the page—is part of your JavaScript code.

You can also link to JavaScript functions on another website—just remember that
the src attribute in the <script> element needs to point to a full URL (like http://Su-
perScriptSite.com/MessageScript.js) instead of just a file name. This technique is nec-
essary for plugging into other companies’ web services, like Google Maps (page 356).

Responding to Events
So far, you’ve seen how to run script right away—by weaving a script block into your
HTML markup. But it’s far more common to trigger code after the page is finished
processing but when the user takes a specific action, like clicking a button or moving
the mouse pointer over an element.

403appendix b: a very short introduction to javascript

 How a Web Page
Uses JavaScript

 How a Web Page
Uses JavaScript

To do so, you need to use JavaScript events, which are notifications that an HTML
element sends out when specific things happen. For example, JavaScript gives every
element an event named onMouseOver (a compressed version of “on mouse over”).
As the name suggests, this event takes place (or fires, to use programmer-speak)
when a visitor moves his mouse pointer over an HTML element like a paragraph,
link, image, table cell, or text box. That action triggers the onMouseOver event and
your code flies into action.

This discussion brings up one key question: How do you link your code to the event
you want to use? The trick is to add an event attribute to the appropriate element.
So if you want to handle the onMouseOver event of an element, you need
markup like this:

Note: In JavaScript, function, variable, and object names are case-sensitive, meaning showMessage is
not the same as showMESSAGE (and the latter fails). However, the event attribute names are not case
sensitive, because they are technically a part of HTML markup, and HTML tolerates any combination of
uppercase and lowercase letters. It’s common to write event attributes with no capitals (as shown here)
because this matches the old rules of XHTML, and most programmers are too lazy to reach for the Shift
key anyway.

Now, when the mouse moves over the image, and the onMouseOver event fires, the
browser will automatically call the showMessage() function, which shows a rather
unremarkable message box (Figure B-2). When an event triggers a function in this
way, that function is called an event handler.

Figure B-2:
In this example, the alert box doesn’t
pop up until you move your mouse
pointer over the link.

404 html5: the missing manual

 How a Web Page
Uses JavaScript

To use events effectively, you need to know which events JavaScript supports. In ad-
dition, you need to know which events work on which HTML elements. Table B-1
provides a list of commonly used events and the HTML elements that they apply
to (and you can find a more complete reference at http://developer.mozilla.org/en/
DOM/element).

Table B-1. Common HTML object events

Event name Description Applies to
onClick Triggered when you click an element. Virtually all elements

onMouseOver Triggered when you move your mouse
pointer over an element.

Virtually all elements

onMouseOut Triggered when you move your mouse
pointer away from an element.

Virtually all elements

onKeyDown Triggered when you press a key. <select>, <input>, <textarea>,
<a>, <button>

onKeyUp Triggered when you release a pressed
key.

<select>, <input>, <textarea>,
<a>, <button>

onFocus Triggered when a control receives fo-
cus (in other words, when you position
the cursor on the control so you can
type something in). Controls include
text boxes, checkboxes, and so on—see
page 112 to learn more.

<select>, <input>, <textarea>,
<a>, <button>

onBlur Triggered when focus leaves a control. <select>, <input>, <textarea>,
<a>, <button>

onChange Triggered when you change a value
in an input control. In a text box, this
event doesn’t fire until you move to
another control.

<select>, <input type=”text”>,
<textarea>

onSelect Triggered when you select a portion of
text in an input control.

<input type=”text”>, <textarea>

onError Triggered when your browser fails to
download an image (usually due to an
incorrect URL).

onLoad Triggered when your browser finishes
downloading a new page or finishes
loading an object, like an image.

, <body>

onUnload Triggered when a browser unloads a
page. (This typically happens after you
enter a new URL or when you click
a link. It fires just before the browser
downloads the new page.)

<body>

405appendix b: a very short introduction to javascript

A Few Language
Essentials

A Few Language Essentials
A brief appendix isn’t enough to cover any language, even one as straightforward as
JavaScript. However, the following sections will fill you in on a few language essen-
tials that you’ll need to digest the examples elsewhere in this book.

Variables
Every programming language has the concept of variables—containers that you can
use to store bits of information in memory. In JavaScript, every variable is created
the same way, by declaring it with the var keyword followed by the variable name.
This example creates a variable named myMessage:

var myMessage;

Note: JavaScript variables are case-sensitive, which means a variable named myMessage differs from one
named MyMessage. If you try to use them interchangeably, you’ll wind up with an error message (if your
browser is nice) or a bizarre mistake in the page (which is usually what happens).

To store information in a variable, you use the equal sign (=), which copies the data
on the right side of the equal sign into the variable on the left. Here’s a one-step
example that defines a variable and puts a text value (which is known as a string)
inside:

var myMessage = "Everybody loves variables";

You can then use your variable:
// Show the variable text in a message box.
alert(myMessage);

Note: JavaScript is a notoriously loose language, and it lets you use variables even if you don’t specifically
declare them with the var keyword. However, doing so is considered extremely bad form and is likely to
lead to sloppy mistakes.

Null Values
One special value you may run into is null, which is programmer-speak for nothing.
If a variable is null, it indicates that a given object doesn’t exist. Depending on the
context, this may signal that a specific feature is unavailable. For example, Modern-
izr (page 38) uses null value tests to determine whether the browser supports certain
HTML5 features. You may also check for null values in your scripts—for example, to
determine if you haven’t yet created or stored an object:

if (myObject == null) {
 // There is no myObject in existence.
 // Now might be a good time to create one.
}

406 html5: the missing manual

A Few Language
Essentials

Variable Scope
There are two basic places you can create a variable—inside or outside a function.
The following code snippet has one of both:

<script>
var outsideVariable;

function doSomething() {
 var insideVariable;
 ...
}
</script>

If you create a variable inside a function (called a local variable), that variable ex-
ists only while that function is running. Here, insideVariable is a local variable. As
soon as the doSomething() method ends, the variable is tossed out of memory. That
means the next time the page calls doSomething(), the insideVariable is created
from scratch, with none of its previous data.

On the other hand, if you create a variable outside a function (called a global vari-
able), its value lasts as long as the page is loaded in the browser. Furthermore,
every function can use that variable. In the previous example, outsideVariable is a
globalVariable.

Tip: The rule of thumb is to use a local variable, unless you specifically need to share your variable with
multiple functions, or to retain its value after the function ends. That’s because it’s more trouble to keep
track of global variables, and if you use too many, your code becomes messy.

Variable Data Types
In JavaScript, variables can store different data types, such as text, integers, floating
point numbers, arrays, and objects. However, no matter what you want to store in
your variable, you define it with the same var keyword. You do not set the data type
of your variable.

That means you can take the myMessage variable, with its piece of text, and replace
that with a numeric value, like this:

myMessage = 27.3;

This behavior makes JavaScript easy to use, because any variable can hold any type
of content. It can also let JavaScript mistakes slip past undetected. For example, you
might want to grab the text out of a text box, and put that in a variable, like this:

var = inputElement.value;

But if you’re not careful, you can accidentally end up putting the entire text box ob-
ject into the variable, like this:

var = inputElement;

407appendix b: a very short introduction to javascript

A Few Language
Essentials

JavaScript allows both actions, so it won’t complain. But a few lines into your code,
this mistake will probably lead to some sort of unrecoverable problem. At that point,
the browser simply stops running the rest of your code, without giving you any error
message to explain what happened.

Operations
One of the most useful things you can do with numeric variables is perform opera-
tions on them to change your data. For example, you can use arithmetic operators to
perform mathematical calculations:

var myNumber = (10 + 5) * 2 / 5;

These calculations follow the standard order of operations (parentheses first, then
multiplication and division, then addition and subtraction). The result of this cal-
culation is 6.

TRoUbleShooTinG momenT

Identifying Errors in JavaScript Code
In order to deal with problems (like the variable mistake
shown on page 406), you need to master debugging—the
fine art of hunting down the problems in your code and
stamping them out. Unfortunately, the way you go about
debugging depends on the browser you’re using. Different
browsers have different debugging tools (or support dif-
ferent debugging extensions). And while they all serve the
same purpose, they don’t work in exactly the same way.

Fortunately, all the information you need is on the Web.
Here are some links that can explain how to debug Java-
Script mistakes, based on your browser of choice:

• Internet Explorer. To sort out problems with IE,
press F12 to pop up the Developer Tools window. To
learn how to use it, visit http://msdn.microsoft.com/
ie/aa740478.

• Firefox. Serious Firefox developers use a Firefox
add-in called Firebug (http://getfirebug.com/javascript)
to see what their code is doing at all times. You can
also get a quick overview of Firefox debugging

options from the Mozilla documentation at http://
developer.mozilla.org/en/Debugging_JavaScript.

• Google Chrome. Chrome has a respectable built-in
debugger. To get started, read Google’s debugging tu-
torial at http://code.google.com/chrome/extensions/
tut_debugging.html.

• Opera. Opera’s debugging tool of choice is Drag-
onfly (www.opera.com/dragonfly), and it provides a
good overview about basic debugging techniques at
http://tinyurl.com/39nv7w.

• Safari. Safari has a powerful set of built-in debugging
tools, although tracking down the documentation
that explains them can be tricky. You can start with
a fairly technical article from the Safari Developer Li-
brary at http://tinyurl.com/63om77c.

Remember, it doesn’t matter what browser and debug-
ging tool you use to correct problems. Once they’re fixed,
they’re fixed for everyone.

408 html5: the missing manual

A Few Language
Essentials

You can also use operations to join together multiple pieces of text into one long
string. In this case, you use the plus (+) operator:

var firstName = "Sarah";
var lastName = "Smithers";
var fullName = firstName + " " + lastName;

Now the fullName variable holds the text “Sarah Smithers.” (The " " in the code
above tells JavaScript to leave a space between the two names).

When making simple modifications to a variable, there’s a shortcut you’re likely to
use. For example, if you have this basic addition operation:

var myNumber = 20;
myNumber = myNumber + 10;
// (Now myNumber is 30.)

You can rewrite it like this:
var myNumber = 20;
myNumber += 10;
// (Now myNumber is 30.)

This trick of moving the operator to the left side of the equal sign works with pretty
much any operator. Here are some examples:

var myNumber = 20;
myNumber -= 10;
// (Now myNumber is 10.)
myNumber *= 10;
// (Now myNumber is 100.)

var myText = "Hello";
var myText += " there.";
// (Now myText is "Hello there.")

And if you want to add or subtract the number 1, there’s an even more concise shortcut:
var myNumber = 20;
myNumber++;
// (Now myNumber is 21.)

myNumber--;
// (Now myNumber is 20.)

Conditional Logic
All conditional logic starts with a condition: an expression that is either true or false.
Based on the result, you can decide to run some code or to skip over it.

To create a condition, you need to rely on JavaScript’s logical operators, which are
detailed in Table B-2.

409appendix b: a very short introduction to javascript

A Few Language
Essentials

Table B-2. Logical operators

Operator Description
= = Equal to.

!= Not equal to.

! Not. (This reverses the condition, so if it would ordinarily be true, it is now false,
and vice versa.)

< Less than.

> Greater than.

<= Less than or equal to.

>= Greater than or equal to.

&& Logical and (evaluates to true only if both expressions are true). If the first expres-
sion is false, the second expression is not evaluated.

|| Logical or (evaluates to true if either expression is true). If the first expression is
true, the second expression is not evaluated.

Here’s an example of a simple condition:
myNumber < 100

To use this condition to make decisions, you need to put it with an if statement.
Here’s an example:

if (myNumber < 100) {
 // (This code runs if myNumber is 20, but not if it's 147.)
}

Note: Technically, you don’t need the curly brackets around your conditional code, unless you have more
than one statement. However, including the brackets is always clearer and avoids potential errors if you do
have multiple statements.

When testing equality, make sure you use two equal signs. A single equal sign sets a
variable’s value, rather than performing the comparison you want:

// Right:
if (myName == "Joe") {
}

// Wrong:
if (myName = "Sarah") {
}

If you want to evaluate more than one condition, one after the other, you can use
more than one if block (naturally). But if you want to look at a series of conditions,
and find the first one that matches (while ignoring the others), you need the else
keyword. Here it is at work:

if (myNumber < 100) {
 // (This code runs if myNumber is less than 100.)
}
else if (myNumber < 200) {

410 html5: the missing manual

A Few Language
Essentials

 // (This code runs if myNumber is less than 200 but greater than or equal to
100.)
}
else {
 // (In all other cases, meaning myNumber is 200 or more, this code runs.)
}

You can include as many or as few conditions as you like in an if block, and adding a
final else without a condition is also optional.

Loops
A loops is a basic programming tool that lets you repeat a block of code. The king
of JavaScript loops is the for loop. It’s essentially a loop with a built-in counter. Most
programming languages have their own version of this construct.

When creating a for loop, you set the starting value, the ending value, and the
amount to increment the counter after each pass. Here’s one example:

for (var i = 0; i < 5; i++){
 // (This code executes five times.)
 alert("This is message: " + i);
}

At the beginning of the for loop is a set of brackets with three important pieces of
information. The first portion (in this example, var i = 0) creates the counter vari-
able (i) and sets its initial value (0). The second portion (i < 5) sets a termination
condition. If it’s not true (for example, i is increased to 5), the loop ends and the code
inside is not repeated again. The third portion (i++), increments the counter vari-
able. In this example, the counter is incremented by 1 after each pass. That means i
will be 0 for the first pass, 1 for the second pass, and so on. The end result is that the
code runs five times and shows this series of messages:

This is message: 0

This is message: 1

This is message: 2

This is message: 3

This is message: 4

Arrays
The for loop pairs naturally with the array—a programming object that stores a list
of values.

JavaScript arrays are remarkably flexible. Unlike in many other programming lan-
guages, you don’t define the number of items you want an array to store in JavaScript.
Instead, you simply begin by creating an empty array with square brackets, like this:

var colorList = [];

411appendix b: a very short introduction to javascript

A Few Language
Essentials

You can then add items using the array’s add() method:
colorList.add("blue");
colorList.add("green");
colorList.add("red");

Or you can place an array item in a specific position. If this memory slot doesn’t
already exist, JavaScript creates if for you, happily:

colorList[3] = "magenta";

And you can pull it out yourself, also by position:
var color = colorList[3];

Note: Just remember that JavaScript arrays use zero-based counting: The first item in an array is in slot 0,
the second is in slot 1, and so on.

Once you have an array stocked with items, you can process each of them using a
for loop like this:

for (var i = 0; i < colorList.length; i++) {
 alert("Found color: " + colorList[i]);
}

This code moves from the first item (the item at position 0) to the last item (using
the array’s length property, which reports its total item count). It shows each item in
a message box, although you could surely think of something more practical to do
with your array items.

Using a for loop to process an array is a basic technique in JavaScript. You’ll use it
often in this book, with arrays that you create yourself and ones that are provided to
you by other JavaScript functions.

Functions that Receive and Return Data
Earlier, you saw a simple function, showMessage(). When you called showMes-
sage(), you didn’t need to supply any data, and when it finished, it didn’t provide you
with any additional information.

Functions aren’t always that simple. In many cases, you need to send specific in-
formation to a function, or take the results of a function and use them in another
operation. For example, imagine you want to create a version of the showMessage()
function that you can use to show different messages. To do so, you need to make
the showMessage() function accept a single parameter. This parameter represents
the customized text you want to incorporate into your greeting.

To add the parameter, you must first give it a name, say customMessage, and put it in
parentheses after the function name, like so:

function showMessage(customMessage) {
 alert(customMessage);
}

412 html5: the missing manual

 Interacting with the
Page

Note: There’s no limit to how many pieces of information a function can accept. You just need to sepa-
rate each parameter with a comma.

Inside the function, it can work with the parameters just like normal variables. In
this example, the function simply takes the supplied text and shows it in a message
box.

Now, when calling the showMessage() function, you need to supply one value (called
an argument) for each of the function’s parameters:

showMessage("Nobody likes an argument.");

Parameters let you send information to a function. You can also create functions that
send information back to the script code that called them. The key to doing this is
the return command, which you put right at the end of your function. The return
command ends the function immediately, and spits out whatever information your
function generates.

Of course, a sophisticated function can accept and return information. For example,
here’s a function that multiplies two numbers (the numberA and numberB param-
eters) and returns the result to anyone who’s interested:

function multiplyNumbers(numberA, numberB) {
 return numberA * numberB;
}

Here’s how you use this function elsewhere on your web page:
// Pass in two numbers, and get the result.
var result = multiplyNumbers(3202, 23405);

// Use the result to create a message.
var message = "The product of 3202 and 23405 is " + result;

// Show the message.
showMessage(message);

Of course you don’t really need a function to multiple numbers (an ordinary Java-
Script calculation can do that), nor do you need a function to show a message box
(because the built-in alert() function can handle that job). But both examples do a
good job of showing you how functions tick, and you’ll use parameters and return
values in the same way in more complex functions.

Interacting with the Page
So far, you’ve seen the right way to put JavaScript in a page, but you haven’t done
anything impressive (in fact, you haven’t done anything but pop up a message box).
Before going ahead, you need to know a bit more about the role JavaScript typically
plays.

413appendix b: a very short introduction to javascript

 Interacting with the
Page

First, it’s important to understand that JavaScript code is sandboxed, which means its
capabilities are carefully limited. Your page can’t perform any potentially risky tasks
on your visitor’s computer, like sending orders to a printer, accessing files, running
other programs, reformatting a hard drive, and so on. This design ensures good
security, even for careless visitors.

Instead, JavaScript spends most of its time doing one of these tasks:

• Updating the page. Your script code can change elements, remove them, or
add new ones. In fact, JavaScript has complete flexibility to change every detail
about the currently displayed HTML, and can even replace the whole document.

• Retrieving data from the server. JavaScript can make new web requests from
the same web server that sent the original page. By combining this technique
with the one above, you can create web pages that seamlessly update important
information, like a list of news stories or a stock quote.

• Sending data to the server. HTML already has a way to send data to a web
server, called web forms (Chapter 4). But JavaScript can take a much more sub-
tle approach. It can grab bits of information out of your form controls, validate
them, and even transmit them to the web server, all without forcing the browser
to refresh the page.

The last two techniques require the XMLHttpRequest object, a JavaScript extension
that’s described on page 325. In the following sections, you’ll take a look at the first
of these, which is a fundamental part of almost every JavaScript-powered page.

Manipulating an Element
In the eyes of JavaScript, your page is much more than a static block of HTML. In-
stead, each element is a live object that you can examine and modify with JavaScript
code.

The easiest way to get a hold of an object is to identify it with a unique name, which
you apply through the id attribute. Here’s an example:

<h1 id="pageTitle">Welcome to My Page</h1>

Once you give your element a unique ID, you can easily locate that object in your
code and have JavaScript act on it.

JavaScript includes a handy trick for locating an object: the document.getElement-
ById() method. Basically, a document is an object that represents your whole HTML
document. It’s always available, and you can use it any time you want. This docu-
ment object, like any object worthy of the name, gives you some handy properties
and methods. The getElementById() method is one of the coolest—it scans a page
looking for a specific HTML element.

414 html5: the missing manual

 Interacting with the
Page

Note: If you’re familiar with the basics of object-oriented programming, properties and methods are old
hat. If not, you can think of properties as data that’s attached to an object, and you can think of methods
as functions that are built into an object.

When you call the document.getElementById() method, you supply the ID of the
HTML element you’re looking for. Here’s an example that digs up the object for an
HTML element with the ID pageTitle:

var titleObject = document.getElementById("pageTitle");

This code gets the object for the <h1> element shown earlier and stores it in a vari-
able named titleObject. By storing the object in a variable, you can perform a series
of operations on it without having to look it up more than once.

So what, exactly, can you do with HTML objects? To a certain extent, the answer de-
pends on the type of element you’re working with. For example, if you have a hyper-
link, you can change its URL. If you have an image, you can change its source. And
there are some actions you can take with almost all HTML elements, like changing
their style or modifying the text that appears between the beginning and ending
tags. As you’ll see, you’ll find these tricks useful in making your pages more dynam-
ic—for example, you can change a page when a visitor takes an action, like clicking a
link. Interactions like these make visitors feel as though they’re using an intelligent,
responsive program instead of a plain, inert web page.

Here’s how you modify the text inside the just-mentioned <h1> element, for example:
titleObject.innerHTML = "This Page Is Dynamic";

This script works because it uses the property named innerHTML, which sets the
content that’s nested inside an element (in this case, an <h1> element with the page
title). Like all properties, innerHTML is just one aspect of an HTML object you can
alter. To write code statements like this, you need to know what properties JavaScript
lets you play with.

Obviously, some properties apply to specific HTML elements only, like the src at-
tribute that’s used to load a new picture into this element:

var imgObject = document.getElementById("dayImage");
dayImage.src = "cloudy.jpg";

You can also tweak CSS properties through the style object:
titleObject.style.color = "rgb(0,191,255)";

Modern browsers boast a huge catalog of DOM properties you can use with just
about any HTML element. Table B-3 lists some of the most useful.

415appendix b: a very short introduction to javascript

 Interacting with the
Page

Table B-3. Common HTML object properties

Property Description
className Lets you retrieve or set the class attribute (see page 385). In other words,

this property determines what style (if any) this element uses. Of course, you
need to define this style in an embedded or linked style sheet, or you’ll end
up with the plain-Jane default formatting.

innerHTML Lets you read or change the HTML inside an element. The innerHTML
property is insanely useful, but it has two quirks. First, you can use it on all
HTML content, including text and tags. So if you want to put bold text inside
a paragraph, you can set innerHTML to Hi. Second, when you set
innerHTML, you replace all the content inside this element, including any
other HTML elements. So if you set the innerHTML of a <div> element that
contains several paragraphs and images, all these items disappear, to be
replaced by your new content.

parentElement Provides the HTML object for the element that contains this element. For
example, if the current element is a element in a paragraph, this gets the
object for the <p> element. Once you have this element, you can modify it
too.

style Bundles together all the CSS attributes that determine the appearance of the
HTML element. Technically, the style property returns a full-fledged style ob-
ject, and you need to add another dot (.) and the name of the style attribute
you want to change, as in myElement.style.fontSize. You can use the style
object to dictate colors, borders, fonts, and even positioning.

tagName Provides the name of the HTML element for this object, without the angle
brackets. For example, if the current object represents an element, this
returns the text “img”.

Tip: HTML elements also provide a smaller set of useful methods, including some for modifying attri-
butes, like getAttribute() and setAttribute(); and some for adding or removing elements, like insertChild(),
appendChild(), and removeChild(). To learn more about the properties and methods that a specific HTML
element supports, check out the reference at http://developer.mozilla.org/en/DOM/element.

Connecting to an Event Dynamically
On page 403, you saw how to wire up a function using an event attribute. However,
it’s also possible to connect an event to a function using JavaScript code.

Most of the time, you’ll probably stick to event attributes. However, there are cases
where that isn’t possible or convenient. One of the most common examples is when
you create an HTML object in your code and then add it to the page dynamically.
In this situation, there’s no markup for the new element, so there’s no way to use an
event attribute. (You’ll see this technique in the canvas drawing example in Chapter
6.) Another case is when you’re attaching an event to a built-in object rather than
an element. (You’ll see this example when you handle storage events in Chapter 9.)
For all these reasons, it’s important to understand how to wire up events with code.

416 html5: the missing manual

 Interacting with the
Page

Note: There are several different ways to attach events, but they aren’t all supported by all browsers. This
section uses the event property approach, which is. Incidentally, if you decide to use a JavaScript toolkit
like jQuery, you’ll probably find that it adds yet another event-attaching system, which will work on all
browsers and may provide a few extra features.

Fortunately, attaching events is easy. You simply set an event property that has the
same name as the event attribute you would normally use. For example, say you have
an element like this somewhere on your page:

Here’s how you tell the browser to call the swapImage() method when that image is
clicked:

var imgObject = document.getElementById("dayImage");
imgObject.onclick = swapImage;

However, don’t make this mistake:
imgObject.onclick = swapImage();

This runs the swapImage() function, takes the result (if it returns one), and uses that
to set the event handler. This is almost certainly not what you want.

To understand what really happens when the element is clicked, you need to
look at the code in the swapImage() function. It grabs the element and modi-
fies the src attribute to point to a new picture (see Figure B-3):

// Keep track of whether the picture has been swapped from day to night.
var dayTime = true;

// This function runs when the onClick event happens.
function swapImage() {
 var imgObject = document.getElementById("dayImage");

 // Flip from day to night or night to day, and update the picture to match.
 if (dayTime == true) {
 dayTime = false;
 imgObject.src = "cloudy.jpg";
 }
 else {
 dayTime = true;
 imgObject.src = "sunny.jpg";
 }
}

Sometimes, an event passes valuable information to your event-handling function.
To capture this information, you need to add a single parameter to your function. By
convention, this parameter is usually named event or just e:

function swapImage(e) {
 ...
}

The properties of the event object depend on the event. For example, the onMouse-
Move event supplies the current mouse coordinates (which you’ll use when creating
the painting program on page 188).

417appendix b: a very short introduction to javascript

 Interacting with the
Page

Figure B-3:
Click this picture, and the page fires an event. That
event triggers a function, and that function loads a
new image.

There’s one more fine point to note. When you use code to connect an event, you
must put the entire event name in lowercase letters. This is different from when you
wire up an event using an attribute in HTML. Unlike JavaScript, HTML doesn’t care
one whit about case.

Note: This book refers to events using an easy-to-read convention called Pascal case, which uses up-
percase letters to indicate each new word (for example, onLoad and onMouseOver). However, the code
listings use all lowercase letters (for example, onload and onmouseover) because JavaScript requires it.

Inline Events
In order for the previous example to work, the swapImage() function must be de-
fined somewhere else in your code. Sometimes, you may want to skip this step and
define the function code in the same place where you attach the function to the
event. This slick technique is called an inline function.

Here’s an example that connects an inline function to the onClick event:
var imgObject = document.getElementById("dayImage");
imgObject.onclick = function() {
 // The code that went in the swapImage() function
 // now goes here.
 if (dayTime == true) {
 dayTime = false;
 imgObject.src = "cloudy.jpg";
 }

418 html5: the missing manual

 Interacting with the
Page

 else {
 dayTime == true;
 imgObject.src = "sunny.jpg";
 }
};

This shortcut approach to event handling is less common than using a separate,
named function to handle the event. However, it’s still a useful convenience, and the
examples in this book use it occasionally.

Note: Inline functions are sometimes useful when you’re dealing with an asynchronous task—a task that
the browser handles in the background. When an asynchronous task is finished, the browser fires an event
to notify your code. Sometimes, the clearest way to deal with this situation is to put the code that handles
the completion of a task right next to the code that triggered the start of the task. (Page 201 shows an
example with a picture that’s loaded asynchronously and then processed.)

Finally, there’s one sort of inline function that’s used in many of the examples of this
book. It’s the event handler for the window’s onLoad event, which fires after the
entire page is rendered, displayed, and ready to go. This makes it a logical point for
your code to take over. If you try to run code before this point, you might run into
trouble if an object hasn’t been created yet for the element you want to use:

<script>
window.onload = function() {
 alert("The page has just finished loading.);
}
</script>

This approach frees you from worrying about the position of your script block. It lets
you place the initialization code in the <head> section, where it belongs, with the
rest of your JavaScript functions.

419

index

Index

Symbols
(&&) and operator, 409
(==) equal to operator, 409
@fontface feature, 244
(>) greater than operator, 409
(>=) greater than or equal to operator, 409
(<) less than operator, 409
(<=) less than or equal to operator, 409
(!=) not equal to operator, 409
(||) or operator, 409

A
accessibility

audio and video, 168
canvas accessibility, 198
HTML5 and, 45

Accessible Rich Internet Applications.
See ARIA (Accessible Rich Internet
Applications)

accuracy of geolocation, 353
:active pseudoclass, 389
adaptive video streaming, 145
<address> element, in HTML5, 32
Adobe Flash. See Flash video
<a> element, in HTML5, 32
alert() function, 398
and operator (&&), 409
animations. See also maze game

in the canvas
animation performance, 225
basic, 223
multiple objects, 224–228
using plug-ins, 228

CSS3-powered, 277
application preferences, storing, 287
applications, offline. See offline applications
application state, storage of, 287

arc, creating in the canvas, 180
argument, JavaScript, 412
ARIA (Accessible Rich Internet Applications),

88
arithmetic operators, 407
arrays, JavaScript, 410
<article> element, 51, 82
<aside> element

adding sidebars with, 56–58
navigation links and, 62
when to use, 82

askServer() function, 328
@fontface feature, 244
attributes. See also specific attributes

attribute selectors, in CSS, 390
changed rules for in HTML5, 24

audio and video
accessibility information, adding, 168
<audio> element

sound effects, adding, 160–163
understanding, 145–147

captions, creating, 168
formatting and fallbacks

browser support for media formats, 152
current formats, 150–152
encoding media, 156
the Flash fallback, 155–159
formatting wars, 149
MIME types, understanding, 153
multiple formats, using, 154
<source> element, 154

H.264 licensing for video, 150
history of, on the Internet, 143
HTML5, new elements in, 145
JavaScript media players, 166–168
non-support for, in HTML5

adaptive video streaming, 145

Index

420 index

dynamically created or edited audio, 145
licensed content, 145
low-latency, high-performance audio, 145
recording audio and video, 145

use of Flash, before HTML5, 144
<video> element

custom video player, creating, 163–166
understanding, 148

autocomplete attribute, 125
autocorrect and autocapitalize atttributes, 125
autoplay attribute, 147

B
backgrounds

background color property, 392
creating in CSS3, 266–268

background tasks. See also web workers
cancelling web workers, 367
using web workers, 364–367

Basic chat, web socket server, 345
Bézier curves, drawing in the canvas, 181
bitmap images, using, 183
block elements, 58
<body> element

example, in CSS, 392
in HTML5, 19

 (bold) formatting, in HTML5, 31
border property, 384, 393
boxes

building in CSS3
backgrounds, 266–268
gradients, 269–271
rounded corners, 265
shadows, 268
transparency, 263

collapsible boxes, using semantic elements, 66
using a <div> element, 386

browser compatibility. See browser support
browser plug-ins. See specific plug-ins
browsers. See also specific browsers

checking the connection, 317
clearing the cache, 312
errors in JavaScript code, identifying, 407
mobile browsers

audio and video support, 152
caching limits, 307

offline applications, size restrictions for, 307
plug-ins supporting microformats, 93
running JavaScript code, 399
vendor prefixes, 243

browser support. See also fallbacks
browser adoption statistics, 36
canvas

current status of, 195
fallback and feature detection, 197
polyfilling the canvas, 196

CSS3
transitions, 275
vendor prefixes and, 243

current support, 3
doctype and, 20
evaluating, 34–36
features, current status of, 34
File API, 295
geolocation, 348
HTML, 15
HTML5, 28
JavaScript, 399
media formats, 152
Modernizr, using, 38–40, 240–242
new input types, 127
offline applications, 312
quirks mode, lapsing into, 20
semantic elements, 57–59
session history, 377
validation, 120–122
web storage, 287
web workers, 361, 368

buttons, traditional form controls for, 112

C
caching files with a manifest

clearing the browser’s cache, 312
creating a manifest file, 304
how much to cache, 307
putting your manifest on a web server,

308–310
techniques for complex websites

accessing uncached files, 314
caching events, 319
checking the connection, 317
fallbacks, adding, 315–317
updates, pointing out with JavaScript,

318–320
traditional caching vs. offline applications, 305
updating the manifest file, 310–312
using your manifest, 307

calling functions, 400
canvas

accessibility, 198
animation

animation performance, 225
basic, 223
multiple objects, 224–228

browser compatibility
canvas fallback and feature detection, 197
current status of, 195
polyfilling the canvas, 196

<canvas> element, 172, 197
composite operations, 187
curved lines, 179–182

Index

421index

drawing for math-phobes, 183
getting started with, 172–174
graphs, drawing, 211–216
images

drawing, 200
slicing, cropping, and resizing, 202

the maze game
animating the face, 232–234
hit testing with pixel colors, 234–236
illustration, 229
setting up the maze, 229

Multiuser sketchpad, 345
paint program, building

drawing on the canvas, 190
preparing to draw, 189–191
saving the picture in the canvas, 192–195

paint programs on the web, 195
paths and shapes, 177–179
shadows, adding, 205
shapes

filling with gradients, 208–211
filling with patterns, 207
interactivity, 216–221
and paths, 177–179

straight lines, 174–176
text, drawing, 203
transforms, 182–184
transparency, 185–187
website examples, 236

capitalization, in HTML5, 24
captions

and accessibility, 168
<figcaption> element, 54

Cascading Style Sheets. See CSS (Cascading
Style Sheets)

character encoding, 21
checkboxes, traditional form controls for, 112
circle, drawing in the canvas, 180
<cite> element, 32
class attribute, 90
classes, formatting with in CSS, 385
className property, 415
client-side validation of forms, 117
code, JavaScript debuggers, 407
collapsible boxes, designing with semantic

elements, 66
color

background color property, 392
changeColor() function, 189
color data type, 132
color property, in style sheets, 383
color transitions, creating in CSS3, 272–274
form input using the <input> element, 132
rgb() function, 392
shadow color, 206

columns
spacing between columns, 254
standards for, 254
text in multiple columns, 253
using <div> elements, 386
vertical line separating, 254

<command> element, 138
comments

Mark of the Web comment in IE, 23, 59, 399
in style sheets, 385

compatibility, browser. See browser support
composite operations, 187
conditional logic, in JavaScript, 408
contact details, adding, 89
container format for audio and video files, 151
content boxes. See boxes
contentEditable attribute, 138
content types. See MIME types
contextual selectors, in style sheets, 387
control points of curves, 181
controls attribute, 148
cookies

simulating web storage with, 287
use of prior to HTML5, 281

coordinates, geolocation, 351–353, 360
corners, rounded, 265
cropping images in the canvas, 202
CSS3 (Cascading Styles Sheets 3)

boxes, building
backgrounds, 266–268
gradients, 269–271
rounded corners, 265
shadows, 268
transparency, 263

browser-specific styles, 243
devices, adapting to

media queries, 256–261
media types and, 256
style sheets, replacing, 261
video, media queries for, 263

example of, using HTML5 semantic elements,
391–396

experimental effects, 277
modules, 237
strategies for using

fallbacks, adding with Modernizr, 240–242
features as enhancements, 238
use what you can, 238

transforms, using, 274–277
transitions, creating effects with

color transition, 272–274
ideas for, 274
pseudoclasses and, 271

Index

422 index

web typography
font kits, using, 247–249
Google fonts, 250
overview of, 244
text in multiple columns, 253
using your own fonts, 252
web font formats, 245

CSS (Cascading Style Sheets), introduction to
anatomy of style sheets

attribute selectors, 390
classes, 385
comments, 385
contextual selectors, 387
<div> elements, structuring pages with,

386
id selectors, 388
multiple selectors, 387
properties, 383
pseudoclass selectors, 389
rules, explanation of, 382
selectors, 383
values, 383

example of, using HTML5 semantic elements,
391–396

styles, adding to web pages
<link> element, 382
<style> element, 382
style attribute, 381

curved lines, drawing in the canvas, 179–182

D
databases, browser, 301
data downloading, using web workers, 371
<datalist> element, 133–135
data storage

cookies, use of prior to HTML5, 281
databases in browsers, 301
File API

browser support for, 295
files, getting ahold of, 295
image files, reading, 299–301
multiple files, reading, 298
new standard, 294
standard upload control, replacing, 298
text files, reading, 296–298

IndexedDB, 301
web server storage vs. client-side storage, 281
web storage

basics of, 282
browser support for, 287
changes, reacting to, 292
example of, 285–287
finding stored items, 288
how to accomplish, 283–285
local storage, 282

numbers and dates, storing, 289
objects, storing, 290
problems with, 285
removing items, 288
session storage, 282
types of, 282

the XMLHttpRequest Object and, 325–333
data types in forms

colors, 132
dates and times, 131
email addresses, 128
numbers, 129–131
overview of, 125–127
search boxes, 128
telephone numbers, 129
URLs, 128

data URLs, to save pictures in the canvas, 192
dates

data types, 131, 132
form input using the <input> element, 131
using <time>, 83

debuggers, JavaScript, 407
designing sites, using semantic elements

footers, 67–69
headers, 61–63
navigation links, 63–65
sections, 69
when to choose, 60

designMode, for page editing, 141
<details> element, 66
development standards. See standards
devices, adapting to

media queries, using, 256–261
mobile devices, recognizing, 261
style sheets, replacing, 261
video, media queries for, 263

<div> element
boxes and, 386
columns, creating with, 386
formatting example, in CSS, 394
inherited values in CSS, 386
replacing with semantic elements, 49–52
structuring pages the old way, 47
structuring pages with, 43, 386

doctype, HTML5 version of, 20
document object, 413
document outline. See outlining system in

HTML5
drawing. See canvas

E
editing, semantic elements and, 44
editors, HTML

editing elements using contentEditable, 138
editing pages using designMode, 141
when to use, 138

Index

423index

elements. See also specific elements
changes to, in HTML5

adapted elements, 30
bold and italic formatting, 31
new elements, 29
removed elements, 30
shifted rules for some elements, 32

editing, 138
manipulating with JavaScript, 413
obsolete, how HTML5 handles, 16
standardized elements, 33

email addresses, form input, 128
<embed> element, 33
Embedded OpenType font files. See EOT

(Embedded OpenType) font files
 (emphatic stress) element, 31
encoding media, 156. See also audio and video
EOT (Embedded OpenType) font files, 245
equal to operator (==), 409
errors in JavaScript code, identifying, 407
events. See also specific events

connecting to dynamically, with JavaScript,
415

event handlers, 403
with hCalendar, 94
HTML object events, common, 404
inline, 417
responding to, with JavaScript, 402–404

ExplorerCanvas, 196
export tool, for complex graphics, 183

F
Facebook event pages, microformatting, 95
fallbacks

adding with Modernizr, 240–242
canvas fallback and feature detection, 197
creating, 315–317
the Flash fallback for media, 155–159
geolocation on older versions of IE, 348
for web workers, 368

“fat” footers, 67–70
“fat” headers, 53
features. See also specific features

browser testing for, 35
canvas fallback and feature detection, 197
CSS3 features, treating as enhancements, 238
detection, with Modernizr, 38–40
filling with polyfills, 40

features, obsolete. See obsolete features
<fieldset> element, traditional, 111
<figcaption> element, 54, 82
<figure> element

adding figures with, 53–55
description of, 82

File API
browser support for, 294
files, getting ahold of, 295
image files, reading, 299–301
multiple files, reading, 298
new standard, 294
standard upload control, replacing, 298
text files, reading, 296–298

file extensions
for audio and video formats, 151
for manifests, 306

FileReader object, 297
Firefox browser

Firebug add-in, 407
Firefogg plug-in, 156

five-factor personality model, 213
Flash video

before HTML5, 144
File API and, 295
FlashCanvas, 197
the Flash fallback, 155
TinyOgg website, 156

focus method for forms, 115
font collection, 252
fonts

CSS3 support for, 244
font family property, in CSS, 392
font kits, using, 247–249
font property in CSS, 384
Font Squirrel website, 247
Google fonts, 250
troubleshooting, 246
using on your computer, 249
using your own, 252
web font formats, 245

footers
designing, using semantic elements, 67–69
<footer> element, 50, 82
formatting example, in CSS, 395

formatting. See also CSS (Cascading Style
Sheets)

audio and video
browser support for media formats, 152
current formats, 150–152
encoding your media, 156
the Flash fallback, 155–159
formatting wars, 149
MIME types, understanding, 153
multiple formats, using, 154
<source> element, 154

bold and italic formatting, 31
color property, in style sheets, 383
text-align property in style sheets, 383

Index

424 index

forms
<fieldset> element, traditional, 111
focus, 115
<form> element, traditional, 110
form submission, bypassing with JavaScript,

109
<input> element, traditional, 111
input, new types of using <input>

colors, 132
dates and times, 131
email addresses, 128
numbers, 129–131
overview of, 125–127
search boxes, 128
sliders, 130
telephone numbers, 129
URLs, 128

mobile devices and, 126
new elements in HTML5

input suggestions with <datalist>,
133–135

progress bars and meters, 135–137
toolbars and menus, 138

placeholder text, adding hints with, 113–115
traditional HTML forms, revamping, 109–112
understanding, 108
validation

browser support for, 123–125
custom, 121
in HTML5, how it works, 116–118
stopping errors with, 116
styling hooks for, 119
turning off, 118
using regular expressions, 120

frames feature, 30
functions. See also specific functions

calling, 400
code outside of the markup, 401
data, receiving and returning, 411
events, adding, 401
external script files and, 401
reusing code, 401
using, in JavaScript, 400

G
geolocation

accuracy of, 353
browser support for, 348
errors, dealing with, 353
how it works, 349–351
how you can use it, 351
maps, showing, 356–359
object literals, understanding, 356
options, setting, 355
visitor coordinates, finding, 351–353
visitors, monitoring the moves of, 360

getImageData() method, 192
GlobalStats website, 36
global variables, 406
Google

Chrome browser, 71, 407
Google fonts, 250
Google Gears, 348
Google Maps, 356–359
Google rich snippets

enhanced search results with, 98–101
recipe search engine, 101–104
semantic data and, 101
standards documentation, 98
testing tool for, 98
understanding, 97

Google search bots, semantic elements and, 45
Google Chrome Frame, 41
Google Web Fonts, 250
GPS, geolocation and, 350
gradients

creating in CSS3, 269–271
filling shapes with, 208–211
gradient transitions, creating in CSS3, 274

graphics property in CSS, 384
graphs, drawing, 211–216
greater than operator (>), 409
greater than or equal to operator (>=), 409

H
HandBrake converter software, 156
hashbang URLs, 373
hCalendar, 94
hCard, 89
<head> element, in HTML5, 19
headers

in CSS, 392
designing, using semantic elements, 61
“fat” headers, 53, 61
<header> element, 50, 61, 82
heading structure of a site, 63
<h1>, <h2>, etc., 52
<h2>, formatting example in CSS, 394

height attribute, 148, 172
hexadecimal color code, 132
<hgroup> element

description of, 82
subtitles, adding with, 52

highlighting text, 86
hints, adding with placeholders, 113–115
history management

browser compatibility for session history, 377
hashbang URLs, 373
the history object, 371
HTML5, session history and, 374–376
the URL problem, 372
URLs, satisfying with extra pages, 378

Index

425index

hit testing
with coordinates, 220
with pixel colors, 232–234

<h1>, <h2>, etc. elements
basic outlines and, 71–73
outline problems, solving, 77–79
subtitles and, 52

:hover pseudoclass, 389
<hr> element, 31
<html> element, in HTML5, 19
HTML

as living language, 14
object properties, common, 415
retrofitting with semantic elements, 45
traditional forms, revamping, 109–112

HTML5
audio and video

features not supported in, 145
new elements, 145

browser compatibility
browser adoption statistics, 36–38
browser support, 34–36
features overview, 34
Modernizr, feature detection with, 38–40
polyfills, feature filling with, 40

development of, 11–14
elements, changes to, 29–33
good style, summary of, 25
key principles of

be practical, 17
don’t break the Web, 15
“pave the cowpath”, 17

major features of, 14
obsolete features, how they are handled, 16
semantic rules in style sheets, example of,

391–396
syntax rules, loosening of, 24
validation, 25–27

HTML editors. See editors, HTML
HTML forms. See forms
H.264 video format, 150, 151, 152

I
id attribute, 172, 413
id selectors, in CSS, 388
IE. See Internet Explorer (IE)
image gallery, creating with transforms, 275
images

drawing, in the canvas, 200
reading image files, in File API, 299–301
slicing, cropping, and resizing, 202
troubleshooting squashed images, 201

indenting, 19
IndexedDB, 301
inherited values in CSS, 386

inline events, 417
inline function, 417
innerHTML property, 415
input

autocomplete attribute, 125
autocorrect and autocapitalize atttributes, 125
<input> element, traditional, 111
multiple attribute, 125
new types of, browser compatibility for, 127
sliders using the range data type, 130
spellcheck attribute, 125

<input> element
as attribute selector in CSS3, 390
File API and, 295, 298
form input using

colors, 132
dates and times, 131
email addresses, 128
numbers, 129–131
overview of, 125–127
search boxes, 128
telephone numbers, 129
URLs, 128

traditional, 111
in-range and out-of-range pseudoclasses, 119
interactivity, shapes in the canvas, 216–221
Internet Explorer (IE)

browser support for HTML5, 37
non-support for

placeholder text, 114
web storage, 287

nonsupport for
geolocation, 348

recognizing foreign elements, in older
versions, 59

troubleshooting code
JavaScript errors, identifying, 407
Mark of the Web comment, 23, 59, 399

Internet resources. See online resources
IP addresses, geolocation and, 349
iPhones and iPads. See devices, adapting to
<i> (italic) formatting, 31
itemprop attribute, 96
itemscope attribute, 96
itemtype attribute, 96

J
JavaScript

adding, 22
application updates, pointing out, 318–320
calculations with <output>, 84
the canvas and, 171
checking browser connections with, 317
debuggers, 407
form submission, bypassing, 109

Index

426 index

form validation with, 124
geolocation

accuracy of, 353
browser support for, 348
errors, dealing with, 353
how it works, 349–351
how you can use it, 351
maps, showing, 356–359
object literals, understanding, 356
options, setting, 355
visitor coordinates, finding, 351–353
visitors, monitoring the moves of, 360

history management
browser compatibility for session history,

377
hashbang URLs, 373
the history object, 371
HTML5, session history and, 374–376
the URL problem, 372
URLs, satisfying with extra pages, 378

how web pages use
embedding script in markup, 398
events, responding to, 402–404
functions, using, 400
script files, moving code to, 401

JSON (JavaScript Object Notation) encoding,
291

language essentials
arrays, 410
conditional logic, 408
errors, identifying, 407
functions that receive and return data, 411
loops, 410
operations, 407–409
variables, 405

libraries
form validation, 124
using Oomph browser plug-in with, 94

media players
J W Player, 159
options, 166–168
sound effects, adding, 160–166

page interaction
elements, manipulating, 413
events, connecting to dynamically, 415
events, inline, 417
HTML object properties, common, 415
tasks of, 412

web workers
background tasks, cancelling, 367
background work, 364–367
complex messages, passing, 368–370
fallback for, 368
functioning of, 360
safety measures, 361

for time-consuming tasks, 362–364
ways to use, additional, 371
worker errors, handling, 367
Worker object, 364

Java web socket test server, 345
JSON (JavaScript Object Notation) encoding,

291

K
Kaazing web socket test server, 345
key, as data name, 283

L
language codes, locating, 21
language information, including, 21
layout property in CSS, 384
LeadIn class, formatting example, 394
less than operator (<), 409
less than or equal to operator (<=), 409
licensing for video, 145, 150
line-height property, 394
lineTo() method, 174
<link> element, 382
:link pseudoclass, 389
links

<a> element, changes in HTML5, 32
to JavaScript events, 403
to JavaScript functions, 402
linking style sheets to a web page, 382

lists. traditional form controls for, 112
local storage, 282
local variables, 406
logical operators, 409
loop attribute, 147
loops, in JavaScript, 410

M
maintenance of web pages, semantic elements

and, 44
manifest, caching files with

clearing the browser’s cache, 312
creating a manifest file, 304
how much to cache, 307
putting your manifest on a web server,

308–310
traditional caching vs. offline applications, 305
updating the manifest file, 310–312
using your manifest, 307

maps, geolocation, 356–359
<mark> element, 86
Mark of the Web comment, 23, 59, 399
markup, HTML. See also page structure

addition of JavaScript, 397
embedding script in, 398
example of, basic, 18–23

Index

427index

mathematical calculations, 407
math-phobes, canvas drawing for, 183
matrix transforms, 184
maze game

animating the face, 232–234
hit testing with pixel colors, 234–236
illustration, 229
setting up the maze, 229
storing the last position in, 285–287

media, encoding, 156. See also audio and video
media players, JavaScript

J W Player, 159
options, 166–168
sound effects, adding, 160–166

media queries
adapting to different devices, 256–261
for video, 263

<menu> element, 138
messages

complex messages, passing using web workers,
368–370

message format for server-sent events, 334
sending with a server script, 335–337
in a web page, processing, 337

metadata
audio and video, 146
and RDF, 89
using microformats, 89–94

<meter> element, 135–137
microdata, HTML5 markup and, 95–97
microformats

browser plug-ins for, 93
contact details with hCard, 89
events with hCalendar, 94
metadata and, 89–94

MIME types, 151, 153
Miro Video Converter, 156
Missing Manual newsletter, 8
mobile browsers

audio and video support, 152
caching limits, 307

mobile devices. See devices, adapting to
Modernizr

canvas support, 197
fallbacks for CSS3, adding, 240–242
feature detection using, 38–40
validation for form features, 123

month data type, 132
moveTo() method, 174
MP3 audio format, 151, 152
multiple attribute, 125
multiple columns, putting text in, 253–255
multiple objects, animating, 224–228
multiple selectors, in CSS, 387
Multiuser sketchpad, web socket server, 345

N
navigation

links using <nav> and <aside> elements, 62
<nav> element, 82

.NET web socket test server, 345
node JS web socket test server, 345
not equal to operator (!=), 409
numbers

and dates, storing in web storage, 289
form input using the <input> element,

129–131
numeric data types, 129–131
step attribute, 129

O
object literals, 356
objects. See also specific objects

HTML object properties, common, 415
locating, using JavaScript, 413

obsolete features, how HTML handles, 16
offline applications

advantages of, 303
browser support for, 312
caching files with a manifest

clearing the browser’s cache, 312
creating a manifest file, 304
how much to cache, 307
putting your manifest on a web server,

308–310
traditional caching vs. offline applications,

305
updating the manifest file, 310–312
using your manifest, 307

caching techniques for complex websites
accessing uncached files, 314
checking the connection, 317
fallbacks, adding, 315–317
updates, pointing out with JavaScript,

318–320
troubleshooting, 310–312

Ogg Theora video format, 151, 152
Ogg Vorbis audio formats, 151, 152
onBlur event, 404
onCached event, 319
onChange event, 404
onChecking event, 319
onClick event, 404
onDownloading event, 319
onError event, 319, 404
onFocus event, 404
onKeyDown event, 404
onKeyUp event, 404
online resources

audio editors, 156

Index

428 index

audio tracks, loopable, 147
Bézier curves, tweaking, 182
browser adoption statistics, 36
browser testing

caniuse.com, 4, 35
canvas examples, 236
canvas paint programs, 195
CSS3 features, treating as enhancements, 238
drawing libraries, 183
ExplorerCanvas, 196
Firefogg plug-in, 156
five-factor personality model, 213
Font Squirrel website, 247
Google’s support for rich snippets, 98
HandBrake converter software, 156
hexadecimal color code, 132
HTML outliner, 71
language codes, locating, 21
Miro Video Converter, 156
missingmanuals.com, 6
Modernizr, feature support, 38–40
Oomph browser plug-in, 93
outline viewer, 74
polyfills for HTML5, 41
prosetech.com/html5, 7
Safari Books Online digital library, 8
standards for columns, 254
TinyOgg website, 156
transforms, exploration of, 185
validator, W3C standards, 25
web fonts, 392
web socket examples, 344

onLoad event, 404
onMouseOut event, 404
onMouseOver event, 403, 404
onNoUpdate event, 319
onObsolete event, 319
onProgress event, 319
onSelect event, 404
onStorage event, 287, 292
onUnload event, 404
onUpdateReady event, 319
Oomph browser plug-in, 93
opacity property, 264
OpenType PostScript font. See OTF (OpenType

PostScript) font format
Opera browser, JavaScript debugger, 407
operations, in JavaScript, 407–409
operators. See also specific operators

arithmetic operators, 407
logical operators, 409

or operator (||), 409
OTF (OpenType PostScript) font format, 246

outlining system in HTML5
basic outlines, 71–74
outline viewers, 74
problem solving, 76–79
reasons to use, 70
sectioning elements, 73–75
viewing outlines, 70

<output> element, 84

P
padding properties, in CSS, 394
page structure. See also web pages

old method of, 47–49
outlining system in HTML5

basic outlines, 71–74
problem solving, 76–79
reasons to use, 70
sectioning elements, 73–75
viewing outlines, 70

semantic elements
browser compatibility for, 57–59
designing a site with, 60–70
figures, adding with <figure>, 53–55
how they were chosen, 58
introduction to, 44
replacing the <div> element with, 49–52
sidebar, adding with <aside>, 56–58
subtitles, using <hgroup>, 52
summarized, 82
traditional HTML page, retrofitting with,

45
simplest example of, 23

pages, web. See web pages
paint programs

building in the canvas
drawing on the canvas, 190
preparing to draw, 189–191
saving the picture in the canvas, 192–195

canvas paint programs on the web, 195
parameters, JavaScript, 411
parentElement property, 415
paths, drawing in the canvas, 177–179
patterns, filling shapes with in the canvas, 207
<p> elements, in CSS, 394
</p> elements, in HTML5, 18
PHP

creating a script, 326
sending messages with a server script,

335–337
web socket test server, 345

placeholder text in forms
adding hints with, 113–115
writing good placeholders, 115

plug-ins, browser. See browser plug-ins

Index

429index

polling
with server-sent events, 339
techniques for, 334

polyfills
for the canvas, 196
feature filling with, 40

poster attribute, 148
preload attribute, 146
presentational elements, not supported, 30
privacy, geolocation and, 349
processFiles() function, 296
<progress> element, 135–137
properties. See also specific properties

in CSS, 383
HTML object properties, common, 415

pseudoclasses
in CSS3, 271
pseudoclass selectors, in CSS

:active pseudoclass, 389
:hover pseudoclass, 389
:link pseudoclass, 389
:visited pseudoclass, 389

validation
in-range and out-of-range, 119
valid and invalid, 119

pull-quotes, creating, 56
Python web socket test server, 345

Q
questioning a web server

calling the web server, 328
creating the script, 326

quirks mode, browsers and, 20

R
radial-gradient property, 243
radio buttons, traditional form controls for,

112
range numeric data type, 130
RDFa (Resource Description Framework), 89
readAsBinaryString() method, 297
readAsDataURL() method, 298
readAsText() method, 297
recipe search engine, Google, 101–104
recording audio and video, 145
regular expressions, validating with, 120
resizing images in the canvas, 202
Resource Description Framework. See RDF

(Resource Description Framework)
resources, online. See online resources
rgb() function, for HTML colors, 392
rich snippets. See Google rich snippets
role attribute, in ARIA, 88
rotate transforms, 184

rounded corners, creating in CSS3, 265
Ruby web socket test server, 345
rules in style sheets, 382

S
Safari Books Online digital library, 8
Safari browser, JavaScript debugger, 407
safety measures for web workers, 361
sandboxed code, 413
Scalable Vector Graphics font. See SVG

(Scalable Vector Graphics) font format
scale transforms, 184, 275
<script> element, 398
script files, moving JavaScript code to, 401
search boxes

form input using the <input> element, 128
search data type, 128

search engine optimization. See SEO (search
engine optimization)

<section> element
description of, 82
designing, using semantic elements, 69

sectioning elements, working with, 73–75
selectors, in CSS

contextual selectors, 387
id selectors, 388
multiple selectors, 387
pseudoclass selectors, 389

<s> element, in HTML5, 31
semantic elements. See also Google rich

snippets
browser compatibility for, 57–59
designing a site with

collapsible boxes, 66
decisions to make, 60
footers, 67
headers, 61
navigation links, 62–64
sections, 69

example of, in a style sheet, 391–396
how they were chosen, 58
page structure with

figures, adding with <figure>, 53–55
introduction to, 44
replacing the <div> element with, 49–52
sidebar, adding with <aside>, 56–58
subtitles, using <hgroup>, 52
summary of, 82
traditional HTML page, retrofitting, 45

text-level semantics
dates and times with <time>, 82
highlighted text with <mark>, 86
JavaScript calculations with <output>, 84

Index

430 index

SEO (search engine optimization)
Google search bots and, 45
hashbanged URLs and, 374
recipe search engine, 101–104
rich semantics and, 98

server-sent events
examples of, 333
message format, 334
messages in a web page, processing, 337
messages, sending with a server script,

335–337
polling with, 339

server-side data storage, 281
server-side frameworks, 61
server-side includes, to satisfy URLs, 378
server-side validation of forms, 117
session history. See history management
session storage, 282
setInterval() function, 223
setTimeout() function, 223
shadows

in the canvas
adding, 205
shadowBlur, 206
shadowColor, 206
shadowOffsetX and shadowOffsetY, 206

creating in CSS3, 268
shadow transitions, creating in CSS3, 274

shapes
drawing in the canvas, 177–179
filling with gradients, in the canvas, 208–211
filling with patterns, in the canvas, 207
interactivity, 216–221

sidebars
adding with <aside> element, 56–58
using <nav>, 63–65

Silverlight, and File API, 295
size property in CSS, 384
slicing, dicing, and resizing images in the

canvas, 202
sliding doors technique, 268
<small> element, 30
software to write HTML5, 3
sound. See audio and video
sound effects, adding, 160–163
<source> element, 154
spacing property in CSS, 384
 element

in CSS, 386, 393
page structuring the old way, 47

spellcheck attribute, 125
standards

for columns, 254
HTML, as living language, 14
for semantically smart markup

ARIA (Accessible Rich Internet
Applications), 88

microdata, 95–97
microformats, 89–94
RDFa (Resource Description Framework),

89
status of, 5

step attribute for numbers, 129
straight lines, drawing in the canvas, 174–176
 element, 31
structure of pages. See page structure
style attribute, 381
<style> element, 382
style property, 415
style sheets. See also CSS3

adding to web pages
<link> element, 22, 382
<style> element, 382
style attribute, 381

anatomy of
attribute selectors, 390
classes, 385
comments, 385
contextual selectors, 387
<div> elements, structuring pages with,

386
id selectors, 388
multiple selectors, 387
properties, 383
pseudoclass selectors, 389
rules, explanation of, 382
selectors, 383
values, 383

browser-specific, 243
example of, using HTML5 semantic elements,

391–396
replacing, to adapt to different devices, 261
rules for HTML5

block display formatting, 58
formatting the <aside> sidebar, 65

subtitles
accessibility and, 168
adding, with the <hgroup> element, 52

<summary> element, 66
support, browser. See browser support
SVG (Scalable Vector Graphics) font format,

246
swapCache, 321
syntax in HTML5

good HTML5 style, the loosened rules, 24
markup basics, 18–23
validation, 25–27
XHTML and, 27–29

Index

431index

T
tagName property, 415
tags. See elements; specific elements
task progress, 135
tasks, using web workers

periodic tasks, 371
time-consuming, 362–364

telephone numbers
form input using the <input> element, 129
tel data type, 129

templates
in web design tools, to satisfy URLs, 378
web pages, 61

text
drawing in the canvas, 203
highlighting, with the <mark> element, 86
in multiple columns, 253
text alignment property in CSS, 383, 384
text-level semantics. See also semantic

elements
dates and times with <time>, 82
highlighted text with <mark>, 86
JavaScript calculations with <output>, 84

text boxes
ARIA attributes and, 88
form controls for, traditional, 112

text files
reading, in File API, 296–298
script files, in JavaScript, 401

3-D transforms, 277
tiled image patterns, 207
time

form input using the <input> element, 131
<time> element, 83
time data type, 132

titles
in HTML5, 52
<title> element, 19

transforms
in the canvas, 182–184
CSS3 transforms, 274–277
3-D transforms, 277

transitions in CSS3
color transitions, 272
gradient transitions, 274
shadow transitions, 274
transforms, 274–277
transparency transitions, 274

transparency
in the canvas, 185–187
creating in CSS3, 263
transparency transitions, creating in CSS3, 274

triangle, creating in the canvas, 179
TTF (TrueType) font format, 246

typography, web
font kits, using, 247–249
Font Squirrel website, 247
fonts, using on your computer, 249
Google fonts, 250
text in multiple columns, 253
troubleshooting, 246
using your own fonts, 252
web font formats, 245

U
uncached files, accessing, 314
URLs

data URLs, to save pictures in the canvas, 192
form input using the <input> element, 128
hashbang URLs, 373
history management, and the problem of,

372–374
satisfying with extra pages, 378
session history and, 374–376
url data type, 128

UTF encoding, 21

V
valid and invalid pseudoclasses, 119
validation

catching HTML5 problems, 25–27
of forms

browser support for, 123–125
client-side validation, 117
custom, 121
in HTML5, how it works, 116–118
server-side validation, 117
stopping errors with, 116
styling hooks for, 119
turning off, 118
using regular expressions, 120

for XHTML5, 28
values, in CSS, 383
variables, in JavaScript

data types, 406
global variables, 406
local variables, 406
scope, 406
structure of, 405
var keyword, 405

vendor prefixes for browsers, 243
video. See also audio and video

drawing a video frame, 203
media queries for, 263
supported in HTML5, 17
<video> element

custom video player, creating, 163–166
understanding, 148

:visited pseudoclass, 389

Index

432 index

visitors to websites, geolocation and, 351–353,
360

W
watermark, 113
WAV audio format, 151, 152
<wbr> (wordbreak) element, 33
web fonts, 244–246. See also fonts; typography,

web
web forms. See forms
WebM video format, 151, 152
Web Open Font Format. See WOFF (Web Open

Font Format)
web pages. See also page structure

complex, sectioning elements and, 76
drawing in. See canvas
editing, using designMode, 141
JavaScript, as used in

embedding script in markup, 398
events, responding to, 402–404
functions, using, 400
script files, moving code to, 401

page interaction, with JavaScript
elements, manipulating, 413
events, connecting to dynamically, 415
events, inline, 417
HTML object properties, common, 415
servers, retrieving and sending data to, 413
updating pages, 413

processing messages in, 337
turning into a website, 61
typography

font kits, using, 247–249
Font Squirrel website, 247
fonts, using on your computer, 249
Google fonts, 250
text in multiple columns, 253
troubleshooting, 246

web servers
communication with

asking the web server a question, 325–329
history of web server involvement, 324
new content, getting, 330–333
using JavaScript, 413
XMLHttpRequest object, introducing, 325

manifests
configuring the web server for, 304
putting on a web server, 308–310

server-sent events
examples of, 333
message format, 334
messages in a web page, processing, 337
messages, sending with a server script,

335–337
polling with, 339

web sockets
assessing, 341
examples on the web, 344
introduction to, 340
simple web socket client, 343
web socket test servers, 345

web storage and, 285
website resources. See online resources
web sockets

assessing, 341
examples on the web, 344
introduction to, 340
simple web socket client, 343
web socket test servers, 345

web storage
basics of, 282
browser support for, 287
changes, reacting to, 292
example of, 285–287
finding stored items, 288
how to accomplish, 283–285
local storage, 282
numbers and data, storing, 289
objects, storing, 290
problems with, 285
removing items, 288
session storage, 282
types of, 282
web server storage vs. client-side storage, 281

web typography. See typography, web
web workers

background tasks, cancelling, 367
background work, 364–367
complex messages, passing, 368–370
fallback for, 368
functioning of, 360
safety measures, 361
for time-consuming tasks, 362–364
ways to use, additional, 371
worker errors, handling, 367
Worker object, 364

week data type, 132
WHATWG (Web Hypertext Application

Technology Working Group), 13
width attribute, 148, 172
WOFF (Web Open Font Format), 246

X
XHTML

failure of, 12, 16, 107
vs. HTML, stricter rules for, 12
HTML5 and, 27
origins of, 11

XMLHttpRequest object, 325–333
XML namespace, 96

Colophon
HTML5: The Missing Manual was composited in Adobe InDesign CS4 by Dessin
Designs (www.dessindesigns.com).

The cover of this book is based on a series design originally created by David Freed-
man and modified by Mike Kohnke, Karen Montgomery, and Fitch (www.fitch.
com). Back cover design, dog illustration, and color selection by Fitch.

David Futato designed the interior layout, based on a series design by Phil Simp-
son. The text font is Adobe Minion; the heading font is Adobe Formata Condensed;
and the code font is LucasFont’s TheSansMonoCondensed. The illustrations that
appear in the book were produced by Robert Romano using Adobe Photoshop and
Illustrator CS.

http://www.dessindesigns.com

	Copyright
	Table of Contents
	The Missing Credits
	Introduction
	Part One: Meet the New Language
	Chapter 1. Introducing HTML5
	The Story of HTML5
	XHTML 1.0: Getting Strict
	XHTML 2: The Unexpected Failure
	HTML5: Back From the Dead
	HTML: The Living Language

	Three Key Principles of HTML5
	1. Don’t Break the Web
	2. Pave the Cowpaths
	3. Be Practical

	Your First Look at HTML5 Markup
	The HTML5 Doctype
	Character Encoding
	The Language
	Adding a Style Sheet
	Adding JavaScript
	The Final Product

	A Closer Look at HTML5 Syntax
	The Loosened Rules
	HTML5 Validation
	The Return of XHTML

	HTML5’s Element Family
	Added Elements
	Removed Elements
	Adapted Elements
	Tweaked Elements
	Standardized Elements

	Using HTML5 Today
	Evaluating Browser Support
	Browser Adoption Statistics
	Feature Detection with Modernizr
	Feature “Filling” with Polyfills

	Chapter 2. A New Way to Structure Pages
	Introducing the Semantic Elements
	Retrofitting a Traditional HTML Page
	Page Structure the Old Way
	Page Structure with HTML5
	Subtitles with <hgroup>
	Adding a Figure with <figure>
	Adding a Sidebar with <aside>

	Browser Compatibility for the Semantic Elements
	Designing a Site with the Semantic Elements
	Deeper into Headers
	Navigation Links with <nav>
	Deeper into Footers
	Deeper into Sections

	The HTML5 Outlining System
	How to View an Outline
	Basic Outlines
	Sectioning Elements
	Solving an Outline Problem

	Chapter 3. Meaningful Markup
	The Semantic Elements Revisited
	Dates and Times with <time>
	JavaScript Calculations with <output>
	Highlighted Text with <mark>

	Other Standards that Boost Semantics
	ARIA (Accessible Rich Internet Applications)
	RDFa (Resource Description Framework)
	Microformats
	Microdata

	Google Rich Snippets
	Enhanced Search Results
	The Recipe Search Engine

	Part Two: Creating Modern Web Pages
	Chapter 4. Web Forms, Refined
	Understanding Forms
	Revamping a Traditional HTML Form
	Adding Hints with Placeholders
	Focus: Starting in the Right Spot

	Validation: Stopping Errors
	How HTML5 Validation Works
	Turning Validation Off
	Validation Styling Hooks
	Validating with Regular Expressions
	Custom Validation
	Browser Support for Validation

	New Types of Input
	Email Addresses
	URLs
	Search Boxes
	Telephone Numbers
	Numbers
	Sliders
	Dates and Times
	Colors

	New Elements
	Input Suggestions with <datalist>
	Progress Bars and Meters
	Toolbars and Menus with <command> and <menu>

	An HTML Editor in a Web Page
	Using contentEditable to Edit an Element
	Using designMode to Edit a Page

	Chapter 5. Audio and Video
	Understanding Video Today
	Introducing HTML5 Audio and Video
	Making Some Noise with <audio>
	Getting the Big Picture with <video>

	Format Wars and Fallbacks
	Meet the Formats
	Browser Support for Media Formats
	Multiple Formats: How to Please Every Browser
	The <source> Element
	The Flash Fallback

	Controlling Your Player with JavaScript
	Adding Sound Effects
	Creating a Custom Video Player
	JavaScript Media Players
	Captions and Accessibility

	Chapter 6. Basic Drawing with the Canvas
	Getting Started with the Canvas
	Straight Lines
	Paths and Shapes
	Curved Lines
	Transforms
	Transparency

	Building a Basic Paint Program
	Preparing to Draw
	Drawing on the Canvas
	Saving the Picture in the Canvas

	Browser Compatibility for the Canvas
	Polyfilling the Canvas
	The Canvas Fallback and Feature Detection

	Chapter 7. Deeper into the Canvas
	Other Things You Can Draw on the Canvas
	Drawing Images
	Slicing, Dicing, and Resizing an Image
	Drawing Text

	Shadows and Fancy Fills
	Adding Shadows
	Filling Shapes with Patterns
	Filling Shapes with Gradients
	Putting It Together: Drawing a Graph

	Making Your Shapes Interactive
	Keeping Track of What You’ve Drawn
	Hit Testing with Coordinates

	Animating the Canvas
	A Basic Animation
	Animating Multiple Objects

	A Practical Example: the Maze Game
	Setting Up the Maze
	Animating the Face
	Hit Testing with Pixel Colors

	Chapter 8. Boosting Styles with CSS3
	Using CSS3 Today
	Strategy 1: Use What You Can
	Strategy 2: Treat CSS3 Features as Enhancements
	Strategy 3: Add Fallbacks with Modernizr
	Browser-Specific Styles

	Web Typography
	Web Font Formats
	Using a Font Kit
	Using Google Web Fonts
	Using Your Own Fonts
	Putting Text in Multiple Columns

	Adapting to Different Devices
	Media Queries
	More Advanced Media Queries
	Replacing an Entire Style Sheet
	Recognizing Mobile Devices

	Building Better Boxes
	Transparency
	Rounded Corners
	Backgrounds
	Shadows
	Gradients

	Creating Effects with Transitions
	A Basic Color Transition
	More Transition Ideas
	Transforms

	Part Three: Building Web Apps with Desktop Smarts
	Chapter 9. Data Storage
	Web Storage Basics
	Storing Data
	A Practical Example: Storing the Last Position in a Game
	Browser Support for Web Storage

	Deeper into Web Storage
	Removing Items
	Finding All the Stored Items
	Storing Numbers and Dates
	Storing Objects
	Reacting to Storage Changes

	Reading Files
	Getting Hold of a File
	Browser Support for the File API
	Reading a Text File
	Replacing the Standard Upload Control
	Reading Multiple Files at Once
	Reading an Image File

	Chapter 10. Offline Applications
	Caching Files with a Manifest
	Creating a Manifest
	Using Your Manifest
	Putting Your Manifest on a Web Server
	Updating the Manifest File
	Browser Support for Offline Applications

	Practical Caching Techniques
	Accessing Uncached Files
	Adding Fallbacks
	Checking the Connection
	Pointing Out Updates with JavaScript

	Chapter 11. Communicating with the Web Server
	Sending Messages to the Web Server
	The XMLHttpRequest Object
	Asking the Web Server a Question
	Getting New Content

	Server-Sent Events
	The Message Format
	Sending Messages with a Server Script
	Processing Messages in a Web Page
	Polling with Server-Side Events

	Web Sockets
	Assessing Web Sockets
	A Simple Web Socket Client
	Web Socket Examples on the Web

	Chapter 12. More Cool JavaScript Tricks
	Geolocation
	How Geolocation Works
	Finding a Visitor’s Coordinates
	Dealing with Errors
	Setting Geolocation Options
	Showing a Map
	Monitoring a Visitor’s Moves

	Web Workers
	A Time-Consuming Task
	Doing Work in the Background
	Handling Worker Errors
	Canceling a Background Task
	Passing More Complex Messages

	History Management
	The URL Problem
	The Traditional Solution: Hashbang URLs
	The HTML5 Solution: Session History
	Browser Compatibility for Session History

	Part Four: Appendixes
	Appendix A. A Very Short Introduction to CSS
	Adding Styles to a Web Page
	The Anatomy of a Style Sheet
	Slightly More Advanced Style Sheets
	A Style Sheet Tour

	Appendix B. A Very Short Introduction to JavaScript
	How a Web Page Uses JavaScript
	A Few Language Essentials
	Interacting with the Page

	Index
	Colophon

