Mastering

Object-Oriented
Python

Second Edition

Steven F. Lott

Mastering Object-Oriented Python
Second Edition

Build powerful applications with reusable code using OOP design patterns and
Python 3.7

Steven F. Lott

Packh

BIRMINGHAM - MUMBAI

Mastering Object-Oriented Python
Second Edition

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Chaitanya Nair

Content Development Editor: Zeeyan Pinheiro
Senior Editor: Afshaan Khan

Technical Editor: Ketan Kamble

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Jayalaxmi Raja

First published: April 2014
Second edition: June 2019

Production reference: 1130619

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78953-136-7

www . packtpub.com

http://www.packtpub.com

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our

website.

https://subscribe.packtpub.com/

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you
e Get a free eBook or video every month

e Fully searchable for easy access to vital information

e Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.packt.
com and as a print book customer, you are entitled to a discount on the eBook
copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and eBooks.

http://www.packt.com
http://www.packt.com

Contributors

About the author

Steven F. Lott has been programming since the 1970s, when computers were
large, expensive, and rare. As a contract software developer and architect, he has
worked on hundreds of projects, from very small to very large ones. He's been
using Python to solve business problems for over 10 years. His other titles with
Packt include Python Essentials, Mastering Object-Oriented Python, Functional
Python Programming Second Edition, Python for Secret Agents, and Python for
Secret Agents II. Steven is currently a technomad who lives in various places on
the East Coast of the US. You can follow him on Twitter via the handle es_1ott.

About the reviewers

Cody Jackson is a disabled military veteran, the founder of Socius Consulting —
an IT and business management consulting company in San Antonio — and a
cofounder of Top Men Technologies. He is currently employed at CACI
International as the lead ICS/SCADA modeling and simulations engineer. He has
been involved in the tech industry since 1994, when he joined the Navy as a
nuclear chemist and Radcon Technician. Prior to CACI, he worked at ECPI
University as a computer information systems adjunct professor. A self-taught
Python programmer, he is the author of Learning to Program Using Python and
Secret Recipes of the Python Ninja. He holds an Associate in Science degree, a
Bachelor of Science degree, and a Master of Science degree.

Hugo Solis is an assistant professor in the Physics Department at the University
of Costa Rica. His current research interests are computational cosmology,
complexity, cryptography, and the influence of hydrogen on material properties.
He has vast experience with languages, including C/C++ and Python for
scientific programming. He is a member of the Free Software Foundation and
has contributed code to some free software projects. He has also been a technical
reviewer for Hands-On Qt for Python Developers and Learning Object-Oriented
Programming, and he is the author of the Kivy Cookbook from Packt Publishing.
Currently, he is in charge of the IFT, a Costa Rican scientific nonprofit
organization for the multidisciplinary practice of physics.

I'd like to thank Katty Sanchez, my beloved mother, for her support and vanguard thoughts.

Packt is searching for authors like
you

If you're interested in becoming an author for Packt, please visit authors.packtpub.c
om and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Mastering Object-Oriented Python Second Edition
About Packt

Why subscribe?
Contributors

About the author
About the reviewers

Packt is searching for authors like you
Preface

Who this book is for

What this book covers
To get the most out of this book

Download the example code files
Code in Action

Conventions used
Get in touch

Reviews

1. section 1: Tighter Integration Via Special Methods

1. Preliminaries, Tools, and Techniques

Technical requirements
About the Blackjack game

Playing the game

Blackjack player strategies

Object design for simulating Blackjack
The Python runtime and special methods
Interaction, scripting, and tools
Selecting an IDE
Consistency and style
Type hints and the mypy program
Performance – the timeit module
Testing – unittest and doctest
Documentation – sphinx and RST markup
Installing components
Summary

2. The __init_ () Method

Technical requirements

The implicit superclass – object
The base class object __init_ () method
Implementing __init_ () in a superclass

Creating enumerated constants
Leveraging __init_ () via a factory function

Faulty factory design and the vague else clause

Simplicity and consistency using elif sequences
Simplicity using mapping and class objects

Two parallel mappings

Mapping to a tuple of values
The partial function solution
Fluent APIs for factories

Implementing __init_ () in each subclass
Composite objects

Wrapping a collection class
Extending a collection class

More requirements and another design
Complex composite objects

Complete composite object initialization
Stateless objects without __init_ ()

Some additional class definitions
Multi-strategy __init_ ()

More complex initialization alternatives

Initializing with static oré class-level methods
Yet more __init_ () techniques

Initialization with type validation
Initialization, encapsulation, and privacy
Summary
3. Integrating Seamlessly - Basic Special Methods

Technical requirements
The __repr__() and __str__ () methods

Simple _ str_ () and __repr_ ()

Collection __str__ () and __repr__()
The _ format__() method

Nested formatting specifications

Collections and delegating format specifications
The __hash__() method

Deciding what to hash

Inheriting definitions for immutable objects
Overriding definitions for immutable objects
Overriding definitions for mutable objects

Making a frozen hand from a mutable hand

The __bool__ () method

The __bytes_ () method
The comparison operator methods

Designing comparisons

Implementation of a comparison of objects of the same class
Implementation of a comparison of the objects of mixed classes
Hard totals, soft totals, and polymorphism

A mixed class comparison example
The __del_ () method

The reference count and destruction
Circular references and garbage collection
Circular references and the weakref module
The __del_ () and close() methods

The __new__ () method and immutable objects
The __new__() method and metaclasses

Metaclass example – class-level logger
Summary
4. Attribute Access, Properties, and Descriptors

Technical requirements
Basic attribute processing

Attributes and the __init_ () method
Creating properties

Eagerly computed properties

The setter and deleter properties
Using special methods for attribute access

Limiting attribute names with __slots___

Dynamic attributes with __getattr_ ()

Creating immutable objects as a NamedTuple subclass

Eagerly computed attributes, dataclasses, and __post_init__ ()
Incremental computation with __ setattr_ ()

The __getattribute_ () method
Creating descriptors

Using a non-data descriptor
Using a data descriptor
Using type hints for attributes and properties

Using the dataclasses module
Attribute Design Patterns

Properties versus attributes
Designing with descriptors
Summary
5. The ABCs of Consistent Design

Technical requirements

Abstract base classes

Base classes and polymorphism
Callable

Containers and collections

Numbers
Some additional abstractions

The iterator abstraction

Contexts and context managers
The abc and typing modules

Using the __subclasshook__() method

Abstract classes using type hints
Summary, design considerations, and trade-offs

Looking forward
6. Using Callables and Contexts
Technical requirements

Designing callables
Improving performance

Using memoization or caching
Using functools for memoization

Aiming for simplicity using a callable interface

Complexities and the callable interface
Managing contexts and the with statement

Using the decimal context

Other contexts
Defining the __enter__ () and __exit__ () methods

Handling exceptions
Context manager as a factory

Cleaning up in a context manager
Summary

Callable design considerations and trade-offs
Context manager design considerations and trade-offs
Looking forward
7. Creating Containers and Collections
Technical requirements
ABCs of collections

Examples of special methods
Using the standard library extensions

The typing.NamedTuple class
The deque class

The ChainMap use case

The OrderedDict collection
The defaultdict subclass

The counter collection

Creating new kinds of collections

Narrowing a collection's type
Defining a new kind of sequence

A statistical list

Choosing eager versus lazy calculation

Working with _ getitem_ (), __setitem__ (), __delitem__(), and slices
Implementing _ getitem__ (), __setitem_ (), and __delitem__()
Wrapping a list and delegating

Creating iterators with __iter_ ()

Creating a new kind of mapping
Creating a new kind of set

Some design rationale
Defining the Tree class
Defining the TreeNode class
Demonstrating the binary tree bag
Design considerations and tradeoffs
Summary
8. Creating Numbers

Technical requirements
ABCs of numbers

Deciding which types to use
Method resolution and the reflected operator concept

The arithmetic operator's special methods
Creating a numeric class

Defining FixedPoint initialization

Defining FixedPoint binary arithmetic operators
Defining FixedPoint unary arithmetic operators
Implementing FixedPoint reflected operators

Implementing FixedPoint comparison operators
Computing a numeric hash

Designing more useful rounding
Implementing other special methods
Optimization with the in-place operators
Summary
9. Dpecorators and Mixins - Cross-Cutting Aspects

Technical requirements
Class and meaning

Type hints and attributes for decorators
Attributes of a function
Constructing a decorated class

Some class design principles

Aspect-oriented programming
Using built-in decorators

Using standard library decorators
Using standard library mixin classes

Using the enum with mixin classes
Writing a simple function decorator

Creating separate loggers
Parameterizing a decorator
Creating a method function decorator
Creating a class decorator
Adding methods to a class
Using decorators for security
Summary

2. section 2: Object Serialization and Persistence

10. serializing and Saving - JSON, YAML, Pickle, CSV, and XML

Technical requirements
Understanding persistence, class, state, and representation

Common Python terminology

Filesystem and network considerations
Defining classes to support persistence

Rendering blogs and posts
Dumping and loading with JSON

JSON type hints

Supporting JSON in our classes
Customizing JSON encoding
Customizing JSON decoding
Security and the eval() issue
Refactoring the encode function
Standardizing the date string

Writing JSON to a file
Dumping and loading with YAML

Formatting YAML data on a file
Extending the YAML representation

Security and safe loading
Dumping and loading with pickle

Designing a class for reliable pickle processing

Security and the global issue
Dumping and loading with CSV

Dumping simple sequences into CSV
Loading simple sequences from CSV
Handling containers and complex classes

Dumping and loading multiple row types into a CSV file

Filtering CSV rows with an iterator

Dumping and loading joined rows into a CSV file
Dumping and loading with XML

Dumping objects using string templates
Dumping objects with xml.etree.ElementTree

Loading XML documents
Summary

Design considerations and tradeoffs
Schema evolution
Looking forward

11. Storing and Retrieving Objects via Shelve

Technical requirements
Analyzing persistent object use cases

The ACID properties

Creating a shelf
Designing shelvable objects

Designing objects with type hints

Designing keys for our objects

Generating surrogate keys for objects

Designing a class with a simple key

Designing classes for containers or collections
Referring to objects via foreign keys

Designing CRUD operations for complex objects

Searching, scanning, and querying
Designing an access layer for shelve

Writing a demonstration script
Creating indexes to improve efficiency

Creating a cache

Adding yet more index maintenance
The writeback alternative to index updates

Schema evolution
Summary

Design considerations and tradeoffs
Application software layers
Looking forward

12. Storing and Retrieving Objects via SQLite

Technical requirements
SQL databases, persistence, and objects

The SQL data model – rows and tables
CRUD processing via SQL DML statements
Querying rows with the SQL SELECT statement

SQL transactions and the ACID properties

Designing primary and foreign database keys
Processing application data with SQL

Implementing class-like processing in pure SQL

Mapping Python objects to SQLite BLOB columns
Mapping Python objects to database rows manually

Designing an access layer for SQLite
Implementing container relationships

Improving performance with indices
Adding an ORM layer

Designing ORM-friendly classes
Building the schema with the ORM layer
Manipulating objects with the ORM layer

Querying posts that are given a tag
Defining indices in the ORM layer

Schema evolution
Summary

Design considerations and tradeoffs
Mapping alternatives
Key and key design
Application software layers
Looking forward
13. Transmitting and Sharing Objects
Technical requirements

Class, state, and representation
Using HTTP and REST to transmit objects

Implementing CRUD operations via REST
Implementing non-CRUD operations
The REST protocol and ACID

Choosing a representation – JSON, XML, or YAML
Using Flask to build a RESTful web service

Problem-domain objects to transfer
Creating a simple application and server
More sophisticated routing and responses
Implementing a REST client

Demonstrating and unit testing the RESTful services
Handling stateful REST services

Designing RESTful object identifiers
Multiple layers of REST services
Using a Flask blueprint

Registering a blueprint
Q;
Creating a secure REST service

Hashing user passwords

Implementing REST with a web application framework
Using a message queue to transmit objects

Defining processes

Building queues and supplying data
Summary

Design considerations and tradeoffs
Schema evolution
Application software layers
Looking forward
14. Configuration Files and Persistence
Technical requirements

Configuration file use cases
Representation, persistence, state, and usability

Application configuration design patterns

Configuring via object construction

Implementing a configuration hierarchy
Storing the configuration in INI files

Handling more literals via the eval() variants
Storing the configuration in PY files

Configuration via class definitions

Configuration via SimpleNamespace

Using Python with exec() for the configuration
wWhy exec() is a non-problem

Using ChainMap for defaults and overrides
Storing the configuration in JSON or YAML files

Using flattened JSON configurations

Loading a YAML configuration
Storing the configuration in properties files

Parsing a properties file

Using a properties file
Using XML files – PLIST and others

Customized XML configuration files
Summary

Design considerations and trade-offs
Creating a shared configuration
Schema evolution

Looking forward

3. section 3: Object-Oriented Testing and Debugging

15. Design Principles and Patterns

Technical requirements
The SOLID design principles

The Interface Segregation Principle

The Liskov Substitution Principle
The Open/Closed Principle

The Dependency Inversion Principle
The Single Responsibility Principle

A SOLID principle design test
Building features through inheritance and composition

Advanced composition patterns
Parallels between Python and libstdc++
Summary
16. The Logging and Warning Modules

Technical requirements
Creating a basic log

Creating a class-level logger

Configuring loggers

Starting up and shutting down the logging system
Naming loggers

Extending logger levels

Defining handlers for multiple destinations
Managing propagation rules

Configuration Gotcha
Specialized logging for control, debugging, audit, and security

Creating a debugging log

Creating audit and security logs
Using the warnings module

Showing API changes with a warning
Showing configuration problems with a warning

Showing possible software problems with a warning
Advanced logging – the last few messages and network destinations

Building an automatic tail buffer
Sending logging messages to a remote process

Preventing queue overrun
Summary

Design considerations and trade-offs
Looking ahead
17. Designing for Testability

Technical requirements
Defining and isolating units for testing

Minimizing dependencies
Creating simple unit tests
Creating a test suite

Including edge and corner cases

Using mock objects to eliminate dependencies

Using mocks to observe behaviors
Using doctest to define test cases

Combining doctest and unittest

Creating a more complete test package
Using setup and teardown

Using setup and teardown with O0S resources
Using setup and teardown with databases
The TestCase class hierarchy

Using externally defined expected results
Using pytest and fixtures

Assertion checking

Using fixtures for test setup

Using fixtures for setup and teardown
Building parameterized fixtures

Automated integration or performance testing
Summary

Design considerations and trade-offs
Looking forward
18. Coping with the Command Line

Technical requirements
The 0S interface and the command line

Arguments and options

Using the pathlib module
Parsing the command line with argparse

A simple on–o0ff option
An option with an argument
Positional arguments

All other arguments

--version display and exit

--help display and exit
Integrating command-line options and environment variables

Providing more configurable defaults
Overriding configuration file settings with environment variables
Making the configuration aware of the None values

Customizing the help output
Creating a top-level main() function

Ensuring DRY for the configuration

Managing nested configuration contexts
Programming in the large

Designing command classes

Adding the analysis command subclass

Adding and packaging more features into an application
Designing a higher-level, composite command
Additional composite Command design patterns

Integrating with other applications
Summary

Design considerations and trade-offs
Looking forward
19. wmodule and Package Design

Technical requirements
Designing a module

Some module design patterns
Modules compared with classes
The expected content of a module

Whole modules versus module items
Designing a package

Designing a module-package hybrid
Designing a package with alternate implementations

Using the ImportError exception
Designing a main script and the __main__ module

Creating an executable script file
Creating a __main__ module
Programming in the large
Designing long-running applications
Organizing code into src, scripts, tests, and docs

Installing Python modules
Summary

Design considerations and tradeoffs
Looking forward
20. Quality and Documentation
Technical requirements
Writing docstrings for the help() function

Using pydoc for documentation
Better output via RST markup

Blocks of text

The RST inline markup
RST directives
Learning RST

Writing effective docstrings
Writing file-level docstrings, including modules and packages

Writing API details in RST markup

Writing class and method function docstrings

Writing function docstrings

More sophisticated markup techniques
Using Sphinx to produce the documentation

Using Sphinx quickstart

Writing Sphinx documentation

Filling in the 4+1 views for documentation
Writing the implementation document
Creating Sphinx cross-references
Refactoring Sphinx files into directories
Handling legacy documents

Writing the documentation
Literate programming

Use cases for literate programming

Working with a literate programming tool
Summary

Design considerations and tradeoffs
Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

This book will introduce you to many advanced features of the Python
programming language. The focus is on creating the highest quality Python
programs possible. This requires exploring design alternatives and determining
which design offers the best performance while still being a good fit for the
problem that is being solved.

The majority of this book showcases a number of alternatives for a given design.
Some will offer better performance, while some will appear simpler or be a
better solution to the problem domain. It's essential to locate the best algorithms
alongside optimal data structures in order to create the most value with the least
computer processing. Time is money, and programs that save time will create
more value for their users. Python makes a number of internal features directly
available to our application programs. This means that our programs can be very
tightly integrated with existing Python features. We can leverage numerous
Python features by ensuring that our object-oriented designs (OODs) integrate
well.

As we explore different algorithms and data structures, we'll discover different
memory and performance alternatives. It's an important OOD skill to be able to
work through alternate solutions in order to properly optimize the final
application. One of the more important themes of this book is that there's no
single best approach to any problem.

As many of the examples as possible have full type hints. A few of the examples
rely on packages outside the standard library, where you'll find that type hints are
either missing or are incomplete. The examples have to be processed with the
mypy tool to confirm the types are used consistently.

As we move toward achieving mastery of object-oriented Python, we'll spend a
great deal of time reading Python code from a variety of sources. We'll observe
wide variability even within the Python standard library modules. Rather than
presenting examples that are all perfectly consistent, we've opted for some
inconsistency; the lack of consistency will help to read kinds of code, as seen in

various open source projects encountered in the wild.

Who this book is for

This book uses advanced Python. You'll need to be relatively familiar with
Python 3. It helps to learn a programming language when you have a problem of
your own to solve.

If you are a skilled programmer in other languages, then you may find this book
useful if you want to switch to Python. Note that this book doesn't introduce any
syntax or other foundational concepts.

Python 2 programmers may find this particularly helpful when they switch to
Python 3. We won't cover any of the conversion utilities (such as the 2to3 tool)
or any of the coexistence libraries (such as the six module). This book is focused
on new developments entirely in Python 3.

What this book covers

In this book, we'll cover three broad areas of advanced Python topics. Each topic
will be broken into a series of chapters examining a variety of details.

section 1, Tighter Integration via Special Methods, looks at object-oriented
programming (OOP) techniques in depth and how we can more tightly
integrate the class definitions of our applications with Python's built-in features.
This section consists of nine chapters, which are as follows:

chapter 1, Preliminaries, Tools, and Techniques, covers some preliminary
topics, such as unittest, doctest, docstring, and some special method names.
chapter 2, The _init_() Method, provides us with a detailed description and
implementation of the _init_() method. We will examine different forms of
initialization for simple objects. Following this, we can explore more
complex objects that involve collections and containers.

chapter 3, Integrating Seamlessly — Basic Special Methods, explains, in
detail, how we can expand a simple class definition to add special methods.
We'll need to take a look at the default behavior inherited from the object so
that we can understand what overrides are required and when they're
actually required.

chapter 4, Attribute Access, Properties, and Descriptors, explores how
default processing works in some detail. Here, we will learn how to decide
where and when to override the default behavior. We will also explore
descriptors and gain a much deeper understanding of how Python's internals
work.

chapter 5, The ABCs of Consistent Design, examines the abstract base classes
in the co11ections.abc module. In this chapter, we'll look at the general
concepts behind the various containers and collections that we might want
to revise or extend. Similarly, we'll look at the concepts behind the numbers
that we might want to implement.

chapter 6, Using Callables and Contexts, uncovers several ways to create
context managers using the tools in context1ib. We'll demonstrate a number
of variant designs for callable objects. This will show you why a stateful
callable object is sometimes more useful than a simple function. We'll also
explore how to use some of the existing Python context managers before we

dive in and write our own context manager.

chapter 7, Creating Containers and Collections, focuses on the basics of
container classes. We'll review the variety of special methods that are
involved in creating a container and the various features that containers
offer. We'll address extending built-in containers to add features. We'll also
look at wrapping built-in containers and delegating methods through the
wrapper to the underlying container.

chapter 8, Creating Numbers, covers these essential arithmetic operators: +, -,
%/, //, % and **. We'll also explore these comparison operators: <, >, <=, >=,
==, and '=. We'll finish by summarizing some of the design considerations
that go into extending or creating new numbers.

chapter 9, Decorators and Mixins — Cross-Cutting Aspects, covers simple
function decorators, function decorators with arguments, class decorators,
and method decorators.

section 2, Object Serialization and Persistence, explores a persistent object that
has been serialized to a storage medium; perhaps it's transformed to JSON and
written to the filesystem. An ORM layer can store the object in a database. This
section examines the alternatives for handling persistence. It contains five
chapters, which are as follows:

chapter 10, Serializing and Saving — JSON, YAML, Pickle, CSV, and XML,
covers simple persistence using libraries focused on various data
representations such as JSON, YAML, pickle, XML, and CSV.

chapter 11, Storing and Retrieving Objects via Shelve, explains basic
database operations with Python modules, such as shelve (and dbm).
chapter 12, Storing and Retrieving Objects via SQLite, uncovers the more
complex world of SQL and the relational database. Because SQL features
don't match OOP features well, we have an impedance mismatch problem.
A common solution is to use ORM to allow us to persist a large domain of
objects. The SQLAIchemy package will be used as an example of the many
ORMs that are available.

chapter 13, Transmitting and Sharing Objects, looks at the HTTP protocol,
JSON, YAML, and XML representations to transmit an object.

chapter 14, Configuration Files and Persistence, covers various ways in
which a Python application can work with a configuration file.

chapter 15, Design Principles and Patterns, reviews the SOLID design
principles. These can help organize high-quality, maintainable Python
software by following some best practices.

section 3, Object-Oriented Testing and Debugging, shows you how to gather data
to support and debug your own high-performance programs. It includes
information on creating the best possible documentation in order to reduce the
confusion and complexity of the support. This section contains the final five
chapters, which are as follows:

chapter 16, The Logging and Warning Modules, looks at using the logging
and warning modules to create audit information, as well as debugging.
Additionally, we'll take a significant step beyond using the print() function.
chapter 17, Designing for Testability, covers designing for testability and
demonstrates how to use unittest and doctest.

chapter 18, Coping with the Command Line, looks at using the

argparse module to parse options and arguments. We'll take this a step further
and use the command design pattern to create program components that can
be combined and expanded without resorting to writing shell scripts.

chapter 19, Module and Package Design, covers module and package design.
This is a higher-level set of considerations; we'll take a look at related
classes in a module and related modules in a package.

chapter 20, Quality and Documentation, explores how we can document our
design to create some kind of trust that our software is correct and has been
properly implemented.

To get the most out of this book

In order to compile and run the examples included in this book, you will require
the following software:

e Python Version 3.7 or higher, with the standard suite of libraries:

We'll use mypy to check type hints (http://mypy-lang.org).

e We'll take a look at these additional packages:

PYYAML (http://pyyaml.org).

SQLAlchemy (http://www.sqlalchemy.org)Z When bUﬂdng thiS, check the
installation guide carefully. In particular, refer to nttps://docs.sqlalchemy.
org/en/12/intro.html#installing-the-c-extensions for information on
simplifying the installation by disabling the C extension.

Flask (http://flask.pocoo.org).

Requests (https://2.python-requests.org/en/master/).

Jinja (http://jinja.pocoo.org/).

PYTESt (https://docs.pytest.org/en/latest/).

SpthX (http://sphinx-doc.org).

¢ Optionally, you might want to use the Black tool to format your code
consistently (https ://black.readthedocs. io/en/stable/).

e Additionally, the overall test suite for this book's code is run using the tox
tool (https://tox.readthedocs.io/en/latest/).

http://mypy-lang.org
http://pyyaml.org
http://www.sqlalchemy.org
https://docs.sqlalchemy.org/en/12/intro.html#installing-the-c-extensions
http://flask.pocoo.org
https://2.python-requests.org/en/master/
http://jinja.pocoo.org/
https://docs.pytest.org/en/latest/
http://sphinx-doc.org
https://black.readthedocs.io/en/stable/
https://tox.readthedocs.io/en/latest/

Download the example code files

You can download the example code files for this book from your account at www.
packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support
and register to have the files emailed directly to you.

You can download the code files by following these steps:

LOg in or register at www.packt.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of the following:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/Packtpu
blishing/Mastering-Object-Oriented-Python-Second-Edition. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at nhttps://github.com/Packtpublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Object-Oriented-Python-Second-Edition
https://github.com/PacktPublishing/

Code in Action

Visit the following link to see the code being executed:

http://bit.ly/2XIu8Tk

http://bit.ly/2XIu8Tk

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLSs, user input, and Twitter
handles. Here is an example: "Mount the downloaded webstorm-10*.dng disk image
file as another disk in your system."

A block of code is set as follows:

def F(n: int) -> int:
if n in (0, 1):
return 1
else:
return F(n-1) + F(n-2)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def factorial(n: int) -> int:
"""Compute n! recursively.

‘param n: an integer >= 0
‘returns: n!

Because of Python's stack limitation, this won't
compute a value larger than about 1000!.

>>> factorial(5)
120

Any command-line input or output is written as follows:

$ python3 -m pip install --upgrade pip
$ python3 -m pip install black

Bold: Indicates a new term, an important word, or words that you see onscreen.
For example, words in menus or dialog boxes appear in the text like this. Here is
an example: "Select System info from the Administration panel."

0 Warnings or important notes appear like this.

g Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at

customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we would
be grateful if you would report this to us. Please Visit www.packt.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering
the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please ViSit authors. packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Section 1: Tighter Integration Via
Special Methods

We'll extend the core object-oriented programming techniques to allow for
increased integration of the classes we create with other features of Python.

The following chapters will be covered in this section:

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

1, Preliminaries, Tools, and Techniques

2, The __init__() Method

3, Integrating Seamlessly — Basic Special Methods
4, Attribute Access, Properties, and Descriptors

s, The ABCs of Consistent Design

6, Using Callables and Contexts

7, Creating Containers and Collections

s, Creating Numbers

9, Decorators and Mixins — Cross-Cutting Aspects

Preliminaries, Tools, and Techniques

To make the design issues in the balance of the book more clear, we need to look
at some the problems that serve as motivation. One of these is using object-
oriented programming (OOP) for simulation. Simulation was one of the early
problem domains for OOP. This is an area where OOP works out particularly
elegantly.

We've chosen a problem domain that's relatively simple: the strategies for
playing the game of blackjack. We don't want to endorse gambling; indeed, a bit
of study will show that the game is stacked heavily against the player. This
should reveal that most casino gambling is little more than a tax on the
innumerate.

The first section of this chapter will review the rules of the game of Blackjack.
After looking at the card game, the bulk of this chapter will provide some
background in tools that are essential for writing complete Python programs and
packages. We'll look at the following concepts:

e The Python runtime environment and how the special method names
implement the language features

¢ Integrated Development Environments (IDEs)

e Using the py1lint Or biack tools to create a uniform style

e Using type hints and the mypy tool to establish proper use of functions,
classes, and variables

e Using timeit for performance testing

e Using unittest, doctest, and pytest for unit testing

e Using sphinx and RST-based markup to create usable documentation

While some of these tools are part of the Python standard library, most of them
are outside the library. We'll discuss installation of tools when we talk about the
Python runtime in general.

This book will try to avoid digressing into the foundations of Python OOP. We're
assuming that you've already read Packt's Python3 Object-Oriented
Programming. We don't want to repeat things that are nicely stated elsewhere.

We will focus on Python 3.

We'll refer to a number of common object-oriented design patterns and will try to
avoid repeating the presentation in Packt's Learning Python Design Patterns.

WEe'll cover the following topics in this chapter:

About the Blackjack game

The Python runtime and special methods
Interaction, scripting and tools

Selecting an IDE

Consistency and style

Type hints and the mypy program
Performance — the timeit module

Testing — unittest and doctest
Documentation — sphinx and RST markup
Installing components

Technical requirements

The code files for this chapter can be found at nttps://git.io/fj2us.

https://git.io/fj2UB

About the Blackjack game

Many of the examples in the book will center on simulations of a process with a
number of moderately complex state changes. The card game of Blackjack
involves a few rules and a few state changes during play. If you're unfamiliar
with the game of Blackjack, here's an overview.

The objective of the game is to accept cards from the dealer to create a hand that
has a point total that is between the dealer's total and twenty-one. The dealer's
hand is only partially revealed, forcing the player to make a decision without
knowing the dealer's total or the subsequent cards from the deck.

The number cards (2 to 10) have point values equal to the number. The face
cards (Jack, Queen, and King) are worth 10 points. The Ace is worth either
eleven points or one point. When using an ace as eleven points, the value of the
hand is soft. When using an ace as one point, the value is hard.

A hand with an Ace and a seven, therefore, has a hard total of eight and a soft
total of 18. This leads the player to choose to take extra cards. If the dealer is
showing a face card, it's very likely the dealer is holding twenty points, and the
player may not want to risk taking another card.

Each suit has four two-card combinations that total 21. These are all called
Blackjack, even though only one of the four combinations involves a Jack. These
combinations often provide a bonus payout, because there are only four of them
available.

Most of the game is about proper choice of cards. There is, of course, a betting
element. The distinction between playing and betting is made somewhat more

complicated by the provision to split one hand into two hands. This is allowed

when the player's two cards have the same rank. This option will be detailed in
the next section on how the game is played.

Playing the game

The mechanics of play generally work as follows. The details can vary, but the
outline is similar:

e First, the player and dealer each get two cards. The player, of course, knows
the value of both of their cards. They're dealt face up in a casino.

¢ One of the dealer's cards is revealed to the player. It's displayed face up.
The player, therefore, knows a little bit about the dealer's hand, but not
everything. This is typical of more complex simulations where partial
information is available and statistical modeling is required to make
appropriate decisions.

o If the dealer has an Ace showing, the player is offered the opportunity to
place an additional insurance bet. This is a special case, and is typical of
more complex simulations where there are exceptions.

e For the balance of the game, the player can elect to receive cards, or stop
receiving cards. There are four choices available:

e The player can hit, which means take another card.

e They player can or stand or stand pat with the cards dealt.

e If the player's cards match, the hand can be split. This entails an
additional bet, and the two hands are played separately.

e The player can double their bet before taking one last card. This is
called doubling down.

The final evaluation of the hand works as follows:

e If the player went over 21, the hand is a bust, the player loses, and the
dealer's face-down card is irrelevant. This provides an advantage to the
dealer.

o If the player's total is 21 or under, then the dealer takes cards according to a
simple, fixed rule. The dealer must hit a hand that totals less than 18; the
dealer must stand on a hand that totals 18 or more.

e If the dealer goes bust, the player wins.

e If both the dealer and player are 21 or under, the hands are compared. The
higher total is the winner. In the event of a tie, the game is a push, neither a
win nor a loss. If the player wins with 21, they win a larger payout, usually

1.5 times the bet.

The rules can vary quite a bit. We'll elide these details to focus on the Python
code required for simulation.

Blackjack player strategies

In the case of blackjack, there are actually two kinds of strategies that the player
must use:

e A strategy for deciding what play to make: take insurance, hit, stand, split,
or double down.

e A strategy for deciding what amount to bet. A common statistical fallacy
leads players to raise and lower their bets in an attempt to preserve their
winnings and minimize their losses. These are interesting, stateful
algorithms in spite of the underlying fallacies.

These two sets of strategies are, of course, prime examples of the Strategy
design pattern.

Object design for simulating
Blackjack

We'll use elements of the game, such as the player, hand, and card, as examples
for object modeling. We won't design the entire simulation. We'll focus on
elements of this game because they have some nuance, but aren't terribly
complex.

The cards are relatively simple, immutable objects. There are a variety of
modeling techniques available. Cards fall into a simple class hierarchy of the
number cards, face cards, and the Ace. There are simple containers, including
hands of card instances, and decks of cards as well. These are stateful collections
with cards being added and removed. There are a number of ways to implement
this in Python and we'll look at many alternatives. We also need to look at the
player as a whole. A player will have a sequence of hands, as well as a betting
strategy and a Blackjack play strategy. This is a rather complex composite
object.

The Python runtime and special
methods

One of the essential concepts for mastering object-oriented Python is to
understand how object methods are implemented. Let's look at a relatively
simple Python interaction:

>>> f = [1, 1, 2, 3]

>>> f += [f[-1] + f[-2]]

>>> f
[1, 1, 2, 3, 5]

We've created a list, r, with a sequence of values. We then mutated this list using
the += operator to append a new value. The f[-1] + f[-2] expression computes the
new value to be appended.

The value of f[-1] is implemented using the list object's __getiten_ () method.
This is a core pattern of Python: the simple operator-like syntax is implemented
by special methods. The special methods have names surrounded with __ to
make them distinctive. For simple prefix and suffix syntax, the object is obvious;
f[-1] is implemented as f.__getitem_ (-1).

The additional operation is similarly implemented by the __add_ () special
method. In the case of a binary operator, Python will try both operands to see
which one offers the special method. In this example, both operands are integers,
and both will provide a suitable implementation. In the case of mixed types, the
implementation of the binary operator may coerce one value into another type.
f[-1] + f[-2], then, is implemented as f.__getitem_ (-1).__add_ (f._getitem_ (-2)).

The update of r by the += operator is implemented by the __iadd_ () special
method. Consequently, += [x] is implemented as f.__iadd__([x]).

Throughout the first eight chapters, we'll look very closely at these special
methods and how we can design our classes to integrate very tightly with
Python's built-in language features. Mastering the special methods is the essence
of mastering object-oriented Python.

Interaction, scripting, and tools

Python is often described as Batteries Included programming. Everything
required is available directly as part of a single download. This provides the
runtime, the standard library, and the IDLE editor as a simple development
environment.

It's very easy to download and install Python 3.7 and start running it interactively
on the desktop. The example in the previous section included the >>> prompt
from interactive Python.

If you're using the Iron Python (IPython) implementation, the interaction will
look like this:

In [1]: f = [1, 1, 2, 3]

In [3]: f += [f[-1] + f[-2]]

In [4]: f
out[4]: [1, 1, 2, 3, 5]

The prompt is slightly different, but the language is the same. Each statement is
evaluated as it is presented to Python.

This is handy for some experimentation. Our goal is to build tools, frameworks,
and applications. While many of the examples will be shown in an interactive
style, most of the actual programming will be via script files.

Running examples interactively makes a profound statement. Well-written
Python code should be simple enough that it can be run from the command line.

9 Good Python is simple. We should be able to demonstrate a design at the >>> prompt.

Interactive use is not our goal. Exercising code from the >>> prompt is a quality
test for complexity. If the code is too complex to exercise it from the >>> prompt,
then refactoring is needed.

The focus of this book is on creating complete scripts, modules, packages, and
applications. Even though some examples are shown in interactive mode, the

objective is to create Python files. These files may be as simple as a script or as
complex as a directory with files to create a web application.

Tools such as mypy, pytest, and py1int work with Python files. Preparing script files
can be done with almost any text editor. It's best, however, to work with an IDE,
where a number of tools can be provided to help develop applications and
scripts.

Selecting an IDE

A common question is, ""What is the" "best"" IDE for doing Python development?"" The short
answer to this question is that the IDE choice doesn't matter very much. The
number of development environments that support Python is vast and they are all
very easy to use. The long answer requires a conversation about what attributes
would rank an IDE as being the best.

The Spyder IDE is part of the Anaconda distribution. This makes it readily
accessible to developers who've downloaded Anaconda. The IDLE editor is part
of the Python distribution, and provides a simple environment for using Python
and building scripts. PyCharm has a commercial license as well as a community
edition, it provides a large number of features, and was used to prepare all the
examples in this book.

The author makes use of having both an editor, an integrated Python prompt, and
unit test results all readily available. PyCharm works well with the conda
environments, avoiding confusion over what packages are installed.

A search on the internet will provide a long list of other tools. See the IDE
PythOD wiki page for numerous alternatives (https://wiki.python.org/moin/IntegratedD

evelopmentEnvironments).

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Consistency and style

All of the examples in the book were prepared using the biack tool to provide
consistent formatting. Some additional manual adjustments were made to keep
code within the narrow sizes of printed material.

A common alternative to using biack is to use pylint to identify formatting
problems. These can then be corrected. In addition to detailed analysis of code
quality, the py1int tool offers a numeric quality score. For this book, some py1int
rules needed to be disabled. For example, the modules often have imports that
are not in the preferred order; some modules also have imports that are relevant
to doctest examples, and appear to be unused; some examples use global
variables; and some class definitions are mere skeletons without appropriate
method definitions.

Using py1int to locate potential problems is essential. It's often helpful to silence
pylint warnings. In the following example, we need to silence a py1int warning
about the test_1ist variable name being invalid as a global variable:

pylint: disable=invalid-name
test_list = """
>>f =11, 1, 2, 3]
>>> f += [f[-1] + f[-2]]
>>> f
[1, 1, 2, 3, 5]

if __name__ == "_ _main__":
import doctest
__test_ = {name: value

for name, value in locals().items()
if name.startswith("test_")}
doctest.testmod(verbose=False)

Besides helping enforce a consistent style, the py1int warnings are helpful for
identifying spelling mistakes and a list of common errors. For example, the
instance variable is commonly se1f. An accidental spelling error of ser1 will be
found by pylint.

Type hints and the mypy program

Python 3 permits the use of type hints. The hints are present in assignment
statements, function, and class definitions. They're not used directly by Python
when the program runs. Instead, they're used by external tools to examine the
code for improper use of types, variables, and functions. Here's a simple function
with type hints:
def F(n: int) -> int:

if n in (0, 1):

return 1

else:
return F(n-1) + F(n-2)

print("Good Use", F(8))
print("Bad Use", F(355/113))

When we run the mypy program, we'll see an error such as the following:

| Chapter_1/ch@l_ex3.py:23: error: Argument 1 to "F" has incompatible type "float"; expect

This message informs us of the location of the error: the file is
Chapter_1/cho1_ex3.py, which is the 23" line of the file. The details tell us that the
function, r, has an improper argument value. This kind of problem can be
difficult to see. In some cases, unit tests might not cover this case very well, and
it's possible for a program to harbor subtle bugs because data of an improper
type might be used.

Performance — the timeit module

We'll make use of the timeit module to compare the actual performance of
different object-oriented designs and Python constructs. We'll focus on

the timeit() function in this module. This function creates a timer object that's
used to measure the execution of a given block of code. We can also provide
some preparatory code that creates an environment. The return value from this
function is the time required to run the given block of code.

The default count is 100,000. This provides a meaningful time that averages out
other OS-level activity on the computer doing the measurement. For complex or
long-running statements, a lower count may be prudent.

Here's a simple interaction with timeit:

>>> timeit.timeit("obj.method()",
. class SomeClass:
def method(self):
. pass
. obj= SomeClass()

- mnn)
0.1980541350058047

The code to be measured is obj.method(). It is provided to timeit() as a string. The
setup code block is the class definition and object construction. This code block,
too, is provided as a string. It's important to note that everything required by the
statement must be in the setup. This includes all imports, as well as all variable
definitions and object creation.

This example showed that 100,000 method calls that do nothing costs 0.198
seconds.

Testing — unittest and doctest

Unit testing is absolutely essential.

If there's no automated test to show a particular element functionality, then the
feature doesn't really exist. Put another wayj, it's not done until there's a test that
shows that it's done.

We'll touch, tangentially, on testing. If we delved into testing each object-
oriented design feature, the book would be twice as long as it is. Omitting the
details of testing has the disadvantage of making good unit tests seem optional.
They're emphatically not optional.

9 Unit testing is essential.
When in doubt, design the tests first. Fit the code to the test cases.

Python offers two built-in testing frameworks. Most applications and libraries
will make use of both. One general wrapper for testing is the unittest module. In
addition, many public API docstrings will have examples that can be found and
used by the doctest module. Also, unittest can incorporate doctest.

The pytest tool can locate test cases and execute them. This is a very useful tool,
but must be installed separately from the rest of Python.

One lofty ideal is that every class and function has at least a unit test. The
important, visible classes and functions will often also have doctest. There are
other lofty ideals: 100% code coverage; 100% logic path coverage, and so on.

Pragmatically, some classes don't need testing. A class that

extends typing.namedTuple, fOr example, doesn't really need a sophisticated unit
test. It's important to test the unique features of a class you've written and not the
features inherited from the standard library.

Generally, we want to develop the test cases first, and then write code that fits
the test cases. The test cases formalize the API for the code. This book will
reveal numerous ways to write code that has the same interface. Once we've

defined an interface, there are still numerous candidate implementations that fit
the interface. One set of tests will apply to several different object-oriented
designs.

One general approach to using the unittest and pytest tools is to create at least
three parallel directories for your project:

e myproject: This directory is the final package that will be installed in 1ib/site-
packages for your package or application. It has an __init__.py file. We'll put
our files in here for each module.

e tests: This directory has the test scripts. In some cases, the scripts will
parallel the modules. In some cases, the scripts may be larger and more
complex than the modules themselves.

® docs: This has other documentation. We'll touch on this in the next section,
as well as a chapter in part three.

In some cases, we'll want to run the same test suite on multiple candidate classes
so that we can be sure each candidate works. There's no point in doing
timeit comparisons on code that doesn't actually work.

Documentation — sphinx and RST
markup

All Python code should have docstrings at the module, class and method level.
Not every single method requires a docstring. Some method names are really
well chosen, and little more needs to be said. Most times, however,
documentation is essential for clarity.

Python documentation is often written using the reStructuredText (RST)
markup.

Throughout the code examples in the book, however, we'll omit docstrings. The
omission keeps the book to a reasonable size. This gap has the disadvantage of
making docstrings seem optional. They're emphatically not optional.

9 This point is so important, we'll emphasize it again: docstrings are essential.

The docstring material is used three ways by Python:

e The internal neip() function displays the docstrings.

e The doctest tool can find examples in docstrings and run them as test cases.

e External tools, such as sphinx and pydoc, can produce elegant documentation
extracts from these strings.

Because of the relative simplicity of RST, it's quite easy to write good
docstrings. We'll look at documentation and the expected markup in detail in chap
ter 18, Coping with the Command Line. For now, however, we'll provide a quick
example of what a docstring might look like:

def factorial(n: int) -> int:

Compute n! recursively.

‘param n: an integer >= 0
‘returns: n!

Because of Python's stack limitation, this won't compute a value larger than about 1

>>> factorial(5)

120

if n == 0:
return 1
return n*factorial(n-1)

This shows the RST markup for the n parameter and the return value. It includes
an additional note about limitations. It also includes a doctest example that can be
used to validate the implementation using the doctest tool. The use of :param n:
and :return: identifies text that will be used by the sphinx tool to provide proper
formatting and indexing of the information.

Installing components

Most of the tools required must be added to the Python 3.7 environment. There
are two approaches in common use:

e Use pip to install everything.
e Use conda to create an environment. Most of the tools described in this book
are part of the Anaconda distribution.

The pip installation uses a single command:

| python3 -m pip install pyyaml sqlalchemy jinja2 pytest sphinx mypy pylint black

This will install all of the required packages and tools in your current Python
environment.

The conda installation creates a conda environment to keep the book's material
separate from any other projects:

1. Install conda. If you have already installed Anaconda, you have the Conda
tool, nothing more needs to be done. If you don't have Anaconda yet, then
install miniconda, which is the ideal way to get started. Visit https://conda.io/mi
niconda.html and download the appropriate version of conda for your platform.

2. Use conda to build and activate the new environment.

3. Then upgrade pip. This is needed because the default pip installation in the
Python 3.7 environment is often slightly out of date.

4. Finally, install biack. This is required because biack is not currently in any of
the conda distribution channels.

Here are the commands:

$ conda create --name mastering python=3.7 pyyaml sqlalchemy jinja2
pytest sphinx mypy pylint

$ conda activate mastering

$ python3 -m pip install --upgrade pip

$ python3 -m pip install black

The suite of tools (pytest, sphinx, mypy, pylint, and black) are essential for creating

https://conda.io/miniconda.html

high-quality, reliable Python programs. The other components, pyyami, sqlalchemy,
and jinjaz, are helpful for building useful applications.

Summary

In this chapter, we've surveyed the game of Blackjack. The rules have a
moderate level of complexity, providing a framework for creating a simulation.
Simulation was one of the first uses for OOP and remains a rich source of
programming problems that illustrate language and library strengths.

This chapter introduces the way the Python runtime uses special methods to
implement the various operators. The bulk of this book will show ways to make
use of the special methods names for creating objects that interact seamlessly
with other Python features.

We've also looked at a number of tools that will be required to build good Python
applications. This includes the IDE, the mypy program for checking type hints,

and the b1ack and py1int programs for getting to a consistent style. We also looked
at the timeit, unittest, and doctest modules for doing essential performance and
functional testing. For final documentation of a project, it's helpful to install
sphinx. The installation of these extra components can be done with pip or conda.
The pip tool is part of Python, the conda tool requires another download to make it
available.

In the next chapter, we'll start our exploration of Python with class definition.
We'll focus specifically on how objects are initialized using the __init_ () special
method.

The __init__ () Method

The _init_ () method is a profound feature of Python class definitions for two
reasons. Firstly, initialization is the first big step in an object's life; every object
must have its state initialized properly. The second reason is that the argument
values for __init_ () can take many forms.

Because there are so many ways to provide argument values to __init_ (), there is
a vast array of use cases for object creation. We'll take a look at several of them.
We want to maximize clarity, so we need to define an initialization that
characterizes the problem domain and clearly sets the state of the object.

Before we can get to the __init_ () method, however, we need to take a look at
the implicit class hierarchy in Python, glancing briefly at the class named object.
This will set the stage for comparing its default behavior with the different kinds
of behavior we want from our own classes.

In this chapter, we will take a look at different forms of initialization for simple
objects (for example, playing cards). After this, we will take a look at more
complex objects, such as hands, which involve collections, and players, which
involve strategies and states. Throughout these examples, we'll include type hints
and explain how mypy will examine this code to determine the correct use of
objects.

In this chapter, we will cover the following topics:

e All Python objects are subclasses of a common parent, the object class, so
we'll look at this first.

e We'll look at how the default _init_ () method for the object class works.

e The first design strategy we'll look at is using a common __init_ () method
for all subclasses of a hierarchy. This can lead to using a factory function,
separate from the __init_ () method, to help initialize objects correctly.

e The second design strategy involves pushing the __init_ () method into each
individual subclass of a complex hierarchy, and how this changes the design
of the classes.

e We'll look at how to create composite objects, which involves a number of

related uses of the __init_ () methods of different classes.

e We'll also look at stateless objects, which don't need a sophisticated
init () method.

e The chapter will finish with several more complex uses of class-level (or
static) initialization, and how to validate values before creating an invalid
object.

In the first section, we'll look at Python's superclass for all objects, the object
class.

Technical requirements

The code files for this chapter can be found at nttps://git.io/fj2ue.

https://git.io/fj2U0

The 1mplicit superclass — object

Each Python class definition has an implicit superclass: object. It's a very simple
class definition that does almost nothing.

We can create instances of object, but we can't do much with them, because many
of the special methods simply raise exceptions.

When we define our own class, object is the superclass. The following is an
example class definition that simply extends object with a new name:

>>> class X:
>>> pass

The following are some interactions with this tiny class definition:

>>> X._ class_

<class 'type'>

>>> X.__class__.__base__
<class 'object'>

We can see that a class is an object of the class named type and that the base class
for our new class is the class named object. As we look at each method, we also
take a look at the default behavior inherited from object. In some cases, the
superclass special method's behavior will be exactly what we want. In other
cases, we'll need to override the behavior of the special method.

The base class object __init__ ()
method

Fundamental to the life cycle of an object are its creation, initialization, and
destruction. We'll defer creation and destruction to a later chapter on more
advanced special methods and focus on initialization. This will set the initial
state of the object.

The superclass of all classes, object, has a default implementation of __init_ ()
that amounts to pass. We aren't required to implement __init_ (). If we don't
implement it, then no instance variables will be created when the object is
created. In some cases, this default behavior is acceptable.

We can add attributes to an object that's a subclass of object. Consider the
following class, which requires two instance variables, but doesn't initialize
them:

class Rectangle:

def area(self) -> float:
return self.length * self.width

The rectangle class has a method that uses two attributes to return a value. The
attributes have not been initialized anywhere in the class definition. While this is
legal Python, it's a little strange to avoid specifically setting attributes. The
following is an interaction with the rectangle class:

>>> r = Rectangle()

>>> r.length, r.width = 13, 8

>>> r.area()
104

While this is legal, it's a potential source of deep confusion, which is a good
reason to avoid it. Setting ad-hoc attribute values outside the class body in the
example shown above defeats type hint checking by mypy, which is another
reason for avoiding it.

This kind of design grants some flexibility, so there could be times when we
needn't set all of the attributes in the __init_ () method. We walk a fine line here.

An optional attribute implies a kind of subclass that's not formally declared as a
proper subclass.

We're creating polymorphism in a way that could lead to confusing and
inappropriate use of convoluted if statements. While uninitialized attributes may
be useful, they could be a symptom of bad design.

The Zen of Python, by Tim Peters, available from the standard library via import
this, offers the following advice:

"Explicit is better than implicit."

This statement has proven helpful over the years, to help keep Python programs
simple and consistent. This is Python Enhancement Proposal (PEP) number
20. See nttps://www.python.org/dev/peps/pep-0020/ for further information.

An __init_ () method should make instance variables explicit.

Pretty poor polymorphism
There's a fine line between flexibility and foolishness. We may have stepped over the edge of
flexible into foolish as soon as we feel the need to write the following:

if 'x' in self.__dict_ :
code-to-handle-optional-attribute

8 Or, we could see the following:

try:
self.x

except AttributeError:
code-to-handle-optional-attribute

It's time to reconsider the API and add a common method or attribute. Refactoring is better
than adding ir statements.

https://www.python.org/dev/peps/pep-0020/

Implementing __init_ () in a
superclass

We initialize an object by implementing the __init_ () method. When an object is
created, Python first creates an empty object and then calls the __init_ () method
to set the state of the new object. This method generally creates the object's
instance variables and performs any other one-time processing.

The following are some example definitions of a card class hierarchy. We'll
define a card superclass and three subclasses that are variations of the basic
theme of card. We have two instance variables that have been set directly from
argument values and two variables that have been calculated using an
initialization method:

from typing import Tuple
class Card:
def __init_ (self, rank: str, suit: str) -> None:
self.suit = suit
self.rank = rank
self.hard, self.soft = self._points()

def _points(self) -> Tuple[int, int]:
return int(self.rank), int(self.rank)

class AceCard(Card):

def _points(self) -> Tuple[int, int]:
return 1, 11

class FaceCard(Card):

def _points(self) -> Tuple[int, int]:
return 10, 10

In this example, we factored the __init_ () method into the superclass so that a
common initialization in the superclass, card, applies to two
subclasses, acecard and Facecard.

This example provides type hints for parameters of the __init_ () method. Both
the rank and suit parameters are expected to have values of the str type. The
result of the __init_ () method is always none, since it never returns a value. These

hints can be checked by the mypy tool to ensure that the class is used properly.

This shows a common polymorphic design. Each subclass provides a unique
implementation of the _points() method. The various _points() methods all return
a two-tuple with the different ways to evaluate a card. All the subclasses have
identical signatures — they have the same methods and attributes. Objects of
these three subclasses can be used interchangeably in an application.

The leading _ in the name is a suggestion to someone reading the class that the
_points() method is an implementation detail, subject to change in a future
implementation. This can help to reveal which methods are part of a public
interface and which are details that aren't intended for general use by other
classes.

If we simply use characters for suits, we will be able to create the card instances,
as shown in the following code snippet:

|cards = [AceCard('A', '#'), Card('2','s'), FaceCard('J',6's"),]

We enumerated the class, rank, and suit for several cards in a list. In the long
run, we'll need a much smarter factory function to build card instances;
enumerating all 52 cards this way is tedious and error-prone. Before we get to
factory functions, we will take a look at a number of other issues.

Creating enumerated constants

We can define classes for the suits of our cards. The suits of playing cards are an
example of a type with a domain that can be exhaustively enumerated. Some
other types with very small domains of values include the none type, where there's
only one value, and the boo1 type, which has only two values.

The suit of a playing card could be thought of as an immutable object: the state
should not be changed. Python has one simple formal mechanism for defining an
object as immutable. We'll look at techniques to assure immutability in chapter 4,
Attribute Access, Properties, and Descriptors. While it might make sense for the
attributes of a suit to be immutable, the extra effort has no tangible benefit.

The following is a class that we'll use to build four manifest constants:

from enum import Enum

class Suit(str, Enum):
Club = "a&"
Diamond = "e"
Heart "o
Spade "a"

This class has two parent classes. Each of the four values of the suit class is both
a string as well as an enum instance. Each string value is only a single Unicode
character. The enumerated values must be qualified by the class name, assuring
that there will be no collisions with other objects.

Here's one of the enumerated constants built by this class:

>>> Suit.Club
<Suit.Club: '&'>

The representation of an enun instance shows the name within the enun class, as
well as the value assigned by the other parent class. To see only the value, use an
expression such as suit.Heart.value.

We can now create cards, as shown in the following code snippet:

| cards = [AceCard('A', Suit.Spade), Card('2', Suit.Spade), FaceCard('Q', Suit.Spade),]

For an example this small, this class isn't a huge improvement on single
character suit codes. It is very handy to have the explicit enumeration of the
domain of values. An expression such as 1ist(suit) will provide all of the
available objects.

We do have to acknowledge that these objects aren't technically immutable. It's
possible to assign additional attributes to the suit objects. While additional
attributes can be added, the vaiue attribute cannot be changed. The following
example shows the exception raised:

>>> Suit.Heart.value = 'H'
Traceback (most recent call last):
File "<doctest _ main__._ test_.test_suit_value[1]>", line 1, in <module>
Suit.Heart.value = 'H'

File "/Users/slott/miniconda3/envs/py37/1lib/python3.7/types.py", line 175, in _ set_
raise AttributeError("can't set attribute")
AttributeError: can't set attribute

The irrelevance of immutability

Immutability can become an attractive nuisance. It's sometimes justified by a mythical

malicious programmer who modifies the constant value in their application. As a design
9 consideration, this is often silly. A mythical malicious programmer can't be stopped by

creating immutable objects. A malicious programmer would have access to the Python source

and be able to tweak it just as easily as they could write poorly-crafted code to modify a

constant.

In chapter 4, Attribute Access, Properties, and Descriptors, we'll show you some
ways to provide suitable diagnostic information for a buggy program that's
attempting to mutate objects intended to be immutable.

Leveraging _ init__ () via a factory
function

We can build a complete deck of cards via a factory function. This beats
enumerating all 52 cards. In Python, there are two common approaches to
factories, as follows:

e We define a function that creates objects of the required classes.

e We define a class that has methods for creating objects. This is the Factory
design pattern, as described in books on object-oriented design patterns. In
languages such as Java, a factory class hierarchy is required because the
language doesn't support standalone functions.

In Python, a class isn't required to create an object factory, but this can be a good
idea when there are related factories or factories that are complex. One of the
strengths of Python is that we're not forced to use a class hierarchy when a
simple function might do just as well.

While this is a book about object-oriented programming, a function really is fine. It's common,
idiomatic Python.

We can always rewrite a function to be a proper callable object if the need arises.
From a callable object, we can refactor it into a class hierarchy for our factories.
We'll look at callable objects in chapter 6, Using Callables and Contexts.

The advantage of class definitions is code reuse via inheritance. The purpose of a
factory class is to encapsulate the complexities of object construction in a way
that's extensible. If we have a factory class, we can add subclasses when
extending the target class hierarchy. This can give us polymorphic factory
classes; different factory class definitions can have the same method signatures
and can be used interchangeably.

If the alternative factory definitions don't actually reuse any code, then a class
hierarchy won't be as helpful in Python. We can simply use functions that have
the same signatures.

The following is a factory function for our various card subclasses:

def card(rank: int, suit: Suit) -> Card:

if rank == 1:
return AceCard("A", suit)

elif 2 <= rank < 11:
return Card(str(rank), suit)

elif 11 <= rank < 14:
name = {11: "J", 12: "Q", 13: "K"}[rank]
return FaceCard(name, suit)

raise Exception("Design Failure")

This function builds a card class from a numeric rank number and a suit object.
The type hints clarify the expected argument values. The -> card hint describes
the result of this function, showing that it will create a card object. We can now
build card instances more simply. We've encapsulated the construction issues into
a single factory function, allowing an application to be built without knowing
precisely how the class hierarchy and polymorphic design works.

The following is an example of how we can build a deck with this factory
function:
deck = [card(rank, suit)

for rank in range(1,14)
for suit in iter(Suit)]

This enumerates all the ranks and suits to create a complete deck of 52 cards.
This works nicely, because the enun subclasses will iterate over the list of
enumerated values.

We do not need to use iter(suit). We can use suit in the preceding generator, and
it will work nicely. While the for suit in suit form will work, mypy will signal
errors. Using 1ist(suit) OF iter(suit) will mute the errors by making the intent
clear.

Faulty factory design and the vague
else clause

Note the structure of the if statement in the card() function. We did not use a
catch-all e1se clause to do any processing; we merely raised an exception. The
use of a catch-all e1se clause is subject to debate.

On the one hand, it can be argued that the condition that belongs in an eise clause
should never be left unstated because it may hide subtle design errors. On the
other hand, some e1se clause conditions are truly obvious.

It's important to avoid a vague e1se clause.

Consider the following variant on this factory function definition:

def card2(rank: int, suit: Suit) -> Card:

if rank == 1:
return AceCard("A", suit)

elif 2 <= rank < 11:
return Card(str(rank), suit)

else:
name = {11: "J", 12: "Q", 13: "K"}[rank]
return FaceCard(name, suit)

While this kind of code is common, it's not perfectly clear what condition applies
to the eise: clause.

The following looks like it might build a valid deck:

| deck2 = [card2(rank, suit) for rank in range(13) for suit in iter(Suit)]

This doesn't work. But the error is an obscure keyerror when trying to build a
Facecard instance.

What if the ir conditions were more complex? While some programmers will
understand this ir statement at a glance, others will struggle to determine
whether all of the cases are properly exclusive.

We should not force the reader to deduce a complex condition for an eise clause.

Either the condition should be obvious to the newest of noobz, or it should be
explicit.

Catch-all else should be used rarely. Use it only when the condition is obvious. When in
doubt, be explicit and use e1se to raise an exception. Avoid the vague eise clause.

Simplicity and consistency using elif
sequences

The factory function, card(), is a mixture of two very common Factory design
patterns:

e An if-elif Sequence
e A mapping

For the sake of simplicity, it can be better to focus on just one of these
techniques rather than on both.

We can always replace a mapping with e1ir conditions. (Yes, always. The reverse
is not true though; transforming e1ir conditions to a mapping can be
challenging.)

The following is a card factory without a mapping:

def card3(rank: int, suit: Suit) -> Card:
if rank == 1:
return AceCard("A", suit)
elif 2 <= rank < 11:
return Card(str(rank), suit)
elif rank == 11:
return FaceCard("J", suit)
elif rank == 12:
return FaceCard("Q", suit)
elif rank == 13:
return FaceCard("K", suit)
else:
raise Exception("Rank out of range")

We rewrote the card() factory function. The mapping was transformed into
additional e1if clauses. This function has the advantage that it is more consistent
than the previous version.

Simplicity using mapping and class
objects

In some cases, we can use a mapping instead of a chain of e1if conditions. It's
possible to find conditions that are so complex that a chain of e1if conditions is
the only sensible way to express them. For simple cases, however, a mapping
often works better and can be easy to read.

Since c1ass is a first-class object, we can easily map from the rank parameter to
the class that must be constructed.

The following is a card factory that uses only a mapping:

def card4(rank: int, suit: Suit) -> Card:
class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
13: FaceCard}.get(rank, Card)
return class_(str(rank), suit)

We've mapped the rank object to a class. Then, we applied the class to the rank
and suit values to build the final card instance.

The carda() function, however, has a serious deficiency. It lacks the translation
from 1 to a and 13 to k that we had in previous versions. When we try to add that
feature, we run into a problem.

We need to change the mapping to provide both a card subclass as well as the
string version of the rank object. How can we create this two-part mapping?
There are four common solutions:

e We can do two parallel mappings. We don't suggest this, but we'll show it to
emphasize what's undesirable about it.

e We can map to a two-tuple. This also has some disadvantages.

e We can map to a partial () function. The partiai() function is a feature of the
functools module. This won't work out perfectly, and we'll use a lambda
object to achieve the same goal.

e We can also consider modifying our class definition to fit more readily with
this kind of mapping. We'll look at this alternative in the next section, on

pushing _init_ () into subclass definitions.

We'll look at each of these with a concrete example.

Two parallel mappings

The following is the essence of the two-parallel mappings solution:

def card5(rank: int, suit: Suit) -> Card:
class_ = {1: AceCard, 11: FaceCard, 12: FaceCard,
13: FaceCard}.get(rank, Card)
rank_str = {1: "A", 11: "J", 12: "Q",
13: "K"}.get(rank, str(rank))
return class_(rank_str, suit)

This is not desirable. It involves a repetition of the sequence of the mapping keys
1, 11, 12, and 13. Repetition is bad, because parallel structures never seem to stay
that way after the software has been updated or revised.

Don't use parallel structures
Two parallel structures s