Serena Bonaretti

www . learnpythonwithjupyter.com

Learn Python with Jupyter

Serena Bonaretti

www . learnpythonwithjupyter.com

www.learnpythonwithjupyter.com

For the free ebook:
License: CC BY-NC-SA

For the future printed copy:

Copyright ©202x by Serena Bonaretti. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, or otherwise without the prior written
permission of the author.

While the author has used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the author disclaims all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use or reliance of this
work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Editing and proofreading by John Batson
Cover design by Federica Dias (www.behance.net/federicadias)

www.learnpythonwithjupyter.com

https://creativecommons.org/licenses/by-nc-sa/2.0/
www.learnpythonwithjupyter.com

Eccoci nuovamente insieme per imparare a leggere e a scrivere.

lo direi, pero, di piu: per imparare a conoscere meglio il mondo e noi stessi.
Here we are together again to learn how to read and write.

Actually, | would go further: to learn the world and ourselves better.

—Alberto Manzi, Non & mai troppo tardi, It’s never too late

Simple is better than complex.
—Tim Peters, The Zen of Python

Content

About this book

p. ix

What we need to learn when learning coding

p. Xiii

Introduction

The Jupyter/Python environment

p. 3
Downloading the book material
p. 8

Getting ready

Chapter

1. Text, questions, and art
p. 11

2. Events and favorites
p. 18

Part 1:
Syntax
m Strings
® Built-in function input ()

Built-in function print ()

Assignment symbol
Concatenation symbol

Creating the basics

Computational thinking

Getting information from a
user
Printing to the screen

Creating variables
Assigning values to vari-
ables

Concatenating strings

In more depth

Our fingers have memory
p. 16

Dealing with NameError and
SyntaxError
p. 21

Chapter

3. In a bookstore
p. 25

4. Grocery shopping
p. 30

5. Customizing the burger
menu
p. 36

6. Traveling around the world
p. 41

7. Senses, planets, and a house
p. 50

Part 2:

Syntax

Lists

if/else construct
Membership operator in
Indentation

List method . append()
List method . remove()

List method .index()
List method . pop()
List method .insert()

Three-s rule
Plus one rule and minus one
rule

Keyword del

Introduction to lists and if/else

Computational thinking

List as a collection
datatype
Executing command based

on binary conditions

Methods as functions for a
specific datatype

Adding and removing ele-
ments to/from a list based
on conditions

Associating a list element
to an index

Finding an element index
Adding and removing ele-
ments to/from a list based
on index

Slicing to extract elements
from a list

Slicing using positive and
negative indices, and in di-
rect and reverse order
Omitting indices

Replacing, adding, and re-
moving elements using list
slicing

List concatenation
Deleting a variable vs. its
content
Transitioning from
methods to slicing

list

In more depth

Let’s give variables meaningful
names!
p. 28

Why do we print so much?
p. 34

We code in English!
p. 39

Why the plus one rule?
p. 47

What is the kernel?
p. 56

Part 3. Introduction to the for loop

Chapter Syntax Computational thinking In more depth
8. My friends’ favorite dishes m for loop = For loop to repeat com- Dealing with IndexError and In-
p. 61 ® Built-in function range() mands dentationError

® Built-in function st () m For loop to automatically p. 66

slice a list

9. At the zoo m Comparison operator == ® Binary condition in com- Dealing with TypeError
p. 69 ® Built-in function 1len() mand repetition p. 73

m # for commands m Code commenting

m Abbreviating index with

i

10. Where are my gloves? m Comparison operators !=, m Searching an element in Let’s use keyboard shortcuts!
p. 76 > >= < <= a list based on element p. 82

length or position, by com-
bining for loop and if/else
construct

m Using variables in place of
hard-coded values

11. Cleaning the mailing list m String methods m Changing list elementsina Inwhat list am | changing the el-
p. 85 .lower(), .upper(), for loop with reassignment ~ ement?
.title(), p. 88

.capitalize()

12. What a mess at the book- m Special character "\n" m Creating lists in a for loop Append or concatenate. Don’t
store! m String slicing assign!
p. 91 = Multiple consecutive slic- p. 96
ing
Part 4. Numbers and algorithms
Chapter Syntax Computational thinking In more depth
13. Implementing a calculator m Arithmetic operators ® Number variables as Solving arithmetic expressions
p. 101 ® Built-in functions int(), strings, integers, or floats p. 108
float(), type() m Testing multiple variable
= Keyword elif values using elif
= Combining code in a code
unit
14. Playing with numbers (no new syntax) m Changing numbers based Don’t name variables with re-
p. 110 on conditions served words!

®m Separating numbers based p. 113
on conditions

m Finding the maximum in a
list of numbers

m Determining number visi-
bility using modulus

15. Fortune cookies = Keyword import m Module asaunitcontaining ~ What if | don’t use the index in
p. 116 m random module functions specific functions a for loop?
.randing(a,b) and m Importing a module p. 119
.choice(1list) = Randomness in coding
16. Rock paper scissors (no new syntax) m Testing, debugging, paral- Why do we say Debugging, Di-
p. 121 lelism, divide and conquer, vide and conquer, and Algo-
algorithm rithms?
p. 127

vi

Part 5. The while loop and conditions

Computational thinking

Chapter

17. Do you want more can-
dies?
p. 131

18. Animals, unique numbers,
and sum
p. 137

19. And, or, not, not in
p. 150

Syntax

= Keywordwhile

(no new syntax)

m The logical operators and,
or, and not

® The membership operator
not in

While loop to ask for un-
known number of inputs
Counter

Initializing and changing
for the variable in the
condition

Identifying various kinds of
conditions

Problem solving using di-
vide and conquer

Merging conditions
Reversing conditions

In more depth

Writing code is like writing an
email!

p. 135

Don’t confuse the while loop
with if/else!
p. 147

What is GitHub?
p. 155

What will I learn in this book? In this book, you will learn to code in Python using Jupyter Notebook.
Even more importantly, you will develop computational thinking, which is the way we think when
coding.

What makes this book different? The topic progression in this book is designed according to com-
putational thinking development while focusing on syntax and strategies, rather than listing discon-
nected language characteristics with isolated examples.

Is this book for me? If you have never coded before, if you are following online courses or videos but
feel you can't quite grasp them, or if you need to better structure your Python and coding knowledge,
this book is for you. Also, if you are training to become a scientist but are not very strong in coding,
if you are transitioning to the Python/Jupyter environment from another programming language, or
if you are a teacher looking for material, this book can be for you.

How is this book structured? The book is divided in 11 parts. The first part introduces the com-
putational environment—that is, the Jupyter/Python environment. The following ten parts cover
computational thinking and Python syntax. Each part contains two to five chapters, for a total of
thirty-eight chapters.

How are chapters structured? Each chapter starts with one or more coding examples embedded in
narrative and enriched with detailed explanations. In addition, each contains several theoretical and
coding exercises. And they all finish with a recap to summarize the chapter’s main concepts, and a
“in more depth” section, with coding strategies or curiosities.

Why is code embedded in narratives? Stories provide context and allow long-term memorization.
They are extensively used in learning foreign languages. And, in many respects, a programming
language is a foreign language.

Why is there code pronunciation? When we code, we pronounce or mumble code within ourselves,
and occasionally aloud with a colleague. Although coding has a strong vocal component, there is no
defined standard for code pronunciation. The pronunciation proposed in this book is the optimized
result of hours of one-on-one interaction with students of various mother tongues.

What kinds of exercises are in the book? In this book, you will find both theory exercises and coding
exercises. Theory exercises are meant to strengthen code comprehension and syntax precision.
Coding exercises are meant to make you practice and thus learn by doing.

What is on the website? On www.learnpythonwithjupyter.com, you can find Jupyter Notebooks
associated with each chapter, so you can test and experiment while learning. You can also find a
community, with solutions to both theory and coding exercises. You can ask questions and propose
alternative solutions, to deepen your knowledge.

How do | use this book? Start with the first part, Getting ready, to install and learn the computational
environment. Then, proceed with the chapters. For each chapter, download the corresponding
notebook at www . learnpythonwithjupyter.com. Make sure you understand the syntax, play with

ix

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

the code, and do the theoretical exercises. Read the recap and the “in more depth” sections, which
will give you useful hints. Finally, do the coding exercises and compare your solutions with the ones
you find in the community. Obviously, looking at a solution before completing an exercise weakens
your chance of learning. If you do not understand questions or solutions, ask in the community.
Take your time to solve each exercise. Missing the understanding of one chapter might compromise
your understanding of the chapters that follow it.

How is the language used in this book? The language is colloquial and simple—but precise. There are
clear definitions and careful explanations. | directly talk to you, but | use we when explaining syntax.
We are in this together! Also, | use the first person when | want to share some hints | learned along
the way.

INTRODUCTION

In this part, we will briefly talk about coding environments, language syntax, and computational
thinking. If you are eager to start coding, just skip it and come back later!

What do we need to learn when learning coding?

Coding is a lot about telling a computer what to do. We, human beings, need to write commands
that computers understand, and to do so, we need to learn to think differently. We have to start
from scratch and master a new way of communicating, made of concise and logical instructions.
Practically speaking, we have to learn at least three things: a coding environment, language syntax,
and computational thinking. Let's see what these are!

A coding environment is a program where we can write and execute code. There are several en-
vironments to code in Python. In this book, we will use the Jupyter/Python environment, which
since its release in 2015 has become used increasingly both in industry and academia (Figure 1.1).
It allows integrating code with narrative, and it is ideal for creating reports, draft code, and learning
to code. Other very common coding environments are the integrated development environments
(IDEs). For Python, popular IDEs are PyCharm, Visual Studio, and Spyder (Figure 1.2). IDEs typically
embed various components, such as a script editor, a variable environment panel, and a console
wherein code is tested and executed. In Chapter 32, you will get familiar with one of them, Spyder,
which is commonly used for scientific coding. And finally, the most basic environment is the Python
IDLE, which is included in the Python installation. It consists of a shell—which looks very similar to
a terminal—where one can type and execute commands (Figure 1.3).

Figure 1. Three IDEs to code in Python: (1) the Jupyter environment, (2) Spyder, and (3) the Python IDLE.

A language syntax is a set of rules defining how to write commands. You are already very familiar
with at least one syntax, which is your native language syntax. In your mother tongue, you know
words, punctuation, and how to arrange these elements in sentences to create paragraphs and entire
texts. In coding, the pattern is similar. We have to know data types and operators, as well as how
to arrange them in if/else constructs and loops to create functions and classes. In Table 1, you can
see a schematic summary of elements and syntax you will learn in this book. Don't worry if you do
not understand most of it—everything will become more and more clear as we progress through the
book.

xiii

Introduction

Data types Operators Constructs and Unit of code Software
(words) (bunctuations) loops (paragraphs) (texts)
(sentences)

string, list, assignment, if/else construct, functions classes (object-
integer, float, membership, for loop, oriented pro-
Boolean, tuple, arithmetic, while loop gramming)
dictionary, set comparison,

logical

Finally, computational thinking is the way we think when coding. Every time we approach a new
subject, we need to learn how to think in that subject and develop specific skills. Some of the abilities
you will develop in this book are:

e Creating algorithms, which means conceiving and implementing a series of sequential instructions
to solve a problem

e Divide and conquer, which consists of decomposing problems in sub-problems, and then combining
the sub-problem solutions to obtain the main problem solution

e Pattern recognition, which means recognizing in a new problem features of a previously solved
problem so that you can apply a similar solution

e Solution generalization, which consists of generalizing solutions from specific cases to broader sit-
uations

As is the case for any subject, developing a way of thinking comes with studying and exercising. Thus,
thinking computationally comes with learning syntax and practicing coding. We will start building
these abilities in Chapter 1. In the next part, Getting ready, you will download, install, and learn how
to use the Jupyter/Python environment.

xiv

GETTING READY

In this part, we will set up the Jupyter/Python environment and learn how to use it. Let’s start this
exciting journey!

The Jupyter/Python environment

An easy way to think about the Jupyter/Python environment is to consider it as a Russian doll—those
wooden dolls of decreasing size nested one inside another (Figure 2). The largest doll is JupyterLab,
which is a web-based environment in which we can open, organize, and work on files of various
types. In JupyterLab, there is Jupyter Notebook, which is a web-based application where we can
write code with narrative. Jupyter Notebook supports several programming languages, one of which
is Python. And finally, Python is enriched by an extraordinary amount of modules and packages that
allow us to add useful functionalities to code. Let’s install the Jupyter/Python environment and see
how it works!

Web-based
environment
Web-based app for
code with narrative
Programming

language
Modules

and packages

o =
Jupyter
Y’

JupyterLab °
Notebook

Figure 2. The Jupyter/Python environment represented as a Russian doll,
where each component is included in the previous one.

Installing the Jupyter/Python environment

You can install JupyterLab, Jupyter Notebook, Python, and its scientific packages all at once through
Anaconda, a commonly used distribution for scientific computing. Go to the Anaconda website,
https://www.anaconda.com/products/individual, and click download. It might take a few
minutes. Once downloaded, install Anaconda like any other software: click next when required, and
leave the default options (unless you have specific requirements). The installation might take a few
minutes too. When Anaconda is installed, open the Anaconda Navigator by double-clicking its icon,
which looks like the one in Figure 3, box 1. Once opened, you will see all the software contained in
Anaconda, including JupyterLab (Figure 3, box 2), Jupyter Notebook (Figure 3, box 3), and Spyder

3

https://www.anaconda.com/products/individual

Getting ready

(Figure 3, box 4). In this book, we will code in Python using JupyterLab as a working environment.
So let’s learn how to use it!

K] O Anaconda Navigator

D) JANACONDA NAVIGATOR 0 woscenow [EEEN
Applications on base (root) ~| Channels Refresh
@ Environments o o - - o o
(L2 * 2

.
23 Community Jupyteriab Notebook PyCharm Community Qt Console
2 30m 63 201913 2

Web-based, interactive computing notebook A IDE by JetBrains for pure Python PYQEGUI that supports
i t. Edit and run dable ts cod leti

s, proper
3 highlighting,
analysis. listing, and debugging. graphical calltips, and more.

o

Glueviz Orange 3 PyCharm Professional RStudio

ANACONDA

B [
@

Join Now

100

data visuali C
in and

1.1.456
Discover premium data
ed tools des

i A Fullfledged IDE by JetBrains for bot d to help
files. Explore Scientific and Web Python includes R

related datasets.

nstal nsall nsall

Documentation

Anaconda Blog

Yy & 9

JupyterLab is an environment where we can code in an organized and efficient way. Open it by click-
ing the Launch button in the JupyterLab panel in Anaconda (Figure 3, box 5). You will see something
similar to Figure 4. Below are the most relevant features of JupyterLab and some suggestions on
how best to use it.

e JupyterLab is a web-based environment. When you launch JupyterlLab, the first thing you'll notice
is that it starts in the browser. However, its address contains localhost (Figure 4, box 1), which
means that you are actually working locally, that is, on your computer. In other words, you do not
need to be connected to the internet to use JupyterlLab.

e Top bar (Figure 4, box 2). The items in the top bar, such as File, Edit, View, etc., are quite intuitive
and similar to many other software. We will describe the most relevant items throughout the
book, but go ahead and start exploring them! For now, just notice that when clicking some top
bar buttons (for example, File), some of the items that appear might be light gray because they are
disabled (for example, Save As..). This is because they refer to Jupyter Notebook, which we will
open in the next section. Finally, a fun feature of JupyterLab is that you can set a dark theme. If
you want that, go to Settings, then JupyterLab themes, and click on JupyterLab Dark.

e Browsing and opening files. On the left side of JupyterLab, you can find a panel with some vertical
tabs (Figure 4, box 3). The first tab contains an icon representing a folder, and, for now, we will
focus only on this one. The folder tab opens a panel on its right, which contains a few features.
The first is a top bar (Figure 4, box 4), containing a symbol, +, which allows us to start a launcher
(Figure 4, box 7); an icon representing a folder containing a +, to create a new folder; a vertical

Getting ready

[XON] pyterLab x 4+ v
<« @ost:8888/\ab/book/notebook5/|) ﬁ) FiE S \Upda/T)
: ﬁe Edit View Run Kernel Tabs Settings m

. [& euncrer. x

Iter files by name

3

o

B / book / notebooks / E Notebook
Name - Last Modified

m Applications 2 years ago
w B data a year ago "
8 Desktop seconds ago

B Documents 2 months ago

8 Downloads amonth ago

g Console
A

]
|
'

M m

Terminal Text File Markdown File Show
Contextual Help

Simple 1 48 B Saving

English (American) Launcher

Figure 4. JupyterLab interface, containing: (1) local URL, (2) top bar, (3) lateral tabs, (4) folder browser top
bar, (5) folder browser, (6) folder content, (7) launcher, and (8) Jupyter Notebook launch button.

arrow pointing up, to upload a new file; and a circular arrow, to refresh the content of the current
directory—in coding, we often say directory instead of folder. Right below, there is a box to search
for files. Then, there is the path of the working directory (Figure 4, box 5)—that is, the folder
where we are currently opening and saving files. And below, there is a list of the directory content
(Figure 4, box 6). In JupyterLab, you can open an existing file only from this panel, and not by
double-clicking the file in your computer folder. Therefore, you need to know how to navigate
folders from JupyterLab. To go back to a previous folder, click on a folder name in Figure 4, box
5 (for example, to go back to the the previous folder in this screenshot, you would click on book).
To go into a sub-folder—a folder in the current folder—just double-click on the sub-folder listed
in the folder panel (Figure 4, box 6). Last thing: when clicking on the folder icon (Figure 4, box
3), the whole file browser panel toggles out, meaning it disappears. When re-clicking, the whole
panel toggles back in, so it reappears. Toggling out can be convenient if you have a small screen.

Launching tools. The launcher is the place where you can open new notebooks, consoles, terminals,
text files, etc. (Figure 4, box 7). As an alternative, you can open new files and tools from the top

bar (Figure 4, box 2) by clicking on File, then New, and then selecting the file type you want. It's
time to open a Jupyter Notebook!

Getting ready

Jupyter Notebook

To open a Jupyter Notebook, go to the launcher and click the Notebook icon (Figure 4, box 8). A new
Notebook opens in the launcher area (Figure 5, box 2), and it is visible as Untitled.ipynb in the browser
panel (Figure 5, box 1). Notebooks have the extension .ipynb, which stands for interactive python
notebook. To give the Notebook an appropriate name, right-click on Untitled.ipynb in the browser
panel (Figure 5, box 1). Then, click Rename, and change it to any name you want—for example,
practicing_cells.ipynb. As you might have noticed, by right-clicking on the file name, you can perform
several other actions, such as delete, cut, copy, duplicate, and more.

Let’s now focus on a Notebook content. A Jupyter Notebook is essentially a file containing a se-
quence of cells, that is, grey rectangles like the ones you see in Figure 5, box 4. Each cell can contain
code or narrative, as we will see in a bit. The blue bar on the left side of a cell (Figure 5, box 5)
indicates that the current cell is the active cell. In the presence of multiple cells, we can make a cell
active by clicking on the square brackets [] on the cell left side. When a cell is active, we can per-
form several operations in various ways, either by keyboard commands or via the Notebook top bar
(Figure 5, box 3, enlarged in Figure 6), the JupyterLab top bar (Figure 4, box 2), or by right-clicking in
the cell! This might sound redundant, but it is conceived to help coders with different habits—some
prefer using keyboard commands, others prefer clicking on the screen—conveniently perform the
cell operations they need. If there are too many options for you, then just choose one way and stick
to that! Below are some useful cell operations and some of the possible ways to perform them.

Z JupyterLab X + v

((D localhost:8888/lab/tree/Dropbox/book/notebooks/practicing_cells.ipynb & i}) f? a CUpdT)
: File Edit View Run Kernel Tabs Settings Help
[*] [% practicing_cells.ipynb X %
Filter files by name Q IE * X D 0 » w C » Cob v.g"l Python 3 O
o M/ --- /book / notebooks / I i ¥

— | Name - Last Modified

- [practicing_cells.i... seconds ago

Simple 1 10 {& Python 3|Idle Saving completed Mode: Command & Ln 1, Col1 English (American) practicing_cells.ipynb

Figure 5. A Jupyter Notebook opened in JupyterLab. (1) Notebook in the folder browser, (2) Jupyter
Notebook, (3) Jupyter Notebook top bar, (4) cells, (5) currently active cell.

Getting ready

e Creating a cell: To create a new cell below the active cell, press B, for below, or the plus button in
the Notebook top bar (Figure 6, item 2). The newly created cell becomes the active cell. We can
also create a new cell above the active cell by pressing A, for above (there is no corresponding top
bar button).

e Deleting a cell: To delete the active cell, press D twice, or click on the scissor button (Figure 6, item
3).

e Copying a cell: To copy the active cell, first press C and then V (without command or control'), or
item 4 to copy, and then item 5 to paste (Figure 6).

e Undoing or redoing cell operations: To undo a cell operation (for example, if you have deleted a
cell by mistake), press Z, or in JupyterLab top bar (Figure 4, box 2), go to Edit, and then Undo cell
operation. Similarly, to redo a cell operation, simultaneously press shift and Z, or in JupyterLab top
bar, go to Edit and then Redo cell operation.

e Moving cells: Left-click on the square brackets [] of the active cell, and while holding down the
mouse button, move the cell up or down. When you reach the position you want to move the cell
to, release. As an alternative, you can go to Edit in the JupyterLab top bar (Figure 4, box 2) and
then click on Move Cells Up or Move Cells Downs.

e Add line numbers. Line numbers are very useful when coding—you'll come to realize this starting
in Chapter 1. To add line numbers, go to View in the JupyterLab top bar (Figure 4, box 2), and then
click Show Line Numbers.

e Other operations. You can split or merge cells, enable or disable scrolling for output, etc. by going
to the JupyterLab top bar (Figure 4, box 2), and then see the options in Edit, or by right-clicking in
a cell and browsing the options that appear. Just explore them!

B + X O » m C¢ » Code v

What about the remaining buttons in Figure 6? The first button representing a floppy disk—yes,
once upon a time we saved data on floppy disks!—is to save the Notebook. The buttons 6 to 9 are
used to execute code, and you will learn how to use them in Chapter 1 (button 6) and Chapter 7
(buttons 7 to 9).

And finally, time to talk about cell content! As we mentioned before, a cell can contain two things:
code or narrative. By default, Jupyter Notebook cells are code cells. To transform a cell into a text
cell, press M on the keyboard, or click the drop-down menu in the Jupyter Notebook top bar (Figure
6, item 10), and select Markdown. Markdown is a simplified version of HTML, the coding language
used to create websites. This is why the Jupyter environment is web-based: to use the rich features
of web browsers! Writing the narrative in a Notebook is fundamental to embedding code into ex-
planations that make workflows easy to understand. You can learn how to write in Markdown in the

7

Getting ready

“in more depth” session in Chapter 32. And last but not least, cells can contain code. The remainder
of the book will be about that! So, it's time to start coding, but before doing that, one last bit: you
need to download the Jupyter Notebooks associated with this book.

Throughout the rest of the book, you will find 38 chapters. For each chapter, there is a Jupyter
Notebook, whose file name includes the corresponding chapter number. Each Notebook contains
the examples discussed in the text so that you can practice and understand while reading. Download
the Notebooks at www.learnpythonwithjupyter.com. | highly recommend that you save the
Notebooks in a new folder—not in the Download folder—so that you don’t mix them up with other
files you download for other purposes. If you feel like going a step further, | really recommend that
you create this folder in a cloud service, so that you do not lose your files in case your computer
breaks or has issues (yes, computers are machines and they break!). As for cloud services, you can
use Google Drive (https://www.google.com/drive), Dropbox (https://www.dropbox.com), or
any others that you prefer. Using these tools is very easy. Download the program that installs the
system on your computer. After the installation, you will see a new folder. Just create the folder that
is going to contain the Notebooks in the newly created cloud folder, and all your files will always be
automatically synchronized and saved.

Finally, in each chapter of the book, you will find coding exercises. | recommend that you create a
separate folder called Exercises, or something similar, and inside this folder, create a Jupyter Note-
book for the exercises of each book chapter. Creating Notebooks yourself will strengthen your
organizational skills and will allow you to become even more familiar with the Jupyter/Python envi-
ronment.

At this point, we are really ready. Let’s start coding!

www.learnpythonwithjupyter.com
https://www.google.com/drive
https://www.dropbox.com

PART 1
CREATING THE BASICS

It's time to start coding! In this part, you will learn the basic elements that we will use throughout
the whole book. You will learn about strings — that is, a data type that contains text — and the
concatenation operation, used to combine strings. You will also learn how to ask questions and how
to print out information. And most importantly, you will learn what a variable is. Let’s get started!

Programming languages are written languages, and the core of written communication is text. How
is text represented in Python? How can we ask a question to a person? And how can we provide
information to a person? To answer these questions, let's open Jupyter Notebook 1 and start!

In coding, we use the word string to refer to text. We can define strings as follows:

Strings are text in between quotes

Let’s look at the two examples below. On the left side, we see the code as it is in Jupyter Notebook 1.
On the right side, we see how to pronounce the code. Let’s read the code out loud:

"This is a string" This is a string
'Everything you write between quotes is a Everything you write between quotes
string' is a string

Now let’s consider the following statements. Are they true or false?

1. A string contains text T F
2. Astringisin green in Jupyter Notebook T F
3. Quotes can be either single or double T F

Let’s analyze the code above in detail! In each cell, there is a string. As we can see, a string is just
some text in between quotes. By text, we mean any character we can type on the keyboard: letters,
numbers, symbols, and even the space! Quotes can be double quotes " ", like in the top example, or
single quotes ' ', like in the bottom example. Quotes that start a string are called opening quotes,
whereas quotes that end a string are called closing quotes. When writing a string in Python, we
can use either double or single quotes; we just have to make sure we do not mix them up. In other
words, if we start writing a string with an opening double quote, we must finish the string with a
closing double quote. Similarly, if we start writing a string with an opening single quote, we must
finish the string with a closing single quote. Strings are a Python data type, which means that they
are one of the core parts of the Python language (see Table 1 at page 4). In Jupyter Notebook, Python
strings are in red.

11

Part 1. Creating the basics

Let’s run the first cell. Running a cell means executing the code in that cell. In the Notebook, position
the mouse anywhere inside the cell. If you haven't done it already, click the mouse left button. The
cursor will become a blinking vertical bar. Then, move to the keyboard. If you are on a MacOS,
press shift and return at the same time. If you are on a Windows, press shift and enter at the same
time (if not explicitly written on any key, enter is the key on the right side of the keyboard depicting
an angled arrow). As an alternative, you can click the start button in the Jupyter Notebook top bar
(Figure 6, icon 6, at page 9).

This is how the first cell looks when we run it:

"This is a string" This is a string
'This is a string'
When we run a cell, two things occur. First, a number appears in between the square brackets on
the left side of the cell. In this case, the number is 1 because this is the first cell we ran. Second, we
execute the code. In this case, we get to see the content of the cell; that is, 'This is a string'.
Jupyter Notebook shows the string in between single quotes, even when the string is written in
between double quotes. As mentioned above, single and double quotes are equivalent.

Let’s run the second cell. Like before, left-click anywhere inside the cell. Then, press shift and return
if on MacQOS, or shift and enter if on Windows, or click the start button in the Jupyter Notebook top
bar. Here is what we get:

'Everything you write between quotes is a Everything you write between quotes

string' is a string

'"Everything you write between quotes is a string'

Two things occurred again. First, the number 2 appeared in between the square brackets on the left
side of the cell, showing that this is the second cell we ran. As is becoming clear, the number on the
left side between square brackets indicates the order of execution of the cells. Second, we can see
the string contained in the cell: 'Everything you write between quotes is a string'.

In all programming languages there are ways to ask questions to a person, whom we usually call the
user. This is a very important feature because it allows the interaction between a computer and
a human being. What does this mean? Let’s look at the code! Read the two cells below out loud
(pronunciation on the right):

input ("What's your name?") input what's your name?

input ("Where are you from?") input where are you from?

What does the code inside the cells do? Get a first hint by solving the following exercise.

12

Chapter 1. Text, questions, and art

1. what's your name? is a. it is colored green

2. input() is a built-in function and b. by round brackets

3. When running a cell containing input () c. a string

4. A built-in function is always followed d. we can answer a question

Let’s understand how these lines of code work! Let's run the first cell. We will get a text box:

input ("What's your name?") input what's your name?

What's your name? ’ ‘

Type your name in the rectangle (I will write mine!):

input ("What's your name?") input what's your name?
What's your name? ’ Serena ‘

And now press return or enter on the keyboard. You will see the following (you will see your name,

of course!):
input ("What's your name?") input what's your name?
What's your name? Serena
'Serena’

A few key things have happened here! First, the number on the left side of the cell turned to 3 as
expected. But while answering the question, instead of the number 3, there was a star symbol (*).
This indicates that a cell has started to run but has not finished yet. To complete the cell run and
execute the code, we have to press return or enter after typing the answer. If the cell run is not
completed, the code in the cell does not get executed, and in addition, we will not be able to run the
following cells. Now, let’s look at the code. We know that "What's your name?" is a string, because
it is text in between quotes and it is colored red. What about input()? input() allows us to ask a
question to a user. In Jupyter Notebook, input() creates a text box (a white rectangle) where we
can insert some text. input () performs a specific task and is called a built-in function.

A built-in function is a command that performs a specific task

We can recognize if a code element is a built-in function by two characteristics. First, in Jupyter
Notebook built-in functions are always green. Second, built-in functions are always followed by
parentheses (). In this book, instead of parentheses, we will call them round brackets, to differentiate
from other types of brackets that we will encounter in the chapters that follow. In between the
round brackets, we often write an argument, which for input () is a string containing the question
we want to ask. Built-in functions are very useful, as they contain code written by the creators of a
programming language to facilitate ease-of-use when coding.

13

Part 1. Creating the basics

Let’s run the next cell:

input ("Where are you from?") input where are you from?

Where are you from? ‘

Similarly to before, now enter your country of origin in the text box (I will type mine!):

input ("Where are you from?") input where are you from?
Where are you from? ‘ Italy ‘

Now press return or enter on the keyboard. You will see an output similar to the following (you will
see your country of origin!):
input ("Where are you from?") input where are you from?

Where are you from? Italy

'Italy'
What happened here is similar to the previous cell. Let's summarize it: the number on the left of the
cell turned to 4 because this is the fourth cell we ran. The built-in function input() created a text
box in Jupyter Notebook in which we could answer the question contained in the string we gave as
an argument. Too concise? Let’s try again: when we run the cell, the built-in function input () shows
us the question, which we put in between the round brackets as a string, and it creates a text box
in which we can type the answer. After typing the answer, we press return or enter to complete the
code execution.

At this point we can ask ourselves: where do we see input () in action in everyday life? Every time
we are asked to type something on a device, there is a function similar to input() behind it! For
example, this is the case when we write our names to open a new account, enter the amount we
want to withdraw from an ATM, or fill out an online form.

Finally, it is important to mention that when we write code, we wear two hats — that is, we have two
roles: we are at the same time programmer and user! When writing code, we wear the programmer
hat: we create code to perform a task, design code structure, and define user messages. When
testing code, we wear the user hat: we check whether the code does what expected, is easy to use,
and whether the user interaction is pleasant. When coding, we switch hats continuously!

We now know how to ask a question to a user, but how do we provide them a piece of information?
We use the built-in function print ()! There are several ways to learn about print (), and the following
one is indeed a lot of fun. It involves a type of digital art called ASCII art, by which images can be
created using the symbols on a keyboard. Let’s have a look at the following cell:

print ("/_/\ ")
print (">A.A< M)
print (" / \ ")
print ("(__)_")

14

Chapter 1. Text, questions, and art

What are we going to print to the screen? The answer is straightforward, but before running the
cell, let's quickly analyze the code by completing the following exercise.

1. print() is a string T F
2. print() can have a string as an argument T F
3. In coding, we print row by row T F

Let’s finally run the cell. Here is what we get:

print ("/_/\)
print (">A.A< M)
print (" / \)
print ("(__)__")
/N_/\
SA A<
/\

(—)—

The little cat we created using keyboard symbols gets displayed to the screen. To do so, we used a
new built-in function: print(). print() displays on screen the argument we provide — in this case
a string. You might ask: But when we ran the cells 1 and 2, we could see the content of the strings;
why do we need print()? The fact that we could see the strings from cells 1 and 2 is a feature of
Jupyter Notebook. After running a cell, Jupyter Notebook displays the content of the last line but
not that of the previous lines. If we delete the print () function from the code in cell 5, it will display
only the very last string:

"IN_/\

WSA A<

VA

TR

YR

There are a few more things to point out by observing the code in cell 5. In a Jupyter Notebook
cell, we can write several lines of code. The lines will get executed sequentially. In other words,
when we run a cell, Python first executes line number 1, then line number 2, and so on, until the last
line of the cell is reached. In addition, in a string, spaces matter. Spaces are characters, so a space
is an element of a string and it takes its own place. However, spaces do not matter between code
elements. For example, the two lines below are equivalent:

print ("(__)_")

print("(__)__")

)
)

15

Part 1. Creating the basics

When writing code with some repetition, it is good practice to keep some parallelism between the
lines of code. Compare the code written in cell 5 as we did above,

print ("/_/\)
print (">A.A<)
print (" / \ ")
print ("(__)__")

to the same code written without aligning closing quotes and closing round brackets, as below:

print ("/_/\")
print (">A.A<")
print (" / \")
print ("(__)_")

We can see that in the second case the code looks somehow more confusing. Instead, when we
align quotes, brackets, and other symbols — as you will see in the following chapters — we create
code that is more readable and less prone to errors. We will also talk quite a bit about tricks to
minimize the amount of possible errors that we might introduce in code.

One more question before the recap: where do we see the function print() in action in everyday
life? Every time we see a message on a device! For example: ‘Registration completed’, or ‘Thank
you for your purchase’, or ‘Logout successful’. In the underlying code, there is a function similar to
print()!

e The type string is text in between quotes
e input () is a built-in function to ask a user to enter a value
e print() is a built-in function to display a value to screen

When learning to code, it is very important to type every single command, resisting the temp-
tation of copying/pasting. Typing helps us memorize commands in at least two ways. First,
when typing a command we mentally spell it, so we repeat it in our minds, and thus we memo-
rize it. Second, our fingers can memorize typing patterns. For example, when typing print(),
our fingers will automatically remember to type the round brackets right after print. Similarly
to a pianist who does not look at the keyboard but at the sheet music while playing, we want
to look not at the keyboard but at the screen while coding. This way of typing is called touch
typing (or blind typing). It helps us be faster and minimize the amount of errors we make be-
cause we do not have to keep moving our eyes between the keyboard and the screen. How
can we learn touch typing? It is very easy; it just requires some practice. The idea is that each
finger presses some specific keys of the keyboard, as in the figure in the next page. We po-
sition the left index finger on the letter F and the right index finger on the letter J — the two
little bumps on these keys define the starting point. The remaining fingers will go on the keys

16

Chapter 1. Text, questions, and art

in the same row. For the left hand, the middle finger will go on the letter D, the ring finger
on S, and the small finger on A. Similarly, for the right hand, the middle finger will go on the
letter K, the ring finger on L, and the small finger on the semicolon. What about the letters G
and H that are in between? When needed, the left index finger will move from F to G, and the
right index finger from J to H. The fingers will then move upward and downward for the other
letters, maintaining the same reciprocal positions.

[] —

Shift

| Ctrl

There are plenty of websites to learn touch typing in a fun way, such as www. typing.com
and www. typingclub.com. They are free, and creating and account is not compulsory. They
provide gradual exercises starting from typing single letters, to syllables, to words, up to whole
sentences. Give it a try?

Ready for some coding exercises? Create a new Notebook and solve the following exercises below.
If you do not remember how to create a new Notebook or new cells, have a look at pages 8 and 9.

1. Writing strings. Write a string using double quotes. Then, run the cell and observe what happens.
Then write a string using single quotes. Run the cell and observe what happens.

2. Asking questions. Write two questions using the built-in function input () and then answer them.

3. ASClI art. Reproduce at least one of the following pieces of ASCII art:

}I | l;
0o
/—//\ | ~nn000~~ () v |
SV /_/\ | Write |
/o (') | your favorite |
\-) Vvvw A ywvV | sentence here |
\— | 0oo~~|
Il [—1—I
111
_ _ - 000 Ooo
I) _()
- @eee (el
[1— — @e()@e v (_)\ -
| "\ | eeee () 1/ N/
RN \| Y \| ()
[AN N A N/
- == 177 \\I//7/ \\\|//

17

https://commons.wikimedia.org/w/index.php?curid=9666341
www.typing.com
www.typingclub.com

2. Events and favorites

Variables, assignment, and string concatenation

Let’s continue building our basics by learning about variables and string concatenation. What are
they? Let’s find out together using Notebook number 2! Read the example below aloud and try to
understand what the code does:

1. Organizing an event

e You are organizing an event, and you have created the following registration form for the partici-
pants:

REGISTRATION FORM

first_name

last_name

Registration form for the event participants.

e The first participant comes in and you fill out the form:

first_name = "Fernando" first name is assigned Fernando
last_name = "Pérez" last name is assigned Pérez

e Then you print out what you entered in the registration form:

print (first_name) print first_name
print (last_name) print last_name

What does the code in these cells do? Let’s get some hints by completing the following exercise.

True or false?

1. The command first_name = "Fernando" assigns the string "Fernando" to the variable T F

first_name
2. The command print (first_name) will print out Fernando T F
3. The command print(last_name) will print out 1ast_name T F

18

Chapter 2. Events and favorites

Any guesses about what happens? Let’s run the first cell:

first_name = "Fernando" first name is assigned Fernando

last_name = "Pérez" last name is assigned Pérez
At line 1 we create a variable called first_name. To the variable first_name we assign the string
"Fernando", which is the value. Similarly, at line 2 we create a variable called 1ast_name, to which
we assign the string "Pérez" as a value. In general, we can assign any value to a variable. For example,
we can register our second guest, Guido van Rossum, by writing:

first_name = "Guido" first name is assigned Guido

last_name = "van Rossum" last name is assigned van Rossum
As you can see, the variable names remain the same (first_name and 1last_name), whereas the assigned
values can be different ("Fernando" or "Guido", "Pérez" or "van Rossum"). We can define variables
as follows:

A variable is a label assigned to a value

In Python, variables are lowercase. When composed of multiple words, these are connected by
underscore, like in first_name. In Jupyter Notebook, variables are black. The symbol = is called as-
signment operator. This has nothing to do with the equals we learned in math! equals has a different
symbol in coding, which we will see in Chapter 9. In coding we use the symbol = to assign a value
to a variable, and we pronounce it as is assigned. This is a very important concept to remember, and
it's one of the most counter-intuitive! Symbols are colored purple in Jupyter Notebook.

Let's now run the second cell:

print (first_name) print first_name
print (last_name) print last_name
Fernando
Pérez

As you might expect, at line 1 we print to the screen the value assigned to the variable first_name,
which is Fernando. At line 2 we print the value assigned to the variable 1ast_name, which is Pérez.
Who is Fernando Pérez? The creator of Jupyter Notebook! And Guido van Rossum? The creator of
Python!

Time to put together what we have learned so far! Let’s read the following code:

name = input ("What's your name?") name is assigned input what's your name?
favorite_food = input ("What's your favorite_food is assigned input what's
favorite food?") your favorite food?

19

Part 1. Creating the basics

print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

print ("My favorite food is " + print My favorite food is concatenated

favorite_food) with favorite_food

print (name + "'s favorite food is " + print name concatenated with 's favorite

favorite_food) food is concatenated with favorite_food

What happens in this code? Let's get some hints by completing the following exercise!

True or false?

1. The answer to the question What’s your name? is assigned to the variable name T F

2. The question What’s your favorite food? is asked before the question What’s your fa- T F
vorite name?

3. If the answer to the first question is Terry and the answer to the second questionis T F
mango, then the third print will show Terry’s favorite food is pizza

4. The symbol + can combine a string and a variable containing a string T F

Computational thinking and syntax

Let’s run the first cell:

name = input ("What's your name?") name is assigned input what's your name?
What's your name? Serena

The name we enter in the text box will be assigned to the variable name.

Let’s run the second cell:

favorite_food = input ("What's your favorite_food is assigned input what's
favorite food?") your favorite food?
What's your favorite food? pasta

Similarly to the above example, what we enter in the text box will be assigned to the variable

favorite_food.

Let’s now run the last cell of this Notebook. What do we expect the prints to be?

print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

print ("My favorite food is " + print My favorite food is concatenated

favorite_food) with favorite_food

print (name + "'s favorite food is " + print name concatenated with 's favorite

favorite_food) food is concatenated with favorite_food

Hi! My name is Serena

My favorite food is pasta

Serena's favorite food is pasta
At line 1, we print out the union of the string "Hi! My name is " and the value assigned to the
variable name. When dealing with strings, the symbol + is called a concatenation symbol, not plus!
Concatenating simply means chaining together. + allows us to merge strings, and we can pronounce
it as concatenated with.

20

Chapter 2. Events and favorites

We have now learned the very basics on which we will build our coding skills and knowledge. Now

let’s take just a few minutes to complete the following exercise, which will help us summarize clearly
the syntax we have learned so far!

Fill in the gaps by inserting what each word is and its color in Jupyter Notebook. See the example
in the first sentence:

input() is a built-in function and is colored green

Also print() is a and is colored

name is a and is colored

"My favorite food is"isa and is colored

= is the and is colored

+is the and is colored too.

In coding, we assign values to variables

The symbol = is the assignment operator (and not the equals symbol!), and it can be pronounced
is assigned

The symbol + is the concatenation symbol when dealing with strings (and not the plus symbol!),
and it can be pronounced concatenated with

When we write code, we inevitably make mistakes, and we get error messages. Getting error
messages is hormal when coding. It's important to learn how to read error messages so that
we can fix errors quickly and keep coding. There are different kinds of errors, and we'll learn
how to fix them over the course of the book. This is an example of an error:

NameExror Traceback (most recent call last)
<ipython-input-6-a0c307bd3f14> in
————> 1 print ("Hi! My name is " + ame)

2 print ("My favorite food is " + favorite_food)

3 print (name + "'s favorite food is " + favorite_food)
NameError: name 'ame' is not defined

When encountering an error, we have to perform two steps:

1. Read the last line of the message, which tells us what type of errors we have made
2. Look for the green arrow, which shows us the line where the error is.

21

Part 1. Creating the basics

In this case we are dealing with a Name error. The last line of the message says: NameError:
name 'ame' is not defined . This is a very common error message. It means that there is
not variable 'ame' in your code. This error message usually pops up in two cases: when we
misspell a variable name, or when we have not run a previous Jupyter Notebook cell containing
the initialization (or creation) of the variable. In this example we have misspelled the variable
'name'. This variable is present at lines 1 and 3. Which line should we look at? The arrow
pointing at line number 1 shows us that the error is at line 1, where we can see that we typed
"ame' instead of 'name'. So we can correct the typo, rerun the cell, and quickly move on with
coding! Another very common error message is the following:

"<ipython-input-1-daed5bd3bl7e>" 1
print ("Hi! My name is " name)
AN

SyntaxError: invalid syntax

In this case we have made a syntax error. The last line of the message says: SyntaxError:
invalid syntax, which means that we have forgotten some symbol or punctuation. Where is
the error? For syntax errors, we look at two lines in the message: at the end of the very first
line, we see that we made the error at line 1; after the line of code, we see a hat symbol * that
shows us the part of the command where there is something missing.

Ready to exercise? Let’s go!

22

At the gym. You are the manager of a gym and you have to register a new person. What variables
would you create? Write three variables, assign a value to each of them (make sure they are
strings!), and print them out.

At a bookstore. You are the owner of a bookstore and you want to create a book catalog. You
start with the first book: Code Girls by Liza Mundy. You create two variables, book title and author,
assign them the actual title and author, and print them out. Then, pick a book of your choice,
create the two variables again, assign the corresponding values, and print them out.

Where are you from? Ask a person what country they come from and where they live. Then print
out three sentences like in cell 5 of the code in this chapter.

What's your favorite song? Ask a person their favorite song and favorite singer. Then print out
three sentences like in cell 5 of the code in this chapter.

PART 2

INTRODUCTION TO
LISTS AND IF/ELSE
CONSTRUCTS

In this part, you will learn about lists, which are simply lists of elements of various types—for example,
strings. You will also learn how to manipulate them, that is, how to add, remove, or replace one or
more elements. And finally, you will learn if/else constructs, which allow for executing code based

on conditions. Ready? Let's go!

3. In a bookstore

Lists and if... in... / else...

What does a list look like? And how do we use if/else conditions? To answer these questions, let’s
open Jupyter Notebook 3 and begin! Read the following example aloud and try to understand it:

e You are the owner of a bookstore. On the programming shelf there are:
books = ["Learn Python", "Python for all", "Intro books is assigned Learn Python,
to Python"] Python for all, Intro to Python
print (books) print books

e A new customer comes in, and you ask what book she wants:
wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?

print (wanted_book) print wanted book

e You check if you have the book, and you reply accordingly:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print Yes, we sell it!
else: else
print ("Sorry, we do not sell that book") print Sorry, we do not sell that
book

What does the code above do? Get some hints by completing the following exercise.

True or false?

1. On the programming shelf there are 2 books T F

2. If the customer wants a book that is in the programming shelf, you print: Yes, we sell T F
it!

3. The if/else block allows us to execute commands based on conditions T F

Computational thinking and syntax

Let’s analyze the code line by line, starting with the first cell:

books = ["Learn Python", "Python for all", "Intro books is assigned Learn Python,
to Python"] Python for all, Intro to Python
print (books) print books

['Learn Python', 'Python for all', 'Intro to Python']

On line 1 there is a variable called books, to which we assign a sequence of elements of type string:
"Learn Python", "Python for all", and "Intro to Python". The elements are separated by com-
mas and they are in between square brackets. A variable with this syntax is called list. In our code,
books is a variable of type list whose elements are of type string. In other words, we can say that

25

Part 2. Introduction to lists and if/else constructs

books is a list of strings. A list is defined as follows:

A list is a sequence of elements separated by commas,
and in between square brackets []

As its name says, a list is literally a list of elements, similar to a shopping list or a to-do list. It can
contain elements of various types, such as strings, numbers, etc. For now, we will consider only lists
of strings.

Let’s run the second cell:

wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?
print (wanted_book) print wanted book
Hi! What book would you like to buy? Learn Python
Learn Python
You are now familiar with the code in this cell. Briefly summarized, on line 1 we created a variable
called wanted_book, which contains the user’s answer to the question: Hi! What book would you

like to buy? Then, on line 2, we printed the value contained in the variable wanted_book.

Let’s run the third cell:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print "Yes, we sell it!"
else: else
print ("Sorry, we do not sell that book") print "Sorry, we do not sell that
book™"

Yes, we sell it!

Here, we finally meet the if/else construct. Let's learn how it works by starting from lines 1 and
2. These lines say if wanted_book, which is "Learn Python", is in books, which is ["Learn Python",
"Python for all", "Intro to Python"] (line 1), print "Yes, we sell it!" (line 2). In line 1, we
check whether the value assigned to the variable wanted_book is one of the elements of the list
books. If that is the case, then we move to line 2 and print out a positive answer to the user.

What if wanted_book is not in the list? Let’s rerun cell 2 and enter a book that is not in the list:

wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?
print (wanted_book) print wanted book

Hi! What book would you like to buy? Basic Python

Basic Python

In this case, what do you expect when running the cell below? Let’s run it:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print Yes, we sell it!
else: else
print ("Sorry, we do not sell that book") print Sorry, we do not sell that
book

Sorry, we do not sell that book

26

Chapter 3. In a bookstore

We start again from line 1, where we read if wanted_book, which now is "Basic Python", is in
books, which is ["Learn Python", "Python for all", "Intro to Python"]. But this time, "Basic
Python" is not in the list books. So we skip line 2, go directly to line 3—where there is else—and
proceed to line 4, where we print the string "Sorry, we do not sell that book".

As you can deduce from the example above, in an if/else construct, code is executed depending
on the truthfulness of a condition. If the condition in the if line is met, or true, we execute the
underlying code. Otherwise, if the condition in the if line is not met, or false, then we execute the
code under else. Therefore, we can define the if/else construct as follows:

An if/else construct checks whether a condition is true or false,
and executes code accordingly:
if the condition is met, the code under the if condition is executed;
if the condition is not met, the code under else is executed.

Let’s now focus on the syntax. An if/else construct is composed of four parts, explained below:

e if condition (line 1) contains a condition that determines code execution. It is made up of three
components: (1) the keyword if, colored bold green in Jupyter Notebook, (2) the condition itself,
and (3) the punctuation mark colon :

e Statement (line 2) contains the code that gets executed if the condition at line 1 is met

e else (line 3) implicitly contains the alternative to the condition on line 1. This line is always com-
posed of the keyword else followed by the colon :

e Statement (line 4) contains the code that gets executed if the condition at line 1 is not met

Note: else and its following statements are not mandatory. There are cases when we do not want
to do anything if the conditions are not met. Some examples of this scenario are provided in the
following chapters.

Before concluding, let's zoom even more into these lines and focus on two more aspects: mem-
bership conditions and indentation. In coding, we can use various types of conditions, and you
will see these throughout the book. In this case, we have a membership condition: wanted_book
in books (line 1), where we check whether a variable contains one of the elements of a list. In a
membership condition, we write: (1) variable name, (2) in, and (3) the list in which we want to find
the element. in is a membership operator. In Jupyter Notebook, this is colored bold green, like
keywords. In general, make sure not to confuse keywords, in bold green, with built-in functions, in
fainter green.

Finally, notice that the statements under the if condition (line 2) and under the else (line 4) are
always indented, which means shifted toward the right. An indentation consists of 4 spaces, or 1
tab. In Jupyter Notebook, when pressing enter or return after writing the if or else lines, the cursor
is always automatically placed at the right indented position. Under an if or an else condition, we
can write as many commands as we want, but they must be indented correctly to be executed.

27

Part 2. Introduction to lists and if/else constructs

Up to this point, you have already learned quite a lot of syntax. Complete the following table by
using the example in the first row to summarize the syntax you know so far.

Code element What it is What it does

books A variable of type list It contains a sequence of strings

wanted_book

"Learn Python"

if

in

else

input()

print()

Lists are a Python type that contain a sequence of elements (for example, strings) separated by

commas, and in between square brackets []

The if/else construct allows us to execute code based on conditions

The membership operator in verifies whether an element is in a list

In Python, we use indentation for statements below if or else

One of the fundamental criteria when writing code is readability. It is important to write code
that is easy to read both for our future selves and for others. One of the ways to make code
readable is to create meaningful variable name. As an example, let’s consider the code we
analyzed in this chapter. On line 1 of cell 2 we created the variable wanted_book:

wanted_book = input("Hi! What book would you like answer is assigned input

to buy?") Hi! What book would you
like to buy?

Instead of wanted_book, we could have named the variable answer:

answer = input("Hi! What book would you like to answer is assigned input
buy?") Hi! What book would you
like to buy?

28

Chapter 3. In a bookstore

The name answer is logically consistent because this variable contains the answer to the ques-
tion "Hi! What book would you like to buy?". However, answer is not the best choice be-
cause it is a very generic variable name. Variable names should be pertinent, representing the
information they contain. Consider having 10 input () commands in the code. What do we call
the corresponding variables? We don’t want to call them answer_1, answer_2, ..., answer_10; it
would be hard to remember what we assigned to answer_7, for example. Or, if we later decide
to reshuffle some questions, then we will have to rename the variables to make sure the num-
bers increase consistently. This would generate a lot of confusion and increase the possibility
of errors.

Back to the previous example, the name answer would also not be meaningful in the following
line of code from cell 3:

if answer in books: if answer in books

It does not make much sense to look for an answer in a list of books! But it makes more sense
to look for a wanted book in a list of books:

if wanted_book in books: if wanted book in books

For each of the following scenarios, create code similar to that presented in this chapter.

1.

In an art gallery. You are the owner of an art gallery. Write a list of some paintings you sell. A new
customer comes in, and you ask what painting she wants to buy. You check whether you have
that painting and reply accordingly.

. In a travel agency. You are the owner of a travel agency. Write a list of some travel destinations

you sell tickets for. A new customer comes in, and you ask where he wants to go. You check
whether you offer that travel destination and reply accordingly.

In a chemical lab. You are the manager of a lab. On a shelf there some jars containing chemicals.
Write a list containing the names of the chemicals. One of the lab members comes to you and
you ask what chemical she wants. You check in your system whether you have that chemical and
reply accordingly.

In a tea room. You are the owner of a tea room. Write a list of teas you offer. A new customer
comes in, and you ask what tea he wants. You check on the menu whether you serve that tea
and reply accordingly.

29

4. Grocery shopping

List methods: .append() and .remove()

What are methods? And what do .append() and .remove() do? To answer this questions, open
Jupyter Notebook 4 and follow along. Let’s start with the following example:

e You are going to a grocery store where you have to buy some food:

shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives
print (shopping_list) print shopping list

e Right before leaving home, you ask yourself if you have to buy something else. If the item is not
in the list, you add it:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list

e Finally, you ask yourself if you have to remove an item. If so, you remove the item from the list:

item_to_remove = input ("What do I have to item to remove is assigned input
remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping
list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
else: else
print (item_to_remove + " is/are not in the print item to remove concatenated
shopping list") with is/are not in the shopping
list
print (shopping_list) print shopping list

To get a better idea of what happens in this code, match the sentence halves in the following exercise.

30

Chapter 4. Grocery shopping

Match the sentence halves

1. The variable shopping_list contains . we remove it from the shopping list

If the new item is not in the shopping list . to remove an element from a list

If the item to remove is in the shopping list "carrots", "chocolate", and "olives"

The method .append() allows us . we add it to the shopping list

. to add an element at the end of a list

vk wbd
m o0 T W

The method .remove() allows us

Computational thinking and syntax

Let’s dig into the code by running the first cell:

shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives
print (shopping_list) print shopping list
['carrots', 'chocolate', 'olives']

We start with a list called shopping_1list, which contains three strings: "carrots", "chocolate", and
"olives" (line 1). Then, we print the shopping list to the screen (line 2).

What does .append() do? Let’s run the second cell:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list

What else do I have to buy? carrots
carrots is/are already in the shopping list
['carrots', 'chocolate', 'olives']

In this cell, we ask the user to input a new item to buy, and the answer is saved in the variable
new_item (line 1). Then, we act according to the value contained in new_item. If new_item is already
in shopping_list (line 2), we print out a message saying that the item is already in the shopping list
(line 3). To make the message more precise, we concatenate the string in new_item with the string

"is/are already in the shopping list". Then, we print out the shopping list to check that the
item is actually in the list (line 4).

31

Part 2. Introduction to lists and if/else constructs

What if the item is not in the shopping list? Let’s rerun the cell and enter an item that is not in the
list:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list

What else do I have to buy? apples

['carrots', 'chocolate', 'olives', 'apples']
This time, we entered apples in the text box created by input() (line 1). Because apples is not in the
shopping list (line 2), we skip the commands at lines 3 and 4 and jump directly to the else (line 5) to
execute the commands below. We add the new item to the list (line 6), and we print out the list to
check whether we added the element correctly (line 7).

How do we add a new element to a list? Let's have a closer look at line 6. Here, the method
.append() adds the element new_item to the shopping_list. Note that .append() always adds an
element at the end of a list. As we said, .append() is a method. But what is a method? A preliminary
definition (we'll redefine it when we talk about object-oriented programming, at the end of the book)
is as follows:

A method is a built-in function for a specific variable type

You can recognize that methods are functions because they are followed by round brackets. How-
ever, a method has its own syntax, which is composed of four elements: (1) variable name, (2) dot,
(3) method name, and (4) round brackets. In the round brackets, there can be an argument, such as
new_item in this case. Different data types have different methods. For example, .append() can be
used for lists but not for strings. Lists have a total of eleven methods, and we will learn all of them
throughout this book. Methods are colored blue in Jupyter Notebook.

32

Chapter 4. Grocery shopping

Finally, what does .remove() do? Let’s run the last cell:

item_to_remove = input ("What do I have to item to remove is assigned input
remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping
list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
else: else
print (item_to_remove + " is/are not in the print item to remove concatenated
shopping list") with is/are not in the shopping
list
print (shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

This time, we ask the user what item they want to remove (line 1). If the item to remove is in the
shopping list (line 2), then we remove the item (line 3) and print out the resulting list (line 4). How
do we remove an item? We use .remove(), which is the list method to remove an item from a list.
The syntax is the same as for .append() and any other method: list name followed by dot, method
name, and round brackets, which can contain an argument. As an argument, .remove() takes the
element to be removed from the list.

What if we answer the question "What do I have to remove?" with an element that is not in the
list? Let’s have a look:

item_to_remove = input ("What do I have to item to remove is assigned input
remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping
list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
else: else
print (item_to_remove + " is/are not in the print item to remove concatenated
shopping list") with is/are not in the shopping
list
print (shopping_list) print shopping list

What do I have to remove? grapes
grapes is/are not in the list
['carrots', 'chocolate', 'apples']

In the text box created by input (), we entered grapes (line 1), which is not in shopping_list (line 2).
Therefore, we skip lines 3 and 4 and jump to the else at line 5. There, we print out a message saying
that item_to_remove is not in the shopping list (line 6) and print out the shopping list for final check
(line 7).

33

Part 2. Introduction to lists and if/else constructs

In Python, we use a lot of punctuation marks. Sum up what you have seen so far by completing the
following table, using the example in row 1.

Punctuation symbol What it's called What it does
"tor"" Single quotes or double quotes They contain a strings

()
[]

e The method .append() adds an element at the end of a list
e The method .remove() removes an element from a list

When coding, it is important to keep control of variable’s values. And particularly when learn-
ing to code, every time we create or modify a variable, it's important to make sure the code
does what it is intended to do. Printing is an easy way to check that variable modifications
correspond to our intentions. As an example, consider the code in cell 4, and let’s focus on
the if condition and its statements (lines 2-4). Let’s rewrite it without the printing command:

item_to_remove = input ("What do I have item to remove is assigned input
to remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

What do I have to remove? olives

How do we know that the code actually worked correctly? That is, how do we know whether
'olives' was actually removed from shopping_list? We can assume that it happened, but
we cannot be sure until we see it with our eyes. So, we need to print. Let's rewrite the

34

Chapter 4. Grocery shopping

code by adding print () back to line 4:

item_to_remove = input ("What do I have item to remove is assigned input
to remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

Because we printed, we can make sure that 'olives' is not in the shopping_list. Therefore,
our code accomplished what we intended. Always print extensively when coding; you can
always remove the the print () function later on.

1. For each of the following scenarios, create code similar to the one presented in this chapter.

a. Organizing an event. You are organizing an event. Write a list of what you need to buy. Then
ask your co-organizer what else you have to buy. If the item is not in the list, add it. Finally,
ask your co-organizer if there is anything you need to remove from the list. If so, remove
the item from the list.

b. Favorite cities. Write a list containing names of cities. Ask a friend their favorite city. If the
city is not in the list, add it. Then, ask your friend if they do not like one of the cities you
listed. If so, remove the city from your list.

2. Shoe store. You are the owner of a shoe store, and you have to place a new order for the next
summer season. You go to the storage room, and you create a list of the remaining shoes: sneak-
ers, boots, ballerinas. You know that in summer your customers will want sandals, so you add
them to the list. However, they are not going to buy boots, so you remove them from the list.
After you get the new supplies, a new customer comes in. You ask what shoes he wants to try,
and he replies that he'd like to try sandals. You check in your list and reply accordingly. Then you
ask if he wants to have a look at something else, and he replies that he'd like to try boots. You
check in your list again and reply accordingly.

3. Currency exchange office. You work at a currency exchange office. The available currencies are
Euros, Canadian Dollars, and Yen, whereas the Swiss Franc is unavailable, so you will have to order
it. Create a list of available currencies and a list of currencies to order. A new customer comes in;
you ask what currency she wants. After she replies, you check in the list of available currencies.
If the currency she wants is available, you tell her that you have it, remove the currency from the
list of available currencies, and add the currency to the list of currencies to order. If the currency
she wants is not available, you tell her that you do not have that currency, and add the currency
to the list of currencies to order.

35

5. Customizing the burger menu

List methods: .index(), .pop(), and .insert()

Let’s learn three more list methods: .index(), .pop(), and .insert(). Open Jupyter Notebook 5,
and read the following example aloud.

e You are at a food court, ready to order. Today’s menu includes a burger, a side dish, and a drink:

todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke
print (todays_menu) print today's menu

e You are happy with burger and coke, but you want to change the side dish from salad to fries. To
do so, you:

1. Look at the position of the side dish in the menu:

side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

print (side_dish_index) print side dish index
2. Remove salad from the side dish position:

todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
print (todays_menu) print today's menu

3. Add fries to the side dish position:

todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

print (todays_menu) print today's menu

What happens in this code? Get some hints by completing the following exercise.

True or false?

1. The method .index() gives us the position of an element in a list T F
2. The position of salad is 2
3. We remove the element in position side_dish_index and insert a new elementinthe T F

—
mn

same position
4, .index(), .pop(),and .insert() are three string methods T F

36

Chapter 5. Customizing the burger menu

Let’s analyze the details of the code! Let's run the first cell:

todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke
print (todays_menu) print today's menu
['burger', 'salad', 'coke']

We create a list called todays_menu containing three elements of type string—"burger", "salad", and
"coke" (line 1)—and we print it out (line 2).

In the second cell, we meet the new list method .index (). What does it do? Let’s run the cell:

side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad
print (side_dish_index) print side dish index
1

The method .index() looks for the element "salad" in the list todays_menu and tells us its position.
More technically, we say that .index() takes the argument "salad" and returns its index. The po-
sition of "salad" is then assigned to the variable side_dish_index (line 1), which we print out (line
2). Note that in coding, we use the two synonyms index and position interchangeably.

Why is "salad" in position 1 and not 2? This is because in Python we count elements starting from
0, as you can see in the figure below: "burger" is in position O, "salad" in position 1, and "coke" in
position 2.

todays_menu = "burger" "salad" "coke"

Finally, note that an element position is a number. In Python, zero, positive, and negative whole
numbers are called integers, abbreviated as int. In our example, the variable side_dish_index con-
tains the number 1, and it is of type integer.

Let’s discover what .pop() does by running the next cell:

todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
print (todays_menu) print today's menu
['burger', 'coke']

The method .pop() removes the element in position side_dish_index from the list todays_menu. In
other words, .pop() takes side_dish_index as an argument and removes the element at that index,
which is "salad". In the previous chapter, we saw another method that deletes an element from a
list: .remove(). What is the difference between the two methods? The method .remove() deletes
an element of a certain value, whereas .pop() deletes an element in a specific position.

37

Part 2. Introduction to lists and if/else constructs

And finally, let’s learn the method .insert (). Let's run the last cell:

todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries
print (todays_menu) print today's menu
['burger', 'fries', 'coke'l

The method .insert() allows us to add an element at a specific index. It takes two arguments: (1)
the index where we want to insert the new element and (2) the value of the new element. In this case,
we want to insert at position side_dish_index, which is position 1, the string "fries". Similarly, in
the previous chapter we saw another method to add an element to a list: .append(). What's the
difference? The method .append() adds an element at the end of a list, whereas .insert() adds an
element in a specific position of a list.

Finally, when dealing with lists, we must always be aware of that each element has a position. In
some cases, it is more convenient to work directly on the elements and use methods like . append()
and .remove(). In other cases, it is more appropriate to work on elements’ positions, so we use
methods such as .index(), .pop(), and .insert(). Note that .append(), .remove(), .pop(), and
.insert() modify the list. On the other side, .index() gives us some information about the list,
and we can save this information in a separate variable. Lastly, .append(), .remove(), .index(), and
.pop() take only one argument, whereas .insert() takes two arguments, which are position and
new element.

So far you have learned five list methods. Summarize what they do by completing the following
table.

List method What it does

.append()

.remove()

.index()

-pop()

.insert()

e The method .index() returns the position of an element in a list

e The method .pop() removes an element in a certain position from a list

e The method .insert() adds an element in a certain position to a list

¢ Indices (or positions) of elements start from 0 and increase in increments of one unit; they are of
type integer

38

Chapter 5. Customizing the burger menu

During a coffee break, a colleague once told me, “Isn't it crazy that when English speaking
people code, they actually do it in their own mother tongue? | mean, when they say if, they

|”

actually mean if!” | had never thought about it. For me, an Italian mother tongue, if was just a
keyword composed of two symbols. Reading if book in books or ab book in books was ex-
actly the same. | had learned to look at keywords and variable names as abstract symbols with
no intrinsic meaning; they were just entities with a specific function. After that conversation,
I mentally translated keywords and variable names into my mother tongue, and everything
acquired much more meaning and made so much more sense! | grasped the importance of
variable names (they actually have a meaning in English!), and thus, | started writing commands
like if book in books, instead of if variable_1 in list_1. Now, when | code, | mainly think
in English. But that translation process helped me acquire more awareness and make my code
much more readable. In Chapters 4 and 5, we learned five list methods. Their names actually
have a meaning in English. Remove, insert, and index are pretty straightforward. To remember
that append adds new elements at the end of a list, one can think of the appendix of a book,
which is always at the end, or of the appendix in the intestine, which is somewhere at the end
of the abdomen. To remember pop, one can think of making popcorn, like little explosions,
that here remove elements from a certain position. Whether English is your native tongue or

not, remember that we code in English!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Getting a new bike. You go to a bike store to buy your new bike. There you find a bike you
like: it is blue, electric, and has gears. Write a list with these characteristics. You are happy
with the bike being electric and having gears, but you would like to change its color. To do
so, you (1) look at the position of the blue color in the bike option list, (2) remove the blue
color, and (3) add the color you want.

b. Ordering a T-shirt online. You are ordering a new T-shirt online. You find a T-shirt you like,
which is red, with a round neck, and with a print add your text here. Write a list with these
characteristics. Now you want to add your own text to the T-shirt. To do so, you (1) look at
the position of add your text here, (2) remove add your text here, and (3) add the text you want
to be printed on your T-shirt. After completing the exercise, can you think of an alternative
way to change the T-shirt print?

2. Steve Jobs. Given the following list:
steve_jobs = ["somebody", "learn", "use", "a computer", "it teaches us"]

Find out a famous quote by Steve Jobs by doing the following:
a. Add the new string "think" at the end of the list.
b. Add "should" in position 1.

39

Part 2. Introduction to lists and if/else constructs

3.

40

c. Add "how to" in position 3. Then also add it in position 7.
d. Replace "use" with "program".

e. Add "because" after "a computer".

f. Replace "somebody" with "everybody".

g. Add " - Steve Jobs" at the end.

Grace Hopper. Do you know why we say debugging in coding? Let’s find out! Given the following
list:

grace_hopper = ["In 1946", "a moth", "caused", "a malfunction", "in an early",

"electromechanical", "computer"]

Modify it by doing the following:
a. Replace "In 1946" with "From then on".
Add "we said" after "computer".
Remove the string in position 5(6th element) and add "with a" in the same position.
Remove the string in position 3(4th element).
Substitute (or replace) "a moth" with "when anything".
Remove "in an early".
Add "it had bugs in it" at the end of the list.
Substitute "caused" with "went wrong".
Add " - Grace Hopper" at the end of the list.

@ -~ 0 20 T

In the previous two chapters, you learned five methods to manipulate lists: .append(), .remove(),
.index(), .pop(), and .insert(). These list methods are very convenient and easy to remember;
however, they can make code quite cumbersome. In Python, there is an alternative and more com-
pact way to change, add, and remove list elements, which you will see in the next chapter. This
alternative method is based on slicing; therefore, in this chapter, we will focus on this topic. Ready
to get to know everything about slicing? Open Jupyter Notebook 6 and follow along! First of all,
what is slicing?

Slicing means accessing list elements through their indices

If you have a sweet tooth, the word “slicing” immediately reminds you of a slice of cake. And in fact,
there is quite a similarity between slicing a cake and slicing a list! In the first case, you “extract” one
or more cake slices for your guests—and yourself! In the second case, you extract one or more list
elements for subsequent lines of code.

e Let’s meet the list we will slice:

cities = ["San Diego", "Prague", "Cape Town", "Tokyo", cities is assigned San
"Melbourne"] Diego, Prague, Cape
Town, Tokyo, Melbourne
print (cities) print cities
['San Diego', 'Prague', 'Cape Town', 'Tokyo', 'Melbourne’]

In this cell, there is a list called cities containing five strings: "San Diego", "Prague", "Cape Town",
"Tokyo", and "Melbourne" (line 1), and we print it out (line 2).

How are we going to slice cities? The syntax for slicing is very easy. It consists of the list name
followed by opening and closing square brackets, like this: cities[]. In between the square brack-
ets, we write the positions of the elements we want to slice. For this reason, it’s crucial to be aware
of the positions of each element within a list. In the list cities, the elements have the following
positions:

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

Now, how do we write element positions in between the square brackets? There are various rules
depending on how many elements we want to slice, where they are, and in which direction we want
to extract them. We are going to learn all these rules in the coming pages.

41

Part 2. Introduction to lists and if/else constructs

A last note before starting: to better learn about slicing, | suggest this method. Every time you read
a slicing task (for example: Slice "Prague"), cover the following code with a piece of paper. Try to
guess the code, and compare your guess with the solution. Then carefully read the explanation.
Make sure you fully understand the current example before proceeding to the next one. Enough
words, time to slice!

1. Slice "Prague":

print (cities[1]) print cities in position one
'Prague’
In this cell, we slice (or access) "Prague”, which is in position 1, and we print it. As you can see, when
we slice one single element from a list, we write the position of the element itself in between the
square brackets. Thus, we can summarize this syntax as 1ist_name[element_position], and we can
read it as list name in position element position.

Note: For simplicity, in this example and those that follow, we just print the sliced elements. How-
ever, one could assign a sliced element to a variable, like this:

sliced_city = cities[1] sliced_city is assigned cities in position
one
print (sliced_city) print sliced_city
'Prague’

We will assign sliced list elements to variables in the following chapters. For now, let's focus on
understanding how slicing works!

2. Slice the cities from "Prague" to "Tokyo":

print (cities[1:4]) print cities in positions from one to four
['Prague', 'Cape Town', 'Tokyo']

In this cell, we slice and print three consecutive elements—"Prague", "Cape Town",and "Tokyo"— that
are at positions 1, 2, and 3, respectively. In between the square brackets, we write two numbers,
separated by a colon :. The first number is the position of the first element we want to slice, and
we call it start. In this case, the start is 1, which corresponds to "Prague". The second number is
the position of the last element we want to slice, to which we must add 1. We call it stop. The stop
always follows the plus one rule, which simply says that we must add 1 to the position of the last
element we want to slice (you can learn the reasoning behind this rule in the in more depth section
at the end of this chapter). In this example, the position of the last element ("Tokyo") is 3, to which
we must add 1 because of the plus one rule, so the stop is 4. We can summarize the syntax to slice
consecutive elements as list_name[start:stop], and we can read it as list name in positions from
start to stop.

3. Slice "Prague" and "Tokyo":

print (cities[1:4:2]) print cities in positions from one to four
with a step of two
['Prague', 'Tokyo']

42

Chapter 6. Traveling around the world

In this case, we want to slice and print two non-consecutive elements—"Prague” and "Tokyo"—
which are at positions 1 and 3, respectively. In the code above, you might recognize that 1 is the
start, 4 is the stop (because of the plus-one rule), and 2? That is the step! As you can see, "Tokyo" is
positioned 2 steps after "Prague": there is 1 step from "Prague" to "Cape Town", and 1 step from
"Cape Town" to "Tokyo", for a total of 2 steps. Therefore, the syntax to slice non-consecutive ele-
ments is an extension of the rule we saw in the example above: 1list_name[start:stop:stepl, which
you can read as list name from start to stop with step. We can call it the three-s rule, where the three
s's are the initials of start, stop, and step, respectively.

The most convenient aspect of the three-s rule is that we can simplify it in several situations. For
example, you might wonder: why didn't we write the step in the example 2, where we sliced the
cities from "Prague" to "Tokyo"? Because when elements are consecutive, the step is 1—"Cape
Town" is 1 step after "Prague", and "Tokyo" is 1 step after "Cape Town"—and when the step is 1 we
can simply omit it. Obviously, we could have written the code specifying the step as follows:

print (cities[1:4:1]) print cities in positions from one to four

with a step of one
['Prague', 'Cape Town', 'Tokyo']

However, adding the step here is a redundancy, so we simply avoid it.

4. Slice the cities from "San Diego" to "Cape Town":

print (cities[0:3]) print cities in positions from zero to three

['San Diego', 'Prague', 'Cape Town']

Here we have to slice consecutive elements. So, we specify the start, which is @ for "San Diego",
and the stop, which is 3 for "Cape Town", but we can omit the step because it is 1. Interestingly,
in this case we can simplify the three-s rule even more! Because the start coincides with the first
element of the list, we can simply omit it:

print (cities[:3]) print cities from the beginning of the list

to position three
['San Diego', 'Prague', 'Cape Town']

5. Slice the cities from "Cape Town" to "Melbourne":

print (cities[2:5]) print cities in positions from two to five

['Cape Town', 'Tokyo', 'Melbourne']

Again, we have to slice consecutive elements. Therefore, we specify the start, which is 2 for "Cape
Town", and the stop, which is 5 (because of the plus-one rule) for "Melbourne", but we omit the step
because it is 1. And once more, we can simplify the three-s-rule! How? The stop coincides with the
last element of the list, so we can just omit it:

print (cities[2:]) print cities from position two to the end of

the 1list
['Cape Town', 'Tokyo', 'Melbourne’]

So far, we have seen the three-s rule applied in its entirety (example 3), and without start (example
4), stop (example 5), and step (example 2). How else can we simplify it? Let’s look at the following
example. How do you think the code will look?

43

Part 2. Introduction to lists and if/else constructs

6. Slice "san Diego", "Cape Town", and "Melbourne":

print (cities[0:5:2]) print cities in positions from zero to five
with a step of two
['San Diego', 'Cape Town', 'Melbourne']

This time, the elements to slice are not consecutive. We start at @, which is the position of "San
Diego", we stop at 5 (because of the plus-one rule) for "Melbourne", and we specify the step, which
is 2, because we are slicing every second element. However, as you might have guessed, because
the start coincides with the beginning of the list, and the stop coincides with the last element of the
list, we can omit both, and rewrite the code above as follows:

print (cities[::2]) print cities from the beginning to the end

of the list with a step of two
'San Diego', 'Cape Town', 'Melbourne']

You have now mastered the three-s rule and learned how to simplify it. How else can we play with
it? Let's look at this further representation of the list cities:

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

negative indices

In Python, each element of a list can be identified by a positive or a negative index. We use positive
indices when we consider elements from left to right and negative indices when we consider ele-
ments from right to left. Positive indices start from O and increase of 1 unit (0, 1, 2, etc.). Negative
indices start from -1 and decrease of 1 unit (-1, -2, -3, etc.). Note that negative indices do not start
from O to avoid ambiguity: the element in position O is always the first element of the list starting
from the left side. When are negative indices convenient? For example, when we are dealing with a
very long list. In that case, it would be tedious to count through all elements starting from 0. So we
can just count backwards starting from the last element!

How do we use negative indices in slicing? Let’s have a look!

7. Slice "Melbourne":

print (cities[4]) print cities in positions 4
Melbourne

In this example, we extracted "Melbourne" as we learned in example 1: by writing its positive index,
which is 4, in between the square brackets. However, "Melbourne" is the last element of the list;
therefore, it is much more convenient to use its negative index to slice it, like this:

44

Chapter 6. Traveling around the world

print (cities[-1]) print cities in position minus one
Melbourne
The advantage of using the negative index is that we do not need to count through all the list ele-
ments to get to know the position of "Melbourne". Since "Melbourne" is the last element of the list,
we can just write -1. This saves us time and eliminates possible errors due to miscounting.

8. Slice all the cities from "Prague" to "Tokyo" using negative indices:

print (cities[-4:-1]) print cities in positions from minus four to
minus one
['Prague', 'Cape Town', 'Tokyo'l]

This is in an alternative to example 2. There, we extracted the cities from "Prague" to "Tokyo" using
positive indices, whereas here we want to use negative indices. It might look intimidating, but the
reasoning is always the same. The first element we want to extract is Prague, which is in position -4,
therefore the start is -4. The last element we want to extract is Tokyo, which is in position -2, thus
the stop is -1 because of the plus one rule. Like in the previous example, using negative indices can
be very convenient when extracting elements from the end of a long list.

In this example, we saw how to use negative indices for the start and the stop. What about the
step? A negative step allows us to slice elements in reverse order, which means from the right to
the left. Negative steps can be used with both positive or negative start and stop. This might sound
confusing, but we'll clarify it the next three examples. Slicing in reverse order is is a very powerful
feature, and it’s the last thing you need to know to master slicing. Let’s have a look!

9. Slice all the cities from "Tokyo" to "Prague" using positive indices (reverse order):

print (cities[3:0:-1]) print cities in positions from three to zero
with a step of minus one
['Tokyo', 'Cape Town', 'Prague']

When slicing—and coding, in general—it is extremely important to be aware of the result we expect.
When slicing in reverse order, having the result in mind can really avoid confusion. So, let’s start
from there. We want to print out "Tokyo", "Cape Town", and "Prague". The first element is "Tokyo",
which is in position 3, so the start is 3. The last element is "Prague”, which is in position 1. When we
slice in reverse order, instead of the plus-one rule, we have to use the minus one rule, which says
that we must subtract 1 from the position of the last element we want to slice. Why? This is very
intuitive. As we know, for the stop, we always want to take the next position. When slicing in direct
order, the next position is on the right side of the last element. Therefore, we add 1 to its index. On
the other side, when slicing in reverse order, the next position is on the left side of the last element.
Therefore, we subtract 1 from its index. Now, back to our example. The last element is "Prague",
which is in position 1. And because of the minus one rule, the stop is 0. Finally, we need to define
the step. Because the elements are consecutive, the step should be 1, but because we are going in
reverse order, we have to put a minus in front of it, so the step becomes -1.

In summary, when slicing in reverse order, we have to: (1) make sure we have the first and the last
elements clearly in our minds, (2) apply the minus one rule to the stop, and (3) use a negative step.

Let’s raise the bar even more now! Look at the next example.

45

Part 2. Introduction to lists and if/else constructs

10. Slice all the cities from "Tokyo" to "Prague" using negative indices (reverse order):

print (cities[-2:-5:-11) print cities in positions from minus two to
minus five with a step of minus one
['Tokyo', 'Cape Town', 'Prague']
When using negative indices for the start and the stop, the rules are exactly the same as when
using positive indices. The first element we want to slice is "Tokyo", which is in position -2, so the
start is -2. The last element is "Prague", which is in position -4. Because of the minus one rule, we
have to subtract 1 from -4, therefore the stop is -5. And finally, because we are slicing consecutive
elements in reverse order, the step is -1. As you can now imagine, using negative indices can be very
convenient when slicing elements at the end of a very long list in reverse order.

11. Slice all the cities (in reverse order):

print (cities[::-1]) print from the beginning of the list to the
end of the list with a step of minus 1
['Melbourne', 'Tokyo', 'Cape Town',
'"Prague’, 'San Diego']

The first element to slice is "Melbourne", which is the last element of the list. Therefore, we can omit
the start. The last element to slices is "San Diego", which is the first element of the list. Therefore,
we can omit the stop too. We just must write the step, which is -1 because we are slicing consecutive
elements in reverse order. Easy to remember!

Last note. Learning slicing might feel overwhelming at first because of all the rules, the use of positive
and negative indices, and thinking of lists in direct and reverse order. However, learning slicing
properly is fundamental not only because it is often used in coding, but also because it allows you
to exercise your brain and strengthen your logical thinking. Take your time to learn the rules and do
the exercises below. You will greatly benefit from it in the following chapters!

Complete the following table to create an overview of slicing in your own words:

Slicing syntax What it does
list_name[index]
list_name[start:stop:step]
list_name[:stop:step]
list_name[start::step]
list_name[start:stop]
list_name[negative_index]
list_name[::negative_step]

list_name[::-1]

46

Chapter 6. Traveling around the world

To slice one element, we use the rule: 1ist_name[element_position]
To slice multiple elements, we use the three-s rule: 1ist_name[start:stop:step], where:

- We can omit: start when we slice from the first element of a list; stop when we slice to the last

element of a list; and step when we slice consecutive elements of a list

- The stop follows the plus one rule when slicing from left to right (direct order), and the minus

one rule when slicing from right to left (reverse order)
The values of element_position, start, stop, and step can be:
- Positive: when considering elements from left to right (direct order)
- Negative: when considering elements from right to left (reverse order)
Negative steps are used to invert lists

So far, we have learned that each list element is associated with an index or position. However,
in Python, each element is actually considered between two positions, as represented in this
figure:

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

Let’s re-consider example 2, where we extracted the cities from "Prague" to "Tokyo":

print (cities[1:4]) print cities in positions from one
to four
['Prague', 'Cape Town', 'Tokyo']
Using the representation above, we can see that the start is 1 because that is the index that
precedes "Prague"”, the first element to slice. And the stop is 4 because that is the index that
follows "Tokyo", the last element to slice.

For many people, considering elements in-between indices is pretty straightforward. For other
people, considering that elements have one single index—as we have done so far—is easier. My
recommendation is to pick one representation and stick to that. In this book, we will continue
to represent list elements with one single index.

47

Part 2. Introduction to lists and if/else constructs

1.

48

Fruits and veggies. Given the following list:

fruits_and_veggies = ["peppers", "apricots", "carrots", "apples", "zucchini",

"grapes", "cabbage", "oranges", "asparagus", "pears"]

Use slicing to extract:
a. The produce between apples and grapes (included)
All the vegetables
All the fruits
The vegetables between carrots and asparagus (included)
The fruits between apples and oranges (included)

® o0 o

Clothes, stationery, and electronics. Given the following list:

objects = ["mobile", "t_shirt", "pencil", "laptop", "hat", "ruler", "tv", "pants",

npenll]

Use slicing to extract:
a. All the clothes
All the stationery
All the electronics
The second and the last stationery items
The first and the last electronics items

-~ 0 o 0o T

The first and the second clothing items

Interior design. Given the following list: interior_design = ["sofa", "curtain", "lamp",

"table", "carpet", "plant", "armchair", "blanket", "vase"]

Use slicing to extract the following elements in direct order (from left to right), once using positive
indices and once using negative indices:

a. All furniture

b. All textiles

c. All decorative elements

d. The pieces composed of 5 letters (count them by hand, no coding required)

Botanic garden. Given the following list:

botanic_garden = ["tulip", "pine", "poppy", "palm", "rose", "oak", "daisy",

"eucalyptus"]

Use slicing to extract the following elements, once in direct order (from left to right) and once in
inverse order (from right to left):
a. All flowers
All trees
All flowers and trees starting with p (find them by hand, no coding required)

"pine", "rose", and "eucalyptus"

LIS S

All flowers and trees

Chapter 6. Traveling around the world

5. Travel agency. You are the owner of a travel agency and these are the destinations you offer:

destinations = ["Boston", "Madrid", "Shanghai", "Cairo", "Mexico City", "Copenhagen",
"Seoul", "Casablanca", "Lima", "Vienna", "Bangkok", "Nairobi", "Buenos Aires",

"Athens", "Manila", "Cape Town"]
You also have a list containing additional destinations you want to offer in the future:

future_destinations = ["Tunis"]

a. A new customer comes in and you ask where he would like to go. He replies: Berlin. You
check whether Berlin is part of the destination list. If Berlin is part of the list, you say that
you sell tickets for Berlin. If Berlin is not part of the destination list, you: (1) tell the customer
that you do not sell tickets for Berlin; (2) tell him what European cities are in the destination
list; and (3) add Berlin to the list of future destinations.

b. Because tickets for Berlin are not available, your customer is now thinking about going to
Asia. So you tell him the destinations in Asia. He tells you that he forgot the last two Asian
places you mentioned; so you tell them again. Then, he says he would have enjoyed going
to Hong Kong. But Hong Kong is not an available destination, so you add it to the list of
future destinations.

c. Now you ask your customer if he is interested in going to the American continent, and he
replies: Toronto. You check whether Toronto is part of the list. Similarly to what you did
for Berlin, if Toronto is part of the list, you say that you sell tickets for Toronto. If Toronto
is not part of the destination list, you: (1) tell your customer that you do not sell tickets for
Toronto, (2) tell him what cities on the American continent are in the destination list, and (3)
add Toronto to the list of future destinations.

d. The customer is still undecided. You think he might be interested in a trip to Africa, so you
tell him all the destinations in Africa. He finally tells you that he wants to go to Cape Town!
So you replace Cape Town from the list of destinations with Tunis from the list of future
destinations, and remove Tunis from the future destination list.

e. The customer is finally gone, and you want to create a flyer with all the destinations you
offer. To do so, you add the three new future destinations to the list of current destinations
(in what order?), and you print out the destinations you offer for each continent. While doing
so, you notice that Africa only has four destinations. So you add one African destination to
the destination list before printing out the African destinations. And, finally, you close the
shop, go home, and enjoy your evening after a hard day of work!

49

Now that you know everything about slicing, let’s see how to use it to manipulate lists—that is, how
to change, add, or remove list elements. Download and open Jupyter Notebook number 7 from
www . learnpythonwithjupyter.comand follow along. Similarly to the previous chapter, cover the
code in these pages with a sheet of paper. First, try to guess the commands to execute, and then
compare with the code below. Don't forget to read the code aloud!

Let’s first learn how to change list elements using slicing and assignment.

e Let’s start with the following list:

senses = ["eyes", "nose", "ears", "tongue", senses is assigned eyes, nose, ears,
"skin"] tongue, skin
print (senses) print senses

['eyes', 'nose', 'ears', 'tongue', 'skin']

The list senses contains five strings: "eyes", "nose", "ears", "tongue", and "skin" (line 1), and we
print it out (line 2).

e Replace "nose" with "smell":

senses[1] = "smell" senses in position one is assigned
smell
print (senses) print senses
['eyes', 'smell', 'ears', 'tongue', 'skin']

To change one list element, we assign the new value to the list sliced in the element’s position. In
this case, the element we want to replace—"nose"—is in position 1. So, we slice the list in position 1,
and we assign the new string "smell" (line 1). Then, we print the list to check whether the change
is correct (line 2).

At this point, you might ask: Why do | have to learn list manipulation using slicing when | already
know how to do it with methods? For at least three reasons! First reason: to reduce the possibility
of errors. The code at line 1 is an alternative to the code we learned in Chapter 5, where we used
three methods to replace an element, that is:

nose_index = senses.index("nose") nose index is assigned senses dot index
of nose

senses.pop(nose_index) senses dot pop nose index

senses.insert(nose_index, "smell") senses dot insert at position nose

index smell

By using slicing, we reduce the number of commands from 3 to 1, and we do not need to create
an extra variable—nose_index. By writing less code, we minimize the possibility of making errors!
Second reason: slicing makes code writing faster. Imagine you have to replace 4 elements. With

50

www.learnpythonwithjupyter.com

Chapter 7. Senses, planets, and a house

slicing, you would have to write just 4 lines of code; instead, with list methods, the number of lines
required would be 12! And finally, the third reason: transitioning from list methods to list slicing
allows us to shift from a more concrete to a more abstract way of thinking. As you know, when
using list methods, we use a coding language that is more similar to a natural language. Method
names, in fact, are words in the English vocabulary, such as remove, insert, etc. Instead, when slicing,
we use numbers—which represent element positions—and thus we use (numerical) symbols in place
of words. As you can see, we are building more and more the abstract thinking that coding requires.
So let’s keep going!

e Replace "tongue" and "skin" with "taste" and "touch":

senses[3:5] = ["taste", "touch"] senses in positions from three to five
is assigned taste, touch
print (senses) print senses
['eyes', 'smell', 'ears',6 'taste', 'touch']

To change several elements in a list, first we slice the elements we want to substitute, and then
we assign them a list containing the new values. In this case, we want to replace two elements,
so we slice using the three-s rule. The start is the position of "tongue", which is 3, and the stop
is the position of "skin", which is 4, but it becomes 5 because of the plus one rule. The step is 1,
so we can omit it. To the sliced list, we assign a list containing the new elements, which are the
strings "taste" and "touch" (line 1). Finally, we print the list to make sure that the change occurred
correctly (line 2).

e Replace "eyes" and "ears" with "sight" and "hearing":

senses[0:3:2] = ["sight", "hearing"] senses in positions from zero to three
with a step of two is assigned sight,
hearing

print (senses) print senses

['sight', 'smell', 'hearing', 'taste', 'touch']

Like in the previous example, we want to replace several elements. So, we begin by slicing the list.
The start is the position of "eyes", which is @ (and can be omitted). The stop is the position of "ears",
which is 2, but it becomes 3 because of the plus one rule. The two elements are not consecutive,
thus we have to write the step, which is 2. Finally, we assign the list containing the two strings
we want to add: "sight" and "hearing". Note that the two elements we want to replace are not
consecutive, but Python takes care of placing "sight" and "hearing" in the right positions (line 1).
At the end, we print the final list to check the changes we made (line 2).

To add new elements to a list, we can use slicing combined with list concatenation and assighment.
How? Let’s have a look at the following examples!

51

Part 2. Introduction to lists and if/else constructs

e Let’s start with the following list:

planets = ["Mercury", "Mars", "Earth", "Neptune"] planets is assigned Mercury,
Mars, Earth, Neptune
print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune']
We begin with the list planets, which contains four strings: "Mercury", "Mars", "Earth", and
"Neptune" (line 1), and we print it out (line 2).

e Add "Jupiter" at the end of the list:

planets = planets + ["Jupiter"] planets is assigned planets
concatenated with Jupiter
print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune', 'Jupiter']

To add an element at the end of a list, we (1) embed it in a list, (2) concatenate it to the original list,
and (3) assign the result to the original list. It's less complicated than it sounds! Let’s start from the far
right of line 1. We take the new element "Jupiter"—which is a string—and we enclose it in square
brackets to transform it into a list: ["Jupiter"]. Why do we need to change "Jupiter" data type?
Because we want to add it to the list planets using concatenation. And, as in string concatenation,
we can concatenate only strings with strings; in list concatenation, we can concatenate only lists
with lists. Note that list concatenation works the same way as string concatenation. Finally, we
assign the result of the operation to the original list planets to actually change it. It is common to
say that we reassign the result to the original list. This whole operation constitutes an alternative to
the method .append(). Finally, we print out the modified list to check the correctness of our code
(line 2).

You may have realized that in this example there is no slicing! This is because it's a special case,
where we add an element at the end of a list—it would be similar if we added an element at the
beginning of a list. We could write planets[0:4] + ["Jupiter"], where planets[@:4] slices all the
elements in the list, but that would be redundant. Let’s see slicing in action in the next two examples!

e Add "Venus" between "Mars" and "Earth":

planets = planets[0:2] + ["Venus"] + planets[2:5] planets is assigned planets from
zero to two concatenated with
venus concatenated with planets
from two to five

print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Jupiter']

In this case, we want to add an element in the middle of a list. To do so, we (1) split the list in two
segments at the position where we want to insert the new element, (2) insert the new element as a
list by concatenating it with the two list segments, and (3) assign the result to the original list. Like
before, it's easier than it sounds! We want to split the list between "Mars" and "Earth". So, the
first list segment will contain "Mercury" and "Mars". Thus, we slice planets starting from position o,
corresponding to "Mercury", and stopping in position 2 for the plus one rule; "Mars" is in position 1.

52

Chapter 7. Senses, planets, and a house

The second list segment will contain "Earth", "Neptune", and "Jupiter". So, we slice starting from
position 2, corresponding to "Earth", and stopping in position 5 for the plus one rule; "Jupiter" is
in position 4. In between the two list segments, we concatenate a new list containing the string
"Venus"—like before, we have to change "venus" from a string to a list. We conclude the operation
by assigning the concatenation result to the original list. As you may have realized, this line is an
alternative to the method .insert() (line 1). Finally, we print out the obtained list to check the
correctness of the operation (line 2).

A nice way to think about the whole procedure is to consider a list like a toy train, where each list
element is a car. When we want to insert a new car, for example a restaurant car, we split the train
into two parts in the position where we want the new car to be. Then, we add the first part of the
train to the left side of the restaurant car, and the second part of the train to the right side of the
restaurant car. Thus, we obtain our modified train!

e Add "Uranus" and "Saturn" between "Neptune" and "Jupiter":

planets = planets[:5] + ["Uranus", "Saturn"] + planets is assigned planets from

planets[5:] the beginning of the list to
position five concatenated with
Uranus, Saturn concatenated with
planets from position five to the
end of the list

print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'"Uranus', 'Saturn', 'Jupiter']

To insert several consecutive elements in the middle of a list, we use the same approach as the
one above. We slice the first part of the list planets from the beginning (start omitted) to 5, which
corresponds to the position of "Neptune" plus 1. Then, we concatenate the two new elements
"Uranus" and "Saturn" embedded in a list. Finally, we concatenate the remaining part of the list
planets, starting from the position of "Jupiter", which is 5, and stopping at the end of the list (stop
omitted). As you'll probably notice, when we want to insert several consecutive elements in the
middle of a list, we just embed all the elements in a list (line 1). Finally, we print out the modified
list to check whether we added the new elements correctly (line 2).

Now a trick! We saw that the start of the first list segment and the stop of the second list segment
are omitted. In addition, you may have noticed that the stop of the first list segment coincides with
the start of the second list segment—they are both 5. This is because of the plus one rule applied to
the stop of the first list segment. Therefore, when adding new elements using slicing, we can just
count the stop of the first list segment. That will coincide with the start of the second list segment.
The remaining start and stop can be omitted!

An important note before continuing: in the past three examples, we started analyzing code from
the right side of the assignment symbol. Focusing on that side is quite common because it is where
we define variable changes and operations. Sometimes, we can even start writing code on the right
side of the assignment symbol, and then type the appropriate variable name on the left side. It’s
very common to start analyzing or writing code backwards!

53

Part 2. Introduction to lists and if/else constructs

To delete list elements, we can use the keyword del combined with list slicing. This is very easy.
Let's have a look!

e Consider the following list:

house = ["kitchen", "dining room", "living room", house is assigned kitchen,
"bedroom", "bathroom", "garden", "balcony", dining room, living room,
"terrace"] bedroom, bathroom, garden,
balcony, terrace,
print (house) print house
['kitchen', 'dining room', 'living room', 'bedroom',
' bathroom', 'garden', 'balcony', 'terrace']

We start with a list called house containing 8 strings (line 1), and we print it out (line 2).

e Delete "dining room":

del house[1] del house in position one
print (house) print house

['kitchen', 'living room', 'bedroom', ' bathroom',

'garden', 'balcony','terrace']

To delete one element in a list, we can use del followed by the list sliced at the position of the
element we want to delete. In this case, we want to remove the string "dining room", which is in
position 1, so we write the keyword del followed by house[1]. del is a keyword that allows us to
delete a variable or some elements in a variable—in this case, some elements in a list. Like the other
keywords we have seen so far—for example, if and else—del is written in bold green in Jupyter
Notebook. As you may have realized, using del and slicing is an alternative to using the list methods
.pop() or .remove() (line 1). After removing the element, we print out the list for checking (line 2).

e Delete "garden" and "balcony":

del house[4:6] del house in positions form four
to six
print (house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'terrace']

To delete consecutive elements from a list, we use the same syntax as above: we write the keyword
del followed by the list sliced at the positions of the elements we want to delete. In this example,
the start is the position of "garden", which is 4, and the stop is the position of "balcony", which is
5, and it becomes 6 because of the plus one rule (line 1). Then we print out the reduced list (line 2).

e Delete "kitchen", "bedroom" and "terrace":

del house[::2] del house in positions from the
beginning to the end of the list
with a step of two
print (house) print house
['living room', ' bathroom']

54

Chapter 7. Senses, planets, and a house

To delete non-consecutive elements in a list, we use the same procedure as the one above: we write
the keyword del, followed by the list sliced at the positions of the elements we want to remove. In
this example, the start corresponds to "kitchen", which is the first element of the list, so we can
omit it. The stop corresponds to "terrace", which is the last element in the list, so we can omit it as
well. And the step is 2 because want to delete every second element (line 1). Finally, we print the
remaining list (line 2).

e Delete "house":

del house del house
print (house) print house
NameExrror Traceback (most recent call last)
<ipython-input-13-ef@0756c89224> in
1 del house

————> 2 print (house)
NameError: name 'house' is not defined

Finally, we want to delete the whole house! So we write the keyword del followed by the variable
name house (line 1). This time, we get an error when we print out the list house. It's a Name Error,
telling us that the variable does not exist anymore (line 2). This is a good error, telling us that we
succeeded in our aim: we deleted the whole variable house!

In the previous four chapters, you learned how to manipulate lists using methods or slicing. Com-
plete the table below to compare the two different techniques:
List operation List methods List slicing

Adding an element at the be-
ginning of a list

Adding an element in the mid-
dle of a list

Adding an element at the end
of alist

Changing an element in a list

Deleting an element in a list

e What is different if you want to add, change, or delete several elements? Write your answer here:

55

Part 2. Introduction to lists and if/else constructs

e To change list elements, we can use slicing and assignment

e To add list elements, we can combine slicing, concatenation, and assignment

e To delete list elements, we can use the keyword del and slicing

56

The kernel is the component of Jupyter Notebook that executes code. When we run a cell, the
kernel tells Python to execute computations and save variables. Every Notebook has its own
kernel. And when we open a Notebook, a new kernel is automatically created and is ready to
execute code. Now you may ask: Why do we care about the kernel? Because sometimes we
need to interrupt it or restart it to continue running code. Let’s see what this means.

Interrupting the kernel. Consider two cells containing code. In the first cell, we ask a question
using the function input (). In the second cell, we print the variable containing the answer.
We want to execute the code, so we run the first cell. On the left side, we get the star symbol
between the square brackets, indicating that the code is being executed. But before entering
the answer, we mistakenly run the second cell! Now the second cell also gets the star symbol
between the square brackets on the left side, like this:

name = input ("What's your name?") name is assigned input what's your
name?

What's your name? ’

print (name) print name

In this case, the situation is frozen and no code gets executed! So we need to interrupt the
kernel. To do that, we can either go to the JupyterLab top bar, then to Kernel, and then Interrupt
Kernel, or we can go to the Jupyter Notebook top bar and press the interrupt kernel button—
that is, item 7 in the figure below (modified from the Getting ready part):

B + XOF » m C » Code v

After interrupting the kernel, the star symbols in between square brackets disappear, and we
can run each cell again.

Restarting the kernel. Consider the list house from this chapter. Let's say that we want to delete
the element "dining room", as we did in one of the examples above. But, by mistake, we type
the wrong slicing index—that is, @ instead of 1—deleting "kitchen" in place of "dining room",

Chapter 7. Senses, planets, and a house

like this:

house = ["kitchen", "dining room", house is assigned kitchen, dining
"living room", "bedroom", "bathroom", room, living room, bedroom,
"garden", "balcony", "terrace"] bathroom, garden, balcony, terrace,
del house[0] del house in position zero
print (house) print house

['dining room', 'living room', 'bedroom',

'"bathroom', 'garden', 'balcony', 'terrace']

We want to restore the original variable house and rerun the corrected version of our code—
del house[1]— to obtain the correct result. How do we go back? By restarting the kernel! To
do that, we can either go to the JupyterLab top bar, then Kernel, and then Restart Kernel; or
we can go to the Jupyter Notebook top bar and press the curved arrow (item 8 in the figure
above). Then, we can rerun the cells of the Notebook. As an alternative, we can restart the
kernel and rerun all Notebook cells at once by going to the JupyterLab top bar, then Kernel,
and then Restart Kernel and Run all Cells, or to the Jupyter Notebook top bar and pressing the
symbol with two arrow tips (item 9 in the figure above). You may ask: do | really have to restart
the kernel every time | make a mistake? Not really. In this case, one could just rerun the first
cell to bring the variable house back to its original value, and rerun the second cell with the
corrected code. However, when dealing with multiple variables, or if we make several mistakes
for a single variable, it is good practice to reset the kernel and start from scratch.

. Stephanie Shirley. Do you know the story of Stephanie Shirley? Let's see what she did! Given the

following list:

stefanie_shirley = ["In 1962", "Stephanie Shirley", "founded", "a software company",

"employing", "only women", "working from home"]

Do the following using list slicing:
a. Replace "founded" with "thrived"
Remove the element in position O (first element)
Replace "employing" with "transferred ownership"
Add "and over the years" between "thrived" and "a software company"
Replace "only women" with "to her staff"
Insert "gradually" in position 4 (fifth element)
Replace "a software company" with "she"
Add "70 millionaires" at the end of the list
Remove "Stephanie Shirley"

@ ~ 0 20 T

j- Replace "working from home" with creating"
k. Insert "The business" at the beginning of the list

Then, redo the same using list methods.

57

Part 2. Introduction to lists and if/else constructs

2.

3.

58

Tim Berners-Lee. What did Tim Berners-Lee invent? Let’s find it out! Given the following list:

tim_barnerslee = ["Tim Berners-Lee", "invented", "the World Wide Web", "in 1989",
"at CERN in Geneva", "info.cern.ch", "was", "the address of",

"the world's first website and Web server"]

Do the following using list slicing:
a. Remove "info.cern.ch"
Replace "was" with "consists of"
Remove the element in position 1 (second element)
Add "all over the world" at the end of the list
Replace "the world's first website and Web server" with "about 75 million servers"
Remove the element in position O (first element)
Replace "in 1989" with "Nowadays"

5@ -~ 0 20 T

Remove the element in position O (first element)
Replace "at CERN in Geneva" with "it is estimated that"
j. Add "the internet" in position 2 (third element)
k. Remove the element in position 4 (fifth element)

Then, redo the same using list methods.

Alan Turing. What happened thanks to Alan Turing’s contributions? Let’s discover it! Given the
following list:

alan_turing = ["Turing", "created", "an electromechanical machine", "to crack",

"the Nazi Navy's", "Enigma Code"]

Do the following using list slicing:
a. Replace "the Nazi Navy's" with "shortened the war"
Insert "by two years" in position 5 (sixth element)
Replace "an electromechanical machine" with "his contribution"
Add "saving millions of lives" to the end
Replace "created" with "that"
Remove "to crack"
Replace "Turing" with "It is estimated"

@ ~ 0 20 T

Remove the element in position 5 (sixth element)

Then, redo the same using list methods.

PART 3

INTRODUCTION TO
THE FOR LOOP

In this part, you will learn about the for loop, which is one of the two loops in coding—the other is
the while loop. We will learn its syntax and how to use it to search elements in a list, modify a list,

and automatically create new lists. Let’s go!

8. My friends’ favorite dishes

for... in range()

The for loop is one of the most important constructs in coding because it allows us to repeatedly
execute commands. What does this mean and how does it work? Time to open Jupyter Notebook
8 and answer these questions! Read the following example out loud and try to understand it:

e Here are a list of my friends and a list of their favorite dishes:

1 friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan
2 dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,

tacos, pizza
e These are all my friends:

1 print ("My friends' names are:") print My friends' names are:
2 print (friends) print friends

e These are my friends one by one:

1 for index in range (0,4): for index in range from zero to four

2 print ("index:" + str(index)) print index: concatenated with
string of index

B print ("friend:" + friends[index]) print friend: concatenated with

friends in position index

e These are all their favorite dishes:

1 print ("Their favorite dishes are:") print Their favorite dishes are:
2 print (dishes) print dishes

e These are their favorite dishes one by one:

1 for index in range (0,4): for index in range from zero to four

2 print ("index:" + str(index)) print index: concatenated with
string of index

3 print ("dish:" + dishes[index]) print dish: concatenated with dishes

in position index

e These are my friends, with their favorite dishes one by one:

1 for index in range (0,4): for index in range from zero to four
2 print ("My friend " + friends[index] + print My friend concatenated
"'s favorite dish is " + dishes[index]) with friends in position index

concatenated with 's favorite dish
is concatenated with dishes in
position index

Get some hints about what the code does by completing the next exercise.

61

Part 3. Introduction to the for loop

Match the sentence halves

1. The for loop allows us a. a start and a stop as an argument
2. The variable index \ b. how many times commands are repeated
3. Inthe first loop, the variable index c. to repeat the indented commands
4. The built-in function range() determines d. changes value at each loop
5. The built-in function range() can take e. is assigned the value O
Computational thinking and syntax
Let’s start by running the first cell:
friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan
dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,

tacos, pizza
There are two lists—friends and dishes—and each contains four strings.

Let’s run the second cell:

print ("My friends' names are:") print My friends' names are:
print (friends) print friends

My friends' names are:

['Geetha', 'Luca', 'Daisy', 'Juhan']

We print out the string My friends' names are: (line 1) and the content of the list friends (line 2).

Let’s now run the third cell, which contains the first for loop:

for index in range (0,4): for index in range from zero to four
print("index:" + str(index)) print index: concatenated with
string of index
print("friend:" + friends[index]) print friend: concatenated with

friends in position index

index: @

friend: Geetha

index: 1

friend: Luca

index: 2

friend: Daisy

index: 3

friend: Juhan

The code prints the position and the value of each list element by repeating lines 2 and 3 four times.

How does this happen? Let’s start from line 1, which is the header of the for loop. It consists of five

components:

e for: The keyword starting a for loop. Like all keywords, it is bold green in Jupyter Notebook.

e index: A variable that is assigned a different value at each loop iteration (we’'ll talk more about this
in a bit).

e in: A membership operator, the same that you learned in the construct if. . .in/else in Chapter 3.

62

Chapter 8. My friends’ favorite dishes

e range(): A built-in Python function. You can recognize this as a function because it is followed
by round brackets and is colored green in Jupyter Notebook—like input () and print (). We'll talk
more about range() in a bit too.

e : thatis, the colon punctuation.

To better understand what this line does, let’s begin from the built-in function range(). It takes two
arguments: @ and 4. They are two integers that we can call—guess what?—start and stop! So, what
does range() do? Create a separate cell in the notebook, and then write and run the following code:
list(range (0,4)) list of range from zero to four
[0,1,2,3]

The built-in function range () returns a sequence of integers spanning from the start (included) to
the stop (excluded because of the plus one rule). In this example, the integers go from @ to 3, and—
guess what again?—they correspond to the indices of the elements of the list friends! Why is there
list()? This is another built-in function that we write here for a proper print out. Don’t worry too
much about it for now. Let’s focus on understanding the for loop!

What do we do with the list of integers created by range()? We assign them to the variable index!
At each code repetition—or loop, or iteration—index is subsequently assigned a number created by
range(). That s, in the first loop, index is assigned ©; in the second loop, index is assigned 1; and so
on. We could call the variable index any name—for example, loop_id, iteration_number. However, it
is convention to call it index, so we will adopt it. Now, what can we do with the variable index? At
least two things!

First, we can print index to keep track of which loop is getting executed, like we do at line 2. In
the first loop, index is assigned 0, so we print "index: @". In the second loop, index is assigned 1,
so we print "index: 1"—and so on. Why is str() here? Because we can concatenate only strings
with strings, and index is an integer! So, we need to change the variable type of index from integer
to string. And to do that, we can use the built-in function str (), which transforms a variable into a
string.

Second, we can use index to automatically slice list elements one by one. As you now know,
index changes at every iteration, and it can be assigned values that go from the beginning of a
list—that is, —to the end of a list—in this case 3. Let’s look at line 3 of the cell above. In the first
loop, when index is assigned 0, friends[index] is the same as friends[@]—that is, "Geetha". In the
second loop, when index is assigned 1, friends[index] is the same as friends[1], i.e., "Luca". And
so on.

The lines below the header—in this example, lines 2 and 3—are called the body of the for loop. They
are always indented, and there can be as many as we want. They get executed for a number of times
determined by the sequence of numbers created by the function range().

63

Part 3. Introduction to the for loop

Before moving to the next cell, let's summarize what the code at cell 3 does. We have to go through

the three lines of code for a total of four times, like this:

e In the first iteration, index is assigned @ (line 1), so we print index: @ (line 2), and then friends in
position index—which is @—and thus friend: Geetha (line 3).

e Inthe second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then friendsin
position index—which is 1—and therefore friend: Luca (line 3).

e In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then friends in
position index—which is 2—and therefore friend: Daisy (line 3).

e Inthe fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then friends in
position index—which is 3—and therefore friend: Juhan (line 3).

Being aware of what happens at each loop is fundamental to make sure that our code does what we

expect. Any time you are uncertain about what is happening in a for loop, think about your code

line by line and iteration by iteration, like we did right above. If the code is particularly complicated,

you can also create a table, where you can keep track of each line at each iteration, like this:

Loop for index in range(0,4): print("index:"+str(index)) print("friend:"+friends[index])
First index =0 index: O friend: friends[0] — Geetha
Second index =1 index: 1 friend: friends[1] — Luca

Third index = 2 index: 2 friend: friends[2] — Daisy

Fourth index =3 index: 3 friend: friends[3] — Juhan

Before going to the next cell, let’s define the for loop:

A for loop is the repetition of a group of commands
for a determined number of times.

This definition summarizes the two main features of a for loop.
1. We execute the lines of code that are in the body of the for loop several times
2. The number of times is known and is determined by a sequence of numbers created by the
built-in function range()

Let’s continue with cell 4:

print ("Their favorite dishes are:") print Their favorite dishes are:
print (dishes) print dishes

Their favorite dishes are:

['sushi', 'burgers', 'tacos', 'pizza'l

We print out the string Their favorite dishes are: (line 1) and the content of the list dishes (line 2).

64

Chapter 8. My friends’ favorite dishes

Let’s run cell 5, which contains another for loop:

for index in range (0,4): for index in range from @ to 4
print("index:" + str(index)) print index: concatenated with
string of index
print("dish:" + dishes[index]) print dish: concatenated with dishes
in position index
index: @
friend: sushi
index: 1
friend: burgers
index: 2
friend: tacos
index: 3

friend: pizza

The header is the same as that of the for loop we met at cell 3, including the start and the stop of
the built-in function range(). Also, line 2—where we print the index value at each iteration—is the
same. However, at line 3 we print out the dish names one by one. Once again, let's go through the
code one iteration at a time:

e In the first iteration, index is assigned @ (line 1), so we print index: @ (line 2), and then we print
dishes in position index—which is @—and thus dish: sushi (line 3)

e In the second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then we print
dishes in position index—which is 1—and thus burgers (line 3)

e In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then we print
dishes in position index—which is 2—and thus tacos (line 3)

e In the fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then we print
dishes in position index—which is 3—and thus pizza (line 3).

Finally, let’s run the last cell:

for index in range (0,4): for index in range from zero to four
print ("My friend " + friends[index] + print My friend concatenated
"'s favorite dish is " + dishes[index]) with friends in position index

concatenated with 's favorite dish
is concatenated with dishes in
position index
My friend Geetha's favorite dish is sushi
My friend Luca's favorite dish is burgers
My friend Daisy's favorite dish is tacos
My friend Juhan's favorite dish is pizza
Once again, there is a for loop. The header is the same as that in the two previous examples: we
create a sequence of integers that go from O to 3, and we assign them to the variable index, one
by one at each iteration (line 1). Just one note: beyond the start and the stop, the built-in function
range() can also take a step as an argument, like so:
for index in range (0,4,1): for index in range from zero to four
with a step of one
As for the start and the stop, the step also works exactly the same way as it does in slicing (Chapter
6). In these examples, we omitted the step because it is 1—that is, we take all the elements of the

65

Part 3. Introduction to the for loop

lis

t. You will play with different step values in the coding exercises at the end of this chapter.

Finally, the body of the for loop is constituted of one line of code, where we print out a sentence
composed of four parts, concatenated to each other. The first and the third parts are two strings—

"My friend " and "'s favorite dish is ". The second and the fourth parts are the elements of

th

e lists friends and dishes sliced at position index (line 2). As you'll notice, we can use index to

simultaneously slice several lists of the same length at the same position within one for loop.

Complete the following sentences to summarize the for loop syntax and functionality in your own
words:

oA L d e

66

A for loop is

A for loop header is

A for loop body is

forisa and is colored in Jupyter Notebook.

index is a and is colored in Jupyter Note-

book. It is assigned

range() is a and is colored in Jupyter
Notebook. It can take three arguments: , ,

and . It returns

An iteration or loop is

A for loop is the repetition of commands for a defined number of times

When the for loop is used to slice a list, the number of times coincides with the list length

The generic syntax of a for loop header is: for index in range(start, stop, step):

The body of a for loop is indented and can contain as many lines of code as needed

range() is a built-in Python function that creates a sequence of integers spanning from the start
(included) to the stop (excluded)

str() is a built-in Python function that converts a variable into a string

When executing a for loop, we might encounter two errors: index errors and indentation
errors. Let's see why they happen and how to fix them!

Chapter 8. My friends’ favorite dishes

Index error. Let’'s modify the example in cell 3 by changing the stop to 5 (instead of 4). When
we run the cell, we get the following error.

for index in range (0,5): for index in range from zero
to five
print("index:" + str(index)) print index: concatenated
with string of index
print("friend:" + friends[index]) print friend: concatenated
with friends in position
index
index: @
friend: Geetha
index: 1
friend: Luca
index: 2

friend: Daisy
index: 3
friend: Juhan
index: 4

IndexError Traceback (most recent call last)
<ipython-input-13-ef0756c89224> in
1 for index in range (0,5):
2 print ("index: " + str(index))
=——> g print ("friend: " + friends[index])
IndexError: list index out of range
Let’s decipher the error message. As you know from Chapter 2, we start reading from the last
line, which informs us about the type of error: IndexError: list index out of range. This
means that we are trying to slice a list in a position that does not exist. Where do we do this?
Let’s look for the arrow. It points to line 3, where we slice friends in position index. What's
the value of index? From the last line of the printouts, we can see that index is 4. Thus, we
are trying to slice the list friends in position 4, which does not exist. Fixing this error is easy:

we just correct the stop in range() to 4.

IndentationError. The indentation error is very easy to recognize and fix. Let's look into this

example:
for index in range (0,4): for index in range from zero
to four
print("index:" + str(index)) print index: concatenated
with string of index
"/var/ipykernel_54813/8597.py" 2
print ("index: " + str(index))

IndentationError: expected an indented block

Again, we start reading from the last line of the error message, which says:
IndentationError: expected an indented block. This means that we did not indent a
line of code. Where? The message says 1line 2 at the end of its first line. The fix is straight-
forward: we just indent line 2. A last note: Jupyter Notebook (and other editors) help us
avoid the indentation error by positioning the cursor correctly when we press enter after a

67

Part 3. Introduction to the for loop

line terminated by a colon (:)—that is, after a for loop header, an if or else condition, a while
loop header (Chapter 17), a function definition (Chapter 28), or a class definition (Chapter 35).

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Capitals of the world. Write two lists, one containing countries of the world and the other
containing their capital cities. First, print out all the countries as a list and all the countries
one by one. Then, print out all the cities as a list and all the cities one by one. Finally, print
out each country with its capital.

b. Animals of the world. Write two lists, one containing animals of the world and one containing
the continents (or countries) where they live. First, print out all the animals as a list and all
the animals one by one. Then, print out all the continents as a list and all the continents one
by one. Finally, print out each animal with the continent where it lives.

2. Mountains and rivers. Given the following list:

mountains_rivers = ["everest", "mississipi", "yosemite", "nile", "mont blanc",
"amazon"]
Print:
a. All elements as a list
All elements one by one using a for loop
Mountains using slicing

& n T

Mountains one by one using a for loop (tip: remember that range() can have three argu-
ments: start, stop, step)

Rivers using slicing

Rivers one by one using a for loop (what start do you use?)

All elements in reverse order using slicing

> @ -~ 0

All elements in reverse order, one by one, using a for loop (what start, stop, and step do you
use?)
3. Wild animals. Given the following list:
wild_animals = ["eagle", "bear", "parrot", "tiger", "pelican", "coyote"]
Print:
a. All animals as a list
All animals one by one using a for loop
Mammals using slicing
Mammals one by one using a for loop
Birds using slicing
Birds one by one using a for loop (what start do you use?)
All animals in reverse order using slicing

S @ -~ 0 20 T

All animals, one by one, in reverse order using a for loop

68

9. At the zoo

For loop with if... ==... / else...

Can we combine for loops and if/else constructs? Yes! How? Open Jupyter Notebook 9 and follow

along. Read the following example aloud, and try to understand how it works:

e You are at the zoo and you write down a list of some animals you see:

1 animals = ["giraffe", "penguin",
"dolphin"]
2 print (animals)

e Then you print out the animals one by one:

1 # for each position in the list

2 for i in range (@, len(animals)):

3 print ("--- Beginning of loop ---")

4 # print each element and its position

5 print ("The element in position " +
str(i) + " is " + animals[i])

e You really wanted to see a penguin:

1 wanted_to_see = "penguin"

animals is assigned giraffe, penguin,
dolphin
print animals

for each position in the list

for i in range from zero to len of animals
print beginning of loop

print each element and its position

print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

wanted to see is assigned penguin

e Once home, you tell your friend the animals you saw, specifying which one you really wanted to

see:

1 # for each position in the list

2 for i in range (@, len(animals)):

3 # if the current animal is
what you really wanted to see

4 if animals[i] == wanted_to_see:

5 # print out that that's the animal
you really wanted to see

6 print ("I saw a " + animals[i] +

" and I really wanted to see it!")
else:
8 # just print out what you saw
print ("I saw a " + animals[i])

for each position in the list

for i in range from zero to len of animals
if the current animal is what you really
wanted to see

if animals in position i equals wanted to
see

print out that that's the animal you
really wanted to see

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

else:

just print out what you saw

print I saw a concatenated with animals in
position i

What's happening in this code? Get some hints by completing the following exercise.

69

Part 3. Introduction to the for loop

1. We caninclude a condition in a for loop using an if/else construct T F
2. The built-in function 1en() returns the number of elements in a list T F
3. The hash symbol # starts a new line of code T F
4. The == symbol checks whether two variables are different T F
Let’s start by running the first cell:

animals = ["giraffe", "penguin", animals is assigned giraffe, penguin,

"dolphin"] dolphin

print (animals) print animals

['giraffe', 'penguin', 'dolphin']

We consider a list called animals containing three strings: "giraffe", "penguin", and "dolphin" (line
1), and we print it out (line 2).

Let’s run the second cell:

for each position in the list for each position in the list

for i in range (@, len(animals)): for i in range from zero to len of animals
print ("--- Beginning of loop ---") print beginning of loop
print each element and its position print each element and its position
print ("The element in position " + print the element in position concatenated
str(i) + " is " + animals[i]) with string of i concatenated with is

concatenated with animals in position i

--- Beginning of loop ---

The element in position @ is giraffe

--- Beginning of loop ---

The element in position 1 is penguin

--- Beginning of loop ---

The element in position 2 is dolphin
We run the for loop three times, and each time we print out the lines 3 and 5. Let’s dig into the code
to understand it better! The header of the for loop at line 2 contains two changes from the syntax
we saw in the previous chapter. First, we use the abbreviation i for the variable index. Shortening
names of frequently used variables is common in coding because it reduces the amount of typing
required. Some abbreviations become conventions—like in this case—so, from this point on we will
use i. Second, instead of an integer, we use len(animals) as the stop in the built-in function range ().
If we used an integer, then the stop would be 3, because the last element—"dolphin"—is in position
2, to which we add 1 for the plus one rule. But what if we added another element to the list?
We would have to remember to modify the stop from 3 to 4. As you can imagine, this practice is
very prone to error, as it's easy to forget to update the stop or miscount the last element position.
Therefore, we do not want to hard-code the stop—that is, to explicitly write its value. We want
to make it dependent on the variable we are dealing with so that we do not have to take care of
possible variations. To do so, we use 1en(), which is a built-in function that returns the length of a
variable—that is, 3 for the list animals. We can use this trick because the length of a list is always

70

Chapter 9. At the zoo

one unit more than the index of the last element; therefore, it coincides with the stop. From this
point on, we will not need to count to find the stop—1en() will do it for us!

Let’s analyze the body of the for loop. At line 3, we print a string stating that we are at the beginning
of aloop. It is meant to be visually different to make the printouts of each iteration easy to identify.
Beyond Beginning of loop, we could use sentences like New iteration, New loop, etc. To increase
the visibility, we can also use symbols before and/or after the text—such as dashes (---) in this
example. Alternatives can be arrows (- ->), tildes (~~~), or any other character on the keyboard. At
line 5, we print out each element and its position in a sentence composed of four parts concatenated
to each other. The first and the third parts—"The element in position " and " is "—are two
hard-coded strings. The second element is the index of the current loop. It's an integer, so we
use the built-in function stx() to convert it into a string. Finally, the last element (animals[i])is a
string, containing a list element sliced in a different position i at each iteration—that is, "giraffe",
"penguin”, or "dolphin".

Finally, lines 1 and 4 start with the hash symbol (#) and are followed by text. These lines are called
comments. What are they? Let’s give a definition:

Comments are code descriptions or explanations.

Comments are a fundamental component of coding. They can contain descriptions of the code, or
explanations about why we made a certain coding choice, or any other information that is relevant
to understand the code they refer to. Comments are in light green in Jupyter Notebook, and they
are above and aligned with the line/s they explain. For example, the comment at line 4 refers to the
code at line 5, so it is indented and aligned with line 5. You might wonder why we write comments.
For at least two reasons. First reason: to make code readable for us and others. When reading
old code, we rarely remember why we wrote what we wrote—yes, even if we wrote it ourselves!
Similarly, when we read somebody else’s code, it is often hard to understand what they did and why,
if the code is not well commented. Second reason: to keep track of what we are doing. When
writing code, we sometimes concentrate on small details and lose the big picture. In these cases,
we can end up asking ourselves: why am | writing this again? Using comments to outline code
can help us keep track of the steps we have to implement—that is, to write. Finally, how do we
write useful comments? That's simple: use precise language. Writing # here is a for loop does
not add any information to code because a loop is clearly visible. It is more meaningful to describe
what the for loop does and why; for example, # using a for loop to browse a list and print
out its elements one by one. Also, don't take any line of code for granted. It’s really so easy to
forget why we wrote that line of code that way! In general, remember that comments are written
for human beings, not for Python. As a matter of fact, Python skips comments when it reads our
code. Try to add an hash front of a line of code yourself: Python is not going to execute it!

Let’s run the next cell:

wanted_to_see = "penguin" wanted to see is assigned penguin

We create a variable called wanted_to_see to which we assign the string "penguin".

71

Part 3.

Introduction to the for loop

Let’s run the last cell:

for each position in the list
for i in range (@, len(animals)):
if the current animal is
what you really wanted to see
if animals[i] == wanted_to_see:

print out that that's the animal
you really wanted to see

print ("I saw a " + animals[i] +

" and I really wanted to see it!")

else:
just print out that you saw it
print ("I saw a " + animals[i])

for each position in the list

for i in range from zero to len of animals
if the current animal is what you really
wanted to see

if animals in position i equals wanted to
see

print out that that's the animal you
really wanted to see

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

else:
just print out that you saw it
print I saw a concatenated with animals in

position i

I saw a giraffe

I saw a penguin and I really wanted to see it!

I saw a dolphin
Once more, we use the for loop to browse the list elements. But this time, we apply a condition to
each element. Let's analyze line by line. The header of the for loop is the same as the one in cell
2. Then, at line 4, we start an if/else construct. It is similar to the one we learned in Chapter 3: it's
composed of an if condition (line 4), a statement (line 6), an else (line 7), and another statement (line
9). However, the condition after the keyword if is different. In Chapter 3, we checked if an element
was in a list by using the membership operator in. In this case, we check if the values assigned to
two variables animals[i] and wanted_to_see are equal. To do so, we write (1) the keyword if; (2)
the first variable, that is, animals[i]; (3) the comparison operator ==, and (4) the second variable,
that is, wanted_to_see. The comparison operator == is pronounced equals or is equal to. Note that
== is very different from =. The symbol == is a comparison operator and is used in conditions to
check if the values assigned to two variables are the same. The symbol = is the assignment operator,
and it is used to assign a value to a variable.

To make sure that what this code does is clear, let’s go through the for loop step-by-step:

e In the first loop: at line 2, i is assigned @. At line 4, we check if animals in position i—where i is o,
so animals[@] is "giraffe"—is equal to the value assigned to the variable wanted_to_see, which
is "penguin". Because "giraffe" is not equal to "penguin", we skip the statement under the if at
line 6, and we jump directly to the statement under the else, which is at line 9. There, we print "I
saw a giraffe"

e In the second loop: at line 2, i is assigned 1. At line 4, we check again if animals in position i—
where i is 1, so animals[1] is "penguin"—is equal to the value assigned to the variable
wanted_to_see. In this case, the values of the two variables animals[i] and wanted_to_see are
equal, so we execute the statement under the if condition (line 6), where we print "I saw a
penguin and I really wanted to see it!"

e Finally, in the third loop: at line 2, i is assigned 2. At line 4, we check once more if animals in
position i—where i is 2, thus animals[2] is "dolphin"—is equal to the value assigned to the vari-
able wanted_to_see, which is "penguin". Because "dolphin" is not equal to "penguin", we skip

72

Chapter 9. At the zoo

the statement at line 6, and we jump directly to the statement under the else, which is at line 9.

There, we print "I saw a dolphin".

In coding there is a lot of jargon—that is, technical words or expressions that are typically used, but

whose meaning is not always clear. Have you familiarized yourself with the jargon introduced so

far? Complete the table by writing the meaning of the following expressions:

Expression

To run a cell

(Chapter 1)

To write readable code
(Chapter 3)

The function takes one argument
(Chapter 5)

The function returns an integer
(Chapter 5)

To reassign to a variable
(Chapter 7)

The element is hard-coded
(Chapter 8)

To comment code

(Chapter 9)

To hard-code

(Chapter 9)

To implement code

(Chapter 9)

In a for loop, the variable index is commonly abbreviated with i
The built-in function 1en() returns the length of a variable
We can use the if/else construct in a for loop

Meaning

We can use the comparison operator == (equals or is equal to) in an if condition

Comments start with the hash symbol #, and they are descriptions or explanations

73

Part 3. Introduction to the for loop

Type error is common when we try to concatenate variables of different types. Let’s look at

this example, modified from cell 2 in this chapter:

for each position in the list
for i in range (@, len(animals)):

print ("--- Beginning of loop ---")
print each element and its position

print ("The element in position " +
i+ " is " + animals[i])

for each position in
the list

for i in range from
zero to len of animals
print beginning of loop
print each element and
its position

print the element in
position concatenated

with i concatenated
with is concatenated
with animals in
position i

--- Beginning of loop ---

TypeError Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in
3 print ("-- Beginning of loop --")

4 # print each element and its position
————> 5 print ("The element in position " + i +
" dis " + animals [i])

TypeError: can only concatenate str (not "int") to str
The last line of the error message says TypeError: can only concatenate str (not "int")
to str. It means that somewhere in our code we are trying to concatenate an integer with one
or more strings. Where? The green arrow points to line 5, where there are three concatena-
tions. As mentioned in the text above, the components are "The element in position" and
" is ", which are two hard-coded strings; the list element animals[i]—that is, "giraffe",
"penguin", or "dolphin"—which is a string, too; and the variable i, which is an integer be-
tween 0 and 2. So i is the issue! Solving the error is very easy: we just transform i into a
string with the built-in function stx(), like this: str(i).

Let’s look at another example, modified from Chapter 7:

planets = planets + "Jupyter" planets is assigned
planets concatenated
with jupyter

print (planets) print planets
TypeExrror Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in
————=> 1 planets = planets + "Jupyter"

2 print (planets)

TypeExrror: can only concatenate list (not "str") to list

This time, the last line of the error message says: TypeError: can only concatenate list
(not "str") with list. We are trying to concatenate a string to a list. Where? The green
arrow points to line 1. Around the concatenation symbol, there are planets—which is a list—

74

Chapter 9. At the zoo

and "Jupyter"—which is a string! Correcting this error is easy: we simply transform
" Jupyter" into alist by embedding it in between square brackets, like this: ["Jupyter"]. When
getting a type error, remember to analyze the type of each variable located in the line of code
where the error occurs. Also, remember that we can only concatenate lists with lists, and
strings with strings!

Note: Starting from this chapter, write code comments wherever pertinent.

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Sports. Write a list of sports you like, and print them out one by one. What is your favorite
sport? Create a variable for it. Finally, print out all sports one by one, specifying if they are
your favorite sports.

b. An astronaut’s next destination. You are an astronaut and you write down the list of the
planets of the solar system: Mercury, Mars, Venus, Earth, Neptune, Uranus, Saturn, Jupiter.
Print out the planets one by one. Then, create a variable for your next destination. Finally,
print out all the planets, specifying if they are your next destination.

2. Months. Given the following list:
months = ["February", "July", "January", "August", "December", "June"]

Print out the names of winter months using a for loop. Then, print out the names of summer
months using a for loop. Choose a month you like and assign it to a variable. Print out all the
months one by one, specifying if the current month is your favorite. Finally, what alternative way
could you use to check if your favorite month is in the list?

3. Mary K. Keller. Given the following list:

mary_k_keller = ['a nun', 'She was also', 'in Computer Science.',

'to receive a Ph.D.', 'American woman', 'the first', 'was', 'Mary K. Keller']

Print out all the elements in reverse order, first using slicing, and then using a for loop. Then,
consider the following variable: name = 'Mary K. Keller'. Check if this variable is in the list in
two ways: first, using the if/else construct; and then, using the if/else construct in a for loop.
What are the differences between the two methods?

75

When combined with lists, a for loop is typically used for at least three operations: searching ele-
ments, changing elements, and creating new lists, as you will learn in the next three chapters. In
this chapter, we will start with learning how to use the for loop to search elements in a list. Ready?
Open Jupyter Notebook 10 and follow along. Cover the code after each task with a piece of paper,
and try to guess the answer. Then compare and read the explanation. Let’s get started!

e Who doesn’t have a messy drawer? Here is ours! It contains some accessories:

accessories = ["belt", "hat", "gloves", accessories is assigned belt, hat,
"sunglasses", "ring"] gloves, sunglasses, ring
print (accessories) print accessories

['belt', 'hat', 'gloves', 'sunglasses', 'ring'l]

We start with the list accessories composed of 5 strings (line 1), and we print it out (line 2).

e Print all accessories one by one, as well as their positions in the list. Use a sentence like The
element x is in position y:

for each position in the list for each position in the list

for i in range (len(accessories)): for i in range len of accessories
print each element and its position print each element and its position
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) with accessories in position i

concatenated with is in position
concatenated with string of i
The element belt is in position ©
The element hat is in position 1
The element gloves is in position 2
The element sunglasses is in position 3
The element ring is in position 4

We warm up by using a for loop to print each list element and its position, as we learned in Chapters
8 and 9. The syntax of the for loop is the same as we saw previously, with one last simplification in
the header: we omit the start. When the start is 0—that is, the beginning of the list—we don’t need
to write it. Can we also omit the stop when it coincides with the end of the list? Not really: the
built-in function range () would not know where to stop creating consecutive integers (if you need
to refresh your memory that range() creates a list of integers, see cell 4 on page 63). Finally, note
that we keep commenting each command to increase code readability.

Now it's time to look for items in the drawer. How do we do it? To search list elements, we have
to (1) create a for loop to browse all elements of a list and (2) use an if/else construct to check if
the current element has the characteristics we want, like we did at cell 4 of Chapter 9. In general,
we can search for elements based on various conditions. In the previous chapters, we searched if
elements are present in a list (Chapter 3) and for elements equal to a given variable (Chapter 9). In
this chapter, we will search for elements with a certain length and in a certain list position. To do

76

Chapter 10. Where are my gloves?

that, we will use the comparison operators. Ready? Let's go!

1. Print the accessory whose name is composed of 6 characters and its position in the list. Use a
sentence like The element x is in position y and it has n characters:

for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element equals 6 if the length of the element equals
six
if len(accessories[i]) == 6: if len of accessories in position i
equals six
print the element, its position, print the element, its position, and
and its number of characters its number of characters
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) + with accessories in position i
" and it has 6 characters") concatenated with is in position

concatenated with string of i
concatenated with and it has six
characters

The element gloves is in position 2 and it has 6 characters

We want to find the list element composed of 6 characters. As mentioned above, we create a for
loop to browse all elements in the list (line 2), and we write an if/else construct to evaluate if the
current element—that is, accessories[i]—is composed of 6 characters (lines 4 and 6). How do we
know how many characters a string has? The number of characters coincides with the length of the
string; therefore, we can use the built-in function 1en(). Thus, in the if condition, we compare the
length of the current element of the list—1en(animals[i])—to the number of characters we want—
thatis, 6. The comparison operator that we use is == (equals or is equal to), which checks if two values
are identical, like you learned in Chapter 9 at cell 4. If the current element satisfies the condition,
we print out the sentence at line 6, like we do for the element "gloves". What about the other
elements? We do not want to do anything, so we simply omit the else part of the if/else construct.
Note the comments on lines 1,3, and 5.

2. Print the accessories whose names are composed of less than 6 characters:

for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element is less if the length of the element is less
than 6 than six
if len(accessories[i]) < 6: if len of accessories in position i
less than 6
print the element, its position, print the element, its position, and
and its number of characters its number of characters
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) + with accessories in position i
" and it has less than 6 characters") concatenated with is in position

concatenated with string of i
concatenated with and it has less
than 6 characters

The element belt is in position @ and it has less than 6 characters
The element hat is in position 1 and it has less than 6 characters
The element ring is in position 4 and it has less than 6 characters

77

Part 3. Introduction to the for loop

The structure of the code is the same as that in example 1. What changes is the comparison operator,
which is < and is pronounced less than (line 4). By using this operator, we check if the length of the
current element is less than 6. For the elements composed of less than 6 characters, we print out
the sentence at line 6—that is, for the strings "belt", "hat", and "ring".

3. Print the accessories whose name is composed of more than 6 characters. Also, assign 6 to a
variable:

defining the threshold defining the threshold
n_of_characters = 6 n of characters is assigned six
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element is greater if the length of the element is
than the threshold greater than the threshold
if len(accessories[i]) > n_of_characters: if len of accessories in position i
greater than n of characters
print the element, its position, print the element, its position, and
and its number of characters its number of characters
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i
" and it has more than " + concatenated with is in position
str(n_of_characters) + " characters") concatenated with string of i

concatenated with and it has more
than concatenated with string of
n of characters concatenated with
characters
The element sunglasses is in position 3 and it has more than 6 characters
In this example, we add two novelties. The first is straightforward: we use the comparison operator
>, which is pronounced greater than (line 6). In this case, only one string has more than 6 characters—

that is, "sunglasses"—so we print out line 8 for that element.

The second novelty is the variable n_of_characters (line 2). It is assigned 6—that is, the threshold
length above which we want to print list elements. Why do we create n_of_characters instead of
simply using 6? Because we use it in two lines of code—in the condition (line 6) and in the print (line
8)—and this implies the possibility of errors. What if instead of considering 6 characters, we wanted
to consider 4? We would have to modify the number both at lines 6 and 8, and we could forget to
change in both places. Instead, by using the variable n_of_characters, we change the value in just
one place (line 2). It is good practice to create variables containing values instead of hard-coding
within a block of code. Variables are usually written at the beginning of a block of code so that they
are easy to find, especially when the code is composed of several lines.

4. Print the accessories whose name is composed of a number of characters different from 6:

defining the threshold defining the threshold
n_of_characters = 6 n of characters is assigned six

for each position in the list for each position in the list

for i in range (len(accessories)): for i in range len of accessories

78

Chapter 10. Where are my gloves?

if the length of the element is not equal if the length of the element is not

to the threshold equal to the threshold
if len(accessories[i]) != n_of_characters: if len of accessories in position i
not equal to n of characters
print the element, its position, print the element, its position, and
and its number of characters its number of characters

print ("The element " + accessories[i] + print The element concatenated

" is in position" + str(i) + with accessories in position i
" and it has a number of characters concatenated with is in position
trerer eI concatenated with string of i

concatenated with and it has a
number of characters different from
concatenated with string of n of
characters

The element belt is in position @ and it has a number of characters different from 6

The element hat is in position 1 and it has a number of characters different from 6

The element sunglasses is in position 3 and it has a number of characters different from 6
The element ring is in position 4 and it has a number of characters different from 6

str(n_of_characters))

The comparison operator for different from is '= and is pronounced not equal to (line 6). The structure
of the code is the same as that above: we use the variable n_of_characters to avoid hard coding
(line 2); we create a for loop to browse all list elements (line 4); we create an if condition to check
what strings have lengths not equal to the threshold (line 6); and, finally, we print out a sentence for
those elements that satisfy the condition (line 8)—that is, "belt", "hat","sunglasses", and "ring".
Before each command, we write a comment to explain what the command does (lines 1,3,5, and 7).

5. Print the accessories whose position is less than or equal to 2:

defining the threshold defining the threshold
position = 2 position is assigned two
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the position of the element is less if the position of the element is
than of equal to the threshold less than or equal to the threshold
if i <= position: if i less than or equal to position
print the element, its position, print the element, its position, and
and its position characteristic its position characteristic
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i
", which is less than or equal to " + concatenated with is in position
str(position)) concatenated with string of i

concatenated with which is less than
or equal to concatenated with string
of position
The element belt is in position @, which is less than or equal to 2
The element hat is in position 1, which is less than or equal to 2
The element gloves is in position 2, which is less than or equal to 2

In this example, we introduce two novelties again. The first novelty is the comparison operator <=,
which is pronounced less than or equal to (line 6). What is the difference between the two comparison
operators <= (less than or equal to) and < (less than)? When using <=, we include the threshold—that
is, we consider all the elements whose position is equal to 2 or less. When using <, we exclude the
threshold—that is, we consider only the elements whose position is strictly less than 2.

79

Part 3. Introduction to the for loop

The second novelty is that we want to search for elements based on their position. How do we do it?
First, we create a variable called position to which we assign the threshold—that is, 2 (line 2). Then,
we need to write the comparison. How do we know the position of each element? In a for loop, the
position of the current list element is i! Remember the following from the previous chapters?

e In the first loop, i is assigned @, thus accessories[i] is accessories[@], which is "belt"

e In the second loop, i is assigned 1, thus accessories[i] is accessories[1], which is "hat"

e In the third loop, i is assigned 2, thus...

Therefore, in the if condition, we compare the current element position i to the threshold position
in the variable position (line 6). For all those elements whose position i is less than or equal to
position, we print line 8—that is, for "belt", "hat", and "gloves".

6. Print the accessories whose position is at least 2:

defining the threshold defining the threshold
position = 2 position is assigned two
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the position of the element is greater if the position of the element
than of equal to the threshold is greater than or equal to the
threshold
if i >= position: if i greater than or equal to
position
print the element, its position, print the element, its position, and
and its position characteristic its position characteristic
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i

", which is at least " + str(position)) concatenated with is in position
concatenated with string of i

concatenated with which is at least
concatenated with string of position
The element gloves is in position 2, which is at least 2
The element sunglasses is in position 3, which is at least 2
The element ring is in position 4, which is at least 2
In this last example, the code structure remains the same, but we use the comparison operator >=,
pronounced greater than or equal to (line 6). Similarly to before, the difference between >= (greater
than or equal to) and > (greater than) is that when using >=, we include the threshold, whereas when us-
ing >, we exclude the threshold. In this case, we print the sentence at line 8 for all the elements whose
position is at least—that is, greater than or equal to—position, which are "gloves", "sunglasses",

and "ring" (line 8).

Finally, a trick to remember the spelling of comparison operators composed of two symbols: the
symbol = is always in the second position, as you'll notice for != (example 4), <= (example 5), and
>= (example 6).

80

Chapter 10. Where are my gloves?

In this chapter, you learned the six comparison operators. Sum up their characteristics in your own
words in the table below:

Comparison What it does Pronunciation

operator

Up to now, you have learned several coding elements: data types, built-in functions, keywords, and
list methods. Do you remember which is which? Insert the following elements into the right column:

string, else, input(), if, .remove(), print(), .index(), len(),

str(), del, list, .append(), range(), for, .insert(), integer, .pop()

Data types Built-in functions Keywords List methods

e We can use a for loop combined with an if/else construct to search for elements in a list

e It is good practice to create variables instead of hard-coded values in a block of code to reduce
the possibility of errors. Variables are usually located at the beginning of a block of code

e In Python, there are six comparison operators: ==, 1=, >, >= <, <=

81

Part 3. Introduction to the for loop

82

While coding, it can be very practical to use keyboard shortcuts to minimize typing interrup-
tions. Although it might sound like a bit of an exaggeration, using the mouse can really be
distracting at times because it slows down the typing rhythm and interrupts the writing flow.
Shortcuts, on the other hand, allow us to never leave the keyboard! They are combinations
of keys pressed simultaneously that can perform various operations. Let’s have a look at the
most common ones. In the following examples, we will use the keys that are colored in the
figure below.

N ! @ # $ % A & * () - * delete

N 1 2 3 4 5 © 7 8 9 O - = backspace
> CIry I
T Q W E R T Y U | O P [] \

: " return
capslock A S D F G H J K L : , enter <+
z Bl N[M| S]]]]7

{Pshift X c v , . / shife {1

In the following shortcut combinations, control/command means that you will have to press
they key control if you are using a Windows operating system, or the key command if you are
using a MacOS operating system (that is, one of the red keys in the figure above). In addition,
the symbol + means that you have to press the listed keys simultaneously. What shortcuts do
you know among the following ones?

e control/command + A (red key + pink key): selects all the lines of code in a cell—the letter A
stands for all

e control/command + X (red key + grey key): cuts selected lines of code

e control/command + C (red key + yellow key): copies selected lines of code

e control/command + V (red key + purple key): pastes selected lines of code

e control/command + / (red key + orange key): adds a # in front of the selected lines of code—
that is, it comments them out. If the key combination is re-pressed, the # is removed, and
the code is un-commented

e tab (green key): indents the selected lines of code—that is, it moves the lines four spaces
towards right

e shift + tab (blue key + green key): outdents the selected lines of code—that is, it moves the
lines four spaces towards the left

Note that these shortcuts can be used for several lines of code at once, thus speeding up the

writing. Together with learning to type with ten fingers (see the in more depth session in
Chapter 1), using shortcuts is an efficient way to write code faster and without interruptions!

Chapter 10. Where are my gloves?

1. Seasons. Given the following list:

seasons = ["spring", "summer", "fall", "winter"]

Print:
a. All seasons whose names are composed of at least 5 characters
b. All seasons whose names are composed of a number of characters that is equal to or less
than 4
c. All seasons whose position is less than 2
d. All seasons whose position is at least 2

2. Word search. You are working for a magazine and you have just created a new word search game
for your readers. Here are the words hidden in the game:

words = ["cards", "park", "pets", "football", "golf", "crosswords", "toys",
"exercise", "hobbies", "riding", "biking", "games", "reading", "movies",
"walking", "concerts"]

After the grid is completed:

a. Create a variable called title containing the number of words to find, and then print it out
(e.g., Word search with 16 words)

b. Find words composed of 5 letters. More specifically, print out a title, which has to contain
the number of letters of this word group, and the words

c. Are there words with less than 5 characters? If so, for each word, print out a sentence
containing the word itself, its position in the list, and its number of characters

d. Similarly, are there words with more than 8 characters? If so, for each word, print out a
sentence containing the word itself, its position in the list, and its number of characters

e. What are the words in the second part of the list that have a number of characters different
than 7? What's their position? And their number of characters?

f. Finally, what are the words in the first fourth of the list that are composed of 4 characters?
What's their position?

You can download the word search game for this exercise solution on the community website!

3. Spelling competition. Here are some words of the category musculoskeletal (msk) system that you
have to memorize for the next spelling competition:

msk_words = ["ankle", "patella", "rib", "femur", "sternocleidomastoid", "tendon",
"sternum", "abdominal external oblique", "muscle", "scapula", "radius", "bone",
"vertebra", "ligament", "ulna", "skull", "clavicle"]

a. How many words do you have to learn? Compute it and print it out

b. What is the length of each word? (including spaces if any)

c. Let's now group words based on their length. Here is a list of short words:
short = ["leg"]
Add all words with 6 characters or less to the list and print out the result. How many words
are in the list?

83

Part 3. Introduction to the for loop

d. Here is a list of words of intermediate length:

intermediate = ["cartilage"]
Add all words with 7, 8, and 9 characters. Then print out the result. How many words are

in the list?
e. And finally, here is a list of long words:
long = ["pectoralis major"]
Add all the remaining words and print out the result. How many words are in the list?

84

11.

For loop to change list elements

Cleaning the mailing list

Time to learn how to use the for loop to change list elements! Open Jupyter Notebook 11 and follow

along. Don't forget to pay attention to code pronunciation. Let’s go!

e You are responsible for a newsletter, and you have to send an email to the following addresses:

1

emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned

SARAH . BROWN@GMAIL . com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

e For the sake of consistency, you want all email addresses to be lowercase. So you change them:

A W N -

(6]

10

11

12
13

14

for each position in the list
for i in range (len(emails)):

print ("-> Loop: " + str(i))

print element before the change
print ("Before the change, the element in
position " + str(i) + " is " + emails[i])

change element and reassign
emails[i] = emails[i].lower()

print element after the change
print ("After the change, the element in
+ emails[i])

position " + str(i) + " is "

15 # print the modified list

16 print ("Now the list is:

+ str(emails[i]))

for each position in the list
for i in range len of emails

print -> loop: concatenated with
string of i

print element before the change

print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

change element and reassign
emails in position i is assigned
emails in position i dot lower

print element after the change

print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

print the modified list
print Now the list is: concatenated
with string of emails in position i

What's new in the code above? Get some hints by completing the following exercise.

True or false?

1. To change a list element, we need to reassign after the change
The method .lowex() is a list method
The method .1lower () changes a string to uppercase

>N

Comments and empty lines make code more readable

- =4 44 4
M T M M

85

Part 3. Introduction to the for loop

Computational thinking and syntax

Let’s run the first cell:

1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned

SARAH . BROWN@GMAIL . com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

We consider a list composed of three strings, each corresponding to an email address (line 1).

Let’s run the second cell:

1 # for each position in the list for each position in the list
2 for i in range (len(emails)): for i in range to len of emails
3
4 print ("-> Loop: " + str(i)) print -> loop: concatenated with
string of 1
5
6 # print element before the change print element before the change
print ("Before the change, the element in print Before the change, the element
position " + str(i) + " is " + emails[i] in position concatenated with string
of i concatenated with is concatenated
with emails in position i
8
9 # change element and reassign change element and reassign
10 emails[i] = emails[i].lower() emails in position i is assigned
emails in position i dot lower
11
12 # print element after the change print element after the change
13 print ("After the change, the element in print After the change, the element in
position " + str(i) + " is " + emails[i] position concatenated with string of i
concatenated with is concatenated with
emails in position i
14

15 # print the modified list
16 print ("Now the list is: " + str(emails))

-> Loop: 0@
Before the change, the element in position @ is: SARAH.BROWN@GMAIL.com
After the change, the element in position @ is: sarah.brown@gmail.com

-> Loop: 1
Before the change, the element in position @ is: Pablo.Hernandez@live.com
After the change, the element in position @ is: pablo.hernandez@live.com

-> Loop: 2
Before the change, the element in position @ is: LI.Min@hotmail.com
After the change, the element in position @ is: 1li.min@hotmail.com
Now the list is: ['sarah.brown@gmail.com', 'pablo.hernandez@live.com',
'1i.min@hotmail.com']

print the modified list
print Now the list is: concatenated
with string of emails

We use a for loop to browse all the elements in the list (line 2). Within the for loop, there are four

commands. Let’s have a look at them one by one.

At line 3, we print a title for each iteration of the for loop, as we learned at cell 2 of Chapter 9.

The title is composed of a symbol (i.e., ->) and the number of the current loop—represented by the
variable i. The symbol makes the title easy to visually identify, and the loop number favors checking

86

Chapter 11. Cleaning the mailing list

what happens at each specific iteration.

At line 5, we print the current element (emails[i]) before the change, as it is in the list. This will be
convenient for comparing the current element before and after the change.

At line 7, we change the current element. How do we do it? We take the current element emails[i],

and we change it to lowercase using the string method . lower (). You might remember that methods

are functions for specific data types, they are colored blue in Jupyter Notebook, and their syntax is:

(1) variable name, (2) dot, (3) method name, and (4) round brackets, in which there can be an argument

(see page 32). How do we know that .lowex () is a string method? Because emails[i] is a string!

Python has at least four methods to change character cases:

e .lower() to change all characters of a string to lowercase

e .upper() to change all characters of a string to uppercase

e .title() to change the first character of a string to uppercase and all the remaining characters to
lowercase

e .capitalize() to change the first character of each word in a string to uppercase, and all the
remaining characters to lowercase

Finally, to actually change a list element, we need to re-assign the changed element to itself. In

other words, we need to overwrite the current element with its new version. If we do not do that,

then the list element will remain unchanged.

At line 9, we print out a sentence containing the modified element to check that the change actually
occurred. For a double check, we can also compare this sentence with the sentence containing the
element before the change, which we printed at line 5.

At line 10, we print out the new list. We need to transform the list emails to a string because of the
concatenation. Thus, we use the built-in function stx (), like we do for integers.

Finally, we use two techniques to increase code readability. First, we add comments before each
major command to explain what the code does (lines 1, 6, 9, 12, and 15). Second, we add empty
lines to visually separate units of thought corresponding to one or more commands, like we would
do for paragraphs in a text (lines 3, 5, 8, 11, and 14).

Given the following string:
greeting = "hElLo, How arE YoU?"

Connect each command with the correct output:

print(greeting.lower()) "HELLO, HOW ARE YOU?'

print(greeting.upper()) 'Hello, how are you?'
print(greeting.title()) 'hello, how are you?'

'Hello, How Are You?'

H LD
a o T o

print(greeting.capitalize())

87

Part 3. Introduction to the for loop

e To change list elements, we always need to reassign the changed element to itself
e String methods to change cases are: .lower(), .upper(), .title(), and .capitalize().

88

Sometimes, we have to change a list element before adding it to an existing list. This can create
confusion about where to change the list element. Let’s consider this example:

e Given the following list:

sports = ["diving", "hiking"] sports is assigned diving, hiking

e Add the mountain sport to the following list, making sure the string is uppercase:

mountain_sports = ["CLIMBING"] mountain_sports is assigned
CLIMBING
We want to take the string "hiking" from the list sports, transform it into "HIKING", and add
it to the list mountain_sports. Where do we change the string to uppercase? Let’s have a look
at these two cases.

Case 1: Changing the element both in the original list and in the new list.
Consider the following code:

sports[1] = sports[1].upper() sports in position 1 is assigned
sports in position 1 dot upper

mountain_sports.append(sports[1]) mountain_sports dot append sports
in position 1

print(sports) print sports

print(mountain_sports) print mountain_sports

['diving', 'HIKING']

['CLIMBING', 'HIKING']
In this example, we first change the element in position 1 to uppercase (line 1), and then we
append the changed element to the list mountain_sports (line 2). When we print out the two
lists (lines 3 and 4), we see that the element "HIKING" is uppercase in both lists. As you can
imagine, changing the element in the original list is not the best option because we might need
the original list sports for further computations. How do we make "hiking" uppercase only
in mountain_sports? Let's have a look at the next example.

Chapter 11. Cleaning the mailing list

Case 2: Changing the element only in the new list.
Consider the following code:

current_sport = sports[1].upper() current_sport is assigned sports in
position 1 dot upper

mountain_sports.append(current_sport) mountain_sports dot append
current_sport

print(sports) print sports

print(mountain_sports) print mountain_sports

['diving', 'hiking']
['CLIMBING', 'HIKING']
In this example, we assign the transformed element—that is, 'HIKING', created with the com-
mand sports[1].upper()—to anew variable. This new variable is current_sport(line 1). Then,
we append the variable current_sport to the list mountain_sports (line 2). When we print out
both lists (lines 3 and 4), we see that "HIKING" is only in the list mountain_sports. We can
call current_sport an intermediary, auxiliary, or temporary variable. Its role is to temporarily
store a value that we will use in subsequent code. Although they are very convenient, tempo-
rary variables are generally not recommended because they occupy computer memory. Can
we avoid using current_sport? Yes, let’s have a look at this last example:
mountain_sports.append(sports[1].upper()) mountain_sports dot append sports
in position 1 dot upper()
print(sports) print sports
print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']
In this final example, there is a nested command, which is a command containing one or
more commands, like in a Russian doll (line 1). To break down nested commands, we usu-
ally start from the inner command and move outwards. In this example, the inner com-
mand is sports[1].upper(), where we modify the string 'hiking' to be uppercase. The
outer command is mountain_sports.append(), where we add the modified element—that is,
"HIKING'—to the list. As you can see, the inner command is what we assigned to the variable
current_sport in the previous example. Therefore, we can avoid a temporary variable by di-
rectly substituting its content in a nested command. Finally, when we print out both lists (lines
2 and 3), we see that we changed "hiking" to uppercase only in the list mountain_sports.

Nested commands are a convenient way to write compact code. How many commands can we
nest into each other? Theoretically, as many as we want! In practice, we want to keep nested
commands to a minimum for a good balance between code efficiency and code readability.

89

Part 3. Introduction to the for loop

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Editing an article. You work at a newspaper, and you have to edit a paper that has plenty of
acronymes:
acronyms = ["asap", "faq", "fyi", "diy"]
All the acronyms are lowercase, so you change them to uppercase.

b. Name tags. You are organizing an event, and you have the following list of names:
names = ["JOHN", "geetha", "xiao", "LAURA"]
You want to print out nice name tags, so you capitalize all names.

2. Colors. Given the following list:

colors = ["yellow", "beige", "green", "red", "ultramarine", "coral", "lavender",
"silver", "cyan", "blue", "black", "magenta", "gold", "pink", "scarlet", "brown"]
a. How many colors are there? Compute it!
b. Starting from the second element (position 1), change every third word to uppercase
c. Starting from the third element (position 2), capitalize every third word
d. Add all the colors of the first half of the list colors to the following list using a for loop,
making sure they are lowercase:
some_colors = ["white"]
How many colors are there in some_colors now?
e. Add all the colors of the second half of the list colors to the following list using slicing:
more_colors = ["purple"]
How many colors are there in more_colors now? Change them to uppercase.

3. Camping. Given the following list:

camping = ["tent", "adventure", "boots", "hiking", "hat", "nature", "path", "lake",
"mountain_sports", "fire", "water bottle", "fishing", "national park", "beach",
"compass", "forest", "trail", "sleeping bag"]

a. How many elements are in there?

b. Get all the words composed of less than (including) 6 letters and add them to the following
list, capitalizing each word:
short_camping = ["Trip"]

c. Slice every second word of the list camping starting from the first word (position 0) and
assign them to a new variable called some_camping_words

d. Capitalize each word of the strings in some_camping_words composed of a number of char-
acters other than 4

e. In some_camping_words, remove the first word (position 0) using a list method

f. In some_camping_words remove "path" using a list method

g. Are there more words in short_camping or some_camping_words? Use an if/else construct to
print out which list has more words, as well as how many words they contain.

90

12. What a mess at the bookstore!

For loop to create new lists

Let’s finally learn how to use a for loop to create new lists. Open Jupyter Notebook 12 and follow
along. Once more, don't forget to read the code out loud!

e There were many customers in the shop today, and they mixed up the books whose authors’ last
names start with A and S:

1 authors = ["Alcott", "Saint-Exupéry", authors is assigned Alcott, Saint-Exupéry
"Arendt", "Sepulveda", "Shakespeare"] Arendt, Sepulveda, Shakespeare

e So you have to put the books whose authors’ last name starts with A on one shelf, and the books
whose authors’ last name starts with S on another shelf:

1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range (len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print ("The current author is: " + print The current author is: concatenated
authors[i]) with authors in position i
10
11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][Q] author initial is assigned authors in
position i in position zero
13 print ("The author's initial is: " + print The author's initial is:
author_initial) concatenated with author_initial
14
15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " + print The shelf A now contains:
str(shelf_a) + "\n") concatenated with str of shelf a
concatenated with backslash n
20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else:
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated
with authors in position i
25 print ("The shelf S now contains: " + print The shelf S now contains:
str(shelf_s) + "\n") concatenated with str of shelf s
concatenated with backslash n
26

91

Part 3. Introduction to the for loop

print out the final shelves print out the final shelves

print ("The authors on the shelf A are: " + print The authors on the shelf A are:
str(shelf_a) concatenated with str of shelf a
print ("The authors on the shelf S are: " + print The authors on the shelf S are:
str(shelf_s) concatenated with str of shelf s

What are the new concepts in this code? Complete the following exercise to get some hints.

True or false?

1. We initialize an empty list by assigning a pair of square brackets T F
2. We can compose several slicings in one command T F
3. The method .append() and list concatenation perform two different actions T F
4. The special character "\n" creates an empty line after a print T F
Computational thinking and syntax
Let’s run the first cell:

authors = ["Alcott", "Saint-Exupéry", authors is assigned Alcott, Saint-Exupéry

"Arendt", "Sepulveda", "Shakespeare"] Arendt, Sepulveda, Shakespeare

The list authors is composed of five strings, each of them corresponding to the last name of a book
author. The last names start with either A or S.

Let’s run the second cell. The code is long, so we break it in pieces. Here are lines 1-3:

initialize the variables as empty lists initialize the variables as empty lists
shelf_a = [] shelf a is assigned an empty list
shelf_s = [] shelf s is assigned an empty list

We create two new lists, shelf_a and shelf_s, to which we assign a pair of empty square brack-
ets. Technically, we say that we initialize two empty lists—meaning that we create the two lists
shelf_a and shelf_s, but they don’t have any content yet. Why do we do that? We will answer this
qguestion when we analyze lines 18 and 24. So, let's keep going!

Let’s analyze lines 5-9:

for each position in the list for each position in the list

for i in range (len(authoxs)): for i in range len of authors
print out the current element print out the current element
print ("The current author is: " + print The current author is: concatenated
authors[i]) with authors in position i

We create a for loop to browse all the elements in the list authoxrs (line 6), and we print out a sentence
to keep track of the list element sliced at each iteration (line 9).

92

Chapter 12. What a mess at the bookstore!

Let’s continue with lines 11-13:

get the initial of the current author get the initial of the current author

author_initial = authors[i][0] author initial is assigned authors in
position i in position zero

print ("The author's initial is: " + print The author's initial is:

author_initial) concatenated with author_initial

At each iteration, we obtain the initial of the current author (line 12), and we print it out (line 13). How
do we get an author’sinitial? Let's focus on the right side of the assignment symbol—authors[i][0]—
atline 12. There are two pairs of square brackets, indicating two consecutive slicings. To understand
how this works, let’s substitute the variables with their corresponding values. In the first loop, i is 0;
thus, we get authors[0][@]. authors[@] is "Alcott",and "Alcott"[@] is "A". Similarly, in the second
loop, i is 1, thus we get authors[1]1[@]. authors[1] is "Saint-Exupéry", and "Saint-Exupéry"[0] is
"s". And so on. With the first pair of square brackets [i], we slice a list obtaining a string, whereas
with the second pair of square brackets [@], we slice a string obtaining a character. In summary,
when dealing with several consecutive slicings, we execute one at the time, starting from the left.
Note that string slicing works the same way as list slicing.

Let’s have a look at lines 15-25:

if the author's initial is A if the author's initial is A

if author_initial == "A": if author_initial equals A
add the author to the shelf a add the author to the shelf a
shelf_a.append(authors[i]) shelf a dot append authors in position i
print ("The shelf A now contains: " + print The shelf A now contains:
str(shelf_a) + "\n") concatenated with str of shelf a

concatenated with backslash n

otherwise (author's initial is not A) otherwise (author's initial is not A)
else: else:
add the author to the shelf s add the author to the shelf s
shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated
with authors in position i
print ("The shelf S now contains: " + print The shelf S now contains:
str(shelf_s) + "\n") concatenated with str of shelf s

concatenated with backslash n

We are still in the for loop whose header is at line 6, and we find an if/else construct. If the author’s
initial is equal to A (line 16), we append the current author authors[i] to the list shelf_a (line 18).
Then, we print out the current status of shelf_a (line 19). If the author’s initial is not A, then we go
to the else (line 22), and we concatenate the current author authors[i] to the list shelf_s (line 24).
Note that authors[i] is in between square brackets for type compatibility: authors[i] is a string,
so it must be transformed into a list to be concatenated to the list shelf_s (we learned this at cell 6
of Chapter 7). Finally, we print the current status of shelf_s (line 25). Let’'s now look at a few more
details.

At lines 18 and 24, we add an element to a list. In the first case, we use the list method .append(),
whereas in the second case, we use concatenation. The two approaches perform exactly the same
operation and can be used interchangeably.

At the end of the print commands at lines 19 and 24, you'll notice "\n". What's that? It's a special

93

Part 3. Introduction to the for loop

character that creates an empty line after a print. The backslash \ tells Python to consider n not as a
letter of the alphabet, but as a special character meaning new line. Printing an empty line is another
way to increase code readability in a for loop, in addition to printing loop titles (see Chapter 9, cell
2). You will see more special characters in the “in more depth” section of Chapter 27.

Finally, we can answer the question we asked at lines 1-3: why do we need to initialize shelf_a and
shelf_s as empty lists? Because it would be impossible to add new elements to a list that does not
exist!

As a general rule, when using a for loop to create and fill an empty list, we have to:

1. Initialize an empty list before the for loop
2. Concatenate or append new elements within the for loop

Let's conclude with lines 27-29:

print out the final shelves print out the final shelves

print ("The authors on the shelf A are: " + print The authors on the shelf A are:
str(shelf_a) concatenated with str of shelf a
print ("The authors on the shelf S are: " + print The authors on the shelf S are:
str(shelf_s) concatenated with str of shelf s

Above, we print out the final versions of the created lists—shelf_a (line 28) and shelf_s (line 29). In
both cases, we transform the list to a string using the built-in function str() to concatenate.

Finally, let’s look at the printouts:

The current author is: Alcott
The author's initial is: A
The shelf A now contains: ['Alcott']

The current author is: Saint-Exupéry
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry']

The current author is: Arendt
The author's initial is: A
The shelf A now contains: ['Alcott', 'Arendt']

The current author is: Sepulveda
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda']

The current author is: Shakespeare
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

The authors on the shelf A are: ['Alcott', 'Arendt']
The authors on the shelf S are: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

Each triplet of lines of code is printed during a for loop iteration. The first line is printed at line
9 (e.g., The current author is: Alcott), the second line is printed at line 13 (e.g., The author's
initial is: A), and the third line is printed at line 19 if the author’s initial is A (e.g., The shelf A

94

Chapter 12. What a mess at the bookstore!

now contains: ['Alcott']), oratline 25 is the author'sinitial is S (e.g., The shelf S now contains:
['Saint-Exupéry'). After each group of 3 lines, there is an empty line because of "\n" at the end of
the print commands at lines 19 and 25. The last two lines containing the final content of shelf_aand
shelf_s come from the prints at lines 28 and 29.

Finally, the code contains several comments and empty lines between blocks of code to improve
readability.

Let’s summarize what we learned about for loops! Given the following list:
hot_drinks = ["tea", "coffee", "hot chocolate"]

Connect each command with the correct output and the corresponding action:

1. for i in range (len(hot_drinks)): a. ['TEA', 'coffee', Y .create list elements
print (hot_drinks[i]) "hot chocolate']
2. for i in range (len(hot_drinks)): b. tea &.change list elements
if hot_drinks[i][@] == "c": coffee
print (hot_drinks[i]) hot chocolate
3. for i in range (len(hot_drinks)): C. ['coffee', 'hot chocolate'] M.print list elements
if len(hot_drinks[i]) == 3: one by one

hot_drinks[i] = hot_drinks[i].upper()
print (hot_drinks)

4. 1long_words = [] d. coffee A. find list elements
for i in range (len(hot_drinks)):
if len(hot_drinks[i]) >= 6:
long_words.append(hot_drinks[i])

print (long_woxds)

To create and fill a list in a for loop, we have to: (1) initialize an empty list before the for loop and
(2) fill the list using .append() or list concatenation in the for loop
String slicing works the same way as list slicing

In multiple consecutive slicings, we execute one slicing at a time, starting from the left

The special character "\n" creates an empty line after a print

95

Part 3.

Introduction to the for loop

96

When creating a new list within a for loop, a common mistake is to assign a new element to the
list instead of appending it or concatenating it. Let’s see what this means with the following

example. Here is the same list as the one used earlier in this chapter:

Let’s simplify the code by creating only the list containing author last names starting with A. To
show how an error can occur, at line 10 we assign authors[i] to the new list shelf_a, instead

authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

of appending it (or concatenating it). What happens to shelf_a throughout the code?

initialize the variable

shelf_a = []

for each position in the list

for i in range (len(authoxrs)):
get the author's initial
author_initial = authors[i][0]

if the author's initial is A

if author_initial == "A":
add the author to the shelf a
shelf_a = authors[i]

print ("The shelf A now
" + str(shelf_a))
print out the final shelves

"contains:

print ("The authors on the shelf A are:

initialize the variable

shelf a is assigned an empty list
for each position in the list

for i in range len of authors

get the author's initial

author initial is assigned authors
in position i in position zero

if the author's initial is A

if author_initial equals A

add the author to the shelf a
shelf a is assigned authors in
position i

print The shelf A now contains:
concatenated with str of shelf a
print out the final shelves

print The authors on the shelf A

are: concatenated with str of shelf
a

+ str(shelf_a)

Alcott
The shelf A now contains: Arendt
The authors on the shelf A are:

The shelf A now contains:

Arendt

Let’s go through the for loop and focus on the names starting with A:

e Wheniiso(line4), author_initialis "A" (line 6); the if condition is true (line 8), so we assign
authors[i]—thatis, "Alcott"—to shelf_a(line 10), and we print out The shelf A now contains:
Alcott (line 11). With the assignment at line 10, we implicitly transform shelf_a from a list—
which we initialized at line 2—into a string—because we assign it the string "Alcott".

e When i is 2 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), we
assign authors[i]—that is, "Arendt"—to shelf_a (line 10), and we print out: The shelf A
now contains: Arendt (line 11). In this case, in the assignment at line 10, we overwrite the
value "Alcott"—which we assigned in the previous loop—with the value "Arendt"; thus,
shelf_a remains a string.

At line 13, we print the final version of shelf_a, which is a string with value "Arendt".

In conclusion, assigning a variable to a list (e.g., shelf_a = authors[i]) changes the type of

the list itself to the variable type (e.g., shelf_a becomes a string). In addition, the value is

Chapter 12. What a mess at the bookstore!

overwritten at each loop, and the final value is the one assigned in the last loop. Thus, the
correct way to add elements to a list is either to append—e.g., shelf_a.append(authors[i])—
or concatenate—e.g., shelf_a = shelf_a + [authors[i]].

. For each of the following scenarios, create code similar to that presented in this chapter.

a. Selling electric cars. You work at a famous car company, and you have to ship new electric
cars that have just arrived. Your colleagues plated the cars destined to Spain and to Portugal,
but they mixed them up:
e_cars = ["PT-754J)", "ES-@096L", "PT-536G", "FR-543H", "PT-653H"]

Separate the two groups of cars according to their destinations.

b. Teaching English verbs. You are an English teacher for foreign students. Some of them have
difficulties understanding when a present verb is conjugated in the third person singular
(he/she/it), or in other persons (I/you/we/they). So you provide a list of verbs:
english_verbs = ["eat", "drink", "eats", "sleep", "drinks", "sleeps"]
and you help your students separate the verbs between third person and other persons.

. Desserts. Given the following list:
desserts = ["meringue", "apple pie", "eclair", "rice pudding", "chocolate",
"english pudding", "cake", "icing"]

Get all the initials, change them to uppercase, and concatenate them in a new list. Then invert
the list. What dessert do you get?

. Guess the jobs. Given the following list:

jobs = ["photog", "bal", "mu", "inve", "ambas", "si", "ler", "stig", "rapher", "ci",

na.tOI.n’ uinan, nanu’ llsadorn]

Group strings composed of 2, 3, 4, 5, and 6 letters in new lists. What jobs do you get? Make sure
that the first letter of each job is uppercase.

. Art. Given the following list:

art = ["apor", "refsscu", "atwat", "fetes", "erta", "jtylpt", "aprco", "srap",

"ruolo", "texture", "gitp", "puors"]
Create new lists for each of the following:

e If the string length is 4, then get two letters starting from the second (position 1)
e If the string length is 5, then get the third and fourth letters (positions 2 and 3)
e If the string length is at least 6, then get the last three letters

What art words do you get? Make sure all strings are uppercase!

97

PART 4

NUMBERS AND
ALGORITHMS

In this part, you will learn how to perform arithmetic operations, play with random numbers, and
implement your first algorithms. Ready? Let’s go!

In the previous chapters, you have developed quite a bit of computational thinking, so now you
are ready for numbers and algorithms! There is a general misconception that in order to be good
at coding one has to be good at math. However, that's not necessarily true, as you will see in the
coming chapters!

In this chapter, you will start becoming familiar with numbers in coding by implementing a calculator.
To do that, you first need to learn arithmetic operators in Python and how to ask a user for a number.
As in previous chapters, try first to solve the task by yourself and then compare your answer with
the code below. You will find the code also in Jupyter Notebook 13. Let’s start!

In Python, there are 7 arithmetic operations. Let’s quickly explore them one by one. Which ones do
you already know, and which ones are new?

1. Addition:
4 + 3 four plus three

;
To sum two numbers, we use the arithmetic operator +, pronounced plus. As you know, the same
symbol + is used as a concatenation symbol when merging strings or lists; in that case, it is pro-
nounced concatenated with.

2. Subtraction:

6 - 2 six minus two
4

To subtract one number from another, we use the arithmetic operator -, pronounced minus.

3. Multiplication:
6 *5 six times five
30
To multiply two numbers, we use the multiplication operator *, which is pronounced times. Note
that in Python (and in other programming languages), the multiplication symbol is different from the
symbol used in paper-and-pencil computations, which can be the cross symbol x or the mid-line dot
operator -.

4. Exponentiation:

2 ** 3 two to the power of three
8

To calculate the power of a number, we use the exponentiation operator **, which is pronounced to
the power of. The operation 2**3 corresponds to 22 in paper-and-pencil.

101

Part 4. Numbers and algorithms

5. Division:
10 / 5 ten divided by five
2.0
To divide a number by another number, we use a forward slash 7, and we pronounce it divided by.
Note that the result of a division is always a decimal number.

6. Floor division:

7 /1 4 seven floor division four
1
To execute a floor division, we use the operator 7/, composed of two forward slashes and pro-
nounced floor division. A floor division is a division where the result is rounded to the closest lower
integer. In this example, the result of the corresponding division 7 would be 1.75, thus the result of
the floor division is 1, which is the closest lower integer to 1.75. The word floor indicates that we
round the result down, that is—using a metaphor-to the floor of a house.

7. Modulo:

7 % 4 seven modulo four
3

To calculate a modulus, we use the operator %, which is pronounced modulo. This operation calcu-
lates a reminder (or modulus), which is the number needed to go back to the dividend after a floor
division. For example, from cell 6 we know that the result of the floor division 7//4 is 1. If we multi-
ply 1 (the result) times 4 (the divisor), we get 4 (4x1=4). To get to 7 (the dividend), we need 3, which
is the modulus (4+3=7). Note that modulo is the name of the operator, while modulus is the name of
the operation and a synonym for remainder. The modulus operation is used quite often in coding,
as you will see in the next chapter.

To summarize, Python provides seven arithmetic operators:
1 for addition (+)
1 for subtraction (-)

e 2 for the “multiplication family”, which are multiplication (*) and exponentiation (**)

e 3 for the “division family”, which are division (/), floor division (//), and modulo (%)

Note that the division operators can provide whole numbers or decimal numbers as results, indepen-
dently of the characteristics of dividend and divisor. Discover more nuance by solving the following
exercise. Test your answers in Python!

1. Theresult of a division is always a whole number (e.g., without decimals). For example, T F
the result of 11/5 is the whole number 2

2. The result of 7//2 is 3, but the result of -7//2 is -4. This is because the floor division T F
rounds to the closest lower integer

3. Theresult of 7.5 % 3 is 1.5. Therefore, the result of a modulus operation canbea T F
decimal number

102

Chapter 13. Implementing a calculator

When asking a user to input a number, it’s important to be careful about variable types. Let's see
what this means!

e Ask a user to input a number, assign it to a variable, and print out the variable:

number = input("Insert a number:") number is assigned input Insert a number:
print (number) print number
Insert a number: 9

9

We use the built-in function input () to ask the user to type a number, and we save the answer in
the variable number (line 1). Then, we print out the variable value (line 2). What type do you expect
the variable number to be? Let’s find out!

e Check the type of the variable number:

type (number) type number
str
To know the type of a variable, we use the built-in function type (), which takes a variable as an input
and returns its type. In the printout, we see that the type of number is str, which is an abbreviation for
string. But shouldn't 9 be an integer? Yes! However, number is a string because the built-in function
input () returns strings, regardless of what a user types on a keyboard (characters, numbers, or
symbols). To transform the value of number into an actual number that we can use in calculations,
we have to transform its type from string to integer.

e Transform number into an integer, print it out, and check its type:

number = int(number) number is assigned int of number
print (number) print number
type (number) type number

9

int

The built-in function int () takes a non-integer variable as an input and returns it as an integer. Note
that to actually transform a variable type, we need to reassign the output of the built-in function
int() to the variable itself (line 1). At line 2, we print numbex, which is still 9. However, this time
number is of type int, as we can see from type (number) at line 3. What if we want a decimal number?
In that case, we have to transform the variable type into float!

e Transform number into a float, print it out, and check its type:

number = float (number) number is assigned float of number
print (number) print number
type (number) type number

9.0

float

The built-in function float() takes a non-decimal variable as an input and returns it as a decimal.
Also in this case, we need to reassign the output of float () to the variable itself to actually change
the data type (line 1). From the print at line 2, we see that the variable number is now 9.9, that is, a

103

Part 4. Numbers and algorithms

decimal number. And from the command at line 3, we can see that number is now of type float. Let’s
close the circle, and go back to the variable number being a string! How would you do that?

e Transform number back into a string, print it out, and check its type:

number = str(number) number is assigned str of number
print (number) print number
type (number) type number

9.0

str

To transform a variable into a string, we use the built-in function stx (), which we learned in Chapter
8. Note that because we transform number into a string from a float (and not an integer), the value
is now 9.0—that is, it contains the decimal component.

Numerical variables can be of three types:
o Integers (whole numbers), used in computations
e Floats (decimal numbers), used in computations
e Strings, when we need numbers as text—for example, when concatenating them to strings

We finally know arithmetic operations in Python and how to ask a number to a user. So we are
ready to create a calculator! Where do we start? From the user inputs! Let's find out the inputs in
the following exercise.

Complete the following sentences with the inputs you need from a user to implement a calculator.
If you are not sure, think about what you yourself enter when using a calculator:

1. The first input is

2. The second input is

3. The third input is

e Ask the user for the first input, which is the first number. What type should it be?

first_number = input("Insert the first first_number is assigned input Insert the
numbexr:") first number:

first_number = float(first_number) first_number is assigned float of first_number
type (first_number) type first number

Insert the first number: 4
float

We ask the user to input the first number using the built-in function input (), and we assign the user’s
choice to the variable first_number (line 1). Then, we need to transform the type of first_number from

104

Chapter 13. Implementing a calculator

a string into a numerical type to perform calculations. Which type do we choose: integer or float?
If the user enters a whole number, we need to transform first_number into an integer. But what if
the user enters a decimal number? Then, we need to transform first_number into a float! So we go
for an inclusive solution, that is, transforming first_number into a float to comprehend both whole
numbers and decimal numbers. Thus, we use the built-in function float (), and we reassign to the
variable first_number (line 2). Finally, we print out first_numbex’s type to check that it's correct (line
3).

e Ask the user for the second input, which is the arithmetic operator:

operator = input("Insert an arithmetic operator is assigned input Insert an
operator:") arithmetic operator:
type(operator) type operator

Insert the arithmetic operator: +

str

We ask the user for an arithmetic operator and we save the value in the variable operator (line 1).
Because an arithmetic operator is a symbol, we keep it as a string, and we print out its type to check
for correctness (line 2).

e Finally, ask the user for the third and final input, which is the second number. What type should
it be?

second_number = float(input("Insert the second_number is assigned float of input
second number:")) Insert the second number:
type (second_number) type second number

Insert the second number: 3

float

As we did for first_number, we ask the user for the second number using the built-in function
input (). Then, we need to transform the user’s choice from string to float using the built-in function
float (). Instead of using two separate commands like we did at cell 13 (lines 1 and 2), we nest the
two built-in functions one into the other: we transform the user’s choice into a float before assign-
ing it to the variable second_number (line 1). Then, we print out the second_number’s type to make
sure that it's a float (line 2).

e Let’s write the core of the calculator! How would you do it? Try out some ideas before looking at
the implementation below:

if operator == "+": if operator is equal to plus
result = first_number + second_number result is assigned first number plus second
number

n_n.

elif operator == elif operator is equal to minus

result = first_number - second_number result is assigned first number minus second
number
elif operator == "*": elif operator is equal to times
result = first_number * second_number result is assigned first number times second
number
elif operator == "**": elif operator is equal to to the power of

result = first_number ** second_number result is assigned first number to the power
of second number

105

Part 4. Numbers and algorithms

elif operator == "/":
result = first_number / second_number

elif operator == "//":
result = first_number // second_number

elif operator == "%":
result = first_number % second_number

else:
print ("You didn't enter an

elif operator is equal to divided by
result is assigned first number divided by
second number

elif operator is equal to floor division
result is assigned first number floor
division second number

elif operator is equal to modulo

result is assigned first number modulo
second number

else

print You didn't enter an arithmetic

arithmetic operator") operator

print (result)
7.0

print result

The operation that our code will execute depends on the arithmetic operator entered by the user;
thus, we need to take into account all possibilities. To do that, we create a long list of conditions for
the arithmetic operator, with the corresponding calculations. We start by considering addition (lines
1 and 2). In the if condition, we check if the variable operator from cell 14 is equal to the symbol
+. Because operator is a string, we need to consider the addition operator as a string as well, so we
embed it in between quotes (i.e., "+") (line 1). In the subsequent statement, we calculate the sum
between the two numerical variables (first_number and second_numbexr) entered by the user, and we
assign the result to the variable result (line 2). Then, we consider subtraction (lines 3 and 4). We
structure the code as we did above: first, we write a condition where we check that the variable
operator is equal to the string "-" (line 3); then, we execute the difference between the two num-
bers entered by the user, and we assign the result to the variable result (line 4).

As you might have noticed, the condition at line 3 started with the keyword elif, which is an ab-
breviation for else if. We use elif when we check several conditions on one single variable, which
is operator in this case. We continue the code with a similar structure for the remaining arithmetic
operations (lines 5-14). When using an if/elif/else construct, make sure to always test code
under all conditions. To do that in our example, re-enter the variables first_number, operator, and
second_number for each condition and make sure that what gets printed is the one you expected.
We conclude the list of conditions with an else (line 15), which prints out a warning in case the user
did not enter a valid arithmetic operator (line 16). Finally, we print out the variable result to check
that our code is correct (line 17). Note that we print result at the end of the if/elif/else construct
instead of after each statement (lines 2,4,6,8,10,12,14) to avoid redundancy.

e Finally, let’s print out the result:

print (str(first_number) +
Lo

+ operator
+ str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result
4.0 + 3.0 =7.0

We print the result, concatenating first_number, operator, second_number, and result. Note that we

106

Chapter 13. Implementing a calculator

executing the code:

first input
first_number = float(input("Insert the
first number:")

operator
operator = input("Insert an arithmetic
operator:")

second input
second_number = float(input("Insert the
second number:"))

computations
if operator == "+":
result = first_number + second_number
elif operator == "-":
result = first_number - second_number

elif operator == "*":
result = first_number * second_number

elif operator == "**":
result = first_number ** second_number

elif operator == "/":
result = first_number / second_number

elif operator == "//":
result = first_number // second_number

elif operator == "%":
result = first_number % second_number

else:
print ("You didn't enter an
arithmetic operator")

print the result

print (str(first_number) + " " + operator
+ " " + str(second_number) + " = " +
str(result))

convert the numerical variables into strings for the concatenation.

Finally, let’s put it together our code to create a real calculator by merging all lines from the code
above into one single cell. This will allow us to run only one cell (instead of multiple cells) when

first input
first_number is assigned float of input
Insert the first number:

operator

operator is assigned input Insert an
arithmetic operator:

second input
second_number is assigned float of input
Insert the second number:

computations

if operator is equal to plus

result is assigned first number plus second
number

elif operator is equal to minus

result is assigned first number minus second
number

elif operator is equal to times

result is assigned first number times second
number

elif operator is equal to to the power of
result is assigned first number to the power
of second number

elif operator is equal to divided by

result is assigned first number divided by
second number

elif operator is equal to floor division
result is assigned first number floor
division second number

elif operator is equal to modulo

result is assigned first number modulo
second number

else

print You didn't enter an arithmetic
operator

print the result

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

When we merge code in one cell at the end of an implementation, we usually edit and clean it up
for better readability. In this example, we directly transform first_number in a float by nesting the
built-in function input() into the built-in function float() (line 2); we delete all the intermediate
prints (i.e., we remove line 3 from cell 13, line 2 from cells 14 and 15, and line 17 from cell 16); and

107

Part 4. Numbers and algorithms

we add comments (lines 1, 4, 7, 10, and 28) and lines spaces (lines 3, 6, 6, 27).

In this chapter, you learned the seven arithmetic operators. Sum up their characteristics in your own
words in the table below:

Arithmetic Operation Pronunciation
operator
+

*

k%

V4
%

e There are seven arithmetic operators in Python: +, -, *, ** / 7/, %

e Numbers can be represented by three data types: integers for whole numbers, floats for decimal
numbers, and strings as text

e To transform a variable into an integer, we use the built-in function int(); to transform a variable
into a float, we use the built-in function float ()

e To check the type of a variable, we use the built-in function type()

e We use the keyword elif to check multiple conditions on the same variable

Arithmetic expressions are combinations of arithmetic operations. As we do in paper-
and-pencil expressions, we execute operations in a specific order, which is summarized by
the acronym BEDMAS. First, we perform operations between brackets, then we compute
exponentiation, division, multiplication, addition, and subtraction. Here is an example:

6 +2 *3 six plus two times three
12

108

Chapter 13. Implementing a calculator

First we execute the multiplication, followed by the addition. Thus, we first calculate 2 * 3,
which is 6, and then 6 + 6, which is 12.

Here is another example:

(6 +2) * 3 open round bracket six plus two close round
bracket times three
24
First, we execute the operation between round brackets (6 + 2), which is 8, and then the

multiplication 8 * 3, which is 24. Note that brackets can only be round in coding.

. Math competition. You are holding a math competition where participants have to choose among
three envelopes and solve the arithmetic operation contained in the chosen envelope:

e If the participant chooses envelope 1, she will have to solve: (3 x 52 = 15)-(5-22)
e If the participant chooses envelope 2, she will have to solve: -1 x [(3-4 x 7) + 5]-23 x 24 = 6

e If the participant chooses envelop 3, she will have to solve: g’g:ggfg

Compute the solutions.

. Geometry tutoring. You are helping your neighbor’s kid with some geometry exercises. He has
to calculate the area and volume of a cylinder, and you want to test result correctness using
Python. Ask the kid for cylinder radius and height. Then calculate area and volume of a cylinder
using these formulas: area = 2712 + 27rh and volume = mr?h. Hint: What is the value of 7?
Assign it to a variable!

He also has to calculate surface and area of a cube of edge length ¢ = 4. He does not have the
right formulas, so you look for them on the internet. Write code to test whether his calculations
are correct.

. What's the temperature out there? You are traveling between Europe and North America, and you
need to pack the right clothes. Write a temperature converter, knowing that the relation between
Celsius and Fahrenheit degrees is C' = 5 + 9 x (F' — 32). Answer these two questions:

a. The temperature in Miami is 75°F. What is the temperature in Celsius?

b. The temperature in Lisbon is 17°C. What is the temperature in Fahrenheit?

109

14. Playing with numbers

Common operations with lists of numbers

Lists of numbers are one of the most used data structures in coding. They follow the same rules as lists
of strings—that is, we can use slicing and methods (e.g., .append(), .remove(), etc.) to manipulate
them. In this chapter, we will explore some typical tasks performed with lists of numbers. Open
Jupyter Notebook 14 and follow along. As we've done previously, try first to solve the task by
yourself: start by defining the expected solution, outline the steps to reach it, and then write the
code to solve it. When you are done, compare your implementation with the one proposed here.

1. Changing numbers based on conditions
One of the most common tasks in coding is changing numbers in a list based on some conditions.
Let’s have a look at this example!
e Given the following list of numbers:
numbers = [12, 3, 15, 7, 18] numbers is assigned twelve, three, fifteen, seven,
eighteen
We start with a list containing five integers.

e Subtract 1 from the numbers greater than or equal to 10, and add 2 to the numbers that are less
than 10:

for each position in the list for each position in the list
for i in range (len(numbers)): for i in range len of numbers
if current number >= 10 if current number is greater than or equal to ten
if numbers[i] >= 10: if numbers in position i is greater than or equal
to ten
subtract 1 subtract one

numbers[i] = numbers[i] - 1 numbers in position i is assigned numbexrs in
position i minus one

otherwise otherwise
else: else:
add 2 add two

numbers[i] = numbers[i] + 2 numbers in position i is assigned numbers in
position i plus two

print the final result print the final result
print (numbers) print numbers
[11, 5, 14, 9, 17]
We implement a for loop to browse all the elements of the list numbers (line 2). Then, we use an
if/else construct to define a condition and compute accordingly. If the current number—that is,
numbers[i]— is greater than 1@ (line 4), we subtract 1, and we reassign the result to numbers[i] (line

110

Chapter 14. Playing with numbers

6), similarly to what we saw in Chapter 11 (cell 2, line 10). If the current number is not greater than
or equal to 10, we jump to the else (line 10). Then, we add 2 to the current number, and we reassign
(line 12). Let’s see how this works step by step:

e In the first loop, i is @ (line 2). numbers in position @ is 12, which is greater than 10 (line 4), so we
subtract 1, obtaining 11, and we replace 12 with 11 by reassigning (line 7).

e In the second loop, i is 1 (line 2). numbers in position 1 is 3, which is not greater than or equal
to 10 (line 4), so we jump to the else (line 10). There, we add 2 to 3, obtaining 5, and we replace
3 with 5 by reassigning (line 12).

e Etc.

Finally, we print the obtained list to check its correctness (line 12).

2. Separating numbers based on conditions

Another very common task with lists of humbers is to separate numbers into new lists based on
given conditions. Let’s see an example here!

e Given the following list of numbers:

numbers = [2, 10, 7, 5, 0, 9] numbers is assigned two, ten, seven, five, zero,
nine

We start with a list containing six integers.

e Separate the numbers into two different lists—one for odd numbers, and one for even numbers:

initialize the empty lists initialize empty lists

even = [] even is assigned an empty list
odd = [] odd is assigned an empty list

for each position in the list for each position in the list

for i in range (len(numbexrs)): for i in range len of numbers

if the current number is even if the current number is even

if numbers[i] % 2 == 0: if numbers in position i modulo two equals zero
add it to the list even add it to the list even
even.append(numbers[i]) even dot append numbers in position i
otherwise otherwise
else: else:
add it to the list odd add it to the list odd
odd. append(numbexrs[i]) odd dot append numbers in position i
check the final results check the final results
print (even) print even
print (odd) print odd
[2,10,0]

[7,5,9]

We create two empty lists, one that will contain the even numbers (line 2) and one that will con-
tain the odd numbers (line 3). To fill them up, we need a for loop together with the list method
.append() (or with concatenation), as we learned in Chapter 13. Thus, we create a for loop that

111

Part 4. Numbers and algorithms

browses all the list numbers one by one (line 6). Then, we use an if/else construct to determine
whether each element of the list numbers will go to even or odd (lines 8-15). How do we decide if a
number is even or odd? We know that even numbers are divisible by 2, whereas odd numbers are
not. Thus, we can use the modulo, one of the seven arithmetic operators we learned in the previ-
ous chapter. When divided by 2, even numbers have a modulus (or remainder) equal to O, whereas
odd numbers don’t (the remainder is 1!). Therefore, if the remainder of the current list number (e.g.,
numbers[i]) divided by 2 is O (line 9), then we append numbexs[i] to the list even (line 11). Otherwise
(line 13), we append numbers[i] to the list odd (line 15). Finally, we print the two lists to check the
results (lines 18 and 19).

3. Finding the maximum of a list of numbers

A third very common task when dealing with lists of numbers is to find the maximum (or minimum)
number in a list. Try to find the maximum of the list below by yourself, drafting and experimenting
with code, before looking into the solution.

¢ Given the following list of numbers:

numbers = [2, -5, 34, 70, 22] numbers is assigned two, minus five,
thirty-four, seventy, twenty-two

e Find the maximum number in the list:

initialize the maximum with the initialize the maximum with the first element of

first element of the list the 1list

maximum = numbers[0] maximum is assigned numbers in position 0

for each position in the list for each position in the list starting from the

starting from the second second

for i in range (1, len(numbexs)): for i in range one len of numbers

if the current number is greater if the current number is greater than the

than the current maximum current maximum

if numbers[i] > maximum: if numbers in position i is greater than

maximum

assign the number to maximum assign the number to maximum

maximum = numbers[i] maximum is assigned numbers in position i
print the maximum of the list print the maximum of the list
print (maximum) print maximum

70

We create a variable called maximum that will contain the maximum number in the list, and we initialize
it with the first number in the list, which is numbers[@] (line 1). Then, we employ a for loop starting
from the second position to the last position of the elements in the list (line 5)—we do not start from
0 because it is not very meaningful to compare the value of numbers[0] (from the for loop) to itself
(assigned to maximum). Then, we check if the current number is greater than the maximum (line 8). If
so, we assign the number to the maximum (line 10). If not, we do not need to perform any action;
therefore, we can skip the else. Finally, we print out the maximum (line 13). In other words, we

112

Chapter 14. Playing with numbers

assign the first number of the list—that is, 2—to a variable that we call maximum (line 1). Then, we
compare all the subsequent numbers of the list to the value of maximum, and if the list number is
greater than maximum, we assign the list number to maximum (lines 5-10). When we look into each

iteration, this is what happens:

When i is 1, numbers[1] is -5, which is not greater than 2, so we don’t do anything.

When i is 2, numbers[2] is 34, which is greater than 2. Thus, 34 is the new maximum and we assign
it to the variable maximum.

When i is 3, numbers[3] is 7@, which is greater than 34. Thus, 70 is the new maximum and we
assign it to the variable. maximum

When i is 4, numbers [4] is 22, which is not greater than 70, so we don’t do anything. Since the for
loop is over, the value of maximum is 70, as we found in the previous iteration.

Finally, why do we initialize the variable maximum with the first element of the list and not with a very

small number? Consider the following example. Let's say we initialize maximum with a small number
like -999993. However, the current list could be -999993, such as [-999998, -999996, -999994],
so we won't be able to find the maximum of the list (i.e., -999994). When we look for a maximum,

picking a specific number as the initial maximum does not allow us to generalize our code. We want

to compare the numbers within the list.

To change a number in a list, we need to reassign the new value to the same list posi- T F
tion.

To calculate whether a number is divisible or multiple of another number, we used the T F
arithmetic operation floor division.

To calculate the maximum of a number in a list, we compare the list numbers witheach T F
other.

When dealing with lists of numbers, some of the basic tasks are:

Changing numbers in a list depending on conditions

e Separating numbers into new lists based on conditions

Finding the maximum (or minimum) number in a list

When naming variables, it's important not to use reserved words, that is, names of built-in
functions or keywords. How do we know if a name is a reserved word? And what happens if
we used it as a variable name? Consider the following example:

len = 10 len is assigned ten

print (len) print len
10

113

Part 4. Numbers and algorithms

We create a variable called 1en to which we assign the number ten. As you can see, the
variable name is colored green, which means it is a reserve word—we know that len() is a
Python built-in function, and that variable names are colored black (line 1). When we print the
variable, we do not encounter any issue (line 2). However, if we want to calculate the length
of a list in subsequent code, we get an error:

numbers = [1, 2, 3] numbers is assigned one, two,
three
len (numbers) len numbers
TypeExrror Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in
1 numbers = [1, 2, 2]

————> 2 len (numbers)
TypeExrror: 'int' object is not callable

The error message says: 'int' object is not callable, which means that we want to use
len as a function; instead, now 1len is an integer! In other words, by naming the variable
len (cell 1, line 1), we overwrote the function len with an integer, and we cannot use it as a
function anymore. To solve this issue, we have to restart the kernel, that is, we need to erase
all variables and start from scratch (see the in more depth section in Chapter 7).

1. Finding the minimum in a list of numbers. Given the following list of numbers:

numbers = [78, -900, 356, -103, 0, -78]

find the minimum number in the list.
2. Grouping numbers by position. Given the following list of numbers:

numbers = [4, 25, 7, -8, 59, 63, -10, 74]

separate the numbers in odd positions from the numbers in even positions using a for loop.
3. Number multiples. Given the following list of numbers:

numbers = [20, 24, 69, 15, 100, 16, 40, 80, 33, 57, 2, 200]

create a list for the numbers that are multiples of 10, a list for the numbers that are multiples of

3, and a list for the remaining numbers. Finally, delete the list numbers.
4. Longest and shortest string. Given the following list of strings:

dogs = ["labrador", "chihuahua", "basset hound", "bernese shepherd", "poodle",

"cocker spaniel"]
find the longest and the shortest strings. Print out the two strings and their lengths.
5. Summing numbers in a list. Given the following list of numbers:

numbers = [3, 5, 2]

114

Chapter 14. Playing with numbers

calculate the sum.

. Fibonacci sequence. The Fibonacci sequence is a sequence of numbers where the current number
is the sum of the two previous numbers. Write code that asks the user for a number n and prints
out the Fibonacci sequence of n.

Hint: Start the sequence as [1,1]
Example:

e User input: 10
e Output: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

115

15. Fortune cookies

The Python module random

Let’s continue our discovery of numbers in Python by learning how to generate random numbers.
Randomness is quite useful in coding, for example to create games or in scientific simulations. Read
the following example and try to understand it. You can play with the code in Notebook 15. Let's

start!

e You are at a Chinese restaurant, and at the end of the meal, you get a fortune cookie. There are
only three fortune cookies left. Each of them contains a message:

fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune_cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land is
always on the mind of a flying bird

e Which fortune cookie will you get? Let the computer decide! To do so, the computer needs a

Python module called random:

import random

e Here is your message when the computer picks an index:
pick a message index
message_index =
random.randint (@, len(fortune_cookies)-1)

print(message_index)

get the message
message = fortune_cookies[message_index]

print(message)

import random

pick a message index

message index is assigned random
dot randint zero len of fortune
cookies minus one

print message index

get the message
message is assigned fortune
cookies at message index

print message

e And here is your message when the computer directly picks an element:

pick a message
message = random.choice(fortune_cookies)

print(message)

True or false?

1. import is a function
random is a Python module

2
3. .randint() and .choice() are functions of the package random
4. The arguments of the functions .randint() and .choice() are of type string

pick a message
message is assigned random dot
choice fortune cookies

print message

- =4 44+
m M M M

Chapter 15. Fortune cookies

Let’s begin by running the first cell:

fortune_cookies = ["The man on the top of the fortune_cookies is assigned The
mountain did not fall there", "If winter comes, man on the top of the mountain did
can spring be far behind?", "Land is always on not fall there, If winter comes,
the mind of a flying bird"] can spring be far behind?, Land is

always on the mind of a flying bird

The variable fortune_cookies is a list containing 3 strings.
Let’s continue with the second cell:

import random import random

We use the keyword impoxt to import the module xrandom. What does this mean? As you know,
Python contains basic built-in functions, such as print(), input(), len(), range(), etc. However,
when we code, we often need tools for recurrent tasks, such as generating random numbers, brows-
ing directories, computing statistics, etc. For this reason, Python contains additional units called

modules. We will talk about modules in greater detail in Chapter 32. For now, let’s keep in mind this
definition:

A module is a unit containing functions for a specific task

Because in Python there are plenty of modules—which could slow down our computer if imported
all at once—we usually import only the module (or modules) that we are planning to use. To import
a module, we use the keyword import followed by the module name.

Let's now run cell number 3:

pick a message index pick a message index
message_index = message index is assigned random
random.randint (@, len(fortune_cookies)-1) dot randint zero len of fortune

cookies minus one

print(message_index) print message index

get the message get the message

message = fortune_cookies[message_index] message is assigned fortune
cookies at message index

print(message) print message

2
Land is always on the mind of a flying bird

The module random contains several functions, and in this cell we use .randint () (line 2). As you can
see, the syntax to call a module function is as follows: (1) module name; (2) dot; (3) function name;
and (4) function inputs in between round brackets. The function .randint() takes two integers
as inputs—which we can we call a and b (.randint(a,b))—and returns a random number between
them included—that is, a and b can be the generated random number. In our example, we want to
pick a random number representing the index (or position) of an element in the list fortune_cookies.
Thus, we could write .randint(@,2). But what if we added or removed some strings to or from the
list? We would have to manually change the endpoint b, and this could be prone to error! Similarly

117

Part 4. Numbers and algorithms

to what we do for the stop in a for loop, we parameterise b, that is, we write b as a function of
the length of a list. Thus, we type len(fortune_cookies), from which we subtract 1 because list
indexes start from zero (i.e., 1en(fortune_cookies) is 3, but the index of the last element is 2). After
creating the random number, we assign it to message_index, and we print it (line 3). Finally, we slice
the list fortune_cookies in position message_index to extract a string containing that we assign to
the variable message (line 6) and print to the screen (line 7). One last note: try to run the cell several
times. What happens? Every time .randint() returns a different number (O, 1, or 2), and thus we
get a different fortune cookie message!

Let's have a look at the last cell:

pick a message pick a message

message = random.choice(fortune_cookies) message is assigned random dot
choice fortune cookies

print(message) print message

The man on the top of the mountain did not fall there

In this case, we use another function from the module random called .choice(), which takes a list as
an input and returns a randomly selected element of the list (line 2). Finally, we print the message
(line 3).

What is the difference between .choice() and .randint()? When using .choice(), we do not
know the position of the element the computer randomly selects, whereas when using .randint(),
we know where the element is in the list.

. module name, dot, function name()
. returns a random element from a list

In range(start, stop, step)

In .randint(a,b)

The function .randint(a,b)

The function .choice(1list)

The syntax to use a string or list method is
The syntax to use a function from a mod-

. stop is excluded
. variable name, dot, method name()
. the endpoint b is included
returns a random integer between a and

S A R o
SO O 0 T o

ule is b (included)

118

Chapter 15. Fortune cookies

e A module is a unit containing functions for a specific task.

To import a module, we use the keyword import. Imports are usually written at the beginning of
code, and only once.

When calling a module function, we use the following syntax: module_name.function_name()
e random is a module to generate random numbers. It contains several functions, including:

- .randint(a,b): returns a random integer between the endpoints a and b (included)

- .choice(list_name): returns an element of a list

As we know from the previous chapters, in a for loop, the variable i changes its value from the
start to the stop (minus 1!) of the interval created by the function range (). Within the loop,
we use i to either print out the current loop number (e.g., print ("This is loop number " +
str(i))) or to automatically slice list elements (e.g., print (friends[i])). However, in some
cases, we do not need i. Let’s look at an example:

import random import random
repeat the commands 3 times (index not repeat the commands 3 times (index
needed) not needed)
for _ in range (0,3): for underscore in range from zero
to three
create a random number between 10 create a random number between ten
and 20 and twenty
random_number = random.randint(10,20) random_number is assigned random
dot randint ten twenty
print the number print the number
print ("The random number is" + print The random number is
random_number) concatenated with random_number

The random numbers is: 14
The random numbers is: 17
The random numbers is: 12

We use a for loop to generate and print three random numbers (lines 4-8). As you can see,
we use the for loop to repeat commands that do not contain i. In this case, it is a Python style
convention to substitute i with an underscore (i.e., _) in the header of the for loop (line 4), to

signal that we do not need an index in the loop. Using i in the loop header would not be an
error, but it would decrease code readability for other Python coders.

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Tossing a coin. What are the possibilities when tossing a coin? Write them in a list. Then,
toss the coin, once using .randint () and once using .choice(). What do you get?

119

Part 4. Numbers and algorithms

120

b. Rolling dice. What are the possibilities when rolling a die? Write them in a list. Then, roll the
die, once using .randint() and once using .choice(). What numbers do you get? Finally,
choose one method and roll the die three times. What numbers do you get?

Ten random numbers. Create a list of 10 random numbers between 0 and 100 using a for loop.

Unique random numbers multiple of a number. Create a list of 100 random numbers between 5
and 60. Divide them into two lists depending on whether they are a multiple of 4 or not. Then,
create another list called unique, where you add unique multiples of 4 from the previous list. This
means that, for example, that if 42 is present more than once, it will appear only once in unique.
If the number is already present in unique, print out a sentence like: The number x is already in
unique. How many unique multiples of 4 could you generate randomly?

Playing with prime numbers. Create a list of 150 random numbers between 50 and 100, and divide
them into lists depending on whether they are multiple of the prime numbers 2, 3, 5, or 7 (a
number can be added to more than one lists if it is multiple of several prime numbers). Then, sum
up all the elements for each list separately (do not use built-in functions you might find online).
Is each sum a multiple of the original prime number? That is, is the sum of all the multiples of 3
a multiple of 3 itself?

Everybody knows the game rock paper scissors! Kids in every corner of the world play this game
originating at least 2,000 years ago in Chinal. In this chapter, we will learn how to implement this
game in Python. How would you do it? Write your ideas in the next exercise and try to write your
own implementation. Then, have a look at the computational solution below, implemented also in
Notebook 16.

Think about three steps you need to implement rock paper scissors and write them below. Consider
that you will play against the computer: it will pick either paper, rock, or scissors, and you will do
the same. Who wins?

In the first step, the computer picks among paper, rock, and scissors. How? Let’s have a look at the
code below.

e Make the computer pick rock, paper, or scissors:

impoxt random impoxt random

1list of game possibilities list of game possibilities

possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,
scissors

computer random pick computer random pick

computer_pick = random.choice(possibilities) computer_pick is assigned random dot
choice possibilities

print(computer_pick) print computer pick

rock

We import the package random, which we learned in the previous chapter (line 1). Then, we create
a list containing the possible choices—that is, the three strings "rock", "paper" and "scissors" (line
4). We use the function .choice() from the package random to randomly pick an element from the
list possibilities. Finally, we save the pick in the variable computer_pick (line 7) and we print it out
(line 8). In this case, the computer_pick is rock.

https:/en.wikipedia.org/wiki/Rock_paper_scissors

121

Part 4. Numbers and algorithms

In the second step, it's the player’s turn to choose among rock, paper, and scissors. Let's have a look
below.

e Make the player choose among rock, paper, or scissors:

asking the player to make their choice asking the player to make their choice
player_choice = input ("Rock, paper, or player choice is assigned input rock,
scissors?") paper, or scissors?
print(player_choice) print player choice

rock, paper, or scissors? rock

rock

We use the built-in function input to ask the player to choose among rock, paper, or scissors, and
we save the choice in the variable player_choice (line 2). Then, we print it out as a check (line 3). In
our example, the player chooses rock.

It's time to determine who wins! How do we do it? The computer has three possible picks, and so
does the player. Thus, there are nine possible scenarios. How do we code them without forgetting
any? One option is to define three situations where the computer’s pick is fixed and the player’s
choice varies. Let’s see the implementation!

e If the computer picks rock:

if computer_pick == "rock": if computer pick equals rock

compare to the player's choice compare to the player's choice

if player_choice == "rock": if player choice equals rock
print("Tie!") print Tie!

elif player_choice == "paper": elif player choice equals paper
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

Tie!

We start with an if condition to check if the computer pick equals "rock" (line 1). Then we evaluate
the player’s choice. If the player’s choice equals "rock" (line 4), then we print that it’s a tie (line 5).
If the player’s choice equals "paper" (line 6), then we print that the player wins (line 7). Finally, in
the remaining case—the player’s choice is "scissors"—(line 8), we print that the computer wins (line
9). The code is very simple: an if condition containing an if/elif/else construct with prints in the
statements. As you can see, we print a message directly to the player, not to the coder. You might
remember that when we code, we alternate two hats: the coder hat or the player hat (see page
14). If we print "The player wins" (line 7), we tell the coder that the code works. But if we print
You win!, we talk to the player, who is the person we are coding for! Think about when you play a
computer game: what kind of messages do you get?

In an if/elif/else construct, it is important to test all conditions. We want to make sure that all
statements execute correctly, as we mentioned when we implemented a calculator (Chapter 13).

122

Chapter 16. Rock paper scissors

What does testing mean exactly?
Testing means to evaluate and verify that the code does what it is supposed to do

How do we test the code in this example? We rerun cell 2—where we ask the player to choose
among rock, paper, and scissors—two times: once entering paper and once entering scissors. After
each run, we rerun cell 3 to check that the corresponding printout is correct. It is important to enter
the strings in the same order as they appear in the conditions: first rock, then paper, and finally
scissors. Keeping the same order helps us make sure that we test all conditions, without skipping
any.

Sometimes testing is confused with debugging, but they are two very different concepts. You might
have heard the word debugging many times. What is its exact meaning?

Debugging means identifying and removing errors from code

Debugging is a bit of a detective job. When we get error messages, or we do not obtain the result
that we expect, we need to understand where the error is so that we can fix it. A very common way
to debug is to print variables after every line of code, to check the value they are assigned. When
the variable value is not the expected one, that's where the error happens! Once we have found
the error, we can fix it, and then we can keep coding. To understand further why we use the word
debugging, read the "in more depth” section at the end of this chapter.

Let’s continue implementing rock paper scissors, looking at the second computer pick possibility.

e If the computer picks paper:

if computer_pick == "paper": if computer pick equals paper

compare to the player's choice compare to the player's choice

if player_choice == "paper": if player choice equals paper
print("Tie!") print Tie!

elif player_choice == "scissors": elif player choice equals scissors
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

The structure of the code is the same as in the previous cell: an if condition (line 1) containing an
if/elif/else construct (lines 4-9). What changes are the terms of comparison—that is, the strings—
in the conditions: we check if the computer picks "paper", and we change the conditions for the
player according to the printed messages.

When we write code with a repetitive structure—like in our example—it is crucial to use parallelism.
What is parallelism?

Parallelism means maintaining a corresponding structure
for subsequent lines or blocks of code

123

Part 4. Numbers and algorithms

In our example, we can either keep the conditions in the same order—e.g., the first term of comparison
is always "rock", the second is always "paper", and the third is always "scissors"—or we can keep
the statements in the same order—that is, the first message is always "Tie!" (line 5 in both cells 3
and 4), the second is always "You win!" (line 7 in both cells), and the third is always "The computer
wins!" (line 9 in both cells). Parallelism helps us remember to list all conditions in every construct,
and it improves code readability.

Once more, let’s not forget to test all conditions. We first have to make sure that the computer pick
is paper. Since we have only three options, a simple way is to rerun cell 1 until we get what we need—
that is, "paper". Then, we re-run cells 2 and 4 three times, each time entering the player choice and
testing the corresponding print, in the same order as in the if/elif/else construct. In other words,
first we enter "paper" at cell 2, and run cell 4 to test lines 4-5. Then, we enter "scissors" at cell 2,
and run cell 4 testing lines 6-7. And finally, we enter "scissors" at cell 2, and run cell 4 to test lines
8-9.

Let’s finally look into the third scenario.

e If the computer picks scissors:

if computer_pick == "scissoxrs" if computer pick equals scissors

compare to the player's choice compare to the player's choice

if player_choice == "scissors": if player choice equals scissors
print("Tie!") print Tie!

elif player_choice == "rock": elif player choice equals rock
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

Also in this last case, the code structure is similar: an if condition (line 1) nesting an if/elif/else
construct (lines 4-9). We check if the computer picked "scissors" and if the player chose "scissors"
(line 4), "rock" (line 6), or "paper" (the else in line 8). As in cell 4, we construct the conditions so
that the print statements are parallel to the conditions in cell 3. Finally, once more, we want to make
sure we test the code. Thus, first we re-run cell 1, making sure that the computer_pickis "scissors".
Then, we re-run cells 2 and 5, subsequently entering and testing for "scissors", "rock", and "paper".

Note that we considered a well-behaved player, that is, a player that enters rock, paper, or scissors
correctly, without any misspelling. We will assume that we are dealing with well-behaved players
in all coming chapters to focus on coding syntax and thinking. We will learn to check for input
correctness in Chapter 30.

At this point, the code is completed! As coders, we have taken care of the various parts of the code,
writing and testing them. Now it's time to put all the code together for the player!

124

Chapter 16. Rock paper scissors

Merging the code

e Let’s merge the code:

A W N -

Ul

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
21
12
33
34
35
36
37
38
39
40

import random

1ist of game possibilities

possibilities = ["rock", "paper", "scissors"]

computer random pick

computer_pick = random.choice(possibilities)

asking the player to make their choice
player_choice = input ("Rock, paper, or
scissors?")

determine who wins
if the computer picks rock

if computer_pick == "rock":
compare to the player's choice
if player_choice == "rock":
print("Tie!")
elif player_choice == "paper":
print("You win!")
else:

print("The computer wins!")

if the computer picks paper
if computer_pick == "paper":
compare to the player's choice

if player_choice == "paper":
print("Tie!")

elif player_choice == "scissors":
print("You win!")

else:

print("The computer wins!")

if the computer picks scissors

if computer_pick == "scissors"
compare to the player's choice
if player_choice == "scissors":
print("Tie!")
elif player_choice == "rock":
print("You win!")
else:

print("The computer wins!")

Rock, paper, or scissors? rock
You win!

import random

list of game possibilities
possibilities is assigned rock, paper,
scissors

computer random pick

computer_pick is assigned random dot
choice possibilities

asking the player to make their choice
player choice is assigned input rock,
paper, or scissors?

determine who wins

if the computer picks rock

if computer pick equals rock
compare to the player's choice
if player choice equals rock
print Tie!

elif player choice equals paper
print You win!

else:

print The computer wins!

if the computer picks paper

if computer pick equals paper
compare to the player's choice

if player choice equals paper
print Tie!

elif player choice equals scissors
print You win!

else:

print The computer wins!

if the computer picks scissors
if computer pick equals scissors
compare to the player's choice
if player choice equals scissors
print Tie!

elif player choice equals rock
print You win!

else:

print The computer wins!

When merging code, we usually do some editing to improve code use and readability. In this case,
we erased the print of computer_pick (which was in cell 1, line 8) because we do not want the
player to know the computer choice in advance. Similarly, we delete the print of player_choice
(which was in cell 2, line 3), as the player already sees their choice from the entry at line 9. Other

125

Part 4. Numbers and algorithms

editing might include improving comments, making variable names more meaningful, restructuring
parts of the code, etc.

Let’'s now zoom out and observe the procedure we use to implement the game. We first defined
three steps (see the exercise Complete the sentences). Then, we implemented each step separately
(see paragraphs 1. Computer pick, 2. Player choice, and 3. Determine who wins). Finally, we merged
all the code together and edited it (see Merging the code). This way of approaching a task is called
divide and conquer.

Divide and conquer means dividing a project into sub-projects, solving the sub-projects, and
combining the solutions of the sub-projects to obtain the solution of the original project

In other words, there are three steps to solve a computational (but not strictly computational!) task:

1. Break the project into subprojects
2. Solve the subprojects separately
3. Merge the solutions of the subprojects to obtain the solution of the whole project

Last but not least, let’s talk about algorithms! You have surely heard this word many times. What is
an algorithm?

An algorithm is a sequence of rigorous steps to execute and complete a task

Algorithms are just procedures to solve tasks, problems, or assignments. They do not have to be
complicated. They can actually be pretty simple. There are plenty of algorithms in everyday life!
Think about the sequence of steps you make to brush your teeth: taking the toothpaste tube, open-
ing and squeezing it, placing toothpaste on the toothbrush, etc. This is an algorithm! Or think about
cooking recipes, especially printed recipes. At the top, there is a list of ingredients (e.g., 2 carrots,
3 onions), which are the variables (e.g., carrots = 2, onions = 3). Then, there is the execution of
the recipe, that is, the steps to process the ingredients into the final dish. In programming, many al-
gorithms have been developed in the past few decades. The most famous algorithms were designed
to sort lists, find prime numbers, find elements in a list, etc. We will not look into them in this book,
but you can find plenty of examples and explanations in more advanced books and on the internet.

126

Chapter 16. Rock paper scissors

In this chapter, you learned several more important concepts in coding. Write their definitions in
your own words:

Concept Definition
Testing

Debugging

Parallelism

Divide and conquer

Algorithm

e An algorithms is a sequence of steps to execute a task
e When writing an algorithm (and code in general), we largely use parallelism, testing, debugging,
and divide and conquer

Do you know why we say debugging, divide and conquer, and algorithms? The term debugging
originated in 1947, when a moth was found in a relay of Mark Il computer at Harvard Uni-
versity, causing the computer to malfunction. The moth was then taped to a log sheet, with
the annotation Relay 70 Panel F (moth) in relay. First actual case of a bug being found (see figure
below). Although the word debugging is not mentioned in the annotation, it became popu-
lar thanks to Grace Hopper, who worked on the same computer®:?. Divide and conquer is at-
tributed to Philip Il of Macedon, and it was reused by the Roman ruler Julius Caesar, the French
emperor Napoleon, and many more€. It refers to a military strategy where the invaders divide
the enemy forces to defeat them more easily and conquer them as a whole. Finally, the term
algorithm derives from al-Khwarizmi, the last name of Muhammad ibn Musa al-Khwarizmi, a
9th-century Persian mathematician and astronomer whose books were widely read in Europe
in the late Middle Ages. He wrote a book on the Hindu-Arabic numeral system, which was
translated into Latin in the 12th century. The latin manuscript starts with the phrase Dixit
Algorizmi ("Thus spoke Al-Khwarizmi”), where "Algorizmi” was the translator’s Latinization of

Al-Khwarizmi’s last name?.

Ihttps:/en.wikipedia.org/wiki/Debugging
Phttps:/en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Divide_and_rule
https:/en.wikipedia.org/wiki/Algorithm

127

Part 4. Numbers and algorithms

; qz'ak | #70 q)cum_ ¥
Gﬂo‘f‘mu?t\n rz\qu\ : ‘

b0, Qﬂﬁr_ﬁ Q:::;‘J.QSe_ o-f bucl Le.'n“ {oqwj\,
ooe | A LA

The page of the log from the Mark Il with the moth taped on it. It dates 9 September 1947.
The time is 15:45 as visible on the top left. The log book is at the Smithsonian Institution’s
National Museum of American History in Washington, D.C., United States.

Let’s code!

1. Trivia night!. Trivia is a quiz game where players have to answer questions about various subjects.
For this implementation of Trivia, prepare 3 questions and their corresponding answers for 3
different topics. Ask the player to pick a topic, and then ask a randomly picked question about
that topic. Finally, tell the player whether the answer is correct. If not, print out the correct
answer. Here are some hints:

e How do you organize your questions and answers? What Python data types do you use?
What is the sequence of actions you need to perform? Write them down before coding. You
can always update them while implementing
How do you test that your code is correct?

Remember to divide and conquer!

128

PART 5

THE WHILE LOOP
AND CONDITIONS

In part 5, you will learn the last construct in coding: the while loop. You will also learn various types
of conditions that you can use in while loops and if/elif/else statements. Let’s go!

17.

The while loop

Do you want more candies?

In coding, there are three constructs: if/elif/else, for loops, and while loops. You have now

mastered the first two, and in this chapter, you will finally learn the while loop! Read the code

below, and try to understand what it does. Follow along with notebook 17!

10
11
12
13
14
15
16
17

18
19
20

21
22
23

initialize variable
number_of_candies = 0

print the initial number of candies
print("You have " + str(number_of_candies) +
" candies")

ask if one wants a candy
answer = input ("Do you want a candy?
(yes/no)")

as long as the answer is yes
while answer == "yes":

add a candy
number_of_candies += 1

print the current number of candies
print("You have " + str(number_of_candies)
+ " candies")

ask again if they want more candies
answexr = input ("Do you want more

candies? (yes/no)")

print the final number of candies
print("You have a total of" +
str(number_of_candies) + " candies")

initialize variable
number_of_candies is assigned zero

print the initial number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask if one wants a candy
answer is assigned input Do you want a
candy? (yes/no)

as long as the answer is yes
while answer equals yes:

add a candy
number_of_candies is incremented by one

print the current number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask again if they want more candies
answer is assigned input Do you want
more candies? (yes/no)

print the final number of candies

print You have a total of concatenated
with str number of candies concatenated
with candies

Complete the following exercise to start getting to know the syntax and functionality of thewhile loop!

True or false?

1. whileis a variable

ok e

The while loop header contains a condition

The variable answer appears 2 times in the code
The variable number_of_candies increases by one unit at each loop

The while loop continues as long as the player inputs yes and stops when the player

inputs no

T F
T F
T F
T F
T F

131

Part 5.

The while loop and conditions

Computational thinking and syntax

Let’s run the cell, and let’s analyze the code in two separate blocks. We'll start with the first block:

1
2
3
4
5

initialize variable
number_of_candies = 0

print the initial number of candies
+ str(number_of_candies) +

print("You have
" candies")

initialize variable
number_of_candies is assigned zero

print the initial number of candies
print You have concatenated with str
number of candies concatenated with
candies

We create a variable called number_of_candies and initialize it to @ (line 2). This variable will keep
count of the number of candies we want. It is a very important variable, and we will talk about it
again when analyzing the second block of code. At line 5, we print out the number of candies we

have, which is zero.

Let’s look into the next block, which is the core of the whole code:

7
8

10
11
12
13
14
15
16
17

18
19
20

21
22

ask if one wants a candy
answer = input ("Do you want a candy?
(yes/no)")

as long as the answer is yes
while answer == "yes":

add a candy
number_of_candies += 1

print the current number of candies
print("You have " + str(number_of_candies)

+ " candies")

ask again if they want more candies
answer = input ("Do you want more
candies? (yes/no)")

print the final number of candies
print("You have a total of" +
str(number_of_candies) + " candies")

You have @ candies

Do you want a candy? (yes/no) yes

You have 1 candies

Do you want more candies? (yes/no) yes
You have 2 candies

Do you want more candies? (yes/no) no
You have a total of 2 candies

ask if one wants a candy

answer is assigned input Do you want a
candy? (yes/no)

as long as the answer is yes
while answer equals yes:

add a candy
number_of_candies is incremented by one

print the current number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask again if they want more candies
answer is assigned input Do you want
more candies? (yes/no)

print the final number of candies

print You have a total of concatenated
with str number of candies concatenated
with candies

Let’s see how the while loop works. We ask the player whether they want a candy, and we save
the reply in the variable answer (line 8). Then, we continue with the while loop header, which says

something like: as long as the variable answer is equal to yes, do the following (line 11): add a unit to
the variable number_of_candies (line 14); print out the current number of candies (line 17), and ask

132

Chapter 17. Do you want more candies?

again the player if they want more candies (line 20). Then, we go back to the while loop header (line
11). If the answer at line 20 was yes, we'll do the same as above, that is: add a unit to the variable
number_of_candies (line 14); print out the current number of candies (line 17), and ask again the
player if they want more candies (line 20). Then, we will go back to the while loop header again (line
11). If the answer at line 20 was yes again, we will do the same as above once more, that is: add
a unit to the variable number_of_candies (line 14), ... We'll keep doing this as long as the variable
answer is equal to yes. What if the player answers no at line 20? When we go back to the while loop
header (line 11), the condition is not valid anymore, because answer is not equal to yes! So the loop
stops, and we go directly to the first line after the while loop body (line 23). There, we print out the
total number of candies.

Let’'s now look into the syntax. The while loop starts with a header (line 11), which is composed
of three parts: (1) the keyword while, (2) a condition, and (3) colon : (every construct header ends
with a colon!). In this example, we check whether the value assigned to the variable answer equals
the string "yes". We will see other kinds of conditions in the next chapter. After the header,
there is the body of the while loop (lines 13-20). The body is indented, similarly to the for loop
body and if/elif/else statements. Let's now focus our attention on two variables: answer and

number_of_candies.

How many times do you see the variable answer and where? answer is in three different places: (1)
before the while loop (line 8), (2) in the condition of the while loop, and (3) in the body of the while
loop. Why do we need it three times? Before a while loop, we always have to initialize the variable
contained in the condition of the while loop header; otherwise, we cannot evaluate the condition
itself when the loop starts. In our example, we initialize answer with the first player’s answer (line
8). Then, we have to check the condition involving the variable answer. In this case, we check if
answer is equal to yes (line 11). Finally, we have to allow the variable to change (line 20), so that the
loop can terminate; otherwise, the loop will keep going indefinitely. Sooner or later, we all forget
this last part, and we get into an infinite loop! If that happens to you, just stop the cell (if it takes
too long, restart the kernel!)

Let’s finally look into the variable number_of_candies. How many times do you see it and where?
number_of_candies is in two places: (1) before the while loop, where it is initialized (line 2), and
(2) in the while loop, where it is incremented by one unit at every loop (line 14). The variable
number_of_candies is generally called counter because it keeps count of the number of loops. The
symbol += is an assignment symbol, and we can pronounce it as incremented by. It is a compact way
of writing number_of_candies = number_of_candies + 1. For any arithmetic operator, there is the
associated assignment operator, that is, -= (decrease by), *= (multiply by and reassign), /= (divide by
and reassign), etc. Note that in assignment operators, the symbol = is always in the second position,
after an arithmetic operator.

133

Part 5. The while loop and conditions

What is the difference between a for loop and a while loop? In Chapter 8, we defined the while loop
as follows:

A for loop is the repetition of a group of commands
for a determined number of times

In a for loop, we know exactly how many times we are going to run the commands in the loop body.
Conversely, in a while loop we do not know how many times we are going to run the commands in
the loop body because the duration of a while loop depends on the validity of the condition in the
header. Let’s define the while loop and summarize its characteristics:

A while loop is the repetition of a group of commands
as long as a condition holds

A while loop stops when the condition in the header is not true anymore. We always have to give
the variable in the condition the possibility to change so that the condition in the header can be false
and the loop can stop. If the variable in the condition (answer in our example) cannot change in the
while loop body, then we will get an infinite loop. Finally, to know how many times we run the loop,
we can use a counter (number_of_candies in our example) to keep track of the number of iterations.
The presence of a counter is not compulsory.

So far, you have learned several operators: arithmetic, assignment, and comparison operators. Insert
each symbol in the right column:

+ == *= < / * <= = //=’ /=,//’ !:y -=, -, +=’ >=’%=, **’%’ **=’>

Arithmetic operators Assignment operators Comparison operators

134

Chapter 17. Do you want more candies?

A while loop is the repetition of a bunch of commands as long as a condition holds

The variable in the condition must be initialized before the condition. It also has to change some-
where in the loop body so that the loop can stop when the condition does not hold anymore

A while loop can have a counter. Counters keep track of the number of loops and must be initial-
ized before the loop header

When updating a variable with an arithmetic operation, we can use the corresponding assignment
operator, that is, +=, -=, etc.

What steps do we do when writing an email? We start with recipient’s address and email
subject, then we continue with the salutation, the body of the email, greetings, and we finish
with signature (an algorithm, isn’t it?). Once we are done, we read the email again for a check.
We correct some misspellings, and we quickly edit a few things here and there. Often, we go
deeper: we reformulate some sentences or we completely rearrange some paragraphs. With-
out realizing it, we have gone through the email a couple of times! Now, think about the steps
we make when writing code. First, we write the imports, the variables, and the implementation
of an algorithm. Then we test it to we check whether it works, and if not, we correct it. Once it
finally works, we remove unused variables, compact some code lines, improve variable names,
and clean comments. Like we do for emails, we look at our code circularly, that is, from top to
bottom a couple of times, exactly like when we re-read an email. But for some reason, when
we code, we often want the first draft to be the final implementation, and we get frustrated
if this doesn’t happen. When writing code, consider the time you spend testing, debugging,
and improving the code as part of the process, not as some extra time that prevents you from
doing something else! It’s all part of the process!

. For each of the following scenarios, create code similar to that presented in this chapter:
a. Do you want more cookies?
b. Do you want less exercises?

. At the cheese shop. You own a cheese shop, and you sell slices of cheese at 50c each. A new
customer comes in, and you ask if they want cheese. The customer is uncertain of how much
cheese to buy, so after every slice, you ask again if they want another slice of cheese. As long as
the customer says yes, then you add a slice of cheese, update the final price, and tell them the
amount of slices of cheese and the price so far. How many slices of cheese did you sell? And
what was the final price?

. Playing with numbers. Given the following list: numbers = [0], ask the player if you should add
another number to the list. As long as the player says yes, add to the list the sum of the last

135

Part 5. The while loop and conditions

number you added and the counter of the current loop Example: If you run the while loop 7
times, you will get the following list: [0, 1, 3, 6, 1@, 15, 21, 28]

4. Generating even numbers. Given an empty list, ask the player if you should add another number
to the list. As long as the player says yes, create a random number between O and 100, and if
the number is even, then add it to the list. How many numbers did you generate? How many
even? How many odd? What is the ratio between the amount of even and odd numbers you
generated?

136

In the previous chapter, we saw only one kind of condition in a while loop—that is, that a variable
is equal to "yes". Let’s now take a look at three examples with other kinds of conditions. First, try
to solve each task by yourself: read the requirements carefully, list the steps to execute, implement
them one by one, and merge the code to the solution (divide and conquer!). This time, also try to
take it one a step further: keep an eye on the processes that your mind goes through while solving
the tasks. You will often find recurring thinking patterns when coding. Knowing and recognizing
them will give you awareness and thus speed up your work. For each of the following examples, you
will see a possible way to approach the coding task at hand. Maybe it will be similar to your thinking,
or maybe it will be different. In any case, it will give you an idea of possible thinking pathways. You
can play with the proposed solutions on Notebook 18. Enough talk—let’s start coding!

¢ Given the following list:

animals = ["giraffe", "dolphin", "penguin"] animals is assigned giraffe, dolphin,
penguin
e Create a game in which the computer randomly picks one of the three animals and the player
has to guess the animal picked by the computer. Make sure that the player keeps playing until
they guess the animal picked by the computer. At the end of the game, tell the player how many
attempts it took to guess the animal.

The game has four requirements: (1) the computer randomly picks one of the three animals; (2) the
player has to guess the animal picked by the computer; (3) the player keeps playing until they guess
the animal picked by the computer; and (4) at the end of the game, tell the player how many attempts
it took to guess the animal. Let's see how to implement each requirement!

1. The computer randomly picks one of the three animals. This is pretty straightforward:

import random import random
computer pick computer pick
computer_pick = random.choice(animals) computer pick is assigned random dot
choice animals
print(computer_pick) print computer pick
dolphin

We import the package random (line 1), and we use its function . choice() to make the computer pick
a random element from the list animals (line 4). Then, we print computer_pick as a check (line 5).

137

Part 5. The while loop and conditions

2. The player has to guess the animal picked by the computer. This task is also easy:

player guess player guess

player_guess = input ("Guess the animal! player guess is assigned input Guess

Choices: giraffe, dolphin, penguin:") the animal! Choices: giraffe, dolphin,
penguin:

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe

We use the function input() to ask the player to input their guess (line 2). We assume that the
player’s input is giraffe.

3. The player keeps playing until they guess the animal picked by the computer. The phrase "until they
guess the animal” is equivalent to "as long as they guess the animal”, which immediately suggests to

us that we should use a while loop. What condition do we write in the header? Let’s see:

as long as the player's guess and the
computer's pick are different
while player_guess != computer_pick:

tell the player that the animal is
not right
print("That's not the right animal!")

ask the player to guess again
player_guess = input ("Try again! Guess
the animal! Choices: giraffe, dolphin,
penguin:")

as long as the player's guess and the
computer's pick are different

while player guess is not equal to
computer pick:

tell the player that the animal is not
right
print That's not the right animal!

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

tell the player that they guessed the tell the player that they guessed the
right animal right animal

print("Well done! You guessed " + print Well done! You guessed
computer_pick) concatenated with computer pick

That's not the right animall!

Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin

Well done! You guessed dolphin
The loop must stop when the player guesses the animal, that is, until player_guess and
computer_pick are the same. In general, when a requirement defines the condition that stops a
while loop, we have to think the opposite way: we need to find the the condition that allows the
while loop to keep going. In our example, the loop must keep going as long as player_guess is not
equal to computer_pick (line 2). In the loop body, we provide a feedback to the player saying that
the animal they picked in not right (line 5), and we ask the player to guess the animal again (line 8)
so that the while loop can continue. Finally, after the loop, we print out a message confirming that
the player guessed the right animal (line 12).

4. At the end of the game, tell the player how many attempts it took to guess the animal. We definitely
need a counter!

initializing the counter initializing the counter
n_of_attempts = 1 n of attempts is assigned one

138

Chapter 18. Animals, unique numbers, and sum

4

10
11

12
13
14
15
16
17

18
19

20

as long as the player's guess and the
computer's pick are different
while player_guess != computer_pick:

tell the player that the animal is
not right

print("That's not the right animal!")
print the numbers of attempts so far
print("Number of attempts so far: " +
str(n_of_attempts)

increase the number of attempts
n_of_attempts += 1

ask the player to guess again
player_guess = input ("Try again! Guess
the animal! Choices: giraffe, dolphin,
penguin:")

tell the player that they guessed the
right animal

print("Well done! You guessed " +
computer_pick + " at attempt number " +
str(n_of_attempts)

That's not the right animall!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

as long as the player's guess and the
computer's pick are different

while player guess is not equal to
computer pick:

tell the player that the animal is not
right

print That's not the right animal!
print the numbers of attempts so far
print Number of attempts so far:
concatenated with str n of attempts

increase the number of attempts
n of attempts is incremented by one

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

tell the player that they guessed the
right animal

print Well done! You guessed
concatenated with computer pick
concatenated with at attempt number
concatenated with str(n of attempts)

We create the counter n_of_attempts (line 2), and we initialize it to 1. Why 1 and not to ? Because
the player enters the first input before the while loop (see requirement 2. The player has to guess
the animal picked by the computer), and that is the first attempt! Then, we tell the player the current
number of attempts (line 11) and increase n_of_attempts by one unit at every loop (line 14). Finally,
we include the total number of attempts to the last print (line 20).

After solving the four tasks, we can merge the code together! Here is the complete solution:

1 import random import random

2

3 # computer pick computer pick

4 computer_pick = random.choice(animals) computer pick is assigned random dot
choice animals

5 # print(computer_pick) print computer pick

6

7 # player guess computer pick

8 player_guess = input ("Guess the animal! player guess is assigned input Guess

Choices: giraffe, dolphin, penguin:") the animal! Choices: giraffe, dolphin,

penguin:

9

10 # initializing the counter initializing the counter

11 n_of_attempts = 1 n of attempts is assigned 1

12

139

Part 5. The while loop and conditions

as long as the player's guess and the
computer's pick are different

as long as the player's guess and the
computer's pick are different

while player_guess != computer_pick: while player guess is not equal to

tell the player that the animal is
not right
print("That's not the right animal!")

print the numbers of attempts so far
print("Number of attempts so far: " +
str(n_of_attempts)

increase the number of attempts
n_of_attempts += 1

ask the player to guess again
player_guess = input ("Try again! Guess
the animal! Choices: giraffe, dolphin,

computer pick:

tell the player that the animal is not
right
print That's not the right animal!

print the numbers of attempts so far
print Number of attempts so far:
concatenated with str n of attempts

increase the number of attempts
n of attempts is incremented by one

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:

penguin:") giraffe, dolphin, penguin:
tell the player that they guessed the
right animal
print("Well done! You guessed " +
computer_pick)

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe

tell the player that they guessed the
right animal

print Well done! You guessed
concatenated with computer pick

That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2
Note that we commented out the print of the computer_pick (line 5), as the final code is for a player

and not for a coder!

2. Create a list of 8 unique random numbers!

Here is our next task:

e Create a list of 8 random numbers between 0 and 10. Make sure they are unique, meaning each
number is present only once in the list. If the number is already in the list, then print the following:
The number x is already in the list. How many numbers did you generate before finding 8 unique
numbers?

The task has four requirements: (1) create a list of 8 random numbers between 0 and 10; (2) make
sure they are unique, that is, each number is present only once in the list; (3) if the number is already
in the list, then print The number x is already in the list; and (4) how many numbers did you generate
before finding 8 unique numbers? Let’s go through the requirements one by one!

1. Create a list of 8 random numbers between 0 and 10.
According to this requirement only, we can create a list of 8 numbers using a for loop and the function
.randint () from the module .random:

140

Chapter 18. Animals, unique numbers, and sum

import random
initialize the number list
unique_random_numbers = []
for 8 times
for _ in range (8):
create a random number between @ and 10

unique_random_numbers.append
(random.randint(0,10))

print the list
print(unique_random_numbers)

import random

initialize the number 1list

unique random numbers is assigned an
empty list

for eight times
for underscore in range eight

create a random number between zero
and ten

unique random numbers dot append
random dot randint zero ten

print the 1list
print unique random numbers

[7, 9, 3, 2, 3, 0, 9, 6]

We import the package random (line 1), and we initialize unique_random_numbers—which will contain
the created numbers—to an empty list (line 4). Then, we create a for loop, where we generate eight
random numbers between 0 and 10, and we append them to unique_random_numbers (lines 6-10).
Note that we use an underscore instead of the variable i in the loop header because we do not
need i in the loop body (see the “In more depth” section What if | don’t use the index in a for loop? in
Chapter 15). Finally, we print unique_random_numbers to check that it actually contains eight random
numbers (line 13). Let's go to the next requirement!

2. Make sure they are unique, which means each number is present only once in the list. In the list we
printed out above, the numbers are not unique: both 3 and 9 are present twice. Thus, we need to
modify our code. How? We do not know how many random numbers we need to generate before
obtaining 8 unique numbers, that is, we do not know how many times we need to run the command
unique_random_numbers .append(random.randint(@,10)) (line 9 in the cell above). For this reason,
we cannot use a for loop—which we use when we know the exact number of iterations—but we
need to use a while loop, which we use when the number of iterations is determined by a condition.
Making changes in code during the drafting process is normal, as we mentioned in the “In more
depth” section of the previous chapter Writing code is like writing an email! What condition do we
use in this while loop? The list must be composed of 8 elements, thus its length has to be 8! Let's
see how we can transform the code:

import random import random

initialize the number list initialize the number list
unique_random_numbers = [] unique random numbers is assigned an

empty list

141

Part 5. The while loop and conditions

as long as the length of the list is not 8

while len(unique_random_numbers) != 8:

create a random number between @ and 10

number = random.randint(@,10)

if the number is already in the list
if number in unique_random_numbers:
place holder
a=2=0
otherwise
else:
add the new number to the list
unique_random_numbers.append(number)

print the list
print(unique_random_numbers)
[1, 8, 10, 7, 3, @, 5, 9]

as long as the length of the list is
not eight

while len of unique random numbers is
not equal to eight

create a random number between zero
and ten

number is assigned random dot randint
zexro ten

if the number is already in the list
if number in unique random numbers:
place holder

a is assigned zero

otherwise

else:

add the new number to the list

unique random numbers dot append
number

print the 1list
print unique random numbers

At line 7, we substitute the header of the for loop with the header of a while loop, with the condition

that the loop keeps going as long as the length of the list is not equal to 8. Then, we generate a

random number (line 10). We need to make sure that the random number is a new one (or unique!)
before adding it to the list. Thus, we create anif ... in / else construct (lines 12-19), which we
learned in Chapter 3. If the number is already in the list (line 13), then we do not want to add it to

the list. The next requirement will tell us what to do, so right now we can just use a placeholder, or

a nonfunctional command in our code that we plan to substitute (a=0, line 15). Using placeholders is

not very good coding practice, but sometimes we can make an exception in the very early drafting
phase. If the number is not in the list (else at line 17), then we append it to the list (line 19)

3. If the number is already in the list, then print: The number x is already in the list
We substitute the placeholder a=0 with the print commands (line 15):

import random

initialize the number list
unique_random_numbers = []

142

import random

initialize the number list
unique random numbers is assigned an
empty list

Chapter 18. Animals, unique numbers, and sum

6

7

10

11
12
13
14
15

16
17
18
19

20
21
22
The
The
The
The
[1,

as long as the length of the list is not 8

while len(unique_random_numbers) != 8:

create a random number between @ and 10

number = random.randint(@,10)

if the number is already in the list

if number in unique_random_numbers:
print that the number is in the list
print ("The number " + str(number) +
" is already in the list")

otherwise

else:
add the new number to the list
unique_random_numbers.append(number)

print the list
print(unique_random_numbers)
number 1 is already in the list
number 1@ is already in the list
number 7 is already in the list
number 5 is already in the list
8, 10, 7, 3, 0, 5, 9]

as long as the length of the list is
not eight

while len of unique random numbers is
not equal to eight

create a random number between zero
and ten

number is assigned random dot randint
eight ten

if the number is already in the list
if number in unique random numbers:
print that the number is in the list
print The number concatenated with
str number concatenated with is
already in the list

otherwise

else:

add the new number to the list
unique random numbers dot append
number

print the list
print unique random numbers

As we can see in the printouts, the numbers 1, 10, 7, and 5 were generated twice, but they are in

the list only once!

4. How many numbers did you generate before finding 8 unique numbers?
To satisfy this last requirement, we need a counter. It will keep track of the amount of numbers we
generated, which coincides with the number of iterations of the while loop!

A W N -

O 00 N O U

11
12

13

import random

initialize the number list
unique_random_numbers = []
initialize the counter
counter = 0

as long as the length of the list is not 8

while len(unique_random_numbers) != 8:

create a random number between @ and 10

number = random.randint(@,10)

import random

initialize the number list
unique random numbers is assigned an
empty list

initialize the counter
counter is assigned zero

as long as the length of the list is
not eight

while len of unique random numbers is
not equal to eight

create a random number between zero
and ten

number is assigned random dot randint
zero ten

143

Part 5. The while loop and conditions

increase the counter by 1 increase the counter by one
counter += 1 counter is incremented by one
if the number is already in the list if the number is already in the list
if number in unique_random_numbers: if number in unique random numbers:
print that the number is in the list print that the number is in the list
print ("The number " + str(number) + print The number concatenated with
" is already in the list") str number concatenated with is
already in the list
otherwise otherwise
else: else:
add the new number to the list add the new number to the list
unique_random_numbers.append(number) unique random numbers dot append
number

print the final 1list and the total amount of print the final list and the total

generated numbers amount of generated numbers

print(unique_random_numbexrs) print unique random numbers

print("The total amount of generated numbers print The total amount of generated

is: + str(counter)) numbers is: concatenated with str
counter

The number 1 is already in the list

The number 10 is already in the list

The number 7 is already in the list

The number 5 is already in the list

[1, 8, 10, 7, 3, @, 5, 9]

The total amount of generated numbers is: 12

We initialize the counter (line 7), increment it by one unit at each iteration (line 16), and print it out
(line 29).

3. Sum up the multiples of 3

e Write code that continues asking a player to enter an integer until they enter a negative number.
At the end, print the sum of all entered integers that are multiples of 3.

The task has two requests: (1) keep asking a player to enter an integer until they enter a negative
number, and (2) at the end, print the sum of all entered integers that are multiples of 3. Let's see
how to implement them!

1. Keep asking a player to enter an integer until they enter a negative number. The requirement is
straightforward: we use the input function to ask the player to enter numbers and a while loop to
keep asking. Which condition do we use in the header? Let’s have a look:

ask the user for an integer ask the user for an integer

number = int(input("Enter an integer: ")) number is assigned int input Enter
an integer:

144

Chapter 18. Animals, unique numbers, and sum

as long as the number is positive
while number >= 0:

ask for the next new integer
number = int(input("Enter another
integer: "))

Enter an integer: 3

Enter another integer: 6
Enter another integer: 4
Enter another integer: -1

as long as the number positive
while number is greater than or
equal to zero

ask for the next new integer
number is assigned int input Enter
another integer:

The loop must continue as long as the player enters a negative number, that is, as long as number is
positive—greater than or equal to zero (line 5). As we learned in the previous chapter, the variable
in the condition has to be in three places: before the loop, in the loop header, and within the loop.
Thus, first we initialize the variable number with the integer entered by the player (line 2). Then, we
condition the variable in the while loop header (as we saw in line 5). And finally, to avoid an infinite
loop, we ask the player to enter a new number (line 7). Let’s implement the second requirement!

2. At the end, print the sum of all entered integers that are multiples of 3.
We need to check whether the numbers the user enters are multiples of 3, and, if they are, then sum

them up. Ideas on how to do it? Let’s start drafting the code:

1
2
3
4
5

~N O

10
11

12
13
14
15
16

17
21
19
20
21
22
23

1ist containing the numbers to sum
numbers = []

ask the user for an integer

number = int(input("Enter an integer: "))

as long as the number is positive
while numbers >= 0:

if the number is multiple of 3
if numbers % 3 ==

add the number to the list
numbers . append(number)

ask for the next integer
number = int(input("Enter another
integer: "))

print the list of multiples of 3
print(numbers)

initialize the sum to @
sum_of_numbers = 0

list containing the numbers to sum
numbers is assigned empty list

ask the user for an integer
number is assigned int input Enter
an integer:

as long as the number positive
while number is greater than or
equal to zero

if the number is multiple of 3

if number modulus three is equal to
zero:

add the number to the list

numbers dot append number

ask for the next integer
number is assigned int input Enter

another integer:

print the list of multiples of 3
print numbers

initialize the sum to zero
sum of numbers is assigned zero

145

Part 5. The while loop and conditions

calculate the sum of numbers calculate the sum of numbers

for i in range (len(numbers)): for i in range len of numbers
sum_of_numbers = numbers[i] + sum of numbers is assigned numbers
sum_of_numbers in position i plus sum of numbers

print the final sum print the final sum

print("The sum of the multiples of 3 is: + print The sum of the multiples of

stxr(sum_of_numbers)) 3 is: concatenated with str sum of

numbers

Enter an integer: 3

Enter another integer: 6

Enter another integer: 4

Enter another integer: -1

[3, 6]

The sum of the entered multiples of 3 is: 9
We can create an empty list called numbers that will contain the multiples of 3 (line 2). Then, within
the while loop, we add an if construct, in which we check whether the current number is a multiple
of 3 by using the the modulo operator. If the condition is met, then we append the number to the list
numbers (line 13). At the end of the while loop (i.e., after the player has entered a negative number),
we sum up the numbers in the list, similarly to what we did in the exercise 5 of Chapter 14. First,
we create the variable sum_of_numbers, which will contain the final sum, and we initialize it to zero
(line 22). Then, we use a for loop through the list numbers—containing the multiples of 3—to add the
current list element (numbers [i]) to the amount in sum_of_numbers (line 26). Finally, we print out the
sum at line 29.

We solved the task, but can we improve our code? Let's read the following requirement again: at the
end, print the sum of all entered integers that are multiples of 3. We are not asked to save the multiples
of 3 in a list—just to print out their sum. Do we need to create the list? Not really! So, how do we
do it? Let’s see this alternative solution:

initialize the sum to @ initialize the sum to zero
sum_of_numbers = 0 sum of numbers is assigned zero

ask the user for an integer ask the user for an integer

number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:

as long as the number is positive as long as the number positive
while numbers >= 0: while number is greater than or
equal to zero

if the number is a multiple of 3 if the number is a multiple of 3
if numbers % 3 == 0: if number modulus three is equal to
zero:
add the number to the sum add the number to the sum
sum_of_numbers += number sum of numbers is incremented by
number
ask for the next integer ask for the next integer
number = int(input("Enter another number is assigned int input Enter
integer: ")) another integer:

146

Chapter 18. Animals, unique numbers, and sum

print the final sum print the final sum

print("The sum of the multiples of 3 is: + print The sum of the multiples of

str(sum_of_numbers)) 3 is: concatenated with str sum of
numbers

Enter an integer: 3

Enter another integer: 6

Enter another integer: 4

Enter another integer: -1

The sum of the entered multiples of 3 is: 9

We remove all the code related to the list numbers. We initialize sum_of_numbers to zero before the

while loop (line 2). Then, within the loop, we sum the current multiple of 3 (i.e., number) to the total

sum (line 13)—without saving it to a list. With this trick, we improve our code in two ways: (1) we

do not create a list, which occupies space in computer memory, and (2) we avoid a for loop that

occupies memory and time during the execution. The code thus becomes shorter, faster, and more
elegant.

In coding there are three constructs: if/else constructs, for loops, and while loops. Review their

definitions in the following exercise:

1.

An if/else construct checks whether a a. for a determined number of times
condition is true or false

A for loop is the repetition of a group of b. as long as a condition holds
commands

A while loop is the repetition of a group of c. and executes code accordingly
commands

In a while loop header, we can write various kinds of conditions. The correct condition is the one
that keeps the loop going (not stopping!)

When solving a task, it is common to decompose and analyze the requirements, solve the subtasks,
and merge the code to the solution (divide and conquer!)

When coding, we often write a first draft, and then we improve the draft to make the code faster
and robust (writing code is like writing an email!)

When learning coding constructs, it can be easy to confuse the while loop with with the if/else
construct. If this happened to you while learning the past two chapters, read the following
paragraph. If you feel like you mastered the difference between while loops and if/else con-
structs, feel free to skip the coming lines!

Consider the following example, similar to the first one in this chapter.

147

Part 5. The while loop and conditions

e Given the following list:

fruits = ["mango", "orange", "banana"] fruits is assigned mango, orange,
banana

e Create a game where the computer randomly picks a fruit and the player has to guess the
fruit picked by the computer. Make sure that the player keeps playing until they guess the
fruit picked by the computer.

We have to solve 3 tasks: (1) the computer randomly picks a fruit, (2) the player has to guess
the fruit picked by the computer, and (3) we must make sure that the player keeps playing until
they guess the fruit picked by the computer. The first two requirements are straightforward,
and we will solve them quickly. We will focus on the third requirement.

1. The computer randomly picks a fruit.

import random impoxt random
computer pick computer pick
computer_pick = random.choice(fruits) computer pick is assigned random

dot choice fruits

We import the package random (line 1) and we use the method .choice() to make the com-
puter randomly pick an element of the list fruits.

2. The player the has to guess the fruit picked by the computer.

player guess player guess
player_guess = input ("Guess the fruit! player guess is assigned input
Choices: mango, orange, banana: ") Guess the fruit! Choices: mango,

orange, banana:

We use the built-in function input () to ask the player to enter a fruit (line 7).

3. Make sure that the player keeps playing until they guess the animal picked by the computer. The
first instinct would be to do the following:

check the player guess check the player guess
if player_guess == computer_pick: if player guess is equal to
computer pick
print("That's right! The fruit is " + print That's right! The fruit is

computer_pick) concatenated with computer pick
else: else
print("Nope! Try again!") print Nope! Try again!

We check if player_guess is equal to computer_pick with an if/else construct, and we print
messages accordingly (lines 9-11). If the player did not guess the right fruit, we have to ask
them to guess again (like at line 7). Then, we have to check once more if the guess is correct
(like at lines 9-11), and so on. This is not feasible because we cannot know how many times it
is going to take the player to guess the correct fruit! In addition, we would repeat code, which
means that we can use a loop! So, here is the correct solution with the while loop:

148

Chapter 18. Animals, unique numbers, and sum

while player_guess != computer_pick: while player guess is not equal to
computer pick:
as long as the player's guess and the as long as the player's guess and
not right the computer's pick are different
player_guess = input ("Nope! Try again! player guess is assigned input
Guess the fruit! Choices: mango, orange Nope! Try again! Guess the fruit!
banana: ") Choices: mango, orange, banana:

As long as the player_guess is not equal to computer_pick (line 9), we ask the player to make
a guess (line 11), which we check in the condition of the while loop header (line 9), and the
loop keeps going as long as the condition holds.

. Guess the number! Create a game where the computer picks a number between 0 and 10, and
the player has to guess it. If the player guesses a number that is too high or too low, then the
computer tells the player. The game stops when the player guesses the number. At the end, tell
the player how many attempts it took to guess the number.

. 12 even random numbers. Create a list of 12 even random numbers between 0 and 30. How many
odd numbers did you exclude?

. Spelling game for kids. Create a game that helps kids learn spelling. The game has the following
requirements: (1) Create a list of words to be spelled. Among these words, choose a word ran-
domly, and tell the kid the chosen word (e.g., “Spell the word ‘hello’). (2) The kid has to enter
one letter at the time. If the kid enters the correct letter, then provide positive reinforcement
(e.g., “Well done!”), and ask for the next letter. If the kid does not enter the correct letter, then
tell them that the letter is not correct, and ask for a letter again.

Challenge 1: Instead of creating only 1 list of words, create 3 lists, one per topic, so that the kid
can choose a topic before spelling a word.

Challenge 2: The game continues as long as the kid wants to spell a new word.

149

19. And, or, not, not in

Combining and reversing conditions

Up to now, we have considered only one condition in if/else constructs and while loops. What if
we need more than one condition? And what if we need to reverse a condition? In this chapter,
we will learn how to combine or reverse conditions using the logical operators and, or, not, and the
membership operator not in. As usual, try to solve the tasks yourself before looking at the solutions,
which you can also find in Notebook 19. Let’s start!

1. and

e Given the following list of integers:

numbers = [1, 5, 7, 2, 8, 19] numbers is assigned one, five, seven,
two, eight, nineteen

e Print out the numbers that are between 5 and 10:

for each position in the list for each position in the list

for i in range (len(numbers)): for i in range len of numbers
if the current number is between 5 # if the current number is between five
and 10 and ten
if numbers[i] >= 5 and numbers[i] <= 10: if numbers in position i greater

than or equal to five and numbers in
position i less than or equal to ten

print the current number print the current number
print ("The number " + str(numbers[i]) print The number concatenated with
+ " is between 5 and 10") str numbers in position i concatenated

with is between five and ten
The number 5 is between 5 and 10
The number 7 is between 5 and 10
The number 8 is between 5 and 10
We use a for loop to browse all the elements in the list (line 2). Then, we check if each number is
between 5 and 10 (line 5). To be in between two numbers, a number must be greater than or equal
to the smaller number and smaller than or equal to the greater number. The two conditions (greater
than or equal to and smaller than or equal to) must be valid at the same time. To check if two (or
more) conditions are valid simultaneously, we join them using the logical operator and.

We use the logical operator and when we want to check
whether all conditions are valid

Let’s look at the syntax. For each condition both before and after the logical operator and, we have
to write: (1) a variable (e.g., numbers[il), (2) a comparison operator (e.g., >=), and (3) a term of com-
parison (e.g., 5). At the end of the code, we print the numbers that satisfy both conditions (line 7).

150

Chapter 19. And, or, not, not in

2. or

e Given the following string:

message = "Have a nice day!!!" message is assigned Have a nice day!!!

e And given all punctuation:

punctuation = "\"\/'()[1{}<>.,;:?1he~#$%&*_-" punctuation is assigned

NSO LTS, 2 A~ S %t -
The string punctuation contains all punctuation on a Latin alphabet keyboard. Compare the symbols
with the ones on your keyboard and note whether there are additional ones! If so, add them to
punctuation in Jupyter Notebook 19! The symbols at the beginning of the string punctuation "\"\/
might be a bit confusing, so let’s disentangle them. The first quote "\ "\/ is the symbol that introduces
the string. The following two symbols "\"\/ are special characters—you might remember the special
character "\n", which is used to go to a new line (Chapter 12). The backslash \ tells Python that the
following quote " is an actual backslash character and not the symbol that we use to close a string.
The last backslash "\ "\/ is an actual backslash because the following forward slash / is not a special
character.

e Print and count the number of characters that are punctuation or vowels:

string of vowels string of vowels
vowels = "aeiou" vowels is assigned aeiou
initialize counter initialize counter
counter = 0 counter is assigned zero
for each position in the message for each position in the message
for i in range (len(message)): for i in range len of message
if the current element is punctuation # if the current element is
or vowel punctuation or vowel
if message[i] in punctuation or if message in position i in
message[i] in vowels: punctuation or message in position

i in vowels

print a message print a message
print (message [i] + " is a vowel print message in position i
or a punctuation") concatenated with is a vowel or a
punctuation
increase the counter increase the counter
counter += 1 counter is increased by one
print the final amount print the final amount
print("The total amount of punctuation or print(The total amount of punctuation
vowels is " + counter) or vowels is concatenated with
counter

a is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation

151

Part 5. The while loop and conditions

i is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation
! is a vowel or a punctuation
I is a vowel or a punctuation
I is a vowel or a punctuation

The total amount of punctuation or vowels is 9

Similarly to what we did for punctuation, we create a string containing vowels (line 2). We also
create a counter, which we will use to calculate the number of characters that are punctuation or
vowels, and we initialize it to zero (line 5). Then, we get to the core of the solution! We use a for
loop to browse all the characters in the string message (line 8). For loops for strings work exactly
the same way as for loops for lists. In the loop body, we check if each character is a punctuation
or a vowel by using the membership operator in (line 11), which we learned in Chapter 3. More
specifically, we check if message[i] is in the string punctuation or in the string vowels. Note that
as for the for loop, the membership operator in works for strings the same way as it works for lists.
Since only one of the conditions can be valid (a character cannot be both a punctuation and a vowel
at the same time!), we merge the two conditions—that is, message[i] in punctuation or message[i]
in vowels—using the logical operator or.

We use the logical operator ox when we want to check
whether at least one condition is valid

The syntax is the same as for the logical operator and: we need to write (1) a variable, (2) a comparison
operator, and (3) a term of comparison both before and after ox. To conclude the loop body, we print a
message for the characters that satisfy at least one condition (line 14), and we increment the counter
by one unit (line 17). At the end of the loop, we print the final number of characters that are vowels
or punctuation (line 20).

e Given the following list of integers:

numbers = [4, 6, 7, 9] numbers is assigned four, six, seven,
nine

e Print out the numbers that are not divisible by 2:

for each position in the list for each position in the list

for i in range (len(numbers)): for i in range len of numbers
if the current number is not even # if the current number is not even
if not numbers[i] % 2 == 0: if not numbers in position i modulo

two equals zero

print the current number print the current number
print (numbers[i]) print numbers in position i

152

Chapter 19. And, or, not, not in

For each position in the list (line 2), we have to check whether the number is not even. For a mo-
ment, let’s think about the opposite: what condition would we write if we had to check whether the
number is even? if numbers[i] % 2 == @. To negate a condition, we just add the logical operator
not before the condition—more specifically, before the variable at the beginning of the condition
(line 5).

We use the logical operator not when we want to check
whether the opposite of a condition is valid

If the condition is satisfied, then we print the number (line 8).

Is this the only way to solve this task? Maybe the first idea you had in mind was more similar to this

one:
for each position in the list for each position in the list
for i in range (len(numbexs)): for i in range len of numbers
if the current number is odd # if the current number is odd
if numbers[i] % 2 != 0: if numbers in position i modulo two is

not equal to zero:

print the current number print the current number
print (numbers[i]) print numbers in position i
7
9

For each position in the list (line 2), we check whether the remainder of numbers[i] divided by 2 is
not equal to @ (line 5). If so, then we print the number (line 8).

What solution is better? It's a matter of preference! If you are undecided, pick the solution that looks
like the simplest to you, both in term of syntax and reasoning. In coding, there are often various ways
of solving a task. Keeping the solution simple favors readability and understanding.

Last note about conditions: when combining conditions, we need to follow a precise order, similarly
to what we do with arithmetic operators (see Solving arithmetic expressions in Chapter 13). The order
from highest to lowest precedence is: not, and, or (easy-to-memorize acronym: NAO). When you
are uncertain, write the condition to prioritize within round brackets ().

e Generate 5 random numbers between 0 and 10. If the random numbers are not already in the
following list, then add them:

numbers = [1, 4, 7] numbers is assigned one, four, seven

import random import random

153

Part 5. The while loop and conditions

for five times for five times
for _ in range (5): for underscore in range five

generate a random number between @ and 1@ generate a random number between zero

and ten
number = random.randint (@, 10) number is assigned random dot randint
zero ten
print the number as a check print the number as a check
print (number) print number
if the new number is not in numbers if the new number is not in numbers
if number not in numbers: if number not in numbers:
add the number to numbers add the number to numbers
numbers . append (number) numbers dot append number
print the final list print the final list
print(numbers) printnumbers
6
6
10
7
9

(1, 4, 7, 6, 10, 9]

We start by importing the package random (line 1). Then, we create a for loop that runs for five
times (line 4)—note the underscore instead of the variable i because we will not need any index in
the for loop body (see What if | don’t use the index in a for loop? in Chapter 15). Then, we create
a random variable (line 7) and print it as a check (line 9). To evaluate if the variable number is not
already in the list numbers (line 12), we use the membership operator not in, which is the opposite
of the membership operator in (Chapter 3). If the condition is met, then we append the randomly
generated number to the list of numbers (line 14). Finally, we print the completed list (line 17).

Insert into the right column

You now know all membership, comparison, and logical operators. Insert each symbol in the right
column:

<, or, in, !=, not, >, ==, not in, >=, and, <=

Membership operators Comparison operators Logical operators

154

Chapter 19. And, or, not, not in

e The logical operators are and, or, and not
e When combining conditions, the order of execution is not, and, or (NAO)
e The membership operators are in and not in

You might have heard about GitHub, or you might have browsed some pages on its site
(github.com). Surely, you have checked the solutions of the exercises of this book on GitHub!
But what is GitHub exactly? In a simplified manner, we can think of GitHub as a cloud service
or a huge server for code. Instead of using Dropbox, Google Drive, etc., coders prefer to syn-
chronize their code with GitHub. GitHub has its own language: folders are called repositories,
sending files to the server is called a push, and getting files from the server is called a pull. Each
repository contains files—they can store any files, either containing code or not—and elements
that are specific to coding, such as issues, where anybody can indicate bugs to be solved or
suggest new features. Why do coders use GitHub instead of other cloud services? Because
GitHub supports version control, that is, it keeps track of code changes over time. Every time
we push a code update, we can compare it with previous version(s), and if the new code does
not work, then we can go back to an earlier version. Furthermore, GitHub is useful for collab-
orative projects: programmers can work on different sections of a task individually and then
integrate the code without accidentally influencing each other’s code, all while keeping track
of each programmer’s contribution. These tasks are actually executed by Git, which is a dis-
tributed version control system, that is, a software that manages changes to code. Other plat-
forms that employ Git include GitLab (gitlab.com) and Bitbucket (bitbucket.org), with GitHub
being the most popular.

1. The Zen of Python. Solve the following 4 steps, and you will discover the Zen of Python!

a) Given the following list of strings:

strings_to_slice = ["reisk", "kpan", "xfsimpleg", "bosolutionb", "pobetterx",
"weorb", "ofworsep", "aathanx", "hoau", "hfcomplexx", "poors", "opcomplicatedx",
"rwsolutions", "re?0"]

Create a new list called sliced_strings containing the same strings but without the first two
letters and the last letter (Example: "gfhio" will become "hi").

b) Given the following list of strings:

strings_to_invert= ["emos", "elpoep", "kniht", "taht", "xelpmoc", "ro",

"detacilpmoc", "si", "retteb", "naht", "elpmis"]

Create an new list called inverted_strings containing the same strings but inverted (Example:
"ih" will become "hi")

155

Part 5. The while loop and conditions

c) Given the following list of strings:

strings_to_pick = ["this", "sounds", "simple", "but", "is", "it?", "some", "things",
"look", "better", "than", "when", "complex", "but", "complex", "again", "is",
"worse", "better", "than", "complicated", "I'm", "confused"]

Find the words that are present both in sliced_strings and inverted_strings, change them to
uppercase, and add them to a new list. What sentence do you get?

d) Where does this sentence come from? Run the following Python command: import this
2. Playing with numbers. Given the following list of numbers:
numbers = [7, 9, 15, 19, 24, 30, 37, 45, 50]

a) Print the numbers that are divisible by 3 and 5; b) Print the numbers that are divisible by 3 or 5;
and c) Print the numbers that are divisible by 3 but not 5. Perform task c) in two different ways,
once using not, and once without using not.

3. Upgrading Rock, paper, scissors. In Chapter 16, we implemented rock, paper, scissors. In that
version, there were many repetitions. In coding, we usually do not want repetitions because
they can invite errors. How can we make the code less repetitive? By combining conditions!
What conditions can you combine in this game? Rewrite rock, paper, scissors in a more succinct
way using logical operators. After you have optimized the code, make it a real game by adding
a while loop that allows players to play as long as they want. Hint: Instead of thinking in terms
of computer and player choices, think in terms of outcomes, i.e., tie and the player’s (or the
computer’s) win.

156

Dear coder,

Thanks for learning with me!

Visit www . learnpythonwithjupyter.com to:
e Find more information about the book

e Download the Jupyter Notebooks

e Join the LPWJ Community for exercise solutions and Q&A

| am looking forward to receiving feedback and comments about the book.
Write me at serena@learnpythonwithjupyter.com and let me know what you
think about it!

Best,
Serena

Next release: Chapter 20 on July 8, 2023

www.learnpythonwithjupyter.com

	Text, questions, and art
	Events and favorites
	In a bookstore
	Grocery shopping
	Customizing the burger menu
	Traveling around the world
	Senses, planets, and a house
	My friends' favorite dishes
	At the zoo
	Where are my gloves?
	Cleaning the mailing list
	What a mess at the bookstore!
	Implementing a calculator
	Playing with numbers
	Fortune cookies
	Rock paper scissors
	Do you want more candies?
	Animals, unique numbers, and sum
	And, or, not, not in

